Campomanesia adamantium (Cambess.) O. Berg seed desiccation: influence on vigor and nucleic acids.
Dresch, Daiane M; Masetto, Tathiana E; Scalon, Silvana P Q
2015-01-01
The aim of this study was to evaluate the sensitivity of Campomanesia adamantium seeds to desiccation by drying in activated silica gel (fast) and under laboratory conditions (slow). To assess the sensitivity of the seeds to desiccation, we used drying with silica gel and drying under laboratory conditions (25 °C), in order to obtain seeds with moisture content of 45, 35, 30, 25, 20, 15, 10 and 5%. The physiological potential of the seeds after desiccation was evaluated by measuring primary root protrusion, percentage of normal seedlings, germination seed index, seedling length, total seedling dry mass, electrical conductivity and DNA and RNA integrities. The C. adamantium seeds were sensitive to desiccation and to a reduction in moisture content to 21.1% or less by desiccation using silica gel, and to 17.2% or less by desiccation under laboratory conditions; impairment of the physiological potential of the seeds was observed at these low moisture content levels. The integrity of the seed genomic DNA was not affected after drying seeds in the two methods. However, drying in silica gel to 4.5% moisture content and drying under laboratory conditions to 5.4% moisture content resulted in the loss of seed RNA integrity.
Seed dormancy in alpine species
Schwienbacher, Erich; Navarro-Cano, Jose Antonio; Neuner, Gilbert; Erschbamer, Brigitta
2011-01-01
In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after cold-wet storage, and scarification. We also tested the light requirement for germination in some species. Germination behavior was characterized using the final germination percentage and the mean germination time. Considering the effects of the pretreatments, a refined classification of the prevailing dormancy types was constructed based on the results of our pretreatments. Only two out of the 28 species that we evaluated had predominantly non-dormant seeds. Physiological dormancy was prevalent in 20 species, with deep physiological dormancy being the most abundant, followed by non-deep and intermediate physiological dormancy. Seeds of four species with underdeveloped embryos were assigned to the morphophysiologial dormancy class. An impermeable seed coat was identified in two species, with no additional physiological germination block. We defined these species as having physical dormancy. Light promoted the germination of seeds without storage in all but one species with physiological dormancy. In species with physical dormancy, light responses were of minor importance. We discuss our new classification in the context of former germination studies and draw implications for the timing of germination in the field. PMID:24415831
Seed priming: state of the art and new perspectives.
Paparella, S; Araújo, S S; Rossi, G; Wijayasinghe, M; Carbonera, D; Balestrazzi, Alma
2015-08-01
Priming applied to commercial seed lots is widely used by seed technologists to enhance seed vigour in terms of germination potential and increased stress tolerance. Priming can be also valuable to seed bank operators who need improved protocols of ex situ conservation of germplasm collections (crop and native species). Depending on plant species, seed morphology and physiology, different priming treatments can be applied, all of them triggering the so-called 'pre-germinative metabolism'. This physiological process takes place during early seed imbibition and includes the seed repair response (activation of DNA repair pathways and antioxidant mechanisms), essential to preserve genome integrity, ensuring proper germination and seedling development. The review provides an overview of priming technology, describing the range of physical-chemical and biological treatments currently available. Optimised priming protocols can be designed using the 'hydrotime concept' analysis which provides the theoretical bases for assessing the relationship between water potential and germination rate. Despite the efforts so far reported to further improve seed priming, novel ideas and cutting-edge investigations need to be brought into this technological sector of agri-seed industry. Multidisciplinary translational research combining digital, bioinformatic and molecular tools will significantly contribute to expand the range of priming applications to other relevant commercial sectors, e.g. the native seed market.
Thobunluepop, P; Pawelzik, E; Vearasilp, S
2008-10-01
This study aimed to evaluate the perspective changes of several physiological performances of rice seeds cv. KDML 105 which were coated with various seed coating substances [chemical fungicide, captan (CA) and biological coating polymers; chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E + CL)] during storage (12 months). CA significantly increased seed moisture content and seed water activity through out the storage period. The qualities and viability of the seeds were seriously declined by this treatment. Moreover, CA inhibited the shoot and root development, seedling dry weight accumulation, delayed the seed germination and seedling growth rate. CA treated seeds were susceptible to stress conditions that declined the seed germination potential under cold, high moisture and temperature stress conditions. Nevertheless, CL and E + CL coating polymer could maintain seed storability, which significantly improved seed germination and seedling performances. These improvements were attributed to maintain the nutritive reserve and dehydrogenase activity in seeds. Moreover, the biological seed treatment stimulated the embryo growth and so speeding up the seedling emergence when compared untreated seeds.
Shu, Ying-Jie; Wang, Shuang; Tao, Yuan; Song, Li-Run; Huang, Li-Yan; Zhou, Yu-Li; Ma, Hao
2014-05-01
A pot experiment was conducted to investigate the effects of high temperature and humidity stress [(40 +/- 2) degrees C/(30 +/- 2) degrees C, RH (95 +/- 5)%/(70 +/- 5)%, 10 h/14 h (day/night)] at the physiological maturity stage of two spring soybean cultivars (Xiangdou No. 3 and Ningzhen No. 1) on seed vigor indices, main nutritional components and coat anatomical structure. High temperature and humidity stress were found to cause the decrease of seed viability, germination potential, and germination percentage as well as the dehydrogenase and acid phosphatase activities, but increased the seed cell membrane permeability as well as H+, soluble sugar and leucine levels in the seed soaking liquid of each cultivar. Moreover, the stress led to irregular changes of seed oil and protein contents and alteration of anatomical structure of episperm and hilum in the two cultivars. A shortterm stress (less than 5 h) had no significant impact on seed vigor, but a long-term one (more than 48 h) caused rapid decrease of seed vigor indices. Xiangdou No. 3 showed less decreases in seed germination potential and enzyme activities, and less increase in extravasation content in the seed soaking liquid, had compact seed coat and intact hilum, suggesting it was more resistant to high temperature and humidity stress.
Davis, Adam S; Fu, Xianhui; Schutte, Brian J; Berhow, Mark A; Dalling, James W
2016-10-01
Soil seedbanks drive infestations of annual weeds, yet weed management focuses largely on seedling mortality. As weed seedbanks increasingly become reservoirs of herbicide resistance, species-specific seedbank management approaches will be essential to weed control. However, the development of seedbank management strategies can only develop from an understanding of how seed traits affect persistence.We quantified interspecific trade-offs among physiological, chemical, and physical traits of weed seeds and their persistence in the soil seedbank in a common garden study. Seeds of 11 annual weed species were buried in Savoy, IL, from 2007 through 2012. Seedling recruitment was measured weekly and seed viability measured annually. Seed physiological (dormancy), chemical (phenolic compound diversity and concentration; invertebrate toxicity), and physical traits (seed coat mass, thickness, and rupture resistance) were measured.Seed half-life in the soil ( t 0.5 ) showed strong interspecific variation ( F 10,30 = 15, p < .0001), ranging from 0.25 years ( Bassia scoparia ) to 2.22 years ( Abutilon theophrasti ). Modeling covariances among seed traits and seedbank persistence quantified support for two putative defense syndromes (physiological-chemical and physical-chemical) and highlighted the central role of seed dormancy in controlling seed persistence.A quantitative comparison between our results and other published work indicated that weed seed dormancy and seedbank persistence are linked across diverse environments and agroecosystems. Moreover, among seedbank-forming early successional plant species, relative investment in chemical and physical seed defense varies with seedbank persistence. Synthesis and applications . Strong covariance among weed seed traits and persistence in the soil seedbank indicates potential for seedbank management practices tailored to specific weed species. In particular, species with high t 0.5 values tend to invest less in chemical defenses. This makes them highly vulnerable to physical harvest weed seed control strategies, with small amounts of damage resulting in their full decay.
Physiological behavior of bean's seeds and grains during storage.
Cassol, Flávia D R; Fortes, Andréa M T; Mendonça, Lorena C; Buturi, Camila V; Marcon, Thaís R
2016-05-31
Beans are one of the most used foods to meet the energy needs of the Brazilian diet, requiring farmers to use high seed physiological potential. The aim was to evaluate the physiological quality of beans stored for 360 days. Analyses were performed at 0, 30, 90, 180, 270, and 360 days after receiving the seeds (S1 and S2) and grains (G1 and G2) of BRS Splendor. Tests of germination, accelerated aging, cold, speed of germination, average length of shoots, and root were performed. The experimental design was completely randomized split-plot in time and the means were compared through Tukey test at 5% probability. Seed germination was not affected in S2, while the drop in S1 and G1 was significant. The vigor of grains from field 1 declined from 91 to 50% and from 93% to 76% by accelerated aging and cold, respectively, after 360 days. The germination speed tests performed showed a decreased during the experiment. The grains from field 1 had lower physiological quality. The accelerated aging and cold tests, through the speed of germination parameter, showed decrease in the vigor of the Splendor BRS. The storage period influenced the physiological quality of the beans tested.
Villegente, Matthieu; Marmey, Philippe; Job, Claudette; Galland, Marc; Cueff, Gwendal; Godin, Béatrice; Rajjou, Loïc; Balliau, Thierry; Zivy, Michel; Fogliani, Bruno; Sarramegna-Burtet, Valérie; Job, Dominique
2017-07-28
Desiccation tolerance allows plant seeds to remain viable in a dry state for years and even centuries. To reveal potential evolutionary processes of this trait, we have conducted a shotgun proteomic analysis of isolated embryo and endosperm from mature seeds of Amborella trichopoda , an understory shrub endemic to New Caledonia that is considered to be the basal extant angiosperm. The present analysis led to the characterization of 415 and 69 proteins from the isolated embryo and endosperm tissues, respectively. The role of these proteins is discussed in terms of protein evolution and physiological properties of the rudimentary, underdeveloped, Amborella embryos, notably considering that the acquisition of desiccation tolerance corresponds to the final developmental stage of mature seeds possessing large embryos.
Villegente, Matthieu; Marmey, Philippe; Job, Claudette; Galland, Marc; Cueff, Gwendal; Godin, Béatrice; Rajjou, Loïc; Balliau, Thierry; Zivy, Michel; Sarramegna-Burtet, Valérie; Job, Dominique
2017-01-01
Desiccation tolerance allows plant seeds to remain viable in a dry state for years and even centuries. To reveal potential evolutionary processes of this trait, we have conducted a shotgun proteomic analysis of isolated embryo and endosperm from mature seeds of Amborella trichopoda, an understory shrub endemic to New Caledonia that is considered to be the basal extant angiosperm. The present analysis led to the characterization of 415 and 69 proteins from the isolated embryo and endosperm tissues, respectively. The role of these proteins is discussed in terms of protein evolution and physiological properties of the rudimentary, underdeveloped, Amborella embryos, notably considering that the acquisition of desiccation tolerance corresponds to the final developmental stage of mature seeds possessing large embryos. PMID:28788068
Footitt, Steven; Clay, Heather A; Dent, Katherine; Finch-Savage, William E
2014-01-01
Seed dormancy cycling plays a crucial role in the lifecycle timing of many plants. Little is known of how the seeds respond to the soil seed bank environment following dispersal in spring into the short-term seed bank before seedling emergence in autumn.Seeds of the winter annual Arabidopsis ecotype Cvi were buried in field soils in spring and recovered monthly until autumn and their molecular eco-physiological responses were recorded.DOG1 expression is initially low and then increases as dormancy increases. MFT expression is negatively correlated with germination potential. Abscisic acid (ABA) and gibberellin (GA) signalling responds rapidly following burial and adjusts to the seasonal change in soil temperature. Collectively these changes align germination potential with the optimum climate space for seedling emergence.Seeds naturally dispersed to the soil in spring enter a shallow dormancy cycle dominated by spatial sensing that adjusts germination potential to the maximum when soil environment is most favourable for germination and seedling emergence upon soil disturbance. This behaviour differs subtly from that of seeds overwintered in the soil seed bank to spread the period of potential germination in the seed population (existing seed bank and newly dispersed). As soil temperature declines in autumn, deep dormancy is re-imposed as seeds become part of the persistent seed bank. PMID:24444091
Hua, Shuijin; Chen, Zhong-Hua; Zhang, Yaofeng; Yu, Huasheng; Lin, Baogang; Zhang, Dongqing
2014-12-01
Although the seed oil content in canola is a crucial quality determining trait, the regulatory mechanisms of its formation are not fully discovered. This study compared the silique and seed physiological characteristics including fresh and dry weight, seed oil content, chlorophyll content, and carbohydrate content in a high oil content line (HOCL) and a low oil content line (LOCL) of canola derived from a recombinant inbred line in 2010, 2011, and 2012. The aim of the investigation is to uncover the physiological regulation of silique and seed developmental events on seed oil content in canola. On average, 83% and 86% of silique matter while 69% and 63% of seed matter was produced before 30 days after anthesis (DAA) in HOCL and LOCL, respectively, over three years. Furthermore, HOCL exhibited significantly higher fresh and dry matter at most developmental stages of siliques and seeds. From 20 DAA, lipids were deposited in the seed of HOCL significantly faster than that of LOCL, which was validated by transmission electron microscopy, showing that HOCL accumulates considerable more oil bodies in the seed cells. Markedly higher silique chlorophyll content was observed in HOCL consistently over the three consecutive years, implying a higher potential of photosynthetic capacity in siliques of HOCL. As a consequence, HOCL exhibited significantly higher content of fructose, glucose, sucrose, and starch mainly at 20 to 45 DAA, a key stage of seed lipid deposition. Moreover, seed sugar content was usually higher than silique indicating the importance of sugar transportation from siliques to seeds as substrate for lipid biosynthesis. The much lower silique cellulose content in HOCL was beneficial for lipid synthesis rather than consuming excessive carbohydrate for cell wall. Superior physiological characteristics of siliques in HOCL showed advantage to produce more photosynthetic assimilates, which were highly correlated to seed oil contents.
Environmental factors during seed development and their influence on pre-harvest sprouting in wheat
NASA Technical Reports Server (NTRS)
Ciha, A. J. (Principal Investigator)
1981-01-01
The problem of pre-harvest sprouting of wheat is surveyed and a literature review of the effects of environmental conditions on pre-harvest sprouting is presenting. Physiological, biochemical, and morphological changes occurring within the wheat seed during germination, harvest, and storage are discussed. The effects of moisture, humidity, and temperature, particularly on seed dormancy, are considered. Procedures used in Europe for predicting the potential for sprouting are evaluated.
NASA Astrophysics Data System (ADS)
Lu, Xu; Zheng, Zhichang; Miao, Song; Li, Huang; Guo, Zebin; Zhang, Yi; Zheng, Yafeng; Zheng, Baodong; Xiao, Jianbo
2017-03-01
Lotus seeds were identified by the Ministry of Public Health of China as both food and medicine. One general function of lotus seeds is to improve intestinal health. However, to date, studies evaluating the relationship between bioactive compounds in lotus seeds and the physiological activity of the intestine are limited. In the present study, by using medium pressure liquid chromatography coupled with evaporative light-scattering detector and diode-array detector, five oligosaccharides were isolated and their structures were further characterized by electrospray ionization-mass spectrometry and gas chromatography-mass spectrometry. In vitro testing determined that LOS3-1 and LOS4 elicited relatively good proliferative effects on Lactobacillus delbrueckii subsp. bulgaricus. These results indicated a structure-function relationship between the physiological activity of oligosaccharides in lotus seeds and the number of probiotics applied, thus providing room for improvement of this particular feature. Intestinal probiotics may potentially become a new effective drug target for the regulation of immunity.
Ecological niche and bet-hedging strategies for Triodia (R.Br.) seed germination.
Lewandrowski, Wolfgang; Erickson, Todd E; Dalziell, Emma L; Stevens, Jason C
2018-02-12
Regeneration dynamics in many arid zone grass species are regulated by innate seed dormancy mechanisms and environmental cues (temperature, moisture and fire) that result in infrequent germination following rainfall. This study investigated bet-hedging strategies associated with dormancy and germination in arid zone Triodia species from north-west Australia, by assessing (1) the effects of the mechanical restriction imposed by the indehiscent floral bracts (i.e. floret) covering the seed and (2) the impact of dormancy alleviation on florets and cleaned seeds (i.e. florets removed) when germinated under water stress. The initial dormancy status and germination for six species were tested on intact florets and cleaned seeds, across temperatures (10-40 °C) with and without the fire-related stimulant karrikinolide (KAR1), and under alternating light or constant dark conditions. Physiological dormancy alleviation was assessed by wet/dry cycling florets over a period of 10 weeks, and germination was compared against untreated florets, and cleaned seeds across a water potential gradient between 0 and -1.5 MPa. Florets restricted germination (<45 %) at all temperatures and, despite partial alleviation of physiological dormancy (wet/dry cycling for 8 weeks), intact florets germinated only at high water potentials. Cleaned seeds showed the highest germination (40-90 %) across temperatures when treated with KAR1, and germinated at much lower water potentials (-0.4 and -0.9 MPa). Triodia pungens was the most responsive to KAR1, with both seeds and florets responding, while for the remaining five species, KAR1 had a positive effect for seeds only. Only after seed dormancy was alleviated by removing florets and when KAR1 was applied did germination under water stress increase. This suggests that seeds of these Triodia species are cued to recruit following fire and during periods of high precipitation. Climate change, driven by large shifts in rainfall patterns, is likely to impact Triodia recruitment further in arid zone grasslands. © The Authors 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Seed birth to death: dual functions of reactive oxygen species in seed physiology.
Jeevan Kumar, S P; Rajendra Prasad, S; Banerjee, Rintu; Thammineni, Chakradhar
2015-09-01
Reactive oxygen species (ROS) are considered to be detrimental to seed viability. However, recent studies have demonstrated that ROS have key roles in seed germination particularly in the release of seed dormancy and embryogenesis, as well as in protection from pathogens. This review considers the functions of ROS in seed physiology. ROS are present in all cells and at all phases of the seed life cycle. ROS accumulation is important in breaking seed dormancy, and stimulating seed germination and protection from pathogens. However, excessive ROS accumulation can be detrimental. Therefore, knowledge of the mechanisms by which ROS influence seed physiology will provide insights that may not only allow the development of seed quality markers but also help us understand how dormancy can be broken in several recalcitrant species. Reactive oxygen species have a dual role in seed physiology. Understanding the relative importance of beneficial and detrimental effects of ROS provides great scope for the improvement and maintenance of seed vigour and quality, factors that may ultimately increase crop yields. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Santos, F C; Caixeta, F; Clemente, A C S; Pinho, E V; Rosa, S D V F
2014-12-19
Seeds collected at different maturation stages vary in physiological quality and patterns of protective antioxidant systems against deterioration. In this study we investigated the expression of genes that codify catalase (CAT), dismutase superoxide (SOD), and polyphenol oxidase (PPO) during the pre- and post-physiological maturation phases in whole seeds and in endosperms and embryos extracted from the seeds. Coffea arabica L. berries were collected at the green, yellowish-green, cherry, over-ripe, and dry stages, and the seeds were examined physiologically. The transcription levels of the genes were quantified by quantitative real-time polymerase chain reaction using coffee-specific primers. The highest level of SOD expression was observed in the endosperm at the cherry and over-ripe stages; in addition, these seeds presented the greatest physiological quality (assessed via germination test). The highest CAT3 transcript expression was observed at the green stage in whole seeds, and at the green and over-ripe stages in the embryos and endosperms. High expression of the PPO transcript was observed at the green and yellowish-green stages in whole seeds. In embryos and endosperms, peak expression of the PPO transcript was observed at the green stage; subsequently, peaks at the cherry and over-ripe stages were observed. We concluded that the expression patterns of the SOD and CAT3 transcripts were similar at the more advanced maturation stages, which corresponded to enhanced physiological seed quality. High expression of the PPO transcript at the over-ripe stage, also observed in the embryos and endosperms at the cherry stage, coincided with the highest physiological seed quality.
Hu, Xiao Wen; Fan, Yan; Baskin, Carol C; Baskin, Jerry M; Wang, Yan Rong
2015-05-01
Temperature and water potential for germination based on the thermal and hydrotime models have been successfully applied in predicting germination requirements of physiologically dormant seeds as well as nondormant seeds. However, comparative studies of the germination requirements of physically dormant seeds from different ecosystems have not been done. Germination of scarified seeds of four legume species collected from the Qing-Tibetan Plateau and of four collected in the Alax Desert in China was compared over a range of temperatures and water potentials based on thermal time and hydrotime models. Seeds of species from the Qing-Tibetan Plateau had a lower base temperature (T b) and optimal temperature (T o) for germination than those from the Alax Desert. Seeds of the four species from the Qing-Tibetan Plateau germinated to high percentages at 5°C, whereas none of the four desert species did so. Seeds of species from the Alax Desert germinated to a high percentage at 35°C or 40°C, while no seeds of species from the Qing-Tibetan Plateau germinated at 35°C or 40°C. The base median water potential [Ψ b(50)] differed among species but not between the two habitats. The thermal time and hydrotime models accurately predicted the germination time course of scarified seeds of most of the eight species in response to temperature and water potential; thus, they can be useful tools in comparative studies on germination of seeds with physical dormancy. Habitat temperatures but not rainfall is closely related to germination requirements of these species. © 2015 Botanical Society of America, Inc.
Gu, Ruiting; Zhou, Yi; Song, Xiaoyue; Xu, Shaochun; Zhang, Xiaomei; Lin, Haiying; Xu, Shuai; Yue, Shidong; Zhu, Shuyu
2018-01-01
Seeds are important materials for the restoration of globally-threatened marine angiosperm (seagrass) populations. In this study, we investigated the differences between different Ruppia sinensis seed types and developed two feasible long-term R. sinensis seed storage methods. The ability of R. sinensis seeds to tolerate the short-term desiccation and extreme cold had been investigated. The tolerance of R. sinensis seeds to long-term exposure of high salinity, cold temperature, and desiccation had been considered as potential methods for long-term seed storage. Also, three morphological and nine physiological indices were measured and compared between two types of seeds: Shape L and Shape S. We found that: (1) wet storage at a salinity of 30-40 psu and 0°C were the optimal long-term storage conditions, and the proportion of viable seeds reached over 90% after a storage period of 11 months since the seeds were collected from the reproductive shoots; (2) dry condition was not the optimal choice for long-term storage of R. sinensis seeds; however, storing seeds in a dry condition at 5°C and 33 ± 10% relative humidity for 9 months had a relatively high percentage (74.44 ± 2.22%) of viable seeds, consequently desiccation exposure could also be an acceptable seed storage method; (3) R. sinensis seeds would lose vigor in the interaction of extreme cold (-27°C) and desiccation; (4) there were significant differences in seed weight, seed curvature, and endocarp thickness between the two types of seeds. These findings provided fundamental physiological information for R. sinensis seeds and supported the long-term storage of its seeds. Our results may also serve as useful reference for seed storage of other threatened seagrass species and facilitate their ex situ conservation and habitat restoration.
DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds
Waterworth, Wanda M.; Footitt, Steven; Bray, Clifford M.; Finch-Savage, William E.; West, Christopher E.
2016-01-01
Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production. PMID:27503884
DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.
Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E
2016-08-23
Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.
Physiological and enzymatic alterations in sesame seeds submitted to different osmotic potentials.
Pires, R M O; Àvila, M A B; Leite, D G; Santos, H O; Souza, G A; Von Pinho, E V R
2017-08-17
With the imminence of global climate changes that affect the temperature and the rainfall uniformity, it is growing the concern about the adaptation of crops to the water deficit. Thus, the objective of this study was to evaluate alterations in physiological and enzymatic mechanisms during the germination process of sesame seeds under different water availability. To simulate the water restriction we used PEG6000, a high molecular weight molecule that does not penetrate the seed structure but allows different osmotic potentials. The treatments were -0.1, -0.2, and -0.3 MPa, and the control. Germination, first-count germination, germination velocity index, and length and dry mass of the hypocotyl and radicle were performed. The seeds were weighed before and after treatments every 3 h. After each weighing, 100 seeds were taken for analysis of the enzymes alcohol dehydrogenase (ADH), malate dehydrogenase, esterase, catalase (CAT), superoxide dismutase (SOD), isocitrate lyase (ICL), and glutamate dehydrogenase (GTDH). The statistical design was completely randomized with five replications. PEG6000 prolonged ADH activity during the beginning of germination, maintaining the anaerobic metabolism for longer. Subsequently, their activity was reduced, as well as ICL, favoring the deterioration of the seeds that take the time to germinate. Behavior was evidenced by the appearance of SOD, CAT, and GTDH isoforms after 24 h of imbibition when water restriction was imposed. Therefore, the PEG600 is efficient in simulating water deficit conditions in future scenarios of climate change, offering impotent information regarding the germination behavior of the plants under these conditions.
Physiology and biochemistry of recalcitrant Guarea guidonia (L.) Sleumer seeds
Kristina F. Connor; F.T. Bonner
1998-01-01
Investigations of recalcitrant, or desiccation-sensitive, seeds have as yet failed to identify the causes of this phenomenon. Experiments with Guarea guidonia (L.) Sleumer (American muskwood) were initiated to determine the effects of desiccation on the physiology and biochemistry of the seeds of this tropical tree species. Seeds were air-dried at...
Triacylglycerols determine the unusual storage physiology of Cuphea seed.
Crane, Jennifer; Miller, Annette L; van Roekel, J William; Walters, Christina
2003-09-01
Many species within the genus Cuphea (Lythraceae) produce seed with high levels of medium-chain fatty acids. Seeds of some Cuphea species lose viability when placed into storage at -18 degrees C. These species tolerate significant drying to 0.05 g/g and may, therefore, be intermediate in their storage characteristics. The thermal properties of seed lipids were observed using differential scanning calorimetry. Species with peak lipid melting temperatures >/=27 degrees C were found to be sensitive to -18 degrees C exposure while those with melting temperatures <27 degrees C were able to tolerate low-temperature exposure. This relationship was determined by the triacylglycerol composition of the individual species. Sensitive species have high concentrations of lauric acid (C(12)) and/or myristic acid (C(14)). Species with high concentrations of capric (C(8)) or caprylic acid (C(10)) or with high concentrations of unsaturated fatty acids tolerate low temperature exposure. Potential damage caused by low temperature exposure can be avoided by exposing seeds to a brief heat pulse of 45 degrees C to melt solidified lipids prior to imbibition. The relationship between the behavior of triacylglycerols in vivo, seed storage behavior and sensitivity to imbibitional damage is previously unreported and may apply to other species with physiologies that make them difficult to store.
Villeneuve, Isabelle; Lamhamedi, Mohammed S.; Benomar, Lahcen; Rainville, André; DeBlois, Josianne; Beaulieu, Jean; Bousquet, Jean; Lambert, Marie-Claude; Margolis, Hank
2016-01-01
Because of changes in climatic conditions, tree seeds originating from breeding programs may no longer be suited to sites where they are currently sent. As a consequence, new seed zones may have to be delineated. Assisted migration consists of transferring seed sources that match the future climatic conditions to which they are currently adapted. It represents a strategy that could be used to mitigate the potential negative consequences of climate change on forest productivity. Decisions with regard to the choice of the most appropriate seed sources have to rely on appropriate knowledge of morpho-physiological responses of trees. To meet this goal, white spruce (Picea glauca [Moench] Voss) seedlings from eight seed orchards were evaluated during two years in a forest nursery, and at the end of the first growing season on three plantation sites located in different bioclimatic domains in Quebec. The morpho-physiological responses obtained at the end of the second growing season (2+0) in the nursery made it possible to cluster the orchards into three distinct groups. Modeling growth curves of these different groups showed that the height growth of seedlings from the second-generation and southern first-generation seed orchards was significantly higher than that of those from other orchards, by at least 6%. A multiple regression model with three climatic variables (average growing season temperature, average July temperature, length of the growing season) showed that the final height of seedlings (2+0) from the first-generation seed orchards was significantly related to the local climatic conditions at the orchard sites of origin where parental trees from surrounding natural populations were sampled to provide grafts for orchard establishment. Seedling height growth was significantly affected by both seed source origins and planting sites, but the relative ranking of the different seed sources was maintained regardless of reforestation site. This knowledge could be used, in conjunction with transfer models, to refine operational seed transfer rules and select the most suitable sites in an assisted migration strategy. PMID:27746795
Araniti, Fabrizio; Lupini, Antonio; Sunseri, Francesco; Abenavoli, Maria Rosa
2017-01-01
Dittrichia viscosa (L.) W. Greuter is a pioneer species belonging to the Compositae family. It is widespread in the Mediterranean basin, where it is considered invasive. It is a source of secondary metabolites, playing an important ecological role. D. viscosa plant extracts showed a phytotoxic activity on several physiological processes of different species. In the current study, the allelopathic potential of D. viscosa VOCs, released by its foliage, was evaluated on seed germination and root growth of lettuce. The VOCs effect was also studied on lettuce adult plants in microcosm systems, which better mimicked the open field conditions. D. viscosa VOCs inhibited both seed germination and root growth of lettuce. The VOCs composition revealed a large presence of terpenoids, responsible of the effects observed. Moreover, D. viscosa VOCs caused an alteration on plant water status accompanied by oxidative damages and photoinhibition on lettuce adult plants.
Lupini, Antonio; Sunseri, Francesco; Abenavoli, Maria Rosa
2017-01-01
Dittrichia viscosa (L.) W. Greuter is a pioneer species belonging to the Compositae family. It is widespread in the Mediterranean basin, where it is considered invasive. It is a source of secondary metabolites, playing an important ecological role. D. viscosa plant extracts showed a phytotoxic activity on several physiological processes of different species. In the current study, the allelopathic potential of D. viscosa VOCs, released by its foliage, was evaluated on seed germination and root growth of lettuce. The VOCs effect was also studied on lettuce adult plants in microcosm systems, which better mimicked the open field conditions. D. viscosa VOCs inhibited both seed germination and root growth of lettuce. The VOCs composition revealed a large presence of terpenoids, responsible of the effects observed. Moreover, D. viscosa VOCs caused an alteration on plant water status accompanied by oxidative damages and photoinhibition on lettuce adult plants. PMID:28085959
Gama-Arachchige, N S; Baskin, J M; Geneve, R L; Baskin, C C
2011-07-01
The 'hinged valve gap' has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiological events related to acquisition of PY and the ontogeny of the hinged valve gap and seed coat of G. carolinianum. Seeds of G. carolinianum were studied from the ovule stage until dispersal. The developmental stages of acquisition of germinability, physiological maturity and PY were determined by seed measurement, germination and imbibition experiments using intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the seed coat and water gap was studied using light microscopy. Developing seeds achieved germinability, physiological maturity and PY on days 9, 14 and 20 after pollination (DAP), respectively. The critical moisture content of seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at the micropyle, water gap and chalaza than at the rest of the seed coat resulted in particular anatomical features. Palisade and subpalisade cells of varying forms developed in these sites. A clear demarcation between the water gap and micropyle is not evident due to their close proximity. Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and is triggered by maturation drying. The micropyle and water gap cannot be considered as two separate entities, and thus it is more appropriate to consider them together as a 'micropyle--water-gap complex'.
Souza, Aline Das Graças; Smiderle, Oscar Jose; Bianchi, Valmor Joao
2018-04-26
This study aimed to evaluate the efficiency of using the computerized imaging seed analysis system (SAS) in the biometric and morphophysiological characterization of seeds and the initial growth of seedlings from peach rootstocks. The experimental design was completely randomized with five replicates of 20 seeds. The variables analyzed were degree of seed humidity, length and width of seeds measured by SAS technology and manual measurements, mean germination time, germination percentage, radicle length and width, taproot length, length of the aerial part and taproot/aerial part ratio. The highest seed length, germination percentage (100%) and lower germination time (11.3), were obtained with the cv. Capdeboscq while, 'Tsukuba 1', 2' and 3' had intermediate seedlings length, varying from 1.55 to 1.65 cm with mean germination times between 14.5 and 18.0 days and average germination percentage of 96%. The computerized analysis of images is fast and efficient for biometric evaluations such as seed width and length, as well as initial growth of peach tree seedlings. The cvs Capdeboscq, Flordaguard and Tsukuba 2 presented greater radicle width, length and a mean taproot/aerial part ratio equal to 2, as well as higher number of adventitious roots, which indicated a strong positive correlation between radicle length, taproot length and initial seedling growth. The continuity of the research will certainly allow the development of reliable procedures for other species, besides allowing the identification of wider alternatives for the use of this system for the expansion of knowledge in the areas of physiology and evaluation of the physiological potential of seeds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Rodrigues, Carla; Maia, Rodrigo; Brunner, Marion; Carvalho, Eduardo; Prohaska, Thomas; Máguas, Cristina
2010-05-01
Plant seeds incorporate the prevailing climate conditions and the physiological response to those conditions (Rodrigues et al., 2009; Rodrigues et al., submitted). During coffee seed maturation the biochemical compounds may either result from accumulated material in other organs such as leafs and/or from new synthesis. Accordingly, plant seeds develop in different stages along a particular part of the year, integrating the plant physiology and seasonal climatic conditions. Coffee bean is an extremely complex matrix, rich in many products derived from both primary and secondary metabolism during bean maturation. Other studies (De Castro and Marraccini, 2006) have revealed the importance of different coffee plant organs during coffee bean development as transfer tissues able to provide compounds (i.e. sugars, organic acids, etc) to the endosperm where several enzymatic activities and expressed genes have been reported. Moreover, it has been proved earlier on that green coffee bean is a particularly suitable case-study (Rodrigues et al., 2009; Rodrigues et al., submitted), not only due to the large southern hemispheric distribution but also because of this product high economic interest. The aim of our work was to evaluate the potential use of green coffee seeds as a proxy to seasonal climatic conditions during coffee bean maturation, through an array of isotopic composition determinations. We have determined carbon, nitrogen, oxygen and sulfur isotopic composition (by IRMS - Isotope Ratio Mass Spectrometry) as well as strontium isotope abundance (by MC-ICP-MS; Multicollector Inductively Coupled Plasma Mass Spectrometry), of green coffee beans harvested at different times at Minas Gerais, Brazil. The isotopic composition data were combined with air temperature and relative humidity data registered during the coffee bean developmental period, and with the parent rock strontium isotopic composition. Results indicate that coffee seeds indeed integrate the interactions between plant physiology and local climate variations as well as the particularly soil geology. De Castro, R. D., Marraccini, P., 2006. Cytology, biochemistry and molecular changes during coffee fruit development. Braz. J. Plant Physiol., 18(1) : 175 - 199. Rodrigues, C. I., Maia, R. Miranda, M., Ribeirinho, M., Nogueira, J. M. F., Máguas, C., 2009. Stable isotope analysis for green coffee bean: A possible method for geographical origin discrimination. J. Food Comp. Anal. 22, 463-471 Rodrigues, C., Prohaska, T., Máguas, C., 2009. Strontium and Oxygen Isotope Fingerprinting of Green Coffee Beans and its Potential to Proof Authenticity of Coffee. Food Chem. (submitted). Acknowledgements Carla Rodrigues wishes to thank Fundação para a Ciência e a Tecnologia for a grant (SFRH/BD/28354/2006). Financial support by the Austrian Science Foundation (FWF START grant 267 N11) is highly acknowledged.
Datta, J K; Banerjee, A; Sikdar, M Saha; Gupta, S; Mondal, N K
2009-09-01
Field experiment was carried out during November 2006 to February 2007 under old alluvial soil to evaluate the impact of combined dose of chemical fertilizer, biofertilizer in combination with compost for the yellow sarson (Brassica campestries cv. B9) in a randomized block design replicated thrice. Various morpho-physiological parameters viz., plant population, length of shoot and root, leaf area index (LAI), crop growth rate (CGR), net assimilation rate (NAR), yield attributes viz., number of siliquae per plant, number of seeds/siliquae, 1000 seed weight (test weight), seed yield, stover yield and physiological and biochemical parameters viz., pigment content, sugar, amino acid, protein, ascorbic acid content in physiologically active leaf were performed. The treatment T1 i.e., 40% less N fertilizer 25% less P fertilizer K fertilizer constant + 12 kg ha(-1) biofertilizer (Azophos) and organic manure (compost) @ 5Mt ha(-1), showed the maximum chlorophyll accumulation (10. 231 mg g(-1) freshweight), highest seed/siliquae (25.143), test weight of seeds (4. 861g) and highest seed yield (10.661 tha(-1)). A comparison between all the morphological, anatomical, physiological and biochemical parameters due to application of chemical fertilizer; bio-fertilizer and compost alone and in combination and their impact on soil microorganism, flora and fauna will throw a sound environmental information.
Estrada-Urbina, Juan; Cruz-Alonso, Alejandro; Santander-González, Martha; Vázquez-Durán, Alma
2018-01-01
In this research, quasi-spherical-shaped zinc oxide nanoparticles (ZnO NPs) were synthesized by a simple cost-competitive aqueous precipitation method. The engineered NPs were characterized using several validation methodologies: UV–Vis spectroscopy, diffuse reflection UV–Vis, spectrofluorometry, transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection (ATR). A procedure was established to coat a landrace of red maize using gelatinized maize starch. Each maize seed was treated with 0.16 mg ZnO NPs (~7.7 × 109 particles). The standard germination (SG) and accelerated aging (AA) tests indicated that ZnO NP-treated maize seeds presented better physiological quality (higher percentage of normal seedlings) and sanitary quality (lower percentage of seeds contaminated by microorganisms) as compared to controls. The application of ZnO NPs also improved seedling vigor, correlated to shoot length, shoot diameter, root length, and number of secondary roots. Furthermore, shoots and roots of the ZnO NP-treated maize seeds showed a marked increment in the main active FTIR band areas, most notably for the vibrations associated with peptide-protein, lipid, lignin, polysaccharide, hemicellulose, cellulose, and carbohydrate. From these results, it is concluded that ZnO NPs have potential for applications in peasant agriculture to improve the quality of small-scale farmers’ seeds and, as a result, preserve germplasm resources. PMID:29673162
Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole
2016-01-01
Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442
Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole
2016-01-01
Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents.
Shibata, Marília; Medeiros Coelho, Cileide Maria
2016-06-01
Araucaria angustifolia is a conifer native to Brazil and is an endangered species. Since this species seeds have a short period of viability, its vulnerability is higher. Thus the aim of this study was to evaluate the physiological quality of A. angustifolia seeds during the development and post-storage periods. For this, cones of A. angustifolia were collected from a natural population in Curitibanos, Santa Catarina, Brazil, in March, April, May and June 2012. The collected seeds were classified into developmental stages of cotyledonary, I, II and III according to the month of collection; a total of 10 cones were collected for each stage. Seeds were stored in a refrigerator for 60 and 120 days, and were submitted to a chamber germination test (25 °C-photoperiod 12 h). Additionally, seeds were tested for moisture content (105 °C for 24 hours), tetrazolium (0.1 % for 1 hour) and vigor (electric conductivity [75 mL distilled water at 25 °C], germination speed index, and shoot and root length). Our results showed that during seed development, moisture content decreased from the cotyledonary stage (66.54 %) to stage III (49.69 %), and vigor increased in the last stage. During storage, moisture content at cotyledonary stage and stage I was stable. On the other hand, stored seeds exhibited a decrease in moisture content after 120 days at stages II and III. Physiological quality at the cotyledonary stage resulted in an increased germination rate of 86 % and 93 % after 60 and 120 days of storage, respectively; unlike stages II and III exhibited a decrease in seed viability and vigor after storage. Electrical conductivity was higher for fresh seeds at the cotyledonary stage, than for those stored for 60 and 120 days. However, in other stages, released leachate content after 120 days of storage, increased with the advance of the collection period. Germination speed index and shoot and root lengths after storage were highest for seeds at the cotyledonary stage and stage I; unlike stages II and III which had short root and shoot lengths during storage. Thus, the maintenance of seed moisture content during storage was variable and dependent on the period of collection. Furthermore, the physiological quality differed among earlier and later stages. Early collection favored seed physiological quality, and may be a strategy for better conservation of A. angustifolia seeds.
Potential Tools for Phenotyping for Physical Characteristics of Plants, Pods, and Seed
USDA-ARS?s Scientific Manuscript database
Advances in phenotyping are a key factor for success in modern breeding as well as for basic plant research. Phenotyping provides a critical means to understand morphological, biochemical, physiological principles in the control of basic plant functions as well as for selecting superior genotypes in...
Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.
2011-01-01
Background and Aims The ‘hinged valve gap’ has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiological events related to acquisition of PY and the ontogeny of the hinged valve gap and seed coat of G. carolinianum. Methods Seeds of G. carolinianum were studied from the ovule stage until dispersal. The developmental stages of acquisition of germinability, physiological maturity and PY were determined by seed measurement, germination and imbibition experiments using intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the seed coat and water gap was studied using light microscopy. Key Results Developing seeds achieved germinability, physiological maturity and PY on days 9, 14 and 20 after pollination (DAP), respectively. The critical moisture content of seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at the micropyle, water gap and chalaza than at the rest of the seed coat resulted in particular anatomical features. Palisade and subpalisade cells of varying forms developed in these sites. A clear demarcation between the water gap and micropyle is not evident due to their close proximity. Conclusions Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and is triggered by maturation drying. The micropyle and water gap cannot be considered as two separate entities, and thus it is more appropriate to consider them together as a ‘micropyle–water-gap complex’. PMID:21546433
Triacylglycerol phase and 'intermediate' seed storage physiology: a study of Cuphea carthagenensis.
Crane, Jennifer; Kovach, David; Gardner, Candice; Walters, Christina
2006-04-01
Seeds with 'intermediate' storage physiology store poorly under cold and dry conditions. We tested whether the poor shelf life can be attributed to triacylglycerol phase changes using Cuphea carthagenensis (Jacq.) seeds. Viability remained high when seeds were stored at 25 degrees C, but was lost quickly when seeds were stored at 5 degrees C. Deterioration was fastest in seeds with high (>or=0.10 g g(-1)) and low (0.01 g g(-1)) water contents (g H(2)O g dry mass(-1)), and slowest in seeds containing 0.04 g g(-1). A 45 degrees C treatment before imbibition restored germination of dry seeds by melting crystallized triacylglycerols. Here, we show that the rate of deterioration in C. carthagenensis seeds stored at 5 degrees C correlated with the rate that triacylglycerols crystallized within the seeds. Lipid crystallization, measured using differential scanning calorimetry, occurred at 6 degrees C for this species and was fastest for seeds stored at 5 degrees C that had high and very low water contents, and slowest for seeds containing 0.04 g g(-1). Germination decreased to 50% (P50) when between 16 and 38% of the triacylglycerols crystallized; complete crystallization took from 10 to over 200 days depending on water content. Our results demonstrate interactions between water and triacylglycerols in seeds: (1) water content affects the propensity of triacylglycerols to crystallize and (2) hydration of seed containing crystallized triacylglycerols is lethal. We suggest that these interactions form the basis of the syndrome of damage experienced when seeds with intermediate storage physiologies are placed in long-term storage.
Molecular characterization of the acquisition of longevity during seed maturation in soybean
Lalanne, David; Rossi, Rubiana Falopa; Pelletier, Sandra; da Silva, Edvaldo Aparecido Amaral
2017-01-01
Seed longevity, defined as the ability to remain alive during storage, is an important agronomic factor. Poor longevity negatively impacts seedling establishment and consequently crop yield. This is particularly problematic for soybean as seeds have a short lifespan. While the economic importance of soybean has fueled a large number of transcriptome studies during embryogenesis and seed filling, the mechanisms regulating seed longevity during late maturation remain poorly understood. Here, a detailed physiological and molecular characterization of late seed maturation was performed in soybean to obtain a comprehensive overview of the regulatory genes that are potentially involved in longevity. Longevity appeared at physiological maturity at the end of seed filling before maturation drying and progressively doubled until the seeds reached the dry state. The increase in longevity was associated with the expression of genes encoding protective chaperones such as heat shock proteins and the repression of nuclear and chloroplast genes involved in a range of chloroplast activities, including photosynthesis. An increase in the raffinose family oligosaccharides (RFO)/sucrose ratio together with changes in RFO metabolism genes was also associated with longevity. A gene co-expression network analysis revealed 27 transcription factors whose expression profiles were highly correlated with longevity. Eight of them were previously identified in the longevity network of Medicago truncatula, including homologues of ERF110, HSF6AB, NFXL1 and members of the DREB2 family. The network also contained several transcription factors associated with auxin and developmental cell fate during flowering, organ growth and differentiation. A transcriptional transition occurred concomitant with seed chlorophyll loss and detachment from the mother plant, suggesting the activation of a post-abscission program. This transition was enriched with AP2/EREBP and WRKY transcription factors and genes associated with growth, germination and post-transcriptional processes, suggesting that this program prepares the seed for the dry quiescent state and germination. PMID:28700604
The conservation physiology of seed dispersal
Ruxton, Graeme D.; Schaefer, H. Martin
2012-01-01
At a time when plant species are experiencing increasing challenges from climate change, land-use change, harvesting and invasive species, dispersal has become a very important aspect of plant conservation. Seed dispersal by animals is particularly important because some animals disperse seeds to suitable sites in a directed fashion. Our review has two aims: (i) to highlight the various ways plant dispersal by animals can be affected by current anthropogenic change and (ii) to show the important role of plant and (particularly) animal physiology in shaping seed–dispersal interactions. We argue that large-bodied seed dispersers may be particularly important for plant conservation because seed dispersal of large-seeded plants is often more specialized and because large-bodied animals are targeted by human exploitation and have smaller population sizes. We further argue that more specialized seed-dispersal systems on island ecosystems might be particularly at risk from climate change both owing to small population sizes involved but also owing to the likely thermal specialization, particularly on tropical islands. More generally, the inherent vulnerability of seed-dispersal mutualisms to disruption driven by environmental change (as well as their ubiquity) demands that we continue to improve our understanding of their conservation physiology. PMID:22566677
SEEDS ), (*RADIATION EFFECTS, (*NUCLEAR EXPLOSIONS, RADIATION HAZARDS), X RAYS, WHEAT, RADIATION DOSAGE, MUTATIONS, RADIOBIOLOGY, GROWTH(PHYSIOLOGY), CEREALS, SENSITIVITY, AGING(PHYSIOLOGY), EXPERIMENTAL DATA, NUCLEAR BOMBS.
Taïbi, Khaled; del Campo, Antonio D.; Vilagrosa, Alberto; Bellés, José M.; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J.; López-Nicolás, José M.; Mulet, José M.
2017-01-01
Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis. Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas. PMID:28791030
Taïbi, Khaled; Del Campo, Antonio D; Vilagrosa, Alberto; Bellés, José M; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J; López-Nicolás, José M; Mulet, José M
2017-01-01
Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis . Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas.
Liu, Hui; Hu, Dawei; Dong, Chen; Fu, Yuming; Liu, Guanghui; Qin, Youcai; Sun, Yi; Liu, Dianlei; Li, Lei; Liu, Hong
2017-08-01
There is much uncertainty about the risks of seed germination after repeated or protracted environmental low-dose ionizing radiation exposure. The purpose of this study is to explore the influence mechanism of low-dose ionizing radiation on wheat seed germination using a model linking physiological characteristics and developmental-dynamics simulation. A low-dose ionizing radiation environment simulator was built to investigate wheat (Triticum aestivum L.) seeds germination process and then a kinetic model expressing the relationship between wheat seed germination dynamics and low-dose ionizing radiation intensity variations was developed by experimental data, plant physiology, relevant hypotheses and system dynamics, and sufficiently validated and accredited by computer simulation. Germination percentages were showing no differences in response to different dose rates. However, root and shoot lengths were reduced significantly. Plasma governing equations were set up and the finite element analysis demonstrated H 2 O, CO 2 , O 2 as well as the seed physiological responses to the low-dose ionizing radiation. The kinetic model was highly valid, and simultaneously the related influence mechanism of low-dose ionizing radiation on wheat seed germination proposed in the modeling process was also adequately verified. Collectively these data demonstrate that low-dose ionizing radiation has an important effect on absorbing water, consuming O 2 and releasing CO 2 , which means the risk for embryo and endosperm development was higher. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hoyle, Gemma L.; Steadman, Kathryn J.; Daws, Matthew I.; Adkins, Steve W.
2008-01-01
Background and Aims The period during which seeds develop on the parent plant has been found to affect many seed characteristics, including dormancy, through interactions with the environment. Goodenia fascicularis (Goodeniaceae) seeds were used to investigate whether seeds of an Australian native forb, harvested from different environments and produced at different stages of the reproductive period, differ in dormancy status. Methods During the reproductive phase, plants were grown ex situ in warm (39/21 °C) or cool (26/13 °C) conditions, with adequate or limited water availability. The physiological dormancy of resulting seeds was measured in terms of the germination response to warm stratification (34/20 °C, 100 % RH, darkness). Key Results Plants in the cool environment were tall and had high above-ground biomass, yet yielded fewer seeds over a shorter, later harvest period when compared with plants in the warm environment. Seeds from the cool environment also had higher viability and greater mass, despite a significant proportion (7 % from the cool-wet environment) containing no obvious embryo. In the warm environment, the reproductive phase was accelerated and plants produced more seeds despite being shorter and having lower above-ground biomass than those in the cool environment. Ten weeks of warm stratification alleviated physiological dormancy in seeds from all treatments resulting in 80–100 % germination. Seeds that developed at warm temperatures were less dormant (i.e. germination percentages were higher) than seeds from the cool environment. Water availability had less effect on plant and seed traits than air temperature, although plants with reduced soil moisture were shorter, had lower biomass and produced fewer, less dormant seeds than plants watered regularly. Conclusions Goodenia fascicularis seeds are likely to exhibit physiological dormancy regardless of the maternal environment. However, seeds collected from warm, dry environments are likely to be more responsive to warm stratification than seeds from cooler, wetter environments. PMID:18430743
Potential value of the common vetch (Vicia sativa L.) as an animal feedstuff: a review.
Huang, Y F; Gao, X L; Nan, Z B; Zhang, Z X
2017-10-01
The objective of this review was to systematically evaluate common vetch seeds as a potential feedstuff for animals, by summarizing and discussing the available published literature covering their nutritional composition as well as their content of antinutritional factors and potential techniques for their reduction. In addition, animal feeding studies that have investigated the effect of inclusion of common vetch seeds on animal growth and performance were identified and evaluated to stimulate interest in their use as a good source of nutrients for inclusion in animal diets. The collective literature shows that common vetch seeds are a less costly (in comparison with alternatives) and rich source of protein and minerals for farmed animals, are of high digestibility and have a high energy content, and can be used to partially or totally replace soya bean meal and/or to replace a large proportion of cereals in the diet. Furthermore, the literature shows that common vetch seeds contain a range of antinutritional factors which, if they are to be utilized in non-ruminant diets and to increase their utilizing efficiency, need to be removed or inactivated. This can be achieved via certain pre-processing methods, the combination of which may deliver better results. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell Verlag GmbH.
Molecular and metabolic changes of cherelle wilt of cacao and its effect on Moniliophthora roreri
USDA-ARS?s Scientific Manuscript database
The seeds of Theobroma cacao L. pods are processed into cocoa products. Cherelle wilt is physiological thinning of young pods that result in loss of potential pods. Cherelle wilt first occurs 50 days after pollination (DAP) and a second thinning occurs around 70 DAP. Cherelles are also highly sus...
From axenic spore germination to molecular farming. One century of bryophyte in vitro culture.
Hohe, Annette; Reski, Ralf
2005-01-01
The first bryophyte tissue culture techniques were established almost a century ago. All of the techniques that have been developed for tissue culture of seed plants have also been adapted for bryophytes, and these range from mere axenic culture to molecular farming. However, specific characteristics of bryophyte biology--for example, a unique regeneration capacity--have also resulted in the development of methodologies and techniques different than those used for seed plants. In this review we provide an overview of the application of in vitro techniques to bryophytes, emphasising the differences as well as the similarities between bryophytes and seed plants. These are discussed within the framework of physiological and developmental processes as well as with respect to potential applications in plant biotechnology.
Kenouche, S; Perrier, M; Bertin, N; Larionova, J; Ayadi, A; Zanca, M; Long, J; Bezzi, N; Stein, P C; Guari, Y; Cieslak, M; Godin, C; Goze-Bac, C
2014-12-01
Nondestructive studies of physiological processes in agronomic products require increasingly higher spatial and temporal resolutions. Nuclear Magnetic Resonance (NMR) imaging is a non-invasive technique providing physiological and morphological information on biological tissues. The aim of this study was to design a robust and accurate quantitative measurement method based on NMR imaging combined with contrast agent (CA) for mapping and quantifying water transport in growing cherry tomato fruits. A multiple flip-angle Spoiled Gradient Echo (SGE) imaging sequence was used to evaluate the intrinsic parameters maps M0 and T1 of the fruit tissues. Water transport and paths flow were monitored using Gd(3+)/[Fe(CN)6](3-)/D-mannitol nanoparticles as a tracer. This dynamic study was carried out using a compartmental modeling. The CA was preferentially accumulated in the surrounding tissues of columella and in the seed envelopes. The total quantities and the average volume flow of water estimated are: 198 mg, 1.76 mm(3)/h for the columella and 326 mg, 2.91 mm(3)/h for the seed envelopes. We demonstrate in this paper that the NMR imaging technique coupled with efficient and biocompatible CA in physiological medium has the potential to become a major tool in plant physiology research. Copyright © 2014 Elsevier Inc. All rights reserved.
Cao, Jing; Lv, Xiu Yun; Chen, Ling; Xing, Jia Jia; Lan, Hai Yan
2015-01-01
Seed heteromorphism provides plants with alternative strategies for survival in unfavourable environments. However, the response of descendants from heteromorphic seeds to stress has not been well documented. Suaeda aralocaspica is a typical annual halophyte, which produces heteromorphic seeds with disparate forms and different germination characteristics. To gain an understanding of the salt tolerance of descendants and the impact of seed heteromorphism on progeny of this species, we performed a series of experiments to investigate the plant growth and physiological parameters (e.g. osmolytes, oxidative/antioxidative agents and enzymes), as well as expression patterns of corresponding genes. Results showed that osmolytes (proline and glycinebetaine) were significantly increased and that excess reactive oxygen species (O2−, H2O2) produced under high salinity were scavenged by increased levels of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase and glutathione reductase) and corresponding antioxidants (ascorbic acid and glutathione). Moreover, enhancement of phosphoenolpyruvate carboxylase activity at high salt intensity had a positive effect on photosynthesis. The descendants from heteromorphic seeds presented no significant difference in performance with or without salinity. In conclusion, we found that high salinity induced the same active physiological responses in plants from heteromorphic seeds of S. aralocaspica, there was no carry-over of seed heteromorphism to plants: all the descendants required salinity for optimal growth and adaptation to their natural habitat. PMID:26386128
USDA-ARS?s Scientific Manuscript database
Desiccants/harvest aids are becoming more commonly used to hasten sunflower harvest. The current recommendation is to apply a desiccant (e.g., glyphosate and paraquat) at 35% or less seed moisture at physiological maturity (PM). Desiccating as early as possible without sacrificing yield may be a des...
7 CFR 201.68 - Eligibility requirements for certification of varieties.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Certified Seed § 201.68 Eligibility requirements... breeding procedure used in its development. (c) A detailed description of the morphological, physiological, and other characteristics of the plants and seed that distinguish it from other varieties. (d...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansley, R.J. Jr.
1983-01-01
Gardner saltbush (Atriplex gardneri (Moq.) D. Dietr.) provides valuable winter browse and is an important soil stabilizer in arid, alkaline, and saline areas of the intermountain region. However, seed dormancy and poor seedling vigor inhibit its potential for revegetation by direct seeding on disturbed lands. The objectives of this study were to 1) develop seed treatments which would overcome dormancy in Gardner saltbush seeds, 2) evaluate field establishment by direct seeding of Gardner saltbush, and 3) characterize seed dormancy, seedling vigor and some aspects of the ecology of germination in Gardner saltbush. In the laboratory, single and combined pretreatments removedmore » dormancy to varying degrees. Dormancy was completely alleviated with 15 months dry after-ripening + scarification + 24 hours washing + 4 weeks stratification. Dry after-ripening and scarification appeared to facilitate effects of washing and stratification. Physiologically, indirect evidence was obtained suggesting both embryo and seedcoat mediated dormancy occur in Gardner saltbush. Ecologically, the various levels of germination response to simulated environmental pretreatments appeared to be an adaptation of Gardner saltbush seeds to ensure a temporal dispersal of release from dormancy. This increases the probability that under natural conditions some seedlings will emerge during times when the environment is amenable to seedling survival.« less
Hay, F. R.; Smith, R. D.; Ellis, R. H.; Butler, L. H.
2010-01-01
Background and Aims Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Methods Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Key Results Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Conclusions Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors. PMID:20228084
NASA Astrophysics Data System (ADS)
Mazis, A.; Hiller, J.; Morgan, P.; Awada, T.; Stoerger, V.
2017-12-01
High throughput plant phenotyping is increasingly being used to assess morphological and biophysical traits of economically important crops in agriculture. In this study, the potential application of this technique in natural resources management, through the characterization of woody plants regeneration, establishment, growth, and responses to water and nutrient manipulations was assessed. Two woody species were selected for this study, Quercus prinoides and Quercus bicolor. Seeds were collected from trees growing at the edge of their natural distribution in Nebraska and Missouri, USA. Seeds were germinated in the greenhouse and transferred to the Nebraska Innovation Campus Lemnatec3D High Throughput facility at the University of Nebraska-Lincoln. Seedlings subjected to water and N manipulations, were imaged twice or three times a week using four cameras (Visible, Fluorescence, Infrared and Hyperspectral), throughout the growing season. Traditional leaf to plant levels ecophysiological measurements were concurrently acquired to assess the relationship between these two techniques. These include gas exchange (LI 6400 and LI 6800, LICOR Inc., Lincoln NE), chlorophyll content, optical characteristics (Ocean Optics USB200), water and osmotic potentials, leaf area and weight and carbon isotope ratio. In the presentation, we highlight results on the potential use of high throughput plant phenotyping techniques to assess the morphology and physiology of woody species including responses to water availability and nutrient manipulation, and its broader application under field conditions and natural resources management. Also, we explore the different capabilities imaging provides us for modeling the plant physiological and morphological growth and how it can complement the current techniques
Rodney E. Will; Curtis J. Lilly; John F. Stewart; C. Dana Nelson; Charles G. Taue
2015-01-01
Hybrids between shortleaf pine (Pinus echinata Mill.) and loblolly pine (P. taeda L.) have dramatically increased since the 1950s (Stewart and others 2012). Fire suppression, planting nonnative seed sources, and other anthropogenic activities have the potential to break down ecological barriers that previously kept these species from interbreeding (Tauer and others...
Castro, L E; Guimarães, C C; Faria, J M R
2017-11-01
During germination, orthodox seeds become gradually intolerant to desiccation, and for this reason, they are a good model for recalcitrance studies. In the present work, physiological, biochemical, and ultrastructural aspects of the desiccation tolerance were characterized during the germination process of Anadenanthera colubrina seeds. The seeds were imbibed during zero (control), 2, 8, 12 (no germinated seeds), and 18 hours (germinated seeds with 1 mm protruded radicle); then they were dried for 72 hours, rehydrated and evaluated for survivorship. Along the imbibition, cytometric and ultrastructural analysis were performed, besides the extraction of the heat-stable proteins. Posteriorly to imbibition and drying, the evaluation of ultrastructural damages was performed. Desiccation tolerance was fully lost after root protrusion. There was no increase in 4C DNA content after the loss of desiccation tolerance. Ultrastructural characteristics of cells from 1mm roots resembled those found in the recalcitrant seeds, in both hydrated and dehydrated states. The loss of desiccation tolerance coincided with the reduction of heat-stable proteins.
Dormancy as exaptation to protect mimetic seeds against deterioration before dispersal
Brancalion, Pedro H. S.; Novembre, Ana D. L. C.; Rodrigues, Ricardo R.; Marcos Filho, Júlio
2010-01-01
Background and Aims Mimetic seeds simulate the appearance of fleshy fruits and arilled seeds without producing nutritive tissues as a reward for seed dispersers. In this strategy of seed dispersal, seeds may remain attached to the mother plant for long periods after maturity, increasing their availability to naïve seed dispersers. The hypothesis that seed coat impermeability in many tropical Fabaceae with mimetic seeds serves as an exaptation to protect the seeds from deterioration and rotting while awaiting dispersal was investigated. Methods Seed coat impermeability was evaluated in five mimetic-seeded species of tropical Fabaceae in south-eastern Brazil (Abarema langsdorffii, Abrus precatorius, Adenanthera pavonina, Erythrina velutina and Ormosia arborea) and in Erythrina speciosa, a ‘basal’ species in its genus, which has monochromatic brown seeds and no mimetic displays. Seed hardness was evaluated as a defence against accelerated ageing (humid chamber at 41 °C for 144 h). Seed development and physiological potential of O. arborea was evaluated and the effect of holding mature seeds in pods on the mother plant in the field for a period of 1 year under humid tropical conditions was compared with seeds stored under controlled conditions (15 °C and 40 % relative air humidity). Key Results All five mimetic-seeded species, and E. speciosa, showed strong coat impermeability, which protected the seeds against deterioration in accelerated ageing. Most O. arborea seeds only became dormant 2 months after pod dehiscence. Germination of seeds after 1 year on the plant in a humid tropical climate was 56 %, compared with 80 % for seeds stored in controlled conditions (15 °C, 45 % relative humidity). Seedling shoot length after 1 year did not differ between seed sources. Conclusions Dormancy acts in mimetic-seeded species as an exaptation to reduce seed deterioration, allowing an increase in their effective dispersal period and mitigating the losses incurred by low removal rates by naïve avian frugivores. PMID:20354070
Maturation of Sweetgum and American Sycamore Seeds
F. T. Bonner
1972-01-01
Over three consecutive years in central Mississippi, sweetgum (Liquidambar styraciflua L.) and sycamore (Platanus occidentalis L.) fruits had nearly reached full-size by late June. Sweetgum seeds were physiologically mature by mid-August, but dry weight increased until late September. As sweetgum seeds matured, the crude fat level rose to 27 percent of seed dry weight...
Ida, Takashi Y.; Harder, Lawrence D.; Kudo, Gaku
2012-01-01
Background The production of flowers, fruits and seeds demands considerable energy and nutrients, which can limit the allocation of these resources to other plant functions and, thereby, influence survival and future reproduction. The magnitude of the physiological costs of reproduction depends on both the factors limiting seed production (pollen, ovules or resources) and the capacity of plants to compensate for high resource demand. Methods To assess the magnitude and consequences of reproductive costs, we used shading and defoliation to reduce photosynthate production by fully pollinated plants of a perennial legume, Oxytropis sericea (Fabaceae), and examined the resulting impact on photosynthate allocation, and nectar, fruit and seed production. Key Results Although these leaf manipulations reduced photosynthesis and nectar production, they did not alter photosynthate allocation, as revealed by 13C tracing, or fruit or seed production. That photosynthate allocation to reproductive organs increased >190 % and taproot mass declined by 29 % between flowering and fruiting indicates that reproduction was physiologically costly. Conclusions The insensitivity of fruit and seed production to leaf manipulation is consistent with either compensatory mobilization of stored resources or ovule limitation. Seed production differed considerably between the two years of the study in association with contrasting precipitation prior to flowering, perhaps reflecting contrasting limits on reproductive performance. PMID:22021817
Asghar, Tehseen; Jamil, Yasir; Iqbal, Munawar; Zia-Ul-Haq; Abbas, Mazhar
2016-12-01
Laser and magnetic field bio-stimulation attracted the keen interest of scientific community in view of their potential to enhance seed germination, seedling growth, physiological, biochemical and yield attributes of plants, cereal crops and vegetables. Present study was conducted to appraise the laser and magnetic field pre-sowing seed treatment effects on soybean sugar, protein, nitrogen, hydrogen peroxide (H 2 O 2 ) ascorbic acid (AsA), proline, phenolic and malondialdehyde (MDA) along with chlorophyll contents (Chl "a" "b" and total chlorophyll contents). Specific activities of enzymes such as protease (PRT), amylase (AMY), catalyst (CAT), superoxide dismutase (SOD) and peroxides (POD) were also assayed. The specific activity of enzymes (during germination and early growth), biochemical and chlorophyll contents were enhanced significantly under the effect of both laser and magnetic pre-sowing treatments. Magnetic field treatment effect was slightly higher than laser treatment except PRT, AMY and ascorbic acid contents. However, both treatments (laser and magnetic field) effects were significantly higher versus control (un-treated seeds). Results revealed that laser and magnetic field pre-sowing seed treatments have potential to enhance soybean biological moieties, chlorophyll contents and metabolically important enzymes (degrade stored food and scavenge reactive oxygen species). Future study should be focused on growth characteristics at later stages and yield attributes. Copyright © 2016 Elsevier B.V. All rights reserved.
Phenolic composition and antioxidant potential of grain legume seeds: A review.
Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder
2017-11-01
Legumes are a good source of bioactive phenolic compounds which play significant roles in many physiological as well as metabolic processes. Phenolic acids, flavonoids and condensed tannins are the primary phenolic compounds that are present in legume seeds. Majority of the phenolic compounds are present in the legume seed coats. The seed coat of legume seeds primarily contains phenolic acids and flavonoids (mainly catechins and procyanidins). Gallic and protocatechuic acids are common in kidney bean and mung bean. Catechins and procyanidins represent almost 70% of total phenolic compounds in lentils and cranberry beans (seed coat). The antioxidant activity of phenolic compounds is in direct relation with their chemical structures such as number as well as position of the hydroxyl groups. Processing mostly leads to the reduction of phenolic compounds in legumes owing to chemical rearrangements. Phenolic content also decreases due to leaching of water-soluble phenolic compounds into the cooking water. The health benefits of phenolic compounds include acting as anticarcinogenic, anti-thrombotic, anti-ulcer, anti-artherogenic, anti-allergenic, anti-inflammatory, antioxidant, immunemodulating, anti-microbial, cardioprotective and analgesic agents. This review provides comprehensive information of phenolic compounds identified in grain legume seeds along with discussing their antioxidant and health promoting activities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Changes in desiccating seeds of temperate and tropical forest tree species
K.F. Connor; F.T. Bonner; J.A. Vozzo; I. Kossman-Ferraz
2000-01-01
The physiological basis of seed recalcitrance is as yet unknown. Hypotheses suggesting possible causes have been proposed but the end result is that intact recalcitrant seeds cannot be stored for long periods of time. Thus, if the seed crop of a recalcitrant species fails, nurseries will be unable to draw upon a storage reserve of seeds in order to meet the demands of...
Jisha, K C; Puthur, Jos T
2014-07-01
The investigation was carried out to study the effect of halopriming on NaCl and polyethylene glycol-6000 (PEG-6000) induced stress tolerance potential of three Vigna radiata (L.) Wilczek varieties, with varied abiotic stress tolerance potential. Halopriming is a seed priming technique in which the seeds were soaked in various salt solutions (in this study NaCl was used). The results of the study indicated that the application of stresses (both NaCl and PEG) induced retardation of growth attributes (measured in terms of shoot length, fresh weight, dry weight) and decrease in physiological attributes like total chlorophyll content, metabolites, photosynthetic and mitochondrial activity of the seedlings in all three V. radiata (L.) varieties. However, halopriming of the seeds could reduce the extent of decrease in these biological attributes. NaCl and PEG stress also caused increase in MDA content (a product of membrane lipid peroxidation) in all the varieties studied and this increase was significantly minimized under halopriming. From the present investigation it was evident that among the green gram varieties studied, Pusa Vishal, a NaCl tolerant variety showed enhanced tolerance to NaCl and PEG induced stress, when the seeds were subjected to halopriming followed by Pusa Ratna (stress sensitive variety). Pusa 9531 (drought tolerant variety) also showed positive halopriming effects but it was less significant when compared to other two varieties. It could be concluded that halopriming improved the drought and salinity stress tolerance potential of all varieties and it was significantly higher in the Pusa Vishal as compared to Pusa 9531 and Pusa Ratna.
Rajjou, Loïc; Belghazi, Maya; Huguet, Romain; Robin, Caroline; Moreau, Adrien; Job, Claudette; Job, Dominique
2006-07-01
The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.
Effects of beneficial microorganisms on lowland rice development.
Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Sousa, Thatyane Pereira; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata
2017-11-01
Microorganisms can promote plant growth by increasing phytomass production, nutrient uptake, photosynthesis rates, and grain yield, which can result in higher profits for farmers. However, there is limited information available about the physiological characteristics of lowland rice after treatment with beneficial microorganisms in the tropical region. This study aimed to determine the effects of different beneficial microorganisms and various application forms on phytomass production, gas exchange, and nutrient contents in the lowland rice cultivar 'BRS Catiana' in a tropical region. The experiment was performed under greenhouse conditions utilizing a completely randomized design and a 7 × 3 + 1 factorial scheme with four replications. The treatments consisted of seven microorganisms, including the rhizobacterial isolates BRM 32113, BRM 32111, BRM 32114, BRM 32112, BRM 32109, and BRM 32110 and Trichoderma asperellum pooled isolates UFRA-06, UFRA-09, UFRA-12, and UFRA-52, which were applied using three different methods (microbiolized seed, microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS), and microbiolized seed + plant spraying with a microorganism suspension at 7 and 15 DAS) with a control (water). The use of microorganisms can provide numerous benefits for rice in terms of crop growth and development. The microorganism types and methods of application positively and differentially affected the physiological characteristics evaluated in the experimental lowland rice plants. Notably, the plants treated with the bioagent BRM 32109 on the seeds and on seeds + soil produced plants with the highest dry matter biomass, gas exchange rate, and N, P, Fe, and Mg uptake. Therefore, our findings indicate strong potential for the use of microorganisms in lowland rice cultivation systems in tropical regions. Currently, an additional field experiment is in its second year to validate the beneficial result reported here and the novel input sustainability.
Walitang, Denver I; Kim, Kiyoon; Madhaiyan, Munusamy; Kim, Young Kee; Kang, Yeongyeong; Sa, Tongmin
2017-10-26
Rice (Oryza sativa L. ssp. indica) seeds as plant microbiome present both an opportunity and a challenge to colonizing bacterial community living in close association with plants. Nevertheless, the roles and activities of bacterial endophytes remain largely unexplored and insights into plant-microbe interaction are compounded by its complexity. In this study, putative functions or physiological properties associated with bacterial endophytic nature were assessed. Also, endophytic roles in plant growth and germination that may allow them to be selectively chosen by plants were also studied. The cultivable seed endophytes were dominated by Proteobacteria particularly class Gammaproteobacteria. Highly identical type strains were isolated from the seed endosphere regardless of the rice host's physiological tolerance to salinity. Among the type strains, Flavobacterium sp., Microbacterium sp. and Xanthomonas sp. were isolated from the salt-sensitive and salt-tolerant cultivars. PCA-Biplot ordination also showed that specific type strains isolated from different rice cultivars have distinguishing similar characteristics. Flavobacterium sp. strains are phosphate solubilizers and indole-3-acetic acid producers with high tolerance to salinity and osmotic stress. Pseudomonas strains are characterized as high siderophore producers while Microbacterium sp. and Xanthomonas sp. strains have very high pectinase and cellulase activity. Among the physiological traits of the seed endophytes, bacterial pectinase and cellulase activity are positively correlated as well as salt and osmotic tolerance. Overall characterization shows that majority of the isolates could survive in 4-8% salt concentration as well as in 0.6 M and 1.2 M sucrose solution. The activities of catalase, pectinase and cellulase were also observed in almost all of the isolates indicating the importance of these characteristics for survival and colonization into the seed endosphere. Seed bacterial endophytes also showed promising plant growth promoting activities including hormone modulation, nitrogen fixation, siderophore production and phosphate solubilization. Though many of the isolates possess similar PGP and endophytic physiological traits, this study shows some prominent and distinguishing traits among bacterial groups indicating key determinants for their success as endophytes in the rice seed endosphere. Rice seeds are also inhabited by bacterial endophytes that promote growth during early seedling development.
Taste and physiological responses to glucosinolates: seed predator versus seed disperser.
Samuni-Blank, Michal; Izhaki, Ido; Gerchman, Yoram; Dearing, M Denise; Karasov, William H; Trabelcy, Beny; Edwards, Thea M; Arad, Zeev
2014-01-01
In contrast to most other plant tissues, fleshy fruits are meant to be eaten in order to facilitate seed dispersal. Although fleshy fruits attract consumers, they may also contain toxic secondary metabolites. However, studies that link the effect of fruit toxins with seed dispersal and predation are scarce. Glucosinolates (GLSs) are a family of bitter-tasting compounds. The fleshy fruit pulp of Ochradenus baccatus was previously found to harbor high concentrations of GLSs, whereas the myrosinase enzyme, which breaks down GLSs to produce foul tasting chemicals, was found only in the seeds. Here we show the differential behavioral and physiological responses of three rodent species to high dose (80%) Ochradenus' fruits diets. Acomys russatus, a predator of Ochradenus' seeds, was the least sensitive to the taste of the fruit and the only rodent to exhibit taste-related physiological adaptations to deal with the fruits' toxins. In contrast, Acomys cahirinus, an Ochradenus seed disperser, was more sensitive to a diet containing the hydrolyzed products of the GLSs. A third rodent (Mus musculus) was deterred from Ochradenus fruits consumption by the GLSs and their hydrolyzed products. We were able to alter M. musculus avoidance of whole fruit consumption by soaking Ochradenus fruits in a water solution containing 1% adenosine monophosphate, which blocks the bitter taste receptor in mice. The observed differential responses of these three rodent species may be due to evolutionary pressures that have enhanced or reduced their sensitivity to the taste of GLSs.
Jaganathan, Ganesh K.; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin
2017-01-01
The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h−1) suffered significantly higher membrane damage at temperature between −20 °C and −10 °C than slow cooled (3 °Ch−1) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches −20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to −20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes. PMID:28287125
Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin
2017-03-13
The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h -1 ) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch -1 ) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches -20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.
Pérez-Peralta, Paulina Janneth; Ferrera-Cerrato, Ronald; Alarcón, Alejandro; Trejo-Téllez, Libia I; Cruz-Ortega, Rocío; Silva-Rojas, Hilda V
2018-06-07
Allelopathy is a phenomenon that involves the production of secondary metabolites that influence the growth of plants and microorganisms; however, this alellopathic effect has been scarcely studied on the rhizobia-legume symbiosis. The aims of this research were 1) to assess the allelopathic potential of aqueous extracts of Ipomoea purpurea L. Roth on seed germination and root length of common bean seedlings (Phaseolus vulgaris L.), 2) to determine its effects on the in vitro growth of Rhizobium tropici CIAT899, and 3) to evaluate the allelopathic potential of I. purpurea on the growth, nodulation and physiology of common bean plants inoculated with R. tropici. After 48h, 15% of the aqueous root extract of I. purpurea stimulated seed germination, whereas 4% of the aqueous shoot extracts stimulated such germination. Both the root or shoot extracts stimulated seed germination and e root length. In vitro growth of R. tropici was inhibited as a result of the application of both aqueous extracts. The presence of I. purpurea negatively affected both the growth and physiological responses of common bean plants, and this effect was attenuated after the inoculation of R. tropici; nevertheless, this allelopathic plant affected root nodulation. Our results suggest that the symbiosis of rhizobia and roots of common bean plants is an important element for attenuating the negative effects caused by the allelopathic plant. Copyright © 2018 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Siddiqi, Ejaz Hussain; Ashraf, Muhammad; Al-Qurainy, Fahad; Akram, Nudrat Aisha
2011-12-01
Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil-seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower-33 (salt sensitive) and Safflower-39 (salt tolerant)) were grown under saline (150 mmol L(-1) ) conditions and salt-induced changes in the earlier-mentioned physiological attributes were determined. Salt stress enhanced leaf and root Na(+) , Cl(-) and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K(+) , Ca(2+) and K(+) /Ca(2+) and Ca(2+) /Na(+) ratios and seed yield, 100-seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α-tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt-sensitive Safflower-33 was higher in leaf and root Na(+) and Cl(-) , while Safflower-39 was higher in leaf and root K(+) , K(+) /Ca(2+) and Ca(2+) /Na(+) and seed yield, 100-seed weight, catalase activity, seed oil contents, seed oil α-tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. Overall, high salt tolerance of Safflower-39 could be attributed to Na(+) and Cl(-) exclusion, high accumulation of K(+) and free proline, enhanced CAT activity, seed oil α-tocopherols and palmitic acid contents. Copyright © 2011 Society of Chemical Industry.
Berry, Tannis; Bewley, J. Derek
1992-01-01
During tomato seed development the endogenous abscisic acid (ABA) concentration peaks at about 50 d after pollination (DAP) and then declines at later stages (60-70 DAP) of maturation. The ABA concentration in the sheath tissue immediately surrounding the seed increases with time of development, whereas that of the locule declines. The water contents of the seed and fruit tissues are similar during early development (20-30 DAP), but decline in the seed tissues between 30 and 40 DAP. The water potential and the osmotic potential of the embryo are lower than that of the locular tissue after 35 DAP also. Seeds removed from the fruit at 30, 35, and 60 DAP and placed ex situ on 35 and 60 DAP sheath and locular tissue are prevented from germinating. Development of 30 DAP seeds is maintained or promoted by the ex situ fruit tissue with which they are in contact. Their germination is inhibited until subsequent transfer to water, and germination is normal, i.e. by radicle protrusion, and viable seedlings are produced, compared with 30 DAP seeds transferred directly to water; more of these seeds germinate, but by hypocotyl extension, and seedling viability is very poor. Isolated seeds at 35 and 60 DAP re-placed in contact with fruit tissues only germinate when transferred to water after 7 d. At 30 DAP, isolated seeds are insensitive to ABA at physiological concentrations in that they germinate as if on water, albeit by hypocotyl extension. At higher concentrations germination occurs by radicle protrusion. Osmoticum prevents germination, but there is some recovery upon subsequent transfer to water. Seeds at 35 DAP are very sensitive to ABA and exhibit little or no germination, even upon transfer to water. The response of the isolated seeds to osmoticum more closely approximates that to incubation on the ex situ fruit tissues than does their response to ABA. This is also the case for isolated 60 DAP seeds, whose germination is not prevented by ABA, but only by the osmoticum; these seeds are inhibited when in contact with ex situ fruit tissues also. It is proposed that the osmotic environment within the tissues of the tomato fruit plays a greater role than endogenous ABA in preventing precocious germination of the developing seeds. PMID:16653081
Temporal and spatial variations on accumulation of nomilin and limonin in the pummelos.
Wang, Fusheng; Yu, Xiaohan; Liu, Xiaona; Shen, Wanxia; Zhu, Shiping; Zhao, Xiaochun
2016-09-01
Limonoids are the important secondary metabolites in the citrus. In this study, the accumulation of limonoids at different fruit developmental stages and distribution among different genotypes, tissues and developmental stages were investigated in 12 pummelo varieties. The large variations on limonoids concentration were found among different varieties, which ranged from 233.78 mg/kg FW to 4090.41 mg/kg FW in the seeds at full color stage of the fruit. Classification of pummelos based on the limonoids content divided 12 varieties into three groups. It was matched well with the geographic origination of the pummelo varieties, suggesting that the accumulation of limonoids was mainly determined by the genotype of the pummelo. Accumulation of the limonoids in different tissues was highly variable, and in a tissue specific fashion. The trend of the change on the levels of nomilin and limonin in the seeds and segment membrane were corresponded to the physiological development of the fruit. The rapid accumulation of nomilin and limonoids was observed from the physiological ripening of the seeds. It suggested that physiological maturation of the seeds is a key point that the seeds accelerate the accumulation of nomilin and limonin. In most of pummelo varieties, 10% color break of the fruit was a phenotypic landmark associated with the maximum level of nomilin accumulated in the seeds. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Cowpea bean (Vigna unguiculata L. Walp) is an important annual food crop in Northeast Brazil. Dry storage of these seeds leads to a slow and uneven darkening of the seed coat. The mixture of seed colors creates an unacceptable product for consumers. The aim of this study was to determine the kineti...
Effects of desiccation on the physiology and biochemistry of Quercus alba acorns
Kristina F. Connor; Sharon Sowa
2003-01-01
Seeds that lose viability when dried to a water content of less than 12% are said to be recalcitrant. We subjected acorns of Quercus alba L., a species with recalcitrant seeds, to desiccation to determine the effects of drying on lipids, proteins and carbohydrates of the embryonic axis and cotyledon tissues. Samples of fresh seed and seed dried for...
Physiological aspects of seed recalcitrance: a case study on the tree Aesculus hippocastanum.
Obroucheva, Natalie; Sinkevich, Irina; Lityagina, Snejana
2016-09-01
Recalcitrant seeds are typical of some tropical and subtropical trees. Their post-shedding life activity proceeds in humid air and wet litter. They are desiccation sensitive and, for this reason, have a short life span and need some special procedures for cryopreservation. This review is devoted to the post-shedding life strategy of recalcitrant seeds, which includes the maintenance of high hydration status, metabolic readiness and ability to rapidly germinate before desiccation-induced damage exerts a lethal effect. The main physiological aspects of recalcitrant seeds are considered starting from mature seeds, followed during dormancy if occurs and resulting in germination. The collected data embrace the metabolic processes in embryonic axes and whole seeds. The up-to-date results are integrated covering the main metabolic processes, namely water status and transport, protein and carbohydrate metabolism, antioxidant defense, axis-cotyledon relations, hormonal control and germination. Among the representatives of various taxa, the seeds of which exhibit recalcitrance, attention was given to horse chestnut seeds as one of most studied recalcitrants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shotgun label-free quantitative proteomics of developing peanut (Arachis hypogaea L.) seed
USDA-ARS?s Scientific Manuscript database
Legume seeds and peanuts, in particular, are an inexpensive source of plant proteins and edible oil. Owing to their importance in global food security, it is necessary to understand the genetic, biochemical, and physiological mechanisms controlling seed quality and nutritive attributes. A comprehens...
Plant Biology Science Projects.
ERIC Educational Resources Information Center
Hershey, David R.
This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…
Programmed cell death in seeds of angiosperms.
López-Fernández, María Paula; Maldonado, Sara
2015-12-01
During the diversification of angiosperms, seeds have evolved structural, chemical, molecular and physiologically developing changes that specially affect the nucellus and endosperm. All through seed evolution, programmed cell death (PCD) has played a fundamental role. However, examples of PCD during seed development are limited. The present review examines PCD in integuments, nucellus, suspensor and endosperm in those representative examples of seeds studied to date. © 2015 Institute of Botany, Chinese Academy of Sciences.
Khankhum, S; Valverde, R A
2018-04-01
This study evaluated the physiological traits of eight lines of common bean (Phaseolus vulgaris) cv. Black Turtle Soup, four of which were double-infected with Phaseolus vulgaris endornavirus 1 and Phaseolus vulgaris endornavirus 2, and four of which were endornavirus-free. Plants from all eight lines were morphologically similar and did not show statistically significant differences in plant height, wet weight, number of days to flowering and pod formation, pods per plant, pod thickness, seed size, number of seeds per pod, and anthocyanin content. However, the endornavirus-infected lines had faster seed germination, longer radicle, lower chlorophyll content, higher carotene content, longer pods, and higher weight of 100 seeds, all of which were statistically significant. The endornaviruses were not associated with visible pathogenic effects.
Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J
2012-11-01
Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.
USDA-ARS?s Scientific Manuscript database
Orthodox and recalcitrant seeds are distinguished by the ability of embryos to survive desiccation. Seeds of many palm species do not conform to the dichotomous classification and storage physiology is considered intermediate or ambiguous. We studied the acquisition of desiccation tolerance in embr...
Salem, Mohamed A; Li, Yan; Wiszniewski, Andrew; Giavalisco, Patrick
2017-11-01
Target of Rapamycin (TOR) is a positive regulator of growth and development in all eukaryotes, which positively regulates anabolic processes like protein synthesis, while repressing catabolic processes, including autophagy. To better understand TOR function we decided to analyze its role in seed development and germination. We therefore performed a detailed phenotypic analysis using mutants of the REGULATORY-ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), a conserved TOR interactor, acting as a scaffold protein, which recruits substrates for the TOR kinase. Our results show that raptor1b plants produced seeds that were delayed in germination and less resistant to stresses, leading to decreased viability. These physiological phenotypes were accompanied by morphological changes including decreased seed-coat pigmentation and reduced production of seed-coat mucilage. A detailed molecular analysis revealed that many of these morphological changes were associated with significant changes of the metabolic content of raptor1b seeds, including elevated levels of free amino acids, as well as reduced levels of protective secondary metabolites and storage proteins. Most of these observed changes were accompanied by significantly altered phytohormone levels in the raptor1b seeds, with increases in abscisic acid, auxin and jasmonic acid, which are known to inhibit germination. Delayed germination and seedling growth, observed in the raptor1b seeds, could be partially restored by the exogenous supply of gibberellic acid, indicating that TOR is at the center of a regulatory hub controlling seed metabolism, maturation and germination. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.
2015-01-01
The occurrence of various species of Brassicaceae with indehiscent fruits in the cold deserts of NW China suggests that there are adaptive advantages of this trait. We hypothesized that the pericarp of the single-seeded silicles of Isatis violascens restricts embryo expansion and thus prevents germination for 1 or more years. Thus, our aim was to investigate the role of the pericarp in seed dormancy and germination of this species. The effects of afterripening, treatment with gibberellic acid (GA3) and cold stratification on seed dormancy-break were tested using intact silicles and isolated seeds, and germination phenology was monitored in an experimental garden. The pericarp has a role in mechanically inhibiting germination of fresh seeds and promotes germination of nondormant seeds, but it does not facilitate formation of a persistent seed bank. Seeds in silicles in watered soil began to germinate earlier in autumn and germinated to higher percentages than isolated seeds. Sixty-two percent of seeds in the buried silicles germinated by the end of the first spring, and only 3% remained nongerminated and viable. Twenty to twenty-five percent of the seeds have nondeep physiological dormancy (PD) and 75–80% intermediate PD. Seeds with nondeep PD afterripen in summer and germinate inside the silicles in autumn if the soil is moist. Afterripening during summer significantly decreased the amount of cold stratification required to break intermediate PD. The presence of both nondeep and intermediate PD in the seed cohort may be a bet-hedging strategy. PMID:26513241
Effect of some Evaporation Matters on Storability of Sunflower ( Helianthus annuus L.) Seed.
El-Saidy, Aml E A; El-Hai, K M Abd
This study focuses on finding compounds that are safe to humans and environment, such as propionic and acetic acids that may provide an alternative control of seed-borne pathogens and decrease seed deterioration during storage. The objectives of this study were to reduce sunflower seed deterioration and improve the viability of sunflower seed using environmentally safe organic acids. Propionic and acetic acids were applied on sunflower seed at different concentrations under laboratory conditions during different storage periods. After 6 months storage period, the viability of sunflower seed as well as morphological and physiological characteristics of seedlings were evaluated under greenhouse conditions. Laboratory experiment was conducted in a factorial completely randomized design and randomized complete block design for greenhouse experiment. Propionic and acetic acids at different concentrations showed inhibitory effects on the presence of different fungal genera in all storage periods. Propionic acid was most effective followed by acetic acid. Increasing storage periods from 0-6 months significantly decreased germination percentage, germination energy, seedling characters, survived healthy seedlings and seed oil and protein percentages but dead and rotted seeds, as well as rotted seedlings were increased. Treating sunflower seeds with propionic acid (100%) improved germination criteria, seedling characters and seed chemical characters as well as survival seedlings and minimized the dead seeds, rotted seeds and rotted seedlings as compared with the control under all storage periods. Under greenhouse conditions, the maximum growth parameter and physiological characters (chlorophylls a, b, carotenoids and total phenols) were recorded from seed treated with 100% propionic acid after 6 months of storage. It may be concluded that propionic and acetic acids vapors can have considerable fungicidal activity against sunflower pathogens and improve seed viability. Therefore, it is recommended using 100% propionic acid to reduce deterioration and seed-borne pathogens of sunflower under storage conditions.
Liu, Ting-Wu; Wu, Fei-Hua; Wang, Wen-Hua; Chen, Juan; Li, Zhen-Ji; Dong, Xue-Jun; Patton, Janet; Pei, Zhen-Ming; Zheng, Hai-Lei
2011-04-01
We selected six tree species, Pinus massoniana Lamb., Cryptomeria fortunei Hooibr. ex Otto et Dietr., Cunninghamia lanceolata (Lamb.) Hook., Liquidambar formosana Hance, Pinus armandii Franch. and Castanopsis chinensis Hance, which are widely distributed as dominant species in the forest of southern China where acid deposition is becoming more and more serious in recent years. We investigated the effects and potential interactions between simulated acid rain (SiAR) and three calcium (Ca) levels on seed germination, radicle length, seedling growth, chlorophyll content, photosynthesis and Ca content in leaves of these six species. We found that the six species showed different responses to SiAR and different Ca levels. Pinus armandii and C. chinensis were very tolerant to SiAR, whereas the others were more sensitive. The results of significant SiAR × Ca interactions on different physiological parameters of the six species demonstrate that additional Ca had a dramatic rescue effect on the seed germination and seedling growth for the sensitive species under SiAR. Altogether, we conclude that the negative effects of SiAR on seed germination, seedling growth and photosynthesis of the four sensitive species could be ameliorated by Ca addition. In contrast, the physiological processes of the two tolerant species were much less affected by both SiAR and Ca treatments. This conclusion implies that the degree of forest decline caused by long-term acid deposition may be attributed not only to the sensitivity of tree species to acid deposition, but also to the Ca level in the soil.
Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris)
Villordo-Pineda, Emiliano; González-Chavira, Mario M.; Giraldo-Carbajo, Patricia; Acosta-Gallegos, Jorge A.; Caballero-Pérez, Juan
2015-01-01
Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector. PMID:26257755
Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris).
Villordo-Pineda, Emiliano; González-Chavira, Mario M; Giraldo-Carbajo, Patricia; Acosta-Gallegos, Jorge A; Caballero-Pérez, Juan
2015-01-01
Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector.
[Seed geography: its concept and basic scientific issues].
Yu, Shun-Li; Wang, Zong-Shuai; Zeren, Wangmu
2010-01-01
In this paper, a new concept 'seed geography' was provided, and its definition, research contents, and scientific issues were put forward. Seed geography is a newly developed interdisciplinary science from plant geography, seed ecology, and phytosociology, which studies the geographic variation patterns of seed biological traits as well as their relationships with environmental factors from macroscopic to microscopic, and the seed formation, development, and change trends. The main research contents would include geography of seed mass, geography of seed chemical components, geography of seed morphology, geography of seed cell biological characteristics, geography of seed physiological characteristics, geography of seed genetic characteristics, and geography of flower and fruit. To explore the scientific issues in seed geography would help us to better understand the long-term adaptation and evolution of seed characteristics to natural environments.
Role of sugars under abiotic stress.
Sami, Fareen; Yusuf, Mohammad; Faizan, Mohammad; Faraz, Ahmad; Hayat, Shamsul
2016-12-01
Sugars are the most important regulators that facilitate many physiological processes, such as photosynthesis, seed germination, flowering, senescence, and many more under various abiotic stresses. Exogenous application of sugars in low concentration promote seed germination, up regulates photosynthesis, promotes flowering, delayed senescence under various unfavorable environmental conditions. However, high concentration of sugars reverses all these physiological process in a concentration dependent manner. Thus, this review focuses the correlation between sugars and their protective functions in several physiological processes against various abiotic stresses. Keeping in mind the multifaceted role of sugars, an attempt has been made to cover the role of sugar-regulated genes associated with photosynthesis, seed germination and senescence. The concentration of sugars determines the expression of these sugar-regulated genes. This review also enlightens the interaction of sugars with several phytohormones, such as abscisic acid, ethylene, cytokinins and gibberellins and its effect on their biosynthesis under abiotic stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa
Dalal, Jyoti; Lopez, Harry; Vasani, Naresh B.; ...
2015-10-29
Camelina sativa is an oilseed crop with great potential for biofuel production on marginal land. The seed oil from camelina has been converted to jet fuel and improved fuel efficiency in commercial and military test flights. Hydrogenation-derived renewable diesel from camelina is environmentally superior to that from canola due to lower agricultural inputs, and the seed meal is FDA approved for animal consumption. However, relatively low yield makes its farming less profitable. Our study is aimed at increasing camelina seed yield by reducing carbon loss from photorespiration via a photorespiratory bypass. Genes encoding three enzymes of the Escherichia coli glycolatemore » catabolic pathway were introduced: glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL) and tartronic semialdehyde reductase (TSR). These enzymes compete for the photorespiratory substrate, glycolate, convert it to glycerate within the chloroplasts, and reduce photorespiration. As a by-product of the reaction, CO 2 is released in the chloroplast, which increases photosynthesis. Camelina plants were transformed with either partial bypass (GDH), or full bypass (GDH, GCL and TSR) genes. Furthermore, transgenic plants were evaluated for physiological and metabolic traits.« less
A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalal, Jyoti; Lopez, Harry; Vasani, Naresh B.
Camelina sativa is an oilseed crop with great potential for biofuel production on marginal land. The seed oil from camelina has been converted to jet fuel and improved fuel efficiency in commercial and military test flights. Hydrogenation-derived renewable diesel from camelina is environmentally superior to that from canola due to lower agricultural inputs, and the seed meal is FDA approved for animal consumption. However, relatively low yield makes its farming less profitable. Our study is aimed at increasing camelina seed yield by reducing carbon loss from photorespiration via a photorespiratory bypass. Genes encoding three enzymes of the Escherichia coli glycolatemore » catabolic pathway were introduced: glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL) and tartronic semialdehyde reductase (TSR). These enzymes compete for the photorespiratory substrate, glycolate, convert it to glycerate within the chloroplasts, and reduce photorespiration. As a by-product of the reaction, CO 2 is released in the chloroplast, which increases photosynthesis. Camelina plants were transformed with either partial bypass (GDH), or full bypass (GDH, GCL and TSR) genes. Furthermore, transgenic plants were evaluated for physiological and metabolic traits.« less
Estimates of genetics and phenotypics parameters for the yield and quality of soybean seeds.
Zambiazzi, E V; Bruzi, A T; Guilherme, S R; Pereira, D R; Lima, J G; Zuffo, A M; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M
2017-09-27
Estimating genotype x environment (GxE) parameters for quality and yield in soybean seed grown in different environments in Minas Gerais State was the goal of this study, as well as to evaluate interaction effects of GxE for soybean seeds yield and quality. Seeds were produced in three locations in Minas Gerais State (Lavras, Inconfidentes, and Patos de Minas) in 2013/14 and 2014/15 seasons. Field experiments were conducted in randomized blocks in a factorial 17 x 6 (GxE), and three replications. Seed yield and quality were evaluated for germination in substrates paper and sand, seedling emergence, speed emergency index, mechanical damage by sodium hypochlorite, electrical conductivity, speed aging, vigor and viability of seeds by tetrazolium test in laboratory using completely randomized design. Quadratic component genotypic, GXE variance component, genotype determination coefficient, genetic variation coefficient and environmental variation coefficient were estimated using the Genes software. Percentage analysis of genotypes contribution, environments and genotype x environment interaction were conducted by sites combination two by two and three sites combination, using the R software. Considering genotypes selection of broad adaptation, TMG 1179 RR, CD 2737 RR, and CD 237 RR associated better yield performance at high physical and physiological potential of seed. Environmental effect was more expressive for most of the characters related to soybean seed quality. GxE interaction effects were expressive though genotypes did not present coincidental behavior in different environments.
Bellaloui, Nacer; Smith, James R.; Mengistu, Alemu; Ray, Jeffery D.; Gillen, Anne M.
2017-01-01
Although the Early Soybean Production System (ESPS) in the Midsouthern USA increased seed yield under irrigated and non-irrigated conditions, heat stress and drought still lead to poor seed quality in heat sensitive soybean cultivars. Our breeding goal was to identify breeding lines that possess high germination, nutritional quality, and yield potential under high heat and dryland production conditions. Our hypothesis was that breeding lines derived from exotic germplasm might possess physiological and genetic traits allowing for higher seed germinability under high heat conditions. In a 2-year field experiment, breeding lines derived from exotic soybean accessions, previously selected for adaptability to the ESPS in maturity groups (MG) III and IV, were grown under non-irrigated conditions. Results showed that three exotic breeding lines had consistently superior germination across 2 years. These lines had a mean germination percentage of >80%. Two (25-1-1-4-1-1 and 34-3-1-2-4-1) out of the three lines with ≥80% germination in both years maintained high seed protein, oleic acid, N, P, K, B, Cu, and Mo in both years. Significant (P < 0.05) positive correlations were found between germination and oleic acid and with K and Cu in both years. Significant negative correlations were found between germination and linoleic acid, Ca, and hard seed in both years. There were positive correlations between germination and N, P, B, Mo, and palmitic acid only in 2013. A negative correlation was found between germination and green seed damage and linolenic acid in 2013 only. Seed wrinkling was significantly negatively correlated with germination in 2012 only. A lower content of Ca in the seed of high germinability genotypes may explain the lower rates of hard seed in those lines, which could lead to higher germination. Many of the differences in yield, germination, diseases, and seed composition between years are likely due to heat and rainfall differences between years. The results also showed the potential roles of seed minerals, especially K, Ca, B, Cu, and Mo, in maintaining high seed quality. The knowledge gained from this research will help breeders to select for soybean with high seed nutritional qualities and high germinability. PMID:28289420
Lu, Juanjuan; Tan, Dunyan; Baskin, Jerry M; Baskin, Carol C
2010-06-01
Diptychocarpus strictus is an annual ephemeral in the cold desert of northwest China that produces heteromorphic fruits and seeds. The primary aims of this study were to characterize the morphology and anatomy of fruits and seeds of this species and compare the role of fruit and seed heteromorphism in dispersal and germination. Shape, size, mass and dispersal of siliques and seeds and the thickness of the mucilage layer on seeds were measured, and the anatomy of siliques and seeds, the role of seed mucilage in water absorption/dehydration, germination and adherence of seeds to soil particles, the role of pericarp of lower siliques in seed dormancy and seed after-ripening and germination phenology were studied using standard procedures. Plants produce dehiscent upper siliques with a thin pericarp containing seeds with large wings and a thick mucilage layer and indehiscent lower siliques with a thick pericarp containing nearly wingless seeds with a thin mucilage layer. The dispersal ability of seeds from the upper siliques was much greater than that of intact lower siliques. Mucilage increased the amount of water absorbed by seeds and decreased the rate of dehydration. Seeds with a thick mucilage layer adhered to soil particles much better than those with a thin mucilage layer or those from which mucilage had been removed. Fresh seeds were physiologically dormant and after-ripened during summer. Non-dormant seeds germinated to high percentages in light and in darkness. Germination of seeds from upper siliques is delayed until spring primarily by drought in summer and autumn, whereas the thick, indehiscent pericarp prevents germination for >1 year of seeds retained in lower siliques. The life cycle of D. strictus is morphologically and physiologically adapted to the cold desert environment in time and space via a combination of characters associated with fruit and seed heteromorphism.
Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis
2015-01-01
Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties. PMID:26681322
De Giorgi, Julien; Piskurewicz, Urszula; Loubery, Sylvain; Utz-Pugin, Anne; Bailly, Christophe; Mène-Saffrané, Laurent; Lopez-Molina, Luis
2015-12-01
Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.
Effects of Fat and Protein Levels on Foraging Preferences of Tannin in Scatter-Hoarding Rodents
Wang, Bo; Chen, Jin
2012-01-01
Both as consumers and dispersers of seeds, scatter-hoarding rodents often play an important role in the reproductive ecology of many plant species. However, the seeds of many plant species contain tannins, which are a diverse group of water-soluble phenolic compounds that have a high affinity for proteins. The amount of tannins in seeds is expected to affect rodent foraging preferences because of their major impact on rodent physiology and survival. However, variable results have been obtained in studies that evaluated the effects of tannin on rodent foraging behavior. Hence, in this study, we aimed to explain these inconsistent results and proposed that a combination of seed traits might be important in rodent foraging behavior, because it is difficult to distinguish between the effects of individual traits on rodent foraging behavior and the interactions among them. By using a novel artificial seed system, we manipulated seed tannin and fat/protein levels to examine directly the univariate effects of each component on the seed preferences of free-ranging forest rats (Apodemus latronum and Apodemus chevrieri) during the behavioral process of scatter hoarding. Our results showed that both tannin and fat/protein had significant effects on rodent foraging behavior. Although only a few interactive effects of tannin and fat/protein were recorded, higher concentrations of both fat and protein could attenuate the exclusion of seeds with higher tannin concentrations by rodents, thus influencing seed fate. Furthermore, aside from the concentrations of tannin, fat, and protein, numerous other traits of plant seeds may also influence rodent foraging behavior. We suggest that by clarifying rodent foraging preferences, a better understanding of the evolution of plant seed traits may be obtained because of their strong potential for selective pressure. PMID:22808217
Hoyle, Gemma L; Venn, Susanna E; Steadman, Kathryn J; Good, Roger B; McAuliffe, Edward J; Williams, Emlyn R; Nicotra, Adrienne B
2013-05-01
Global warming is occurring more rapidly above the treeline than at lower elevations and alpine areas are predicted to experience above average warming in the future. Temperature is a primary factor in stimulating seed germination and regulating changes in seed dormancy status. Thus, plant regeneration from seed will be crucial to the persistence, migration and post disturbance recruitment of alpine plants in future climates. Here, we present the first assessment of the impact of soil warming on germination from the persistent alpine soil seed bank. Contrary to expectations, soil warming lead to reduced overall germination from the soil seed bank. However, germination response to soil temperature was species specific such that total species richness actually increased by nine with soil warming. We further explored the system by assessing the prevalence of seed dormancy and germination response to soil disturbance, the frequency of which is predicted to increase under climate change. Seeds of a significant proportion of species demonstrated physiological dormancy mechanisms and germination of several species appeared to be intrinsically linked to soil disturbance. In addition, we found no evidence of subalpine species and little evidence of exotic weed species in the soil, suggesting that the soil seed bank will not facilitate their invasion of the alpine zone. In conclusion, changes in recruitment via the alpine soil seed bank can be expected under climate change, as a result of altered dormancy alleviation and germination cues. Furthermore, the alpine soil seed bank, and the species richness therein, has the potential to help maintain local species diversity, support species range shift and moderate species dominance. Implications for alpine management and areas for further study are also discussed. © 2013 Blackwell Publishing Ltd.
Endo-β-mannanase and β-tubulin gene expression during the final phases of coffee seed maturation.
Santos, F C; Clemente, A C S; Caixeta, F; Rosa, S D V F
2015-10-02
Coffee seeds begin to develop shortly after fertilization and can take 6 to 8 months to complete their formation, a period during which all the characteristics of the mature seed are determined, directly influencing physiological quality. However, little is known about the molecular mechanisms that act during coffee seed maturation. The objective of the current study was to analyze expression of the β-tubulin (TUB) and endo-β-mannanase (MAN) genes during different phases at the end of development and in different tissues of Coffea arabica seeds. The transcription levels of the TUB and MAN genes were quantified in a relative manner using qRT-PCR in whole seeds, and dissected into embryos and endosperms at different developmental stages. Greater expression of MAN was observed in whole seeds and in endosperms during the green stage, and in the embryo during the over-ripe stage. High TUB gene expression was observed in whole seeds during the green stage and, in the embryos, there were peaks in expression during the over-ripe stage. In endosperms, the peak of expression occurred in both the green stage and in the cherry stage. These results suggest participation of endo-β-mannanase during the initial seed developmental stages, and in the stages of physiological maturity in the embryo tissues. TUB gene expression varied depending on the developmental stage and section of seed analyzed, indicating the participation of β-tubulin during organogenesis and coffee seed maturation.
A systematic proteomic analysis of NaCl-stressed germinating maize seeds.
Meng, Ling-Bo; Chen, Yi-Bo; Lu, Tian-Cong; Wang, Yue-Feng; Qian, Chun-Rong; Yu, Yang; Ge, Xuan-Liang; Li, Xiao-Hui; Wang, Bai-Chen
2014-05-01
Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF-MS and 2-DE-MALDI-TOF-MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.
Sasaki, Satohiko
2008-01-01
The physiological characteristics of the dominant tree species in the tropical rain forest mainly belonging to dipterocarps as well as the environmental conditions especially for the light in the forest were studied to establish the silvicultural system for the forest regeneration in the tropical South Asia. The flowering patterns of the dipterocarp trees are usually irregular and unpredictable, which make difficult to collect sufficient seeds for raising the seedlings. The field survey revealed the diverged features of the so-called gregarious or simultaneous flowering of various species of this group. Appropriate conditions and methods for the storage of the seeds were established according to the detailed analyses of the morphological and physiological characteristics of the seeds such as the low temperature tolerance and the moisture contents. The intensity and spectra of the light in the forest primarily determine the growth and the morphological development of the seedlings under the canopy. Based on the measurements of the diffused light at the sites in the tropical forest in the varying sunlight, the parameters such as "the steady state of the diffuse light" and "the turning point" were defined, which were useful to evaluate the light conditions in the forest. To improve the survival of the transplanted seedlings, a planting method of "the bare-root seedlings", the seedlings easy to be handled by removal of all leaves, soil and pots, was developed. Its marked efficiency was proved with various dipterocarps and other tropical trees by the field trial in the practical scale. Tolerance of the various species to the extreme environmental conditions such as fires, acid soils and drought were examined by the experiments and the field survey, which revealed marked adaptability of Shorea roxburghii as a potential species for regeneration of the tropical forests.
[Study on physiological and germination characteristics of Tulipa edulis seed].
Wu, Zhengjun; Zhu, Zaibiao; Guo, Qiaosheng; Ma, Hongliang; Xu, Hongjian; Miao, Yuanyuan
2012-03-01
Current study was conducted to investigate the seed physiological characteristics of Tulipa edulis and improve germination rate. Anatomical characteristics was observed. Seed water absorption curve was tested by soaking method. Dynamic of embryo development and germination rate as well as germination index under different conditions were recorded. And the biological test of cabbage seed was used for detecting the germination inhibitors. The embryo rate of newly matured seeds was about 10%, and there was no obstacle of water absorption on testa of T. edulis. The optimum method for embryo development was exposure to 300 mg x L(-1) gibberellin solution for 24 hours, and stratification at 25 degrees C for 70 days followed by stratification at 5 degrees C for 40 days. The germintion rate and germination index of dormancy-broken seeds under the dark environment at 10 degrees C and 15 degrees C were significantly higher than those under other conditions. Additionally, there were some germination inhibitory substances in dry seeds. The seed of T. edulis can be classified as having complex morphophysiological dormancy, and the morphological embryo dormancy played a leading role. Warm and cold stratification resulted in a fast dormancy breaking effect, and a high germination rate more than 90% could be obtained under the optimum conditions.
Lu, Juan J.; Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.
2017-01-01
The position in which seeds develop on the parental plant can have an effect on dormancy-break and germination. We tested the hypothesis that the proportion of seeds with intermediate physiological dormancy (PD) produced in the proximal position on a raceme of Isatis violascens plants is higher than that produced in the distal position, and further that this difference is related to temperature during seed development. Plants were watered at 3-day intervals, and silicles and seeds from the proximal (early) and distal (late) positions of racemes on the same plants were collected separately and tested for germination. After 0 and 6 months dry storage at room temperature (afterripening), silicles and seeds were cold stratified for 0–16 weeks and tested for germination. Mean daily maximum and minimum temperatures during development/maturation of the two groups of seeds did not differ. A higher proportion of seeds with the intermediate level than with the nondeep level of PD was produced by silicles in the proximal position than by those in the distal position, while the proportion of seeds with nondeep PD was higher in the distal than in the proximal position of the raceme. The differences were not due only to seed mass. Since temperature and soil moisture conditions were the same during development of the seeds in the raceme, differences in proportion of seeds with intermediate and nondeep PD are attributed to position on parental plant. The ecological consequence of this phenomenon is that it ensures diversity in dormancy-breaking and germination characteristics within a seed cohort, a probable bet-hedging strategy. This is the first demonstration of position effects on level of PD in the offspring. PMID:28232842
USDA-ARS?s Scientific Manuscript database
Seed germination was optimized for ten Hydrangea macrophylla cultivars and two Hydrangea paniculata cultivars in vitro. Methods were also developed to assay seed physiology. Best results were obtained with 0.5X Gamborgs solid media in conjunction with Plant Preservative Mixture (PPM), and by sterili...
USDA-ARS?s Scientific Manuscript database
Peanut production areas frequently suffer from drought, which can cause severe yield losses, increased aflatoxin, and compositional changes in seed. Midseason drought is generally the most detrimental to seed yields and in altering seed protein composition. The purpose of this study was to investi...
Biorhythms in conifer seed germination during extended storage
James P. Barnett; N.I. Marnonov
1989-01-01
A proportion of sound seeds of conifer species do not germinate during certain periods of the year, even when conditions are favorable. Mamonov et al. (1986) report that the non-germinating seeds have apparently undergone physiological changes that affected germination. This phenomenon may be due to seasonal periodicity, or biorhythms. As early as the mid-1930'...
Koester, Robert P.; Skoneczka, Jeffrey A.; Cary, Troy R.; Diers, Brian W.; Ainsworth, Elizabeth A.
2014-01-01
Soybean (Glycine max Merr.) is the world’s most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha–1 year–1, and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. PMID:24790116
Laboratory Studies of Thermotolerance Acquisition during Seed Imbibition and Germination.
ERIC Educational Resources Information Center
Choinski, John S., Jr.
1999-01-01
Describes a series of low-cost experiments to investigate the ability of seeds from different species to acquire tolerance of thermal stress. Suggests links to discussions on molecular biology, physiology, ecology, and evolution. (WRM)
Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.
2012-01-01
Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856
Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.
2007-01-01
Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989
Identifying MicroRNAs and Transcript Targets in Jatropha Seeds
Galli, Vanessa; Guzman, Frank; de Oliveira, Luiz F. V.; Loss-Morais, Guilherme; Körbes, Ana P.; Silva, Sérgio D. A.; Margis-Pinheiro, Márcia M. A. N.; Margis, Rogério
2014-01-01
MicroRNAs, or miRNAs, are endogenously encoded small RNAs that play a key role in diverse plant biological processes. Jatropha curcas L. has received significant attention as a potential oilseed crop for the production of renewable oil. Here, a sRNA library of mature seeds and three mRNA libraries from three different seed development stages were generated by deep sequencing to identify and characterize the miRNAs and pre-miRNAs of J. curcas. Computational analysis was used for the identification of 180 conserved miRNAs and 41 precursors (pre-miRNAs) as well as 16 novel pre-miRNAs. The predicted miRNA target genes are involved in a broad range of physiological functions, including cellular structure, nuclear function, translation, transport, hormone synthesis, defense, and lipid metabolism. Some pre-miRNA and miRNA targets vary in abundance between the three stages of seed development. A search for sequences that produce siRNA was performed, and the results indicated that J. curcas siRNAs play a role in nuclear functions, transport, catalytic processes and disease resistance. This study presents the first large scale identification of J. curcas miRNAs and their targets in mature seeds based on deep sequencing, and it contributes to a functional understanding of these miRNAs. PMID:24551031
Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A; Tazelaar, Anne O E; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P M; Schluepmann, Henriette
2017-01-01
Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N 2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg -1 N fixed and 35 t dry biomass. 15 N 2 fixation peaked at noon, reaching 0.4 mg N g -1 dry weight h -1 . Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern's physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N 2 -fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants.
Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O. E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P. M.; Schluepmann, Henriette
2017-01-01
Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg−1 N fixed and 35 t dry biomass. 15N2 fixation peaked at noon, reaching 0.4 mg N g−1 dry weight h−1. Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern’s physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N2-fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants. PMID:28408911
Borzoui, Ehsan; Nouri-Ganbalani, Gadir
2017-01-01
Abstract The inhibitory effects of Avena sativa L. seed extract were studied on life history and some physiological aspects of Sitotroga cerealella (Olivier; Lepidoptera: Gelechiidae). The inhibition of α-amylase activity in vitro by A. sativa proteinaceous extract suggested its potential antimetabolic effect on S. cerealella larvae. Although, chronic ingestion of A. sativa inhibitor (I10: 0.108 mg protein/artificial seed) did not show significant reduction of the growth and development of S. cerealella. However, a delay in the developmental time of immature stages was detected when S. cerealella larvae were continuously fed on I30 and I50 concentrations (0.429 and 1.11 mg protein/artificial seed, respectively) of the inhibitor. The highest realized fecundity was recorded for females which came from larvae fed on I10 concentration (102.46 ± 2.50 eggs/female), and the lowest fecundity was observed for females which came from larvae fed on I50 concentration (31.64 ± 3.17 eggs/female). The lightest weight of pupae of S. cerealella was observed on I50 concentration (2.76 ± 0.07 mg). The lowest glycogen and lipid contents of the pupae were detected on I50 concentration (50.00 ± 3.53 and 289.57 ± 29.00 µg/pupa, respectively). The lower survival rate of pupae at low temperature indicated that S. cerealella fed on I50 concentration of the inhibitor was less cold tolerant than control insects. The inhibitory studies indicated that A. sativa proteinaceous extract is a good candidate as an inhibitor of the α-amylase of this pest. This inhibitor can be expressed in genetically engineered plants to confer resistance to S. cerealella. PMID:29099952
Farid, Mujahid; Ali, Shafaqat; Rizwan, Muhammad; Saeed, Rashid; Tauqeer, Hafiz Muhammad; Sallah-Ud-Din, Rasham; Azam, Ahmed; Raza, Nighat
2017-09-01
The complex bio-geochemistry of soil allows pollutant to persist for a longer period of time which further decreased the fertility and natural composition of land. Nickel, an inorganic pollutant, coming from a wide range of industrial and manufacturing units possesses serious threat to soil degradation and crop productivity around the world. The present study was carried to evaluate the combined role of microwave irradiation (MR) and citric acid (CA) on the phytoextraction potential of Brassica napus L. under Ni stress. An initial seed germination test was conducted to select effective time scale of MR exposure. Highest seed germination was observed at exposure of 2.45 GHz frequency for 30 s. Healthy seeds of B. napus L. genotype Faisal Canola (RBN-03060) treated with MR at 2.45 GHz for 30 s were sown in plastic pots filled with 5 kg of soil. Nickel and CA applied exogenously in solution form with different combinations to both MR-treated and untreated B. napus plants. The MR-treated plants showed higher growth, biomass, photosynthetic pigments (Chl a, b, total, and carotenoids) and activities of antioxidant enzymes (SOD, POD, APX, CAT) as compared to untreated plants who showed higher reactive oxygen species (MDA, H 2 O 2 ) and electrolyte leakage. Increasing Ni concentration significantly decreased the physiological and biochemical attributes of B. napus both in MR-treated and untreated plants. The addition of CA alleviated Ni-induced toxic effects in both MR-treated and untreated plants by improving antioxidant defense system. The degree of Ni stress mitigation was higher in MR-treated plants. The Ni concentration was higher in root, stem, and leaves of MR-treated plants under CA application as compared to untreated plants. The present study concluded that seeds treated with MR before sowing showed higher accumulation and concentration of Ni from soil, and this phenomenon boosted with the application of CA.
Timing of seed dispersal and seed dormancy in Brazilian savanna: two solutions to face seasonality.
Escobar, Diego F E; Silveira, Fernando A O; Morellato, Leonor Patricia C
2018-05-11
The relationship between fruiting phenology and seed dispersal syndrome is widely recognized; however, the interaction of dormancy classes and plant life-history traits in relation to fruiting phenology and seed dispersal is understudied. Here we examined the relationship between fruiting season and seed dormancy and how this relationship is modulated by dormancy classes, dispersal syndromes, seed mass and seed moisture content in a Brazilian savanna (cerrado). Dormancy classes (non-dormancy and physical, morphological, morphophysiological, physiological and physiophysical dormancy) of 34 cerrado species were experimentally determined. Their seed dispersal syndrome (autochory, anemochory, zoochory), dispersal season (rainy, dry, rainy-to-dry and dry-to-rainy transitions), seed mass and moisture contents, and the estimated germination date were also determined. Log-linear models were used to evaluate how dormancy and dormancy classes are related to dispersal season and syndrome. The proportions of dormant and non-dormant species were similar in cerrado. The community-estimated germination date was seasonal, occurring at the onset of rainy season. Overall, anemochorous non-dormant species released seeds during the dry-to-rainy transition; autochorous physically dormant species dispersed seeds during the dry season and rainy-to-dry transition; zoochorous species dispersed non-dormant seeds during the dry and rainy seasons, while species with morphological, morphophysiological or physiological dormancy dispersed seeds in the transitional seasons. Seed mass differed among dispersal seasons and dormancy classes, but seed moisture content did not vary with dispersal syndrome, season or dormancy class. The beginning of the rainy season was the most favourable period for seed germination in cerrado, and the germination phenology was controlled by both the timing of seed dispersal and seed dormancy. Dormancy class was influenced by dispersal syndrome and season. Moreover, dormancy avoided seed germination during the rainy-to-dry transition, independently of dispersal syndrome. The variability of dormancy classes with dispersal syndrome allowed animal-dispersed species to fruit all year round, but seeds germinated only during the rainy season. Conversely, seasonally restricted wind-dispersal species dispersed and germinated their non-dormant seeds only in the rainy season.
Correlating climate and longleaf pine cone crops: Is there a connection?
Neil Pederson; John S. Kush; Ralph S. Meldahl
1998-01-01
The physiological development of longleaf pine seed from flower through cone to seed is a lengthy process, extending over three calendar years. The duration of this process may be the main reason why longleaf pine produces infrequent seed crops with which to regenerate itself. Adequate crops occur every 5-7 years, on average, causing problems for those interested in...
Recalcitrant Behavior of Temperate Forest Tree Seeds: Storage, Biochemistry, and Physiology
Kristina F. Connor; Sharon Sowa
2002-01-01
The recalcitrant behavior of seeds of live oak (Quercus virginiana Mill.), and Durand oak (Quercus durandii Buckl.) was examined after hydrated storage at two temperatures, +4°C and -2°C for up to 1 year. Samples were collected and analyses performed at monthly intervals. At each sampling time, seeds were tested for viability and...
Tracy S. Hawkins; Carol C. Baskin; Jerry M Baskin
2010-01-01
Dormancy breaking and germination requirements were determined for seeds of the eastern North American (eNA) species Sanicula canadensis, Sanicula gregaria and Sanicula trifoliata, and the data compared to those available for the EuropeanâAsian (EurA) congener Sanicula europaea. Seeds of the three eNA species had underdeveloped embryos that were physiologically dormant...
Han, Chao; Yin, Xiaojian; He, Dongli; Yang, Pingfang
2013-01-01
Seed germination is a complex physiological process during which mobilization of nutrient reserves happens. In different crops, this event might be mediated by different regulatory and metabolic pathways. Proteome profiling has been proved to be an efficient way that can help us to construct these pathways. However, no such studies have been performed in soybean germinating seeds up to date. Proteome profiling was conducted through one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy in the germinating seeds of soybean (glycine max). Comprehensive comparisons were also carried out between rice and soybean germinating seeds. 764 proteins belonging to 14 functional groups were identified and metabolism related proteins were the largest group. Deep analyses of the proteins and pathways showed that lipids were degraded through lipoxygenase dependent pathway and proteins were degraded through both protease and 26S proteosome system, and the lipoxygenase could also help to remove the reactive oxygen species during the rapid mobilization of reserves of soybean germinating seeds. The differences between rice and soybean germinating seeds proteome profiles indicate that each crop species has distinct mechanism for reserves mobilization during germination. Different reserves could be converted into starches before they are totally utilized during the germination in different crops seeds. This study is the first comprehensive analysis of proteome profile in germinating soybean seeds to date. The data presented in this paper will improve our understanding of the physiological and biochemical status in the imbibed soybean seeds just prior to germination. Comparison of the protein profile with that of germinating rice seeds gives us new insights on mobilization of nutrient reserves during the germination of crops seeds.
Al-Suhaimi, Ebtesam Abdullah
2012-08-01
The toxic effects of excess vitamin A (VA) intake deserve increased attention. Nigella sativa (NS) seed possesses physiological and pharmacological actions and protects against toxic agents. This work investigated the availability of NS seed oil as a protective agent against the effects of hypervitaminosis A (HVA) on liver function and immunity. Fifty adult albino rats were used and divided into five groups: (G1) control; (G2) experimental HVA rats administered extreme doses (10,000 IU/kg body weight) of VA oil orally, daily for 6 weeks; (G3) rats treated with NS seed oil (800 mg/kg) orally, daily for 6 weeks; (G4) HVA rats simultaneously treated with NS seed oil at the same doses and periods; and (G5) HVA recovery group. Liver function, immunoglobulin (IgG and IgM) levels, and lysosome activity were measured in serum. HVA rats revealed marked elevations in alanine aminotransferase and aspartate aminotransferase activities. This is the first study to demonstrate that NS seed oil possesses significant hepatoprotective activity against HVA. NS seed oil was a potent inducer of IgG and IgM in rat serum either alone or with high doses of VA. These findings may be considered the initial steps of the physiological and humoral immune responses for NS seed oil against HVA, but further studies examining longer periods are needed prior to recommending the use of NS seed oil as an alternative medicine for hepatic and immune diseases.
Simulated digestion of Vitis vinifera seed powder: polyphenolic content and antioxidant properties.
Janisch, Kerstin M; Olschläger, Carolin; Treutter, Dieter; Elstner, Erich F
2006-06-28
There is increasing evidence that reactive oxygen species arising from several enzymatic reactions are mediators of inflammatory events. Plant preparations have the potential for scavenging such reactive oxygen species. Flavans and procyanidins are bioavailable and stable during the process of cooking. This study used conditions that mimicked digestion of Vitis vinifera seed powder in the stomach (acidic preparation) and small intestine (neutral preparation). The flavonoids of these two preparations were released during simulated digestion and were determined with HPLC analysis. Biochemical model reactions relevant for the formation of reactive oxygen species in vivo at inflammatory sites were used to determine the antioxidant properties of the two preparations. The inhibition of the indicator reaction for the formation of reactive oxygen species represents a potential mechanism of the physiological activity of the corresponding preparation. The results of this work show clearly that the polyphenols released during the simulated digestion of the two preparations have good scavenging potential against superoxide radicals, hydroxyl radicals, and singlet oxygen. They protect low-density lipoprotein against copper-induced oxidation due to the copper-chelating properties and their chain-breaking abilities in lipid peroxidation.
Tabassum, Tahira; Farooq, Muhammad; Ahmad, Riaz; Zohaib, Ali; Wahid, Abdul
2017-09-01
This study was conducted to evaluate the potential of seed priming following terminal drought on tolerance against salt stress in bread wheat. Drought was imposed in field sown wheat at reproductive stage (BBCH growth stage 49) and was maintained till physiological maturity (BBCH growth stage 83). Seeds of bread wheat, collected from crop raised under terminal drought and/or well-watered conditions, were subjected to hydropriming and osmopriming (with 1.5% CaCl 2 ) and were sown in soil-filled pots. After stand establishment, salt stress treatments viz. 10 mM NaCl (control) and 100 mM NaCl were imposed. Seed from terminal drought stressed source had less fat (5%), and more fibers (11%), proteins (22%) and total soluble phenolics (514%) than well-watered seed source. Salt stress reduced the plant growth, perturbed water relations and decreased yield. However, an increase in osmolytes accumulation (4-18%), malondialdehyde (MDA) (27-35%) and tissue Na + contents (149-332%) was observed under salt stress. The seeds collected from drought stressed crop had better tolerance against salt stress as indicated by better yield (28%), improved water relations (3-18%), osmolytes accumulation (21-33%), and less MDA (8%) and Na contents (35%) than progeny of well-watered crop. Seed priming, osmopriming in particular, further improved the tolerance against salt stress through improvement in leaf area, water relations, leaf proline, glycine betaine and grain yield while lowering MDA and Na + contents. In conclusion, changed seed composition during terminal drought and seed priming improved the salt tolerance in wheat by modulating the water relations, osmolytes accumulation and lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G
2015-08-01
Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade-tolerant broadleaves. The results of our study suggest that the combinations of plant attributes enhancing growth under high light vary with shade tolerance, but differ between leaf habit groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Long, Rowena L; Stevens, Jason C; Griffiths, Erin M; Adamek, Markus; Gorecki, Marta J; Powles, Stephen B; Merritt, David J
2011-10-01
Karrikinolide (KAR(1)) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR(1) is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR(1), and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR(1) may be present in physiologically dormant seeds but may not be expressed under all circumstances. Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR(1) when freshly collected and following simulated and natural dormancy alleviation, which included wet-dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial. Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR(1) when the seeds were fresh, and the remaining species became responsive to KAR(1) following wet-dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR(1), with the majority of species germinating better in darkness. Germination with and without KAR(1) fluctuated seasonally throughout the seed burial trial. KAR(1) responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR(1), and a response to KAR(1) can be induced. Three response types for generalizing KAR(1) responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR(1) were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae may be an ideal target for future application of KAR(1) in weed management.
A graphical method for identifying the six types of non-deep physiological dormancy in seeds.
Soltani, E; Baskin, C C; Baskin, J M
2017-09-01
We present a new seed dormancy classification scheme for the non-deep level of the class physiological dormancy (PD), which contains six types. Non-deep PD is divided into two sublevels: one for seeds that exhibit a dormancy continuum (types 1, 2 and 3) and the other for those that do not exhibit a dormancy continuum (types 4, 5 and 6). Analysis of previous studies showed that different types of non-deep PD also can be identified using a graphical method. Seeds with a dormancy (D) ↔ conditional dormancy (CD) ↔ non-dormancy (ND) cycle have a low germination percentage in the early stages of CD, and during dormancy loss the germination capacity increases. However, seeds with a CD/ND (i.e. D→CD↔ND) cycle germinate to a high percentage at a narrow range of temperatures in the early stages of CD. Cardinal temperatures for seeds with either a D/ND or a CD/ND cycle change during dormancy loss: the ceiling temperature increases in seeds with Type 1, the base temperature decreases in seeds with Type 2 and the base and ceiling temperatures decrease and increase, respectively, in seeds with Type 3. Criteria for distinguishing the six types of non-deep PD and models of the temperature functions of seeds with types 1, 2 and 3 with both types of dormancy cycles are presented. The relevancy of our results to modelling the timing of weed seedling emergence is briefly discussed. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Otis Prud'homme, Guillaume; Lamhamedi, Mohammed S.; Benomar, Lahcen; Rainville, André; DeBlois, Josianne; Bousquet, Jean; Beaulieu, Jean
2018-01-01
With climate change, favorable growing conditions for tree species are shifting northwards and to higher altitudes. Therefore, local populations are becoming less adapted to their environment. Assisted migration is one of the proposed adaptive measures to reduce the vulnerability of natural populations and maintain forest productivity. It consists of moving genetic material to a territory where future climate conditions correspond to those of its current location. Eight white spruce (Picea glauca [Moench] Voss) seed sources representing as many seed orchards were planted in 2013 at three forest sites simulating a south-north climatic gradient of 1.7°C in Québec, Canada. The objectives were to (1) evaluate the morpho-physiological responses of the different seed sources and (2) determine the role of genetic adaptation and physiological plasticity on the observed variation in morpho-physiological traits. Various seedling characteristics were measured, notably height growth from nursery to the fourth year on plantation. Other traits such as biomass and carbon allocation, nutritional status, and various photosynthetic traits before bud break, were evaluated during the fourth growing season. No interaction between sites and seed sources was observed for any traits, suggesting similar plasticity between seed sources. There was no change in the rank of seed sources and sites between years for height growth. Moreover, a significant positive correlation was observed between the height from the nursery and that after 4 years in the plantation. Southern seed sources showed the best height growth, while optimum growth was observed at the central site. Juvenile height growth seems to be a good indicator of the juvenile carbon sequestration and could serve as a selection criterion for the best genetics sources for carbon sequestration. Vector analysis showed no nitrogen deficiency 4 years after planting. Neither seed sources nor planting sites had a significant effect on photosynthesis before bud break. The observed results during the establishment phase under different site conditions indicate that southern seed sources may already benefit from assisted migration to cooler climatic conditions further north. While northern seed sources are likely to benefit from anticipated local global warming, they would not match the growth performance of seedlings from southern sources. PMID:29358942
Otis Prud'homme, Guillaume; Lamhamedi, Mohammed S; Benomar, Lahcen; Rainville, André; DeBlois, Josianne; Bousquet, Jean; Beaulieu, Jean
2017-01-01
With climate change, favorable growing conditions for tree species are shifting northwards and to higher altitudes. Therefore, local populations are becoming less adapted to their environment. Assisted migration is one of the proposed adaptive measures to reduce the vulnerability of natural populations and maintain forest productivity. It consists of moving genetic material to a territory where future climate conditions correspond to those of its current location. Eight white spruce ( Picea glauca [Moench] Voss) seed sources representing as many seed orchards were planted in 2013 at three forest sites simulating a south-north climatic gradient of 1.7°C in Québec, Canada. The objectives were to (1) evaluate the morpho-physiological responses of the different seed sources and (2) determine the role of genetic adaptation and physiological plasticity on the observed variation in morpho-physiological traits. Various seedling characteristics were measured, notably height growth from nursery to the fourth year on plantation. Other traits such as biomass and carbon allocation, nutritional status, and various photosynthetic traits before bud break, were evaluated during the fourth growing season. No interaction between sites and seed sources was observed for any traits, suggesting similar plasticity between seed sources. There was no change in the rank of seed sources and sites between years for height growth. Moreover, a significant positive correlation was observed between the height from the nursery and that after 4 years in the plantation. Southern seed sources showed the best height growth, while optimum growth was observed at the central site. Juvenile height growth seems to be a good indicator of the juvenile carbon sequestration and could serve as a selection criterion for the best genetics sources for carbon sequestration. Vector analysis showed no nitrogen deficiency 4 years after planting. Neither seed sources nor planting sites had a significant effect on photosynthesis before bud break. The observed results during the establishment phase under different site conditions indicate that southern seed sources may already benefit from assisted migration to cooler climatic conditions further north. While northern seed sources are likely to benefit from anticipated local global warming, they would not match the growth performance of seedlings from southern sources.
Remedio, R N; Nunes, P H; Anholeto, L A; Oliveira, P R; Sá, I C G; Camargo-Mathias, M I
2016-04-01
Neem (Azadirachta indica) has attracted the attention of researchers worldwide due to its repellent properties and recognized effects on the morphology and physiology of arthropods, including ticks. Therefore, this study aimed to demonstrate the effects of neem seed oil enriched with azadirachtin on salivary glands of Rhipicephalus sanguineus ticks, targets of great veterinary interest because of their ability to transmit pathogens to dogs. For this, R. sanguineus semi-engorged females were subjected to treatment with neem seed oil, with known azadirachtin concentrations (200, 400 and 600ppm). After dissection, salivary glands were collected and evaluated through morphological techniques in light microscopy, confocal scanning laser microscopy and transmission electron microscopy, so that the possible relation between neem action and further impairment in these ectoparasites feed performance could be established. Neem oil demonstrated a clear dose-dependent effect in the analyzed samples. The agranular (type I) and granular acini (types II and III) showed, particularly in individuals treated with the highest concentrations of the product, cells with irregular shape, intense cytoplasmic disorganization and vacuolation, dilation of rough endoplasmic reticulum lumen, besides alterations in mitochondrial intermembrane space. These morphological damages may indicate modifications in salivary glands physiology, demonstrating the harmful effects of compounds present in neem oil on ticks. These results reinforce the potential of neem as an alternative method for controlling R. sanguineus ticks, instead of synthetic acaricides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ballesteros, Daniel; Walters, Christina
2011-11-01
Slow movement of molecules in glassy matrices controls the kinetics of chemical and physical reactions in dry seeds. Variation in physiological activity among seeds suggests that there are differences in mobility among seed glasses. Testing this hypothesis is difficult because few tools are available to measure molecular mobility within dry seeds. Here, motional properties within dry pea cotyledons were assessed using dynamic mechanical analysis. The technique detected several molecular relaxations between -80 and +80°C and gave a more detailed description of water content-temperature effects on molecular motion than previously understood from studies of glass formation in seeds at glass transition (Tg). Diffusive movement is delimited by the α relaxation, which appears to be analogous to Tg. β and γ relaxations were also detected at temperatures lower than α relaxations, clearly demonstrating intramolecular motion within the glassy matrix of the pea cotyledon. Glass transitions, or the mechanical counterpart α relaxation, appear to be less relevant to seed aging during dry storage than previously thought. On the other hand, β relaxation occurs at temperature and moisture conditions typically used for seed storage and has established importance for physical aging of synthetic polymer glasses. Our data show that the nature and extent of molecular motion varies considerably with moisture and temperature, and that the hydrated conditions used for accelerated aging experiments and ultra-dry conditions sometimes recommended for seed storage give greater molecular mobility than more standard seed storage practices. We believe characterization of molecular mobility is critical for evaluating how dry seeds respond to the environment and persist through time. Published 2011. This article is a US Government work and is in the public domain in the USA.
K.F. Connor; F.T. Bonner; J.A Vozzo
1996-01-01
Investigations into the nature of desiccation-sensitive, or recalcitrant, seed behavior have as yet failed to identify exact causes of this phenomenon. Experiments with Quercus nigra L. and Quercus alba L. were conducted to examine physiological and biochemical changes brought about by seed desiccation and to determine if there...
Effects of desiccation on the recalcitrant seeds of Carapa guianensis Aubl. and Carapa procera DC
Kristina F. Connor; I. D. Kossmann Ferraz; F.T. Bonner; John A. Vozzo
1998-01-01
This study was undertaken to determine if the seeds of Carapa guianensis Aubl. and Carapa procera DC. undergo physiological, biochemical, and ultrastructural changes when they are desiccated; and to find if these changes can be used to monitor viability in Carapa. Seeds were air-dried at room temperature for 7 to 11 days. Samples were taken at frequent intervals and...
USDA-ARS?s Scientific Manuscript database
Germination of Styrax japonicus Sieb. et. Zucc. seeds was promoted by warm stratification (WS) at around 20 °C followed by cold stratification (CS) at around 5oC. Biochemical and physiological changes in Styrax seeds during these WS and CS treatments were not investigated. The objective of this wo...
Koester, Robert P; Skoneczka, Jeffrey A; Cary, Troy R; Diers, Brian W; Ainsworth, Elizabeth A
2014-07-01
Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Frischie, Stephanie; Fernández-Pascual, Eduardo; Gálvez Ramirez, Cándido; Toorop, Peter; Matías González, Hernández; Jiménez-Alfaro, Borja
2018-05-22
Under Mediterranean climates with dry-hot summers and cool-wet winters, many forbs with potential for habitat restoration are winter annuals, but there is little information about their germination. We performed laboratory germination experiments on 13 ruderal dicots native to Andalusia (southern Spain). We measured the germination of recently harvested seeds from natural populations across nine temperature treatments (from 5 °C to 35 °C, constant and alternate); two storage periods; and eight water stress treatments (from 0 MPa to -1.0 MPa). We thencalculated the hydrothermal thresholds for seed germination. Final germination ranged from 0-100% and results were mixed in response to temperature. Base temperature was below 6 °C, optimal temperature was around 14 °C and the ceiling temperature around 23 °C. For five species, 10 months of storage improved total germination, indicating a dormancy-breaking effect, but the other species did not respond or had their germination reduced. All species were relatively tolerant to water stress, with base water potential ranging from -0.8 MPa to -1.8 MPa. Our results suggest that hydrothermal germination thresholds, rather than physiological dormancy, are the main drivers of germination phenology in annual forbs from Mediterranean semi-dry environments. The germination of these forb species differs from winter annual grasses, but their seeds are all suitable for being stored before restoration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Shteyne, B. A.; Nevzgodina, L. V.; Miller, A. T.
1982-01-01
The effects of space flight factors on lettuce seeds aboard the Kosmos-936 and Kosmos-1129 satellites for 20 days were studied. The phytochrome dependent (PD) reaction of light sensitive seeds was a sensitive criterion for evaluating the biological effects of space flight factors. The PD reaction of air dry lettuce seeds was suppressed after space flight, especially if the seeds were exposed to open space during the flight. Space flight affects the physiological activity of both phytochrome forms, and both the phi sub 730 dependent reactions of lettuce seeds were suppressed.
Taciak, Marcin; Barszcz, Marcin; Święch, Ewa; Bachanek, Ilona; Skomiał, Jacek
2017-01-01
The use of pea seeds is limited due to the content of antinutritional factors that may affect gut physiology. Heat treatment such as extrusion may reduce heat-labile antinutritional factors and improve the nutritional value of pea seeds. This study determined the effect of partial replacement of soybean meal in pig diets by raw or extruded pea seeds on growth performance, nitrogen balance and physiology of the ileum and distal colon. The experiment was carried out in 18 castrated male piglets of initial body weight of 11 kg, divided into three groups. The animals were fed cereal-based diets with soybean meal (C), which was partly replaced by raw (PR) or extruded pea (PE) seeds. Nitrogen balance was measured at about 15 kg body weight. After 26 days of feeding, tissue samples were taken from the ileum and distal colon for histological measurements, and colonic digesta samples for analyses of microbial activity indices. The animals fed the PE diet had a significantly greater average daily gain than those fed the C diet and better apparent protein digestibility than those on the PR diet. Pigs fed the PR diet had a significantly greater butyric acid concentration and lower pH in the colon than pigs fed PE and C diets. There was no significant effect of the diet on other indices of microbial activity or morphological parameters. In conclusion, feeding a diet with extruded pea seeds improved growth performance of pigs, did not affect intestinal morphology and had a negligible effect on microbial activity in the distal colon. PMID:28060879
Bhattacharya, Surajit; Sinha, Saheli; Das, Natasha; Maiti, Mrinal K
2015-11-01
Fatty acids from dietary lipids can impart both beneficial and harmful health effects. The compositional balance between saturated and unsaturated fatty acids plays a decisive role in maintaining the physiological harmony, proper growth and development in the human system. In case of Brassica juncea seed oil, the level of saturated fatty acid, especially desirable stearate is very much lower than the recommended value, along with a high content of nutritionally undesirable erucic acid. Therefore, in order to shift the carbon flux towards the production of stearate at the expense of erucate, the MlFatB gene encoding a FatB thioesterase from Madhuca longifolia (latifolia) was expressed heterologously in seed tissues of B. juncea. The functional MlFatB competed with the highly active endogenous BjFatA thioesterase, and the transgenic B. juncea lines showed noteworthy changes in their seed fatty acid profiles. The proportion of stearate increased up to 16-fold, constituting almost 31% of the total fatty acids along with the production of arachidic acid in significant amount (up to ∼11%). Moreover, the content of erucate was reduced up to 71% in the seed oils of transgenic lines. Although a nutritionally desirable fatty acid profile was achieved, the transgenic seeds exhibit reduction or abolition of seed germination in addition to a decrease in seed lipid content. The findings of the present study revealing the stearoyl-ACP thioesterase-mediated enhancement of the stearate content that is associated with reduced germination frequency of transgenic B. juncea seeds, may explain why no natural or induced stearate-rich Brassica has been found or developed. Furthermore, this study also suggests that the newly characterized MlFatB is a potential candidate gene for refined metabolic engineering strategy in B. juncea or other plant species for increasing stearate content in seed oil. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Olivera, Leticia; Canul, Rossana Rodriguez; Pereira-Pacheco, Fabiola; Cockburn, Joanna; Soldani, Florinda; McKenzie, Norma H; Duncan, Michelle; Olvera-Novoa, Miguel A; Grant, George
2003-01-01
The nutritional and physiological effects of raw cowpea (Vigna unguiculata (L) Walp.) seed meal, protein isolate (globulins), or starch on the metabolism of young growing rats have been evaluated in 14-day trials. Wet and dry weight gain, feed conversion efficiency, and lipid and protein accretion were significantly reduced as a result of inclusion of seed meal, globulins, or starch in the diet, with growth retardation being most marked with the seed meal. The proportional weights of the small intestine and pancreas were increased by meal diets, and serum cholesterol levels were slightly reduced. The globulins and raw starch also increased relative small intestine weights but had no effect on the pancreas or serum constituents. The effects of cowpeas on rats appeared to be due primarily to the combined actions of globulins, resistant starches, protease inhibitors, and possibly fiber and non-starch polysaccharides on intestinal and systemic metabolism.
Seeding materials: Health and safety considerations
NASA Technical Reports Server (NTRS)
Brown, R. D.
1985-01-01
The choice of a proper seeding material for laser velocimeters must include health and safety considerations. Failure to do so can lead to catastrophic results. All materials are toxic, and laser velocimeter seeding materials are no exception. Toxicity may be considered an inherent property of a given material. The manifestation of that property or the physiological response to the material is dependent on dose and exposure conditions. An approximate physiological classification of toxicity is given in tablular form. Toxicity in some situations is not necessarily the most restrictive factor in selection of materials. It is also very important to consider how the material is used so that actual exposure to the material in a damaging form can result. For example, nickel and cadmium are both extremely toxic as systemic poisons and in the case of nickel as a carcinogen. Seeding materials are dispersed in air under conditions that favor personnel exposure. Dispersal equipment is frequently if not normally manned, and personnel are often required to make frequent adjustments to assure proper operations.
NASA Astrophysics Data System (ADS)
Alvarado-López, Sandra; Soriano, Diana; Velázquez, Noé; Orozco-Segovia, Alma; Gamboa-deBuen, Alicia
2014-11-01
Successful revegetation necessarily requires the establishment of a vegetation cover and one of the challenges for this is the scarce knowledge about germination and seedling establishment of wild tree species. Priming treatments (seed hydration during a specific time followed by seed dehydration) could be an alternative germination pre-treatment to improve plant establishment. Natural priming (via seed burial) promotes rapid and synchronous germination as well as the mobilisation of storage reserves; consequently, it increases seedling vigour. These metabolic and physiological responses are similar to those occurring as a result of the laboratory seed priming treatments (osmopriming and matrix priming) applied successfully to agricultural species. In order to know if natural priming had a positive effect on germination of tropical species we tested the effects of natural priming on imbibition kinetics, germination parameters (mean germination time, lag time and germination rate and percentage) and reserve mobilisation in the seeds of two tree species from a tropical deciduous forest in south-eastern México: Tecoma stans (L Juss. Ex Kunth) and Cordia megalantha (S.F Blake). The wood of both trees are useful for furniture and T. stans is a pioneer tree that promotes soil retention in disturbed areas. We also compared the effect of natural priming with that of laboratory matrix priming (both in soil). Matrix priming improved germination of both studied species. Natural priming promoted the mobilisation of proteins and increased the amount of free amino acids and of lipid degradation in T. stans but not in C. megalantha. Our results suggest that the application of priming via the burial of seeds is an easy and inexpensive technique that can improve seed germination and seedling establishment of tropical trees with potential use in reforestation and restoration practices.
Tripathi, Vinayak R; Kumar, Shailendra; Garg, Satyendra K
2011-07-12
Proteases play an important role in virulence of many human, plant and insect pathogens. The proteinaceous protease inhibitors of plant origin have been reported widely from many plant species. The inhibitors may potentially be used for multiple therapeutic applications in viral, bacterial, fungal diseases and physiological disorders. In traditional Indian medicine system, Cassia tora (Senna tora) is reportedly effective in treatment of skin and gastrointestinal disorders. The present study explores the protease inhibitory activity of the above plant seeds against trypsin, Aspergillus flavus and Bacillus sp. proteases. The crushed seeds of Cassia tora were washed thoroughly with acetone and hexane for depigmentation and defatting. The proteins were fractionated by ammonium sulphate (0-30, 30-60, 60-90%) followed by dialysis and size exclusion chromatography (SEC). The inhibitory potential of crude seed extract and most active dialyzed fraction against trypsin and proteases was established by spot test using unprocessed x-ray film and casein digestion methods, respectively. Electrophoretic analysis of most active fraction (30-60%) and SEC elutes were carried employing Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Gelatin SDS-PAGE. Inhibition of fungal spore germination was studied in the presence of dialyzed active inhibitor fraction. Standard deviation (SD) and ANOVA were employed as statistical tools. The crude seeds' extract displayed strong antitryptic, bacterial and fungal protease inhibitory activity on x-ray film. The seed protein fraction 30-60% was found most active for trypsin inhibition in caseinolytic assay (P < 0.001). The inhibition of caseinolytic activity of the proteases increased with increasing ratio of seed extract. The residual activity of trypsin, Aspergillus flavus and Bacillus sp. proteases remained only 4, 7 and 3.1%, respectively when proteases were incubated with 3 mg ml-1 seed protein extract for 60 min. The inhibitory activity was evident in gelatin SDS-PAGE where a major band (~17-19 kD) of protease inhibitor (PI) was detected in dialyzed and SEC elute. The conidial germination of Aspergillus flavus was moderately inhibited (30%) by the dialyzed seed extract. Cassia tora seed extract has strong protease inhibitory activity against trypsin, Aspergillus flavus and Bacillus sp. proteases. The inhibitor in Cassia tora may attenuate microbial proteases and also might be used as phytoprotecting agent. © 2011 Tripathi et al; licensee BioMed Central Ltd.
Phylogenetically distant barley legumains have a role in both seed and vegetative tissues.
Julián, Israel; Gandullo, Jacinto; Santos-Silva, Ludier K; Diaz, Isabel; Martinez, Manuel
2013-07-01
Legumains or vacuolar processing enzymes are cysteine peptidases (C13 family, clan CD) with increasingly recognized physiological significance in plants. They have previously been classified as seed and vegetative legumains. In this work, the entire barley legumain family is described. The eight members of this family belong to the two phylogenetic clades in which the angiosperm legumains are distributed. An in-depth molecular and functional characterization of a barley legumain from each group, HvLeg-2 and HvLeg-4, was performed. Both legumains contained a signal peptide and were located in the endoplasmic reticulum, were expressed in seeds and vegetative tissues, and when expressed as recombinant proteins showed legumain and caspase proteolytic activities. However, the role of each protein seemed to be different in their target tissues. HvLeg-2 responded in leaves to biotic and abiotic stimuli, such as salicylic acid, jasmonic acid, nitric oxide, abscisic acid, and aphid infestation, and was induced by gibberellic acid in seeds, where the protein is able to degrade storage globulins. HvLeg-4 responded in leaves to wounding, nitric oxide, and abscisic acid treatments, and had an unknown role in the germinating seed. From these results, a multifunctional role was assumed for these two phylogenetically distant legumains, achieving different physiological functions in both seed and vegetative tissues.
Ayuso, Manuel; Ramil-Rego, Pablo; Landin, Mariana; Gallego, Pedro P.; Barreal, M. Esther
2017-01-01
Many endangered plants such as Eryngium viviparum (Apiaceae) present a poor germination rate. This fact could be due to intrinsic and extrinsic seed variability influencing germination and dormancy of seeds. The objective of this study is to better understand the physiological mechanism of seed latency and, through artificial intelligence models, to determine the factors that stimulate germination rates of E. viviparum seeds. This description could be essential to prevent the disappearance of endangered plants. Germination in vitro was carried out under different dormancy breaking and incubation procedures. Percentages of germination, viability and E:S ratio were calculated and seeds were dissected at the end of each assay to describe embryo development. The database obtained was modeled using neurofuzzy logic technology. We have found that the most of Eryngium seeds (62.6%) were non-viable seeds (fully empty or without embryos). Excluding those, we have established the germination conditions to break seed dormancy that allow obtaining a real germination rate of 100%. Advantageously, the best conditions pointed out by neurofuzzy logic model for embryo growth were the combination of 1 mg L−1 GA3 (Gibberellic Acid) and high incubation temperature and for germination the combination of long incubation and short warm stratification periods. Our results suggest that E. viviparum seeds present morphophysiological dormancy, which reduce the rate of germination. The knowledge provided by the neurofuzzy logic model makes possible not just break the physiological component of dormancy, but stimulate the embryo development increasing the rate of germination. Undoubtedly, the strategy developed in this work can be useful to recover other endangered plants by improving their germination rate and uniformity favoring their ex vitro conservation. PMID:29312370
de Brito, C D; Loureiro, M B; Ribeiro, P R; Vasconcelos, P C T; Fernandez, L G; de Castro, R D
2016-11-01
Jatropha curcas is an oilseed crop renowned for its tolerance to a diverse range of environmental stresses. In Brazil, this species is grown in semiarid regions where crop establishment requires a better understanding of the mechanisms underlying appropriate seed, seedling and plant behaviour under water restriction conditions. In this context, the objective of this study was to investigate the physiological and cytological profiles of J. curcas seeds in response to imbibition in water (control) and in polyethylene glycol solution (osmoticum). Seed germinability and reactivation of cell cycle events were assessed by means of different germination parameters and immunohistochemical detection of tubulin and microtubules, i.e. tubulin accumulation and microtubular cytoskeleton configurations in water imbibed seeds (control) and in seeds imbibed in the osmoticum. Immunohistochemical analysis revealed increasing accumulation of tubulin and appearance of microtubular cytoskeleton in seed embryo radicles imbibed in water from 48 h onwards. Mitotic microtubules were only visible in seeds imbibed in water, after radicle protrusion, as an indication of cell cycle reactivation and cell proliferation, with subsequent root development. Imbibition in osmoticum prevented accumulation of microtubules, i.e. activation of cell cycle, therefore germination could not be resumed. Osmoconditioned seeds were able to survive re-drying and could resume germination after re-imbibition in water, however, with lower germination performance, possibly due to acquisition of secondary dormancy. This study provides important insights into understanding of the physiological aspects of J. curcas seed germination in response to water restriction conditions. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Effects of hormonal priming on seed germination of pigeon pea under cadmium stress.
Sneideris, Larissa C; Gavassi, Marina A; Campos, Marcelo L; D'Amico-Damião, Victor; Carvalho, Rogério F
2015-09-01
In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress.
USDA-ARS?s Scientific Manuscript database
Soil seedbanks drive infestations of annual weeds, yet weed management focuses largely on seedling mortality. As weed seedbanks increasingly become reservoirs of herbicide resistance, species-specific seedbank management approaches will be essential. Limited understanding of interspecific variation ...
Seed Oil and Composition Development in Two Sunflower Hybrids
USDA-ARS?s Scientific Manuscript database
Desiccants/harvest aids are becoming more commonly used to hasten sunflower harvest. Currently, it is recommended that desiccants such as glyphosate and paraquat be applied at 35% or less seed moisture at physiological maturity (PM). Recently, Johnson and Gesch (2009) showed that PM for two commerci...
SASAKI, Satohiko
2008-01-01
The physiological characteristics of the dominant tree species in the tropical rain forest mainly belonging to dipterocarps as well as the environmental conditions especially for the light in the forest were studied to establish the silvicultural system for the forest regeneration in the tropical South Asia. The flowering patterns of the dipterocarp trees are usually irregular and unpredictable, which make difficult to collect sufficient seeds for raising the seedlings. The field survey revealed the diverged features of the so-called gregarious or simultaneous flowering of various species of this group. Appropriate conditions and methods for the storage of the seeds were established according to the detailed analyses of the morphological and physiological characteristics of the seeds such as the low temperature tolerance and the moisture contents. The intensity and spectra of the light in the forest primarily determine the growth and the morphological development of the seedlings under the canopy. Based on the measurements of the diffused light at the sites in the tropical forest in the varying sunlight, the parameters such as “the steady state of the diffuse light” and “the turning point” were defined, which were useful to evaluate the light conditions in the forest. To improve the survival of the transplanted seedlings, a planting method of “the bare-root seedlings”, the seedlings easy to be handled by removal of all leaves, soil and pots, was developed. Its marked efficiency was proved with various dipterocarps and other tropical trees by the field trial in the practical scale. Tolerance of the various species to the extreme environmental conditions such as fires, acid soils and drought were examined by the experiments and the field survey, which revealed marked adaptability of Shorea roxburghii as a potential species for regeneration of the tropical forests. PMID:18941286
Bioherbicides: Current knowledge on weed control mechanism.
Radhakrishnan, Ramalingam; Alqarawi, Abdulaziz A; Abd Allah, Elsayed Fathi
2018-04-17
Weed control is a challenging event during crop cultivation. Integrated management, including the application of bioherbicides, is an emerging method for weed control in sustainable agriculture. Plant extracts, allelochemicals and some microbes are utilized as bioherbicides to control weed populations. Bioherbicides based on plants and microbes inhibit the germination and growth of weeds; however,few studies conducted in weed physiology. This review ascribes the current knowledge of the physiological changes in weeds that occur during the exposure to bioherbicides. Plant extracts or metabolites are absorbed by weed seeds, which initiates damage to the cell membrane, DNA, mitosis, amylase activity and other biochemical processes and delays or inhibits seed germination. The growth of weeds is also retarded due to low rates of root-cell division, nutrient uptake, photosynthetic pigment synthesis, and plant growth hormone synthesis, while the productions of reactive oxygen species (ROS) and stress-mediated hormones increase, including irregular antioxidant activity. However, lytic enzymes and toxic substances secreted from microbes degrade the weed seed coat and utilize the endosperm for survival, which inhibits seed germination. The microbes grow through the intercellular spaces to reach the root core, and the deposition of toxins in the cells affects cell division and cellular functions. Some of the metabolites of deleterious microbes cause disease, necrosis and chlorosis,which inhibit the germination and growth of weed seeds by suppressing photosynthesis and gibberellin activities and enhancing ROS, abscisic acid and ethylene. This review explains the effects of bioherbicides (derived from plants and microbes) on weed-plant physiology to elucidate their modes of action. Copyright © 2018 Elsevier Inc. All rights reserved.
Dhungana, Sanjeev Kumar; Kim, Il-Doo; Kwak, Hwa-Sook; Shin, Dong-Hyun
2016-06-01
Although a considerable number of studies about the effect of different insecticides on plant physiology and metabolism have been carried out, research work about the comparative action of structurally different classes of insecticide on physiological and biochemical properties of soybean seed germination and early growth has not been found. The objective of this study was to investigate the effect of different classes of insecticides on soybean seed germination and early plant growth. Soybean seeds of Bosuk cultivar were soaked for 24h in distilled water or recommended dose (2mLL(-1), 1mLL(-1), 0.5gL(-1), and 0.5gL(-1) water for insecticides Mepthion, Myungtaja, Actara, and Stonate, respectively) of pesticide solutions of four structurally different classes of insecticides - Mepthion (fenitrothion; organophosphate), Myungtaja (etofenprox; pyrethroid), Actara (thiamethoxam; neonicotinoid), and Stonate (lambda-cyhalothrin cum thiamethoxam; pyrethroid cum neonicotinoid) - which are used for controlling stink bugs in soybean crop. Insecticides containing thiamethoxam and lamda-cyhalothrin cum thiamethoxam showed positive effects on seedling biomass and content of polyphenol and flavonoid, however fenitrothion insecticide reduced the seed germination, seed and seedling vigor, and polyphenol and flavonoid contents in soybean. Results of this study reveal that different classes of insecticide have differential influence on physiologic and metabolic actions like germination, early growth, and antioxidant activities of soybean and this implies that yield and nutrient content also might be affected with the application of different types of insecticide. Copyright © 2015 Elsevier B.V. All rights reserved.
Teng, Hui; Chen, Lei
2017-11-02
One of the effective managements of diabetes mellitus, in particular, noninsulin-dependent diabetes mellitus, is to retard the absorption of glucose by inhibition of carbohydrate hydrolyzing enzymes, such as α-glucosidase and α-amylase, in the digestive organs. Currently, there is renewed interest in plant-based medicines and functional foods modulating physiological effects in the inhibition of α-glucosidase and α-amylase. Accordingly, inhibitors of α-glucosidase or α-amylase derived from various sources have also been isolated, and majority of phenolic compounds and their effects have been investigated in animals as well. As such, when the presence of α-glucosidase inhibitor in many foodstuffs was screened for, we found that vegetable seed oil also strongly inhibited α-glucosidase and α-amylase. Seed oil is an important source of liposoluble constituents with potential for inhibition of these enzymes, hence can also be used as therapeutic or functional food sources. Therefore, this review is aimed at highlighting the main liposoluble classes of α-glucosidase and α-amylase inhibitors, but it is not intended to be an exhaustive review on the subject.
Nobody’s perfect: can irregularities in pit structure influence vulnerability to cavitation?
Plavcová, Lenka; Jansen, Steven; Klepsch, Matthias; Hacke, Uwe G.
2013-01-01
Recent studies have suggested that species-specific pit properties such as pit membrane thickness, pit membrane porosity, torus-to-aperture diameter ratio and pit chamber depth influence xylem vulnerability to cavitation. Despite the indisputable importance of using mean pit characteristics, considerable variability in pit structure within a single species or even within a single pit field should be acknowledged. According to the rare pit hypothesis, a single pit that is more air-permeable than many neighboring pits is sufficient to allow air-seeding. Therefore, any irregularities or morphological abnormalities in pit structure allowing air-seeding should be associated with increased vulnerability to cavitation. Considering the currently proposed models of air-seeding, pit features such as rare, large pores in the pit membrane, torus extensions, and plasmodesmatal pores in a torus can represent potential glitches. These aberrations in pit structure could either result from inherent developmental flaws, or from damage caused to the pit membrane by chemical and physical agents. This suggests the existence of interesting feedbacks between abiotic and biotic stresses in xylem physiology. PMID:24273549
Marcu, Delia; Damian, Grigore; Cosma, Constantin; Cristea, Victoria
2013-09-01
The effects of gamma radiation are investigated by studying plant germination, growth and development, and biochemical characteristics of maize. Maize dry seeds are exposed to a gamma source at doses ranging from 0.1 to 1 kGy. Our results show that the germination potential, expressed through the final germination percentage and the germination index, as well as the physiological parameters of maize seedlings (root and shoot lengths) decreased by increasing the irradiation dose. Moreover, plants derived from seeds exposed at higher doses (≤0.5 kGy) did not survive more than 10 days. Biochemical differences based on photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content revealed an inversely proportional relationship to doses of exposure. Furthermore, the concentration of chlorophyll a was higher than chlorophyll b in both irradiated and non-irradiated seedlings. Electron spin resonance spectroscopy used to evaluate the amount of free radicals induced by gamma ray treatment demonstrates that the relative concentration of radiation-induced free radicals depends linearly on the absorbed doses.
Lv, Yangyong; Zhang, Shuaibing; Wang, Jinshui; Hu, Yuansen
2016-01-01
Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly enriched in amino acid synthesis, stress defense (plant-pathogen interactions, and ascorbate and aldarate metabolism), and energy supply (oxidative phosphorylation and carbon metabolism). Therefore, DEPs associated with seed ageing and priming can be used to characterize seed vigor and optimize germination enhancement treatments. This work reveals new proteomic insights into protein changes that occur during seed deterioration and priming. PMID:27632285
NASA Astrophysics Data System (ADS)
Lisker, Joseph S.; Dmitriev, Andrey P.
1999-12-01
By the method of the computer laser-optical photometry the investigation of the cereal stability for the various diseases taken into consideration the stability of tomato seeds to their interaction with the phytopathogenes and the phytotoxicity of microscopic fungi on the wheat seedlings was carried out. Original result for the investigation of optical-physiological characteristics of plants and seeds are shown.
K.F. Connor; S. Sowa
2002-01-01
Quercus alba L., Q. durandii Buckl., and Q. virginiana Mill. acorns were collected, stored at +4oC and -2oC,and tested monthly to examine the physiological, biochemical, and moisture changes taking place during storage. Aesculus pavia L....
Li, X; Chen, Y; Zhan, J
1997-05-01
The seeds of Coptis chinensis need stratification to break dormancy. In this paper the changes of enzyme activities DNA contents and protein contents in stratification under refrigeration and outdoor temperature conditions, as well as the influence of ABA treatment were studied.
Du, Wenchao; Tan, Wenjuan; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L; Ji, Rong; Yin, Ying; Guo, Hongyan
2017-01-01
Multiple applications of metal oxide nanoparticles (MONPs) could result in their accumulation in soil, threatening higher terrestrial plants. Several reports have shown the effects of MONPs on plants. In this review, we analyze the most recent reports about the physiological and biochemical responses of plants to stress imposed by MONPs. Findings demonstrate that MONPs may be taken up and accumulated in plant tissues causing adverse or beneficial effects on seed germination, seedling elongation, photosynthesis, antioxidative stress response, agronomic, and yield characteristics. Given the importance of determining the potential risks of MONPs on crops and other terrestrial higher plants, research questions about field long-term conditions, transgenernational phytotoxicity, genotype specific sensitivity, and combined pollution problems should be considered. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A
2017-12-12
Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.
Salacinski, H J; Tai, N R; Punshon, G; Giudiceandrea, A; Hamilton, G; Seifalian, A M
2000-10-01
to define the optimal seeding conditions of a new stress free poly(carbonate-urea)urethane (CPU) graft with compliance similar to that of human artery with honeycomb structure engineered during the manufacturing process to enhance adhesion and growth of endothelial cells. (111)Indium-oxine radiolabeled human umbilical vein endothelial cells (HUVEC) were seeded onto CPU grafts at (a) concentrations from 2-24x10(5)cells/cm(2)and (b) incubated for 0.5, 1, 2, 4 and 6 h. Following incubation, graft segments were subjected to three washing/gamma counting procedures and scanning electron microscopy (SEM). Cell viability was measured using a modified Alamar blue(TM)assay. To test physiological retention a pulsatile flow phantom was used to subject optimally seeded (16x10(5), 4 h) CPU grafts to arterial shear stress for 6 h with real time acquisition of scintigraphic images of seeded grafts using a nuclear medicine gamma camera system. the seeding efficiency of 54+/-13% post three washes was achieved using 16x10(5)cells/cm(2). Similarly in SEM micrographs a seeding density of 16x10(5)cells/cm(2)resulted in a confluent monolayer. Seeded CPU segments incubated for 4 h exhibited significantly higher resistance to wash-off than segments incubated for 30 min (p <0.05). Exposure of seeded grafts to pulsatile shear stress resulted in some cell loss with 67+/-3% of cells adherent following 6 h of perfusion with ongoing metabolic activity. Thus, optimal conditions were 16x10(5)cells/cm(2)at 4 h. the optimal seeding conditions have been defined for "tissue-engineered" vascular graft which allow complete endothelialisation and high cell-to-substrate strength that resists hydrodynamic stress. Copyright 2000 Harcourt Publishers Ltd.
Ramlall, Chandika; Varghese, Boby; Ramdhani, Syd; Pammenter, Norman W; Bhatt, Arvind; Berjak, Patricia; Sershen
2015-01-01
Increased air pollution in a number of developing African countries, together with the reports of vegetation damage typically associated with acid precipitation in commercial forests in South Africa, has raised concerns over the potential impacts of acid rain on natural vegetation in these countries. Recalcitrant (i.e. desiccation sensitive) seeds of many indigenous African species, e.g. must germinate shortly after shedding and hence, may not be able to avoid exposure to acid rain in polluted areas. This study investigated the effects of simulated acid rain (rainwater with pH adjusted to pH 3.0 and 4.5 with 70:30, H2 SO4 :HNO3 ) on germination, seedling growth and oxidative metabolism in a recalcitrant-seeded African tree species Trichilia dregeana Sond., growing in its natural seed bank. The results suggest that acid rain did not compromise T. dregeana seed germination and seedling establishment significantly, relative to the control (non-acidified rainwater). However, pH 3.0 treated seedlings exhibited signs of stress typically associated with acid rain: leaf tip necrosis, abnormal bilobed leaf tips, leaf necrotic spots and chlorosis, reduced leaf chlorophyll concentration, increased stomatal density and indications of oxidative stress. This may explain why total and root biomass of pH 3.0 treated seedlings were significantly lower than the control. Acid rain also induced changes in the species composition and relative abundance of the different life forms emerging from T. dregeana's natural seed bank and in this way could indirectly impact on T. dregeana seedling establishment success. © 2014 Scandinavian Plant Physiology Society.
Long, Rowena L.; Stevens, Jason C.; Griffiths, Erin M.; Adamek, Markus; Gorecki, Marta J.; Powles, Stephen B.; Merritt, David J.
2011-01-01
Background and Aims Karrikinolide (KAR1) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR1 is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR1, and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR1 may be present in physiologically dormant seeds but may not be expressed under all circumstances. Methods Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR1 when freshly collected and following simulated and natural dormancy alleviation, which included wet–dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial. Key Results Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR1 when the seeds were fresh, and the remaining species became responsive to KAR1 following wet–dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR1, with the majority of species germinating better in darkness. Germination with and without KAR1 fluctuated seasonally throughout the seed burial trial. Conclusions KAR1 responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR1, and a response to KAR1 can be induced. Three response types for generalizing KAR1 responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR1 were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae may be an ideal target for future application of KAR1 in weed management. PMID:21821831
Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis.
Hua, Wei; Li, Rong-Jun; Zhan, Gao-Miao; Liu, Jing; Li, Jun; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong
2012-02-01
Seed oil content is an important agronomic trait in rapeseed. However, our understanding of the regulatory processes controlling oil accumulation is still limited. Using two rapeseed lines (zy036 and 51070) with contrasting oil content, we found that maternal genotype greatly affects seed oil content. Genetic and physiological evidence indicated that difference in the local and tissue-specific photosynthetic activity in the silique wall (a maternal tissue) was responsible for the different seed oil contents. This effect was mimicked by in planta manipulation of silique wall photosynthesis. Furthermore, the starch content and expression of the important lipid synthesis regulatory gene WRINKLED1 in developing seeds were linked with silique wall photosynthetic activity. 454 pyrosequencing was performed to explore the possible molecular mechanism for the difference in silique wall photosynthesis between zy036 and 51070. Interestingly, the results suggested that photosynthesis-related genes were over-represented in both total silique wall expressed genes and genes that were differentially expressed between genotypes. A potential regulatory mechanism for elevated photosynthesis in the zy036 silique wall is proposed on the basis of knowledge from Arabidopsis. Differentially expressed ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-related genes were used for further investigations. Oil content correlated closely with BnRBCS1A expression levels and Rubisco activities in the silique wall, but not in the leaf. Taken together, our results highlight an important role of silique wall photosynthesis in the regulation of seed oil content in terms of maternal effects. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Grappin, P; Bouinot, D; Sotta, B; Miginiac, E; Jullien, M
2000-01-01
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA(3)) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA(3) in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA(3) inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds.
R.E.A.L. Kids Talk about Real Sex. Project Seed.
ERIC Educational Resources Information Center
Turner, Carla Baade
One of eight papers from Project Seed, this paper describes a project in which 10 alternative high school students, one teacher, and one aide researched, wrote, interviewed, taped, and edited a 64-minute news format video on a variety of sexuality issues: anatomy, physiology, sexually transmitted diseases, birth control, pregnancy options…
Rensing, Stefan A; Fritzowsky, Dana; Lang, Daniel; Reski, Ralf
2005-01-01
Background The moss Physcomitrella patens is an emerging plant model system due to its high rate of homologous recombination, haploidy, simple body plan, physiological properties as well as phylogenetic position. Available EST data was clustered and assembled, and provided the basis for a genome-wide analysis of protein encoding genes. Results We have clustered and assembled Physcomitrella patens EST and CDS data in order to represent the transcriptome of this non-seed plant. Clustering of the publicly available data and subsequent prediction resulted in a total of 19,081 non-redundant ORF. Of these putative transcripts, approximately 30% have a homolog in both rice and Arabidopsis transcriptome. More than 130 transcripts are not present in seed plants but can be found in other kingdoms. These potential "retained genes" might have been lost during seed plant evolution. Functional annotation of these genes reveals unequal distribution among taxonomic groups and intriguing putative functions such as cytotoxicity and nucleic acid repair. Whereas introns in the moss are larger on average than in the seed plant Arabidopsis thaliana, position and amount of introns are approximately the same. Contrary to Arabidopsis, where CDS contain on average 44% G/C, in Physcomitrella the average G/C content is 50%. Interestingly, moss orthologs of Arabidopsis genes show a significant drift of codon fraction usage, towards the seed plant. While averaged codon bias is the same in Physcomitrella and Arabidopsis, the distribution pattern is different, with 15% of moss genes being unbiased. Species-specific, sensitive and selective splice site prediction for Physcomitrella has been developed using a dataset of 368 donor and acceptor sites, utilizing a support vector machine. The prediction accuracy is better than those achieved with tools trained on Arabidopsis data. Conclusion Analysis of the moss transcriptome displays differences in gene structure, codon and splice site usage in comparison with the seed plant Arabidopsis. Putative retained genes exhibit possible functions that might explain the peculiar physiological properties of mosses. Both the transcriptome representation (including a BLAST and retrieval service) and splice site prediction have been made available on , setting the basis for assembly and annotation of the Physcomitrella genome, of which draft shotgun sequences will become available in 2005. PMID:15784153
Cao, Chun-Xin; Zhou, Qin; Han, Liang-Liang; Zhang, Pei; Jiang, Hai-Dong
2010-08-01
A pot experiment was conducted to study the effects of different acidity simulated acid rain on the physiological characteristics at flowering stage and yield of oilseed rape (B. napus cv. Qinyou 9). Comparing with the control (pH 6.0), weak acidity (pH = 4.0-5.0) simulated acid rain stimulated the rape growth to some extent, but had less effects on the plant biomass, leaf chlorophyll content, photosynthetic characteristics, and yield. With the further increase of acid rain acidity, the plant biomass, leaf chlorophyll content, photosynthetic rate, antioxidative enzyme activities, and non-enzyme antioxidant contents all decreased gradually, while the leaf malonyldialdehyde (MDA) content and relative conductivity increased significantly. As the results, the pod number per plant, seed number per pod, seed weight, and actual yield decreased. However, different yield components showed different sensitivity to simulated acid rain. With the increasing acidity of simulated acid rain, the pod number per plant and the seed number per pod decreased significantly, while the seed weight was less affected.
Borzoui, Ehsan; Nouri-Ganbalani, Gadir; Naseri, Bahram
2017-11-01
The inhibitory effects of Avena sativa L. seed extract were studied on life history and some physiological aspects of Sitotroga cerealella (Olivier; Lepidoptera: Gelechiidae). The inhibition of α-amylase activity in vitro by A. sativa proteinaceous extract suggested its potential antimetabolic effect on S. cerealella larvae. Although, chronic ingestion of A. sativa inhibitor (I10: 0.108 mg protein/artificial seed) did not show significant reduction of the growth and development of S. cerealella. However, a delay in the developmental time of immature stages was detected when S. cerealella larvae were continuously fed on I30 and I50 concentrations (0.429 and 1.11 mg protein/artificial seed, respectively) of the inhibitor. The highest realized fecundity was recorded for females which came from larvae fed on I10 concentration (102.46 ± 2.50 eggs/female), and the lowest fecundity was observed for females which came from larvae fed on I50 concentration (31.64 ± 3.17 eggs/female). The lightest weight of pupae of S. cerealella was observed on I50 concentration (2.76 ± 0.07 mg). The lowest glycogen and lipid contents of the pupae were detected on I50 concentration (50.00 ± 3.53 and 289.57 ± 29.00 µg/pupa, respectively). The lower survival rate of pupae at low temperature indicated that S. cerealella fed on I50 concentration of the inhibitor was less cold tolerant than control insects. The inhibitory studies indicated that A. sativa proteinaceous extract is a good candidate as an inhibitor of the α-amylase of this pest. This inhibitor can be expressed in genetically engineered plants to confer resistance to S. cerealella. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
NASA Astrophysics Data System (ADS)
Zhang, Xiangsheng; Wu, Lijun; Yu, Lixiang; Wei, Shenglin; Liu, Jingnan; Yu, Zengliang
2007-04-01
Ar+ ion beam with low energy of 30 keV was implanted into liquorice (Glycyrrhiza uralensis Fisch) seeds at the doses of 0, 600, 900 and 1200 × (2.6 × 1013) ions/cm2, respectively. The seeds were sowed in pots and after one month the plants were subjected to different drought conditions for two months. Then the plants' morphological and physiological characteristics, anti-oxidation enzymes and levels of endogenous hormones were investigated. The results showed that ion implantation at a proper dose can greatly enhance the liquorice seedlings' resistance against drought stress.
Wan, William; Bian, Wen; McDonald, Michele; ...
2013-08-28
The fungal prion-forming domain HET-s(218–289) forms infectious amyloid fibrils at physiological pH that were shown by solid-state NMR to be assemblies of a two-rung β-solenoid structure. Under acidic conditions, HET-s(218–289) has been shown to form amyloid fibrils that have very low infectivity in vivo, but structural information about these fibrils has been very limited. In this paper, we show by x-ray fiber diffraction that the HET-s(218–289) fibrils formed under acidic conditions have a stacked β-sheet architecture commonly found in short amyloidogenic peptides and denatured protein aggregates. At physiological pH, stacked β-sheet fibrils nucleate the formation of the infectious β-solenoid prionsmore » in a process of heterogeneous seeding, but do so with kinetic profiles distinct from those of spontaneous or homogeneous (seeded with infectious β-solenoid fibrils) fibrillization. Several serial passages of stacked β-sheet-seeded solutions lead to fibrillization kinetics similar to homogeneously seeded solutions. Finally, our results directly show that structural mutation can occur between substantially different amyloid architectures, lending credence to the suggestion that the processes of strain adaptation and crossing species barriers are facilitated by structural mutation.« less
Bioactive compounds in lipid fractions of pumpkin (Cucurbita sp) seeds for use in food.
Veronezi, Carolina Médici; Jorge, Neuza
2012-06-01
Seeds are considered to be agro-industrial residues, which can be used as source of macronutrients and/or raw material for extraction of vegetable oils, since they present great quantities of bioactive compounds. This study aimed to characterize the lipid fractions and the seeds of pumpkin (Cucurbita sp) varieties Nova Caravela, Mini Paulista, Menina Brasileira, and Moranga de Mesa aiming at using them in food. The chemical composition of the seeds was performed according to the official methods of American Oil Chemists' Society and Association of Official Analytical Chemists. Total carotenoids and phenolic compounds were determined by spectrophotometry, while the levels of tocopherols were analyzed by high efficiency liquid chromatography. It was noted that the seeds contain high amounts of macronutrients that are essential for the functioning of the human organism. As to total carotenoids, Mini Paulista and Menina Brasileira pumpkin varieties presented significant amounts, 26.80 and 26.03 μg/g, respectively. Mini Paulista and Nova Caravela pumpkin varieties showed high amounts of total phenolic compounds in the lipid fractions and in the seeds. It was also found that γ-tocopherol is the isomer that stood out in the lipid fractions and in the seeds, mainly in Menina Brasileira. Finally, the consumption of these seeds and use of lipid fractions provide the supply of large quantities of compounds that are beneficial for health and that may be potentially used in food, besides representing an alternative to better use of agro-industrial residues. Bioactive compounds, besides presenting basic nutritional functions, provide metabolic and physiological health benefits when consumed as part of the usual diet. Therefore, there is a growing interest in vegetable oils of special composition, such as the ones extracted from fruit seeds. The seeds of Cucurbita sp are shown to be promising sources of oils, and especially the Cucurbita moschata and maxima species have not yet been fully elucidated. For this reason, it becomes important to investigate the chemical composition and lipid fractions of these seeds, aiming to use them in food. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.
Adaptive and selective seed abortion reveals complex conditional decision making in plants.
Meyer, Katrin M; Soldaat, Leo L; Auge, Harald; Thulke, Hans-Hermann
2014-03-01
Behavior is traditionally attributed to animals only. Recently, evidence for plant behavior is accumulating, mostly from plant physiological studies. Here, we provide ecological evidence for complex plant behavior in the form of seed abortion decisions conditional on internal and external cues. We analyzed seed abortion patterns of barberry plants exposed to seed parasitism and different environmental conditions. Without abortion, parasite infestation of seeds can lead to loss of all seeds in a fruit. We statistically tested a series of null models with Monte Carlo simulations to establish selectivity and adaptiveness of the observed seed abortion patterns. Seed abortion was more frequent in parasitized fruits and fruits from dry habitats. Surprisingly, seed abortion occurred with significantly greater probability if there was a second intact seed in the fruit. This strategy provides a fitness benefit if abortion can prevent a sibling seed from coinfestation and if nonabortion of an infested but surviving single seed saves resources invested in the fruit coat. Ecological evidence for complex decision making in plants thus includes a structural memory (the second seed), simple reasoning (integration of inner and outer conditions), conditional behavior (abortion), and anticipation of future risks (seed predation).
Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest.
Halman, Joshua M; Schaberg, Paul G; Hawley, Gary J; Pardo, Linda H; Fahey, Timothy J
2013-11-01
Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature sugar maple physiology were evaluated at the Hubbard Brook Experimental Forest (Thornton, NH, USA) to assess remediation (Ca addition) or exacerbation (Al addition) of current acidified conditions. Fine root cation concentrations and membrane integrity, carbon (C) allocation, foliar cation concentrations and antioxidant activity, foliar response to a spring freezing event and reproductive ability (flowering, seed quantity, filled seed and seed germination) were evaluated for dominant sugar maple trees in a replicated plot study. Root damage and foliar antioxidant activity were highest in Al-treated trees, while growth-associated C, foliar re-flush following a spring frost and reproductive ability were highest in Ca-treated trees. In general, we found that trees on Ca-treated plots preferentially used C resources for growth and reproductive processes, whereas Al-treated trees devoted C to defense-based processes. Similarities between Al-treated and control trees were observed for foliar cation concentrations, C partitioning and seed production, suggesting that sugar maples growing in native forests may be more stressed than previously perceived. Our experiment suggests that disruption of the balance of Ca and Al in sugar maples by acid deposition continues to be an important driver of tree health.
Carevic, Felipe S; Delatorre-Herrera, José; Delatorre-Castillo, José
2017-09-01
Initiatives to restore natural ecosystems have had little success in arid and hyperarid ecosystems. In this context, the natural seedling establishment is particularly affected by drought patterns and climatic variability. Likewise, the effect of plant provenance on forest restoration success remains unclear, although previous studies have concluded that some seed locations might be better able to tolerate water stress. In this study, we examined the physiological mechanisms involved in the drought stress resistance of Prosopis tamarugo and Prosopis alba seedlings from different arid and hyperarid locations of the Atacama Desert in northern Chile. We measured the xylem water potential (Ψ), cuticular transpiration (E c ), specific leaf area (SLA) and pressure-volume curves at the intrapopulation and interpopulation levels of seedlings of both species subjected to three drought-induced treatments. In addition, plant characteristics such as seedling height (Sh), stem diameter (Sd), leaf biomass (Lb), root biomass (Rb) and seedling survival (Ss) were measured during the treatments. Seedlings of most hyperarid habitats had the highest values of Ψ and water content relative to the turgor loss point, as well as decreased SLA, especially during the strongest drought treatment. Ψ was strongly correlated with Sh in both species, and soil humidity was correlated with Sd. This study highlights the high variability of physiological responses to water stress in both species at the interpopulation and intrapopulation levels, which provides us with a powerful seed selection tool for future reforestation programmes aimed at the early selection and genetic improvement of species of the Prosopis genus.
Delatorre-Herrera, José; Delatorre-Castillo, José
2017-01-01
Abstract Initiatives to restore natural ecosystems have had little success in arid and hyperarid ecosystems. In this context, the natural seedling establishment is particularly affected by drought patterns and climatic variability. Likewise, the effect of plant provenance on forest restoration success remains unclear, although previous studies have concluded that some seed locations might be better able to tolerate water stress. In this study, we examined the physiological mechanisms involved in the drought stress resistance of Prosopis tamarugo and Prosopis alba seedlings from different arid and hyperarid locations of the Atacama Desert in northern Chile. We measured the xylem water potential (Ψ), cuticular transpiration (Ec), specific leaf area (SLA) and pressure–volume curves at the intrapopulation and interpopulation levels of seedlings of both species subjected to three drought-induced treatments. In addition, plant characteristics such as seedling height (Sh), stem diameter (Sd), leaf biomass (Lb), root biomass (Rb) and seedling survival (Ss) were measured during the treatments. Seedlings of most hyperarid habitats had the highest values of Ψ and water content relative to the turgor loss point, as well as decreased SLA, especially during the strongest drought treatment. Ψ was strongly correlated with Sh in both species, and soil humidity was correlated with Sd. This study highlights the high variability of physiological responses to water stress in both species at the interpopulation and intrapopulation levels, which provides us with a powerful seed selection tool for future reforestation programmes aimed at the early selection and genetic improvement of species of the Prosopis genus. PMID:28948009
Wu, Yanqi; Taliaferro, Charles M.
2012-10-02
A new cultivar of switchgrass `Cimarron` (SL93 2001-1) having increased biomass yield is provided. The switchgrass comprises all the morphological and physiological properties of the cultivar grown from a seed deposited under American Type Culture Collection (ATCC) No. PTA-10116. The invention also provides seeds, progeny, parts and methods of use of Cimarron, such as for the production of biofuels.
Maturation and Collection of Yellow-Poplar Seeds in the Midsouth
F. T. Bonner
1976-01-01
Yellow-poplar fruits are best collected in late October when their color changes from green to yellow-green or yellow. There were no other obvious physical or chemical changes indicating maturity. The seeds are physiologically mature as early as September 1, although high fruit moisture contents make special handling necessary if fruits are collected at this time....
Update on oak seed quality research: Hardwood recalcitrant seeds
Kristina F. Connor
2004-01-01
In 2 experiments, acorns of cherrybark oak (Quercus pagoda Raf.) and water oak (Q. nigra L.) were stored at 2 temperatures and 2 moisture contents for 3 years, and acorns of white oak (Q. alba L.) and cherrybark oak were desiccated over a span of up to 11 days and examined for physiological and biochemical...
An evaluation of seed scarification methods of four native Lupinus species
C. D. Jones; S. L. Jensen; M. R. Stevens
2010-01-01
Seed dormancy is a survival strategy that better ensures the persistence of a species. Dormancy is characterized as exogenous if caused by factors outside the embryo or endogenous if caused by factors within the embryo. Exogenous dormancy is further characterized as physical, mechanical or chemical, while endogenous dormancy may be physiological or morphological....
Longleaf Pine Cone Crops and Climate: A Possible Link
Neil Pederson; John S. Kush; Ralph S. Meldahl; William D. Bayer
1999-01-01
The physiological development of longieaf pine seed extends over three calendar years. The duration of this process may explain the reason for infrequent seed crops. Infrequent crops cause problems for those interested in natural regeneration. Longleaf pine cone crops have been monitored on the Escambia Experimental Forest (EEF) in Brewton, AL since 1958. Weather data...
USDA-ARS?s Scientific Manuscript database
Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms...
Hatami, Mehrnaz
2017-08-01
The rapid increase in the production and application of various types of nanomaterials increases the possibility of their presence in total environment, which subsequently raises concerns about their potential threats to the first trophic level of organisms, specifically under varying environmental constraints. In this work, seeds of Cucurbita pepo L. were cultured in MS basal medium exposed to multi-walled carbon nanotubes (MWCNTs) at different concentrations (0, 125, 250, 500 and 1000μgmL -1 ) under two levels of water potential, well-watered (0MPa) and water stress (-1.5MPa) induced by polyethylene glycol (PEG 6000) for 14 days. Seeds exposed to MWCNTs showed reduction in germination percentage, root and shoot length, biomass accumulation and vigor index in a dose-dependent manner. However, seedlings germinated in MWCNTs-fortified media had significantly lower germination and growth attributes than those of control under water stress conditions. This happened due to increased oxidative injury indices including hydrogen peroxide (H 2 O 2 ), and malondialdehyde (MDA) contents, as well as electrolyte leakage index (ELI) of tissues. The impaired morpho-physiological and biochemical processes of seedlings exposed to different concentrations of MWCNTs under both PEG-induced stress and non-stress growing conditions were consequence of changes in the activation of various cellular antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (POD). Taken together, our findings reveal that MWCNTs played negative role on seed germination and subsequent growth of C. pepo L. seedlings under both levels of water potential. Copyright © 2017 Elsevier Inc. All rights reserved.
Kumar, Sumit; Chaitanya, Bharatula S K; Ghatty, Sreenivas; Reddy, Attipalli R
2014-11-01
Jatropha (Jatropha curcas) is a non-edible oil producing plant which is being advocated as an alternative biofuel energy resource. Its ability to grow in diverse soil conditions and minimal requirements of essential agronomical inputs compared with other oilseed crops makes it viable for cost-effective advanced biofuel production. We designed a study to investigate the effects of elevated carbon dioxide concentration ([CO(2)]) (550 ppm) on the growth, reproductive development, source-sink relationships, fruit and seed yield of J. curcas. We report, for the first time that elevated CO(2) significantly influences reproductive characteristics of Jatropha and improve its fruit and seed yields. Net photosynthetic rate of Jatropha was 50% higher in plants grown in elevated CO(2) compared with field and ambient CO(2) -grown plants. The study also revealed that elevated CO(2) atmosphere significantly increased female to male flower ratio, above ground biomass and carbon sequestration potential in Jatropha (24 kg carbon per tree) after 1 year. Our data demonstrate that J. curcas was able to sustain enhanced rate of photosynthesis in elevated CO(2) conditions as it had sufficient sink strength to balance the increased biomass yields. Our study also elucidates that the economically important traits including fruit and seed yield in elevated CO(2) conditions were significantly high in J. curcas that holds great promise as a potential biofuel tree species for the future high CO(2) world. © 2014 Scandinavian Plant Physiology Society.
Major, John E; Barsi, Debby C; Mosseler, Alex; Campbell, Moira; Rajora, Om P
2003-07-01
Red spruce (Picea rubens Sarg.) and black spruce (Picea mariana (Mill.) B.S.P.) are genetically and morphologically similar but ecologically distinct species. We determined intraspecific seed-source and interspecific variation of red spruce and black spruce, from across the near-northern margins of their ranges, for several light-energy processing and freezing-tolerance adaptive traits. Before exposure to low temperature, red spruce had variable fluorescence (Fv) similar to black spruce, but higher photochemical efficiency (Fv/Fm), lower quantum yield, lower chlorophyll fluorescence (%), and higher thermal dissipation efficiency (qN), although the seed-source effect and the seed-source x species interaction were significant only for Fv/Fm. After low-temperature exposure (-40 degrees C), red spruce had significantly lower Fv/Fm, quantum yield and qN than black spruce, but higher chlorophyll fluorescence and relative fluorescence. Species, seed-source effect, and seed-source x species interaction were consistent with predictions based on genetic (e.g., geographic) origins. Multi-temperature exposures (5, -20 and -40 degrees C) often produced significant species and temperature effects, and species x temperature interactions as a result of species-specific responses to temperature exposures. The inherent physiological species-specific adaptations of red spruce and black spruce were largely consistent with a shade-tolerant, late-successional species and an early successional species, respectively. Species differences in physiological adaptations conform to a biological trade-off, probably as a result of natural selection pressure in response to light availability and prevailing temperature gradients.
Biomimetic and synthetic esophageal tissue engineering.
Jensen, Todd; Blanchette, Alex; Vadasz, Stephanie; Dave, Apeksha; Canfarotta, Michael; Sayej, Wael N; Finck, Christine
2015-07-01
A tissue-engineered esophagus offers an alternative for the treatment of pediatric patients suffering from severe esophageal malformations, caustic injury, and cancer. Additionally, adult patients suffering from carcinoma or trauma would benefit. Donor rat esophageal tissue was physically and enzymatically digested to isolate epithelial and smooth muscle cells, which were cultured in epithelial cell medium or smooth muscle cell medium and characterized by immunofluorescence. Isolated cells were also seeded onto electrospun synthetic PLGA and PCL/PLGA scaffolds in a physiologic hollow organ bioreactor. After 2 weeks of in vitro culture, tissue-engineered constructs were orthotopically transplanted. Isolated cells were shown to give rise to epithelial, smooth muscle, and glial cell types. After 14 days in culture, scaffolds supported epithelial, smooth muscle and glial cell phenotypes. Transplanted constructs integrated into the host's native tissue and recipients of the engineered tissue demonstrated normal feeding habits. Characterization after 14 days of implantation revealed that all three cellular phenotypes were present in varying degrees in seeded and unseeded scaffolds. We demonstrate that isolated cells from native esophagus can be cultured and seeded onto electrospun scaffolds to create esophageal constructs. These constructs have potential translatable application for tissue engineering of human esophageal tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cadman, Cassandra S C; Toorop, Peter E; Hilhorst, Henk W M; Finch-Savage, William E
2006-06-01
Physiologically dormant seeds, like those of Arabidopsis, will cycle through dormant states as seasons change until the environment is favourable for seedling establishment. This phenomenon is widespread in the plant kingdom, but has not been studied at the molecular level. Full-genome microarrays were used for a global transcript analysis of Arabidopsis thaliana (accession Cvi) seeds in a range of dormant and dry after-ripened states during cycling. Principal component analysis of the expression patterns observed showed that they differed in newly imbibed primary dormant seeds, as commonly used in experimental studies, compared with those in the maintained primary and secondary dormant states that exist during cycling. Dormant and after-ripened seeds appear to have equally active although distinct gene expression programmes, dormant seeds having greatly reduced gene expression associated with protein synthesis, potentially controlling the completion of germination. A core set of 442 genes were identified that had higher expression in all dormant states compared with after-ripened states. Abscisic acid (ABA) responsive elements were significantly over-represented in this set of genes the expression of which was enhanced when multiple copies of the elements were present. ABA regulation of dormancy was further supported by expression patterns of key genes in ABA synthesis/catabolism, and dormancy loss in the presence of fluridone. The data support an ABA-gibberelic acid hormone balance mechanism controlling cycling through dormant states that depends on synthetic and catabolic pathways of both hormones. Many of the most highly expressed genes in dormant states were stress-related even in the absence of abiotic stress, indicating that ABA, stress and dormancy responses overlap significantly at the transcriptome level.
Barua, Deepak; Butler, Colleen; Tisdale, Tracy E.; Donohue, Kathleen
2012-01-01
Background and Aims Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors. Methods We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA). Key Results Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions. Conclusions The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change. PMID:22012958
A role for seed storage proteins in Arabidopsis seed longevity
Nguyen, Thu-Phuong; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie
2015-01-01
Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana genotypes, that carry introgression fragments at the position of seed longevity quantitative trait loci and as a result display different levels of seed longevity, was investigated. Seeds at two physiological states, after-ripened seeds that had the full germination ability and aged (stored) seeds of which the germination ability was severely reduced, were compared. Aged dry seed proteomes were markedly different from the after-ripened and reflected the seed longevity level of the four genotypes, despite the fact that dry seeds are metabolically quiescent. Results confirmed the role of antioxidant systems, notably vitamin E, and indicated that protection and maintenance of the translation machinery and energy pathways are essential for seed longevity. Moreover, a new role for seed storage proteins (SSPs) was identified in dry seeds during ageing. Cruciferins (CRUs) are the most abundant SSPs in Arabidopsis and seeds of a triple mutant for three CRU isoforms (crua crub cruc) were more sensitive to artificial ageing and their seed proteins were highly oxidized compared with wild-type seeds. These results confirm that oxidation is involved in seed deterioration and that SSPs buffer the seed from oxidative stress, thus protecting important proteins required for seed germination and seedling formation. PMID:26184996
Kurt H. Johnsen; John R. Seiler
1996-01-01
We conducted a greenhouse experiment to determine: (1) if diverse provenances of black spruce (Picea mariana (Mill.) B.S.P.) respond similarly in growth, phenology and physiology to an approximately 300 ppm increase in atmospheric CO2...
The Forms and Sources of Cytokinins in Developing White Lupine Seeds and Fruits1
Emery, R.J. Neil; Ma, Qifu; Atkins, Craig A.
2000-01-01
A comprehensive range of cytokinins (CK) was identified and quantified by gas chromatography-mass spectrometry in tissues of and in xylem and phloem serving developing white lupine (Lupinus albus) fruits. Analyses were initiated at anthesis and included stages of podset, embryogenesis, and seed filling up to physiological maturation 77 d post anthesis (DPA). In the first 10 DPA, fertilized ovaries destined to set pods accumulated CK. The proportion of cis-CK:trans-CK isomers was initially 10:1 but declined to less than 1:1. In ovaries destined to abort, the ratio of cis-isomers to trans-isomers remained high. During early podset, accumulation of CK (30–40 pmol ovary−1) was accounted for by xylem and phloem translocation, both containing more than 90% cis-isomers. During embryogenesis and early seed filling (40–46 DPA), translocation accounted for 1% to 14% of the increases of CK in endosperm (20 nmol fruit−1) and seed coat (15 nmol fruit−1), indicating synthesis in situ. High CK concentrations in seeds (0.6 μmol g−1 fresh weight) were transient, declining rapidly to less than 1% of maximum levels by physiological maturity. These data pose new questions about the localization and timing of CK synthesis, the significance of translocation, and the role(s) of CK forms in reproductive development. PMID:10938375
Afifi, Maha; Lee, Elizabeth; Lukens, Lewis; Swanton, Clarence
2015-04-01
Thiamethoxam is a broad-spectrum neonicotinoid insecticide that, when applied to seed, has been observed to enhance seedling vigour under environmental stress conditions. Stress created by the presence of neighbouring weeds is known to trigger the accumulation of hydrogen peroxide (H2 O2 ) in maize seedling tissue. No previous work has explored the effect of thiamethoxam as a seed treatment on the physiological response of maize seedlings emerging in the presence of neighbouring weeds. Thiamethoxam was found to enhance seedling vigour and to overcome the expression of typical shade avoidance characteristics in the presence of neighbouring weeds. These results were attributed to maintenance of the total phenolics content, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity and anthocyanin and lignin contents. These findings were also associated with the activation of scavenging genes, which reduced the accumulation of H2 O2 and the subsequent damage caused by lipid peroxidation in maize seedlings originating from treated seeds even when exposed to neighbouring weeds. These results suggest the possibility of exploring new chemistries and modes of action as novel seed treatments to upregulate free radical scavenging genes and to maintain the antioxidant system within plants. Such an approach may provide an opportunity to enhance crop competitiveness with weeds. © 2014 Society of Chemical Industry.
Maia, Julio; Dekkers, Bas J. W.; Provart, Nicholas J.; Ligterink, Wilco; Hilhorst, Henk W. M.
2011-01-01
The combination of robust physiological models with “omics” studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants. PMID:22195004
Pawłowski, Tomasz A
2009-01-01
Background Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid) and growth promoters (e.g. gibberellins) is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process. Results A proteomic approach was used to analyse the mechanism of dormancy breaking in Norway maple seeds caused by cold stratification, and the participation of the abscisic (ABA) and gibberellic (GA) acids. Forty-four proteins showing significant changes were identified by mass spectrometry. Of these, eight spots were identified as water-responsive, 18 spots were ABA- and nine GA-responsive and nine spots were regulated by both hormones. The classification of proteins showed that most of the proteins associated with dormancy breaking in water were involved in protein destination. Most of the ABA- and GA-responsive proteins were involved in protein destination and energy metabolism. Conclusion In this study, ABA was found to mostly down-regulate proteins whereas GA up-regulated proteins abundance. Most of the changes were observed at the end of stratification in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent state to germination. Seed dormancy breaking involves proteins of various processes but the proteasome proteins, S-adenosylmethionine synthetase, glycine-rich RNA binding protein, ABI3-interacting protein 1, EF-2 and adenosylhomocysteinase are of particular importance. The effect of exogenously applied hormones was not a determining factor for total inhibition (ABA) or stimulation (GA) of Norway maple seed dormancy breaking and germination but proteomic data has proven these hormones play a role. PMID:19413897
Pawłowski, Tomasz A
2009-05-04
Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid) and growth promoters (e.g. gibberellins) is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process. A proteomic approach was used to analyse the mechanism of dormancy breaking in Norway maple seeds caused by cold stratification, and the participation of the abscisic (ABA) and gibberellic (GA) acids. Forty-four proteins showing significant changes were identified by mass spectrometry. Of these, eight spots were identified as water-responsive, 18 spots were ABA- and nine GA-responsive and nine spots were regulated by both hormones. The classification of proteins showed that most of the proteins associated with dormancy breaking in water were involved in protein destination. Most of the ABA- and GA-responsive proteins were involved in protein destination and energy metabolism. In this study, ABA was found to mostly down-regulate proteins whereas GA up-regulated proteins abundance. Most of the changes were observed at the end of stratification in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent state to germination. Seed dormancy breaking involves proteins of various processes but the proteasome proteins, S-adenosylmethionine synthetase, glycine-rich RNA binding protein, ABI3-interacting protein 1, EF-2 and adenosylhomocysteinase are of particular importance. The effect of exogenously applied hormones was not a determining factor for total inhibition (ABA) or stimulation (GA) of Norway maple seed dormancy breaking and germination but proteomic data has proven these hormones play a role.
Gâteblé, Gildas; Villegente, Matthieu; Fabre, Isabelle; Klein, Nicolas; Anger, Nicolas; Baskin, Carol C; Scutt, Charlie P
2017-01-01
Abstract Background and Aims Recent parsimony-based reconstructions suggest that seeds of early angiosperms had either morphophysiological or physiological dormancy, with the former considered as more probable. The aim of this study was to determine the class of seed dormancy present in Amborella trichopoda, the sole living representative of the most basal angiosperm lineage Amborellales, with a view to resolving fully the class of dormancy present at the base of the angiosperm clade. Methods Drupes of A. trichopoda without fleshy parts were germinated and dissected to observe their structure and embryo growth. Pre-treatments including acid scarification, gibberellin treatment and seed excision were tested to determine their influence on dormancy breakage and germination. Character-state mapping by maximum parsimony, incorporating data from the present work and published sources, was then used to determine the likely class of dormancy present in early angiosperms. Key Results Germination in A. trichopoda requires a warm stratification period of at least approx. 90 d, which is followed by endosperm swelling, causing the water-permeable pericarp–mesocarp envelope to split open. The embryo then grows rapidly within the seed, to radicle emergence some 17 d later and cotyledon emergence after an additional 24 d. Gibberellin treatment, acid scarification and excision of seeds from the surrounding drupe tissues all promoted germination by shortening the initial phase of dormancy, prior to embryo growth. Conclusions Seeds of A. trichopoda have non-deep simple morphophysiological dormancy, in which mechanical resistance of the pericarp–mesocarp envelope plays a key role in the initial physiological phase. Maximum parsimony analyses, including data obtained in the present work, indicate that morphophysiological dormancy is likely to be a pleisiomorphic trait in flowering plants. The significance of this conclusion for studies of early angiosperm evolution is discussed. PMID:28087660
Gibberellins Are Required for Seed Development and Pollen Tube Growth in Arabidopsis
Singh, Davinder P.; Jermakow, Angelica M.; Swain, Stephen M.
2002-01-01
Gibberellins (GAs) are tetracyclic diterpenoids that are essential endogenous regulators of plant growth and development. GA levels within the plant are regulated by a homeostatic mechanism that includes changes in the expression of a family of GA-inactivating enzymes known as GA 2-oxidases. Ectopic expression of a pea GA 2-oxidase2 cDNA caused seed abortion in Arabidopsis, extending and confirming previous observations obtained with GA-deficient mutants of pea, suggesting that GAs have an essential role in seed development. A new physiological role for GAs in pollen tube growth in vivo also has been identified. The growth of pollen tubes carrying the 35S:2ox2 transgene was reduced relative to that of nontransgenic pollen, and this phenotype could be reversed partially by GA application in vitro or by combining with spy-5, a mutation that increases GA response. Treatment of wild-type pollen tubes with an inhibitor of GA biosynthesis in vitro also suggested that GAs are required for normal pollen tube growth. These results extend the known physiological roles of GAs in Arabidopsis development and suggest that GAs are required for normal pollen tube growth, a physiological role for GAs that has not been established previously. PMID:12468732
Xia, Ke; Hill, Lisa M.; Li, De-Zhu; Walters, Christina
2014-01-01
Background and Aims Quercus species are often considered ‘foundation’ components of several temperate and/or subtropical forest ecosystems. However, the populations of some species are declining and there is considerable urgency to develop ex situ conservation strategies. In this study, the storage physiology of seeds within Quercus was explored in order to determine factors that affect survival during cryopreservation and to provide a quantitative assessment of seed recalcitrance to support future studies of this complex trait. Methods Water relations and survival of excised axes in response to water loss and cryo-exposure were compared for four Quercus species from subtropical China (Q. franchetii, Q. schottkyana) and temperate USA (Q. gambelii, Q. rubra). Key Results Seed tissues initially had high water contents and water potentials. Desiccation tolerance of the embryonic axis was not correlated with the post-shedding rainfall patterns where the samples originated. Instead, higher desiccation tolerance was observed in samples growing in areas with colder winters. Survival following cryo-exposure correlated with desiccation tolerance. Among species, plumule tissues were more sensitive than radicles to excision, desiccation and cryo-exposure, and this led to a higher proportion of abnormally developing embryos during recovery following stress. Conclusions Quercus species adapted to arid and semi-humid climates still produce recalcitrant seeds. The ability to avoid freezing rather than drought may be a more important selection factor to increase desiccation tolerance. Cryopreservation of recalcitrant germplasm from temperate species is currently feasible, whilst additional protective treatments are needed for ex situ conservation of Quercus from tropical and subtropical areas. PMID:25326139
Neghliz, Hayet; Cochard, Hervé; Brunel, Nicole; Martre, Pierre
2016-01-01
Seed dehydration is the normal terminal event in the development of orthodox seeds and is physiologically related to the cessation of grain dry mass accumulation and crop grain yield. For a better understanding of grain dehydration, we evaluated the hypothesis that hydraulic conductance of the ear decreases during the latter stages of development and that this decrease results from disruption or occlusion of xylem conduits. Whole ear, rachis, and stem nodes hydraulic conductance and percentage loss of xylem conductivity were measured from flowering to harvest-ripeness on bread wheat (Triticum aestivum L.) cv. Récital grown under controlled environments. Flag leaf transpiration, stomatal conductance, chlorophyll content and grain and ear water potentials were also measured during grain development. We show that grain dehydration was not related with whole plant physiology and leaf senescence, but closely correlated with the hydraulic properties of the xylem conduits irrigating the grains. Indeed, there was a substantial decrease in rachis hydraulic conductance at the onset of the grain dehydration phase. This hydraulic impairment was not caused by the presence of air embolism in xylem conduits of the stem internodes or rachis but by the occlusion of the xylem lumens by polysaccharides (pectins and callose). Our results demonstrate that xylem hydraulics plays a key role during grain maturation. PMID:27446150
Ruiz-Ballesta, Isabel; Feria, Ana-Belén; Ni, Hong; She, Yi-Min; Plaxton, William Charles; Echevarría, Cristina
2014-02-01
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an important cytosolic regulatory enzyme that plays a pivotal role in numerous physiological processes in plants, including seed development and germination. Previous studies demonstrated the occurrence of immunoreactive PEPC polypeptides of ~110 kDa and 107 kDa (p110 and p107, respectively) on immunoblots of clarified extracts of germinating sorghum (Sorghum bicolor) seeds. In order to establish the biochemical basis for this observation, a 460 kDa PEPC heterotetramer composed of an equivalent ratio of p110 and p107 subunits was purified to near homogeneity from the germinated seeds. Mass spectrometry established that p110 and p107 are both encoded by the same plant-type PEPC gene (CP21), but that p107 was in vivo monoubiquitinated at Lys624 to form p110. This residue is absolutely conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Anti-ubiquitin IgG immunodetected p110 but not p107, whereas incubation with a deubiquitinating enzyme (USP-2 core) efficiently converted p110 into p107, while relieving the enzyme's feedback inhibition by L-malate. Partial PEPC monoubiquitination was also detected during sorghum seed development. It is apparent that monoubiquitination at Lys624 is opposed to phosphorylation at Ser7 in terms of regulating the catalytic activity of sorghum seed PEPC. PEPC monoubiquitination is hypothesized to fine-tune anaplerotic carbon flux according to the cell's immediate physiological requirements for tricarboxylic acid cycle intermediates needed in support of biosynthesis and carbon-nitrogen interactions.
Echevarría, Cristina
2014-01-01
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an important cytosolic regulatory enzyme that plays a pivotal role in numerous physiological processes in plants, including seed development and germination. Previous studies demonstrated the occurrence of immunoreactive PEPC polypeptides of ~110kDa and 107kDa (p110 and p107, respectively) on immunoblots of clarified extracts of germinating sorghum (Sorghum bicolor) seeds. In order to establish the biochemical basis for this observation, a 460kDa PEPC heterotetramer composed of an equivalent ratio of p110 and p107 subunits was purified to near homogeneity from the germinated seeds. Mass spectrometry established that p110 and p107 are both encoded by the same plant-type PEPC gene (CP21), but that p107 was in vivo monoubiquitinated at Lys624 to form p110. This residue is absolutely conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Anti-ubiquitin IgG immunodetected p110 but not p107, whereas incubation with a deubiquitinating enzyme (USP-2 core) efficiently converted p110 into p107, while relieving the enzyme’s feedback inhibition by l-malate. Partial PEPC monoubiquitination was also detected during sorghum seed development. It is apparent that monoubiquitination at Lys624 is opposed to phosphorylation at Ser7 in terms of regulating the catalytic activity of sorghum seed PEPC. PEPC monoubiquitination is hypothesized to fine-tune anaplerotic carbon flux according to the cell’s immediate physiological requirements for tricarboxylic acid cycle intermediates needed in support of biosynthesis and carbon–nitrogen interactions. PMID:24288181
Samma, Muhammad Kaleem; Zhou, Heng; Cui, Weiti; Zhu, Kaikai; Zhang, Jing; Shen, Wenbiao
2017-02-01
Recent results discovered the protective roles of methane (CH 4 ) against oxidative stress in animals. However, the possible physiological roles of CH 4 in plants are still unknown. By using physiological, histochemical and molecular approaches, the beneficial role of CH 4 in germinating alfalfa seeds upon copper (Cu) stress was evaluated. Endogenous production of CH 4 was significantly increased in Cu-stressed alfalfa seeds, which was mimicked by 0.39 mM CH 4 . The pretreatment with CH 4 significantly alleviated the inhibition of seed germination and seedling growth induced by Cu stress. Cu accumulation was obviously blocked as well. Meanwhile, α/β amylase activities and sugar contents were increased, all of which were consistent with the alleviation of seed germination inhibition triggered by CH 4 . The Cu-triggered oxidative stress was also mitigated, which was confirmed by the decrease of lipid peroxidation and reduction of Cu-induced loss of plasma membrane integrity in CH 4 -pretreated alfalfa seedlings. The results of antioxidant enzymes, including ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (POD) total or isozymatic activities, and corresponding transcripts (APX1/2, Cu/Zn SOD and Mn-SOD), indicated that CH 4 reestablished cellular redox homeostasis. Further, Cu-induced proline accumulation was partly impaired by CH 4 , which was supported by the alternation of proline metabolism. Together, these results indicated that CH 4 performs an advantageous effect on the alleviation of seed germination inhibition caused by Cu stress, and reestablishment of redox homeostasis mainly via increasing antioxidant defence.
Viability of barley seeds after long-term exposure to outer side of international space station
NASA Astrophysics Data System (ADS)
Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi C.; Elena, Shagimardanova; Gusev, Oleg A.; Kihara, Makoto; Hoki, Takehiro; Sychev, Vladimir N.; Levinskikh, Margarita A.; Novikova, Natalia D.; Grigoriev, Anatoly I.
2011-09-01
Barley seeds were exposed to outer space for 13 months in a vented metal container without a climate control system to assess the risk of physiological and genetic mutation during long-term storage in space. The space-stored seeds (S0 generation), with an 82% germination rate in 50 seeds, lost about 20% of their weight after the exposure. The germinated seeds showed normal growth, heading, and ripening. The harvested seeds (S1 generation) also germinated and reproduced (S2 generation) as did the ground-stored seeds. The culm length, ear length, number of seed, grain weight, and fertility of the plants from the space-stored seeds were not significantly different from those of the ground-stored seeds in each of the S0 and S1 generation. Furthermore, the S1 and S2 space-stored seeds respectively showed similar β-glucan content to those of the ground-stored seeds. Amplified fragment length polymorphism analysis with 16 primer combinations showed no specific fragment that appears or disappears significantly in the DNA isolated from the barley grown from the space-stored seeds. Though these data are derived from nine S0 space-stored seeds in a single exposure experiment, the results demonstrate the preservation of barley seeds in outer space for 13 months without phenotypic or genotypic changes and with healthy and vigorous growth in space.
Effects of environmental variation during seed production on seed dormancy and germination.
Penfield, Steven; MacGregor, Dana R
2017-02-01
The environment during seed production has major impacts on the behaviour of progeny seeds. It can be shown that for annual plants temperature perception over the whole life history of the mother can affect the germination rate of progeny, and instances have been documented where these affects cross whole generations. Here we discuss the current state of knowledge of signal transduction pathways controlling environmental responses during seed production, focusing both on events that take place in the mother plant and those that occur directly as a result of environmental responses in the developing zygote. We show that seed production environment effects are complex, involving overlapping gene networks active independently in fruit, seed coat, and zygotic tissues that can be deconstructed using careful physiology alongside molecular and genetic experiments. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Maize (Zea mays) seeds can detect above-ground weeds; thiamethoxam alters the view.
Afifi, Maha; Lee, Elizabeth; Lukens, Lewis; Swanton, Clarence
2015-09-01
Far red light is known to penetrate soil and delay seed germination. Thiamethoxam as a seed treatment has been observed to enhance seed germination. No previous work has explored the effect of thiamethoxam on the physiological response of buried maize seed when germinating in the presence of above-ground weeds. We hypothesised that the changes in red:far red reflected from above-ground weeds would be detected by maize seed phytochrome and delay seed germination by decreasing the level of GA and increasing ABA. We further hypothesised that thiamethoxam would overcome this delay in germination. Thiamethoxam enhanced seed germination in the presence of above-ground weeds by increasing GA signalling and downregulating DELLA protein and ABA signalling genes. An increase in amylase activity and a degradation of starch were also observed. Far red reflected from the above-ground weeds was capable of penetrating below the soil surface and was detected by maize seed phytochrome. Thiamethoxam altered the effect of far red on seed germination by stimulating GA and inhibiting ABA synthesis. This is the first study to suggest that the mode of action of thiamethoxam involves both GA synthesis and ABA inhibition. © 2014 Society of Chemical Industry.
Goggin, Danica E.; Powles, Stephen B.; Steadman, Kathryn J.
2011-01-01
Seed dormancy in wild Lolium rigidum Gaud (annual ryegrass) populations is highly variable and not well characterized at the biochemical level. To identify some of the determinants of dormancy level in these seeds, the proteomes of subpopulations selected for low and high levels of primary dormancy were compared by two-dimensional polyacrylamide gel electrophoresis of extracts from mature, dry seeds. High-dormancy seeds showed higher expression of small heat shock proteins, enolase, and glyoxalase I than the low-dormancy seeds. The functional relevance of these differences in protein expression was confirmed by the fact that high-dormancy seeds were more tolerant to high temperatures imposed at imbibition and had consistently higher glyoxalase I activity over 0–42 d dark stratification. Higher expression of a putative glutathione peroxidase in low-dormancy seeds was not accompanied by higher activity, but these seeds had a slightly more oxidized glutathione pool and higher total peroxidase activity. Overall, these biochemical and physiological differences suggest that L. rigidum seeds selected for low dormancy are more prepared for rapid germination via peroxidase-mediated cell wall weakening, whilst seeds selected for high dormancy are constitutively prepared to survive environmental stresses, even in the absence of stress during seed development. PMID:20974739
An Organotypic Liver System for Tumor Progression
2006-04-01
a physiologically relevant microreactor that has proved suitable for organotypic liver culture to investigate metastatic seeding. The sub-millimeter...metastasis. Our objective is to utilize a physiologically relevant microreactor that has proved suitable for organotypic liver culture (3) to...C Yates, D B Stolz, L Griffith, A Wells (2004) Direct Visualization of Prostate Cancer Progression Utilizing a Bioreactor. American Association
Zhang, Keliang; Baskin, Jerry M; Baskin, Carol C; Yang, Xuejun; Huang, Zhenying
2015-06-01
Many congeneric species are disjunct between eastern Asia and eastern North America. No previous study has compared the seed biology of closely related disjunct taxa of legumes or of a diaspore-heteromorphic species. Our objective was to compare seed dormancy in two such sister species in the genus Amphicarpaea (Fabaceae). We investigated the ecology and ecophysiology of aerial and subterranean seeds of the amphicarpic species Amphicarpaea edgeworthii from China and compared the results to those published for its sister species A. bracteata from eastern North America. The seed coat of aerial seeds of A. edgeworthii is well developed, whereas the seed coat of subterranean seeds is not. Aerial seeds have combinational dormancy (physical dormancy [PY] + physiological dormancy [PD]) broken by scarification followed by cold stratification or by after-ripening and scarification; whereas subterranean seeds have PD broken by cold stratification. Aerial seeds formed a persistent soil seed bank, and subterranean seeds a transient soil seed bank. Aerial seeds of A. bracteata also have PY+PD and subterranean seeds PD. Subterranean seeds of both species are desiccation intolerant. Dormancy in neither aerial nor subterranean seeds of both species has diverged over geological time. Compared to subterranean seeds, aerial seeds of both species dispersed over longer distances. Seed dispersal ability and degree of dormancy of neither species fits the high-risk/low-risk (H-H/L-L) strategy found in many diaspore-dimorphic species. Rather, both species have an H-L/L-H strategy for these two life history traits. © 2015 Botanical Society of America, Inc.
Yan, Qiao-Ling; Zhu, Jiao-Jun; Yu, Li-Zhong
2012-01-01
Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation. PMID:22745771
Sun, Aaron X.; Lin, Hang; Fritch, Madalyn R.; Shen, He; Alexander, Pete G.; DeHart, Michael; Tuan, Rocky S.
2018-01-01
Three-dimensional hydrogel constructs incorporated with live stem cells that support chondrogenic differentiation and maintenance offer a promising regenerative route towards addressing the limited self-repair capabilities of articular cartilage. In particular, hydrogel scaffolds that augment chondrogenesis and recapitulate the native physical properties of cartilage, such as compressive strength, can potentially be applied in point-of-care procedures. We report here the synthesis of two new materials, [poly-L-lactic acid/polyethylene glycol/poly-L-lactic acid] (PLLA-PEG 1000) and [poly-D,L-lactic acid/polyethylene glycol/poly-D,L-lactic acid] (PDLLA-PEG 1000), that are biodegradable, biocompatible (>80% viability post fabrication), and possess high, physiologically relevant mechanical strength (~1,500 to 1,800 kPa). This study examined the effects of physiologically relevant cell densities (4, 8, 20, and 50 × 106/mL) and hydrogel stiffnesses (~150kPa to ~1,500 kPa Young’s moduli) on chondrogenesis of human bone marrow stem cells incorporated in hydrogel constructs fabricated with these materials and a previously characterized PDLLA-PEG 4000. Results showed that 20 × 106 cells/mL, under a static culture condition, was the most efficient cell seeding density for extracellular matrix (ECM) production on the basis of hydroxyproline and glycosaminoglycan content. Interestingly, material stiffness did not significantly affect chondrogenesis, but rather material concentration was correlated to chondrogenesis with increasing levels at lower concentrations based on ECM production, chondrogenic gene expression, and histological analysis. These findings establish optimal cell densities for chondrogenesis within three-dimensional cell-incorporated hydrogels, inform hydrogel material development for cartilage tissue engineering, and demonstrate the efficacy and potential utility of PDLLA-PEG 1000 for point-of-care treatment of cartilage defects. PMID:28611002
Zhu, Yanlei; She, Xiaoping
2018-04-01
The objective of this study was to assess the plant-growth-promoting abilities of 45 endophytic bacterial isolates from Ammodendron bifolium through physiological characteristics detection and endophytic bacteria-plant interaction. Each of these isolates exhibited 1 or more plant-growth-promoting traits, but only 11 isolates belonging to the genera Bacillus, Staphylococcus, and Kocuria were capable of promoting seed germination and radicle growth. These results together with the results of the correlation analysis revealed that the completion of seed germination may not be due to IAA production, phosphate solubilization, pellicle formation, and ACC deaminase, protease and lipase production by endophytic bacteria, but may be closely related to amylase and cellulase production. Further, endophytic bacterial isolates with plant-growth-promoting traits may also provide beneficial effects to host plants at different growth stages. Thus, these results are of value for understanding the ecological roles of endophytic bacteria in host plant habitats and can serve as a foundation for further studies of their potential in plant regeneration.
Grape seed and skin extract prevents high-fat diet-induced brain lipotoxicity in rat.
Charradi, Kamel; Elkahoui, Salem; Karkouch, Ines; Limam, Ferid; Hassine, Fethy Ben; Aouani, Ezzedine
2012-09-01
Obesity is related to an elevated risk of dementia and the physiologic mechanisms whereby fat adversely affects the brain are poorly understood. The present investigation analyzed the effect of a high fat diet (HFD) on brain steatosis and oxidative stress and the intracellular mediators involved in signal transduction, as well as the protection offered by grape seed and skin extract (GSSE). HFD induced ectopic deposition of cholesterol and phospholipid but not triglyceride. Moreover brain lipotoxicity is linked to an oxidative stress characterized by increased lipoperoxidation and carbonylation, inhibition of glutathione peroxidase and superoxide dismutase activities, depletion of manganese and a concomitant increase in ionizable calcium and acetylcholinesterase activity. Importantly GSSE alleviated all the deleterious effects of HFD treatment. Altogether our data indicated that HFD could find some potential application in the treatment of manganism and that GSSE should be used as a safe anti-lipotoxic agent in the prevention and treatment of fat-induced brain injury.
Batanouny, K H; Ziegler, H
1971-06-01
1. The rate and percentage of germination of soaked and redried seeds are higher than those of untreated seeds. The promoting effect of soaking and redryring of seeds on germination increases with the duration of soaking. Seeds that germinated during soaking are unable to tolerate drying. 2. Exposure of the seeds to light after the first 8 hours of soaking inhibits germination of the seeds after drying. 3. Washing the seeds with water has no effect on germination in the dark at 25°C, while it promotes germination in light at 25°C and in the dark at 10°C. 4. The leachate of Zygophyllum coccineum seeds has no significant effect on the dark germination of these seeds. On the other hand, it inhibits the light germination. Germination of Lepidium sativum seeds is not affected by the leachate of Zygophyllum seeds, either in the dark or in light. 5. When the washed seeds of Zygophyllum coccineum are germinated, their radicles are longer and the hypocotyls shorter than in the controls. The leachate promotes hypocotyl growth and inhibits that of the radicle. 6. A hypothesis is suggested to interpret the results based on the assumed interaction between seeds, light and an inhibitor.
Song, Bo; Stöcklin, Jürg; Gao, Yong-Qian; Peng, De-Li; Song, Min-Shu; Sun, Hang
2016-01-01
A prerequisite for the evolutionary stability of pollinating seed-consuming mutualisms is that each partner benefits from the association. However, few studies of such mutualism have considered the benefit gained by the pollinators. Here, we determined how the pollinating seed-predators ensure the provisioning of their offspring in the recently discovered mutualism between Rheum nobile and Bradysia flies. The correlation between flower fate and fly oviposition was examined. Floral traits and patterns of variation in fruit abortion and fly oviposition were investigated to determine whether female flies exhibit preferences for particular flowers when laying eggs. Indole-3-acetic acid (IAA) was quantified to determine whether female flies manipulate host physiology. Flowers that flies oviposited on had a significantly lower probability of fruit abortion compared with intact flowers. Females did not exhibit oviposition preference for any of the floral traits examined. There was no significant correlation between fruit abortion and fly oviposition in terms of either flower position or timing of flowering. IAA concentrations in oviposited flowers were significantly higher than in intact flowers. Our results suggest that oviposition by the mutualistic seed-consuming pollinator Bradysia sp., greatly reduces the probability of fruit abortion of its host, R. nobile; this may be attributed to the manipulation of host physiology through regulating IAA levels. PMID:27418228
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds.
Cao, Dechang; Xu, Huimin; Zhao, Yuanyuan; Deng, Xin; Liu, Yongxiu; Soppe, Wim J J; Lin, Jinxing
2016-12-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. © 2016 American Society of Plant Biologists. All Rights Reserved.
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds1
Xu, Huimin; Liu, Yongxiu; Soppe, Wim J.J.; Lin, Jinxing
2016-01-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. PMID:27760880
Si, Yong; Wang, Lihong; Huang, Xiaohua
2018-01-01
REEs in the environment can be absorbed by plants and sequestered by plant phytoliths. Acid rain can directly or indirectly affect plant physiological functions. Currently, the effects of REEs and acid rain on phytolith-REEs complex in plants are not yet fully understood. In this study, a high-silicon accumulation crop, rice (Oryza sativa L.), was selected as a representative of plants, and orthogonal experiments were conducted under various levels of lanthanum [La(III)] and pH. The results showed that various La(III) concentrations could significantly improve the efficiency and sequestration of phytolith La(III) in germinated rice seeds. A pH of 4.5 promoted phytolith La(III) sequestration, while a pH of 3.5 inhibited sequestration. Compared with the single treatment with La(III), the combination of La(III) and acid rain inhibited the efficiency and sequestration of phytolith La(III). Correlation analysis showed that the efficiency of phytolith La(III) sequestration had no correlation with the production of phytolith but was closely correlated with the sequestration of phytolith La(III) and the physiological changes of germinated rice seeds. Phytolith morphology was an important factor affecting phytolith La(III) sequestration in germinated rice seeds, and the effect of tubes on sequestration was more significant than that of dumbbells. This study demonstrated that the formation of the phytolith and La(III) complex could be affected by exogenous La(III) and acid rain in germinated rice seeds. PMID:29763463
NASA Astrophysics Data System (ADS)
Seo, Youngmi; Kim, Jung Hyeun
2011-06-01
Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.
Chávez-Ambriz, Lluvia A; Hernández-Morales, Alejandro; Cabrera-Luna, José A; Luna-Martínez, Laura; Pacheco-Aguilar, Juan R
Cacti are the most representative vegetation of arid zones in Mexico where rainfall is scarce, evapotranspiration is high and soil fertility is low. Plants have developed physiological strategies such as the association with microorganisms in the rhizosphere zone to increase nutrient uptake. In the present work, four bacterial isolates from the rhizosphere of Mammillaria magnimamma and Coryphantha radians were obtained and named as QAP3, QAP19, QAP22 and QAP24, and were genetically identified as belonging to the genus Bacillus, exhibiting in vitro biochemical properties such as phosphate solubilization, indoleacetic acid production and ACC deaminase activity related to plant growth promotion, which was tested by inoculating M. magnimamma seeds. It was found that all isolates increased germination from 17 to 34.3% with respect to the uninoculated control seeds, being QAP24 the one having the greatest effect, accomplishing the germination of viable seeds (84.7%) three days before the control seeds. Subsequently, the inoculation of Mammillari zeilmanniana plants with this isolate showed a positive effect on bloom, registering during two months from a one year period, an increase of up to 31.0% in the number of flowering plants compared to control plants. The characterized Bacillus spp. isolates have potential to be used in conservation programs of plant species from arid zones. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Skylarks trade size and energy content in weed seeds to maximize total ingested lipid biomass.
Gaba, Sabrina; Collas, Claire; Powolny, Thibaut; Bretagnolle, François; Bretagnolle, Vincent
2014-10-01
The trade-off between forage quality and quantity has been particularly studied in herbivore organisms, but much less for seed eating animals, in particular seed-eating birds which constitute the bulk of wintering passerines in European farmlands. The skylark is one of the commonest farmland birds in winter, mainly feeding on seeds. We focus on weed seeds for conservation and management purposes. Weed seeds form the bulk of the diet of skylarks during winter period, and although this is still a matter for discussion, weed seed predation by granivorous has been suggested as an alternative to herbicides used to regulate weed populations in arable crops. Our objectives were to identify whether weed seed traits govern foraging decisions of skylarks, and to characterize key seed traits with respect to size, which is related to searching and handling time, and lipid content, which is essential for migratory birds. We combined a single-offer experiment and a multiple-offer one to test for feeding preferences of the birds by estimating seed intake on weed seed species differing in their seed size and seed lipid content. Our results showed (1) a selective preference for smaller seeds above a threshold of seed size or seed size difference in the pair and, (2) a significant effect of seed lipid biomass suggesting a trade-off between foraging for smaller seeds and selecting seeds rich in lipids. Skylarks foraging decision thus seems to be mainly based on seed size, that is presumably a 'proxy' for weed seed energy content. However, there are clearly many possible combinations of morphological and physiological traits that must play crucial role in the plant-bird interaction such as toxic compound or seed coat. Copyright © 2014 Elsevier B.V. All rights reserved.
Small-seeded Hakea species tolerate cotyledon loss better than large-seeded congeners
El-Amhir, Sh-hoob; Lamont, Byron B.; He, Tianhua; Yan, George
2017-01-01
Six Hakea species varying greatly in seed size were selected for cotyledon damage experiments. The growth of seedlings with cotyledons partially or completely removed was monitored over 90 days. All seedlings perished by the fifth week when both cotyledons were removed irrespective of seed size. Partial removal of cotyledons caused a significant delay in the emergence of the first leaf, and reduction in root and shoot growth of the large-seeded species. The growth of seedlings of small-seeded species was less impacted by cotyledon damage. The rate of survival, root and shoot lengths and dry biomass of the seedlings were determined after 90 days. When seedlings were treated with balanced nutrient solutions following removal of the cotyledons, survival was 95–98%, but 0% when supplied with nutrient solutions lacking N or P or with water only. The addition of a balanced nutrient solution failed to restore complete growth of any species, but the rate of root elongation for the small-seeded species was maintained. Cotyledons provide nutrients to support early growth of Hakea seedlings, but other physiological roles for the cotyledons are also implicated. In conclusion, small-seeded Hakea species can tolerate cotyledons loss better than large-seeded species. PMID:28139668
Porceddu, Marco; Mattana, Efisio; Pritchard, Hugh W.; Bacchetta, Gianluigi
2013-01-01
Background and Aims Mediterranean mountain species face exacting ecological conditions of rainy, cold winters and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams of central eastern Sardinia. Methods Seeds were incubated in the light at a range of temperatures (10–25 and 25/10 °C) after different periods (up to 3 months) of cold stratification at 5 °C. Base temperatures (Tb), and thermal times for 50 % germination (θ50) were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data loggers and soil heat sum (°Cd) was calculated on the basis of the estimated Tb and soil temperatures. Key Results Cold stratification released physiological dormancy (PD), increasing final germination and widening the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10·5 °C for non-stratified seeds to 2·7 °C for seeds cold stratified for 3 months. The best thermal time model was obtained by fitting probit germination against log °Cd. θ50 was 2·6 log °Cd for untreated seeds and 2·17–2·19 log °Cd for stratified seeds. When θ50 values were integrated with soil heat sum estimates, field emergence was predicted from March to April and confirmed through field observations. Conclusions Tb and θ50 values facilitated model development of the thermal niche for in situ germination of R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering cold stratification requirement and spring germination. PMID:24201139
Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins
Cádiz-Gurrea, María De La Luz; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Joven, Jorge; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio
2017-01-01
Phenolic compounds, which are secondary plant metabolites, are considered an integral part of the human diet. Physiological properties of dietary polyphenols have come to the attention in recent years. Especially, proanthocyanidins (ranging from dimers to decamers) have demonstrated potential interactions with biological systems, such as antiviral, antibacterial, molluscicidal, enzyme-inhibiting, antioxidant, and radical-scavenging properties. Agroindustry produces a considerable amount of phenolic-rich sources, and the ability of polyphenolic structures to interacts with other molecules in living organisms confers their beneficial properties. Cocoa wastes and grape seeds and skin byproducts are a source of several phenolic compounds, particularly mono-, oligo-, and polymeric proanthocyanidins. The aim of this work is to compare the phenolic composition of Theobroma cacao and Vitis vinifera grape seed extracts by high pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and equipped with an electrospray ionization interface (HPLC-ESI-QTOF-MS) and its phenolic quantitation in order to evaluate the proanthocyanidin profile. The antioxidant capacity was measured by different methods, including electron transfer and hydrogen atom transfer-based mechanisms, and total phenolic and flavan-3-ol contents were carried out by Folin–Ciocalteu and Vanillin assays. In addition, to assess the anti-inflammatory capacity, the expression of MCP-1 in human umbilical vein endothelial cells was measured. PMID:28208630
Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins.
Cádiz-Gurrea, María De La Luz; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Joven, Jorge; Fernández-Arroyo, Salvador; Segura-Carretero, Antonio
2017-02-10
Phenolic compounds, which are secondary plant metabolites, are considered an integral part of the human diet. Physiological properties of dietary polyphenols have come to the attention in recent years. Especially, proanthocyanidins (ranging from dimers to decamers) have demonstrated potential interactions with biological systems, such as antiviral, antibacterial, molluscicidal, enzyme-inhibiting, antioxidant, and radical-scavenging properties. Agroindustry produces a considerable amount of phenolic-rich sources, and the ability of polyphenolic structures to interacts with other molecules in living organisms confers their beneficial properties. Cocoa wastes and grape seeds and skin byproducts are a source of several phenolic compounds, particularly mono-, oligo-, and polymeric proanthocyanidins. The aim of this work is to compare the phenolic composition of Theobroma cacao and Vitis vinifera grape seed extracts by high pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and equipped with an electrospray ionization interface (HPLC-ESI-QTOF-MS) and its phenolic quantitation in order to evaluate the proanthocyanidin profile. The antioxidant capacity was measured by different methods, including electron transfer and hydrogen atom transfer-based mechanisms, and total phenolic and flavan-3-ol contents were carried out by Folin-Ciocalteu and Vanillin assays. In addition, to assess the anti-inflammatory capacity, the expression of MCP-1 in human umbilical vein endothelial cells was measured.
Patel, Dipak; Desai, Swati; Devkar, Ranjitsinh; Ramachandran, A.V.
2012-01-01
Coriandrum sativum L. (CS) seeds are known to possess therapeutic potentials against a variety of physiological disorders. This study assesses acute and sub-chronic toxicity profile of hydro-methanolic extract of CS seeds using OECD guidelines. In acute toxicity study, mice were once orally administered 1000, 3000 and 5000 mg/kg body weight of CS extract. There were no any behavioral alterations or mortality recorded in CS treated groups. The LD50 value was more than 5000 mg/kg body weight. In the sub-chronic oral toxicity study, the animals were orally administered with CS extract (1000, 2000 and 3000mg/kg body weight) daily for 28 days whereas; vehicle control group received 0.5 % carboxy methyl cellulose. There was significant reduction in food intake, body weight gain and plasma lipid profiles of CS2 and CS3 (2000 and 3000 mg/kg body weight respectively) groups as compared to the control group. However, there were no alterations in haematological profile, relative organ weights, histology and plasma markers of damage of vital organs (heart, liver and kidney). The overall finding of this study indicates that CS extract is non-toxic up to 3000 mg/kg body weight and can be considered as safe for consumption. PMID:27847445
Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks
Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo
2016-01-01
We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079
Guha, Titir; Ravikumar, K V G; Mukherjee, Amitava; Mukherjee, Anita; Kundu, Rita
2018-04-12
Engineered nanoparticles are utilized in agriculture for various purposes. They can be used as fertilizer, carrier for macro/micro nutrients or priming agents. Various nanoparticles are reported to have toxicity at very high doses, but at optimum concentration, they can be beneficial for plant growth and development. In the present study, low concentrations of nZVI nanoparticles were evaluated for their growth enhancement potential as seed priming agent in an aromatic rice cultivar, Oryza sativa cv. Gobindabhog. Seeds were primed with different concentrations (10, 20, 40, 80, 160 mg L -1 ) of nZVI and allowed to grow for 14 days. Seed germination and seedling growth were studied by assessing physiological, biochemical, and structural parameters at different time points. Maximum activities of hydrolytic and antioxidant enzymes, along with root dehydrogenase enzyme were observed in 20 mg L -1 nZVI primed seeds. Priming with low doses of nZVI increased seedling vigour, as expressed by increased root and shoot length, biomass and photosynthetic pigment content. Our study also confirmed that after 14 days growth, the seedling showed absence of membrane damage, reduction in proline level and anti-oxidant enzyme activities. However, seedlings primed with 160 mg L -1 nZVI suffered oxidative stress. SEM micrographs also revealed damage in root tissue at that concentration. AAS study confirmed uptake of nZVI by the rice plants as maximum level of iron was found in the plants treated with highest concentration (i.e. 160 mg L -1 nZVI). Thus, nZVI at low concentrations can be considered as priming agent of rice seeds for increasing plant vigour. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Xia, Ke; Hill, Lisa M; Li, De-Zhu; Walters, Christina
2014-12-01
Quercus species are often considered 'foundation' components of several temperate and/or subtropical forest ecosystems. However, the populations of some species are declining and there is considerable urgency to develop ex situ conservation strategies. In this study, the storage physiology of seeds within Quercus was explored in order to determine factors that affect survival during cryopreservation and to provide a quantitative assessment of seed recalcitrance to support future studies of this complex trait. Water relations and survival of excised axes in response to water loss and cryo-exposure were compared for four Quercus species from subtropical China (Q. franchetii, Q. schottkyana) and temperate USA (Q. gambelii, Q. rubra). Seed tissues initially had high water contents and water potentials. Desiccation tolerance of the embryonic axis was not correlated with the post-shedding rainfall patterns where the samples originated. Instead, higher desiccation tolerance was observed in samples growing in areas with colder winters. Survival following cryo-exposure correlated with desiccation tolerance. Among species, plumule tissues were more sensitive than radicles to excision, desiccation and cryo-exposure, and this led to a higher proportion of abnormally developing embryos during recovery following stress. Quercus species adapted to arid and semi-humid climates still produce recalcitrant seeds. The ability to avoid freezing rather than drought may be a more important selection factor to increase desiccation tolerance. Cryopreservation of recalcitrant germplasm from temperate species is currently feasible, whilst additional protective treatments are needed for ex situ conservation of Quercus from tropical and subtropical areas. Published by Oxford University Press on behalf of the Annals of Botany Company 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Factors affecting the structure and maturation of human tissue engineered skeletal muscle.
Martin, Neil R W; Passey, Samantha L; Player, Darren J; Khodabukus, Alastair; Ferguson, Richard A; Sharples, Adam P; Mudera, Vivek; Baar, Keith; Lewis, Mark P
2013-07-01
Tissue engineered skeletal muscle has great utility in experimental studies of physiology, clinical testing and its potential for transplantation to replace damaged tissue. Despite recent work in rodent tissue or cell lines, there is a paucity of literature concerned with the culture of human muscle derived cells (MDCs) in engineered constructs. Here we aimed to tissue engineer for the first time in the literature human skeletal muscle in self-assembling fibrin hydrogels and determine the effect of MDC seeding density and myogenic proportion on the structure and maturation of the constructs. Constructs seeded with 4 × 10(5) MDCs assembled to a greater extent than those at 1 × 10(5) or 2 × 10(5), and immunostaining revealed a higher fusion index and a higher density of myotubes within the constructs, showing greater structural semblance to in vivo tissue. These constructs primarily expressed perinatal and slow type I myosin heavy chain mRNA after 21 days in culture. In subsequent experiments MACS(®) technology was used to separate myogenic and non-myogenic cells from their heterogeneous parent population and these cells were seeded at varying myogenic (desmin +) proportions in fibrin based constructs. Only in the constructs seeded with 75% desmin + cells was there evidence of striations when immunostained for slow myosin heavy chain compared with constructs seeded with 10 or 50% desmin + cells. Overall, this work reveals the importance of cell number and myogenic proportions in tissue engineering human skeletal muscle with structural resemblance to in vivo tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Lei; Huang, Zhenying; Baskin, Carol C; Baskin, Jerry M; Dong, Ming
2008-11-01
Suaeda aralocaspica is a C4 summer annual halophyte without Kranz anatomy that is restricted to the deserts of central Asia. It produces two distinct types of seeds that differ in colour, shape and size. The primary aims of the present study were to compare the dormancy and germination characteristics of dimorphic seeds of S. aralocaspica and to develop a conceptual model of their dynamics. Temperatures simulating those in the natural habitat of S. aralocaspica were used to test for primary dormancy and germination behaviour of fresh brown and black seeds. The effects of cold stratification, gibberellic acid, seed coat scarification, seed coat removal and dry storage on dormancy breaking were tested in black seeds. Germination percentage and recovery responses of brown seeds, non-treated black seeds and 8-week cold-stratified black seeds to salt stress were tested. Brown seeds were non-dormant, whereas black seeds had non-deep Type 2 physiological dormancy (PD). Germination percentage and rate of germination of brown seeds and of variously pretreated black seeds were significantly higher than those of non-pretreated black seeds. Exposure of seeds to various salinities had significant effects on germination, germination recovery and induction into secondary dormancy. A conceptual model is presented that ties these results together and puts them into an ecological context. The two seed morphs of S. aralocaspica exhibit distinct differences in dormancy and germination characteristics. Suaeda aralocaspica is the first cold desert halophyte for which non-deep Type 2 PD has been documented.
Vaz, T A A; Rodrigues-Junior, A G; Davide, A C; Nakamura, A T; Toorop, P E
2018-03-01
Diaspore structure has been hypothesised to play a role in seed viability and/or germination of recalcitrant seeds, especially for Swartzia langsdorffii. Thus, this work aims to (i) investigate the in situ contribution of pericarp and aril on seed viability and germination, and (ii) identify morphoanatomical traits of S. langsdorffii diaspores that allow its desiccation-sensitive seeds to remain viable. The role of the pericarp and aril in seed survival and germination was investigated by placing the whole fruit, whole seeds (arillate seed) and bare seeds (without aril) in soil in the forest understorey, assessing germination, emergence, dead, firm and predated seeds, and water content of pericarps, arils and seeds. Correlation analysis was performed between environmental variables and physiological parameters. Histochemical features of diaspores were also investigated. Pericarp water content fell after several months, while the aril maintained its water content. Seeds did not lose water even without the presence of the pericarp and aril. However, presence of the pericarp promoted seed water content, viability and germination long after dispersal. The embryo had a thickened outer periclinal cell wall. Pericarp and aril are not essential to prevent water loss in seeds, but do help to retain seed moisture, favouring viability maintenance and promoting germination during the rainy season. Morphoanatomical features of seeds are suggested as main factors that reduce water loss. Survival of these desiccation-sensitive seeds upon dispersal during the dry season appears to be facilitated by multiple diaspore features that prevent viability loss. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Kosmala, Monika; Zduńczyk, Zenon; Juśkiewicz, Jerzy; Jurgoński, Adam; Karlińska, Elżbieta; Macierzyński, Jakub; Jańczak, Rafał; Rój, Edward
2015-03-25
Strawberry and raspberry seeds were chemically analyzed and added as dietary ingredients to investigate the physiological response of rats. In both cases the main component was dietary fiber and the main polyphenols were ellagitannins (ET). The strawberry ET were mainly constituted by monomers and a dimer, agrimoniin, whereas raspberry ET were mainly constituted by a dimer, sanguiin-H-6, and a trimer, lambertianin-C. The lower content and the less polymerized structure of strawberry ET resulted in a higher cecal metabolites concentration (mainly nasutin and urolithin-A) in comparison to rats fed diet containing raspberry seeds. Dietary raspberry seeds, a source of dietary fiber, despite being richer in polyphenol compounds, were better utilized in fermentation processes, resulting in enhanced production of short-chain fatty acids. As opposed to strawberry seeds, the treatment with raspberry seeds beneficially improved the atherogenic index of a diet, mainly due to reduced triacylglycerol concentration in the serum.
Tuan, Pham A.; Kumar, Rohit; Rehal, Pawanpuneet K.; Toora, Parneet K.; Ayele, Belay T.
2018-01-01
Seed dormancy is an adaptive trait that does not allow the germination of an intact viable seed under favorable environmental conditions. Non-dormant seeds or seeds with low level of dormancy can germinate readily under optimal environmental conditions, and such a trait leads to preharvest sprouting, germination of seeds on the mother plant prior to harvest, which significantly reduces the yield and quality of cereal crops. High level of dormancy, on the other hand, may lead to non-uniform germination and seedling establishment. Therefore, intermediate dormancy is considered to be a desirable trait as it prevents the problems of sprouting and allows uniformity of postharvest germination of seeds. Induction, maintenance, and release of seed dormancy are complex physiological processes that are influenced by a wide range of endogenous and environmental factors. Plant hormones, mainly abscisic acid (ABA) and gibberellin (GA), are the major endogenous factors that act antagonistically in the control of seed dormancy and germination; ABA positively regulates the induction and maintenance of dormancy, while GA enhances germination. Significant progress has been made in recent years in the elucidation of molecular mechanisms regulating ABA/GA balance and thereby dormancy and germination in cereal seeds, and this review summarizes the current state of knowledge on the topic. PMID:29875780
Goggin, Danica E; Emery, R J Neil; Powles, Stephen B; Steadman, Kathryn J
2010-10-15
The physiological and biochemical bases of seed dormancy in Lolium rigidum (annual ryegrass) are largely unknown, and study of this process is complicated by the outcrossing nature of the species and the strong influence of environment on seed dormancy. In order to identify heritable biochemical factors contributing to seed dormancy in L. rigidum, seeds from a field-collected population were used to select sub-populations with consistently low or high seed dormancy over four generations. Low-dormancy seeds showed constitutive alpha-amylase activity prior to imbibition, higher concentrations of polyphenols and cis-zeatin, and lower abscisic acid and cis-zeatin riboside concentrations than high-dormancy seeds. Selection for high dormancy was associated with a reduction in response to dark-stratification for 21d at 20 degrees C (an effective means of releasing dormancy in the original, unselected population) over successive generations, but fluridone remained effective in breaking dormancy. Crossing of low- and high-dormancy populations indicated that dormancy level was not dependent upon the maternal genotype of the seed, and that the constitutive alpha-amylase activity and high seed anthocyanin concentrations characteristic of the low-dormancy populations were not correlated to high basal germination ability. Copyright (c) 2010 Elsevier GmbH. All rights reserved.
Dudley, Leah S; Hove, Alisa A; Emms, Simon K; Verhoeven, Amy S; Mazer, Susan J
2015-06-01
One explanation for the evolution of selfing, the drought escape hypothesis, proposes that self-fertilization may evolve under conditions of intensifying seasonal drought as part of a suite of traits that enable plants to accelerate the completion of their life cycle, thereby escaping late-season drought. Here, we test two fundamental assumptions of this hypothesis in Clarkia xantiana: (1) that a seasonal decline in precipitation causes an increase in drought stress and (2) that this results in changes in physiological performance, reflecting these deteriorating conditions. We examined seasonal and interannual variation in abiotic environmental conditions (estimated by ambient temperature, relative humidity, predawn leaf water potentials, and carbon isotope ratios) and physiological traits (photosynthesis, conductance, transpiration, instantaneous water-use efficiency, ascorbate peroxidase and glutathione reductase activities, quantum yield of photosystem II, PSII potential efficiency) in field populations of C. xantiana in 2009 and 2010. In both years, plants experienced intensifying drought across the growing season. Gas exchange rates decreased over the growing season and were lower in 2009 (a relatively dry year) than in 2010, suggesting that the temporal changes from early to late spring were directly linked to the deteriorating environmental conditions. Seasonal declines in transpiration rate may have increased survival by protecting plants from desiccation. Concomitant declines in photosynthetic rate likely reduced the availability of resources for seed production late in the season. Thus, the physiological patterns observed are consistent with the conditions required for the drought escape hypothesis. © 2015 Botanical Society of America, Inc.
Araniti, Fabrizio; Lupini, Antonio; Sorgonà, Agostino; Conforti, Filomena; Marrelli, Mariangela; Statti, Giancarlo Antonio; Menichini, Francesco; Abenavoli, Maria Rosa
2013-01-01
The aerial part of Artemisia arborescens L. (Asteraceae) was extracted with water and methanol, and both extracts were fractionated using n-hexane, chloroform, ethyl acetate and n-butanol. The potential phytotoxicity of both crude extracts and their fractions were assayed in vitro on seed germination and root growth of lettuce (Lactuca sativa L.), a sensitive species largely employed in the allelopathy studies. The inhibitory activities were analysed by dose-response curves and the ED 50 were estimated. Crude extracts strongly inhibited both germination and root growth processes. The fraction-bioassay indicated the following hierarchy of phytotoxicity for both physiological processes: ethyl acetate ≥ n-hexane > chloroform ≥ n-butanol. On the n-hexane fraction, GC-MS analyses were carried out to characterise and quantify some of the potential allelochemicals. Twenty-one compounds were identified and three of them, camphor, trans-caryophyllene and pulegone were quantified.
Escape from Tumor Cell Dormancy
2011-10-01
feature of the bioreactor has been developed (oxygen sensing) to improve monitoring of the physiological status of the cultures ; as cells are stimulated...Herein, these issues are addressed using a novel organotypic bioreactor in which tumor cells can be followed for weeks to months, the process of seeding... cells (months 1-6) 3. isolate human stellate and Kupffer cells (months 7-24) 3. seed bioreactors with cells (months 1-24) 4. label tumor cells for
Studies on optimum harvest time for hybrid rice seed.
Fu, Hong; Cao, Dong-Dong; Hu, Wei-Min; Guan, Ya-Jing; Fu, Yu-Ying; Fang, Yong-Feng; Hu, Jin
2017-03-01
Timely harvest is critical for hybrid rice to achieve maximum seed viability, vigor and yield. However, how to predict the optimum harvest time has been rarely reported so far. The seed vigor of Zhuliangyou 06 (ZLY06) increased and reached the highest level at 20 days after pollination (DAP), when seed moisture content had a lower value, which was maintained until final seed maturation. For Chunyou 84 (CY84), seed vigor, fresh and dry weight had relatively high values at 25 DAP, when seed moisture content reached the lowest value and changed slightly from 25 to 55 DAP. In both hybrid rice varieties, seed glume chlorophyll content declined rapidly from 10 to 30 DAP and remained at a very low level after 35 DAP. Starch content exhibited an increasing trend during seed maturation, while both soluble sugar content and amylase activity decreased significantly at the early stages of seed development. Moreover, correlation analyses showed that seed dry weight, starch content and superoxide dismutase activity were significantly positively correlated with seed vigor. In contrast, chlorophyll content, moisture content, soluble sugar, soluble protein, abscisic acid, gibberellin content, electrical conductivity, catalase and ascorbate peroxidase activities were significantly negatively correlated with seed vigor. Physiological and biochemical parameters were obviously more closely related with seed vigor than with seed germinability during seed development. Seed vigor could be better used as a comprehensive factor to predict the optimum seed harvest time. It is suggested that for ZLY06 seeds could be harvested as early as 20 DAP, whereas for CY84 the earliest optimum harvest time was 25 DAP. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Obroucheva, Natalie V; Lityagina, Snezhana V; Novikova, Galina V; Sin'kevich, Irina A
2012-01-01
In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H(+)-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H(+)-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due to the short duration. The retained physiological activity of vacuoles allows them to function rapidly as dormancy is lost and when external conditions permit. Cell vacuolation precedes cell elongation in both hypocotyl and radicle, and provides impetus for rapid germination.
NASA Astrophysics Data System (ADS)
Lisker, Joseph S.
1999-01-01
A new conception of the scientific problem of information exchange in the system plant-man-environment is developed. The laser-optical methods and the system are described which allow computer automated investigation of bio-objects without damaging their vital function. The results of investigation of optical-physiological features of plants and seeds are presented. The effects of chlorophyll well and IR beg are discovered for plants and also the effects os water pumping and protein transformations are shown for seeds. The perspectives of the use of the optical methods and equipment suggested to solve scientific problems of agriculture are discussed.
Expression of modified tocopherol content and profile in sunflower tissues.
Del Moral, Lidia; Fernández-Martínez, José M; Pérez-Vich, Begoña; Velasco, Leonardo
2012-01-30
Alpha-tocopherol is the predominant tocopherol form in sunflower seeds. Sunflower lines that accumulate increased levels of beta-, gamma- and delta-tocopherol in seeds as well as lines with reduced and increased total seed tocopherol content have been developed. The objective of this research was to evaluate whether the modified tocopherol levels are expressed in plant tissues other than seeds. Lines with increased levels of beta-, gamma- and delta-tocopherol in seeds also possessed increased levels of these tocopherols in leaves, roots and pollen. Correlation coefficients for the proportion of individual tocopherols in different plant tissues were significantly positive in all cases, ranging from 0.68 to 0.97. A line with reduced tocopherol content in seeds also showed reduced content in roots and pollen. Genetic modifications producing altered seed tocopherol profiles in sunflower are also expressed in leaves, roots and pollen. Reduced total seed tocopherol content is mainly expressed at the root and pollen level. The expression of tocopherol mutations in other plant tissues will enable further studies on the physiological role of tocopherols and could be of interest for early selection for these traits in breeding programmes. Copyright © 2011 Society of Chemical Industry.
Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro
2015-01-01
Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617
Liu, Jing; Li, Dengwu; Wang, Dongmei; Liu, Yu; Song, Huiying
2017-08-01
The allelopathic effects of Juniperus rigida litter aqueous extract (LE) on wheat and Pinus tabuliformis were studied, as well as the physiological responses to the extract. High concentration LE (0.10 g Dw/ml) significantly inhibited the seed germination and seedling growth in receptor plants. The chlorophyll content and root activity in the wheat seedlings were reduced significantly across all treatments; however, those were more prominently reduced at high concentration (0.10 g Dw/ml) but received little stimulation at low concentration (0.025 g Dw/ml) in P. tabuliformis. The content of malonaldehyde (MDA) increased with increasing concentrations of LE, except at 0.025 g Dw/ml. Activities of antioxidant enzymes (POD, CAT and SOD) in receptor plants were all significantly inhibited at high concentrations but stimulated at low concentrations. These results demonstrate that the aqueous extract from J. rigida litter has allelopathic potential. Various phenolic compounds were identified in litter aqueous extract and litter ethanol extract by HPLC. The phenolic compound content in the aqueous extract was significantly lower than that in the ethanol extract. Chlorogenic acid and podophyllotoxin were the predominant phenolic compounds in both types of litter extracts. These findings suggest that the seed germination and seedling growth of P. tabuliformis and wheat would be inhibited when planted near large amounts J. rigida litter. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
On the language and physiology of dormancy and quiescence in plants.
Considine, Michael J; Considine, John A
2016-05-01
The language of dormancy is rich and poetic, as researchers spanning disciplines and decades have attempted to understand the spell that entranced 'Sleeping Beauty', and how she was gently awoken. The misleading use of 'dormancy', applied to annual axillary buds, for example, has confounded progress. Language is increasingly important as genetic and genomic approaches become more accessible to species of agricultural and ecological importance. Here we examine how terminology has been applied to different eco-physiological states in plants, and with pertinent reference to quiescent states described in other domains of life, in order to place plant quiescence and dormancy in a more complete context than previously described. The physiological consensus defines latency or quiescence as opportunistic avoidance states, where growth resumes in favourable conditions. In contrast, the dormant state in higher plants is entrained in the life history of the organism. Competence to resume growth requires quantitative and specific conditioning. This definition applies only to the embryo of seeds and specialized meristems in higher plants; however, mechanistic control of dormancy extends to mobile signals from peripheral tissues and organs, such as the endosperm of seed or subtending leaf of buds. The distinction between dormancy, quiescence, and stress-hardiness remains poorly delineated, most particularly in buds of winter perennials, which comprise multiple meristems of differing organogenic states. Studies in seeds have shown that dormancy is not a monogenic trait, and limited study has thus far failed to canalize dormancy as seen in seeds and buds. We argue that a common language, based on physiology, is central to enable further dissection of the quiescent and dormant states in plants. We direct the topic largely to woody species showing a single cycle of growth and reproduction per year, as these bear the majority of global timber, fruit, and nut production, as well being of great ecological value. However, for context and hypotheses, we draw on knowledge from annuals and other specialized plant conditions, from a perspective of the major physical, metabolic, and molecular cues that regulate cellular activity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Siddiqui, Manzer H; Al-Whaibi, Mohamed H; Basalah, Mohammed O
2011-07-01
Nickel toxicity affects many metabolic facets of plants and induces anatomical and morphological changes resulting in reduced growth and productivity. To overcome the damaging effects of nickel (Ni) stress, different strategies of the application of nutrients with plant hormones are being adopted. The present experiment was carried out to assess the growth and physiological response of wheat plant (Triticum aestivum L.) cv. Samma to pre-sowing seed treatment with GA(3) alone as well as in combination with Ca(2+) and/or Ni stress. The pre-sowing seed treatment of Ni decreased all the growth characteristics (plant height, root length, fresh, and dry weight) as well as chlorophyll (Chl) content and enzyme carbonic anhydrase (CA: E.C. 4.2.1.1) activity. However, an escalation was recorded in malondialdehyde content and electrolyte leakage in plants raised from seed soaked with Ni alone. Moreover, all the growth parameters and physiological attributes (Chl content, proline (Pro) content, CA, peroxidase (E.C.1.11.1.7), catalase (E.C. 1.11.1.6), superoxide dismutase (E.C. 1.15.1.1), ascorbate peroxidase (E.C. 1.11.1.11), and glutathione reductase (E.C. 1.6.4.2) were enhanced in the plants developed from the seeds soaked with the combination of GA(3) (10(-6) M), Ca(2+), and Ni. The present study showed that pre-sowing seed treatment of GA(3) with Ca(2+) was more capable in mitigation of adverse effect of Ni toxicity by improving the antioxidant system and Pro accumulation.
Genetic divergence of physiological-quality traits of seeds in a population of peppers.
Pessoa, A M S; Barroso, P A; do Rêgo, E R; Medeiros, G D A; Bruno, R L A; do Rêgo, M M
2015-10-16
Brazil has a great diversity of Capsicum peppers that can be used in breeding programs. The objective of this study was to evaluate genetic variation in traits related to the physiological quality of seeds of Capsicum annuum L. in a segregating F2 population and its parents. A total of 250 seeds produced by selfing in the F1 generation resulting from crosses between UFPB 77.3 and UFPB 76 were used, with 100 seeds of both parents used as additional controls, totaling 252 genotypes. The seeds were germinated in gerboxes containing substrate blotting paper moistened with distilled water. Germination and the following vigor tests were evaluated: first count, germination velocity index, and root and shoot lengths. Data were subjected to analysis of variance, and means were compared by Scott and Knott's method at 1% probability. Tocher's clustering based on Mahalanobis distance and canonical variable analysis with graphic dispersion of genotypes were performed, and genetic parameters were estimated. All variables were found to be significant by the F test (P ≤ 0.01) and showed high heritability and a CVg/CVe ratio higher than 1.0, indicating genetic differences among genotypes. Parents (genotypes 1 and 2) formed distinct groups in all clustering methods. Genotypes 3, 104, 153, and 232 were found to be the most divergent according to Tocher's clustering method, and this was mainly due to early germination, which was observed on day 14, and would therefore be selected. Understanding the phenotypic variability among these 252 genotypes will serve as a basis for continuing the breeding program within this family.
Cellular Response to Reagent-Free Electron-Irradiated Gelatin Hydrogels.
Wisotzki, Emilia I; Friedrich, Ralf P; Weidt, Astrid; Alexiou, Christoph; Mayr, Stefan G; Zink, Mareike
2016-06-01
As a biomaterial, it is well established that gelatin exhibits low cytotoxicity and can promote cellular growth. However, to circumvent the potential toxicity of chemical crosslinkers, reagent-free crosslinking methods such as electron irradiation are highly desirable. While high energy irradiation has been shown to exhibit precise control over the degree of crosslinking, these hydrogels have not been thoroughly investigated for biocompatibility and degradability. Here, NIH 3T3 murine fibroblasts are seeded onto irradiated gelatin hydrogels to examine the hydrogel's influence on cellular viability and morphology. The average projected area of cells seeded onto the hydrogels increases with irradiation dose, which correlates with an increase in the hydrogel's shear modulus up to 10 kPa. Cells on these hydrogels are highly viable and exhibits normal cell cycles, particularly when compared to those grown on glutaraldehyde crosslinked gelatin hydrogels. However, proliferation is reduced on both types of crosslinked samples. To mimic the response of the hydrogels in physiological conditions, degradability is monitored in simulated body fluid to reveal strongly dose-dependent degradation times. Overall, given the low cytotoxicity, influence on cellular morphology and variability in degradation times of the electron irradiated gelatin hydrogels, there is significant potential for application in areas ranging from regenerative medicine to mechanobiology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bai, Yuguang; Liu, Huifang; Niu, Xueli; Wang, Zhiwei; Wang, Qian
2016-01-01
The success of a biological invasion relies on the environment and is closely linked to factors such as water and temperature. Invasive plant species display different seed characteristics, including shape. Field sandbur (Cenchrus pauciflorus) is a globally widespread invasive species capable of adapting to broad environmental conditions. However, its germination response to water and temperature still remains unclear. C. pauciflorus contains two seeds in the same bur that differ in size: big seeds (M) and small seeds (P). Separate greenhouse experiments were conducted under different temperature regimes (0/10°C, 5/15°C, 10/20°C, 15/25°C, 18/28°C, 20/30°C and 25/35°C) and water potentials (-1.50Mpa, -1.00Mpa, -0.75Mpa, -0.50Mpa, -0.25Mpa and 0Mpa) for M and P seeds. The results support the hypothesis that germination of C. pauciflorus is significantly influenced by seed type, temperature and water potential. M and P seeds responded differently to varied alternative temperatures and water potentials. However, M and P seeds were more sensitive to water potential than to temperature. Optimal conditions for M and P seed germination were measured at 25/35°C (night temperature/day temperature) and 20/30°C, respectively. In contrast, the highest germination rate was observed for the 0Mpa of the water potential treatment. Additionally, base temperature (Tbase) and base water potential (Wbase) were lower for M (7.7°C, -1.11Mpa at 10/20°C, and -1.07Mpa at 20/30°C) than for P (9.4°C, -0.92Mpa at 10/20°C, and -0.52Mpa at 20/30°C). These different germination strategies of M and P seeds with respect to temperature and water potential increased overall plant propagation. These results indicate that tropical and subtropical regions water potentials beyond -0.50Mpa (10/20°C) or -1.00Mpa (20/30°C) face a potential risk of C. pauciflorus invasion. PMID:27992496
Zhang, Zhixin; Tian, Xun; Bai, Yuguang; Liu, Huifang; Niu, Xueli; Wang, Zhiwei; Wang, Qian
2016-01-01
The success of a biological invasion relies on the environment and is closely linked to factors such as water and temperature. Invasive plant species display different seed characteristics, including shape. Field sandbur (Cenchrus pauciflorus) is a globally widespread invasive species capable of adapting to broad environmental conditions. However, its germination response to water and temperature still remains unclear. C. pauciflorus contains two seeds in the same bur that differ in size: big seeds (M) and small seeds (P). Separate greenhouse experiments were conducted under different temperature regimes (0/10°C, 5/15°C, 10/20°C, 15/25°C, 18/28°C, 20/30°C and 25/35°C) and water potentials (-1.50Mpa, -1.00Mpa, -0.75Mpa, -0.50Mpa, -0.25Mpa and 0Mpa) for M and P seeds. The results support the hypothesis that germination of C. pauciflorus is significantly influenced by seed type, temperature and water potential. M and P seeds responded differently to varied alternative temperatures and water potentials. However, M and P seeds were more sensitive to water potential than to temperature. Optimal conditions for M and P seed germination were measured at 25/35°C (night temperature/day temperature) and 20/30°C, respectively. In contrast, the highest germination rate was observed for the 0Mpa of the water potential treatment. Additionally, base temperature (Tbase) and base water potential (Wbase) were lower for M (7.7°C, -1.11Mpa at 10/20°C, and -1.07Mpa at 20/30°C) than for P (9.4°C, -0.92Mpa at 10/20°C, and -0.52Mpa at 20/30°C). These different germination strategies of M and P seeds with respect to temperature and water potential increased overall plant propagation. These results indicate that tropical and subtropical regions water potentials beyond -0.50Mpa (10/20°C) or -1.00Mpa (20/30°C) face a potential risk of C. pauciflorus invasion.
Gaviria, Julian; Engelbrecht, Bettina M. J.
2015-01-01
Tree species distributions associated with rainfall are among the most prominent patterns in tropical forests. Understanding the mechanisms shaping these patterns is important to project impacts of global climate change on tree distributions and diversity in the tropics. Beside direct effects of water availability, additional factors co-varying with rainfall have been hypothesized to play an important role, including pest pressure and light availability. While low water availability is expected to exclude drought-intolerant wet forest species from drier forests (physiological tolerance hypothesis), high pest pressure or low light availability are hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling transition, the potentially most critical stage for species discrimination, we conducted a reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment success after one year did not reflect species distribution patterns. However, in the wet forest, wet origin species had a home advantage over dry forest species through higher growth rates. At the same time, drought limited survival of wet origin species in the dry forest, supporting the physiological tolerance hypothesis. Together these processes sort species over longer time frames, and exclude species outside their respective home range. Although we found pronounced effects of pests and some effects of light availability on the seedlings, they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-seedling transition. Our results underline that changes in water availability due to climate change will have direct consequences on tree regeneration and distributions along tropical rainfall gradients, while indirect effects of light and pests are less important. PMID:26619138
Multivariate Analysis of the Cotton Seed Ionome Reveals a Shared Genetic Architecture
Pauli, Duke; Ziegler, Greg; Ren, Min; Jenks, Matthew A.; Hunsaker, Douglas J.; Zhang, Min; Baxter, Ivan; Gore, Michael A.
2018-01-01
To mitigate the effects of heat and drought stress, a better understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in a hot, arid environment. The elemental concentrations (ionome) of seed samples from the population were profiled in addition to those of soil samples taken from throughout the field site to better model environmental variation. The elements profiled in seeds exhibited moderate to high heritabilities, as well as strong phenotypic and genotypic correlations between elements that were not altered by the imposed irrigation regimes. Quantitative trait loci (QTL) mapping results from a Bayesian classification method identified multiple genomic regions where QTL for individual elements colocalized, suggesting that genetic control of the ionome is highly interrelated. To more fully explore this genetic architecture, multivariate QTL mapping was implemented among groups of biochemically related elements. This analysis revealed both additional and pleiotropic QTL responsible for coordinated control of phenotypic variation for elemental accumulation. Machine learning algorithms that utilized only ionomic data predicted the irrigation regime under which genotypes were evaluated with very high accuracy. Taken together, these results demonstrate the extent to which the seed ionome is genetically interrelated and predictive of plant physiological responses to adverse environmental conditions. PMID:29437829
Girondé, Alexandra; Dubousset, Lucie; Trouverie, Jacques; Etienne, Philippe; Avice, Jean-Christophe
2014-01-01
Our current knowledge about sulfur (S) management by winter oilseed rape to satisfy the S demand of developing seeds is still scarce, particularly in relation to S restriction. Our goals were to determine the physiological processes related to S use efficiency that led to maintain the seed yield and quality when S limitation occurred at the bolting or early flowering stages. To address these questions, a pulse-chase 34SO2−4 labeling method was carried out in order to study the S fluxes from uptake and remobilization at the whole plant level. In response of S limitation at the bolting or early flowering stages, the leaves are the most important source organ for S remobilization during reproductive stages. By combining 34S-tracer with biochemical fractionation in order to separate sulfate from other S-compounds, it appeared that sulfate was the main form of S remobilized in leaves at reproductive stages and that tonoplastic SULTR4-type transporters were specifically involved in the sulfate remobilisation in case of low S availability. In response to S limitation at the bolting stage, the seed yield and quality were dramatically reduced compared to control plants. These data suggest that the increase of both S remobilization from source leaves and the root proliferation in order to maximize sulfate uptake capacities, were not sufficient to maintain the seed yield and quality. When S limitation occurred at the early flowering stage, oilseed rape can optimize the mobilization of sulfate reserves from vegetative organs (leaves and stem) to satisfy the demand of seeds and maintain the seed yield and quality. Our study also revealed that the stem may act as a transient storage organ for remobilized S coming from source leaves before its utilization by seeds. The physiological traits (S remobilization, root proliferation, transient S storage in stem) observed under S limitation could be used in breeding programs to select oilseed rape genotypes with high S use efficiency. PMID:25566272
Repression of CYSTATHIONINE γ-SYNTHASE in Seeds Recruits the S-Methylmethionine Cycle.
Cohen, Hagai; Hacham, Yael; Panizel, Irina; Rogachev, Ilana; Aharoni, Asaph; Amir, Rachel
2017-07-01
S -Methylmethionine (SMM) was suggested previously to participate in the metabolism of methionine (Met) in seeds. To further reveal its roles, we had previously produced transgenic Arabidopsis ( Arabidopsis thaliana ) RNA interference (RNAi) seeds with lower transcript expression of CYSTATHIONINE γ-SYNTHASE ( AtCGS ), Met's main regulatory enzyme. Unexpectedly, these seeds accumulated significantly higher levels of Met compared with control seeds through an as yet unknown mechanism. Here, transcript and metabolic analyses coupled with isotope-labeled [ 13 C]SMM and [ 13 C]Met feeding experiments enabled us to reveal that SMM that was synthesized in rosette leaves of RNAi plants significantly contributed to the accumulation of Met in their seeds at late stages of development. Seed-specific repression of AtCGS in RNAi seeds triggered the induction of genes operating in the SMM cycle of rosette leaves, leading to elevated transport of SMM toward the seeds, where higher reconversion rates of SMM to Met were detected. The metabolic rearrangements in RNAi seeds resulted in an altered sulfur-associated metabolism, such as lower amounts of Cys and glutathione, as well as a differential composition of glucosinolates. Together, the data propose a novel cross talk existing between seeds and rosette leaves along with mutual effects between the Asp family and SMM pathways operating in these tissues. They also shed light on the effects of higher Met levels on seed physiology and behavior. © 2017 American Society of Plant Biologists. All Rights Reserved.
Application of nuclear energy to agriculture. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moh, C.C.
The following research projects in radiation botany were conducted: mutation breeding of beans and cassava; biological response of coffee plants; and radiosensitivity of tropical plants. In the field of entomology experiments were conducted on radiosterilization of the Mediterranean fruit fly, the coffee leaf miner, the torsalo and the meliaceous shootborer. The following research projects in plant physiology were conducted: physiology of cassava plants; effects of temperature on germination of cacao seeds; physiology of cacao seeds; sulfur metabolism using /sup 35/S; diseases and parasites of banana fruits; the mechanism controlling dwarfism in a radioinduced single gene bean mutant; and the usemore » of wetting agents in foliar nutrition. The following research projects in soil chemistry were conducted: acidity and cation movement in tropical soils; phosphate in soils of the humid tropics; movement, adsorption and desorption of sulfates; free iron and aluminium oxides in tropical soils; mineralization of organic nitrogen in soils on volcanic materials; soil chemical properties of recent volcanic ash; and spatial distribution of the absorbing roots in coffee. Discussions are presented of installation of radiation facilities and collection of rainfall for fallout analysis. (HLW)« less
Hu, Xiao Wen; Wu, Yan Pei; Ding, Xing Yu; Zhang, Rui; Wang, Yan Rong; Baskin, Jerry M.; Baskin, Carol C.
2014-01-01
Studying seed dormancy and its consequent effect can provide important information for vegetation restoration and management. The present study investigated seed dormancy, seedling emergence and seed survival in the soil seed bank of Stipa bungeana, a grass species used in restoration of degraded land on the Loess Plateau in northwest China. Dormancy of fresh seeds was determined by incubation of seeds over a range of temperatures in both light and dark. Seed germination was evaluated after mechanical removal of palea and lemma (hulls), chemical scarification and dry storage. Fresh and one-year-stored seeds were sown in the field, and seedling emergence was monitored weekly for 8 weeks. Furthermore, seeds were buried at different soil depths, and then retrieved every 1 or 2 months to determine seed dormancy and seed viability in the laboratory. Fresh seeds (caryopses enclosed by palea and lemma) had non-deep physiological dormancy. Removal of palea and lemma, chemical scarification, dry storage (afterripening), gibberellin (GA3) and potassium nitrate (KNO3) significantly improved germination. Dormancy was completely released by removal of the hulls, but seeds on which hulls were put back to their original position germinated to only 46%. Pretreatment of seeds with a 30% NaOH solution for 60 min increased germination from 25% to 82%. Speed of seedling emergence from fresh seeds was significantly lower than that of seeds stored for 1 year. However, final percentage of seedling emergence did not differ significantly for seeds sown at depths of 0 and 1 cm. Most fresh seeds of S. bungeana buried in the field in early July either had germinated or lost viability by September. All seeds buried at a depth of 5 cm had lost viability after 5 months, whereas 12% and 4% seeds of those sown on the soil surface were viable after 5 and 12 months, respectively. PMID:25396423
Bhatt, Arvind; Gairola, Sanjay; El-Keblawy, Ali A
2016-06-01
Heterogeneity in seeds mostly occurs due to physiological, environmental and genetic factors, and these could affect seed dormancy and germination. Therefore, the aim of our study was to assess the effect of seed colour on germination behavior. For this, both light and temperature requirements were assessed in Lotus glinoides and Lotus halophilus (Fabaceae) from the hyper-arid deserts of the United Arab Emirates. Germination was assessed in terms of both final germination level (percentage) and germination rate, as expressed by Timson’s germination velocity index. Lotus glinoides produces black and yellow-colored seeds, and L. halophilus produces green and yellow seeds. Different seed lots were germinated in both light and darkness at different temperatures. Yellow seeds of the two species attained significantly lower germination, compared to black and green seeds. There was no specific light or temperature requirements for the germination of the two coloured seeds of L. glinoides; the effect of interactions between seed colour and both light and incubation temperature, were not significant on the final germination percentage. In L. halophilus, green seeds germinated significantly more in both light and darkness at lower temperatures (15/25 °C) and in light at higher temperatures (25/35 °C), compared to yellow seeds. Yellow seeds germinated faster, compared to black at 15/25 °C in L. glinoides and compared to green seeds at 15/25 °C and 25/35 °C in L. halophilus. Seed colour variation, at least in L. halophilus, could be a survival strategy that would determine the time of germination throughout the year in the unpredictable desert environment.
Novel seed adaptations of a monocotyledon seagrass in the wavy sea.
Soong, Keryea; Chiu, Shau-Ting; Chen, Ching-Nen Nathan
2013-01-01
Returning to the sea, just like invasion of land, has occurred in many groups of animals and plants. For flowering plants, traits adapted to the terrestrial environments have to change or adopt a new function to allow the plants to survive and prosper in the sea where water motion tends to rotate and move seeds. In this investigation, how seeds of the seagrass Thalassia hemprichii (Hydrocharitaceae), a common monocotyledon in the Indo-Pacific, adapt to the wavy environment was studied. Mature seeds were collected from Dongsha Atoll in South China Sea. The effects of light qualities on seed germination, the seed morphology, the unipolar distribution of starch granules in the endosperms and growth of root hair-like filamentous cells from basal surface of the seeds were all found to differ from those of terrestrial monocotyledons. Physiologically, germination of the seeds was stimulated by blue light rather than red light. Morphologically, the bell-shaped seeds coupled with the unipolar distribution of starch granules in the enlarged bases helped maintain their upright posture on the tidal seafloor. Growth of root hair-like filamentous cells from the basal surface of the seeds prior to primary root growth served to attach onto sediments, providing leverage and attachment required by the primary roots to insert into sediments. These filamentous cells grasped coral sand but not silicate sand, demonstrating a habitat preference of this species.
Novel Seed Adaptations of a Monocotyledon Seagrass in the Wavy Sea
Soong, Keryea; Chiu, Shau-Ting; Chen, Ching-Nen Nathan
2013-01-01
Returning to the sea, just like invasion of land, has occurred in many groups of animals and plants. For flowering plants, traits adapted to the terrestrial environments have to change or adopt a new function to allow the plants to survive and prosper in the sea where water motion tends to rotate and move seeds. In this investigation, how seeds of the seagrass Thalassia hemprichii (Hydrocharitaceae), a common monocotyledon in the Indo-Pacific, adapt to the wavy environment was studied. Mature seeds were collected from Dongsha Atoll in South China Sea. The effects of light qualities on seed germination, the seed morphology, the unipolar distribution of starch granules in the endosperms and growth of root hair-like filamentous cells from basal surface of the seeds were all found to differ from those of terrestrial monocotyledons. Physiologically, germination of the seeds was stimulated by blue light rather than red light. Morphologically, the bell-shaped seeds coupled with the unipolar distribution of starch granules in the enlarged bases helped maintain their upright posture on the tidal seafloor. Growth of root hair-like filamentous cells from the basal surface of the seeds prior to primary root growth served to attach onto sediments, providing leverage and attachment required by the primary roots to insert into sediments. These filamentous cells grasped coral sand but not silicate sand, demonstrating a habitat preference of this species. PMID:24040188
Cao, Xueyuan; Costa, Liliana M; Biderre-Petit, Corinne; Kbhaya, Bouchab; Dey, Nrisingha; Perez, Pascual; McCarty, Donald R; Gutierrez-Marcos, Jose F; Becraft, Philip W
2007-02-01
Viviparous1 (Vp1) encodes a B3 domain-containing transcription factor that is a key regulator of seed maturation in maize (Zea mays). However, the mechanisms of Vp1 regulation are not well understood. To examine physiological factors that may regulate Vp1 expression, transcript levels were monitored in maturing embryos placed in culture under different conditions. Expression of Vp1 decreased after culture in hormone-free medium, but was induced by salinity or osmotic stress. Application of exogenous abscisic acid (ABA) also induced transcript levels within 1 h in a dose-dependent manner. The Vp1 promoter fused to beta-glucuronidase or green fluorescent protein reproduced the endogenous Vp1 expression patterns in transgenic maize plants and also revealed previously unknown expression domains of Vp1. The Vp1 promoter is active in the embryo and aleurone cells of developing seeds and, upon drought stress, was also found in phloem cells of vegetative tissues, including cobs, leaves, and stems. Sequence analysis of the Vp1 promoter identified a potential ABA-responsive complex, consisting of an ACGT-containing ABA response element (ABRE) and a coupling element 1-like motif. Electrophoretic mobility shift assay confirmed that the ABRE and putative coupling element 1 components specifically bound proteins in embryo nuclear protein extracts. Treatment of embryos in hormone-free Murashige and Skoog medium blocked the ABRE-protein interaction, whereas exogenous ABA or mannitol treatment restored this interaction. Our data support a model for a VP1-dependent positive feedback mechanism regulating Vp1 expression during seed maturation.
Zhou, Jie; Guo, Lanping; Xiao, Wenjuan; Geng, Yanling; Wang, Xiao; Shi, Xin'gang; Dan, Staerk
2012-08-01
The process in the studies on physiological effects of rare earth elements in plants and their action mechanisms were summarized in the aspects of seed germination, photosynthesis, mineral metabolism and stress resistance. And the applications of rare earth elements in traditional Chinese medicine (TCM) in recent years were also overviewed, which will provide reference for further development and application of rare earth elements in TCM.
Toci, Aline T; Farah, Adriana
2014-06-15
In the present work, the volatile profiles of green and roasted Brazilian defective coffee seeds and their controls were characterised, totalling 159 compounds. Overall, defective seeds showed higher number and concentration of volatile compounds compared to those of control seeds, especially pyrazines, pyrroles and phenols. Corroborating our previous results, butyrolactone and hexanoic acid, previously considered as potential defective seeds' markers, were observed only in raw and roasted defective seeds, respectively, and not in control seeds. New compounds were suggested as potential defective seeds' markers: hexanoic acid (for raw and roasted defective seeds in general), butyrolactone (for raw defective seeds in general), and 3-ethyl-2-methyl-1,3-hexadiene (for raw black seeds); β-linalool and 2-butyl-3,5-dimethylpyrazine (for roasted defective seeds in general), and 2-pentylfuran (for roasted black seeds). Additional compounds suggested as low quality indicators were 2,3,5,6-tetramethylpyrazine,2,3-butanediol and 4-ethylguaiacol, β-linalool, 2-,3-dimethylbutyl butanoate, 2-phenylethyl acetate, 2,3-butanedione, hexanedioic acid, guaiacol, 2,3-dihydro-2-methyl-1H-benzopyrrol, 3-methylpiperidine, 2-pentylpiperidine, 3-octen-2-one, 2-octenal, 2-pentylfuran and 2-butyl-3-methylpyrazine. Copyright © 2014. Published by Elsevier Ltd.
An insight into the sialotranscriptome of the seed-feeding bug, Oncopeltus fasciatus.
Francischetti, Ivo M B; Lopes, Angela H; Dias, Felipe A; Pham, Van M; Ribeiro, José M C
2007-09-01
The salivary transcriptome of the seed-feeding hemipteran, Oncopeltus fasciatus (milkweed bug), is described following assembly of 1025 expressed sequence tags (ESTs) into 305 clusters of related sequences. Inspection of these sequences reveals abundance of low complexity, putative secreted products rich in the amino acids (aa) glycine, serine or threonine, which might function as silk or mucins and assist food canal lubrication and sealing of the feeding site around the mouthparts. Several protease inhibitors were found, including abundant expression of cystatin transcripts that may inhibit cysteine proteases common in seeds that might injure the insect or induce plant apoptosis. Serine proteases and lipases are described that might assist digestion and liquefaction of seed proteins and oils. Finally, several novel putative proteins are described with no known function that might affect plant physiology or act as antimicrobials.
Improving the sludge conditioning potential of moringa seed
NASA Astrophysics Data System (ADS)
Ademiluyi, Joel O.; Eze, Romanus M.
1990-01-01
In the search for a cheaper material to effectively condition sludge, oil-free moringa seed was prepared and tested. A Soxhlet apparatus was used to extract the oil from moringa seed ( Moringa oleifera). The oil-free seed (marc) has been found to have higher conditioning potential than the ordinary moringa seed. However, the traditional ferric chloride is still a better sludge conditioner than moringa seed marc. For the digested domestic sludge used, optimum conditioning dosages were found to be 0.6, 0.80, and 1.10% of the total solids for ferric chloride, marc of the moringa seed, and ordinary moringa seed, respectively. Since little or no operational material is lost in the extraction process, the moringa seed marc is a promising conditioner in place of the ordinary seed.
Bellaloui, Nacer; Smith, James R; Mengistu, Alemu
2017-01-01
The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and lignin, and inform growers of the importance of timely harvest for maintaining high seed quality.
Migicovsky, Zoe; Kovalchuk, Igor
2014-01-01
Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants. PMID:25482751
Migicovsky, Zoe; Kovalchuk, Igor
2014-01-01
Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants.
McGraw, K J; Hill, G E; Stradi, R; Parker, R S
2002-02-01
We investigated potential dietary and biochemical bases for carotenoid-based sexual dichromatism in American goldfinches (Carduelis tristis). Captive male and female finches were given access to the same type and amount of carotenoid pigments in the diet during their nuptial molt to assess differences in the degree to which the two sexes incorporated ingested pigments into their plumage. When birds were fed a uniform, plain-seed diet, or one that was supplemented with the red carotenoid canthaxanthin, we found that males grew more colorful plumage than females. HPLC analyses of feather pigments revealed that male finches incorporated a higher concentration of carotenoids into their pigmented feathers than females. Compared to females, males also deposited significantly more canary xanthophyll B into feathers when fed a plain-seed diet and a greater concentration and proportion of canthaxanthin when fed a carotenoid-supplemented diet. These results indicate that sex-specific expression of carotenoid pigmentation in American goldfinches may be affected by the means by which males and females physiologically utilize (e.g. absorb, transport, metabolize, deposit) carotenoid pigments available to them in the diet.
Abaidoo-Ayin, Harold K; Boakye, Prince G; Jones, Kerby C; Wyatt, Victor T; Besong, Samuel A; Lumor, Stephen E
2017-08-01
This study investigated the compositional characteristics and shelf-life of Njangsa seed oil (NSO). Oil from Njangsa had a high polyunsaturated fatty acid (PUFA) content of which alpha eleostearic acid (α-ESA), an unusual conjugated linoleic acid was the most prevalent (about 52%). Linoleic acid was also present in appreciable amounts (approximately 34%). Our investigations also indicated that the acid-catalyzed transesterification of NSO resulted in lower yields of α-ESA methyl esters, due to isomerization, a phenomenon which was not observed under basic conditions. The triacylglycerol (TAG) profile analysis showed the presence of at least 1 α-ESA fatty acid chain in more than 95% of the oil's TAGs. Shelf-life was determined by the Weibull Hazard Sensory Method, where the end of shelf-life was defined as the time at which 50% of panelists found the flavor of NSO to be unacceptable. This was determined as 21 wk. Our findings therefore support the potential commercial viability of NSO as an important source of physiologically beneficial PUFAs. © 2017 Institute of Food Technologists®.
Benomar, Lahcen; Lamhamedi, Mohammed S.; Rainville, André; Beaulieu, Jean; Bousquet, Jean; Margolis, Hank A.
2016-01-01
Assisted population migration (APM) is the intentional movement of populations within a species range to sites where future environmental conditions are projected to be more conducive to growth. APM has been proposed as a proactive adaptation strategy to maintain forest productivity and to reduce the vulnerability of forest ecosystems to projected climate change. The validity of such a strategy will depend on the adaptation capacity of populations, which can partially be evaluated by the ecophysiological response of different genetic sources along a climatic gradient. This adaptation capacity results from the compromise between (i) the degree of genetic adaptation of seed sources to their environment of origin and (ii) the phenotypic plasticity of functional trait which can make it possible for transferred seed sources to positively respond to new growing conditions. We examined phenotypic variation in morphophysiological traits of six seed sources of white spruce (Picea glauca [Moench] Voss) along a regional climatic gradient in Québec, Canada. Seedlings from the seed sources were planted at three forest sites representing a mean annual temperature (MAT) gradient of 2.2°C. During the second growing season, we measured height growth (H2014) and traits related to resources use efficiency and photosynthetic rate (Amax). All functional traits showed an adaptive response to the climatic gradient. Traits such as H2014, Amax, stomatal conductance (gs), the ratio of mesophyll to stomatal conductance, water use efficiency, and photosynthetic nitrogen-use efficiency showed significant variation in both physiological plasticity due to the planting site and seed source variation related to local genetic adaptation. However, the amplitude of seed source variation was much less than that related to plantation sites in the area investigated. The six seed sources showed a similar level of physiological plasticity. H2014, Amax and gs, but not carboxylation capacity (Vcmax), were correlated and decreased with a reduction of the average temperature of the growing season at seed origin. The clinal variation in H2014 and Amax appeared to be driven by CO2 conductance. The presence of locally adapted functional traits suggests that the use of APM may have advantages for optimizing seed source productivity in future local climates. PMID:26870067
Kumar, Pankaj; Sharma, Vasundhara; Atmaram, Chobhe Kapil; Singh, Bhupinder
2017-03-01
Soil salinity is a major constraint that limits legume productivity. Pigeonpea is a salt sensitive crop. Seed gamma irradiation at a very low dose (2.5 Gy) is known to enhance seedling establishment, plant growth and yield of cereals and other crops. The present study conducted using two genetically diverse varieties of pigeonpea viz., Pusa-991 and Pusa-992 aimed at establishing the role of pre-sowing seed gamma irradiation at 0, 0.0025, 0.005, 0.01, 0.02, 0.05 and 0.1 kGy on plant growth, seed yield and seed quality under salt stress at 0, 80 and 100 mM NaCl (soil solution EC equivalent 1.92, 5.86 and 8.02 dS/m, respectively) imposed right from the beginning of the experiment. Changes in carbon flow dynamics between shoot and root and concentration of osmolyte, glycine betaine, plant uptake and shoot and root partitioning of Na + and K + and activity of protein degrading enzyme protease were measured under the combined effect of gamma irradiation and salt stress. Positive affect of pre-sowing exposure of seed to low dose of gamma irradiation (<0.01 kGy) under salt stress was evident in pigeonpea. Pigeonpea variety, Pusa-992 showed a better salt tolerance response than Pusa-991 and that the radiated plants performed better than the unirradiated plants even at increasing salinity level. Seed yield and seed protein and iron content were also positively affected by the low dose gamma irradiation under NaCl stress. Multiple factors interacted to determine physiological salt tolerance response of pigeonpea varieties. Gamma irradiation caused a favourable alteration in the source-sink (shoot-root) partitioning of recently fixed carbon ( 14 C) under salt stress in pigeonpea. Gamma irradiation of seeds prior to sowing enhanced glycine betaine content and reduced protease activity at 60-day stage under various salt stress regimes. Lower partitioning of Na + and relatively higher accumulation of K + under irradiation treatment was the other important determinants that differentiated between salt-tolerant and salt-susceptible variety of pigeonpea. The study provides evidence and physiological basis for exploring exploitation of pre-sowing exposure of seeds with low-dose gamma ray for enhancing the salt tolerance response of crop plants.
Extraction, isolation and characterisation of oil bodies from pumpkin seeds for therapeutic use.
Adams, Gary G; Imran, Shahwar; Wang, Sheng; Mohammad, Abubaker; Kok, M Samil; Gray, David A; Channell, Guy A; Harding, Stephen E
2012-10-15
Pumpkin, a member of the Cucurbitaceae family has been used frequently as functional medicines for therapeutic use. Several phytochemicals such as polysaccharides, phenolic glycosides, 13-hydroxy-9Z, 11E-octadecatrienoic acid from the leaves of pumpkin, proteins from germinated seeds, have been isolated. Here the influence of pH, ionic strength, and temperature on the properties and stability of oil bodies from pumpkin (Cucurbita) were determined with a view to patterning oil body size and structure for future therapeutic intervention. Oil bodies from pumpkin seeds were extracted, isolated, characterised using optical microscopy, zeta potential and particle size distribution obtained. During microscopic analysis, the oil bodies were more intact and in an integrated form at the time of extraction but were ruptured with time. Water extracted oil bodies were spherical for all four layers where cream had larger oil bodies then upper curd. Lower curd and supernatant had considerably smaller size with lower curd densely packed and seemed to be rich in oil bodies than any of the four layers. At pH 3, in the absence of salt, the zeta potential is approximately +30 mV, but as the salt concentration increases, the ζ potential rises at 10 mM but then decreases over the salt range. This trend continues for the upper curd, lower curd and the supernatant and the degree of the reduction (mV) in zeta potential is of the order cream
Wang, Ai Bo; Tan, Dun Yan; Baskin, Carol C; Baskin, Jerry M
2010-07-01
Most studies on seed position-dependent effects have focused on germination characteristics. Our aim was to determine the effects of seed position in the spikelet on differences in timing of germination and on the ecological life history of the grass Eremopyrum distans in its cold desert habitat. For seeds in three spikelet positions, morphology, mass and dormancy/germination characteristics were determined in the laboratory, and seeds planted in field plots with and without watering were followed to reproduction to investigate seedling emergence and survival, plant size and seed production. After maturation, of the seeds within the spikelet, basal ones (group 1) are the largest and have the highest proportion with physiological dormancy, while distal ones (group 3) are the smallest and have the highest proportion of non-dormant seeds. A higher percentage of seeds after-ripened in groups 2 and 3 than in group 1. Seeds sown in the field in early summer and watered at short, regular intervals germinated primarily in autumn, while those under natural soil moisture conditions germinated only in spring. Both cohorts completed their life cycle in early summer. Seeds in group 1 had lower percentages of seedling emergence and higher percentages of seedling survival than those in groups 2 and 3. Also, plants from group 1 seeds were larger and produced more seeds per plant than those from groups 2 and 3. Seed position-dependent mass was associated with quantitative differences in several life history traits of E. distans. The environmentally enforced (low soil moisture) delay of germination from autumn to spring results in a reduction in fitness via reduction in number of seeds produced per plant.
Li, Jiaguo; Wang, Yu; Pritchard, Hugh W; Wang, Xiaofeng
2014-06-01
Seed deterioration is detrimental to plant germplasm conservation, and predicting seed germination and vigor with reliability and sensitivity means is urgently needed for practical problems. We investigated the link between hydrogen peroxide (H2O2) flux, oxygen influx and seed vigor of Caragana korshinskii by the non-invasive micro-test technique (NMT). Some related physiological and biochemical changes in seeds were also determined to further explain the changes in the molecular fluxes. The results showed that there was a good linear relationship between germination and H2O2 flux, and that O2 influx was more suitable for assessing seed vigor. H2O2 flux changed relatively little initially, mainly affected by antioxidants (APX, CAT and GSH) and H2O2 content; afterward, the efflux increased more and more rapidly due to high membrane permeability. With the damage of mitochondrial respiration and membrane integrity, O2 influx was gradually reduced. We propose that monitoring H2O2 and O2 fluxes by NMT may be a reliable and sensitive method to evaluate seed germination and vigor.
Arana, María Verónica; Tognacca, Rocío Soledad; Estravis-Barcalá, Maximiliano; Sánchez, Rodolfo Augusto; Botto, Javier Francisco
2017-12-01
The relief of dormancy and the promotion of seed germination are of extreme importance for a successful seedling establishment. Although alternating temperatures and light are signals promoting the relief of seed dormancy, the underlying mechanisms of their interaction in seeds are scarcely known. By exposing imbibed Arabidopsis thaliana dormant seeds to two-day temperature cycles previous of a red light pulse, we demonstrate that the germination mediated by phytochrome B requires the presence of functional PSEUDO-RESPONSE REGULATOR 7 (PRR7) and TIMING OF CAB EXPRESSION 1 (TOC1) alleles. In addition, daily cycles of alternating temperatures in darkness reduce the protein levels of DELAY OF GERMINATION 1 (DOG1), allowing the expression of TOC1 to induce seed germination. Our results suggest a functional role for some components of the circadian clock related with the action of DOG1 for the integration of alternating temperatures and light signals in the relief of seed dormancy. The synchronization of germination by the synergic action of light and temperature through the activity of circadian clock might have ecological and adaptive consequences. © 2017 John Wiley & Sons Ltd.
Saharan, Vinod; Kumaraswamy, R V; Choudhary, Ram Chandra; Kumari, Sarita; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim
2016-08-10
Food crop seedlings often have susceptibility to various abiotic and biotic stresses. Therefore, in the present study, we investigated the impact of Cu-chitosan nanoparticles (NPs) on physiological and biochemical changes during maize seedling growth. Higher values of percent germination, shoot and root length, root number, seedling length, fresh and dry weight, and seed vigor index were obtained at 0.04-0.12% concentrations of Cu-chitosan NPs as compared to water, CuSO4, and bulk chitosan treatments. Cu-chitosan NPs at the same concentrations induced the activities of α-amylase and protease enzymes and also increased the total protein content in germinating seeds. The increased activities of α-amylase and protease enzymes corroborated with decreased content of starch and protein, respectively, in the germinating seeds. Cu-chitosan NPs at 0.16% and CuSO4 at 0.01% concentrations showed inhibitory effect on seedling growth. The observed results on seedling growth could be explained by the toxicity of excess Cu and growth promotory effect of Cu-chitosan NPs. Physiological and biochemical studies suggest that Cu-chitosan NPs enhance the seedling growth of maize by mobilizing the reserved food, primarily starch, through the higher activity of α-amylase.
Suma, A; Sreenivasan, Kalyani; Singh, A K; Radhamani, J
2013-01-01
The role of relative humidity (RH) while processing and storing seeds of Brassica spp. and Eruca sativa was investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species of Brassica was also evaluated. The samples were stored at 40 ± 2°C in sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour, B. rapa and B. juncea were better performers than B. napus and Eruca sativa.
NASA Astrophysics Data System (ADS)
Isaac-Renton, Miriam; Montwé, David; Hamann, Andreas; Spiecker, Heinrich; Cherubini, Paolo; Treydte, Kerstin
2016-04-01
Choosing drought-tolerant seed sources for reforestation may help adapt forests to climate change. By combining dendroecological growth analysis with a long-term provenance trial, we assessed growth and drought tolerance of different populations of a wide-ranging conifer, lodgepole pine (Pinus contorta). This experimental design simulated a climate warming scenario through southward seed transfer, and an exceptional drought also occurred in 2002. We felled over 500 trees, representing 23 seed sources, which were grown for 32 years at three warm, dry sites in southern British Columbia, Canada. Northern populations showed poor growth and drought tolerance. These seed sources therefore appear to be especially at risk under climate change. Before recommending assisted migration of southern seeds towards the north, however, it is important to understand the physiological mechanisms underlying these responses. We combine functional wood anatomy with a dual-isotope approach to evaluate these mechanisms to drought response.
Quach, Truyen N; Nguyen, Hanh T M; Valliyodan, Babu; Joshi, Trupti; Xu, Dong; Nguyen, Henry T
2015-06-01
Nuclear factor-Y (NF-Y), a heterotrimeric transcription factor, is composed of NF-YA, NF-YB and NF-YC proteins. In plants, there are usually more than 10 genes for each family and their members have been identified to be key regulators in many developmental and physiological processes controlling gametogenesis, embryogenesis, nodule development, seed development, abscisic acid (ABA) signaling, flowering time, primary root elongation, blue light responses, endoplasmic reticulum (ER) stress response and drought tolerance. Taking the advantages of the recent soybean genome draft and information on functional characterizations of nuclear factor Y (NF-Y) transcription factor family in plants, we identified 21 GmNF-YA, 32 GmNF-YB, and 15 GmNF-YC genes in the soybean (Glycine max) genome. Phylogenetic analyses show that soybean's proteins share strong homology to Arabidopsis and many of them are closely related to functionally characterized NF-Y in plants. Expression analysis in various tissues of flower, leaf, root, seeds of different developmental stages, root hairs under rhizobium inoculation, and drought-treated roots and leaves revealed that certain groups of soybean NF-Y are likely involved in specific developmental and stress responses. This study provides extensive evaluation of the soybean NF-Y family and is particularly useful for further functional characterization of GmNF-Y proteins in seed development, nodulation and drought adaptation of soybean.
Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions
Nguyen, Quoc Thien.; Kisiala, Anna; Andreas, Peter; Neil Emery, R.J.; Narine, Suresh
2016-01-01
Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds. PMID:27252591
Alencar, Nara L M; Innecco, Renato; Gomes-Filho, Enéas; Gallão, Maria Izabel; Alvarez-Pizarro, Juan C; Prisco, José T; Oliveira, Alexandre B De
2012-09-01
Cereus jamacaru, a Cactaceae found throughout northeast Brazil, is widely used as cattle food and as an ornamental and medicinal plant. However, there has been little information about the physiological and biochemical aspects involved in its germination. The aim of this study was to investigate its reserve mobilization during germination and early seedling growth. For this, C. jamacaru seeds were germinated in a growth chamber and collected at 0, 2, 4, 5, 6, 8 and 12 days after imbibition for morphological and biochemical analyses. Dry seeds had wrinkled seed coats and large, curved embryos. Lipids were the most abundant reserve, comprising approximately 55% and 65% of the dry mass for cotyledons and the hypocotylradicle axis, respectively. Soluble sugars and starch were the minor reserves, corresponding to approximately 2.2% of the cotyledons' dry mass, although their levels showed significant changes during germination. Soluble proteins corresponded to 40% of the cotyledons' dry mass, which was reduced by 81% at the final period of germination compared to dry seeds. C. jamacaru seed can be classified as an oil seed due to its high lipid content. Moreover, lipids were the main reserve mobilized during germination because their levels were strongly reduced after seed germination, while proteins were the second most utilized reserve in this process.
Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng
2018-01-01
Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592
Downie, Bruce; Gurusinghe, Sunitha; Dahal, Petambar; Thacker, Richard R.; Snyder, John C.; Nonogaki, Hiroyuki; Yim, Kyuock; Fukanaga, Keith; Alvarado, Veria; Bradford, Kent J.
2003-01-01
Raffinose family oligosaccharides (RFOs) have been implicated in mitigating the effects of environmental stresses on plants. In seeds, proposed roles for RFOs include protecting cellular integrity during desiccation and/or imbibition, extending longevity in the dehydrated state, and providing substrates for energy generation during germination. A gene encoding galactinol synthase (GOLS), the first committed enzyme in the biosynthesis of RFOs, was cloned from tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds, and its expression was characterized in tomato seeds and seedlings. GOLS (LeGOLS-1) mRNA accumulated in developing tomato seeds concomitant with maximum dry weight deposition and the acquisition of desiccation tolerance. LeGOLS-1 mRNA was present in mature, desiccated seeds but declined within 8 h of imbibition in wild-type seeds. However, LeGOLS-1 mRNA accumulated again in imbibed seeds prevented from completing germination by dormancy or water deficit. Gibberellin-deficient (gib-1) seeds maintained LeGOLS-1 mRNA amounts after imbibition unless supplied with gibberellin, whereas abscisic acid (ABA) did not prevent the loss of LeGOLS-1 mRNA from wild-type seeds. The presence of LeGOLS-1 mRNA in ABA-deficient (sitiens) tomato seeds indicated that wild-type amounts of ABA are not necessary for its accumulation during seed development. In all cases, LeGOLS-1 mRNA was most prevalent in the radicle tip. LeGOLS-1 mRNA accumulation was induced by dehydration but not by cold in germinating seeds, whereas both stresses induced LeGOLS-1 mRNA accumulation in seedling leaves. The physiological implications of LeGOLS-1 expression patterns in seeds and leaves are discussed in light of the hypothesized role of RFOs in plant stress tolerance. PMID:12644684
Lu, J J; Tan, D Y; Baskin, C C; Baskin, J M
2017-01-01
Considerable variation occurs in post-maturity timing of dehiscence in fruits of Brassicaceae species, and several studies have shown that the pericarp plays an important role in seed germination and retention of viability in species with indehiscent fruits. However, little is known about the significance to seed biology of delay in pericarp dehiscence for <1 year in the field. Thus, we determined the role of the pericarps of Leptaleum filifolium and Neotorularia korolkovii, which open in <1 year after fruit maturity and dispersal, in seed germination and retention of seed viability. We compared dormancy-break via after-ripening in the laboratory and germination phenology and retention of seed viability in intact siliques and isolated seeds buried in an experimental garden. Seeds of both species have Type 6 non-deep physiological dormancy, which is enhanced by the pericarp. Seeds of both species after-ripened during summer 2013, and some of them germinated in autumn and some in the following spring in watered and non-watered soil. Germination percentages of seeds in siliques increased in soil in spring 2014, after the pericarps had opened. Most isolated seeds of L. filifolium and N. korolkovii had germinated or were dead by spring 2014 and summer 2015, respectively, whereas 60% of the seeds of both species in the (opened) pericarps were viable after 24 months. Thus, although the pericarp opened 9-10 months after burial, its presence had a significant effect on seed dormancy, germination phenology and retention of viability of seeds of L. filifolium and N. korolkovii. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Singh, Surendra P; Phartyal, Shyam S; Rosbakh, Sergey
2017-09-01
Seed traits are related to several ecological attributes of a plant species, including its distribution. While the storage physiology of desiccation-sensitive seeds has drawn considerable attention, their ecology has remained sidelined, particularly how the strong seasonality of precipitation in monsoonal climate affects their temporal and spatial distribution. We compiled data on seed mass, seed desiccation behavior, seed shedding, and germination periodicity in relation to monsoon and altitude for 198 native tree species of Indian Himalayas and adjoining plains to find out (1) the adaptive significance of seed mass and seed desiccation behavior in relation to monsoon and (2) the pattern of change in seed mass in relation to altitude, habitat moisture, and succession. The tree species fall into three categories with respect to seed shedding and germination periodicities: (1) species in which both seed shedding and germination are synchronized with monsoon, referred to as monsoon-synchronized (MS, 46 species); (2) species in which seed germination is synchronized with monsoon, but seeds are shed several months before monsoon, referred to as partially monsoon-synchronized (PMS, 112 species); and (3) species in which both shedding and germination occur outside of monsoon months, referred to as monsoon-desynchronized (MD, 39 species). The seed mass of MS species (1,718 mg/seed) was greater than that of PMS (627 mg/seed) and MD (1,144 mg/seed). Of the 40 species with desiccation-sensitive seeds, 45% belong to the MS category, almost similar (approx. 47%) to woody plants with desiccation-sensitive seeds in evergreen rain forests. Seed mass differed significantly as per seed desiccation behavior and successional stage. No relationship of seed mass was found with altitude alone and on the basis of seed desiccation behavior. However, seed mass trend along the altitude differed among monsoon synchronization strategies. Based on our findings, we conclude that in the predicted climate change (warming and uncertain precipitation pattern) scenario, a delay or prolonged break-spell of monsoon may adversely affect the regeneration ecology of desiccation-sensitive seed-bearing species dominant over large forest areas of monsoonal climate.
He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron
2012-01-01
Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.
Dufoo-Hurtado, Miguel D; Huerta-Ocampo, José Á; Barrera-Pacheco, Alberto; Barba de la Rosa, Ana P; Mercado-Silva, Edmundo M
2015-01-01
Low-temperature conditioning of garlic "seed" cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that "seed" bulbs from "Coreano" variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic "seed" cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic "seed" cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies.
Li, Haiyan; Li, Xiaoshuang; Zhang, Daoyuan; Liu, Huiliang; Guan, Kaiyun
2013-01-01
Eremosparton songoricum (Litv.) Vass. is an endemic and extremely drought-resistant desert plant with populations that are gradually declining due to the failure of sexual recruitment. The effects of drought stress on the seed germination and physiological characteristics of seeds and seedlings were investigated. The results showed that the germination percentage decreased with an increase of polyethylene glycol 6000 (PEG) concentration: -0.3 MPa (5 % PEG) had a promoting effect on seed germination, -0.9 MPa (15 % PEG) dramatically reduced germination, and -1.8 MPa (30 % PEG) was the threshold for E. songoricum germination. However, the contents of proline and soluble sugars and the activity of CAT increased with increasing PEG concentrations. At the young seedling stage, the proline content and CAT, SOD and POD activities all increased at 2 h and then decreased; except for a decrease at 2 h, the MDA content also increased compared to the control (0 h). These results indicated that 2 h may be a key response time point for E. songoricum to resist drought stress. The above results demonstrate that drought stress can suppress and delay the germination of E. songoricum and that the seeds accumulate osmolytes and augment the activity of antioxidative enzymes to cope with drought injury. E. songoricum seedlings are sensitive to water stress and can quickly respond to drought but cannot tolerate drought for an extended period. Although such physiological and biochemical changes are important strategies for E. songoricum to adapt to a drought-prone environment, they may be, at least partially, responsible for the failure of sexual reproduction under natural conditions.
NASA Astrophysics Data System (ADS)
Tong, Jiayun; He, Rui; Zhang, Xiaoli; Zhan, Ruoting; Chen, Weiwen; Yang, Size
2014-03-01
The objective of this paper is to demonstrate whether air plasma can change the seed germination characteristics, seedling emergence, as well as biochemical reactivity, in Andrographis paniculata (A. paniculata) seedlings by modifying the seed coat and finding a beneficial treatment dose. Eight treatment doses and one control were used to conduct electrical conductivity determination, a germination test, a seedling emergence test and a biochemical assay. The results showed that after being treated with air plasma excited at 5950 V for 10 s, the permeability of the seeds was improved significantly, resulting in the acceleration of seed germination and seedling emergence. In the meantime, the catalase activity and catalase isoenzyme expression were also improved, while the malondialdehyde content in the seedlings was decreased (which means greater counteraction with environmental stress). After being treated with 4250 V for 10 s and 5950 V for 20 s, the seed germination was enhanced, but without an obvious change in seedling emergence. However, after treatment with 3400 V for 20 s and 5100 V for 10 s, the permeability of the seeds was decreased, resulting in a delay in seedling emergence. These results indicate that air plasma can change the physiological and biochemical characteristics of Andrographis paniculata seeds by modifying the seed coat, combined with the effects of the active plasma species, and that different treating doses have different effects.
Lu, Juan J.; Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.
2016-01-01
The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD. PMID:27117090
Efficiency of seed production in southern pine seed orchards
David L. Bramlett
1977-01-01
Seed production in southern pine seed orchards can be evaluated by estimating the efficiency of four separate stages of cone, seed, and seedling development. Calculated values are: cone efficiency (CE), the ratio of mature cones to the initial flower crop; seed efficiency (SE), the ratio of filled seeds per cone to the seed potential; extraction efficiency (EE), the...
Gugerell, Alfred; Neumann, Anne; Kober, Johanna; Tammaro, Loredana; Hoch, Eva; Schnabelrauch, Matthias; Kamolz, Lars; Kasper, Cornelia; Keck, Maike
2015-02-01
Generation of adipose tissue for burn patients that suffer from an irreversible loss of the hypodermis is still one of the most complex challenges in tissue engineering. Electrospun materials with their micro- and nanostructures are already well established for their use as extracellular matrix substitutes. Gelatin is widely used in tissue engineering to gain thickness and volume. Under conventional static cultivation methods the supply of nutrients and transport of toxic metabolites is controlled by diffusion and therefore highly dependent on size and porosity of the biomaterial. A widely used method in order to overcome these limitations is the medium perfusion of 3D biomaterial-cell-constructs. In this study we combined perfusion bioreactor cultivation techniques with electrospun poly(l-lactide-co-glycolide) (P(LLG)) and gelatin hydrogels together with adipose-derived stem cells (ASCs) for a new approach in soft tissue engineering. ASCs were seeded on P(LLG) scaffolds and in gelatin hydrogels and cultivated for 24 hours under static conditions. Thereafter, biomaterials were cultivated under static conditions or in a bioreactor system for three, nine or twelve days with a medium flow of 0.3ml/min. Viability, morphology and differentiation of cells was monitored. ASCs seeded on P(LLG) scaffolds had a physiological morphology and good viability and were able to migrate from one electrospun scaffold to another under flow conditions but not migrate through the mesh. Differentiated ASCs showed lipid droplet formations after 21 days. Cells in hydrogels were viable but showed rounded morphology. Under flow conditions, morphology of cells was more diffuse. ASCs could be cultivated on P(LLG) scaffolds and in gelatin hydrogels under flow conditions and showed good cell viability as well as the potential to differentiate. These results should be a next step to a physiological three-dimensional construct for soft tissue engineering and regeneration. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Lazarus, Brynne E.; Castanha, Cristina; Germino, Matthew; Kueppers, Lara M.; Moyes, Andrew B.
2018-01-01
1.Predictions of upslope range shifts for tree species with warming are based on assumptions of moisture stress at lower elevation limits and low temperature stress at high elevation limits. However, recent studies have shown that warming can reduce tree seedling establishment across the entire gradient from subalpine forest to alpine via moisture limitation. Warming effects also vary with species, potentially resulting in community shifts in high elevation forests. 2.We examined the growth and physiology underlying effects of warming on seedling demographic patterns. We evaluated dry mass (DM), root length, allocation above- and belowground, and relative growth rate (RGR) of whole seedlings, and their ability to avoid or endure water stress via water-use efficiency and resisting turgor loss, for Pinus flexilis, Picea engelmannii and Pinus contorta seeded below, at, and above treeline in experimentally warmed, watered, and control plots in the Rocky Mountains, USA. We expected that growth and allocation responses to warming would relate to moisture status and that variation in drought tolerance traits would explain species differences in survival rates. 3.Across treatments and elevations, seedlings of all species had weak turgor-loss resistance, and growth was marginal with negative RGR in the first growth phase (-0.01 to -0.04 g/g/d). Growth was correlated with soil moisture, particularly in the relatively small-seeded P. contorta and P. engelmannii. P. flexilis, known to have the highest survivorship, attained the greatest DM and longest root but was also the slowest growing and most water-use-efficient. This was likely due to its greater reliance on seed reserves. Seedlings developed 15% less total DM, 25% less root DM, and 11% shorter roots in heated compared to unheated plots. Higher temperatures slightly increased DM, root length and RGR where soils were wettest, but more strongly decreased these variables under drier conditions. 4.Synthesis: The surprising heat-inhibition of tree seedling establishment at the cold edge of forests appears to have a physiological basis: newly germinated seedlings have poor moisture stress tolerance, which appears related to marginal initial growth and heavy reliance on seed reserves. Variation in these attributes among tree species at treeline helps explain their different climate responses.
Carrillo-Barral, Néstor; Matilla, Angel J; García-Ramas, Cristina; Rodríguez-Gacio, María Del Carmen
2015-12-01
DELAY OF GERMINATION 1 (AtDOG1) was the first gene identified as dormancy-associated, but its physiological role in germination is far from being understood. Here, an orthologue of AtDOG1 in Sisymbrium officinale (SoDOG1; KM009050) is being reported. Phylogenetically, the SoDOG1 gene is included into the dicotyledonous group together with DOG1 from Arabidopsis thaliana (EF028470), Brassica rapa (AC189537), Lepidium papillosum (JX512183, JX512185) and Lepidium sativum (GQ411192). The SoDOG1 expression peaked at the onset of the silique maturation stage and there was presence of SoDOG1-mRNA in the freshly collected viable dry seed (i.e. AR0). The SoDOG1 transcripts were also found in other organs, such as open and closed flowers and to a lesser degree in roots and stems. We have previously reported in S. officinale seeds in which sensu stricto germination is positively affected by nitrate and both testa and micropylar endosperm ruptures are temporally separated. In dry viable seeds, the SoDOG1-mRNA level in three different after-ripening (AR) status was AR0 ≈ AR7 (optimal AR) < AR27 (optimal AR was almost lost). The presence of nitrate in the AR0 seed imbibition medium markedly decreased the SoDOG1 expression during sensu stricto germination. However, the nitrate stimulated the SoDOG1 expression during imbibition of AR7 compared to AR0. At the early AR0 seed imbibition (3-6 h), exogenous ABA provoked a very strong stimulation of the SoDOG1 expression. AR inhibits ABA-induced SoDOG1 expression during early germination and gibberellins (GA) can partially mimic this AR effect. A view on the integration of all found results in the sensu stricto germination of S. officinale was conducted. © 2015 Scandinavian Plant Physiology Society.
Hussain, Muhammad Iftikhar; Al-Dakheel, Abdullah J
2018-06-05
Salinity is one of the major factors contributing in land degradation, disturbance of soil biology, a structure that leads to unproductive land with low crop yield potential especially in arid and semiarid regions of the world. Appropriate crops with sufficient stress tolerance capacity and non-conventional water resources should have to be managed in a sustainable way to bring these marginal lands under cultivation for future food security. The goal of the present study was to evaluate salinity tolerant potential (0, 7, and 14 dS m -1 ) of six safflower genotypes that can be adapted to the hyper arid climate of UAE and its marginal soil. Several agro-morphological and physiological traits such as plant dry biomass (PDM), number of branches (BN), number of capitula (CN), seed yield (SY), stable isotope composition of nitrogen (δ 15 N) and carbon (δ 13 C), intercellular CO 2 concentration from inside to ambient air (Ci/Ca), intrinsic water use efficiency (iWUE), carbon (C%) and nitrogen (N %), and harvest index (HI) were evaluated as indicative of the functional performance of safflower genotypes under salt stress. Results indicated that salinity significantly affected the seed yield at all levels and varied significantly among genotypes. The BN, PDM, CN, and δ 13 C attributes showed clear differentiation between tolerant and susceptible genotypes. The δ 13 C results indicate that the tolerant genotypes suffer less from stress, may be due to better rooting. Tolerant genotypes showed lower iWUE values but possess higher yield. Safflower genotypes (PI248836 and PI167390) proved to be salt tolerant, stable, and higher seed and biomass yielder. There was no G × E interaction but the genotypes that produce higher yield under control were still best even under salt stress conditions. Although salinity reduced crop yield, some tolerant genotypes demonstrate adaptation and good yield potential under saline marginal environment.
Michael G. Shelton; Michael D. Cain
2002-01-01
Many of the competitors of the regeneration of loblolly and shortleaf pines (Pinus taeda, L. and Pinus echinata Mill., respectively) develop from seed disseminated on the site after reproduction cutting or from the seed bank. To evaluate the potential carry-over of the seeds from 11 shrub and vine competitors of these two...
Developmental Control and Plasticity of Fruit and Seed Dimorphism in Aethionema arabicum1[CC-BY
Lenser, Teresa; Adigüzel, Nezaket; Dönmez, Ali A.; Grosche, Christopher; Kettermann, Marcel; Mayland-Quellhorst, Sara; Mohammadin, Setareh; Rümpler, Florian; Sperber, Katja; Wiegand, Nils
2016-01-01
Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum. Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity. PMID:27702842
Stomatal innovation and the rise of seed plants.
McAdam, Scott A M; Brodribb, Timothy J
2012-01-01
Stomatal valves on the leaves of vascular plants not only prevent desiccation but also dynamically regulate water loss to maintain efficient daytime water use. This latter process involves sophisticated active control of stomatal aperture that may be absent from early-branching plant clades. To test this hypothesis, we compare the stomatal response to light intensity in 13 species of ferns and lycophytes with a diverse sample of seed plants to determine whether the capacity to optimise water use is an ancestral or derived feature of stomatal physiology. We found that in seed plants, the ratio of photosynthesis to water use remained high and constant at different light intensities, but fern and lycophyte stomata were incapable of sustaining homeostatic water use efficiency. We conclude that efficient water use in early seed plants provided them with a competitive advantage that contributed to the decline of fern and lycophyte dominated-ecosystems in the late Paleozoic. © 2011 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
İşlek, Cemil; Murat Altuner, Ergin; Alpas, Hami
2015-10-01
High hydrostatic pressure is a non-thermal food processing technology, which also has several successful applications in different areas besides food processing. In this study, Capsicum annuum L. (pepper) seeds are subjected to 50, 100, 200 and 300 MPa pressure for 5 min at 25°C and the seedlings of HHP processed seeds are used to compare percentage of seed germination and biochemical properties such as chlorophyll a, b and a/b, proline content, total protein, carotenoid, malondialdehyde, glucose, fructose and phenolic compounds concentrations. As a result of the study, it was observed that there are remarkable changes in terms of biochemical properties especially for seedlings, whose seeds were pressurized at 200 and 300 MPa. More detailed studies are needed to put forward the mechanism behind the changes in biochemical properties.
Obroucheva, Natalie V.; Lityagina, Snezhana V.; Novikova, Galina V.; Sin'kevich, Irina A.
2012-01-01
Backgrounds and aims In tropical recalcitrant seeds, their rapid transition from shedding to germination at high hydration level is of physiological interest but difficult to study because of the time constraint. In recalcitrant horse chestnut seeds produced in central Russia, this transition is much longer and extends through dormancy and dormancy release. This extended time period permits studies of the water relations in embryonic axes during the long recalcitrant period in terms of vacuolar status and water transport. Methodology Horse chestnut (Aesculus hippocastanum) seeds sampled in Moscow were stratified in cold wet sand for 4 months. Vacuole presence and development in embryonic axes were examined by vital staining, light and electron microscopy. Aquaporins and vacuolar H+-ATPase were identified immunochemically. Water channel operation was tested by water inflow rate. Vacuolar acid invertase was estimated in terms of activity and electrophoretic properties. Principal results Throughout the long recalcitrant period after seed shedding, cells of embryonic axes maintained active vacuoles and a high water content. Preservation of enzyme machinery in vacuoles was evident from retention of invertase activity, substrate specificity, molecular mass and subunit composition. Plasmalemma and tonoplast aquaporins and the E subunit of vacuolar H+-ATPase were also present. In non-dormant seeds prior to growth initiation, vacuoles enlarged at first in hypocotyls, and then in radicles, with their biogenesis being similar. Vacuolation was accompanied by increasing invertase activity, leading to sugar accumulation and active osmotic functioning. After growth initiation, vacuole enlargement was favoured by enhanced water inflow through water channels formed by aquaporins. Conclusions Maintenance of high water content and desiccation sensitivity, as well as preservation of active vacuoles in embryonic axes after shedding, can be considered a specific feature of recalcitrant seeds, overlooked when studying tropical recalcitrants due to the short duration. The retained physiological activity of vacuoles allows them to function rapidly as dormancy is lost and when external conditions permit. Cell vacuolation precedes cell elongation in both hypocotyl and radicle, and provides impetus for rapid germination. PMID:22593822
Bioactivities in the tamarind seed extracts: A preliminary study
NASA Astrophysics Data System (ADS)
Garg, Sukant; Muangman, Thanchanok; Huifu, He; Ling, Li; Kaul, Sunil C.; Wadhwa, Renu
2018-01-01
Stress is a state that triggers change in normal physiology and recognized by human body and brain as an unfavorable event causing concern, worry or anxiety. It may vary from physical, metabolic, physiological or emotional often culminating into wide range of ailments that may range from common cold, decline in functional efficacy of body systems or even cancer. Skin is the largest tissue of the body and makes the first interface with the environment. Skin color and characteristics are highly influenced by environment stress. A variety of natural compounds have been used for anti-stress and disease preventive potentials in worldwide traditional home medicine systems. They have recently attracted attention in research laboratories to dissect their mode of action to promote safe and economic drug development. We have earlier identified anti-stress and anti-aging activities in Withania somnifera, Helicteres angustifolia and honeybee propolis using human cultured normal and cancer cells. In the present study, we explored the effect of tamarind seed extracts prepared in water or 95% ethanol. In cell-based assays, we found that the extracts were safe to use in viable cells (in the range of 0.01-1.0%, for at least 4 weeks). Consistently, molecular studies revealed no effect on the expression/activity of cancer promoting proteins. We recruited oxidative stress models, such as, hydrogen peroxide (H2O2), ultraviolet radiation (UV) and diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol (OAG). Investigation on anti-stress potential of the extracts revealed that they do not offer remarkable protection against stress caused by either H2O2 or UV, however, significantly compromised OAG-induced melanogenesis. The preliminary data warrant further investigations on the active components and mechanism of action to develop useful natural compounds/extracts for manipulation of melanogenesis that plays important role in response of cells to UV and its consequences including DNA damage, oxidative stress and related diseases.
Hares promote seed dispersal and seedling establishment after volcanic eruptions
NASA Astrophysics Data System (ADS)
Nomura, Nanae; Tsuyuzaki, Shiro
2015-02-01
Although seed dispersal through animal guts (endozoochory) is a process that determines plant establishment, the behaviour of carriers mean that the seeds are not always dispersed to suitable habitats for germination. The germinable seeds of Gaultheria miqueliana were stored in the pellets of a hare (Lepus timidus ainu) on Mount Koma in northern Japan. To clarify the roles of hares in seed dispersal and germination, field censuses and laboratory experiments were conducted. The field observations were conducted on pellets and seeds in four habitats (bare ground, G. miqueliana shrub patch, Salix reinii patch, and Larix kaempferi understory), and the laboratory experiments were conducted on seed germination with different light, water potential and cold stratification treatments. The laboratory experiments confirmed that seed germination began a few weeks after the sowing of seeds, independent of cold stratification, when light was sufficient and the water potential was low. The seeds did not germinate at high water potential. The pellets were gradually degraded in situ. More seeds germinated from crushed than from intact pellets. Therefore, over the long term, seeds germinated when exposed to light due to the degradation of pellets. The pellets were proportionally dispersed among the four studied habitats. More seeds sown in the field germinated more in shaded habitats, such as in the Gaultheria patch and the Larix understory, and seeds did not germinate on bare ground, where drought often occurred. Thus, the hares had two roles in the dispersal and germination of seeds: (1) the expansion of G. miqueliana populations through seed dispersal to various habitats and (2) the facilitation of delayed seed germination to avoid risks of hazards such as drought. The relationships between small mammals represented by the hare and the shrubs that produce berries are likely to be more mutually evolved than was previously thought.
Liu, Han; Yang, Qingyong; Fan, Chuchuan; Zhao, Xiaoqin; Wang, Xuemin; Zhou, Yongming
2015-04-01
The silique of oilseed rape (Brassica napus) is a composite organ including seeds and the silique wall (SW) that possesses distinctly physiological, biochemical and functional differentiations. Yet, the molecular events controlling such differences between the SW and seeds, as well as their coordination during silique development at transcriptional level are largely unknown. Here, we identified large sets of differentially expressed genes in the SW and seeds of siliques at 21-22 days after flowering with a Brassica 95K EST microarray. At this particular stage, there were 3278 SW preferentially expressed genes and 2425 seed preferentially expressed genes. Using the MapMan visualization software, genes differentially regulated in various metabolic pathways and sub-pathways between the SW and seeds were revealed. Photosynthesis and transport-related genes were more actively transcripted in the SW, while those involved in lipid metabolism were more active in seeds during the seed filling stage. On the other hand, genes involved in secondary metabolisms were selectively regulated in the SW and seeds. Large numbers of transcription factors were identified to be differentially expressed between the SW and seeds, suggesting a complex pattern of transcriptional control in these two organs. Furthermore, most genes discussed in categories or pathways showed a similar expression pattern through 21 DAF to 42 DAF. Our results thus provide insights into the coordination of seeds and the SW in the developing silique at the transcriptional levels, which will facilitate the functional studies of important genes for improving B. napus seed productivity and quality. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Wang, Jia; Baskin, Jerry M; Baskin, Carol C; Liu, Guofang; Yang, Xuejun; Huang, Zhenying
2017-06-01
Cistanche deserticola is a holoparasitic plant with high medicinal value that reproduces only by seeds. However, the requirements for seed dormancy break and germination of this species remain unclear. The freshly matured dust-like seeds consist of a water-permeable seed coat and an undifferentiated oval-shaped embryo embedded in endosperm. No fresh seeds germinated in water or a 10 -5 M fluridone solution at any incubation temperature within 60 days. Length of embryos in seeds incubated in warm- and cold-started stratification sequences had increased 10.4 and 11.7% after 50 and 40 weeks, respectively. After 6 months, length of embryos in seeds stratified at 5 °C had increased by 12%. Germination of fresh seeds and of seeds stratified at 5 °C for 6 months and then incubated in mixed fluridone/gibberellic acid 3 (GA 3 ) solutions at 30/20 °C germinated to only 2.6 and 11.7%, respectively. Embryos of fresh seeds and of cold-stratified seeds had increased 29.4 and 15.8% in length, respectively, at the time of germination, but they never differentiated into organs. The highest germination (54.4%) was for seeds incubated in a 10 -5 M solution of fluridone in darkness in spring that had overwinter on the soil surface in the natural habitat. Our study indicates that breaking of physiological dormancy (PD) occurs first and then the embryo grows to a critical length (0.44 mm) without differentiation into organs prior to seed germination. Seeds for which PD had been broken were induced to germinate by fluridone and GA 3 at high temperature. Taken together, these results suggest that C. deserticola seeds have a specialized kind of morphophysiological dormancy. This study reveals possible ways to release seed dormancy that will be useful in propagating this medicinal species. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Vertucci, C. W.; Leopold, A. C.
1987-01-01
The physical status of water in seeds has a pivotal role in determining the physiological reactions that can take place in the dry state. Using water sorption isotherms from cotyledon and axis tissue of five leguminous seeds, the strength of water binding and the numbers of binding sites have been estimated using van't Hoff analyses and the D'Arcy/Watt equation. These parameters of water sorption are calculated for each of the three regions of water binding and for a range of temperatures. Water sorption characteristics are reflective of the chemical composition of the biological materials as well as the temperature at which hydration takes place. Changes in the sorption characteristics with temperature and hydration level may suggest hydration-induced structural changes in cellular components.
Implications of seed banking for recruitment of Southern Appalachian woody species
Janneke Hille Ris Lambers; James S. Clark; Michael Lavine
2002-01-01
Seed dormancy is assumed to be unimportant for population dynamics of temperate woody species, because seeds occur at low densities and are short lived in forest soils. However, low soil seed densities may result from low seed production, and even modest seed longevity can buffer against fluctuating seed production, potentially limiting density-dependent mortality and...
Characterization of monkey orange (Strychnos spinosa Lam.), a potential new crop for arid regions.
Sitrit, Yaron; Loison, Stephanie; Ninio, Racheli; Dishon, Eran; Bar, Einat; Lewinsohn, Efraim; Mizrahi, Yosef
2003-10-08
The green monkey orange (Strychnos spinosa Lam., Loganiaceae), a tree indigenous to tropical and subtropical Africa, produces juicy, sweet-sour, yellow fruits containing numerous hard brown seeds. The species has recently been introduced into Israel as a potential new commercial crop. However, little is known about its agronomical performance, fruit development and ripening, or postharvest physiology. The current study shows that during ripening in storage, the peel color changes from green to yellow, accompanied by a climacteric burst of ethylene and carbon dioxide emission. Total soluble solids slightly increased during storage, whereas total titratable acidity and pH did not change significantly. The major sugars that accumulated during ripening in storage were sucrose, glucose, and fructose, and the main acids, citric and malic acids. The main volatiles present in the peel of ripe fruits were phenylpropanoids, trans-isoeugenol being the major compound.
[Study on influence factors of seed germination and seeding growth of Lonicera macranthoides].
Xu, Jin; Zhang, Ying; Cui, Guang-Lin; She, Yue-Hui; Li, Long-Yun
2016-01-01
In order to improve reproductive efficiency and quality standard, the influence factors of seed germination and seeding growth of Lonicera macranthoides werew studied. The fruit and seed morphological characteristics of L. macranthoides were observed, the seed water absorbing capacity was determined, and different wet sand stratification time, temperature and germination bed treatment were set up. The effects of the parameters on seed germination and seedling growth were analysed. There was no obstacles of water absorption on L. macranthoides seed, quantity for 22 h water absorption was close to saturation. In the first 80 d, with the increase of the stratification time, seed initial germination time was shortened, germination rate and germination potential was improved. Stratification for 100 d, germination rate decreased. At 15 ℃, seed germination and seedling growth indicators were the best. The seedling cotyledon width in light was significantly higher than that in dark. Seeds on the top of paper and top of sand germination rate, germination potential, and germination index was significantly higher than that of other germination bed and mildew rate is low. The optimal conditions of seeds germination test was stratified in 4 ℃ wet sand for 80 d, 15 ℃ illuminate culture on the top of paper or top of sand. The first seeding counting time was the 4th day after beginning the test, the final time was the 23th day. The germination potential statistical time was the 13th day after beginning the test. Copyright© by the Chinese Pharmaceutical Association.
Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings
Smalling, Kelly; Hladik, Michelle; Sanders, Corey; Kuivila, Kathryn
2018-01-01
Seed coatings are a treatment used on a variety of crops to improve production and offer protection against pests and fungal outbreaks. The leaching of the active ingredients associated with the seed coatings and the sorption to soil was evaluated under laboratory conditions using commercially available corn and soybean seeds to study the fate and transport of these pesticides under controlled conditions. The active ingredients (AI) included one neonicotinoid insecticide (thiamethoxam) and five fungicides (azoxystrobin, fludioxonil, metalaxyl, sedaxane thiabendazole). An aqueous leaching experiment was conducted with treated corn and soybean seeds. Leaching potential was a function of solubility and seed type. The leaching of fludioxonil, was dependent on seed type with a shorter time to equilibrium on the corn compared to the soybean seeds. Sorption experiments with the treated seeds and a solution of the AIs were conducted using three different soil types. Sorption behavior was a function of soil organic matter as well as seed type. For most AIs, a negative relationship was observed between the aqueous concentration and the log Koc. Sorption to all soils tested was limited for the hydrophilic pesticides thiamethoxam and metalaxyl. However, partitioning for the more hydrophobic fungicides was dependent on both seed type and soil properties. The mobility of fludioxonil in the sorption experiment varied by seed type indicating that the adjuvants associated with the seed coating could potentially play a role in the environmental fate of fludioxonil. This is the first study to assess, under laboratory conditions, the fate of pesticides associated with seed coatings using commercially available treated seeds. This information can be used to understand how alterations in agricultural practices (e.g., increasing use of seed treatments) can impact the exposure (concentration and duration) and potential effects of these chemicals to aquatic and terrestrial organisms.
Mackenzie, Berin D E; Auld, Tony D; Keith, David A; Hui, Francis K C; Ooi, Mark K J
2016-01-01
Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for population persistence under climate change.
Auld, Tony D.; Keith, David A.; Hui, Francis K. C.; Ooi, Mark K. J.
2016-01-01
Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for population persistence under climate change. PMID:27218652
Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies
Wijayratne, Upekala C.; Pyke, David A.
2012-01-01
Premise of the study: Seed longevity and persistence in soil seed banks may be especially important for population persistence in ecosystems where opportunities for seedling establishment and disturbance are unpredictable. The fire regime, an important driver of population dynamics in sagebrush steppe ecosystems, has been altered by exotic annual grass invasion. Soil seed banks may play an active role in postfire recovery of the foundation shrub Artemisia tridentata, yet conditions under which seeds persist are largely unknown. Methods: We investigated seed longevity of two Artemisia tridentata subspecies in situ by retrieving seed bags that were placed at varying depths over a 2 yr period. We also sampled naturally dispersed seeds in litter and soil immediately after seed dispersal and before flowering in subsequent seasons to estimate seed persistence. Key results: After 24 mo, seeds buried at least 3 cm below the soil surface retained 30–40% viability whereas viability of seeds on the surface and under litter declined to 0 and Artemisia tridentata has the potential to form a short-term soil seed bank that persists longer than has been commonly assumed, and that burial is necessary for seed longevity. Use of seeding techniques that promote burial of some seeds to aid in formation of a soil seed bank may increase restoration potential.
An Arabidopsis thaliana embryo arrest mutant exhibiting germination potential
USDA-ARS?s Scientific Manuscript database
The ability to initiate radicle elongation, or germination potential, occurs in developing embryos before the completion of seed maturation. Green embryos after walking-stick stage in developing Arabidopsis thaliana seeds germinate when excised from seeds and incubated in MS media containing 1 % suc...
Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae.
Rewers, Monika; Sliwinska, Elwira
2012-12-01
Flow cytometry (FCM) can be used to study cell cycle activity in developing, mature and germinating seeds. It provides information about a seed's physiological state and therefore can be used by seed growers for assessing optimal harvest times and presowing treatments. Because an augmented proportion of 4C nuclei usually is indicative of high mitotic activity, the 4C/2C ratio is commonly used to follow the progress of seed development and germination. However, its usefulness for polysomatic (i.e., containing cells with different DNA content) seeds is questioned. Changes in cell cycle/endoreduplication activity in developing seeds of five members of the Fabaceae were studied to determine a more suitable marker of seed developmental stages for polysomatic species based on FCM measurements. Seeds of Phaseolus vulgaris, Medicago sativa, Pisum sativum, Vicia sativa, and Vicia faba var. minor were collected 20, 30, 40, 50, and 60 days after flowering (DAF), embryos were isolated and the proportion of nuclei with different DNA contents in the embryo axis and cotyledon was established. The ratios 4C/2C and (Σ>2C)/2C were calculated. Dried seeds were subjected to laboratory germination tests following international seed testing association (ISTA) rules. Additionally, the absolute nuclear DNA content was estimated in the leaves of the studied species. During seed development nuclei with DNA contents from 2C to 128C were detected; the endopolyploidy pattern depended on the species, seed organ and developmental stage. The cell cycle/endoreduplication parameters correlated negatively with genome size. The (Σ>2C)/2C ratio in the cotyledons reflected the seed developmental stage and corresponded with seed germinability. Therefore, this ratio is recommended as a marker in polysomatic seed research and production instead of the 4C/2C ratio, which does not consider the occurrence of endopolyploid cells. Copyright © 2012 International Society for Advancement of Cytometry.
Wang, Hong-Ling; Tian, Chang-Yan
2017-01-01
Cold stratification is a requirement for seed dormancy breaking in many species, and thus it is one of the important factors for the regulation of timing of germination. However, few studies have examined the influence of various environmental conditions during cold stratification on subsequent germination, and no study has compared such effects on the performance of dormant versus non-dormant seeds. Seeds of halophytes in the cold desert might experience different light and salinity conditions during and after cold stratification. As such, dimorphic seeds (non-dormant brown seeds and black seeds with non-deep physiological dormancy) of Suaeda aralocaspica were cold stratified under different light (12 h light–12 h darkness photoperiod or continuous darkness) or salinity (0, 200 or 1,000 mmol L-1 NaCl) conditions for 20 or 40 days. Then stratified seeds were incubated under different light or salinity conditions at daily (12/12 h) temperature regime of 10:25 °C for 20 days. For brown seeds, cold stratification was also part of the germination period. In contrast, almost no black seeds germinated during cold stratification. The longer the cold stratification, the better the subsequent germination of black seeds, regardless of light or salinity conditions. Light did not influence germination of brown seeds. Germination of cold-stratified black seeds was inhibited by darkness, especially when they were stratified in darkness. With an increase in salinity at the stage of cold stratification or germination, germination percentages of both seed morphs decreased. Combinational pre-treatments of cold stratification and salinity did not increase salt tolerance of dimorphic seeds in germination phase. Thus, light and salinity conditions during cold stratification partly interact with these conditions during germination stage and differentially affect germination of dimorphic seeds of S. aralocaspica. PMID:28828266
Zhu, Li-Wei; Cao, Dong-Dong; Hu, Qi-Juan; Guan, Ya-Jing; Hu, Wei-Min; Nawaz, Aamir; Hu, Jin
2016-03-30
During the production of early hybrid rice seed, the seeds dehydrated slowly and retained high moisture levels when rainy weather lasted for a couple of days, and the rice seeds easily occurred pre-harvest sprouting (PHS) along with high temperature. Therefore it is necessary to harvest the seeds before the PHS occurred. The seeds of hybrid rice (Oryza sativa L. subsp. indica) cv. Qianyou No1 that harvests from 19 to 28 days after pollination (DAP) all had high seed vigour. The seed moisture content at 10 DAP was 36.1%, and declined to 28.6% at 19 DAP; the contents of soluble sugar and total starch increased significantly with the development of seeds. The soluble protein content, the level of abscisic acid (ABA) and gibberellin (GA3 ), and ascorbate peroxidase (APX) activity continued to decrease from 10 DAP to 19 DAP. The seeds at 19 DAP had the highest peroxidase (POD) activity and lowest catalase (CAT) activity while the superoxide dismutase (SOD) activity had no significant difference among the different developing periods. The relative expressions of genes 64S Hsp18.0 and Os03g0267200 transcripts increased significantly from 10 to 19 DAP, and then decreased. However, no significant change was recorded in soluble protein, sugar and GA3 after 16 DAP, and they all significantly correlated with seed viability and vigour during the process of seed maturity. The seeds of hybrid rice Qianyou No1 had a higher viability and vigour when harvested from 19 DAP to 28 DAP, the transcription levels of 64S Hsp18.0 and Os03g0267200 increased significantly from 10 DAP to 19 DAP and the highest value was recorded at 19 DAP. The seeds could be harvested as early as 19 DAP without negative influence on seed vigour and viability. © 2015 Society of Chemical Industry.
Ye, Heng; Beighley, Donn H.; Feng, Jiuhuan; Gu, Xing-You
2013-01-01
Seed dormancy and plant height have been well-studied in plant genetics, but their relatedness and shared regulatory mechanisms in natural variants remain unclear. The introgression of chromosomal segments from weedy into cultivated rice (Oryza sativa) prompted the detection of two clusters (qSD1-2/qPH1 and qSD7-2/qPH7) of quantitative trait loci both associated with seed dormancy and plant height. Together, these two clusters accounted for >96% of the variances for plant height and ~71% of the variances for germination rate in an isogenic background across two environments. On the initial introgression segments, qSD1-2/qPH1 was dissected genetically from OsVp1 for vivipary and qSD7-2/qPH7 separated from Sdr4 for seed dormancy. The narrowed qSD1-2/qPH1 region encompasses the semidwarf1 (sd1) locus for gibberellin (GA) biosynthesis. The qSD1-2/qPH1 allele from the cultivar reduced germination and stem elongation and the mutant effects were recovered by exogenous GA, suggesting that sd1 is a candidate gene of the cluster. In contrast, the effect-reducing allele at qSD7-2/qPH7 was derived from the weedy line; this allele was GA-insensitive and blocked GA responses of qSD1-2/qPH1, including the transcription of a GA-inducible α-amylase gene in imbibed endosperm, suggesting that qSD7-2/qPH7 may work downstream from qSD1-2/qPH1 in GA signaling. Thus, this research established the seed dormancy-plant height association that is likely mediated by GA biosynthesis and signaling pathways in natural populations. The detected association contributed to weed mimicry for the plant stature in the agro-ecosystem dominated by semidwarf cultivars and revealed the potential benefit of semidwarf genes in resistance to preharvest sprouting. PMID:23390608
Ye, Heng; Beighley, Donn H; Feng, Jiuhuan; Gu, Xing-You
2013-02-01
Seed dormancy and plant height have been well-studied in plant genetics, but their relatedness and shared regulatory mechanisms in natural variants remain unclear. The introgression of chromosomal segments from weedy into cultivated rice (Oryza sativa) prompted the detection of two clusters (qSD1-2/qPH1 and qSD7-2/qPH7) of quantitative trait loci both associated with seed dormancy and plant height. Together, these two clusters accounted for >96% of the variances for plant height and ~71% of the variances for germination rate in an isogenic background across two environments. On the initial introgression segments, qSD1-2/qPH1 was dissected genetically from OsVp1 for vivipary and qSD7-2/qPH7 separated from Sdr4 for seed dormancy. The narrowed qSD1-2/qPH1 region encompasses the semidwarf1 (sd1) locus for gibberellin (GA) biosynthesis. The qSD1-2/qPH1 allele from the cultivar reduced germination and stem elongation and the mutant effects were recovered by exogenous GA, suggesting that sd1 is a candidate gene of the cluster. In contrast, the effect-reducing allele at qSD7-2/qPH7 was derived from the weedy line; this allele was GA-insensitive and blocked GA responses of qSD1-2/qPH1, including the transcription of a GA-inducible α-amylase gene in imbibed endosperm, suggesting that qSD7-2/qPH7 may work downstream from qSD1-2/qPH1 in GA signaling. Thus, this research established the seed dormancy-plant height association that is likely mediated by GA biosynthesis and signaling pathways in natural populations. The detected association contributed to weed mimicry for the plant stature in the agro-ecosystem dominated by semidwarf cultivars and revealed the potential benefit of semidwarf genes in resistance to preharvest sprouting.
Zhang, Tianshun; Jiang, Songyan; He, Chao; Kimura, Yuki; Yamashita, Yoko; Ashida, Hitoshi
2013-04-15
Black soybean seed coat is a rich source of polyphenols that have been reported to have various physiological functions. The present study investigated the potential protective effects of polyphenolic extracts from black soybean seed coat on DNA damage in human hepatoma HepG2 cells and ICR mice. The results from micronucleus (MN) assay revealed that black soybean seed coat extract (BE) at concentrations up to 25μg/mL was non-genotoxic. It is noteworthy that BE (at 4.85μg/mL) and its main components, procyanidins (PCs) and cyanidin 3-glucoside (C3G), at 10μM significantly reduced the genotoxic effect induced by benzo[a]pyrene [B(a)P]. To obtain insights into the underlying mechanism, we investigated BE and its main components on drug-metabolizing enzyme expression. The results of this study demonstrate that BE and its main components, PCs and C3G, down-regulated B(a)P-induced cytochrome P4501A1 (CYP1A1) expression by inhibiting the transformation of aryl hydrocarbon receptor. Moreover, they increased expression of detoxifying defense enzymes, glutathione S-transferases (GSTs) via increasing the binding of nuclear factor-erythroid-2-related factor 2 to antioxidant response elements. Collectively, we found that PCs and C3G, which are the main active compounds of BE, down-regulated CYP1A1 and up-regulated GST expression to protect B(a)P-induced DNA damage in HepG2 cells and ICR mice effectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Daqian; Jiang, Huijie; Lu, Jingjing; Lv, Yueying; Baiyun, Ruiqi; Li, Siyu; Liu, Biying; Lv, Zhanjun; Zhang, Zhigang
2018-06-01
Lead, a pervasive environmental hazard worldwide, causes a wide range of physiological and biochemical destruction, including metabolic dysfunction. Grape seed proanthocyanidin extract (GSPE) is a natural production with potential metabolic regulation in liver. This study was performed to investigate the protective role of GSPE against lead-induced metabolic dysfunction in liver and elucidate the potential molecular mechanism of this event. Wistar rats received GSPE (200 mg/kg) daily with or without lead acetate (PbA, 0.5 g/L) exposure for 56 d. According to biochemical and histopathologic analysis, GSPE attenuated lead-induced metabolic dysfunction, oxidative stress, and liver dysfunction. Liver gene expression profiling was assessed by RNA sequencing and validated by qRT-PCR. Expression of some genes in peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway was significantly suppressed in PbA group and revived in PbA + GSPE group, which was manifested by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis and validated by western blot analysis. This study supports that dietary GSPE ameliorates lead-induced fatty acids metabolic disturbance in rat liver associated with PPARα signaling pathway, and suggests that dietary GSPE may be a protector against lead-induced metabolic dysfunction and liver injury, providing a novel therapy to protect liver against lead exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.
On the role of abscisic acid in seed dormancy of red rice.
Gianinetti, Alberto; Vernieri, Paolo
2007-01-01
Abscisic acid (ABA) is commonly assumed to be the primary effector of seed dormancy, but conclusive evidence for this role is lacking. This paper reports on the relationships occurring in red rice between ABA and seed dormancy. Content of free ABA in dry and imbibed caryopses, both dormant and after-ripened, the effects of inhibitors, and the ability of applied ABA to revert dormancy breakage were considered. The results indicate: (i) no direct correlation of ABA content with the dormancy status of the seed, either dry or imbibed; (ii) different sensitivity to ABA of non-dormant seed and seed that was forced to germinate by fluridone; and (iii) an inability of exogenous ABA to reinstate dormancy in fluridone-treated seed, even though applied at a pH which favoured high ABA accumulation. These considerations suggest that ABA is involved in regulating the first steps of germination, but unidentified developmental effectors that are specific to dormancy appear to stimulate ABA synthesis and to enforce the responsiveness to this phytohormone. These primary effectors appear physiologically to modulate dormancy and via ABA they effect the growth of the embryo. Therefore, it is suggested that ABA plays a key role in integrating the dormancy-specific developmental signals with the control of growth.
2011-01-01
Soybean seeds are non-sterile and their bacterial population interferes with the enumeration of beneficial bacteria, making it difficult to assess survival under different conditions. Within this context, the principal aims of this work were: (1) to improve a selective media for the enumeration of B. japonicum recovered from inoculated soybean seeds; (2) to establish the most representative mathematical function for B. japonicum mortality on soybean seeds after inoculation; (3) to evaluate if environmental or physiological conditions modify B. japonicum mortality on soybean seeds; and (4) to create a new protocol for quality control of soybean inoculants. We successfully evaluated the combination of pentachloronitrobenzene and vancomycin added to the yeast-mannitol medium to inhibit most fungi and Gram-positive soybean microbiota, thus producing reliable counts of B. japonicum from inoculated soybean seeds. Percentages of recovery and survival factors were obtained and used to construct a two-phase exponential decay non-linear regression function. High temperature and desiccation decreased these parameters, while the optimization of temperature and the use of osmoprotective compounds with inoculants increased them. The use of this protocol minimized heterogeneity between experiments and may be considered more reliable than the simple expression of direct colony count of bacteria recovered from seeds. PMID:21906377
Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory.
Hernán, Gema; Ramajo, Laura; Basso, Lorena; Delgado, Antonio; Terrados, Jorge; Duarte, Carlos M; Tomas, Fiona
2016-12-01
Under future increased CO 2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO 2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO 2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO 2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed.
Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory
NASA Astrophysics Data System (ADS)
Hernán, Gema; Ramajo, Laura; Basso, Lorena; Delgado, Antonio; Terrados, Jorge; Duarte, Carlos M.; Tomas, Fiona
2016-12-01
Under future increased CO2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed.
Functional Food and Cardiovascular Disease Prevention and Treatment: A Review.
Asgary, Sedigheh; Rastqar, Ali; Keshvari, Mahtab
2018-03-12
Cardiovascular disease (CVD) is now the leading cause of death globally and is a growing health concern. Lifestyle factors, including nutrition, play an important role in the etiology and treatment of CVD. Functional foods based on their basic nutritional functions can decrease the risk of many chronic diseases and have some physiological benefits. They contain physiologically active components either from plant or animal sources, marketed with the claim of their ability to reduce heart disease risk, focusing primarily on established risk factors, which are hyperlipidemia, diabetes, metabolic syndrome, obesity/overweight, elevated lipoprotein A level, small dense low-density lipoprotein cholesterol (LDL-C), and elevated inflammatory marker levels. Functional foods are suspected to exert their cardioprotective effects mainly through blood lipid profile level and improve hypertension control, endothelial function, platelet aggregation, and antioxidant actions. Clinical and epidemiological observations indicate that vegetable and fruit fiber, nuts and seeds, sea foods, coffee, tea, and dark chocolate have cardioprotective potential in humans, as well whole-grain products containing intact grain kernels rich in fiber and trace nutrients. They are nutritionally more important because they contain phytoprotective substances that might work synergistically to reduce cardiovascular risk. This review will focus on the reciprocal interaction between functional foods and the potential link to cardiovascular health and the possible mechanisms of action.
Distribution of free and glycosylated sterols within Cycas micronesica plants
Marler, Thomas E.; Shaw, Christopher A.
2010-01-01
Flour derived from Cycas micronesica seeds was once the dominant source of starch for Guam's residents. Cycad consumption has been linked to high incidence of human neurodegenerative diseases. We determined the distribution of the sterols stigmasterol and β-sitosterol and their derived glucosides stigmasterol β-d-glucoside and β-sitosterol β-d-glucoside among various plant parts because they have been identified in cycad flour and have been shown to elicit neurodegenerative outcomes. All four compounds were common in seeds, sporophylls, pollen, leaves, stems, and roots. Roots contained the greatest concentration of both free sterols, and photosynthetic leaflet tissue contained the greatest concentration of both steryl glucosides. Concentration within the three stem tissue categories was low compared to other organs. Reproductive sporophyll tissue contained free sterols similar to seeds, but greater concentration of steryl glucosides than seeds. One of the glucosides was absent from pollen. Concentration in young seeds was higher than old seeds as reported earlier, but concentration did not differ among age categories of leaf, sporophyll, or vascular tissue. The profile differences among the various tissues within these organs may help clarify the physiological role of these compounds. PMID:20157629
Assessing potential exposure of birds to pesticide-treated seeds.
Prosser, Phil; Hart, A D M
2005-10-01
Seed treatments are widely used for crop protection and present a particular risk to granivorous birds. UK risk assessment for seed treatments has tended to focus on highly granivorous species; however, under some conditions, non-granivorous birds will take seeds. Better data is needed on which species eat seeds for which pesticide treatments are used. To identify which species will take and eat a range of crop seeds in common usage in the UK, birds visiting bait stations at which untreated seed was presented were video recorded. Information was also obtained on how much seed is taken by individual birds. The seeds tested were wheat, barley, maize, oilseed rape, grass, peas and pelleted sugar beet. For many of the species observed at the bait stations, the amounts of seed consumed during single visits were sufficient to pose a potential risk (toxicity-exposure ratio < 10) if the seed had been treated with one of the more acutely toxic seed treatments. Previous studies have shown that de-husking of seeds can substantially reduce birds' exposure. This paper provides information on which of the species recorded de-husked which seeds, in field conditions. The use of these data in pesticide risk assessment is considered.
USDA-ARS?s Scientific Manuscript database
Knowledge of the viability status of seeds before sowing is important to farmers and seed suppliers. However, a myriad of factors can reduce viability of seeds or completely render seeds non-viable during pre- and post-harvest operations. Spectral imaging has shown potential for determining seed via...
Experiments in Horticultural Science.
ERIC Educational Resources Information Center
Arbel, Illil
1992-01-01
Investigates the use of temperature and light to change the usual intervals for plant germinating, sprouting, and flowering. Provides simple experimental procedures and discussions regarding photoperiodism, forced branching before spring, and various types of seed dormancy, including physical dormancy, physiological dormancy, and double dormancy.…
Ma, Yali; Wang, Juan; Zhang, Jinghua; Zhang, Shiyue; Liu, Yanxia; Lan, Haiyan
2018-01-01
Seed heteromorphism is a common characteristic of halophyte and an adaptation to the spatial and temporal variations of natural habitats. Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but the mechanisms for maintenance between different status in various populations have not been well-understood. Salsola ferganica is a typical annual halophyte in Chenopodiaceae distributed in cold desert, in the present study, we found that it could produce three distinct types of seed according to the shape and size of winged perianth (WP), which differed in dispersal ability, dormancy and germination behaviors. Our further investigation revealed that light could significantly promote germination of heteromorphic seeds of S. ferganica, and WP inhibited while GA3 enhanced germination, which suggests that S. ferganica seeds possessed a photo-sensitive combined with morphological and non-deep physiological dormancy type, in which light was the dominant factor. Not like other desert plant species, the germinability of heteromorphic seeds of S. ferganica could not sustain for long (only 1–2 years), especially the small seeds, and was affected by storage time, temperature, salinity, even the environmental conditions of the maternal plant. Thus, the differences of characteristics existed among heteromorphic seeds and variations of heteromorphic ratio among different calendar years were presumed as diverse adaptation strategies integrated in the individual mother plant, and might apply important ecological significance for successful reproduction of the species in the unpredictable cold desert. PMID:29387073
NASA Technical Reports Server (NTRS)
Musgrave, M. E.
2000-01-01
Rapid-cycling Brassica populations were initially developed as a model for probing the genetic basis of plant disease. Paul Williams and co-workers selected accessions of the six main species for short time to flower and rapid seed maturation. Over multiple generations of breeding and selection, rapid-cycling populations of each of the six species were developed. Because of their close relationship with economically important Brassica species, rapid-cycling Brassica populations, especially those of B. rapa (RCBr) and B. oleracea, have seen wide application in plant and crop physiology investigations. Adding to the popularity of these small, short-lived plants for research applications is their extensive use in K-12 education and outreach.
Detection of physiological noise in resting state fMRI using machine learning.
Ash, Tom; Suckling, John; Walter, Martin; Ooi, Cinly; Tempelmann, Claus; Carpenter, Adrian; Williams, Guy
2013-04-01
We present a technique for predicting cardiac and respiratory phase on a time point by time point basis, from fMRI image data. These predictions have utility in attempts to detrend effects of the physiological cycles from fMRI image data. We demonstrate the technique both in the case where it can be trained on a subject's own data, and when it cannot. The prediction scheme uses a multiclass support vector machine algorithm. Predictions are demonstrated to have a close fit to recorded physiological phase, with median Pearson correlation scores between recorded and predicted values of 0.99 for the best case scenario (cardiac cycle trained on a subject's own data) down to 0.83 for the worst case scenario (respiratory predictions trained on group data), as compared to random chance correlation score of 0.70. When predictions were used with RETROICOR--a popular physiological noise removal tool--the effects are compared to using recorded phase values. Using Fourier transforms and seed based correlation analysis, RETROICOR is shown to produce similar effects whether recorded physiological phase values are used, or they are predicted using this technique. This was seen by similar levels of noise reduction noise in the same regions of the Fourier spectra, and changes in seed based correlation scores in similar regions of the brain. This technique has a use in situations where data from direct monitoring of the cardiac and respiratory cycles are incomplete or absent, but researchers still wish to reduce this source of noise in the image data. Copyright © 2011 Wiley Periodicals, Inc.
Thompson, Sally E; Katul, Gabriel G
2013-06-01
Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration. However, another suite of international studies also recently highlighted a global decrease in near-surface wind speeds, or 'global stilling'. This study assessed the implications of both factors on potential plant population migration rates, using a mechanistic modeling framework. Nonrandom abscission was investigated using models of three seed release mechanisms: (i) a simple drag model; (ii) a seed deflection model; and (iii) a 'wear and tear' model. The models generated a single functional relationship between the frequency of seed release and statistics of the near-surface wind environment, independent of the abscission mechanism. An Inertial-Particle, Coupled Eulerian-Lagrangian Closure model (IP-CELC) was used to investigate abscission effects on seed dispersal kernels and plant population migration rates under contemporary and potential future wind conditions (based on reported global stilling trends). The results confirm that nonrandom seed abscission increased dispersal distances, particularly for light seeds. The increases were mitigated by two physical feedbacks: (i) although nonrandom abscission increased the initial acceleration of seeds from rest, the sensitivity of the seed dispersal to this initial condition declined as the wind speed increased; and (ii) while nonrandom abscission increased the mean dispersal length, it reduced the kurtosis of seasonal dispersal kernels, and thus the chance of long-distance dispersal. Wind stilling greatly reduced the modeled migration rates under biased seed release conditions. Thus, species that require high wind velocities for seed abscission could experience threshold-like reductions in dispersal and migration potential if near-surface wind speeds continue to decline. © 2013 Blackwell Publishing Ltd.
Compulsory winding in the opposite direction of climbing plants promotes yield.
Kodama, Yoshiaki; Tezuka, Takafumi
2004-04-01
The stem of kidney bean plant (Phaseolus vulgaris L., cv. Kentucky 101), a typical dextrorse climbing plant, was subjected to compulsorily sinistrorse-winding. The compulsory sinistrorse-winding induced changes in physiological activities. The number of pods with immature seeds (used as vegetable) was doubled and the fresh weight of the pods also significantly increased by sinistrorse-winding. Compulsory sinistrorse-winding increased chlorophyll content, photosynthetic rate, respiration, nodule formation, N(2)-fixation, glutamine synthetase [L-glutamate: ammonia ligase (ADP-forming); E.C. 6.3.1.2] activity and protein content. Thus, it seems to affect the basic physiological processes that promote physiological activities though the action mechanism is unknown.
Mountain bikes as seed dispersers and their potential socio-ecological consequences.
Weiss, Fabio; Brummer, Tyler J; Pufal, Gesine
2016-10-01
Seed dispersal critically influences plant community composition and species distributions. Increasingly, human mediated dispersal is acknowledged as important dispersal mechanism, but we are just beginning to understand the different vectors that might play a role. We assessed the role of mountain bikes as potential dispersal vectors and associated social-ecological consequences in areas of conservation concern near Freiburg, Germany. Seed attachment and detachment on a mountain bike were measured experimentally at distances from 0 to 500 m. We assessed effects of seed traits, weather conditions, riding distance and tire combinations using generalized linear mixed effect models. Most seeds detached from the mountain bike within the first 5-20 m. However, a small proportion of seeds remained on tires after 200-500 m. Attachment was higher, and the rate of detachment slower, in semi-wet conditions and lighter seeds travelled farther. Seed dispersal by mountain bikes was moderate compared to other forms of human mediated dispersal. However, we found that lighter seeds could attach to other bike parts and remain there until cleaning which, depending on riders' preferences, might only be after 70 km and in different habitats. Ecological impacts of mountain biking are growing with the popularity of the activity. We demonstrate that mountain bikes are effective seeds dispersers at landscape scales. Thus, management to mitigate their potential to spread non-native species is warranted. We suggest bike cleaning between rides, control of non-native species at trailheads and increased awareness for recreationalists in areas of conservation concern to mitigate the potential negative consequences of seed dispersal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jordano, Pedro; Forget, Pierre-Michel; Lambert, Joanna E; Böhning-Gaese, Katrin; Traveset, Anna; Wright, S Joseph
2011-06-23
The 5th Symposium on Frugivores and Seed Dispersal, held in Montpellier (France), 13-18 June 2010, brought together more than 220 researchers exemplifying a wide diversity of approaches to the study of frugivory and dispersal of seeds. Following Ted Fleming and Alejandro Estrada's initiative in 1985, this event was a celebration of the 25th anniversary of the first meeting in Veracruz, Mexico. Frugivory and seed dispersal are active research areas that have diversified in multiple directions since 1985 to include evolution (e.g. phylogenetic diversity and dispersal adaptations), physiology (e.g. sensory cues and digestion), landscape ecology (movement patterns), molecular ecology (e.g. gene flow, genetic diversity and structure), community ecology (e.g. mutualistic interaction networks) and conservation biology (effects of hunting, fragmentation, invasion and extinction), among others. This meeting provided an opportunity to assess conceptual and methodological progress, to present ever more sophisticated insights into frugivory in animals and dispersal patterns in plants, and to report the advances made in examining the mechanisms and consequences of seed dispersal for plants and frugivores.
Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe
2012-01-01
Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.
Šumberová, Kateřina; Ducháček, Michal
2017-01-01
Plant seeds exhibit many species-specific traits, thus potentially being especially helpful for forensic investigations. Seeds of a broad range of plant species occur in soil seed banks of various habitats and may become attached in large quantities to moving objects. Although plant seeds are now routinely used as trace evidence in forensic practice, only scant information has been published on this topic in the scientific literature. Thus, the standard methods remain unknown to specialists in such botanical subjects as plant ecology and plant geography. These specialists, if made aware of the forensic uses of seeds, could help in development of new, more sophisticated approaches. We aim to bridge the gap between forensic analysts and botanists. Therefore, we explore the available literature and compare it with our own experiences to reveal both the potential and limits of soil seed bank and seed dispersal analysis in forensic investigations. We demonstrate that habitat-specific and thus relatively rare species are of the greatest forensic value. Overall species composition, in terms of species presence/absence and relative abundance can also provide important information. In particular, the ecological profiles of seeds found on any moving object can help us identify the types of environments through which the object had travelled. We discuss the applicability of this approach to various European environments, with the ability to compare seed samples with georeferenced vegetation databases being particularly promising for forensic investigations. We also explore the forensic limitations of soil seed bank and seed dispersal vector analyses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Aliyev, A. A.; Mekhti-Zade, E. R.; Mashinskiy, A. L.; Alekperov, U. K.
1986-01-01
Physiological and cytogenetic changes in the Welsh onion plants induced by a short (82 days) and long term (522 days) space flight are expressed in decrease of seed germination, inhibition of stem growth, depression of cell division in root meristem, and increase in the number of structural chromosome rearrangements. The treatment of such plants with solutions of a-tocopherol, auxin, and kinetin decreased the level of chromosome aberrations to the control one and normalized cell divisions and growth partly or completely.
NASA Astrophysics Data System (ADS)
Smart, David; Hess, Sallie; Ebeler, Susan; Heymann, Hildegarde; Plant, Richard
2014-05-01
Analysis of numerous vineyards has revealed a very high degree of variation exists at the within vineyard scale and may outweigh in some cases broader mesoclimatic and geological factors. For this reason, selective harvest of high quality wine grapes is often conducted and based on subjective field sensory analysis (taste). This is an established practice in many wine growing regions. But the relationships between these subjective judgments to principle soil and grapevine physiological characteristics are not well understood. To move toward greater understanding of the physiological factors related to field sensory evaluation, physiological data was collected over the 2007 and 2008 growing seasons in a selectively harvested premium production Napa Valley estate vineyard, with a history of selective harvesting based on field sensory evaluation. Data vines were established and remained as individual study units throughout the data gathering and analysis phase, and geographic information systems science (GIS) was used to geographically scale physiological and other data at the vineyard level. Areas yielding grapes with perceived higher quality (subjective analysis) were characterized by vines with 1) statistically significantly lower (P < 0.05) leaf water potential (LWP) both pre-dawn (PD) and midday (MD), 2) smaller berry diameter and weight, 3) lower pruning weights, and 4) higher soluble solids (Brix). Strong positive correlations emerged between June ψPD and pre-harvest grape berry diameter (R2 = 0.616 in 2007 and 0.413 in 2008) and similar strong correlations existed for berry weight (R2 = 0.626 in 2007 and 0.554 in 2008). A trained sensory panel performed a sensory analysis and characterized fruit using and a multivariate, principal components, analysis (PCA). This approach indicated that grapes from vines with lowest midday leaf water potential at veraison (< -1.5 MPa) had sweeter and softer pulp, absence of vegetal characteristics, and browner and crunchier seeds, while grapes from vines of > -1.5 MPa were characterized by vegetal flavors and astringent and bitter seeds and skins. Data from vines were grouped into vines experiencing MD at veraison of < -1.5 MPa versus vines with MD > -1.5 MPa and subjected to single factor analysis of variance. This analysis revealed statistically significant differences (P less than 0.05) in many of the above properties - berry diameter, weight, pulp, and fruity versus vegetal characteristic. The groupings corresponded to the areas described as producing higher and lower quality fruit, respectively, based on field taste evaluation. Metabolomic analysis of grape skins from these two groups showed statistically significant differences in accumulation of amino acids and organic acids. Our results suggest there is not a continuous relationship between physiological water status (stress) and grape sensory characteristics, but rather the presence of an inflection point that may be related to early season PD in controlling grape development as well as composition. Soils analyses revealed the preferred fruit was on vines in areas where soils were shallower rather than any definitive characteristic related to particle size distribution or nutrient availability, suggesting that in this vineyard soil available water is the major controlling factor.
Potential use and perspectives of nitric oxide donors in agriculture.
Marvasi, Massimiliano
2017-03-01
Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many physiological processes in plants, animals and bacteria. Current research has shown that NO can be delivered via donor molecules. In such cases, the NO release rate is dependent on the chemical structure of the donor itself and on the chemical environment. Despite NO's powerful signaling effect in plants and animals, the application of NO donors in agriculture is currently not implemented and research remains mainly at the experimental level. Technological development in the field of NO donors is rapidly expanding in scope to include controlling seed germination, plant development, ripening and increasing shelf-life of produce. Potential applications in animal production have also been identified. This concise review focuses on the use of donors that have shown potential biotechnological applications in agriculture. Insights are provided into (i) the role of donors in plant production, (ii) the potential use of donors in animal production and (iii) future approaches to explore the use and applications of donors for the benefit of agriculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N
2012-01-01
Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012
Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata
2017-01-01
Microorganisms are considered a genetic resource with great potential for achieving sustainable development of agricultural areas. The objective of this research was to determine the effect of microorganism application forms on the production of biomass, gas exchange, and nutrient content in upland rice. The experiment was conducted under greenhouse conditions in a completely randomized design in a factorial 7 × 3 + 1, with four replications. The treatments consisted of combining seven microorganisms with three application forms (microbiolized seed; microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS); and microbiolized seed + plant sprayed with a microorganism suspension at 7 and 15 DAS) and a control (water). Treatments with Serratia sp. (BRM32114), Bacillus sp. (BRM32110 and BRM32109), and Trichoderma asperellum pool provided, on average, the highest photosynthetic rate values and dry matter biomass of rice shoots. Plants treated with Burkolderia sp. (BRM32113), Serratia sp. (BRM32114), and Pseudomonas sp. (BRM32111 and BRM32112) led to the greatest nutrient uptake by rice shoots. Serratia sp. (BRM 32114) was the most effective for promoting an increase in the photosynthetic rate, and for the greatest accumulation of nutrients and dry matter at 84 DAS, in rice shoots, which differed from the control treatment. The use of microorganisms can bring numerous benefits of rice, such as improving physiological characteristics, nutrient uptake, biomass production, and grain yield.
Elevated carbon dioxide alters the relative fitness of Taraxacum officinale genotypes
USDA-ARS?s Scientific Manuscript database
I tested whether elevated carbon dioxide concentration differentially affected which genotypes of the apomictic species dandelion produced the largest number of viable seeds in two different field experiments, and identified morphological and physiological traits associated with fitness at elevated ...
Effects of physical agitation on yield of greenhouse-grown soybean
NASA Technical Reports Server (NTRS)
Jones, R. S.; Mitchell, C. A.
1992-01-01
Agronomic and horticultural crop species experience reductions in growth and harvestable yield after exposure to physical agitation (also known as mechanical stress), as by wind or rain. A greenhouse study was conducted to test the influence of mechanical stress on soybean yield and to determine if exposure to mechanical stress during discrete growth periods has differential effects on seed yield. A modified rotatory shaker was used to apply seismic (i.e., shaking) stress. Brief, periodic episodes of seismic stress reduced stem length, total seed dry weight, and seed number of soybean [Glycine max (L.) Merr.]. Lodging resistance was greater for plants stressed during vegetative growth or throughout vegetative and reproductive growth than during reproductive growth only. Seed dry weight yield was reduced regardless of the timing or duration of stress application, but was lowest when applied during reproductive development. Seismic stress applied during reproductive growth stages R1 to R2 (Days 3 to 4) was as detrimental to seed dry weight accumulation as was stress applied during growth stages R1 to R6 (Days 39 to 42). Seed dry weight per plant was highly correlated with seed number per plant, and seed number was correlated with the seed number of two- and three-seeded pods. Dry weight per 100 seeds was unaffected by seismic-stress treatment. Growth and yield reductions resulting from treatments applied only during the vegetative stage imply that long-term mechanical effects were induced, from which the plants did not fully recover. It is unclear which yield-controlling physiological processes were affected by mechanical stress. Both transient and long-term effects on yield-controlling processes remain to be elucidated.
Kamran, Muhammad; Wennan, Su; Ahmad, Irshad; Xiangping, Meng; Wenwen, Cui; Xudong, Zhang; Siwei, Mou; Khan, Aaqil; Qingfang, Han; Tiening, Liu
2018-03-19
A field experiment was conducted to investigate the effects of paclobutrazol on ear characteristics and grain yield by regulating root growth and root-bleeding sap of maize crop. Seed-soaking at rate of 0 (CK1), 200 (S1), 300 (S2), and 400 (S3) mg L -1 , and seed-dressing at rate of 0 (CK2), 1.5 (D1), 2.5 (D2), and 3.5 (D3) g kg -1 were used. Our results showed that paclobutrazol improved the ear characteristics and grain yield, and were consistently higher than control during 2015-2016. The average grain yield of S1, S2 and S3 were 18.9%, 61.3%, and 45.9% higher, while for D1, D2 and D3 were 20.2%, 33.3%, and 45.2%, compared to CK, respectively. Moreover, paclobutrazol-treated maize had improved root-length density (RLD), root-surface area density (RSD) and root-weight density (RWD) at most of the soil profiles (0-70 cm for seed-soaking, 0-60 cm for seed-dressing) and was attributed to enhancing the grain yield. In addition, root-activity, root-bleeding sap, root dry weight, diameter and root/shoot ratio increased by paclobutrazol, with highest values achieved in S2 and D3 treatments, across the whole growth stages in 2015-2016. Our results suggested that paclobutrazol could efficiently be used to enhance root-physiological and morphological characteristics, resulting in higher grain yield.
Different Modes of Hydrogen Peroxide Action During Seed Germination
Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata
2016-01-01
Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076
Shi, Li-Ping; Ou, Qiao-Ming; Cui, Wen-Juan; Chen, Yu-Liang
2014-04-01
To break the hard testa and improve seed germination situation of Astragalus membranaceus var. mongholicus, in order to solve the problems of low success rate of seed germination and seedling. Longxi Astragalus membranaceus var. mongholicus seed was treated by soaking seed with 75% alcohol and concentrated sulfuric acid, warm-water incubating, grinding and comprehensive treating with warm-water incubating, grinding and sand culture. Its seed germination situation was evaluated by germination potential, germination rate and germination index. Different processing methods significantly improved seed germination with different effect. Comprehensive treatment with warm-water incubating, grinding and sand culture was the best one on Astragalus membranaceus var. mongholicus seed germination. Its germination potential, germination rate and germination index was 66.04%, 87.70% and 1.34,respectively. Comprehensive treatment with warm-water incubating, grinding and sand culture is an economic and effective processing method, which is suitable for actual production.
Imbibition period as the critical temperature sensitive stage in germination of lima bean seeds.
Pollock, B M; Toole, V K
1966-02-01
Lima bean seeds (Phaseolus lunatus L.) and excised embryonic axes can be injured during imbibition at temperatures below 25 degrees . The early imbibitional stage is critical; imbibition at 25 degrees followed by low temperature exposure does not cause injury. Sensitivity to chilling injury is conditioned by the pre-harvest seed history. Low vigor (bleached) seeds are most sensitive to injury, the effects of which can be intensified by restricted oxygen supply during early axis growth. The seed coat, by preventing water uptake, can permit the seed to avoid injury. This protective mechanism is most effective at low temperature and high moisture stress. Immediately following low temperature imbibition, injured axes lose organic materials, probably nucleotides. This organic leachate is a potential influence on soil microorganisms and, together with the temperature sensitivity, vigor, and seed coat effect undoubtedly is important in controlling the potential variability in germination shown by a seed population.
Imbibition Period as the Critical Temperature Sensitive Stage in Germination of Lima Bean Seeds
Pollock, B. M.; Toole, Vivian K.
1966-01-01
Lima bean seeds (Phaseolus lunatus L.) and excised embryonic axes can be injured during imbibition at temperatures below 25°. The early imbibitional stage is critical; imbibition at 25° followed by low temperature exposure does not cause injury. Sensitivity to chilling injury is conditioned by the pre-harvest seed history. Low vigor (bleached) seeds are most sensitive to injury, the effects of which can be intensified by restricted oxygen supply during early axis growth. The seed coat, by preventing water uptake, can permit the seed to avoid injury. This protective mechanism is most effective at low temperature and high moisture stress. Immediately following low temperature imbibition, injured axes lose organic materials, probably nucleotides. This organic leachate is a potential influence on soil microorganisms and, together with the temperature sensitivity, vigor, and seed coat effect undoubtedly is important in controlling the potential variability in germination shown by a seed population. Images PMID:16656243
Bandyopadhyay, Kaustav; Uluçay, Orhan; Şakiroğlu, Muhammet; Udvardi, Michael K.; Verdier, Jerome
2016-01-01
Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination. PMID:27618017
Adipocyte induction of preadipocyte differentiation in a gradient chamber.
Lai, Ning; Sims, James K; Jeon, Noo Li; Lee, Kyongbum
2012-12-01
Adipose tissue expansion involves enlargement of mature adipocytes and the formation of new adipocytes through the differentiation of locally resident preadipocytes. Factors released by the enlarged adipocytes are potential cues that induce the differentiation of the preadipocytes. Currently, there are limited options to investigate these cues in isolation from confounding systemic influences. A gradient generating microfluidic channel-based cell culture system was designed to enable solution patterning, while supporting long-term culture and differentiation of preadipocytes. Solution patterning was confirmed by selectively staining a fraction of uniformly seeded preadipocytes. An adipogenic cocktail gradient was used to induce the differentiation of a fraction of uniformly seeded preadipocytes and establish a spatially defined coculture of adipocytes and preadipocytes. Varying the adipogenic cocktail gradient generated cocultures of preadipocytes and adipocytes with different compositions. Transient application of the cocktail gradient, followed by basal medium treatment showed a biphasic induction of differentiation. The two phases of differentiation correlated with a spatial gradient in adipocyte size. Our results provide in vitro data supporting the size-dependent release of preadipocyte differentiation factors by enlarged adipocytes. Prospectively, the coculture system developed in this study could facilitate controlled, yet physiologically meaningful studies on paracrine interactions between adipocytes and preadipocytes during adipose tissue development.
ABA, porphyrins and plant TSPO-related protein.
Guillaumot, Damien; Guillon, Stéphanie; Morsomme, Pierre; Batoko, Henri
2009-11-01
We have shown that, unexpectedly, AtTSPO (Arabidopsis thaliana TSPO-related protein) is an endoplasmic reticulum and Golgi-localized membrane protein in plant cells.(1) This localization contrasts with that of mammalian 18-kDa translocator protein (at least for the mostly studied isoform, 18-kDa TSPO), a mitochondrial outer membrane protein (reviewed in ref. 2). Whereas the potential functions of 18-kDa TSPO are well documented, involved mainly in mitochondrial physiology,(2) and its interest as drugs target is been explored,(3) the roles of TSPO-related proteins in plant growth and development are yet to be specified. AtTSPO is expressed in dry seeds and can be induced in vegetative tissues by osmotic and salt stress or abscisic acid (ABA) treatment. Moreover, it was shown that the ABA-dependent induction is transient, and that boosting tetrapyrroles biosynthesis through 5-aminolevulinic acid (ALA) feeding enhanced downregulation of AtTSPO, suggesting an inherent post-translational regulation mechanism also involving ABA and likely porphyrins. We present additional evidence that ABA can help stabilize constitutively expressed AtTSPO and that ALA feeding to knockout mutant seeds, induces substantial germination delay. Here we discuss the possible link between ABA and tetrapyrroles in AtTSPO expression and post-translational regulation.
Generation of Stable Co-Cultures of Vascular Cells in a Honeycomb Alginate Scaffold
Yamamoto, Masaya; James, Daylon; Li, Hui; Butler, Jason; Rafii, Shahin
2010-01-01
Scaffold-guided vascular tissue engineering has been investigated as a means to generate functional and transplantable vascular tissue grafts that increase the efficacy of cell-based therapeutic strategies in regenerative medicine. In this study, we employed confocal microscopy and three-dimensional reconstruction to assess the engraftment and growth potential of vascular cells within an alginate scaffold with aligned pores. We fabricated honeycomb alginate scaffolds with aligned pores, whose surface was immobilized with fibronectin and subsequently coated with matrigel. Endothelial cells were seeded into aligned pore scaffolds in the presence and absence of human smooth muscle cells. We showed that endothelial cells seeded into alginate scaffolds attach on the surface of aligned pores in vitro, giving rise to stable co-cultures of vascular cells. Moreover, the three-dimensional alginate depots containing the cells were exposed to laminar flow in order to recapitulate physiological shear stress found in the vasculature in vivo. After the flow exposure, the scaffold remained intact and some cells remained adherent to the scaffold and aligned in the flow direction. These studies demonstrate that alginate scaffolds provide a suitable matrix for establishing durable angiogenic modules that may ultimately enhance organ revascularization. PMID:19705957
Seed dispersal potential of Asian elephants
NASA Astrophysics Data System (ADS)
Harich, Franziska K.; Treydte, Anna C.; Ogutu, Joseph O.; Roberts, John E.; Savini, Chution; Bauer, Jan M.; Savini, Tommaso
2016-11-01
Elephants, the largest terrestrial mega-herbivores, play an important ecological role in maintaining forest ecosystem diversity. While several plant species strongly rely on African elephants (Loxodonta africana; L. cyclotis) as seed dispersers, little is known about the dispersal potential of Asian elephants (Elephas maximus). We examined the effects of elephant fruit consumption on potential seed dispersal using the example of a tree species with mega-faunal characteristics, Dillenia indica L., in Thailand. We conducted feeding trials with Asian elephants to quantify seed survival and gut passage times (GPT). In total, 1200 ingested and non-ingested control seeds were planted in soil and in elephant dung to quantify differences in germination rates in terms of GPT and dung treatment. We used survival analysis as a novel approach to account for the right-censored nature of the data obtained from germination experiments. The average seed survival rate was 79% and the mean GPT was 35 h. The minimum and maximum GPT were 20 h and 72 h, respectively. Ingested seeds were significantly more likely to germinate and to do so earlier than non-ingested control seeds (P = 0.0002). Seeds with the longest GPT displayed the highest germination success over time. Unexpectedly, seeds planted with dung had longer germination times than those planted without. We conclude that D. indica does not solely depend on but benefits from dispersal by elephants. The declining numbers of these mega-faunal seed dispersers might, therefore, have long-term negative consequences for the recruitment and dispersal dynamics of populations of certain tree species.
Ding, Jian; Ruan, Chengjiang; Guan, Ying; Krishna, Priti
2018-03-05
Sea buckthorn is a plant of medicinal and nutritional importance owing in part to the high levels of essential fatty acids, linoleic (up to 42%) and α-linolenic (up to 39%) acids in the seed oil. Sea buckthorn can produce seeds either via the sexual pathway or by apomixis. The seed development and maturation programs are critically dependent on miRNAs. To understand miRNA-mediated regulation of sea buckthorn seed development, eight small RNA libraries were constructed for deep sequencing from developing seeds of a low oil content line 'SJ1' and a high oil content line 'XE3'. High-throughput sequencing identified 137 known miRNA from 27 families and 264 novel miRNAs. The potential targets of the identified miRNAs were predicted based on sequence homology. Nineteen (four known and 15 novel) and 22 (six known and 16 novel) miRNAs were found to be involved in lipid biosynthesis and seed size, respectively. An integrated analysis of mRNA and miRNA transcriptome and qRT-PCR identified some key miRNAs and their targets (miR164d-ARF2, miR168b-Δ9D, novelmiRNA-108-ACC, novelmiRNA-23-GPD1, novelmiRNA-58-DGAT1, and novelmiRNA-191-DGAT2) potentially involved in seed size and lipid biosynthesis of sea buckthorn seed. These results indicate the potential importance of miRNAs in regulating lipid biosynthesis and seed size in sea buckthorn.
Hypercarnivorous apex predator could provide ecosystem services by dispersing seeds
Sarasola, José Hernán; Zanón-Martínez, Juan Ignacio; Costán, Andrea Silvina; Ripple, William J.
2016-01-01
Large “hypercarnivorous” felids are recognized for their role as apex predators and hence as key elements in food webs and ecosystem functioning through competition and depredation. Here we show that cougars (Puma concolor), one of the largest and the most widely ranging apex felid predators with a strictly carnivorous diet, could also be effective secondary long distance seed dispersers, potentially establishing direct and non-herbivore mediated interactions with plant species at the bottom of the food web. Cougars accidently ingest and disseminate large amounts of seeds (31,678 seeds in 123 scats) of plant species initially consumed by their main prey, the Eared Dove Zenaida auriculata. The germination potential of seeds for the three plant species most abundantly found in cougar scats (19,570 seeds) was not significantly different from that observed in seeds obtained from dove gizzards, indicating that seed passage through cougar guts did not affect seed germination. Considering the estimated cougar density in our study area, dispersal of seeds by cougars could allow a mean, annual seed spread of ~5,000 seeds per km2. Our results demonstrate that strictly carnivorous, felid predators could have broad and overlooked ecological functions related to ecosystem structuring and functioning. PMID:26791932
Hypercarnivorous apex predator could provide ecosystem services by dispersing seeds.
Sarasola, José Hernán; Zanón-Martínez, Juan Ignacio; Costán, Andrea Silvina; Ripple, William J
2016-01-21
Large "hypercarnivorous" felids are recognized for their role as apex predators and hence as key elements in food webs and ecosystem functioning through competition and depredation. Here we show that cougars (Puma concolor), one of the largest and the most widely ranging apex felid predators with a strictly carnivorous diet, could also be effective secondary long distance seed dispersers, potentially establishing direct and non-herbivore mediated interactions with plant species at the bottom of the food web. Cougars accidently ingest and disseminate large amounts of seeds (31,678 seeds in 123 scats) of plant species initially consumed by their main prey, the Eared Dove Zenaida auriculata. The germination potential of seeds for the three plant species most abundantly found in cougar scats (19,570 seeds) was not significantly different from that observed in seeds obtained from dove gizzards, indicating that seed passage through cougar guts did not affect seed germination. Considering the estimated cougar density in our study area, dispersal of seeds by cougars could allow a mean, annual seed spread of ~5,000 seeds per km(2). Our results demonstrate that strictly carnivorous, felid predators could have broad and overlooked ecological functions related to ecosystem structuring and functioning.
Symes, Sally; Goldsmith, Paul; Haines, Heather
2015-07-01
Seed sprouts have been implicated as vehicles for numerous foodborne outbreaks worldwide. Seed sprouts pose a unique food safety concern because of the ease of microbiological seed contamination, the inherent ability of the sprouting process to support microbial growth, and their consumption either raw or lightly cooked. To examine seed sprout safety in the Australian state of Victoria, a survey was conducted to detect specific microbes in seed sprout samples and to investigate food handling practices relating to seed sprouts. A total of 298 seed sprout samples were collected from across 33 local council areas. Escherichia coli was detected in 14.8%, Listeria spp. in 12.3%, and Listeria monocytogenes in 1.3% of samples analyzed. Salmonella spp. were not detected in any of the samples. A range of seed sprout handling practices were identified as potential food safety issues in some food businesses, including temperature control, washing practices, length of storage, and storage in proximity to unpackaged ready-to-eat potentially hazardous foods.
Gruwez, R; De Frenne, P; De Schrijver, A; Leroux, O; Vangansbeke, P; Verheyen, K
2014-02-01
Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. In 42 populations throughout the distribution range of common juniper in Europe, 11,943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur.
Gruwez, R.; De Frenne, P.; De Schrijver, A.; Leroux, O.; Vangansbeke, P.; Verheyen, K.
2014-01-01
Background and Aims Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. Methods In 42 populations throughout the distribution range of common juniper in Europe, 11 943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. Key Results Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. Conclusions Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur. PMID:24284814
A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa.
De Frenne, P; Kolb, A; Graae, B J; Decocq, G; Baltora, S; De Schrijver, A; Brunet, J; Chabrerie, O; Cousins, S A O; Dhondt, R; Diekmann, M; Gruwez, R; Heinken, T; Hermy, M; Liira, J; Saguez, R; Shevtsova, A; Baskin, C C; Verheyen, K
2011-05-01
The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours >5 °C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
İşlek, Cemil; Murat Altuner, Ergin; Çeter, Talip; Alpas, Hami
2013-06-01
High hydrostatic pressure is a non-thermal food processing technology that is found to increase the percentage of germination, decrease the germination time and improve the microbial quality of seeds. In this study, pressures of 100-400 MPa for 10 min at 30°C are used to compare the percentage of germination, the microbial quality of seeds, chlorophyll a and b, and total phenolic compounds concentrations in seedlings, and the anatomy-morphology characteristics of garden cress. Enhanced reductions of total aerobic mesophilic bacteria, total and fecal coliforms, and yeast and mould populations in seeds were observed, especially at 300 MPa. In addition, the percentage of germination, chlorophyll content and phenolic compounds concentrations, fresh and dry weights, and hypocotyl lengths of the seedlings are higher than those of all samples, where the percentage of germination is equal to controls but higher than other samples, and radicula length is lower than controls but higher than others.
Rodent-Mediated Interactions Among Seed Species of Differing Quality in a Shrubsteppe Ecosystem
Beard, Karen H.; Faulhaber, Craig A.; Howe, Frank P.; Edwards, Thomas C.
2013-01-01
Interactions among seeds, mediated by granivorous rodents, are likely to play a strong role in shrubsteppe ecosystem restoration. Past studies typically consider only pairwise interactions between preferred and less preferred seed species, whereas rangeland seedings are likely to contain more than 2 seed species, potentially leading to complex interactions. We examined how the relative proportion of seeds in a 3-species polyculture changes rodent seed selectivity (i.e., removal) and indirect interactions among seeds. We presented 2 rodent species, Peromyscus maniculatus (deer mice) and Perognathus parvus (pocket mice), in arenas with 3-species seed mixtures that varied in the proportion of a highly preferred, moderately preferred, and least preferred seed species, based on preferences determined in this study. We then conducted a field experiment in a pocket mouse—dominated ecosystem with the same 3-species seed mixtures in both “treated” (reduced shrub and increased forb cover) and “untreated” shrubsteppe. In the arena experiment, we found that rodents removed more of the highly preferred seed when the proportions of all 3 seeds were equal. Moderately preferred seeds experienced increased removal when the least preferred seed was in highest proportion. Removal of the least preferred seed increased when the highly preferred seed was in highest proportion. In the field experiment, results were similar to those from the arena experiment and did not differ between treated and untreated shrubsteppe areas. Though our results suggest that 3-species mixtures induce complex interactions among seeds, managers applying these results to restoration efforts should carefully consider the rodent community present and the potential fate of removed seeds.
Singh, Chandan Kumar; Kumari, Shanti; Singh Tomar, Ram Sewak; Karwa, Sourabh; Singh, Rajendra; Singh, Raja Bahadur; Sarkar, Susheel Kumar; Pal, Madan
2017-01-01
One hundred and sixty two genotypes of different Lens species were screened for salinity tolerance in hydroponics at 40, 80 and 120 mM sodium chloride (NaCl) for 30 d. The germination, seedling growth, biomass accumulation, seedling survivability, salinity scores, root and shoot anatomy, sodium ion (Na+), chloride ion (Cl-) and potassium ion (K+) concentrations, proline and antioxidant activities were measured to evaluate the performance of all the genotypes. The results were compared in respect of physiological (Na+, K+ and Cl-) and seed yield components obtained from field trials for salinity stress conducted during two years. Expression of salt tolerance in hydroponics was found to be reliable indicator for similarity in salt tolerance between genotypes and was evident in saline soil based comparisons. Impressive genotypic variation for salinity tolerance was observed among the genotypes screened under hydroponic and saline field conditions. Plant concentrations of Na+ and Cl- at 120 mM NaCl were found significantly correlated with germination, root and shoot length, fresh and dry weight of roots and shoots, seedling survivability, salinity scores and K+ under controlled conditions and ranked the genotypes along with their seed yield in the field. Root and shoot anatomy of tolerant line (PDL-1) and wild accession (ILWL-137) showed restricted uptake of Na+ and Cl- due to thick layer of their epidermis and endodermis as compared to sensitive cultigen (L-4076). All the genotypes were scanned using SSR markers for genetic diversity, which generated high polymorphism. On the basis of cluster analysis and population structure the contrasting genotypes were grouped into different classes. These markers may further be tested to explore their potential in marker-assisted selection. PMID:28542267
Singh, Dharmendra; Singh, Chandan Kumar; Kumari, Shanti; Singh Tomar, Ram Sewak; Karwa, Sourabh; Singh, Rajendra; Singh, Raja Bahadur; Sarkar, Susheel Kumar; Pal, Madan
2017-01-01
One hundred and sixty two genotypes of different Lens species were screened for salinity tolerance in hydroponics at 40, 80 and 120 mM sodium chloride (NaCl) for 30 d. The germination, seedling growth, biomass accumulation, seedling survivability, salinity scores, root and shoot anatomy, sodium ion (Na+), chloride ion (Cl-) and potassium ion (K+) concentrations, proline and antioxidant activities were measured to evaluate the performance of all the genotypes. The results were compared in respect of physiological (Na+, K+ and Cl-) and seed yield components obtained from field trials for salinity stress conducted during two years. Expression of salt tolerance in hydroponics was found to be reliable indicator for similarity in salt tolerance between genotypes and was evident in saline soil based comparisons. Impressive genotypic variation for salinity tolerance was observed among the genotypes screened under hydroponic and saline field conditions. Plant concentrations of Na+ and Cl- at 120 mM NaCl were found significantly correlated with germination, root and shoot length, fresh and dry weight of roots and shoots, seedling survivability, salinity scores and K+ under controlled conditions and ranked the genotypes along with their seed yield in the field. Root and shoot anatomy of tolerant line (PDL-1) and wild accession (ILWL-137) showed restricted uptake of Na+ and Cl- due to thick layer of their epidermis and endodermis as compared to sensitive cultigen (L-4076). All the genotypes were scanned using SSR markers for genetic diversity, which generated high polymorphism. On the basis of cluster analysis and population structure the contrasting genotypes were grouped into different classes. These markers may further be tested to explore their potential in marker-assisted selection.
Li, Guangke; Chen, Junyan; Yan, Wei; Sang, Nan
2017-05-01
To compare the toxicity of landfill leachate exposure at the early stages of seed soaking and germination on maize, a field experiment was conducted to evaluate the physiological aspects of growth, yield and potential clastogenicity of root-tip cells. The maizes were treated with leachate at levels of 2%, 10%, 20%, 30% or 50% (V/V). First, the change of physiological indexes, including chlorophyll (Chl), Malondialdehyde (MDA) and Reactive oxygen species (ROS) levels, combined with yield all showed that soaking with leachate, but not germination, generated a greater ecological risk on maize. After a soaking treatment of maize with 50% leachate, the Chl, MDA and ROS levels during a vigorous growth period were 47.3%, 149.8% and 309.7%, respectively, of the control, whereas the yield decreased to 68.6% of the control. In addition, our results demonstrated that the leachate at lower levels could promote growth. This is mainly embodied in that the yield of maize treated with 10% leachate at the soaking stage increased to 116.0% of the control. Moreover, the cytological analysis experiment also demonstrated that the ecological risk of leachate still exists in both cases. Furthermore, the gray relational analysis showed that the ear row number and tassel branch number were the major factors affecting the yield of maize treated with 50% leachate at the stages of soaking and germination, respectively. In general, these results are helpful in understanding the phytotoxicity of leachate, which provides additional reference data for risk assessment and management of leachate. Copyright © 2016. Published by Elsevier B.V.
de Oliveira, Caio Fernando Ramalho; de Moura, Maiara Celine; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes; Coelho, Luana Cassandra Breitenbach Barroso; Macedo, Maria Lígia Rodrigues
2017-10-01
Biotechnological techniques allow the investigation of alternatives to outdated chemical insecticides for crop protection; some investigations have focused on the identification of molecules tailored from nature for this purpose. We, herein, describe the negative effects of water-soluble lectin from Moringa oleifera seeds (WSMoL) on Anagasta kuehniella development. The chitin-binding lectin, WSMoL, impaired the larval weight gain by 50% and affected the activity of the pest's major digestive enzymes. The commitment of the digestive process became evident after controlled digestion studies, where the capacity of protein digestion was compromised by >90%. Upon acute exposure, the lectin was not resistant to digestion; however, chronic ingestion of WSMoL was able to reverse this feature. Thus, we show that resistance to digestion may not be a prerequisite for a lectin's ability to exert negative effects on larval physiology. The mechanism of action of WSMoL involves binding to chitin with possible disruption to the peritrophic membrane, causing disorder between the endo- and ectoperitrophic spaces. Additionally, results suggest that WSMoL may trigger apoptosis in gut cells, leading to the lower enzymatic activity observed in WSMoL-fed larvae. Although assays employing an artificial diet did not demonstrate effects of WSMoL on A. kuehniella mortality, this lectin may hold potential for exerting insecticide effects on other pest insects, as well for use in other experimental approaches, such as WSMoL-expressing plants. Moreover, the use of WSMoL with other biotechnological tools, such as 'pyramid' crops, may represent a strategy for delaying the evolution of pest resistance to transgenic crops, since its multiple site targets could act in synergism with other insecticide compounds. Copyright © 2017 Elsevier Inc. All rights reserved.
Liang, Yongheng; Sun, Wendell Q.
2002-01-01
Rate of dehydration greatly affects desiccation tolerance of recalcitrant seeds. This effect is presumably related to two different stress vectors: direct mechanical or physical stress because of the loss of water and physicochemical damage of tissues as a result of metabolic alterations during drying. The present study proposed a new theoretic approach to represent these two types of stresses and investigated how seed tissues responded differently to two stress vectors, using the models of isolated cocoa (Theobroma cacao) and ginkgo (Ginkgo biloba) embryonic tissues dehydrated under various drying conditions. This approach used the differential change in axis water potential (ΔΨ/Δt) to quantify rate of dehydration and the intensity of direct physical stress experienced by embryonic tissues during desiccation. Physicochemical effect of drying was expressed by cumulative desiccation stress [∫\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\pagestyle{empty} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{o}^{t}}}\\end{equation*}\\end{document}f(ψ,t)], a function of both the rate and time of dehydration. Rapid dehydration increased the sensitivity of embryonic tissues to desiccation as indicated by high critical water contents, below which desiccation damage occurred. Cumulative desiccation stress increased sharply under slow drying conditions, which was also detrimental to embryonic tissues. This quantitative analysis of the stress-time-response relationship helps to understand the physiological basis for the existence of an optimal dehydration rate, with which maximum desiccation tolerance could be achieved. The established numerical analysis model will prove valuable for the design of experiments that aim to elucidate biochemical and physiological mechanisms of desiccation tolerance. PMID:11950981
Luo, Hong-Hai; Zhang, Hong-Zhi; Du, Ming-Wei; Huang, Jian-Jun; Zhang, Ya-Li; Zhang, Wang-Feng
2009-06-01
A soil column culture experiment was conducted under the ecological and climatic conditions of Xinjiang to study the effects of water storage in deeper (> 60 cm) soil layers on the root physiological characteristics and leaf photosynthetic traits of cotton variety Xinluzao 13. Two treatments were installed, i.e., well-watered and no watering. The moisture content in plough layer was controlled at 70% +/- 5% and 55% +/- 5% of field capacity by drip irrigation under mulch during growth season. It was shown that the water storage in deeper soil layers enhanced the SOD activity and the vigor of cotton root, and increased the water use efficiency of plant as well as the leaf water potential, chlorophyll content, and net photosynthesis rate, which finally led to a higher yield of seed cotton and higher water use efficiency. Under well-watered condition and when the moisture content in plough layer was maintained at 55% of field capacity, the senescence of roots in middle and lower soil layers was slower, and the higher root vigor compensated the negative effects of impaired photosynthesis caused by water deficit to some extent. The yield of seed cotton was lower when the moisture content in plough layer was maintained at 55% of field capacity than at 70% of field capacity, but no significant difference was observed in the water use efficiency. Our results emphasized the importance of pre-sowing irrigation in winter or in spring to increase the water storage of deeper soil layers. In addition, proper cultivation practices and less frequent drip irrigation (longer intervals between successive rounds of irrigation) were also essential for conserving irrigation water and achieving higher yield.
Schopfer, Peter; Plachy, Claudia; Frahry, Gitta
2001-01-01
Germination of radish (Raphanus sativus cv Eterna) seeds can be inhibited by far-red light (high-irradiance reaction of phytochrome) or abscisic acid (ABA). Gibberellic acid (GA3) restores full germination under far-red light. This experimental system was used to investigate the release of reactive oxygen intermediates (ROI) by seed coats and embryos during germination, utilizing the apoplastic oxidation of 2′,7′-dichlorofluorescin to fluorescent 2′,7′-dichlorofluorescein as an in vivo assay. Germination in darkness is accompanied by a steep rise in ROI release originating from the seed coat (living aleurone layer) as well as the embryo. At the same time as the inhibition of germination, far-red light and ABA inhibit ROI release in both seed parts and GA3 reverses this inhibition when initiating germination under far-red light. During the later stage of germination the seed coat also releases peroxidase with a time course affected by far-red light, ABA, and GA3. The participation of superoxide radicals, hydrogen peroxide, and hydroxyl radicals in ROI metabolism was demonstrated with specific in vivo assays. ROI production by germinating seeds represents an active, developmentally controlled physiological function, presumably for protecting the emerging seedling against attack by pathogens. PMID:11299341
Carry-over of Differential Salt Tolerance in Plants Grown from Dimorphic Seeds of Suaeda splendens
Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Cambrollé, Jesús; Luque, Teresa; Figueroa, M. Enrique; Davy, Anthony J.
2008-01-01
Background and Aims Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously. Methods Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C4 shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity. Key Results Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m−3 NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, Fv/Fm and net rate of CO2 assimilation. Conclusions The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed dimorphism may need to take account of differences over the entire life cycle, rather than just at the germination stage. PMID:18463109
Carry-over of differential salt tolerance in plants grown from dimorphic seeds of Suaeda splendens.
Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Cambrollé, Jesús; Luque, Teresa; Figueroa, M Enrique; Davy, Anthony J
2008-07-01
Halophytic species often show seed dimorphism, where seed morphs produced by a single individual may differ in germination characteristics. Particular morphs are adapted to different windows of opportunity for germination in the seasonally fluctuating and heterogeneous salt-marsh environment. The possibility that plants derived from the two morphs may also differ physiologically has not been investigated previously. Experiments were designed to investigate the germination characteristics of black and brown seed morphs of Suaeda splendens, an annual, C(4) shrub of non-tidal, saline steppes. The resulting seedlings were transferred to hydroponic culture to investigate their growth and photosynthetic (PSII photochemistry and gas exchange) responses to salinity. Black seeds germinated at low salinity but were particularly sensitive to increasing salt concentrations, and strongly inhibited by light. Brown seeds were unaffected by light, able to germinate at higher salinities and generally germinated more rapidly. Ungerminated black seeds maintained viability for longer than brown ones, particularly at high salinity. Seedlings derived from both seed morphs grew well at high salinity (400 mol m(-3) NaCl). However, seedlings derived from brown seeds performed poorly at low salinity, as reflected in relative growth rate, numbers of branches produced, F(v)/F(m) and net rate of CO(2) assimilation. The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed dimorphism may need to take account of differences over the entire life cycle, rather than just at the germination stage.
The Proteome of Seed Development in the Model Legume Lotus japonicus1[C][W
Dam, Svend; Laursen, Brian S.; Ørnfelt, Jane H.; Jochimsen, Bjarne; Stærfeldt, Hans Henrik; Friis, Carsten; Nielsen, Kasper; Goffard, Nicolas; Besenbacher, Søren; Krusell, Lene; Sato, Shusei; Tabata, Satoshi; Thøgersen, Ida B.; Enghild, Jan J.; Stougaard, Jens
2009-01-01
We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family. PMID:19129418
USDA-ARS?s Scientific Manuscript database
New plant-based products can be produced from seed harvested from Brassica species used for phytomanaging selenium (Se) in the westside of central California. We tested Se-enriched seed meals produced from canola (Brassica napus) and mustard (Sinapis alba) plants as potential bio-herbicides and as g...
Environmental factors influencing Pyrenophora semeniperda-caused seed mortality in Bromus tectorum
Heather Finch; Phil S. Allen; Susan E. Meyer
2013-01-01
Temperature and water potential strongly influence seed dormancy status and germination of Bromus tectorum. As seeds of this plant can be killed by the ascomycete fungus Pyrenophora semeniperda, this study was conducted to learn how water potential and temperature influence mortality levels in this pathosystem. Separate experiments were conducted to determine: (1) if P...
Silva, Anderson Tadeu; Ligterink, Wilco; Hilhorst, Henk W M
2017-11-01
Metabolic and transcriptomic correlation analysis identified two distinctive profiles involved in the metabolic preparation for seed germination and seedling establishment, respectively. Transcripts were identified that may control metabolic fluxes. The transition from a quiescent metabolic state (dry seed) to the active state of a vigorous seedling is crucial in the plant's life cycle. We analysed this complex physiological trait by measuring the changes in primary metabolism that occur during the transition in order to determine which metabolic networks are operational. The transition involves several developmental stages from seed germination to seedling establishment, i.e. between imbibition of the mature dry seed and opening of the cotyledons, the final stage of seedling establishment. We hypothesized that the advancement of growth is associated with certain signature metabolite profiles. Metabolite-metabolite correlation analysis underlined two specific profiles which appear to be involved in the metabolic preparation for seed germination and efficient seedling establishment, respectively. Metabolite profiles were also compared to transcript profiles and although transcriptional changes did not always equate to a proportional metabolic response, in depth correlation analysis identified several transcripts that may directly influence the flux through metabolic pathways during the seed-to-seedling transition. This correlation analysis also pinpointed metabolic pathways which are significant for the seed-to-seedling transition, and metabolite contents that appeared to be controlled directly by transcript abundance. This global view of the transcriptional and metabolic changes during the seed-to-seedling transition in Arabidopsis opens up new perspectives for understanding the complex regulatory mechanism underlying this transition.
Macovei, Anca; Pagano, Andrea; Leonetti, Paola; Carbonera, Daniela; Balestrazzi, Alma; Araújo, Susana S
2017-05-01
The pre-germinative metabolism is among the most fascinating aspects of seed biology. The early seed germination phase, or pre-germination, is characterized by rapid water uptake (imbibition), which directs a series of dynamic biochemical events. Among those are enzyme activation, DNA damage and repair, and use of reserve storage compounds, such as lipids, carbohydrates and proteins. Industrial seedling production and intensive agricultural production systems require seed stocks with high rate of synchronized germination and low dormancy. Consequently, seed dormancy, a quantitative trait related to the activation of the pre-germinative metabolism, is probably the most studied seed trait in model species and crops. Single omics, systems biology, QTLs and GWAS mapping approaches have unveiled a list of molecules and regulatory mechanisms acting at transcriptional, post-transcriptional and post-translational levels. Most of the identified candidate genes encode for regulatory proteins targeting ROS, phytohormone and primary metabolisms, corroborating the data obtained from simple molecular biology approaches. Emerging evidences show that epigenetic regulation plays a crucial role in the regulation of these mentioned processes, constituting a still unexploited strategy to modulate seed traits. The present review will provide an up-date of the current knowledge on seed pre-germinative metabolism, gathering the most relevant results from physiological, genetics, and omics studies conducted in model and crop plants. The effects exerted by the biotic and abiotic stresses and priming are also addressed. The possible implications derived from the modulation of pre-germinative metabolism will be discussed from the point of view of seed quality and technology.
Dormancy and germination: How does the crop seed decide?
Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y
2015-11-01
Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.
Kim, Na-Hyung; Choi, Sun-Kyung; Kim, Su-Jin; Moon, Phil-Dong; Lim, Hun-Sun; Choi, In-Young; Na, Ho-Jeong; An, Hyo-Jin; Myung, Noh-Yil; Jeong, Hyun-Ja; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min
2008-11-01
Given that tea contains a number of chemical constituents possessing medicinal and pharmacological properties, green tea seed is also believed to contain many biologically active compounds such as saponin, flavonoids, vitamins, and oil materials. However, little is known about the physiologic functions of green tea seed oil. The aim of this study is to investigate the anti-obesity effects of green tea seed oil in C57BL/6J mice and in preadipocyte 3T3L-1 cell lines. In vivo, three groups of mice were fed with a standard diet, a high-fat diet containing 30% shortening, or 30% of green tea seed oil based on a standard diet for 85 days. The levels of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, glucose, and alanine aminotransferase in blood were analyzed at the end of the study. The mice given green tea seed oil gained less weight compared to mice given the shortening diet (p < 0.01). The plasma level of total cholesterol was decreased by a significant level of 32.4% in mice given the green tea seed oil compared to the mice given the shortening diet (p < 0.01). In addition, 3T3-L1 cells were treated for 2 days to evaluate effects of green tea seed oil on adipocyte differentiation. Green tea seed oil inhibited expression of peroxisome proliferator-activated receptor-gamma(2) and CCAAT/enhancer binding protein-alpha in adipocytes and adipose tissue from the experimental animals. These results indicate that the anti-obesity effects of green tea seed oil might be, in part, through suppression of transcription factors related to adipocyte differentiation.
Basnet, Ram Kumar; Moreno-Pachon, Natalia; Lin, Ke; Bucher, Johan; Visser, Richard G F; Maliepaard, Chris; Bonnema, Guusje
2013-12-01
Brassica seeds are important as basic units of plant growth and sources of vegetable oil. Seed development is regulated by many dynamic metabolic processes controlled by complex networks of spatially and temporally expressed genes. We conducted a global microarray gene co-expression analysis by measuring transcript abundance of developing seeds from two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and two of their doubled haploid (DH) progenies, (1) to study the timing of metabolic processes in developing seeds, (2) to explore the major transcriptional differences in developing seeds of the two morphotypes, and (3) to identify the optimum stage for a genetical genomics study in B. rapa seed. Seed developmental stages were similar in developing seeds of pak choi and yellow sarson of B. rapa; however, the colour of embryo and seed coat differed among these two morphotypes. In this study, most transcriptional changes occurred between 25 and 35 DAP, which shows that the timing of seed developmental processes in B. rapa is at later developmental stages than in the related species B. napus. Using a Weighted Gene Co-expression Network Analysis (WGCNA), we identified 47 "gene modules", of which 27 showed a significant association with temporal and/or genotypic variation. An additional hierarchical cluster analysis identified broad spectra of gene expression patterns during seed development. The predominant variation in gene expression was according to developmental stages rather than morphotype differences. Since lipids are the major storage compounds of Brassica seeds, we investigated in more detail the regulation of lipid metabolism. Four co-regulated gene clusters were identified with 17 putative cis-regulatory elements predicted in their 1000 bp upstream region, either specific or common to different lipid metabolic pathways. This is the first study of genome-wide profiling of transcript abundance during seed development in B. rapa. The identification of key physiological events, major expression patterns, and putative cis-regulatory elements provides useful information to construct gene regulatory networks in B. rapa developing seeds and provides a starting point for a genetical genomics study of seed quality traits.
Amylase Synthesis and Stability in Crested Wheatgrass Seeds at Low Water Potentials 1
Wilson, A. M.
1971-01-01
Drying of seeds of Agropyron desertorum (Fisch. ex Link) Schult. did not result in breakdown of α-amylase nor impair the ability of seeds to resume its synthesis when moistened again. β-Amylase activity did not change during 5 days of germination at a water potential of 0 atmosphere nor during 40 days of incubation at −40 atmospheres. Seeds synthesized α-amylase at 0, −20, and −40 atmospheres, but not at −60 atmospheres. At 0 and −20 atmospheres, the log of α-amylase activity was linearly related to hastening of germination. But at −40 atmospheres, seeds synthesized α-amylase during a time when there was little hastening of germination. Thus, it appears that other biochemical reactions are less drought-tolerant than synthesis of α-amylase. It is concluded that inhibition of α-amylase synthesis is not a controlling factor in the germination of these seeds at low water potentials. PMID:16657835
Minkey, D M; Spafford, H
2016-10-01
Although granivorous ants are known to collect weed seeds from cropping areas in Australia, the fate of these seeds has not been adequately investigated. Seeds of annual ryegrass (Lolium rigidum Gaud.) and wild radish (Raphanus raphanistrum L.) were placed around the nests of five native ant species (Iridomyrmex greensladei Shattuck, Rhytidoponera metallica Smith, Melophorus turneri Forel, Monomorium rothsteini Forel, and Pheidole hartmeyeri Forel) and tracked continuously over a 24-h period. Removal rates and seed preference of the ant species were evaluated. Ant nests were then excavated to determine the placement of seeds that were taken into each nest. Seed preference, seed removal efficiencies, activity, and seed storage all varied between the ant species. Annual ryegrass seed was collected by three species of ants and was removed from the soil surface more efficiently than wild radish seed. Most ant species stored seed below ground at a depth that is inhibitory to emergence, thereby potentially removing that portion of seed from the seed bank, but some seed was placed at germinable depths. Pheidole hartmeyeri was identified as a likely biological control agent for annual ryegrass seeds and wild radish, while Me. turneri and Mo. rothsteini have potential as biocontrol agents for annual ryegrass, but further research is needed. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru
2018-01-01
Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P < 0.05) than the EHEC populations. Significantly larger Salmonella populations were recovered from the cotyledon and seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important bacterial pathogens, Salmonella and enterohemorrhagic Escherichia coli (EHEC), when artificially internalized into vegetable seeds, to grow and disseminate along vegetable sprouts/seedlings during germination. The data from the study revealed that the pathogen cells artificially internalized into vegetable seeds caused the contamination of different tissues of sprouts/seedlings and that pathogen growth on germinating seeds is bacterial species and vegetable seed-type dependent. These results further stress the necessity of using pathogen-free vegetable seeds for edible sprout production. Copyright © 2017 American Society for Microbiology.
Consistent individual differences in seed disperser quality in a seed-eating fish.
Pollux, Bart J A
2017-01-01
Animal-mediated seed dispersal (zoochory) is considered to be an important mechanism regulating biological processes at larger spatial scales. To date, intra-specific variation in seed disperser quality within seed-dispersing animals has not been studied. Here, I employed seed feeding trials to quantify individual differences in disperser quality within the common carp (Cyprinus carpio) using seeds of two aquatic plants: unbranched bur-reed (Sparganium emersum, Sparganiaceae) and arrowhead (Sagittaria sagittifolia, Alismataceae). I found substantial variation among carp individuals in their propensity to ingest seeds and their ability to digest them, resulting in up to 31-fold differences in the probability of seed dispersal. In addition, there were significant differences in the time that seeds are retained in their digestive systems, generating a twofold difference in the maximum distance over which they can potentially disperse seeds. I propose that seed-eating animal species consist of individuals that display continuous variation in disperser quality, with at one end of the continuum individuals that are likely to eat seeds, pass them unharmed through their digestive tract and transport them over large distances to new locations (i.e. high-quality seed dispersers) and at the other end individuals that rarely eat seeds, destroy most of the ones they ingest and transport the few surviving seeds over relatively short distances (low-quality seed dispersers). Although individual differences in seed dispersal quality could be the result of a variety of factors, these results underline the ecological and evolutionary potential of such variation for both plants and animals.
Digestive capacity predicts diet diversity in Neotropical frugivorous bats.
Saldaña-Vázquez, Romeo A; Ruiz-Sanchez, Eduardo; Herrera-Alsina, Leonel; Schondube, Jorge E
2015-09-01
1. Predicting the diet diversity of animals is important to basic and applied ecology. Knowledge of diet diversity in animals helps us understand niche partitioning, functional diversity and ecosystem services such as pollination, pest control and seed dispersal. 2. There is a negative relationship between the length of the digestive tract and diet diversity in animals; however, the role of digestive physiology in determining diet diversity has been ignored. This is especially important in vertebrates with powered flight because, unlike non-flying vertebrates, they have limitations that may constrain gut size. 3. Here, we evaluate the relationship between digestive capacity and diet diversity in Carollinae and Stenodermatinae frugivorous bats. These bats disperse the seeds of plants that are key to Neotropical forest regeneration. 4. Our results show that digestive capacity is a good predictor of diet diversity in Carollinae and Stenodermatinae frugivorous bats (R(2) = 0·77). 5. Surprisingly, the most phylogenetically closely related species were not similar in their digestive capacity or diet diversity. The lack of a phylogenetic signal for the traits evaluated implies differences in digestive physiology and diet in closely related species. 6. Our results highlight the predictive usefulness of digestive physiology for understanding the feeding ecology of animals. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Cannabis sativa (Hemp) Seeds, Δ9-Tetrahydrocannabinol, and Potential Overdose.
Yang, Yi; Lewis, Melissa M; Bello, Angelica M; Wasilewski, Ewa; Clarke, Hance A; Kotra, Lakshmi P
2017-01-01
Introduction: Cannabis sativa (hemp) seeds are popular for their high nutrient content, and strict regulations are in place to limit the amount of potentially harmful phytocannabinoids, especially Δ 9 -tetrahydrocannabinol (Δ 9 -THC). In Canada, this limit is 10 μg of Δ 9 -THC per gram of hemp seeds (10 ppm), and other jurisdictions in the world follow similar guidelines. Materials and Methods: We investigated three different brands of consumer-grade hemp seeds using four different procedures to extract phytocannabinoids, and quantified total Δ 9 -THC and cannabidiol (CBD). Discussion: We discovered that Δ 9 -THC concentrations in these hemp seeds could be as high as 1250% of the legal limit, and the amount of phytocannabinoids depended on the extraction procedure employed, Soxhlet extraction being the most efficient across all three brands of seeds. Δ 9 -THC and CBD exhibited significant variations in their estimated concentrations even from the same brand, reflecting the inhomogeneous nature of seeds and variability due to the extraction method, but almost in all cases, Δ 9 -THC concentrations were higher than the legal limit. These quantities of total Δ 9 -THC may reach as high as 3.8 mg per gram of hemp seeds, if one were consuming a 30-g daily recommended amount of hemp seeds, and is a cause for concern for potential toxicity. It is not clear if these high quantities of Δ 9 -THC are due to contamination of the seeds, or any other reason. Conclusion: Careful consideration of the extraction method is very important for the measurement of cannabinoids in hemp seeds.
Cannabis sativa (Hemp) Seeds, Δ9-Tetrahydrocannabinol, and Potential Overdose
Yang, Yi; Lewis, Melissa M.; Bello, Angelica M.; Wasilewski, Ewa; Clarke, Hance A.; Kotra, Lakshmi P.
2017-01-01
Abstract Introduction: Cannabis sativa (hemp) seeds are popular for their high nutrient content, and strict regulations are in place to limit the amount of potentially harmful phytocannabinoids, especially Δ9-tetrahydrocannabinol (Δ9-THC). In Canada, this limit is 10 μg of Δ9-THC per gram of hemp seeds (10 ppm), and other jurisdictions in the world follow similar guidelines. Materials and Methods: We investigated three different brands of consumer-grade hemp seeds using four different procedures to extract phytocannabinoids, and quantified total Δ9-THC and cannabidiol (CBD). Discussion: We discovered that Δ9-THC concentrations in these hemp seeds could be as high as 1250% of the legal limit, and the amount of phytocannabinoids depended on the extraction procedure employed, Soxhlet extraction being the most efficient across all three brands of seeds. Δ9-THC and CBD exhibited significant variations in their estimated concentrations even from the same brand, reflecting the inhomogeneous nature of seeds and variability due to the extraction method, but almost in all cases, Δ9-THC concentrations were higher than the legal limit. These quantities of total Δ9-THC may reach as high as 3.8 mg per gram of hemp seeds, if one were consuming a 30-g daily recommended amount of hemp seeds, and is a cause for concern for potential toxicity. It is not clear if these high quantities of Δ9-THC are due to contamination of the seeds, or any other reason. Conclusion: Careful consideration of the extraction method is very important for the measurement of cannabinoids in hemp seeds. PMID:29098190
A repellent to reduce mouse damage to longleaf pine seed
Dale L. Nolte; James P. Barnett
2000-01-01
Direct seeding is a potential method for reforestation of pines on many southern sites. The success of direct seeding, however, depends, at least in part, in reducing seed predation by birds and rodents. We conducted a series of tests to assess the efficacy of capsicum and thiram in reducing mouse damage to longleaf pine (Pinus palustris) seeds....
Restoration seed reserves for assisted gene flow within seed orchards
C.S. Echt; B.S. Crane
2017-01-01
Changing climate and declining forest populations imperil the future of certain forest tree species. To complement forest management and genetic conservation plans, we propose a new paradigm for seedling seed orchards: foster genetic mixing among a variety of seed sources to increase genetic diversity and adaptive potential of seed supplies used for forest restoration...
Sean M. Hoban
2017-01-01
In the face of ongoing environmental change, conservation and natural resource agencies are initiating or expanding ex situ seed collections from natural plant populations. Seed collections have many uses, including in provenance trials, breeding programs, seed orchards, gene banks for long-term conservation (live plants or seeds), restoration, reforestation, and...
USDA-ARS?s Scientific Manuscript database
The effects of seed cooking and oil processing conditions on functional properties of milkweed seed proteins were determined to identify potential value-added uses for the meal. Milkweed seeds were flaked and then cooked in the seed conditioner at 82°C for 30, 60 or 90 min. Oil was extracted by scre...
Formulation and evaluation of carrot seed oil-based cosmetic emulsions.
Singh, Shalini; Lohani, Alka; Mishra, Arun Kumar; Verma, Anurag
2018-05-08
The present study deals with the evaluation of antiaging potential of carrot seed oil-based cosmetic emulsions. Briefly, cosmetic emulsions composed of carrot seed oil in varying proportions (2, 4, and 6% w/v) were prepared using the hydrophile-lipophile balance (HLB) technique. Coconut oil, nonionic surfactants (Tween 80 and Span 80), and xanthan gum were used as the oil phase, emulgent, and emulsion stabilizer, respectively. The formed emulsions were evaluated for various physical, chemical, and biochemical parameters such as the zeta potential, globule size measurement, antioxidant activity, sun protection factor (SPF), skin irritation, and biochemical studies. The zeta potential values ranged from -43.2 to -48.3, indicating good stability. The polydispersity index (PDI) of various emulsion formulations ranged from 0.353 to 0.816. 1,1-Diphenyl-2-picrylhydrazyl- (DPPH) and nitric oxide-free radical scavenging activity showed the antioxidant potential of the prepared carrot seed oil emulsions. The highest SPF value (6.92) was shown by F3 having 6%w/v carrot seed oil. Histopathological data and biochemical analysis (ascorbic acid (ASC) and total protein content) suggest that these cosmetic emulsions have sufficient potential to be used as potential skin rejuvenating preparations.
7 CFR 201.56-2 - Sunflower family, Asteraceae (Compositae).
Code of Federal Regulations, 2014 CFR
2014-01-01
... tissue remaining attached. (B) Less than half of the original cotyledon tissue free of necrosis or decay. (Remove attached seed coat for evaluation of cotyledons. Physiological necrosis is manifested by... degree of necrosis or decay. (iii) Hypocotyl: (A) Deep open cracks extending into the conducting tissue...
7 CFR 201.56-2 - Sunflower family, Asteraceae (Compositae).
Code of Federal Regulations, 2012 CFR
2012-01-01
... tissue remaining attached. (B) Less than half of the original cotyledon tissue free of necrosis or decay. (Remove attached seed coat for evaluation of cotyledons. Physiological necrosis is manifested by... degree of necrosis or decay. (iii) Hypocotyl: (A) Deep open cracks extending into the conducting tissue...
7 CFR 201.56-2 - Sunflower family, Asteraceae (Compositae).
Code of Federal Regulations, 2011 CFR
2011-01-01
... tissue remaining attached. (B) Less than half of the original cotyledon tissue free of necrosis or decay. (Remove attached seed coat for evaluation of cotyledons. Physiological necrosis is manifested by... degree of necrosis or decay. (iii) Hypocotyl: (A) Deep open cracks extending into the conducting tissue...
7 CFR 201.56-2 - Sunflower family, Asteraceae (Compositae).
Code of Federal Regulations, 2013 CFR
2013-01-01
... tissue remaining attached. (B) Less than half of the original cotyledon tissue free of necrosis or decay. (Remove attached seed coat for evaluation of cotyledons. Physiological necrosis is manifested by... degree of necrosis or decay. (iii) Hypocotyl: (A) Deep open cracks extending into the conducting tissue...
7 CFR 201.56-2 - Sunflower family, Asteraceae (Compositae).
Code of Federal Regulations, 2010 CFR
2010-01-01
... tissue remaining attached. (B) Less than half of the original cotyledon tissue free of necrosis or decay. (Remove attached seed coat for evaluation of cotyledons. Physiological necrosis is manifested by... degree of necrosis or decay. (iii) Hypocotyl: (A) Deep open cracks extending into the conducting tissue...
Intergenerational studies on the effects of cerium oxide nanoparticles in wheat
The intergenerational impacts of engineered nanomaterials in plants are not yet well understood. A soil microcosm study was performed to assess the physiology, phenology, yield and nutrient uptake in wheat (Triticum aestivum) exposed to nanoceria (nCeO2). Seeds from parental plan...
Tenth workshop on seedling physiology and growth problems in oak plantings
Brian R. Lockhart; Emile S. Gardiner; Daniel C. (editors) Dey
2008-01-01
The University of Tennesseeâs Tree Improvement Program is in its 49th year of conducting researchand technology transfer activities with a special emphasis on hardwood species, particularlyoak (Quercus spp.). Programs have included seed orchard construction and development, nurserystudies, silviculture...
Marco Masi; Antonio Evidente; Susan Meyer; Joshua Nicholson; Ashley Munoz
2014-01-01
The seed pathogen Pyrenophora semeniperda has demonstrated potential as a mycoherbicidal biocontrol for eliminating persistent seed banks of annual bromes on western North American rangelands. This pathogen exhibits variation in virulence that is related to mycelial growth rate, but direct laboratory tests of virulence on seeds often have low repeatability. We...
New approaches to understanding weed seed predation in agroecosystems
USDA-ARS?s Scientific Manuscript database
Postdispersal predation of weed seeds in arable systems can be a valuable ecosystem service, with the potential to support ecological approaches to weed management by reducing inputs to the soil seed bank. Scientific understanding of factors regulating weed seed predation rates is still insufficient...
Sicklepod (Senna obtusifolia) seed processing and potential utilization.
Harry-O'kuru, Rogers E; Wu, Y Victor; Evangelista, Roque; Vaughn, Steven F; Rayford, Warren; Wilson, Richard F
2005-06-15
Sicklepod (Senna obtusifolia) is a leguminous plant that infests soybean fields in the southeastern United States. Its seeds contain a variety of toxic, highly colored compounds, mainly anthraquinones together with a small amount of fat. These compounds contaminate and lower the quality of soybean oil when inadequately cleaned soybean seed from this area is processed. The sorting of sicklepod seed from a soybean harvest is an additional economic burden on the farmer beyond the cost of proper disposal of the weed seed to avoid worsening field infestation. Fortunately, sicklepod seed also contains substantial amounts of carbohydrates and proteins. These edible components when freed from anthraquinones have a market in pet food as well as potential in human foods because of the high galactomannan ratio of the polysaccharides. Sicklepod seed was dehulled, and the ground endosperm was defatted, followed by sequential solvent extraction of the defatted seed meal to isolate the anthraquinones, carbohydrates, and protein components into their respective classes. Each class of isolate was spectroscopically identified.
Biologically Active and Antimicrobial Peptides from Plants
Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen
2015-01-01
Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307
Donà, M.; Balestrazzi, A.; Mondoni, A.; Rossi, G.; Ventura, L.; Buttafava, A.; Macovei, A.; Sabatini, M. E.; Valassi, A.; Carbonera, D.
2013-01-01
Background and Aims The germination test currently represents the most used method to assess seed viability in germplasm banks, despite the difficulties caused by the occurrence of seed dormancy. Furthermore, seed longevity can vary considerably across species and populations from different environments, and studies related to the eco-physiological processes underlying such variations are still limited in their depth. The aim of the present work was the identification of reliable molecular markers that might help in monitoring seed deterioration. Methods Dry seeds were subjected to artificial ageing and collected at different time points for molecular/biochemical analyses. DNA damage was measured using the RAPD (random amplified polymorphic DNA) approach while the seed antioxidant profile was obtained using both the DPPH (1,1-diphenyl, 2-picrylhydrazyl) assay and the Folin–Ciocalteu reagent method. Electron paramagnetic resonance (EPR) provided profiles of free radicals. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to assess the expression profiles of the antioxidant genes MT2 (type 2 metallothionein) and SOD (superoxide dismutase). A modified QRT-PCR protocol was used to determine telomere length. Key Results The RAPD profiles highlighted different capacities of the two Silene species to overcome DNA damage induced by artificial ageing. The antioxidant profiles of dry and rehydrated seeds revealed that the high-altitude taxon Silene acaulis was characterized by a lower antioxidant specific activity. Significant upregulation of the MT2 and SOD genes was observed only in the rehydrated seeds of the low-altitude species. Rehydration resulted in telomere lengthening in both Silene species. Conclusions Different seed viability markers have been selected for plant species showing inherent variation of seed longevity. RAPD analysis, quantification of redox activity of non-enzymatic antioxidant compounds and gene expression profiling provide deeper insights to study seed viability during storage. Telomere lengthening is a promising tool to discriminate between short- and long-lived species. PMID:23532044
Bernareggi, Giulietta; Carbognani, Michele; Mondoni, Andrea; Petraglia, Alessandro
2016-01-01
Background and Aims Climate warming has major impacts on seed germination of several alpine species, hence on their regeneration capacity. Most studies have investigated the effects of warming after seed dispersal, and little is known about the effects a warmer parental environment may have on germination and dormancy of the seed progeny. Nevertheless, temperatures during seed development and maturation could alter the state of dormancy, affecting the timing of emergence and seedling survival. Here, the interplay between pre- and post-dispersal temperatures driving seed dormancy release and germination requirements of alpine plants were investigated. Methods Three plant species inhabiting alpine snowbeds were exposed to an artificial warming treatment (i.e. +1·5 K) and to natural conditions in the field. Seeds produced were exposed to six different periods of cold stratification (0, 2, 4, 8, 12 and 20 weeks at 0 °C), followed by four incubation temperatures (5, 10, 15 and 20 °C) for germination testing. Key Results A warmer parental environment produced either no or a significant increase in germination, depending on the duration of cold stratification, incubation temperatures and their interaction. In contrast, the speed of germination was less sensitive to changes in the parental environment. Moreover, the effects of warming appeared to be linked to the level of (physiological) seed dormancy, with deeper dormant species showing major changes in response to incubation temperatures and less dormant species in response to cold stratification periods. Conclusions Plants developed under warmer climates will produce seeds with changed germination responses to temperature and/or cold stratification, but the extent of these changes across species could be driven by seed dormancy traits. Transgenerational plastic adjustments of seed germination and dormancy shown here may result from increased seed viability, reduced primary and secondary dormancy state, or both, and may play a crucial role in future plant adaptation to climate change. PMID:27390354
Singh, Shraddha; Saxena, Rohit; Pandey, Kavita; Bhatt, Kavita; Sinha, Sarita
2004-12-01
The interaction of metals present in tannery waste and their tolerance in the plants of sunflower (Helianthus annuus L.) was studied in the present paper under field conditions. Effects of 100% tannery sludge and various amendments of tannery sludge (10%, 25%, 35%, 50%, 75%) along with one set of control were studied on the physiological and biochemical parameters of the plant along with their metal accumulation potential after 30, 60 and 90d after sowing. The plants of H. annuus were found effective in the accumulation of metals (Cr, Fe, Zn and Mn) in roots, shoots and leaves, however, the level of toxic metal, Cr was found below detection limit in the seeds of the plant. The oil was extracted from the seeds of the plant and the level of oil content was increased up to 35% tannery sludge as compared to control followed by decrease at higher tannery sludge ratio. An increase in the chlorophyll, protein, cysteine, non-protein thiol and sugar contents was observed at the lower amendment of tannery sludge at initial exposure periods followed by decrease than their respective controls. Malondialdehyde content in the roots and leaves was increased beyond 50% sludge amendments at all the exposure periods as compared to control. However, proline and ascorbic acid contents of the roots and leaves of the plant increased at all the exposure periods and sludge amendments, compared to their respective controls.
Koga, T; Moro, K; Nakamori, K; Yamakoshi, J; Hosoyama, H; Kataoka, S; Ariga, T
1999-05-01
The effect of a single oral administration of proanthocyanidins, oligomeric and polymeric polyhydroxyflavan-3-ol units, on the antioxidative potential of blood plasma was studied in rats. Proanthocyanidin-rich extract from grape seeds was administered by intragastric intubation to fasted rats at 250 mg/kg of body weight. The plasma obtained from water- or proanthocyanidin-administered rats was oxidized by incubation with copper sulfate or 2, 2'-azobis(2-amidinopropane) dihydrochloride (AAPH) at 37 degrees C, and the formation of cholesteryl ester hydroperoxides (CE-OOH) was followed. The plasma obtained from proanthocyanidin-administered rats was significantly more resistant against both copper ion-induced and AAPH-induced formation of CE-OOH than that from control rats. The lag phase in the copper ion-induced oxidation of rat plasma was remarkably increased at 15 min after administration of proanthocyanidins and reached a maximum level at 30 min. When the plasma from proanthocyanidin-administered rat was hydrolyzed by sulfatase and beta-glucuronidase following analysis by high-performance liquid chromatography with electrochemical detection, metabolites of proanthocyanidins occurred in rat plasma at 15 min after administration, three peaks of which were identified as gallic acid, (+)-catechin, and (-)-epicatechin. These results suggest that the intake of proanthocyanidins, the major polyphenols in red wine, increases the resistance of blood plasma against oxidative stress and may contribute to physiological functions of plant food including wine through their in vivo antioxidative ability.
Bamboo Flowering from the Perspective of Comparative Genomics and Transcriptomics
Biswas, Prasun; Chakraborty, Sukanya; Dutta, Smritikana; Pal, Amita; Das, Malay
2016-01-01
Bamboos are an important member of the subfamily Bambusoideae, family Poaceae. The plant group exhibits wide variation with respect to the timing (1–120 years) and nature (sporadic vs. gregarious) of flowering among species. Usually flowering in woody bamboos is synchronous across culms growing over a large area, known as gregarious flowering. In many monocarpic bamboos this is followed by mass death and seed setting. While in sporadic flowering an isolated wild clump may flower, set little or no seed and remain alive. Such wide variation in flowering time and extent means that the plant group serves as repositories for genes and expression patterns that are unique to bamboo. Due to the dearth of available genomic and transcriptomic resources, limited studies have been undertaken to identify the potential molecular players in bamboo flowering. The public release of the first bamboo genome sequence Phyllostachys heterocycla, availability of related genomes Brachypodium distachyon and Oryza sativa provide us the opportunity to study this long-standing biological problem in a comparative and functional genomics framework. We identified bamboo genes homologous to those of Oryza and Brachypodium that are involved in established pathways such as vernalization, photoperiod, autonomous, and hormonal regulation of flowering. Additionally, we investigated triggers like stress (drought), physiological maturity and micro RNAs that may play crucial roles in flowering. We also analyzed available transcriptome datasets of different bamboo species to identify genes and their involvement in bamboo flowering. Finally, we summarize potential research hurdles that need to be addressed in future research. PMID:28018419
Signaling Pathways Mediating the Induction of Apple Fruitlet Abscission1[C][W][OA
Botton, Alessandro; Eccher, Giulia; Forcato, Claudio; Ferrarini, Alberto; Begheldo, Maura; Zermiani, Monica; Moscatello, Stefano; Battistelli, Alberto; Velasco, Riccardo; Ruperti, Benedetto; Ramina, Angelo
2011-01-01
Apple (Malus × domestica) represents an interesting model tree crop for studying fruit abscission. The physiological fruitlet drop occurring in this species can be easily magnified by using thinning chemicals, such as benzyladenine (BA), to obtain fruits with improved quality and marketability. Despite the economic importance of this process, the molecular determinants of apple fruitlet abscission are still unknown. In this research, BA was used to obtain fruitlet populations with different abscission potentials to be analyzed by means of a newly released 30K oligonucleotide microarray. RNAs were extracted from cortex and seed of apple fruitlets sampled over a 4-d time course, during which BA triggers fruit drop, and used for microarray hybridization. Transcriptomic profiles of persisting and abscising fruitlets were tested for statistical association with abscission potential, allowing us to identify molecular signatures strictly related to fruit destiny. A hypothetical model for apple fruitlet abscission was obtained by putting together available transcriptomic and metabolomic data. According to this model, BA treatment would establish a nutritional stress within the tree that is primarily perceived by the fruitlet cortex whose growth is blocked by resembling the ovary growth inhibition found in other species. In weaker fruits, this stress is soon visible also at the seed level, likely transduced via reactive oxygen species/sugar and hormones signaling cross talk, and followed by a block of embryogenesis and the consequent activation of the abscission zone. PMID:21037112
Effects of a hypogeomagnetic field on gravitropism and germination in soybean
NASA Astrophysics Data System (ADS)
Mo, Wei-chuan; Zhang, Zi-jian; Liu, Ying; Zhai, Guang-jie; Jiang, Yuan-da; He, Rong-qiao
2011-05-01
Any plants grown during long-term space missions will inevitably experience an extremely low magnetic field (i.e. a hypogeomagnetic field, HGMF). It is possible that the innate adaptation of plants to the earth's magnetic field (i.e. the geomagnetic field, GMF) would be disrupted. Effects of the HGMF on plant physiological and metabolic processes are unclear. In this study we established a hypogeomagnetic incubation system on the ground and investigated the effects of the HGMF on the gravitropism and germination of soybean seeds. The gravitropism angle, germination percentage, germination speed, water absorbance ratio, seed weight, radicle length, radicle weight, and radicle weight ratio of soybean seeds grown in the local field and the HGMF were compared. In general, the gravitropism angle in the HGMF was smaller than that in the local field when seeds were positioned before emergence in such a way that the direction of the radicle was opposite to that of gravity. The germination percentage, germination speed, and radicle weight ratio increased in the HGMF compared to the control. Our results indicate that the germination and gravitropism of soybean seeds are affected by elimination of the geomagnetic field.
Cho, Kyungjin; Choi, Minkyu; Lee, Seockheon; Bae, Hyokwan
2018-05-26
This study investigated the effect of seeding source on the mature anaerobic ammonia oxidation (ANAMMOX) bacterial community niche in continuous poly(vinyl alcohol) (PVA) gel systems operated under high nitrogen loading rate (NLR) condition. Four identical column reactors packed with PVA gels were operated for 182 d using different seeding sources which had distinct community structures. The ANAMMOX reaction was achieved in all the bioreactors with comparable total and ANAMMOX bacterial 16S rRNA gene quantities. The bacterial community structure of the bioreactors became similar during operation; some major bacteria were commonly found. Interestingly, one ANAMMOX species, "Candidatus Brocadia sinica", was conclusively predominant in all the bioreactors, even though different seeding sludges were used as inoculum source, possibly due to the unique physiological characteristics of "Ca. Brocadia sinica" and the operating conditions (i.e., PVA gel-based continuous system and 1.0 kg-N/(m 3 ·d) of NLR). The results clearly suggest that high NLR condition is a more significant factor determining the final ANAMMOX community niche than is the type of seeding source. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamil, Yasir; Perveen, Rashida; Ashraf, Muhammad; Ali, Qasim; Iqbal, Munawar; Ahmad, Muhammad Raza
2013-04-01
Using low power continuous wave He-Ne laser irradiation of seeds, the germination characteristics, thermodynamic changes and enzyme activities as well as changes in morphological attributes were explored for wheat (Triticum aestivum L. cv. S-24) cultivar. The changes in thermodynamic properties such as change in enthalpy (ΔH), entropy generation [(ΔSe)], entropy flux [(ΔSc)], entropy generation ratio [(ΔS)e/Δt], and entropy flux ratio [(ΔS)c/Δt] showed significant (P < 0.05) changes at an energy level of 500 mJ. The germination energy (GE), germination percentage (G%), germination index (GI) as well as α-amylase and protease activities was also found to be higher at 500 mJ, while the mean emergence time (MET) and time for 50% germination (E50) decreased for 300 mJ irradiance. The internal energy of the seeds increased significantly at all laser energy levels, but was highest for 500 mJ 72 h after sowing. The enzyme activities increased up to 24 h after sowing and then declined. The activities of α-amylase and protease were found to be positively correlated with the plant physiological attributes. These results indicate that low power continuous wave He-Ne laser (632 nm) treatment has considerable biological effects on seed metabolism during germination as well as on later vegetative growth.
Physicochemical and physiological basis of dichromatic colour
NASA Astrophysics Data System (ADS)
Kreft, Samo; Kreft, Marko
2007-11-01
Out of three perceptual characteristics of the colour of any substance, the hue depends mostly on the spectral properties of a substance, while the brightness and saturation depend also on the concentration of a substance and its thickness. Here, we report that evident change of the hue of the colour (i.e., from green to red) is due to a change in concentration or the thickness of a layer in some exceptional substances such as pumpkin seed oil or an aqueous solution of bromophenol blue. In some regions of Central Europe, salad dressing is made preferably with the pumpkin seed oil, which has a strong characteristic nut-like taste and remarkable properties of the colour: it appears red in a bottle, but green when served as a salad dressing. The colour of the pumpkin seed oil was previously described as brownish yellow, dark green, dark green to red ochre or dark reddish brown to light yellow green. We elucidated the physicochemical and physiological basis of such dichromatism by Beer-Lambert law and by the characteristics of human colour perception. Our concept was corroborated by the outcome of calculations of colour from spectral properties using colour matching functions. We found that dichromatism is observed if the absorption spectrum of any substance has at least two local minima: one wide but shallow and one narrow but deep local minimum.
Botanical seed technology at the US Potato Genebank
USDA-ARS?s Scientific Manuscript database
Studies on botanical seed technology have potential payoffs for genebank in-house operations as well as promoting efficient use of the germplasm by cooperators. When we tested the effects of soil fertilization, mother plants with extra fertilizer produced more fruit and seeds, but those extra seeds ...
Estimating potential Engelmann spruce seed production on the Fraser Experimental Forest, Colorado
Robert R. Alexander; Carleton B. Edminster; Ross K. Watkins
1986-01-01
Two good, three heavy, and two bumper spruce seed crops were produced during a 15-year period. There was considerable variability in seed crops, however. Not all locations produced good to bumper seed crops when overall yearly ratings averaged good or better; conversely, some locations produced bumper seed crops in 3 or more years. Mathematical relationships,...
Effects of seed predators of different body size on seed mortality in Bornean logged forest.
Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C; Hector, Andy
2010-07-19
The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.
Secondary dispersal driven by overland flow in drylands: Review and mechanistic model development.
Thompson, Sally E; Assouline, Shmuel; Chen, Li; Trahktenbrot, Ana; Svoray, Tal; Katul, Gabriel G
2014-01-01
Seed dispersal alters gene flow, reproduction, migration and ultimately spatial organization of dryland ecosystems. Because many seeds in drylands lack adaptations for long-distance dispersal, seed transport by secondary processes such as tumbling in the wind or mobilization in overland flow plays a dominant role in determining where seeds ultimately germinate. Here, recent developments in modeling runoff generation in spatially complex dryland ecosystems are reviewed with the aim of proposing improvements to mechanistic modeling of seed dispersal processes. The objective is to develop a physically-based yet operational framework for determining seed dispersal due to surface runoff, a process that has gained recent experimental attention. A Buoyant OBject Coupled Eulerian - Lagrangian Closure model (BOB-CELC) is proposed to represent seed movement in shallow surface flows. The BOB-CELC is then employed to investigate the sensitivity of seed transport to landscape and storm properties and to the spatial configuration of vegetation patches interspersed within bare earth. The potential to simplify seed transport outcomes by considering the limiting behavior of multiple runoff events is briefly considered, as is the potential for developing highly mechanistic, spatially explicit models that link seed transport, vegetation structure and water movement across multiple generations of dryland plants.
Effects of Seed Predators of Different Body Size on Seed Mortality in Bornean Logged Forest
Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C.; Hector, Andy
2010-01-01
Background The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. Methodology/Principal Findings We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Conclusions/Significance Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition. PMID:20657841
The basic helix-loop-helix transcription factor family in the sacred lotus, Nelumbo nucifera
USDA-ARS?s Scientific Manuscript database
Nelumbo nucifera (Sacred Lotus) is a basal eudicot with exceptional physiological and metabolic properties including seed longevity, adaptations for an aquatic habit, and floral thermiogenesis. It also occupies a unique position in the phylogeny of land plants and can be a useful species for studies...
Smith, Lachlan J.; Gorth, Deborah J.; Showalter, Brent L.; Chiaro, Joseph A.; Beattie, Elizabeth E.; Elliott, Dawn M.; Mauck, Robert L.; Chen, Weiliam
2014-01-01
Intervertebral disc degeneration is implicated as a major cause of low-back pain. There is a pressing need for new regenerative therapies for disc degeneration that restore native tissue structure and mechanical function. To that end we investigated the therapeutic potential of an injectable, triple-interpenetrating-network hydrogel comprised of dextran, chitosan, and teleostean, for functional regeneration of the nucleus pulposus (NP) of the intervertebral disc in a series of biomechanical, cytotoxicity, and tissue engineering studies. Biomechanical properties were evaluated as a function of gelation time, with the hydrogel reaching ∼90% of steady-state aggregate modulus within 10 h. Hydrogel mechanical properties evaluated in confined and unconfined compression were comparable to native human NP properties. To confirm containment within the disc under physiological loading, toluidine-blue-labeled hydrogel was injected into human cadaveric spine segments after creation of a nucleotomy defect, and the segments were subjected to 10,000 cycles of loading. Gross analysis demonstrated no implant extrusion, and further, that the hydrogel interdigitated well with native NP. Constructs were next surface-seeded with NP cells and cultured for 14 days, confirming lack of hydrogel cytotoxicity, with the hydrogel maintaining NP cell viability and promoting proliferation. Next, to evaluate the potential of the hydrogel to support cell-mediated matrix production, constructs were seeded with mesenchymal stem cells (MSCs) and cultured under prochondrogenic conditions for up to 42 days. Importantly, the hydrogel maintained MSC viability and promoted proliferation, as evidenced by increasing DNA content with culture duration. MSCs differentiated along a chondrogenic lineage, evidenced by upregulation of aggrecan and collagen II mRNA, and increased GAG and collagen content, and mechanical properties with increasing culture duration. Collectively, these results establish the therapeutic potential of this novel hydrogel for functional regeneration of the NP. Future work will confirm the ability of this hydrogel to normalize the mechanical stability of cadaveric human motion segments, and advance the material toward human translation using preclinical large-animal models. PMID:24410394
Anne M. Bartuszevige; Bryan A. Endress
2008-01-01
Large domestic and native ungulates have the potential to disperse large quantities of seeds throughout the landscape. Many studies have found that ungulates are capable of dispersing seeds but few quantify the relative importance of ungulate dispersal across the landscape. We investigated the potential for cattle, elk, and deer to disperse native and exotic plants in...
Ant-mediated seed dispersal in a warmed world
Patterson, Courtney M.; Rodriguez-Cabal, Mariano A.; Ribbons, Relena R.; Dunn, Robert R.; Sanders, Nathan J.
2014-01-01
Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of eastern North America. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed dispersal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed. PMID:24688863
Sánchez-López, Ariadna S; Pintelon, Isabel; Stevens, Vincent; Imperato, Valeria; Timmermans, Jean-Pierre; González-Chávez, Carmen; Carrillo-González, Rogelio; Van Hamme, Jonathan; Vangronsveld, Jaco; Thijs, Sofie
2018-01-19
Metal contaminated soils are increasing worldwide. Metal-tolerant plants growing on metalliferous soils are fascinating genetic and microbial resources. Seeds can vertically transmit endophytic microorganisms that can assist next generations to cope with environmental stresses, through yet poorly understood mechanisms. The aims of this study were to identify the core seed endophyte microbiome of the pioneer metallophyte Crotalaria pumila throughout three generations, and to better understand the plant colonisation of the seed endophyte Methylobacterium sp. Cp3. Strain Cp3 was detected in C. pumila seeds across three successive generations and showed the most dominant community member. When inoculated in the soil at the time of flowering, strain Cp3 migrated from soil to seeds. Using confocal microscopy, Cp3-mCherry was demonstrated to colonise the root cortex cells and xylem vessels of the stem under metal stress. Moreover, strain Cp3 showed genetic and in planta potential to promote seed germination and seedling development. We revealed, for the first time, that the seed microbiome of a pioneer plant growing in its natural environment, and the colonisation behaviour of an important plant growth promoting systemic seed endophyte. Future characterization of seed microbiota will lead to a better understanding of their functional contribution and the potential use for seed-fortification applications.
Sánchez-López, Ariadna S.; Pintelon, Isabel; Imperato, Valeria; Carrillo-González, Rogelio; Van Hamme, Jonathan; Thijs, Sofie
2018-01-01
Metal contaminated soils are increasing worldwide. Metal-tolerant plants growing on metalliferous soils are fascinating genetic and microbial resources. Seeds can vertically transmit endophytic microorganisms that can assist next generations to cope with environmental stresses, through yet poorly understood mechanisms. The aims of this study were to identify the core seed endophyte microbiome of the pioneer metallophyte Crotalaria pumila throughout three generations, and to better understand the plant colonisation of the seed endophyte Methylobacterium sp. Cp3. Strain Cp3 was detected in C. pumila seeds across three successive generations and showed the most dominant community member. When inoculated in the soil at the time of flowering, strain Cp3 migrated from soil to seeds. Using confocal microscopy, Cp3-mCherry was demonstrated to colonise the root cortex cells and xylem vessels of the stem under metal stress. Moreover, strain Cp3 showed genetic and in planta potential to promote seed germination and seedling development. We revealed, for the first time, that the seed microbiome of a pioneer plant growing in its natural environment, and the colonisation behaviour of an important plant growth promoting systemic seed endophyte. Future characterization of seed microbiota will lead to a better understanding of their functional contribution and the potential use for seed-fortification applications. PMID:29351192
Extraction and Analysis of Tomato Seed Oil
USDA-ARS?s Scientific Manuscript database
Tomato seeds represent a very large waste by-product from the processing of tomatoes into products such as tomato juice, sauce and paste. One potential use for these seeds is as a source of vegetable oil. This research investigated the oil content of tomato seeds using several extraction technique...
Soil quality assessment in long-term direct seed
USDA-ARS?s Scientific Manuscript database
Producers in the Pacific Northwest are adopting direct seed farming to reduce soil erosion, improve soil quality and increase water infiltration. Some direct seed producers are concerned with reaching the yield and profit potential expected with long-term direct seed, and this may be due to soil st...
2015 nationwide survey revealed Barley stripe mosaic virus in Korean barley fields
USDA-ARS?s Scientific Manuscript database
A seed-transmitted virus has consistently caused significant economic damage to barley crops in Korea in recent years, and may be increasing because many farmers save seed for replanting. Because some barley seed is imported, there is the potential for introduction of new seed-transmitted viruses, c...
Resilience of Invaded Riparian Landscapes: The Potential Role of Soil-Stored Seed Banks
NASA Astrophysics Data System (ADS)
Tererai, Farai; Gaertner, Mirijam; Jacobs, Shayne M.; Richardson, David M.
2015-01-01
We investigated the potential role of soil-stored seed banks in driving vegetation recovery under varying intensities of invasion by the alien tree Eucalyptus camaldulensis along the Berg River in South Africa's Western Cape Province. We asked: How do richness, diversity, and composition of soil-stored seed banks vary with invasion intensity? What is the difference between the seed banks and above-ground vegetation with respect to species richness, diversity, composition, and structure? To what extent do soil-stored seed banks provide reliable sources for restoring native plant communities? Through a seedling-emergence approach, we compared seedling density, richness, and diversity in plots under varying Eucalyptus cover. Seed bank characteristics were also compared with those of the above-ground vegetation. Except in terms of diversity and density, the richness and composition of native species varied significantly among invasion conditions. Despite the paucity of native tree and shrub species in the seed bank, it was more diverse than extant vegetation. Some species occurred exclusively either in the seed bank or in the above-ground vegetation. Although this ecosystem has been degraded by several agents, including Eucalyptus invasion, soil-stored seed banks still offer modest potential for driving regeneration of native plant communities, but secondary invasions need to be managed carefully. Remnant populations of native plants in the above-ground vegetation remaining after E. camaldulensis clearing provide a more promising propagule source for rapid regeneration. Further work is needed to elucidate possible effects of invasion on successional pathways following E. camaldulensis removal and the effects of hydrochory on seed bank dynamics.
Baghel, Lokesh; Kataria, Sunita; Guruprasad, Kadur Narayan
2016-10-01
The effectiveness of magnetopriming was assessed for alleviation of salt-induced adverse effects on soybean growth. Soybean seeds were pre-treated with static magnetic field (SMF) of 200 mT for 1 h to evaluate the effect of magnetopriming on growth, carbon and nitrogen metabolism, and yield of soybean plants under different salinity levels (0, 25, and 50 mM NaCl). The adverse effect of NaCl-induced salt stress was found on growth, yield, and various physiological attributes of soybeans. Results indicate that SMF pre-treatment significantly increased plant growth attributes, number of root nodules, nodules, fresh weight, biomass accumulation, and photosynthetic performance under both non-saline and saline conditions as compared to untreated seeds. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at J-I-P phase. Nitrate reductase activity, PIABS , photosynthetic pigments, and net rate of photosynthesis were also higher in plants that emerged from SMF pre-treated seeds as compared to untreated seeds. Leghemoglobin content and hemechrome content in root nodules were also increased by SMF pre-treatment. Thus pre-sowing exposure of seeds to SMF enhanced carbon and nitrogen metabolism and improved the yield of soybeans in terms of number of pods, number of seeds, and seed weight under saline as well as non-saline conditions. Consequently, SMF pre-treatment effectively mitigated adverse effects of NaCl on soybeans. It indicates that magnetopriming of dry soybean seeds can be effectively used as a pre-sowing treatment for alleviating salinity stress. Bioelectromagnetics. 37:455-470, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Su, Tao; Wolf, Sebastian; Han, Mei; Zhao, Hongbo; Wei, Hongbin; Greiner, Steffen; Rausch, Thomas
2016-01-01
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.
Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits
Hoyle, Gemma L.; Steadman, Kathryn J.; Good, Roger B.; McIntosh, Emma J.; Galea, Lucy M. E.; Nicotra, Adrienne B.
2015-01-01
Seed germination strategies vary dramatically among species but relatively little is known about how germination traits correlate with other elements of plant strategy systems. Understanding drivers of germination strategy is critical to our understanding of the evolutionary biology of plant reproduction.We present a novel assessment of seed germination strategies focussing on Australian alpine species as a case study. We describe the distribution of germination strategies and ask whether these are correlated with, or form an independent axis to, other plant functional traits. Our approach to describing germination strategy mimicked realistic temperatures that seeds experience in situ following dispersal. Strategies were subsequently assigned using an objective clustering approach. We hypothesized that two main strategies would emerge, involving dormant or non-dormant seeds, and that while these strategies would be correlated with seed traits (e.g., mass or endospermy) they would be largely independent of vegetative traits when analysed in a phylogenetically structured manner.Across all species, three germination strategies emerged. The majority of species postponed germination until after a period of cold, winter-like temperatures indicating physiological and/or morphological dormancy mechanisms. Other species exhibited immediate germination at temperatures representative of those at dispersal. Interestingly, seeds of an additional 13 species “staggered” germination over time. Germination strategies were generally conserved within families. Across a broad range of ecological traits only seed mass and endospermy showed any correlation with germination strategy when phylogenetic relatedness was accounted for; vegetative traits showed no significant correlations with germination strategy. The results indicate that germination traits correlate with other aspects of seed ecology but form an independent axis relative to vegetative traits. PMID:26528294
Wang, Wei-Qing; Cheng, Hong-Yan; Song, Song-Quan
2013-01-01
Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range. PMID:23658654
Cheng, Xiaoyan; Wu, Yan; Guo, Jianping; Du, Bo; Chen, Rongzhi; Zhu, Lili; He, Guangcun
2013-01-01
Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor-like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α–amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two-hybrid and co-immunoprecipitation experiments revealed that OslecRK interacts with an actin-depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α–amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high-vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice. PMID:24033867
Dias, Daiane Souza; Ribeiro, Leonardo Monteiro; Lopes, Paulo Sérgio Nascimento; Munné-Bosch, Sergi; Garcia, Queila Souza
2017-09-01
Little information is currently available concerning the mechanisms controlling palm seed germination. We compared the anatomical and physiological aspects of seeds of two neotropical palm species showing different levels of dormancy. The seeds of Attalea vitrivir and Butia capitata were evaluated for the endogenous contents of hormones (ABA, GAs, CKs, BRs, IAA, JA, SA and the ethylene precursor ACC) in their cotyledonary petiole and operculum (structures involved in germination control), the force necessary to displace the operculum, endo-β-mannanase activities, and embryo cell elongation. The analyses were carried out on with intact dry and imbibed seeds as well as with seeds with the operculum mechanically removed, 2, 5 and 10 days after sowing. The germinabilities of the intact seeds of A. vitrivir and B. capitata were 68% and 3%, respectively; the removal of the operculum increased germination to more than 90% in both species. Reductions of ABA and increases in GAs contents coincided with cell elongation, although there is no evidence that hormonal balance and endo-β-mannanase activity are involved in operculum weakening. The ratio between the embryo length and the force required for operculum displacement (EL/OF) was found to be 1.9 times greater in A. vitrivir than in B. capitata, which means that very small elongations in each cell would be sufficient to promote germination, resulting in a lower level of dormancy in the former species. EL/OF and cell growth control are therefore important for defining dormancy level in palm seeds. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Cross, Adam T.; Turner, Shane R.; Renton, Michael; Baskin, Jerry M.; Dixon, Kingsley W.; Merritt, David J.
2015-01-01
Background and Aims Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events. Methods Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined. Key Results The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m−2 for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m−2. Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years. Conclusions The persistent seed bank in freshwater rock pools is likely to provide resilience to plant communities against environmental stochasticity. Since rock pool communities are often comprised of highly specialized endemic and range-restricted species, sediment seed banks may represent significant drivers of species persistence and diversification in these ecosystems. PMID:25660345
NASA Astrophysics Data System (ADS)
Lee, Hoonsoo; Lim, Hyoun-Sub; Cho, Byoung-Kwan
2016-05-01
The Cucumber Green Mottle Mosaic Virus (CGMMV) is a globally distributed plant virus. CGMMV-infected plants exhibit severe mosaic symptoms, discoloration, and deformation. Therefore, rapid and early detection of CGMMV infected seeds is very important for preventing disease damage and yield losses. Raman spectroscopy was investigated in this study as a potential tool for rapid, accurate, and nondestructive detection of infected seeds. Raman spectra of healthy and infected seeds were acquired in the 400 cm-1 to 1800 cm-1 wavenumber range and an algorithm based on partial least-squares discriminant analysis was developed to classify infected and healthy seeds. The classification model's accuracies for calibration and prediction data sets were 100% and 86%, respectively. Results showed that the Raman spectroscopic technique has good potential for nondestructive detection of virus-infected seeds.
Engineered Gold Nanoparticles and Plant Adaptation Potential
NASA Astrophysics Data System (ADS)
Siddiqi, Khwaja Salahuddin; Husen, Azamal
2016-09-01
Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.
Cui, Yue; Walcott, Ronald
2017-01-01
ABSTRACT Vegetable seeds have the potential to disseminate and transmit foodborne bacterial pathogens. This study was undertaken to assess the abilities of selected Salmonella and enterohemorrhagic Escherichia coli (EHEC) strains to attach to fungicide-treated versus untreated, and intact versus mechanically damaged, seeds of alfalfa, fenugreek, lettuce, and tomato. Surface-sanitized seeds (2 g) were exposed to four individual strains of Salmonella or EHEC at 20°C for 5 h. Contaminated seeds were rinsed twice, each with 10 ml of sterilized water, before being soaked overnight in 5 ml of phosphate-buffered saline at 4°C. The seeds were then vortexed vigorously for 1 min, and pathogen populations in seed rinse water and soaking buffer were determined using a standard plate count assay. In general, the Salmonella cells had higher attachment ratios than the EHEC cells. Lettuce seeds by unit weight had the highest numbers of attached Salmonella or EHEC cells, followed by tomato, alfalfa, and fenugreek seeds. In contrast, individual fenugreek seeds had more attached pathogen cells, followed by lettuce, alfalfa, and tomato seeds. Significantly more Salmonella and EHEC cells attached to mechanically damaged seeds than to intact seeds (P < 0.05). Although, on average, significantly more Salmonella and EHEC cells were recovered from untreated than fungicide-treated seeds (P < 0.05), fungicide treatment did not significantly affect the attachment of individual bacterial strains to vegetable seeds (P > 0.05), with a few exceptions. This study fills gaps in the current body of literature and helps explain bacterial interactions with vegetable seeds with differing surface characteristics. IMPORTANCE Vegetable seeds, specifically sprout seeds, have the potential to disseminate and transmit foodborne bacterial pathogens. This study investigated the interaction between two important bacterial pathogens, i.e., Salmonella and EHEC, and vegetable seeds with differing surface characteristics. This research helps understand whether seed surface structure, integrity, and fungicide treatment affect the interaction between bacterial cells and vegetable seeds. PMID:28130295
Cui, Yue; Walcott, Ronald; Chen, Jinru
2017-04-01
Vegetable seeds have the potential to disseminate and transmit foodborne bacterial pathogens. This study was undertaken to assess the abilities of selected Salmonella and enterohemorrhagic Escherichia coli (EHEC) strains to attach to fungicide-treated versus untreated, and intact versus mechanically damaged, seeds of alfalfa, fenugreek, lettuce, and tomato. Surface-sanitized seeds (2 g) were exposed to four individual strains of Salmonella or EHEC at 20°C for 5 h. Contaminated seeds were rinsed twice, each with 10 ml of sterilized water, before being soaked overnight in 5 ml of phosphate-buffered saline at 4°C. The seeds were then vortexed vigorously for 1 min, and pathogen populations in seed rinse water and soaking buffer were determined using a standard plate count assay. In general, the Salmonella cells had higher attachment ratios than the EHEC cells. Lettuce seeds by unit weight had the highest numbers of attached Salmonella or EHEC cells, followed by tomato, alfalfa, and fenugreek seeds. In contrast, individual fenugreek seeds had more attached pathogen cells, followed by lettuce, alfalfa, and tomato seeds. Significantly more Salmonella and EHEC cells attached to mechanically damaged seeds than to intact seeds ( P < 0.05). Although, on average, significantly more Salmonella and EHEC cells were recovered from untreated than fungicide-treated seeds ( P < 0.05), fungicide treatment did not significantly affect the attachment of individual bacterial strains to vegetable seeds ( P > 0.05), with a few exceptions. This study fills gaps in the current body of literature and helps explain bacterial interactions with vegetable seeds with differing surface characteristics. IMPORTANCE Vegetable seeds, specifically sprout seeds, have the potential to disseminate and transmit foodborne bacterial pathogens. This study investigated the interaction between two important bacterial pathogens, i.e., Salmonella and EHEC, and vegetable seeds with differing surface characteristics. This research helps understand whether seed surface structure, integrity, and fungicide treatment affect the interaction between bacterial cells and vegetable seeds. Copyright © 2017 American Society for Microbiology.
[Allelopathic effects of extracts from fibrous roots of Coptis chinensis on two leguminous species].
Li, Qian; Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo
2013-03-01
An experiment was carried out to study the allelopathic effects of Coptis chinensis fibrous root extracts (CRE) on the germination and seedling growth of Vicia faba and Pisum sativum in order to alleviate the allelopathic effects and increase land productivity. The seeds of both garden pea (P. sativum) and broad been (V. faba) were germinated in CRE solution of various concentrations, the germination rate, seedling growth and related physiological indexes were measured. The result indicated that there were no significant effects of CRE in low concentrations on seed germination, including both the rate and index, and seed vitality and membrane permeability. With the increment of CRE concentrations, however, the high seed membrane permeability and germination inhibition were observed. For example, the germination rates were reduced by 23.4% (P. sativum) and 9.5% (V. faba), respectively, in CRE solution with 800 mg . L-1. Simultaneously, soluble sugars and the free amino acids in the seeds were lower than those in the control (without CRE) after soaking seeds in CRE solutions. In addition, the seedling growth and nitrate reductase activity were stimulated by CRE at low concentrations in contrast to high concentrations which behaved otherwise and inhibited the nutrient utilization in endosperm. Therefore, the large amount of allelochemicals released from the roots and remains of C. chinensis in soils could inhibit the seed germination and seedling growth of legumes, which may lead to decrease even fail crop yields after growing this medical plant.
Wilf, Peter
2012-03-01
Eocene caldera-lake beds at Laguna del Hunco (LH, ca. 52.2 Ma) and Río Pichileufú (RP, ca. 47.7 Ma) in Argentine Patagonia provide copious information about the biological history of Gondwana. Several plant genera from these sites are known as fossils from southern Australia and New Zealand and survive only in Australasian rainforests. The potential presence of Dacrycarpus (Podocarpaceae) holds considerable interest due to its extensive foliage-fossil record in Gondwana, its remarkably broad modern distribution in Southeast Asian and Australasian rainforests, its high physiological moisture requirements, and its bird-dispersed seeds. However, the unique seed cones that firmly diagnose Dacrycarpus were not previously known from the fossil record. I describe and interpret fertile (LH) and vegetative (LH and RP) material of Dacrycarpus and present a nomenclatural revision for fossil Dacrycarpus from South America. Dacrycarpus puertae sp. nov. is the first fossil occurrence of the unusual seed cones that typify living Dacrycarpus, attached to characteristic foliage, and of attached Dacrycarpus pollen cones and foliage. Dacrycarpus puertae is indistinguishable from living D. imbricatus (montane, Burma to Fiji). Dacrycarpus chilensis (Engelhardt) comb. nov. is proposed for Eocene vegetative material from Chile. Modern-aspect Dacrycarpus was present in Eocene Patagonia, demonstrating an astonishingly wide-ranging paleogeographic history and implying a long evolutionary association with bird dispersers. Dacrycarpus puertae provides the first significant Asian link for Eocene Patagonian floras, strengthens the biogeographic connections from Patagonia to Australasia across Antarctica during the warm Eocene, and indicates high-rainfall paleoenvironments.
Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman
2016-01-01
Summary Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1–diphenyl–2–picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products. PMID:28115903
Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman; Kızıl, Murat
2016-12-01
Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products.
Rhie, Y H; Lee, S Y; Kim, K S
2015-03-01
The genus Jeffersonia, which contains only two species, has a trans-Atlantic disjunct distribution. The aims of this study were to determine the requirements for breaking dormancy and germination of J. dubia seeds and to compare its dormancy characteristics with those of the congener in eastern North America. Ripe seeds of J. dubia contain an underdeveloped embryo and were permeable to water. In nature, seeds were dispersed in May, while embryos began to grow in September, and were fully elongated by late November. Germination started in March of the next year, and seeds emerged as seedlings soon after germination. In laboratory experiments, incubation at high temperatures (25 °C, 25/15 °C) for at least 8 weeks was required to initiate embryo growth, while a transfer to moderate temperatures (20/10 °C, 15/6 °C) was needed for the completion of embryo growth. At least 8 weeks at 5 °C was effective in overcoming physiological dormancy and for germination in seeds after the embryos had fully elongated. Thus, both high and low temperatures were essential to break dormancy. Gibberellic acid (GA3 ) treatment could substitute for the high temperature requirement, but not for the low temperature requirement. Based on the dormancy-breaking requirements, it is confirmed that the seeds have deep simple morphophysiological dormancy. This dormancy type is similar to that of seeds of the eastern North American species J. diphylla. Although seeds require 10-11 months from seed dispersal to germination in nature, under controlled conditions they required only 3 months after treatment with 1000 mg·l(-1) GA3 , followed by incubation at 15/6 °C. This represents practical knowledge for propagation of these plants from seed. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Chien, Ching-Te; Chen, Shun-Ying; Tsai, Ching-Chu; Baskin, Jerry M; Baskin, Carol C; Kuo-Huang, Ling-Long
2011-07-01
In seeds with deep simple epicotyl morphophysiological dormancy, warm and cold stratification are required to break dormancy of the radicle and shoot, respectively. Although the shoot remains inside the seed all winter, little is known about its growth and morphological development prior to emergence in spring. The aims of the present study were to determine the temperature requirements for radicle and shoot emergence in seeds of Viburnum betulifolium and V. parvifolium and to monitor growth of the epicotyl, plumule and cotyledons in root-emerged seeds. Fresh and pre-treated seeds of V. betulifolium and V. parvifolium were incubated under various temperature regimes and monitored for radicle and shoot emergence. Growth of the epicotyl and cotyledons at different stages was observed with dissecting and scanning electron microscopes. The optimum temperature for radicle emergence of seeds of both species, either kept continuously at a single regime or exposed to a sequence of regimes, was 20/10 °C. GA(3) had no effect on radicle emergence. Cold stratification (5 °C) was required for shoot emergence. The shoot apical meristem in fresh seeds did not form a bulge until the embryo had grown to the critical length for radicle emergence. After radicle emergence, the epicotyl--plumule and cotyledons grew slowly at 5 and 20/10 °C, and the first pair of true leaves was initiated. However, the shoot emerged only from seeds that received cold stratification. Seeds of V. betulifolium and V. parvifolium have deep simple epicotyl morphophysiological dormancy, C(1b)B (root)-C(3) (epicotyl). Warm stratification was required to break the first part of physiological dormancy (PD), thereby allowing embryo growth and subsequently radicle emergence. Although cold stratification was not required for differentiation of the epicotyl--plumule, it was required to break the second part of PD, thereby allowing the shoot to emerge in spring.
Chien, Ching-Te; Chen, Shun-Ying; Tsai, Ching-Chu; Baskin, Jerry M.; Baskin, Carol C.; Kuo-Huang, Ling-Long
2011-01-01
Background and Aims In seeds with deep simple epicotyl morphophysiological dormancy, warm and cold stratification are required to break dormancy of the radicle and shoot, respectively. Although the shoot remains inside the seed all winter, little is known about its growth and morphological development prior to emergence in spring. The aims of the present study were to determine the temperature requirements for radicle and shoot emergence in seeds of Viburnum betulifolium and V. parvifolium and to monitor growth of the epicotyl, plumule and cotyledons in root-emerged seeds. Methods Fresh and pre-treated seeds of V. betulifolium and V. parvifolium were incubated under various temperature regimes and monitored for radicle and shoot emergence. Growth of the epicotyl and cotyledons at different stages was observed with dissecting and scanning electron microscopes. Key Results The optimum temperature for radicle emergence of seeds of both species, either kept continuously at a single regime or exposed to a sequence of regimes, was 20/10 °C. GA3 had no effect on radicle emergence. Cold stratification (5 °C) was required for shoot emergence. The shoot apical meristem in fresh seeds did not form a bulge until the embryo had grown to the critical length for radicle emergence. After radicle emergence, the epicotyl–plumule and cotyledons grew slowly at 5 and 20/10 °C, and the first pair of true leaves was initiated. However, the shoot emerged only from seeds that received cold stratification. Conclusions Seeds of V. betulifolium and V. parvifolium have deep simple epicotyl morphophysiological dormancy, C1bB (root)–C3 (epicotyl). Warm stratification was required to break the first part of physiological dormancy (PD), thereby allowing embryo growth and subsequently radicle emergence. Although cold stratification was not required for differentiation of the epicotyl–plumule, it was required to break the second part of PD, thereby allowing the shoot to emerge in spring. PMID:21562028
Tan, Helin; Xie, Qingjun; Xiang, Xiaoe; Li, Jianqiao; Zheng, Suning; Xu, Xinying; Guo, Haolun; Ye, Wenxue
2015-01-01
Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil accumulation at the metabolite level.
Whether Plant Responses to Microgravity are Adaptive in Full or in Part.
NASA Astrophysics Data System (ADS)
Kordyum, Elizabeth
F1.1 Microgravity is well known to be an unusual factor for plant but plants grow and develop in space flight from seed-to-seed, as it has been perfectly shown in the experiments aboard shut-tle Columbia (STS-87) and ISS. Under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity, in the hardware, high-quality seeds germinate one hundred percent.. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytoki-nesis, and tissue differentiation of vegetative and generative organs are largely normal. The patterns of histogenesis and cell differentiation established for root caps in microgravity lead to the conclusion that the graviperceptive apparatus of the intact embryonic roots has formed but does not function in the absence of a gravitational vector. Normal space orientation of plant organs is provided by autotropism and phototropism. At the same time, under micro-gravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxi-dation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained Available experimental data are discussed in the light of notions on adaptive syndrome in plants. The dynamics of the observable patterns demonstrate that adaptation occurs on the principle of self-regulating systems within the physiological response limits.. However, a delay in synthesis of storage nutrients and the lower level its accumulation in seeds in microgravty, as well as the formation of seeds with anomalous embryos in some cases made it impossible to say on full adaptation of plants to microgravity, because the accomplish-ment of " reproductive imperative" by plants, i. e. high seed production is the major factor of their adaptation to the new conditions. Therefore, future research at the cell and molecular levels are required to evaluate reasonably the adaptive potential of plants for long-time space flight.
Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan
2011-01-01
Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756
Mame E. Redwood; Glenn R. Matlack; Cynthia D. Huebner
2018-01-01
An effective management plan for invasive herb populations must consider the potential for regeneration from the soil seedbank. To test chis potential, we examined two species, Japanese scilcgrass and garlic mustard, at deciduous forest sites in southeastern Ohio. Seeds were buried in nylon mesh bags and recovered at regular intervals over 24 mo. Recovered seeds were...
NASA Technical Reports Server (NTRS)
Brooks, C. A.; Mitchell, C. A.
1988-01-01
Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm of SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.
Standardized Method for High-throughput Sterilization of Arabidopsis Seeds.
Lindsey, Benson E; Rivero, Luz; Calhoun, Chistopher S; Grotewold, Erich; Brkljacic, Jelena
2017-10-17
Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and inexpensive seed sterilization for a large number of Arabidopsis lines.
Standardized Method for High-throughput Sterilization of Arabidopsis Seeds
Calhoun, Chistopher S.; Grotewold, Erich; Brkljacic, Jelena
2017-01-01
Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and inexpensive seed sterilization for a large number of Arabidopsis lines. PMID:29155739
Hannah, L. Curtis; Futch, Brandon; Bing, James; Shaw, Janine R.; Boehlein, Susan; Stewart, Jon D.; Beiriger, Robert; Georgelis, Nikolaos; Greene, Thomas
2012-01-01
The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures. PMID:22751213
Xiao, Xue-feng; Liu, Li; Guo, Qiao-sheng; Li, Chao; Wang, Ping-li; Yang, Sheng-chao; Hang, Yue-yu
2015-01-01
To offer the reference and method for salt damage in the cultivation of Marsdenia tenacissima, the seeds of M. tenacissima collected from Maguan city ( Yunnan province) were taken as the test materials to study the effects of different priming materials on improving germination and growth under high-level salt stress condition. Four different treatments, which were GA3, KNO3-KH2PO4, PEG-6000, NaCl, combined with ANOVA were applied to test the performance of germination energy, germination percentage, germination index, MDA, SOD, and CAT. The results showed that the seed germination was obviously inhibited under salt stress and the soaked seeds with different priming materials could alleviate the damage of salt stress. Under these treatments, the activities of SOD, CAT the content of soluble protein significantly increased. While the content of MDA significantly decreased. The maximum index was obtained when treated with 1.20% KNO3-KH2PO4, the germination percentage increased from 52.67% to 87.33% and the activity of SOD increased from 138.01 to 219.44 respectively. Comparing with the treatment of 1.20% KNO3-KH2PO4, the germination percentage of treating with 300 mg x L(-1) GA3 increased from 52.67% to 80.67%, while the activity of SOD increased from 138.01 to 444.61.
Phengnuam, Thanyarat; Goroncy, Alexander K; Rutherfurd, Shane M; Moughan, Paul J; Suntornsuk, Worapot
2013-12-04
Jatropha curcas, a tropical plant, has great potential commercial relevance as its seeds have high oil content. The seeds can be processed into high-quality biofuel producing seed cake as a byproduct. The seed cake, however, has not gotten much attention toward its potential usefulness. This work was aimed to determine the antioxidant activity of different fractions of a protein hydrolysate from J. curcas seed cake and to elucidate the molecular structures of the antioxidants. Seed cake was first processed into crude protein isolate and the protein was hydrolyzed by Neutrase. The hydrolysate obtained from 1 h of Neutrase hydrolysis showed the strongest antioxidant activity against DPPH radical (2,2-diphenyl-1-picrylhydrazyl). After a purification series of protein hydrolysate by liquid chromatography, chemicals acting as DPPH radical inhibitors were found to be a mixture of fatty acids, fatty acid derivatives, and a small amount of peptides characterized by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy.
García, M C; González-García, E; Vásquez-Villanueva, R; Marina, M L
2016-11-09
Stones from olives and Prunus genus fruits are cheap and sustainable sources of proteins and could be potential sources of bioactive peptides. The main limitation to the use of these seeds is the presence of amygdalin. This work proposes to determine amygdalin in olive and Prunus seeds and in protein isolates obtained from them. Moreover, antioxidant, angiotensin I converting enzyme (ACE) inhibitor, and hypocholesterolemic properties will be evaluated in hydrolysates obtained from these seeds. Despite some seeds contained amygdalin, all protein isolates were free of this substance. Two different procedures to obtain bioactive peptides from protein isolates were examined: gastrointestinal digestion and processing with Alcalase, Flavourzyme or Thermolysin. Higher antioxidant, ACE inhibitor and hypocholesterolemic activities were observed when proteins were processed with Alcalase, Flavourzyme or Thermolysin. The highest antioxidant and ACE inhibitor capacities were observed for the Prunus genus seed hydrolysates while the highest capacity to reduce micellar cholesterol solubility was observed for the apricot and olive seed hydrolysates.
McPherson, Marc A; Yang, Rong-Cai; Good, Allen G; Nielson, Ryan L; Hall, Linda M
2009-04-01
Safflower has been transformed for field scale molecular farming of high-value proteins including several pharmaceuticals. Viable safflower seed remaining in the soil seed bank after harvest could facilitate seed and pollen-mediated gene flow. Seeds may germinate in subsequent years and volunteer plants may flower and potentially outcross with commodity safflower and/or produce seed. Seeds from volunteers could become admixed with conventional crops at harvest, and/or replenish the seed bank. Seed in following crops could be transported locally and internationally and facilitate gene flow in locations where regulatory thresholds and public acceptance differ from Canada. Seed-mediated gene flow was examined in three studies. Safflower seed loss and viability following harvest of commercial fields of a non-transgenic cultivar were determined. We assessed seed longevity of transgenic and non-transgenic safflower, on the soil surface and buried at two depths. Finally, we surveyed commercial safflower fields at different sites and measured density and growth stage of safflower volunteers, in other crops the following year and documented volunteer survival and viable seed production. Total seed loss at harvest in commercial fields, ranged from 231 to 1,069 seeds m(-2) and the number of viable seeds ranged from 81 to 518 seeds m(-2). Safflower has a relatively short longevity in the seed bank and no viable seeds were found after 2 years. Based on the seed burial studies it is predicted that winter conditions would reduce safflower seed viability on the soil surface by >50%, leaving between 40 and 260 viable seeds m(-2). The density of safflower volunteers emerging in the early spring of the following year ranged from 3 to 11 seedlings m(-2). Safflower volunteers did not survive in fields under chemical fallow, but in some cereal fields small numbers of volunteers did survive and generate viable seed. Results will be used to make recommendations for best management practices to reduce seed-mediated gene flow from commercial production of plant molecular farming with safflower.
Farghaly, Fatma Aly; Radi, Abeer Ahmed; Abdel-Wahab, Dalia Ahmed; Hamada, Afaf Mohamed
2016-06-01
Soil salinity and sodicity (alkalinity) are serious land degradation issues worldwide that are predicted to increase in the future. The objective of the present study is to distinguish the effects of NaCl and Na(2)CO(3) salinity in two concentrations on the growth, lipoxygenase (LOX) activity, membrane integrity, total lipids, yield parameters and fatty acids (FAs) composition of seeds of sunflower cultivar Sakha 53. Plant growth, LOX activity and malondialdehyde (MDA) content were reduced by salts stresses. On the contrary, salinity and alkalinity stress induced stimulatory effects on membrane permeability, leakage of UV-metabolites from leaves and total lipids of sunflower shoots and roots. Crop yield (plant height, head diameter, seed index and number of seeds for each head) that is known as a hallmark of plant stress was decreased by increasing concentrations of NaCl and Na(2)CO(3) in the growth media. Fatty acid methyl esters (FAME) composition of salt-stressed sunflower seeds varied with different levels of NaCl and Na(2)CO(3).
Musabyimana, T; Saxena, R C; Kairu, E W; Ogol, C P; Khan, Z R
2001-04-01
Both in a choice and multi-choice laboratory tests, fewer adults of the banana root borer, Cosmopolites sordidus (Germar), settled under the corms of the susceptible banana "Nakyetengu" treated with 5% aqueous extract of neem seed powder or cake or 2.5 and 5% emulsified neem oil than on water-treated corms. Feeding damage by larvae on banana pseudostem discs treated with 5% extract of powdered neem seed, kernel, or cake, or 5% emulsified neem oil was significantly less than on untreated discs. The larvae took much longer to locate feeding sites, initiate feeding and bore into pseudostem discs treated with extract of powdered neem seed or kernel. Few larvae survived when confined for 14 d on neem-treated banana pseudostems; the survivors weighed two to four times less than the larvae developing on untreated pseudostems. Females deposited up to 75% fewer eggs on neem-treated corms. In addition, egg hatching was reduced on neem-treated corms. The higher the concentration of neem materials the more severe the effect.
NASA Technical Reports Server (NTRS)
Kuang, A.; Popova, A.; McClure, G.; Musgrave, M. E.
2005-01-01
Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.
Jimenez-Lopez, Jose C.; Zafra, Adoración; Palanco, Lucía; Florido, José Fernando
2016-01-01
Olive seeds, which are a raw material of interest, have been reported to contain 11S seed storage proteins (SSPs). However, the presence of SSPs such as 7S vicilins has not been studied. In this study, following a search in the olive seed transcriptome, 58 sequences corresponding to 7S vicilins were retrieved. A partial sequence was amplified by PCR from olive seed cDNA and subjected to phylogenetic analysis with other sequences. Structural analysis showed that olive 7S vicilin contains 9 α-helixes and 22 β-sheets. Additionally, 3D structural analysis displayed good superimposition with vicilin models generated from Pistacia and Sesamum. In order to assess potential allergenicity, T and B epitopes present in these proteins were identified by bioinformatic approaches. Different motifs were observed among the species, as well as some species-specific motifs. Finally, expression analysis of vicilins was carried out in protein extracts obtained from seeds of different species, including the olive. Noticeable bands were observed for all species in the 15–75 kDa MW interval, which were compatible with vicilins. The reactivity of the extracts to sera from patients allergic to nuts was also analysed. The findings with regard to the potential use of olive seed as food are discussed. PMID:27034939
NASA Astrophysics Data System (ADS)
Fidanza, Michael; McMillan, Mica; Kostka, Stan; Madsen, Matthew D.
2014-05-01
Turfgrass seed germination and emergence is influenced mostly by water and oxygen availability, temperature, nutrition and biological activity in the rootzone. In many areas globally, seed germination and subsequent turfgrass establishment is greatly diminished due to inadequate irrigation water amount and quality, and the problem is further compound due to water repellent soils. Successful turfgrass seed germination is critical when attempting to establish a more sustainable turfgrass species in place of an existing, high-input required turf stand. Greenhouse research investigations were conducted in 2013 in Pennsylvania (USA), to evaluate surfactant coated perennial ryegrass (Lolium perenne) and Kentucky bluegrass (Poa pratensis) seed for germination and emergence, seedling vigor and overall turfgrass quality. Both turfgrasses tested are cool-season or C3 grasses, and perennial ryegrass has a bunch-type growth habit while Kentucky bluegrass is rhizomatous. Perennial ryegrass is used world-wide as a principal component in sports turf mixes and in overseeding programs, and typically germinates rapidly in 3 to 10 days after seeding. Kentucky bluegrass also is used world-wide for sports turf as well as lawns and landscapes, and germinates slowly in 7 to 28 days. Research results indicate that surfactant coated seed of both species germinated one to three days faster compared to uncoated seed, and that seedling vigor and overall turfgrass quality was better with surfactant coated seed compared to uncoated seed. In a study with only perennial ryegrass, surfactant-coated seed without fertilizer (i.e., N and Ca) applied at time of sowing resulted in seedling vigor and quality considered to be similar or better than uncoated seed with fertilizer applied at time of sowing. Therefore, the potential benefits with seed germination and emergence, and seedling vigor and turfgrass quality also may be attributed to the surfactant coating and not only a fertilizer response. The utilization of a surfactant coated turfgrass seed could potentially reduce inputs (i.e., cost, time and labor, other materials) and improve water conservation (i.e., reduction in irrigation water need for establishment).
Lakra, Nita; Kaur, Charanpreet; Anwar, Khalid; Singla-Pareek, Sneh Lata; Pareek, Ashwani
2018-05-01
High salinity is one of the major problems in crop productivity, affecting seed germination as well as yield. In order to enhance tolerance of crops towards salinity, it is essential to understand the underlying physiological and molecular mechanisms. In this endeavor, study of contrasting genotypes of the same species differing in their response towards salinity stress can be very useful. In the present study, we have investigated temporal differences in morphological, physiological and proteome profiles of two contrasting genotypes of rice to understand the basis of salt tolerance. When compared to IR64 rice, Pokkali, the salt-tolerant wild genotype, has enhanced capacity to cope with stress, better growth rate and possesses efficient antioxidant system, as well as better photosynthetic machinery. Our proteome studies revealed a higher and an early abundance of proteins involved in stress tolerance and photosynthesis in Pokkali in comparison with IR64, which, in contrast, showed greater changes in metabolic machinery even during early duration of stress. Our findings suggest important differences in physicochemical and proteome profiles of the two genotypes, which may be the basis of observed stress tolerance in the salt-tolerant Pokkali. © 2017 John Wiley & Sons Ltd.
Cirrus Cloud Seeding has Potential to Cool Climate
NASA Technical Reports Server (NTRS)
Storelvmo, T.; Kristjansson, J. E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A.
2013-01-01
Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth s climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming.
Teste, François P; Simard, Suzanne W; Durall, Daniel M; Guy, Robert D; Jones, Melanie D; Schoonmaker, Amanda L
2009-10-01
Mycorrhizal networks (MNs) are fungal hyphae that connect roots of at least two plants. It has been suggested that these networks are ecologically relevant because they may facilitate interplant resource transfer and improve regeneration dynamics. This study investigated the effects of MNs on seedling survival, growth and physiological responses, interplant resource (carbon and nitrogen) transfer, and ectomycorrhizal (EM) fungal colonization of seedlings by trees in dry interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests. On a large, recently harvested site that retained some older trees, we established 160 isolated plots containing pairs of older Douglas-fir "donor" trees and either manually sown seed or planted Douglas-fir "receiver" seedlings. Seed- and greenhouse-grown seedlings were sown and planted into four mesh treatments that served to restrict MN access (i.e., planted into mesh bags with 0.5-, 35-, 250-microm pores, or without mesh). Older trees were pulse labeled with carbon (13CO2) and nitrogen (15NH4(15)NO3) to quantify resource transfer. After two years, seedlings grown from seed in the field had the greatest survival and received the greatest amounts of transferred carbon (0.0063% of donor photo-assimilates) and nitrogen (0.0018%) where they were grown without mesh; however, planted seedlings were not affected by access to tree roots and hyphae. Size of "donor" trees was inversely related to the amount of carbon transferred to seedlings. The potential for MNs to form was high (based on high similarity of EM communities between hosts), and MN-mediated colonization appeared only to be important for seedlings grown from seed in the field. These results demonstrate that MNs and mycorrhizal roots of trees may be ecologically important for natural regeneration in dry forests, but it is still uncertain whether resource transfer is an important mechanism underlying seedling establishment.
Effect of saline water on seed germination and early seedling growth of the halophyte quinoa
Panuccio, M. R.; Jacobsen, S. E.; Akhtar, S. S.; Muscolo, A.
2014-01-01
Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769
Avocado (Persea americana) seed as a source of bioactive phytochemicals.
Dabas, Deepti; Shegog, Rachel M; Ziegler, Gregory R; Lambert, Joshua D
2013-01-01
The pulp of avocado (Persea americana, Lauraceae) has been reported to have beneficial cardiovascular health effects. Avocado oil is used for dermatological applications and its unsaponifiable portion is reported to have beneficial effects against osteoarthritis. Although the seed represents a considerable percentage of the total fruit, scientific research on the phytochemistry and biological effects of avocado seeds is in the nascent stages,. Currently, the seed represents an under-utilized resource and a waste issue for avocado processors. There is ethno-pharmacological information on the use of seeds for the treatment of health-related conditions, especially in South American countries where avocados are endemic and currently grown on a large scale. Current research has shown that avocado seeds may improve hypercholesterolemia, and be useful in the treatment of hypertension, inflammatory conditions and diabetes. Seeds have also been found to possess insecticidal, fungicidal, and anti-microbial activities. The avocado seeds and rich in phenolic compounds, and these may play a role in the putative health effects. Historically, extracts of avocado seeds were also used as ink for writing and research in our laboratory has explored the potential colorant properties of a polyphenol oxidase-produced colored avocado seed extract. Here, we review the currently-available data on the bioactivity and other functional properties of avocado seeds. We discuss the strength of the available data, the putative active compounds, and potential directions for future studies.
Dry Priming of Maize Seeds Reduces Aluminum Stress
Alcântara, Berenice Kussumoto; Machemer-Noonan, Katja; Silva Júnior, Francides Gomes; Azevedo, Ricardo Antunes
2015-01-01
Aluminum (Al) toxicity is directly related to acidic soils and substantially limits maize yield. Earlier studies using hormones and other substances to treat the seeds of various crops have been carried out with the aim of inducing tolerance to abiotic stress, especially chilling, drought and salinity. However, more studies regarding the effects of seed treatments on the induction of Al tolerance are necessary. In this study, two independent experiments were performed to determine the effect of ascorbic acid (AsA) seed treatment on the tolerance response of maize to acidic soil and Al stress. In the first experiment (greenhouse), the AsA seed treatment was tested in B73 (Al-sensitive genotype). This study demonstrates the potential of AsA for use as a pre-sowing seed treatment (seed priming) because this metabolite increased root and shoot growth under acidic and Al stress conditions. In the second test, the evidence from field experiments using an Al-sensitive genotype (Mo17) and an Al-tolerant genotype (DA) suggested that prior AsA seed treatment increased the growth of both genotypes. Enhanced productivity was observed for DA under Al stress after priming the seeds. Furthermore, the AsA treatment decreased the activity of oxidative stress-related enzymes in the DA genotype. In this study, remarkable effects using AsA seed treatment in maize were observed, demonstrating the potential future use of AsA in seed priming. PMID:26714286
O'Donnell, Jessica; Fryirs, Kirstie A; Leishman, Michelle R
2016-01-15
Anthropogenic disturbance has contributed to widespread geomorphic adjustment and the degradation of many rivers. This research compares for river reaches of varying condition, the potential for seed banks to support geomorphic river recovery through vegetation regeneration. Seven river reaches in the lower Hunter catchment of south-eastern Australia were assessed as being in poor, moderate, or good condition, based on geomorphic and ecological indicators. Seed bank composition within the channel and floodplain (determined in a seedling emergence study) was compared to standing vegetation. Seed bank potential for supporting geomorphic recovery was assessed by measuring native species richness, and the abundance of different plant growth forms, with consideration of the roles played by different growth forms in geomorphic adjustment. The exotic seed bank was considered a limiting factor for achieving ecological restoration goals, and similarly analysed. Seed bank native species richness was comparable between the reaches, and regardless of condition, early successional and pioneer herbs, sedges, grasses and rushes dominated the seed bank. The capacity for these growth forms to colonise and stabilise non-cohesive sediments and initiate biogeomorphic succession, indicates high potential for the seed banks of even highly degraded reaches to contribute to geomorphic river recovery. However, exotic propagules increasingly dominated the seed banks of moderate and poor condition reaches and reflected increasing encroachment by terrestrial exotic vegetation associated with riparian degradation. As the degree of riparian degradation increases, the resources required to control the regeneration of exotic species will similarly increase, if seed bank-based regeneration is to contribute to both geomorphic and ecological restoration goals. Copyright © 2015 Elsevier B.V. All rights reserved.
Pérez-Ramos, Ignacio M; Aponte, Cristina; García, Luis V; Padilla-Díaz, Carmen M; Marañón, Teodoro
2014-01-01
Mast-seeding species exhibit not only a large inter-annual variability in seed production but also considerable variability among individuals within the same year. However, very little is known about the causes and consequences for population dynamics of this potentially large between-individual variability. Here, we quantified seed production over ten consecutive years in two Mediterranean oak species - the deciduous Quercus canariensis and the evergreen Q. suber - that coexist in forests of southern Spain. First, we calibrated likelihood models to identify which abiotic and biotic variables best explain the magnitude (hereafter seed productivity) and temporal variation of seed production at the individual level (hereafter CVi), and infer whether reproductive effort results from the available soil resources for the plant or is primarily determined by selectively favoured strategies. Second, we explored the contribution of between-individual variability in seed production as a potential mechanism of satiation for predispersal seed predators. We found that Q. canariensis trees inhabiting moister and more fertile soils were more productive than those growing in more resource-limited sites. Regarding temporal variation, individuals of the two studied oak species inhabiting these resource-rich environments also exhibited larger values of CVi. Interestingly, we detected a satiating effect on granivorous insects at the tree level in Q. suber, which was evident in those years where between-individual variability in acorn production was higher. These findings suggest that individual seed production (both in terms of seed productivity and inter-annual variability) is strongly dependent on soil resource heterogeneity (at least for one of the two studied oak species) with potential repercussions for recruitment and population dynamics. However, other external factors (such as soil heterogeneity in pathogen abundance) or certain inherent characteristics of the tree might be also involved in this process.
[Iron from soil to plant products].
Briat, Jean-François
2005-11-01
As an essential mineral, iron plays an important role in fundamental biological processes such as photosynthesis, respiration, nitrogen fixation and assimilation, and DNA synthesis. Iron is also a co-factor of many enzymes involved in the synthesis of plant hormones. The latter are involved in many pathways controling plant development or adaptative responses to environmental conditions. Iron reactivity with oxygen leads to its insolubility (responsible for deficiency) and potential toxicity, and complicates iron use by aerobic organisms. If plants lacked an active root system with which to acquire iron from the soil, most would experience iron deficiency and show physiological changes. In contrast, an excess of soluble iron, which can occur in flooded acidic soils, can lead to ferrous iron toxicity due to iron reactivity with reduced forms of oxygen and subsequent free radical production. An optimal iron concentration is thus required for a plant to grow and develop normally. This concentration depends on multiple regulatory mechanisms controlling iron uptake from soil by the roots, as well as iron transport and distribution to the various plant organs. Optimized seed iron content is a major biotechnological challenge identified by the World Health Organization, and it is therefore crucial to understand the underlying mechanisms. Iron delivery to seeds is tightly controlled, and depends on the nature of iron speciation in specific chelates, and their transport.
Winterroth, Frank; Lee, Junho; Kuo, Shiuhyang; Fowlkes, J Brian; Feinberg, Stephen E; Hollister, Scott J; Hollman, Kyle W
2011-01-01
This study uses scanning acoustic microscopy (SAM) ultrasonic profilometry to determine acceptable vs. failed tissue engineered oral mucosa. Specifically, ex vivo-produced oral mucosal equivalents (EVPOMEs) under normal or thermally stressed culture conditions were scanned with the SAM operator blinded to the culture conditions. As seeded cells proliferate, they fill in and smooth out the surface irregularities; they then stratify and produce a keratinized protective upper layer. Some of these transformations could alter backscatter of ultrasonic signals and in the case of the thermally stressed cells, produce backscatter similar to an unseeded device. If non-invasive ultrasonic monitoring could be developed, then tissue cultivation could be adjusted to measure biological variations in the stratified surface. To create an EVPOME device, oral mucosa keratinocytes were seeded onto acellular cadaveric dermis. Two sets of EVPOMEs were cultured: one at physiological temperature 37 °C and the other at 43 °C. The specimens were imaged with SAM consisting of a single-element transducer: 61 MHz center frequency, 32 MHz bandwidth, 1.52 f#. Profilometry for the stressed and unseeded specimens showed higher surface irregularities compared to unstressed specimens. Elevated thermal stress retards cellular differentiation, increasing root mean square values; these results show that SAM can potentially monitor cell/tissue development.
Photosynthesis and growth of selected scotch pine seed sources
John C. Gordon; Gordon E. Gatherum
1968-01-01
A number of problems related to the culture of Scotch pine (Pinus sylvestris L.) arose following the increased planting of this species in Iowa. Therefore, a program of controlled-environment experiments to determine the effects of genetic and environmental factors on physiological processes important to the culture of Scotch pine was begun by the...
USDA-ARS?s Scientific Manuscript database
To mitigate the effects of heat and drought stress, an understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in...
Respiratory and physiological characteristics in subpopulations of Great Basin cheatgrass
V. Wallace McCarlie; Lee D. Hansen; Bruce N. Smith
2001-01-01
Cheatgrass (Bromus tectorum L.) is a dominant weed that has increased the frequency of wildfire in the Great Basin since its introduction approximately 106 years ago. Characteristics of respiratory metabolism were examined in eleven subpopulations from different habitats. Seeds from each subpopulation were germinated (4mm radicle) and metabolic heat rates (q) and...
Physiological adjustment of two full-sib families of ponderosa pine to elevated CO2
Nancy Grulke; J.L. Hom; S.W. Roberts
1993-01-01
Seeds from two full-sib families of ponderosa pine (Pinus ponderosa) with known differences in growth rates were germinated and grown in an ambient (350 µl l-1) or elevated (700 µl I-1) CO2 concentration. Gas exchange at both ambient and elevated CO2...
The Physiology and Biochemistry of Desiccating White Oak and Cherrybark Oak Acorns
Kristina F. Connor; Sharon Sowa
2004-01-01
The recalcitrant behavior of white oak (Quercus alba L.) and cherrybark oak (Q. pagoda Raf.) acorns was examined in terms of effects of moisture content on seed longevity, viability, and biochemistry. Acorns of both species were fully hydrated and then subjected to drying under ambient conditions of temperature and relative...
Long Distance Dispersal Potential of Two Seagrasses Thalassia hemprichii and Halophila ovalis
Wu, Kuoyan; Chen, Ching-Nen Nathan; Soong, Keryea
2016-01-01
The wide distribution of many seagrasses may be attributable to exploitation of currents. However, many species have seeds heavier than seawater, limiting surface floating, and thus, deep water becomes a potential barrier between suitable habitats. In this investigation, we studied the dispersal potential of various life history stages of two species of seagrasses, Thalassia hemprichii and Halophila ovalis, at Dongsha Atoll and Penghu Islands in Taiwan Strait, west Pacific. The adult plants of both species, often dislodged naturally from substrate by waves, could float, but only that of T. hemprichii could float for months and still remain alive and potentially able to colonize new territories. The seedlings of T. hemprichii could also float for about a month once failing to anchor to substrate of coral sand, but that of H. ovalis could not. The fruits and seeds of T. hemprichii could both float, but for too short a duration to enable long distance travel; those seeds released from long floating fruits had low germination rates in our tests. Obviously, their seeds are not adaptive for long distance dispersal. Fruits and seeds of H. ovalis do not float. The potential of animals as vectors was tested by feeding fruits and seeds of both species to a goose, a duck, and two fish in the laboratory. The fruits and seeds of T. hemprichii were digested and could no longer germinate; those of H. ovalis could pass through the digestive tracts and have a much higher germination rates than uningested controls. Therefore, birds could be important vectors for long distance dispersal of H. ovalis. The two seagrasses adopted very different dispersal mechanisms for long distance travel, and both exploited traits originally adaptive for other purposes. PMID:27248695
Long Distance Dispersal Potential of Two Seagrasses Thalassia hemprichii and Halophila ovalis.
Wu, Kuoyan; Chen, Ching-Nen Nathan; Soong, Keryea
2016-01-01
The wide distribution of many seagrasses may be attributable to exploitation of currents. However, many species have seeds heavier than seawater, limiting surface floating, and thus, deep water becomes a potential barrier between suitable habitats. In this investigation, we studied the dispersal potential of various life history stages of two species of seagrasses, Thalassia hemprichii and Halophila ovalis, at Dongsha Atoll and Penghu Islands in Taiwan Strait, west Pacific. The adult plants of both species, often dislodged naturally from substrate by waves, could float, but only that of T. hemprichii could float for months and still remain alive and potentially able to colonize new territories. The seedlings of T. hemprichii could also float for about a month once failing to anchor to substrate of coral sand, but that of H. ovalis could not. The fruits and seeds of T. hemprichii could both float, but for too short a duration to enable long distance travel; those seeds released from long floating fruits had low germination rates in our tests. Obviously, their seeds are not adaptive for long distance dispersal. Fruits and seeds of H. ovalis do not float. The potential of animals as vectors was tested by feeding fruits and seeds of both species to a goose, a duck, and two fish in the laboratory. The fruits and seeds of T. hemprichii were digested and could no longer germinate; those of H. ovalis could pass through the digestive tracts and have a much higher germination rates than uningested controls. Therefore, birds could be important vectors for long distance dispersal of H. ovalis. The two seagrasses adopted very different dispersal mechanisms for long distance travel, and both exploited traits originally adaptive for other purposes.
Kyriacou, M C; Emmanouilidou, M G; Soteriou, G A
2016-11-15
Physicochemical and physiological ripening events in cactus pear (Opuntia ficus-indica) fruit of cultivars 'Ntopia' and 'Hercules' were profiled against skin coloration from mature-green (S1) to over-mature (S5). Fructose and glucose accumulation were linear in 'Ntopia' but peaked near S3 in 'Hercules' synchronously to the appearance of sucrose. Betalains increased steadily in 'Ntopia' (103.2mg/l) but peaked before full skin coloration in 'Hercules' (49.7mg/l); whereas phenolic content remained invariable and ascorbate content peaked near S5 in both 'Ntopia' (108.6μg/g) and 'Hercules' (163.1μg/g). Cell wall material diminished with maturity though textural changes with ripening appeared not related to pectin solubilization but to weakening of glycan bonding and loss of neutral sugars. Fruit firmness rather was correlated to seed weight (r=0.89) and seed-to-pulp ratio (r=0.73). Cultivar differences highlighted in the chronology of ripening events are critical for defining optimum harvest maturity and postharvest handling protocols for premium quality cactus pear fruit. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Three Fire-Suppressant Foams on the Germination and Physiological Responses of Plants
NASA Astrophysics Data System (ADS)
Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju
2014-10-01
Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.
Effects of three fire-suppressant foams on the germination and physiological responses of plants.
Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju
2014-10-01
Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.
Rosales, Miguel A; Ocampo, Edilia; Rodríguez-Valentín, Rocío; Olvera-Carrillo, Yadira; Acosta-Gallegos, Jorge; Covarrubias, Alejandra A
2012-07-01
Terminal drought is a major problem for common bean production because it occurs during the reproductive stage, importantly affecting seed yield. Diverse common bean cultivars with different drought susceptibility have been selected from different gene pools in several drought environments. To better understand the mechanisms associated with terminal drought resistance in a particular common bean race (Durango) and growth habit (type-III), we evaluated several metabolic and physiological parameters using two cultivars, Bayo Madero and Pinto Saltillo, with contrasting drought susceptibility. The common bean cultivars were submitted to moderate and severe terminal drought treatments under greenhouse conditions. We analyzed the following traits: relative growth rate, photosynthesis and transpiration rates, stomatal conductance, water-use efficiency, relative water content, proline accumulation, glycolate oxidase activity and their antioxidant response. Our results indicate that the competence of the drought-resistant cultivar (Pinto Saltillo) to maintain seed production upon terminal drought relies on an early response and fine-tuning of stomatal conductance, CO₂ diffusion and fixation, and by an increased water use and avoidance of ROS accumulation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Sensitivity to high temperature and water stress in recalcitrant Baccaurea ramiflora seeds.
Wen, Bin; Liu, Minghang; Tan, Yunhong; Liu, Qiang
2016-07-01
Southeast Asia experiences one of the highest rates of deforestation in the tropics due to agricultural expansion, logging, habitat fragmentation and urbanization. As tropical rainforests harbour abundant recalcitrant-seeded species, it is important to understand how recalcitrant seeds respond to deforestation and fragmentation. Baccaurea ramiflora is a recalcitrant-seeded species, widely distributed in Southeast Asian tropical rainforest. In this study, B. ramiflora seeds were sown in three plots, one in a nature reserve and two in disturbed holy hill forests, to investigate seed germination and seedling establishment in the field, while laboratory experiments were conducted to investigate the effects of high temperature and water stress on germination. It was found that seed germination and seedling establishment in B. ramiflora were clearly reduced in holy hills compared to the nature reserve, although the seeds were only moderately to minimally recalcitrant. This was potentially caused by increased temperature and decreased moisture in holy hills, for laboratory experiments showed that seed germination was greatly inhibited by temperatures ≥35 °C or water potentials ≤-0.5 MPa, and depressed by heat treatment at 40 °C when the continuous heating period lasted for 240 h or daily periodic heating exceeded 10 h. Unlike orthodox seeds, which can endure much higher temperatures in the air-dried state than in the imbibed state, both blotted and immersed B. ramiflora seeds lost viability within a narrow temperature range between 50 and 60 °C. As recalcitrant seeds can be neither air-dried nor heated, species producing recalcitrant seeds will suffer more than those producing orthodox seeds in germination and seedling establishment from increased temperature and decreased moisture in fragmented rainforests, which results in sensitivity of recalcitrant-seeded species to rainforest fragmentation.
Soil seed banks in four 22-year-old plantations in South China: implications for restoration
Jun Wang; Hai Ren; Long Yang; Danyan Li; Qinfeng Guo
2009-01-01
To better understand the potentials of the soil seed banks in facilitating succession towards a morenatural forest of native tree species, we quantified the size and composition of the soil seed banks inestablished plantations in South China. The seed banks were from four typical 22-year-old plantations, i.e., legume, mixed-...
USDA-ARS?s Scientific Manuscript database
Benghal dayflower (BD) is an exotic weed that reduces yields in many agricultural crops. Potential dispersal of this weed by migratory Mourning doves was investigated in this study. Evidence shows that doves feed on BD seeds, with some birds containing hundreds of seeds. Seeds extracted from harvest...
Direct seeding of shortleaf pine
Corinne S. Mann; David Gwaze
2007-01-01
Direct seeding is a potentially viable method for regenerating shortleaf pine, but it has not been used extensively. In Missouri, an estimated 10,000 acres have been direct-seeded with shortleaf pine; half of which are at Mark Twain National Forest. Direct seeding offers a flexible and efficient alternative to planting as a way to restore shortleaf pine in the Ozarks....
Dispersal and viability of seeds from cones in tops of harvested loblolly pines
Michael G. Shelton; Michael D. Cain
2001-01-01
Seed supply is one of the most important determinants of successful natural regeneration. We conducted a study to determine the potential contribution of cones in the tops of harvested loblolly pines (Pinus taeda L.) to the stand's seed supply if trees were felled after seed maturation but before dispersal. Closed cones, collected in...
Provisional tree seed zones and transfer guidelines for Alaska.
John N. Alden
1991-01-01
Four hundred and eighty-six provisional tree seed zones were delineated within 24 physiographic and climatic regions of Alaska and western Yukon Territory Estimated forest and potential forest land within altitudinal limits of tree species in Alaska was 51,853,000 hectares (128,130,000 acres) Seed transfer guidelines and standard labeling of seed collections are...
USDA-ARS?s Scientific Manuscript database
Seed coating formulations of Trichoderma harzianum were evaluated on cucumber seeds to control pre- and post-emergence damping-off caused by Pythium ultimum in greenhouse studies. Results showed that coating formulation H reduced the disease incidence significantly, and had the potential for commer...
Irrigation and cultivar effect on flax fiber and seed yield in the southeast USA
USDA-ARS?s Scientific Manuscript database
Flax (Linum usitatissimum L.) is a potential winter crop for the Southeast USA that can be grown for both seed and fiber. The objective of this research was to evaluate the effect of irrigation on flax straw, fiber, and seed yield of fiber-type and seed-type cultivars at different flax growth stage...
USDA-ARS?s Scientific Manuscript database
Habitat restoration projects can use seed bank information as early warning systems of patterns or degrees of habitat degradation; as changes in above ground vegetation directly impact below ground seed distribution. In multiple strategy restoration efforts, seed bank quality can be used as a decidi...
Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat
NASA Astrophysics Data System (ADS)
Singh, Bhupinder; Datta, P. S.
2010-02-01
Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.
Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M.; Baskin, Carol C.
2008-01-01
Background and Aims The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from ‘salt steppes’ in the Mediterranean region of Spain. Methods Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 °C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Key Results Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0·1 to 0·75 m NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by ≥2·0 m NaCl. Elongation of radicles from salt solutions <3·0 m resumed after seedlings were transferred to deionized water. Conclusions The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean ‘salt steppe’ of Spain and the inland cold salt desert of north-west China. PMID:17428834
Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M; Baskin, Carol C
2008-01-01
The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from 'salt steppes' in the Mediterranean region of Spain. Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 degrees C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 0.1 to 0.75 M NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by > or = 2.0 M NaCl. Elongation of radicles from salt solutions < 3.0 M resumed after seedlings were transferred to deionized water. The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean 'salt steppe' of Spain and the inland cold salt desert of north-west China.
Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.
Lorenz, Christin; Rolletschek, Hardy; Sunderhaus, Stephanie; Braun, Hans-Peter
2014-08-28
Oilseeds are an important element of human nutrition and of increasing significance for the production of industrial materials. The development of the seeds is based on a coordinated interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give insights into the physiological role of endosperm for seed development in the oilseed crop Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass spectrometry three proteome projects were carried out: (i) establishment of an endosperm proteome reference map, (ii) proteomic characterization of endosperm development and (iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference map comprises 930 distinct proteins, including enzymes involved in genetic information processing, carbohydrate metabolism, environmental information processing, energy metabolism, cellular processes and amino acid metabolism. To investigate dynamic changes in protein abundance during seed development, total soluble proteins were extracted from embryo and endosperm fractions at defined time points. Proteins involved in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis and redox balancing were found to be of special importance for seed development in B. napus. Implications for the seed filling process and the function of the endosperm for seed development are discussed. The endosperm is of key importance for embryo development during seed formation in plants. We present a broad study for characterizing endosperm proteins in the oilseed plant B. napus. Furthermore, a project on the biochemical interplay between the embryo and the endosperm during seed development is presented. We provide evidence that the endosperm includes a complete set of enzymes necessary for plant primary metabolism. Combination of our results with metabolome data will further improve systems-level understanding of the seed filling process and provide rational strategies for plant bioengineering. Copyright © 2014 Elsevier B.V. All rights reserved.
Chiu, Rex S; Nahal, Hardeep; Provart, Nicholas J; Gazzarrini, Sonia
2012-01-27
Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. © 2011 Chiu et al; licensee BioMed Central Ltd.
2012-01-01
Background Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. Results In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. Conclusion In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. PMID:22279962