Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.
Chen, Rong; Nixon, Erika; Herskovits, Edward
2016-04-01
Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.
EXPLORING FUNCTIONAL CONNECTIVITY IN FMRI VIA CLUSTERING.
Venkataraman, Archana; Van Dijk, Koene R A; Buckner, Randy L; Golland, Polina
2009-04-01
In this paper we investigate the use of data driven clustering methods for functional connectivity analysis in fMRI. In particular, we consider the K-Means and Spectral Clustering algorithms as alternatives to the commonly used Seed-Based Analysis. To enable clustering of the entire brain volume, we use the Nyström Method to approximate the necessary spectral decompositions. We apply K-Means, Spectral Clustering and Seed-Based Analysis to resting-state fMRI data collected from 45 healthy young adults. Without placing any a priori constraints, both clustering methods yield partitions that are associated with brain systems previously identified via Seed-Based Analysis. Our empirical results suggest that clustering provides a valuable tool for functional connectivity analysis.
Stoyanova, Raliza S.; Baron-Cohen, Simon; Calder, Andrew J.
2013-01-01
Individuals with Autism Spectrum Conditions (ASC) have difficulties in social interaction and communication, which is reflected in hypoactivation of brain regions engaged in social processing, such as medial prefrontal cortex (mPFC), amygdala and insula. Resting state studies in ASC have identified reduced connectivity of the default mode network (DMN), which includes mPFC, suggesting that other resting state networks incorporating ‘social’ brain regions may also be abnormal. Using Seed-based Connectivity and Group Independent Component Analysis (ICA) approaches, we looked at resting functional connectivity in ASC between specific ‘social’ brain regions, as well as within and between whole networks incorporating these regions. We found reduced functional connectivity within the DMN in individuals with ASC, using both ICA and seed-based approaches. Two further networks identified by ICA, the salience network, incorporating the insula and a medial temporal lobe network, incorporating the amygdala, showed reduced inter-network connectivity. This was underlined by reduced seed-based connectivity between the insula and amygdala. The results demonstrate significantly reduced functional connectivity within and between resting state networks incorporating ‘social’ brain regions. This reduced connectivity may result in difficulties in communication and integration of information across these networks, which could contribute to the impaired processing of social signals in ASC. PMID:22563003
Glerean, Enrico; Salmi, Juha; Lahnakoski, Juha M; Jääskeläinen, Iiro P; Sams, Mikko
2012-01-01
Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.
Manning, Joshua; Reynolds, Gretchen; Saygin, Zeynep M; Hofmann, Stefan G; Pollack, Mark; Gabrieli, John D E; Whitfield-Gabrieli, Susan
2015-01-01
We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.
Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark
2015-01-01
Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363
Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis.
Zhang, Sheng; Li, Chiang-Shan R
2017-11-01
As a key structure to relay and integrate information, the thalamus supports multiple cognitive and affective functions through the connectivity between its subnuclei and cortical and subcortical regions. Although extant studies have largely described thalamic regional functions in anatomical terms, evidence accumulates to suggest a more complex picture of subareal activities and connectivities of the thalamus. In this study, we aimed to parcellate the thalamus and examine whole-brain connectivity of its functional clusters. With resting state functional magnetic resonance imaging data from 96 adults, we used independent component analysis (ICA) to parcellate the thalamus into 10 components. On the basis of the independence assumption, ICA helps to identify how subclusters overlap spatially. Whole brain functional connectivity of each subdivision was computed for independent component's time course (ICtc), which is a unique time series to represent an IC. For comparison, we computed seed-region-based functional connectivity using the averaged time course across all voxels within a thalamic subdivision. The results showed that, at p < 10 -6 , corrected, 49% of voxels on average overlapped among subdivisions. Compared with seed-region analysis, ICtc analysis revealed patterns of connectivity that were more distinguished between thalamic clusters. ICtc analysis demonstrated thalamic connectivity to the primary motor cortex, which has eluded the analysis as well as previous studies based on averaged time series, and clarified thalamic connectivity to the hippocampus, caudate nucleus, and precuneus. The new findings elucidate functional organization of the thalamus and suggest that ICA clustering in combination with ICtc rather than seed-region analysis better distinguishes whole-brain connectivities among functional clusters of a brain region.
Yoder, Keith J.; Porges, Eric C.; Decety, Jean
2016-01-01
Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a non-forensic sample are linked to amygdala response to violence, the current study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. PMID:25557777
Yoder, Keith J; Porges, Eric C; Decety, Jean
2015-04-01
Atypical amygdala function and connectivity have reliably been associated with psychopathy. However, the amygdala is not a unitary structure. To examine how psychopathic traits in a nonforensic sample are linked to amygdala response to violence, this study used probabilistic tractography to classify amygdala subnuclei based on anatomical projections to and from amygdala subnuclei in a group of 43 male participants. The segmentation identified the basolateral complex (BLA; lateral, basal, and accessory basal subnuclei) and the central subnucleus (CE), which were used as seeds in a functional connectivity analysis to identify differences in neuronal coupling specific to observed violence. While a full amygdala seed showed significant connectivity only to right middle occipital gyrus, subnuclei seeds revealed unique connectivity patterns. BLA showed enhanced coupling with anterior cingulate and prefrontal regions, while CE showed increased connectivity with the brainstem, but reduced connectivity with superior parietal and precentral gyrus. Further, psychopathic personality factors were related to specific patterns of connectivity. Fearless Dominance scores on the psychopathic personality inventory predicted increased coupling between the BLA seed and sensory integration cortices, and increased connectivity between the CE seed and posterior insula. Conversely, Self-Centered Impulsivity scores were negatively correlated with coupling between BLA and ventrolateral prefrontal cortex, and Coldheartedness scores predicted increased functional connectivity between BLA and dorsal anterior cingulate cortex. Taken together, these findings demonstrate how subnuclei segmentations reveal important functional connectivity differences that are otherwise inaccessible. Such an approach yields a better understanding of amygdala dysfunction in psychopathy. © 2014 Wiley Periodicals, Inc.
Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok
2015-01-01
Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.
Walsh, Erin; Carl, Hannah; Eisenlohr-Moul, Tory; Minkel, Jared; Crowther, Andrew; Moore, Tyler; Gibbs, Devin; Petty, Chris; Bizzell, Josh; Smoski, Moria J; Dichter, Gabriel S
2017-03-01
There are few reliable predictors of response to antidepressant treatments. In the present investigation, we examined pretreatment functional brain connectivity during reward processing as a potential predictor of response to Behavioral Activation Treatment for Depression (BATD), a validated psychotherapy that promotes engagement with rewarding stimuli and reduces avoidance behaviors. Thirty-three outpatients with major depressive disorder (MDD) and 20 matched controls completed two runs of the monetary incentive delay task during functional magnetic resonance imaging after which participants with MDD received up to 15 sessions of BATD. Seed-based generalized psychophysiological interaction analyses focused on task-based connectivity across task runs, as well as the attenuation of connectivity from the first to the second run of the task. The average change in Beck Depression Inventory-II scores due to treatment was 10.54 points, a clinically meaningful response. Groups differed in seed-based functional connectivity among multiple frontostriatal regions. Hierarchical linear modeling revealed that improved treatment response to BATD was predicted by greater connectivity between the left putamen and paracingulate gyrus during reward anticipation. In addition, MDD participants with greater attenuation of connectivity between several frontostriatal seeds, and midline subcallosal cortex and left paracingulate gyrus demonstrated improved response to BATD. These findings indicate that pretreatment frontostriatal functional connectivity during reward processing is predictive of response to a psychotherapy modality that promotes improving approach-related behaviors in MDD. Furthermore, connectivity attenuation among reward-processing regions may be a particularly powerful endophenotypic predictor of response to BATD in MDD.
Abbott, Angela E; Linke, Annika C; Nair, Aarti; Jahedi, Afrooz; Alba, Laura A; Keown, Christopher L; Fishman, Inna; Müller, Ralph-Axel
2018-01-01
The neural underpinnings of repetitive behaviors (RBs) in autism spectrum disorders (ASDs), ranging from cognitive to motor characteristics, remain unknown. We assessed RB symptomatology in 50 ASD and 52 typically developing (TD) children and adolescents (ages 8-17 years), examining intrinsic functional connectivity (iFC) of corticostriatal circuitry, which is important for reward-based learning and integration of emotional, cognitive and motor processing, and considered impaired in ASDs. Connectivity analyses were performed for three functionally distinct striatal seeds (limbic, frontoparietal and motor). Functional connectivity with cortical regions of interest was assessed for corticostriatal circuit connectivity indices and ratios, testing the balance of connectivity between circuits. Results showed corticostriatal overconnectivity of limbic and frontoparietal seeds, but underconnectivity of motor seeds. Correlations with RBs were found for connectivity between the striatal motor seeds and cortical motor clusters from the whole-brain analysis, and for frontoparietal/limbic and motor/limbic connectivity ratios. Division of ASD participants into high (n = 17) and low RB subgroups (n = 19) showed reduced frontoparietal/limbic and motor/limbic circuit ratios for high RB compared to low RB and TD groups in the right hemisphere. Results suggest an association between RBs and an imbalance of corticostriatal iFC in ASD, being increased for limbic, but reduced for frontoparietal and motor circuits. © The Author (2017). Published by Oxford University Press.
Abbott, Angela E; Linke, Annika C; Nair, Aarti; Jahedi, Afrooz; Alba, Laura A; Keown, Christopher L; Fishman, Inna
2018-01-01
Abstract The neural underpinnings of repetitive behaviors (RBs) in autism spectrum disorders (ASDs), ranging from cognitive to motor characteristics, remain unknown. We assessed RB symptomatology in 50 ASD and 52 typically developing (TD) children and adolescents (ages 8–17 years), examining intrinsic functional connectivity (iFC) of corticostriatal circuitry, which is important for reward-based learning and integration of emotional, cognitive and motor processing, and considered impaired in ASDs. Connectivity analyses were performed for three functionally distinct striatal seeds (limbic, frontoparietal and motor). Functional connectivity with cortical regions of interest was assessed for corticostriatal circuit connectivity indices and ratios, testing the balance of connectivity between circuits. Results showed corticostriatal overconnectivity of limbic and frontoparietal seeds, but underconnectivity of motor seeds. Correlations with RBs were found for connectivity between the striatal motor seeds and cortical motor clusters from the whole-brain analysis, and for frontoparietal/limbic and motor/limbic connectivity ratios. Division of ASD participants into high (n = 17) and low RB subgroups (n = 19) showed reduced frontoparietal/limbic and motor/limbic circuit ratios for high RB compared to low RB and TD groups in the right hemisphere. Results suggest an association between RBs and an imbalance of corticostriatal iFC in ASD, being increased for limbic, but reduced for frontoparietal and motor circuits. PMID:29177509
Functional Connectivity of Human Chewing
Quintero, A.; Ichesco, E.; Schutt, R.; Myers, C.; Peltier, S.; Gerstner, G.E.
2013-01-01
Mastication is one of the most important orofacial functions. The neurobiological mechanisms of masticatory control have been investigated in animal models, but less so in humans. This project used functional connectivity magnetic resonance imaging (fcMRI) to assess the positive temporal correlations among activated brain areas during a gum-chewing task. Twenty-nine healthy young-adults underwent an fcMRI scanning protocol while they chewed gum. Seed-based fcMRI analyses were performed with the motor cortex and cerebellum as regions of interest. Both left and right motor cortices were reciprocally functionally connected and functionally connected with the post-central gyrus, cerebellum, cingulate cortex, and precuneus. The cerebellar seeds showed functional connections with the contralateral cerebellar hemispheres, bilateral sensorimotor cortices, left superior temporal gyrus, and left cingulate cortex. These results are the first to identify functional central networks engaged during mastication. PMID:23355525
Alternations of functional connectivity in amblyopia patients: a resting-state fMRI study
NASA Astrophysics Data System (ADS)
Wang, Jieqiong; Hu, Ling; Li, Wenjing; Xian, Junfang; Ai, Likun; He, Huiguang
2014-03-01
Amblyopia is a common yet hard-to-cure disease in children and results in poor or blurred vision. Some efforts such as voxel-based analysis, cortical thickness analysis have been tried to reveal the pathogenesis of amblyopia. However, few studies focused on alterations of the functional connectivity (FC) in amblyopia. In this study, we analyzed the abnormalities of amblyopia patients by both the seed-based FC with the left/right primary visual cortex and the network constructed throughout the whole brain. Experiments showed the following results: (1)As for the seed-based FC analysis, FC between superior occipital gyrus and the primary visual cortex was found to significantly decrease in both sides. The abnormalities were also found in lingual gyrus. The results may reflect functional deficits both in dorsal stream and ventral stream. (2)Two increased functional connectivities and 64 decreased functional connectivities were found in the whole brain network analysis. The decreased functional connectivities most concentrate in the temporal cortex. The results suggest that amblyopia may be caused by the deficits in the visual information transmission.
Degnan, Andrew J.; Wisnowski, Jessica L.; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M.; Corby, Patricia; Schmithorst, Vincent J.; Panigrahy, Ashok
2015-01-01
Objective Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Methods Thirty-eight preadolescents (ages 9–13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Results Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Conclusion Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing. PMID:26098888
Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui
2017-01-01
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983
Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui
2017-01-24
Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.
Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan
2018-06-13
To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.
Template based rotation: A method for functional connectivity analysis with a priori templates☆
Schultz, Aaron P.; Chhatwal, Jasmeer P.; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R.A.; McLaren, Donald G.; Ward, Andrew M.; Wigman, Sarah; Sperling, Reisa A.
2014-01-01
Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,1 a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based analyses. This flexibility owes to the reduced spatial and temporal orthogonality constraints of template based rotation as compared to dual regression. These results suggest that template based rotation can provide a useful alternative to existing fcMRI analytic methods, particularly in clinical trial settings where predefined outcome measures and conserved network descriptions across groups are at a premium. PMID:25150630
Smith, David V.; Utevsky, Amanda V.; Bland, Amy R.; Clement, Nathan; Clithero, John A.; Harsch, Anne E. W.; Carter, R. McKell; Huettel, Scott A.
2014-01-01
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent components analysis (ICA). We estimated voxelwise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust—yet frequently ignored—neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. PMID:24662574
Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.
Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís
2015-11-01
Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with psychopathy. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Rzepa, Ewelina; Tudge, Luke; McCabe, Ciara
2015-09-10
The cannabinoid cannabinoid type 1 (CB1) neutral antagonist tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity, but without the depressogenic side-effects of inverse antagonists such as Rimonabant. However, how THCv might affect the resting state functional connectivity of the human brain is as yet unknown. We examined the effects of a single 10mg oral dose of THCv and placebo in 20 healthy volunteers in a randomized, within-subject, double-blind design. Using resting state functional magnetic resonance imaging and seed-based connectivity analyses, we selected the amygdala, insula, orbitofrontal cortex, and dorsal medial prefrontal cortex (dmPFC) as regions of interest. Mood and subjective experience were also measured before and after drug administration using self-report scales. Our results revealed, as expected, no significant differences in the subjective experience with a single dose of THCv. However, we found reduced resting state functional connectivity between the amygdala seed region and the default mode network and increased resting state functional connectivity between the amygdala seed region and the dorsal anterior cingulate cortex and between the dmPFC seed region and the inferior frontal gyrus/medial frontal gyrus. We also found a positive correlation under placebo for the amygdala-precuneus connectivity with the body mass index, although this correlation was not apparent under THCv. Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the default mode network and increases connectivity in the cognitive control network and dorsal visual stream network. This effect profile suggests possible therapeutic activity of THCv for obesity, where functional connectivity has been found to be altered in these regions. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Contreras-Rodríguez, Oren; Albein-Urios, Natalia; Perales, José C; Martínez-Gonzalez, José M; Vilar-López, Raquel; Fernández-Serrano, María J; Lozano-Rojas, Oscar; Verdejo-García, Antonio
2015-12-01
To contrast functional connectivity on ventral and dorsal striatum networks in cocaine dependence relative to pathological gambling, via a resting-state functional connectivity approach; and to determine the association between cocaine dependence-related neuroadaptations indexed by functional connectivity and impulsivity, compulsivity and drug relapse. Cross-sectional study of 20 individuals with cocaine dependence (CD), 19 individuals with pathological gambling (PG) and 21 healthy controls (HC), and a prospective cohort study of 20 CD followed-up for 12 weeks to measure drug relapse. CD and PG were recruited through consecutive admissions to a public clinic specialized in substance addiction treatment (Centro Provincial de Drogodependencias) and a public clinic specialized in gambling treatment (AGRAJER), respectively; HC were recruited through community advertisement in the same area in Granada (Spain). Seed-based functional connectivity in the ventral striatum (ventral caudate and ventral putamen) and dorsal striatum (dorsal caudate and dorsal putamen), the Kirby delay-discounting questionnaire, the reversal-learning task and a dichotomous measure of cocaine relapse indicated with self-report and urine tests. CD relative to PG exhibit enhanced connectivity between the ventral caudate seed and subgenual anterior cingulate cortex, the ventral putamen seed and dorsomedial pre-frontal cortex and the dorsal putamen seed and insula (P≤0.001, kE=108). Connectivity between the ventral caudate seed and subgenual anterior cingulate cortex is associated with steeper delay discounting (P≤0.001, kE=108) and cocaine relapse (P≤0.005, kE=34). Cocaine dependence-related neuroadaptations in the ventral striatum of the brain network are associated with increased impulsivity and higher rate of cocaine relapse. © 2015 Society for the Study of Addiction.
Deris, Nadja; Montag, Christian; Reuter, Martin; Weber, Bernd; Markett, Sebastian
2017-02-15
According to Jaak Panksepp's Affective Neuroscience Theory and the derived self-report measure, the Affective Neuroscience Personality Scales (ANPS), differences in the responsiveness of primary emotional systems form the basis of human personality. In order to investigate neuronal correlates of personality, the underlying neuronal circuits of the primary emotional systems were analyzed in the present fMRI-study by associating the ANPS to functional connectivity in the resting brain. N=120 healthy participants were invited for the present study. The results were reinvestigated in an independent, smaller sample of N=52 participants. A seed-based whole brain approach was conducted with seed-regions bilaterally in the basolateral and superficial amygdalae. The selection of seed-regions was based on meta-analytic data on affective processing and the Juelich histological atlas. Multiple regression analyses on the functional connectivity maps revealed associations with the SADNESS-scale in both samples. Functional resting-state connectivity between the left basolateral amygdala and a cluster in the postcentral gyrus, and between the right basolateral amygdala and clusters in the superior parietal lobe and subgyral in the parietal lobe was associated with SADNESS. No other ANPS-scale revealed replicable results. The present findings give first insights into the neuronal basis of the SADNESS-scale of the ANPS and support the idea of underlying neuronal circuits. In combination with previous research on genetic associations of the ANPS functional resting-state connectivity is discussed as a possible endophenotype of personality. Copyright © 2016 Elsevier Inc. All rights reserved.
Cannabinoid Modulation of Functional Connectivity within Regions Processing Attentional Salience
Bhattacharyya, Sagnik; Falkenberg, Irina; Martin-Santos, Rocio; Atakan, Zerrin; Crippa, Jose A; Giampietro, Vincent; Brammer, Mick; McGuire, Philip
2015-01-01
There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli. PMID:25249057
Cannabinoid modulation of functional connectivity within regions processing attentional salience.
Bhattacharyya, Sagnik; Falkenberg, Irina; Martin-Santos, Rocio; Atakan, Zerrin; Crippa, Jose A; Giampietro, Vincent; Brammer, Mick; McGuire, Philip
2015-05-01
There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli.
Robin, Jessica; Hirshhorn, Marnie; Rosenbaum, R Shayna; Winocur, Gordon; Moscovitch, Morris; Grady, Cheryl L
2015-01-01
Several recent studies have compared episodic and spatial memory in neuroimaging paradigms in order to understand better the contribution of the hippocampus to each of these tasks. In the present study, we build on previous findings showing common neural activation in default network areas during episodic and spatial memory tasks based on familiar, real-world environments (Hirshhorn et al. (2012) Neuropsychologia 50:3094-3106). Following previous demonstrations of the presence of functionally connected sub-networks within the default network, we performed seed-based functional connectivity analyses to determine how, depending on the task, the hippocampus and prefrontal cortex differentially couple with one another and with distinct whole-brain networks. We found evidence for a medial prefrontal-parietal network and a medial temporal lobe network, which were functionally connected to the prefrontal and hippocampal seeds, respectively, regardless of the nature of the memory task. However, these two networks were functionally connected with one another during the episodic memory task, but not during spatial memory tasks. Replicating previous reports of fractionation of the default network into stable sub-networks, this study also shows how these sub-networks may flexibly couple and uncouple with one another based on task demands. These findings support the hypothesis that episodic memory and spatial memory share a common medial temporal lobe-based neural substrate, with episodic memory recruiting additional prefrontal sub-networks. © 2014 Wiley Periodicals, Inc.
Kaiser, Roselinde H; Andrews-Hanna, Jessica R; Wager, Tor D; Pizzagalli, Diego A
2015-06-01
Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. To investigate network dysfunction in MDD through a meta-analysis of rsFC studies. Seed-based voxelwise rsFC studies comparing individuals with MDD with healthy controls (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE) and authors contacted for additional data. Twenty-seven seed-based voxel-wise rsFC data sets from 25 publications (556 individuals with MDD and 518 healthy controls) were included in the meta-analysis. Coordinates of seed regions of interest and between-group effects were extracted. Seeds were categorized into seed-networks by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive or reduced negative connectivity) or hypoconnectivity (increased negative or reduced positive connectivity) with each seed-network. Major depressive disorder was characterized by hypoconnectivity within the frontoparietal network, a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network involved in attending to the external environment. Major depressive disorder was also associated with hyperconnectivity within the default network, a network believed to support internally oriented and self-referential thought, and hyperconnectivity between frontoparietal control systems and regions of the default network. Finally, the MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. Reduced connectivity within frontoparietal control systems and imbalanced connectivity between control systems and networks involved in internal or external attention may reflect depressive biases toward internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression.
Smith, David V; Utevsky, Amanda V; Bland, Amy R; Clement, Nathan; Clithero, John A; Harsch, Anne E W; McKell Carter, R; Huettel, Scott A
2014-07-15
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent component analysis (ICA). We estimated voxel-wise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust-yet frequently ignored-neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
Variability in Cumulative Habitual Sleep Duration Predicts Waking Functional Connectivity.
Khalsa, Sakh; Mayhew, Stephen D; Przezdzik, Izabela; Wilson, Rebecca; Hale, Joanne; Goldstone, Aimee; Bagary, Manny; Bagshaw, Andrew P
2016-01-01
We examined whether interindividual differences in habitual sleep patterns, quantified as the cumulative habitual total sleep time (cTST) over a 2-w period, were reflected in waking measurements of intranetwork and internetwork functional connectivity (FC) between major nodes of three intrinsically connected networks (ICNs): default mode network (DMN), salience network (SN), and central executive network (CEN). Resting state functional magnetic resonance imaging (fMRI) study using seed-based FC analysis combined with 14-d wrist actigraphy, sleep diaries, and subjective questionnaires (N = 33 healthy adults, mean age 34.3, standard deviation ± 11.6 y). Data were statistically analyzed using multiple linear regression. Fourteen consecutive days of wrist actigraphy in participant's home environment and fMRI scanning on day 14 at the Birmingham University Imaging Centre. Seed-based FC analysis on ICNs from resting-state fMRI data and multiple linear regression analysis performed for each ICN seed and target. cTST was used to predict FC (controlling for age). cTST was specific predictor of intranetwork FC when the mesial prefrontal cortex (MPFC) region of the DMN was used as a seed for FC, with a positive correlation between FC and cTST observed. No significant relationship between FC and cTST was seen for any pair of nodes not including the MPFC. Internetwork FC between the DMN (MPFC) and SN (right anterior insula) was also predicted by cTST, with a negative correlation observed between FC and cTST. This study improves understanding of the relationship between intranetwork and internetwork functional connectivity of intrinsically connected networks (ICNs) in relation to habitual sleep quality and duration. The cumulative amount of sleep that participants achieved over a 14-d period was significantly predictive of intranetwork and inter-network functional connectivity of ICNs, an observation that may underlie the link between sleep status and cognitive performance. © 2016 Associated Professional Sleep Societies, LLC.
Calamante, Fernando; Masterton, Richard A J; Tournier, Jacques-Donald; Smith, Robert E; Willats, Lisa; Raffelt, David; Connelly, Alan
2013-04-15
MRI provides a powerful tool for studying the functional and structural connections in the brain non-invasively. The technique of functional connectivity (FC) exploits the intrinsic temporal correlations of slow spontaneous signal fluctuations to characterise brain functional networks. In addition, diffusion MRI fibre-tracking can be used to study the white matter structural connections. In recent years, there has been considerable interest in combining these two techniques to provide an overall structural-functional description of the brain. In this work we applied the recently proposed super-resolution track-weighted imaging (TWI) methodology to demonstrate how whole-brain fibre-tracking data can be combined with FC data to generate a track-weighted (TW) FC map of FC networks. The method was applied to data from 8 healthy volunteers, and illustrated with (i) FC networks obtained using a seeded connectivity-based analysis (seeding in the precuneus/posterior cingulate cortex, PCC, known to be part of the default mode network), and (ii) with FC networks generated using independent component analysis (in particular, the default mode, attention, visual, and sensory-motor networks). TW-FC maps showed high intensity in white matter structures connecting the nodes of the FC networks. For example, the cingulum bundles show the strongest TW-FC values in the PCC seeded-based analysis, due to their major role in the connection between medial frontal cortex and precuneus/posterior cingulate cortex; similarly the superior longitudinal fasciculus was well represented in the attention network, the optic radiations in the visual network, and the corticospinal tract and corpus callosum in the sensory-motor network. The TW-FC maps highlight the white matter connections associated with a given FC network, and their intensity in a given voxel reflects the functional connectivity of the part of the nodes of the network linked by the structural connections traversing that voxel. They therefore contain a different (and novel) image contrast from that of the images used to generate them. The results shown in this study illustrate the potential of the TW-FC approach for the fusion of structural and functional data into a single quantitative image. This technique could therefore have important applications in neuroscience and neurology, such as for voxel-based comparison studies. Copyright © 2012 Elsevier Inc. All rights reserved.
Contreras-Rodríguez, Oren; Albein-Urios, Natalia; Vilar-López, Raquel; Perales, Jose C; Martínez-Gonzalez, Jose M; Fernández-Serrano, Maria J; Lozano-Rojas, Oscar; Clark, Luke; Verdejo-García, Antonio
2016-05-01
Neural biomarkers for the active detrimental effects of cocaine dependence (CD) are lacking. Direct comparisons of brain connectivity in cocaine-targeted networks between CD and behavioural addictions (i.e. pathological gambling, PG) may be informative. This study therefore contrasted the resting-state functional connectivity networks of 20 individuals with CD, 19 individuals with PG and 21 healthy individuals (controls). Study groups were assessed to rule out psychiatric co-morbidities (except alcohol abuse and nicotine dependence) and current substance use or gambling (except PG). We first examined global connectivity differences in the corticolimbic reward network and then utilized seed-based analyses to characterize the connectivity of regions displaying between-group differences. We examined the relationships between seed-based connectivity and trait impulsivity and cocaine severity. CD compared with PG displayed increased global functional connectivity in a large-scale ventral corticostriatal network involving the orbitofrontal cortex, caudate, thalamus and amygdala. Seed-based analyses showed that CD compared with PG exhibited enhanced connectivity between the orbitofrontal and subgenual cingulate cortices and between caudate and lateral prefrontal cortex, which are involved in representing the value of decision-making feedback. CD and PG compared with controls showed overlapping connectivity changes between the orbitofrontal and dorsomedial prefrontal cortices and between amygdala and insula, which are involved in stimulus-outcome learning. Orbitofrontal-subgenual cingulate cortical connectivity correlated with impulsivity and caudate/amygdala connectivity correlated with cocaine severity. We conclude that CD is linked to enhanced connectivity in a large-scale ventral corticostriatal-amygdala network that is relevant to decision making and likely to reflect an active cocaine detrimental effect. © 2015 Society for the Study of Addiction.
Smagula, Stephen F; Karim, Helmet T; Rangarajan, Anusha; Santos, Fernando Pasquini; Wood, Sossena C; Santini, Tales; Jakicic, John M; Reynolds, Charles F; Cameron, Judy L; Vallejo, Abbe N; Butters, Meryl A; Rosano, Caterina; Ibrahim, Tamer S; Erickson, Kirk I; Aizenstein, Howard J
2018-06-01
Hippocampal hyperactivation marks preclinical dementia pathophysiology, potentially due to differences in the connectivity of specific medial temporal lobe structures. Our aims were to characterize the resting-state functional connectivity of medial temporal lobe sub-structures in older adults, and evaluate whether specific substructural (rather than global) functional connectivity relates to memory function. In 15 adults (mean age: 69 years), we evaluated the resting state functional connectivity of medial temporal lobe substructures: dentate/Cornu Ammonis (CA) 4, CA1, CA2/3, subiculum, the molecular layer, entorhinal cortex, and parahippocampus. We used 7-Tesla susceptibility weighted imaging and magnetization-prepared rapid gradient echo sequences to segment substructures of the hippocampus, which were used as structural seeds for examining functional connectivity in a resting BOLD sequence. We then assessed correlations between functional connectivity with memory performance (short and long delay free recall on the California Verbal Learning Test [CVLT]). All the seed regions had significant connectivity within the temporal lobe (including the fusiform, temporal, and lingual gyri). The left CA1 was the only seed with significant functional connectivity to the amygdala. The left entorhinal cortex was the only seed to have significant functional connectivity with frontal cortex (anterior cingulate and superior frontal gyrus). Only higher left dentate-left lingual connectivity was associated with poorer CVLT performance (Spearman r = -0.81, p = 0.0003, Benjamini-Hochberg false discovery rate: 0.01) after multiple comparison correction. Rather than global hyper-connectivity of the medial temporal lobe, left dentate-lingual connectivity may provide a specific assay of medial temporal lobe hyper-connectivity relevant to memory in aging. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Lee, Seul; Polimeni, Jonathan R; Price, Collin M; Edlow, Brian L; McNab, Jennifer A
2018-06-01
Resting-state functional magnetic resonance imaging (RS-FMRI) has been widely used to map brain functional connectivity, but it is unclear how to probe connectivity within and around lesions. In this study, we characterize RS-FMRI signal time course properties and evaluate different seed placements within and around hemorrhagic traumatic axonal injury (hTAI) lesions. RS-FMRI was performed on a 7 Tesla scanner in a patient who recovered consciousness after traumatic coma and in three healthy controls. Eleven lesions in the patient were characterized in terms of (1) temporal signal-to-noise ratio (tSNR); (2) physiological noise, through comparison of noise regressors derived from the white matter (WM), cerebrospinal fluid (CSF), and gray matter (GM); and (3) seed-based functional connectivity. Temporal SNR at the center of the lesions was 38.3% and 74.1% lower compared with the same region in the contralesional hemisphere of the patient and in the ipsilesional hemispheres of the controls, respectively. Within the lesions, WM noise was more prominent than CSF and GM noise. Lesional seeds did not produce discernable networks, but seeds in the contralesional hemisphere revealed networks whose nodes appeared to be shifted or obscured due to overlapping or nearby lesions. Single-voxel seed analysis demonstrated that placing a seed within a lesion's periphery was necessary to identify networks associated with the lesion region. These findings provide evidence of resting-state network changes in the human brain after recovery from traumatic coma. Furthermore, we show that seed placement within a lesion's periphery or in the contralesional hemisphere may be necessary for network identification in patients with hTAI.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Jin; Lu, Chun-Ming; Biswal, Bharat B.; Zang, Yu-Feng; Peng, Dan-Lin; Zhu, Chao-Zhe
2010-07-01
Functional connectivity has become one of the important approaches to understanding the functional organization of the human brain. Recently, functional near-infrared spectroscopy (fNIRS) was demonstrated as a feasible method to study resting-state functional connectivity (RSFC) in the sensory and motor systems. However, whether such fNIRS-based RSFC can be revealed in high-level and complex functional systems remains unknown. In the present study, the feasibility of such an approach is tested on the language system, of which the neural substrates have been well documented in the literature. After determination of a seed channel by a language localizer task, the correlation strength between the low frequency fluctuations of the fNIRS signal at the seed channel and those at all other channels is used to evaluate the language system RSFC. Our results show a significant RSFC between the left inferior frontal cortex and superior temporal cortex, components both associated with dominant language regions. Moreover, the RSFC map demonstrates left lateralization of the language system. In conclusion, the present study successfully utilized fNIRS-based RSFC to study a complex and high-level neural system, and provides further evidence for the validity of the fNIRS-based RSFC approach.
Verly, Marjolein; Verhoeven, Judith; Zink, Inge; Mantini, Dante; Peeters, Ronald; Deprez, Sabine; Emsell, Louise; Boets, Bart; Noens, Ilse; Steyaert, Jean; Lagae, Lieven; De Cock, Paul; Rommel, Nathalie; Sunaert, Stefan
2014-01-01
The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19) and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI. PMID:24567909
van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A
2016-01-01
The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development. Copyright © 2015. Published by Elsevier Inc.
Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M
2017-12-01
Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.
Koch, Saskia B J; van Zuiden, Mirjam; Nawijn, Laura; Frijling, Jessie L; Veltman, Dick J; Olff, Miranda
2016-07-01
About 10% of trauma-exposed individuals develop PTSD. Although a growing number of studies have investigated resting-state abnormalities in PTSD, inconsistent results suggest a need for a meta-analysis and a systematic review. We conducted a systematic literature search in four online databases using keywords for PTSD, functional neuroimaging, and resting-state. In total, 23 studies matched our eligibility criteria. For the meta-analysis, we included 14 whole-brain resting-state studies, reporting data on 663 participants (298 PTSD patients and 365 controls). We used the activation likelihood estimation approach to identify concurrence of whole-brain hypo- and hyperactivations in PTSD patients during rest. Seed-based studies could not be included in the quantitative meta-analysis. Therefore, a separate qualitative systematic review was conducted on nine seed-based functional connectivity studies. The meta-analysis showed consistent hyperactivity in the ventral anterior cingulate cortex and the parahippocampus/amygdala, but hypoactivity in the (posterior) insula, cerebellar pyramis and middle frontal gyrus in PTSD patients, compared to healthy controls. Partly concordant with these findings, the systematic review on seed-based functional connectivity studies showed enhanced salience network (SN) connectivity, but decreased default mode network (DMN) connectivity in PTSD. Combined, these altered resting-state connectivity and activity patterns could represent neurobiological correlates of increased salience processing and hypervigilance (SN), at the cost of awareness of internal thoughts and autobiographical memory (DMN) in PTSD. However, several discrepancies between findings of the meta-analysis and systematic review were observed, stressing the need for future studies on resting-state abnormalities in PTSD patients. © 2016 Wiley Periodicals, Inc.
Wetherill, Reagan R.; Fang, Zhuo; Jagannathan, Kanchana; Childress, Anna Rose; Rao, Hengyi; Franklin, Teresa R.
2015-01-01
Background Resting-state functional connectivity is a noninvasive, neuroimaging method for assessing neural network function. Altered functional connectivity among regions of the default-mode network have been associated with both nicotine and cannabis use; however, less is known about co-occurring cannabis and tobacco use. Methods We used posterior cingulate cortex (PCC) seed-based resting-state functional connectivity analyses to examine default mode network (DMN) connectivity strength differences between four groups: 1) individuals diagnosed with cannabis dependence who do not smoke tobacco (n=19; ages 20–50), 2) cannabis-dependent individuals who smoke tobacco (n=23, ages 21–52), 3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (n=24, ages 21–57), and 4) cannabis- and tobacco-naïve healthy controls (n=21, ages 21–50), controlling for age, sex, and alcohol use. We also explored associations between connectivity strength and measures of cannabis and tobacco use. Results PCC seed-based analyses identified the core nodes of the DMN (i.e., PCC, medial prefrontal cortex, inferior parietal cortex, and temporal cortex). In general, the cannabis-dependent, nicotine-dependent, and co-occurring use groups showed lower DMN connectivity strengths than controls, with unique group differences in connectivity strength between the PCC and the cerebellum, medial prefrontal cortex, parahippocampus, and anterior insula. In cannabis-dependent individuals, PCC-right anterior insula connectivity strength correlated with duration of cannabis use. Conclusions This study extends previous research that independently examined the differences in resting-state functional connectivity among individuals who smoke cannabis and tobacco by including an examination of co-occurring cannabis and tobacco use and provides further evidence that cannabis and tobacco exposure is associated with alterations in DMN connectivity. PMID:26094186
Gay, Charles W; Robinson, Michael E; Lai, Song; O'Shea, Andrew; Craggs, Jason G; Price, Donald D; Staud, Roland
2016-02-01
Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue.
Gay, Charles W.; Robinson, Michael E.; Lai, Song; O'Shea, Andrew; Craggs, Jason G.; Price, Donald D.
2016-01-01
Abstract Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue. PMID:26449441
Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xiao, Changqing; Zhao, Jingping
2015-11-26
Dysconnectivity hypothesis posits that schizophrenia is a disorder with dysconnectivity of the cortico-cerebellar-thalamic-cortical circuit (CCTCC). However, it remains unclear to the changes of the cerebral connectivity with the cerebellum in schizophrenia patients and unaffected siblings. Forty-nine patients with first-episode, drug-naive schizophrenia patients, 46 unaffected siblings of schizophrenia patients and 46 healthy controls participated in the study. Seed-based resting-state functional connectivity approach was employed to analyze the data. Compared with the controls, the patients and the siblings share increased default-mode network (DMN) seed - right Crus II connectivity. The patients have decreased right dorsal attention network (DAN) seed - bilateral cerebellum 4,5 connectivity relative to the controls. By contrast, the siblings exhibit increased FC between the right DAN seed and the right cerebellum 6 and right cerebellum 4,5 compared to the controls. No other abnormal connectivities (executive control network and salience network) are observed in the patients/siblings relative to the controls. There are no correlations between abnormal cerebellar-cerebral connectivities and clinical variables. Cerebellar-cerebral connectivity of brain networks within the cerebellum are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings. Increased DMN connectivity with the cerebellum may serve as potential endophenotype for schizophrenia.
Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xiao, Changqing; Zhao, Jingping
2015-01-01
Dysconnectivity hypothesis posits that schizophrenia is a disorder with dysconnectivity of the cortico-cerebellar-thalamic-cortical circuit (CCTCC). However, it remains unclear to the changes of the cerebral connectivity with the cerebellum in schizophrenia patients and unaffected siblings. Forty-nine patients with first-episode, drug-naive schizophrenia patients, 46 unaffected siblings of schizophrenia patients and 46 healthy controls participated in the study. Seed-based resting-state functional connectivity approach was employed to analyze the data. Compared with the controls, the patients and the siblings share increased default-mode network (DMN) seed – right Crus II connectivity. The patients have decreased right dorsal attention network (DAN) seed – bilateral cerebellum 4,5 connectivity relative to the controls. By contrast, the siblings exhibit increased FC between the right DAN seed and the right cerebellum 6 and right cerebellum 4,5 compared to the controls. No other abnormal connectivities (executive control network and salience network) are observed in the patients/siblings relative to the controls. There are no correlations between abnormal cerebellar-cerebral connectivities and clinical variables. Cerebellar-cerebral connectivity of brain networks within the cerebellum are differently affected in first-episode, drug-naive schizophrenia patients and unaffected siblings. Increased DMN connectivity with the cerebellum may serve as potential endophenotype for schizophrenia. PMID:26608842
Functional connectivity mapping of regions associated with self- and other-processing.
Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B
2015-04-01
Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.
Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent
2015-02-28
In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Richards, T L; Grabowski, T J; Boord, P; Yagle, K; Askren, M; Mestre, Z; Robinson, P; Welker, O; Gulliford, D; Nagy, W; Berninger, V
2015-01-01
Based on comprehensive testing and educational history, children in grades 4-9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI-fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter-gray matter correlations. Of clinical relevance, brain differences were observed in dysgraphia and dyslexia on written language tasks yoked to their defining behavioral impairments in handwriting and/or in word spelling and on the cognitive mind wandering rest condition and composition planning.
Richards, T.L.; Grabowski, T.J.; Boord, P.; Yagle, K.; Askren, M.; Mestre, Z.; Robinson, P.; Welker, O.; Gulliford, D.; Nagy, W.; Berninger, V.
2015-01-01
Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter correlations. Of clinical relevance, brain differences were observed in dysgraphia and dyslexia on written language tasks yoked to their defining behavioral impairments in handwriting and/or in word spelling and on the cognitive mind wandering rest condition and composition planning. PMID:26106566
Resting-State Functional Connectivity Differentiates Anxious Apprehension and Anxious Arousal
Burdwood, Erin N.; Infantolino, Zachary P.; Crocker, Laura D.; Spielberg, Jeffrey M.; Banich, Marie T.; Miller, Gregory A.; Heller, Wendy
2016-01-01
Brain regions in the default mode network (DMN) display greater functional connectivity at rest or during self-referential processing than during goal-directed tasks. The present study assessed resting-state connectivity as a function of anxious apprehension and anxious arousal, independent of depressive symptoms, in order to understand how these dimensions disrupt cognition. Whole-brain, seed-based analyses indicated differences between anxious apprehension and anxious arousal in DMN functional connectivity. Lower connectivity associated with higher anxious apprehension suggests decreased adaptive, inner-focused thought processes, whereas higher connectivity at higher levels of anxious arousal may reflect elevated monitoring of physiological responses to threat. These findings further the conceptualization of anxious apprehension and anxious arousal as distinct psychological dimensions with distinct neural instantiations. PMID:27406406
Multimodal connectivity of motor learning-related dorsal premotor cortex.
Hardwick, Robert M; Lesage, Elise; Eickhoff, Claudia R; Clos, Mareike; Fox, Peter; Eickhoff, Simon B
2015-12-01
The dorsal premotor cortex (dPMC) is a key region for motor learning and sensorimotor integration, yet we have limited understanding of its functional interactions with other regions. Previous work has started to examine functional connectivity in several brain areas using resting state functional connectivity (RSFC) and meta-analytical connectivity modelling (MACM). More recently, structural covariance (SC) has been proposed as a technique that may also allow delineation of functional connectivity. Here, we applied these three approaches to provide a comprehensive characterization of functional connectivity with a seed in the left dPMC that a previous meta-analysis of functional neuroimaging studies has identified as playing a key role in motor learning. Using data from two sources (the Rockland sample, containing resting state data and anatomical scans from 132 participants, and the BrainMap database, which contains peak activation foci from over 10,000 experiments), we conducted independent whole-brain functional connectivity mapping analyses of a dPMC seed. RSFC and MACM revealed similar connectivity maps spanning prefrontal, premotor, and parietal regions, while the SC map identified more widespread frontal regions. Analyses indicated a relatively consistent pattern of functional connectivity between RSFC and MACM that was distinct from that identified by SC. Notably, results indicate that the seed is functionally connected to areas involved in visuomotor control and executive functions, suggesting that the dPMC acts as an interface between motor control and cognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders
Woodward, Neil D.; Heckers, Stephan
2015-01-01
Objective There is considerable evidence that the thalamus is abnormal in psychotic disorders. Resting-state fMRI (RS-fMRI) has revealed an intriguing pattern of thalamic dysconnectivity in psychosis characterized by reduced prefrontal cortex (PFC) connectivity and increased somatomotor-thalamic connectivity. However, critical knowledge gaps remain with respect to the onset, anatomical specificity, and clinical correlates of thalamic dysconnectivity in psychosis. Method RS-fMRI was collected on 105 healthy subjects and 148 individuals with psychosis, including 53 early stage psychosis patients. Using all 253 subjects, the thalamus was parceled into functional regions-of-interest (ROIs) on the basis of connectivity with six a-priori defined cortical ROIs covering most of the cortical mantle. Functional connectivity between each cortical ROI and its corresponding thalamic ROI was quantified and compared across groups. Significant differences in the ROI-to-ROI analysis were followed up with voxel-wise seed-based analyses to further localize thalamic dysconnectivity. Results ROI analysis revealed reduced PFC-thalamic connectivity and increased somatomotor-thalamic connectivity in both chronic and early stages psychosis patients. PFC hypo-connectivity and motor cortex hyper-connectivity correlated in patients suggesting they result from a common pathophysiological mechanism. Seed-based analyses revealed thalamic hypo-connectivity in psychosis localized to dorsolateral PFC, medial PFC, and cerebellar areas of the well-described ‘executive control’ network. Across all subjects, thalamic connectivity with areas of the fronto-parietal network correlated with cognitive functioning, including verbal learning and memory. Conclusions Thalamocortical dysconnectivity is present in both chronic and early stages of psychosis, includes reduced thalamic connectivity with the executive control network, and is related to cognitive impairment. PMID:26248537
Zhang, Yanzhen; Mei, Wei; Zhang, John X; Wu, Qiulin; Zhang, Wei
2016-09-01
The insula is a region that integrates interoception and drug urges, but little is known about its role in behavioral addiction such as internet addiction. We investigated insula-based functional connectivity in participants with internet gaming disorder (IGD) and healthy controls (HC) using resting-state functional MRI. The right and left insula subregions (posterior, ventroanterior, and dorsoanterior) were used as seed regions in a connectivity analysis. Compared with the HC group, the IGD group showed decreased functional connectivity between left posterior insula and bilateral supplementary motor area and middle cingulated cortex, between right posterior insula and right superior frontal gyrus, and decreased functional integration between insular subregions. The finding of reduced functional connectivity between the interoception and the motor/executive control regions is interpreted to reflect reduced ability to inhibit motor responses to internet gaming or diminished executive control over craving for internet gaming in IGD. The results support the hypothesis that IGD is associated with altered insula-based network, similar to substance addiction such as smoking.
Ogawa, Takeshi; Aihara, Takatsugu; Shimokawa, Takeaki; Yamashita, Okito
2018-04-24
Creative insight occurs with an "Aha!" experience when solving a difficult problem. Here, we investigated large-scale networks associated with insight problem solving. We recruited 232 healthy participants aged 21-69 years old. Participants completed a magnetic resonance imaging study (MRI; structural imaging and a 10 min resting-state functional MRI) and an insight test battery (ITB) consisting of written questionnaires (matchstick arithmetic task, remote associates test, and insight problem solving task). To identify the resting-state functional connectivity (RSFC) associated with individual creative insight, we conducted an exploratory voxel-based morphometry (VBM)-constrained RSFC analysis. We identified positive correlations between ITB score and grey matter volume (GMV) in the right insula and middle cingulate cortex/precuneus, and a negative correlation between ITB score and GMV in the left cerebellum crus 1 and right supplementary motor area. We applied seed-based RSFC analysis to whole brain voxels using the seeds obtained from the VBM and identified insight-positive/negative connections, i.e. a positive/negative correlation between the ITB score and individual RSFCs between two brain regions. Insight-specific connections included motor-related regions whereas creative-common connections included a default mode network. Our results indicate that creative insight requires a coupling of multiple networks, such as the default mode, semantic and cerebral-cerebellum networks.
Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan
2017-12-01
Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.
A left cerebellar pathway mediates language in prematurely-born young adults
Constable, R. Todd; Vohr, Betty R.; Scheinost, Dustin; Benjamin, Jennifer R.; Fulbright, Robert K.; Lacadie, Cheryl; Schneider, Karen C.; Katz, Karol H.; Zhang, Heping; Papademetris, Xenophon; Ment, Laura R.
2012-01-01
Preterm (PT) subjects are at risk for developmental delay, and task-based studies suggest that developmental disorders may be due to alterations in neural connectivity. Since emerging data imply the importance of right cerebellar function for language acquisition in typical development, we hypothesized that PT subjects would have alternate areas of cerebellar connectivity, and that these areas would be responsible for differences in cognitive outcomes between PT subjects and term controls at age 20 years. Nineteen PT and 19 term control young adults were prospectively studied using resting-state functional MRI (fMRI) to create voxel-based contrast maps reflecting the functional connectivity of each tissue element in the grey matter through analysis of the intrinsic connectivity contrast degree (ICC-d). Left cerebellar ICC-d differences between subjects identified a region of interest that was used for subsequent seed-based connectivity analyses. Subjects underwent standardized language testing, and correlations with cognitive outcomes were assessed. There were no differences in gender, hand preference, maternal education, age at study, or Peabody Picture Vocabulary Test (PPVT) scores. Functional connectivity (FcMRI) demonstrated increased tissue connectivity in the biventer, simple and quadrangular lobules of the L cerebellum (p<0.05) in PTs compared to term controls; seed-based analyses from these regions demonstrated alterations in connectivity from L cerebellum to both R and L inferior frontal gyri (IFG) in PTs compared to term controls. For PTs but not term controls, there were significant positive correlations between these connections and PPVT scores (R IFG: r=0.555, p=0.01; L IFG: r=0.454, p=0.05), as well as Verbal Comprehension Index (VCI) scores (R IFG: r=0.472, p=0.04). These data suggest the presence of a left cerebellar language circuit in PT subjects at young adulthood. These findings may represent either a delay in maturation or the engagement of alternative neural pathways for language in the developing PT brain. PMID:22982585
Resting-state functional connectivity differentiates anxious apprehension and anxious arousal.
Burdwood, Erin N; Infantolino, Zachary P; Crocker, Laura D; Spielberg, Jeffrey M; Banich, Marie T; Miller, Gregory A; Heller, Wendy
2016-10-01
Brain regions in the default mode network (DMN) display greater functional connectivity at rest or during self-referential processing than during goal-directed tasks. The present study assessed resting-state connectivity as a function of anxious apprehension and anxious arousal, independent of depressive symptoms, in order to understand how these dimensions disrupt cognition. Whole-brain, seed-based analyses indicated differences between anxious apprehension and anxious arousal in DMN functional connectivity. Lower connectivity associated with higher anxious apprehension suggests decreased adaptive, inner-focused thought processes, whereas higher connectivity at higher levels of anxious arousal may reflect elevated monitoring of physiological responses to threat. These findings further the conceptualization of anxious apprehension and anxious arousal as distinct psychological dimensions with distinct neural instantiations. © 2016 Society for Psychophysiological Research.
Differential reward network functional connectivity in cannabis dependent and non-dependent users☆
Filbey, Francesca M.; Dunlop, Joseph
2015-01-01
Background Emergent studies show that similar to other substances of abuse, cue-reactivity to cannabis is also associated with neural response in the brain’s reward pathway (Filbey et al., 2009). However, the inter-relatedness of brain regions during cue-reactivity in cannabis users remains unknown. Methods In this study, we conducted a series of investigations to determine functional connectivity during cue-reactivity in 71 cannabis users. First, we used psychophysiological interaction (PPI) analysis to examine coherent neural response to cannabis cues. Second, we evaluated whether these patterns of network functional connectivity differentiated dependent and non-dependent users. Finally, as an exploratory analysis, we determined the directionality of these connections via Granger connectivity analyses. Results PPI analyses showed reward network functional connectivity with the nucleus accumbens (NAc) seed region during cue exposure. Between-group contrasts found differential effects of dependence status. Dependent users (N = 31) had greater functional connectivity with amygdala and anterior cingulate gyrus (ACG) seeds while the non-dependent users (N = 24) had greater functional connectivity with the NAc, orbitofrontal cortex (OFC) and hippocampus seeds. Granger analyses showed that hippocampal and ACG activation preceded neural response in reward areas. Conclusions Both PPI and Granger analyses demonstrated strong functional coherence in reward regions during exposure to cannabis cues in current cannabis users. Functional connectivity (but not regional activation) in the reward network differentiated dependent from non-dependent cannabis users. Our findings suggest that repeated cannabis exposure causes observable changes in functional connectivity in the reward network and should be considered in intervention strategies. PMID:24838032
King, Anthony P; Block, Stefanie R; Sripada, Rebecca K; Rauch, Sheila; Giardino, Nicholas; Favorite, Todd; Angstadt, Michael; Kessler, Daniel; Welsh, Robert; Liberzon, Israel
2016-04-01
Recent studies suggest that mindfulness may be an effective component for posttraumatic stress disorder (PTSD) treatment. Mindfulness involves practice in volitional shifting of attention from "mind wandering" to present-moment attention to sensations, and cultivating acceptance. We examined potential neural correlates of mindfulness training using a novel group therapy (mindfulness-based exposure therapy (MBET)) in combat veterans with PTSD deployed to Afghanistan (OEF) and/or Iraq (OIF). Twenty-three male OEF/OIF combat veterans with PTSD were treated with a mindfulness-based intervention (N = 14) or an active control group therapy (present-centered group therapy (PCGT), N = 9). Pre-post therapy functional magnetic resonance imaging (fMRI, 3 T) examined resting-state functional connectivity (rsFC) in default mode network (DMN) using posterior cingulate cortex (PCC) and ventral medial prefrontal cortex (vmPFC) seeds, and salience network (SN) with anatomical amygdala seeds. PTSD symptoms were assessed at pre- and posttherapy with Clinician Administered PTSD Scale (CAPS). Patients treated with MBET had reduced PTSD symptoms (effect size d = 0.92) but effect was not significantly different from PCGT (d = 0.46). Increased DMN rsFC (PCC seed) with dorsolateral dorsolateral prefrontal cortex (DLPFC) regions and dorsal anterior cingulate cortex (ACC) regions associated with executive control was seen following MBET. A group × time interaction found MBET showed increased connectivity with DLPFC and dorsal ACC following therapy; PCC-DLPFC connectivity was correlated with improvement in PTSD avoidant and hyperarousal symptoms. Increased connectivity between DMN and executive control regions following mindfulness training could underlie increased capacity for volitional shifting of attention. The increased PCC-DLPFC rsFC following MBET was related to PTSD symptom improvement, pointing to a potential therapeutic mechanism of mindfulness-based therapies. © 2016 Wiley Periodicals, Inc.
Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix
2016-01-01
Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the neural populations at the seed-point, suggestive of greater directional coupling from the seed out to the site electrodes. PMID:26747745
Temporal reliability and lateralization of the resting-state language network.
Zhu, Linlin; Fan, Yang; Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong
2014-01-01
The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability.
Temporal Reliability and Lateralization of the Resting-State Language Network
Zou, Qihong; Wang, Jue; Gao, Jia-Hong; Niu, Zhendong
2014-01-01
The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability. PMID:24475058
Hierarchical multivariate covariance analysis of metabolic connectivity.
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-12-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).
Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R; Setsompop, Kawin; Brown, Emery N; Hämäläinen, Matti S; Rosen, Bruce R; Wald, Lawrence L
2016-06-01
Our aim was to map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we used the increased contrast-to-noise ratio of 7-Tesla fMRI compared with 3 Tesla and time-efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1-mm isotropic nominal resolution) while maintaining a short repetition time (2.5 s). The delineated Pearson's correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor, and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson's disease, and other motor disorders.
Lou, William; Peck, Kyung K; Brennan, Nicole; Mallela, Arka; Holodny, Andrei
2017-07-05
An abundance of evidence points to the role of a presupplementary motor area (pre-SMA) in human language. This study explores the pre-SMA resting state connectivity network and the nature of its connections to known language areas. We tested the hypothesis that by seeding the pre-SMA, one would be able to establish language laterality to known cortical and subcortical language areas. We analyzed data from 30 right-handed healthy controls and performed the resting state functional MRI. A seed-based analysis using a manually drawn pre-SMA region of interest template was applied. Time-course signals in the pre-SMA region of interest were averaged and cross-correlated to every voxel in the brain. Results show that the pre-SMA has significant left-lateralized functional connectivity to the pars opercularis within Broca's area. Among cortical regions, pre-SMA functional connectivity is strongest to the pars opercularis In addition, pre-SMA connectivity was shown to exist to other cortical language-association regions, including Wernicke's Area, supramarginal gyri, angular gyri, and middle frontal gyri. Among subcortical areas, considerable left-lateralized functional connectivity occurs to the caudate and thalamus, whereas cerebellar subregions show right lateralization. The current study shows that the pre-SMA most strongly connects to the pars opercularis within Broca's area and that cortical connections to language areas are left lateralized among a sample of right-handed patients. We provide resting state functional MRI evidence that the functional connectivity of the pre-SMA is involved in semantic language processing and that this identification may be useful for establishing language laterality in preoperative neurosurgical planning.
Kaiser, Roselinde H.; Andrews-Hanna, Jessica R.; Wager, Tor D.; Pizzagalli, Diego A.
2015-01-01
IMPORTANCE Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. OBJECTIVE To investigate network dysfunction in MDD through the first meta-analysis of rsFC studies. DATA SOURCES Seed-based voxel-wise rsFC studies comparing MDD with healthy individuals (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web-of-Science, EMBASE), and authors contacted for additional data. STUDY SELECTION Twenty-seven datasets from 25 publications (556 MDD adults/teens; 518 controls) were included in the meta-analysis. DATA EXTRACTION AND SYNTHESIS Coordinates of seed regions-of-interest and between-group effects were extracted. Seeds were categorized into “seed-networks” by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive, or reduced negative, connectivity) or hypoconnectivity (increased negative, or reduced positive, connectivity) with each seed-network. RESULTS MDD was characterized by hypoconnectivity within the frontoparietal network (FN), a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network (DAN) involved in attending to the external environment. MDD was also associated with hyperconnectivity within the default network (DN), a network believed to support internally-oriented and self-referential thought, and hyperconnectivity between FN control systems and regions of DN. Finally, MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. CONCLUSIONS AND RELEVANCE Reduced connectivity within frontoparietal control systems, and imbalanced connectivity between control systems and networks involved in internal- or external-attention, may reflect depressive biases towards internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression. PMID:25785575
Altered functional connectivity to stressful stimuli in prenatally cocaine-exposed adolescents.
Zakiniaeiz, Yasmin; Yip, Sarah W; Balodis, Iris M; Lacadie, Cheryl M; Scheinost, Dustin; Constable, R Todd; Mayes, Linda C; Sinha, Rajita; Potenza, Marc N
2017-11-01
Prenatal cocaine exposure (PCE) is linked to addiction and obesity vulnerability. Neural responses to stressful and appetitive cues in adolescents with PCE versus those without have been differentially linked to substance-use initiation. However, no prior studies have assessed cue-reactivity responses among PCE adolescents using a connectivity-based approach. Twenty-two PCE and 22 non-prenatally drug-exposed (NDE) age-, sex-, IQ- and BMI-matched adolescents participated in individualized guided imagery with appetitive (favorite-food), stressful and neutral-relaxing cue scripts during functional magnetic resonance imaging. Subjective favorite-food craving scores were collected before and after script exposure. A data-driven voxel-wise intrinsic connectivity distribution analysis was used to identify between-group differences and examine relationships with craving scores. A group-by-cue interaction effect identified a parietal lobe cluster where PCE versus NDE adolescents showed less connectivity during stressful and more connectivity during neutral-relaxing conditions. Follow-up seed-based connectivity analyses revealed that, among PCE adolescents, the parietal seed was positively connected to inferior parietal and sensory areas and negatively connected to corticolimbic during both stress and neutral-relaxing conditions. For NDE, greater parietal connectivity to parietal, cingulate and sensory areas and lesser parietal connectivity to medial prefrontal areas were found during stress compared to neutral-relaxing cueing. Craving scores inversely correlated with corticolimbic connectivity in PCE, but not NDE adolescents, during the favorite-food condition. Findings from this first data-driven intrinsic connectivity analysis of PCE influences on adolescent brain function indicate differences relating to PCE status and craving. These findings provide insight into the developmental impact of in utero drug exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Intensity-based masking: A tool to improve functional connectivity results of resting-state fMRI.
Peer, Michael; Abboud, Sami; Hertz, Uri; Amedi, Amir; Arzy, Shahar
2016-07-01
Seed-based functional connectivity (FC) of resting-state functional MRI data is a widely used methodology, enabling the identification of functional brain networks in health and disease. Based on signal correlations across the brain, FC measures are highly sensitive to noise. A somewhat neglected source of noise is the fMRI signal attenuation found in cortical regions in close vicinity to sinuses and air cavities, mainly in the orbitofrontal, anterior frontal and inferior temporal cortices. BOLD signal recorded at these regions suffers from dropout due to susceptibility artifacts, resulting in an attenuated signal with reduced signal-to-noise ratio in as many as 10% of cortical voxels. Nevertheless, signal attenuation is largely overlooked during FC analysis. Here we first demonstrate that signal attenuation can significantly influence FC measures by introducing false functional correlations and diminishing existing correlations between brain regions. We then propose a method for the detection and removal of the attenuated signal ("intensity-based masking") by fitting a Gaussian-based model to the signal intensity distribution and calculating an intensity threshold tailored per subject. Finally, we apply our method on real-world data, showing that it diminishes false correlations caused by signal dropout, and significantly improves the ability to detect functional networks in single subjects. Furthermore, we show that our method increases inter-subject similarity in FC, enabling reliable distinction of different functional networks. We propose to include the intensity-based masking method as a common practice in the pre-processing of seed-based functional connectivity analysis, and provide software tools for the computation of intensity-based masks on fMRI data. Hum Brain Mapp 37:2407-2418, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian
2015-04-01
Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. Copyright © 2015 Elsevier Inc. All rights reserved.
Pool, Eva-Maria; Rehme, Anne K.; Eickhoff, Simon B.; Fink, Gereon R.; Grefkes, Christian
2016-01-01
Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. PMID:25613438
Intrinsic Resting-State Functional Connectivity in the Human Spinal Cord at 3.0 T.
San Emeterio Nateras, Oscar; Yu, Fang; Muir, Eric R; Bazan, Carlos; Franklin, Crystal G; Li, Wei; Li, Jinqi; Lancaster, Jack L; Duong, Timothy Q
2016-04-01
To apply resting-state functional magnetic resonance (MR) imaging to map functional connectivity of the human spinal cord. Studies were performed in nine self-declared healthy volunteers with informed consent and institutional review board approval. Resting-state functional MR imaging was performed to map functional connectivity of the human cervical spinal cord from C1 to C4 at 1 × 1 × 3-mm resolution with a 3.0-T clinical MR imaging unit. Independent component analysis (ICA) was performed to derive resting-state functional MR imaging z-score maps rendered on two-dimensional and three-dimensional images. Seed-based analysis was performed for cross validation with ICA networks by using Pearson correlation. Reproducibility analysis of resting-state functional MR imaging maps from four repeated trials in a single participant yielded a mean z score of 6 ± 1 (P < .0001). The centroid coordinates across the four trials deviated by 2 in-plane voxels ± 2 mm (standard deviation) and up to one adjacent image section ± 3 mm. ICA of group resting-state functional MR imaging data revealed prominent functional connectivity patterns within the spinal cord gray matter. There were statistically significant (z score > 3, P < .001) bilateral, unilateral, and intersegmental correlations in the ventral horns, dorsal horns, and central spinal cord gray matter. Three-dimensional surface rendering provided visualization of these components along the length of the spinal cord. Seed-based analysis showed that many ICA components exhibited strong and significant (P < .05) correlations, corroborating the ICA results. Resting-state functional MR imaging connectivity networks are qualitatively consistent with known neuroanatomic and functional structures in the spinal cord. Resting-state functional MR imaging of the human cervical spinal cord with a 3.0-T clinical MR imaging unit and standard MR imaging protocols and hardware reveals prominent functional connectivity patterns within the spinal cord gray matter, consistent with known functional and anatomic layouts of the spinal cord.
Beaty, Roger E.; Benedek, Mathias; Wilkins, Robin W.; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J.; Hodges, Donald A.; Koschutnig, Karl; Neubauer, Aljoscha C.
2014-01-01
The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. PMID:25245940
Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai
2016-09-01
Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.
Wang, Jia; Fu, Kuang; Chen, Lei; Duan, Xujun; Guo, Xiaonan; Chen, Heng; Wu, Qiong; Xia, Wei; Wu, Lijie; Chen, Huafu
2017-01-01
Autism spectrum disorder (ASD) has been widely recognized as a complex neurodevelopmental disorder. A large number of neuroimaging studies suggest abnormalities in brain structure and function of patients with ASD, but there is still no consistent conclusion. We sought to investigate both of the structural and functional brain changes in 3-7-year-old children with ASD compared with typically developing controls (TDs), and to assess whether these alterations are associated with autistic behavioral symptoms. Firstly, we applied an optimized method of voxel-based morphometry (VBM) analysis on structural magnetic resonance imaging (sMRI) data to assess the differences of gray matter volume (GMV) between 31 autistic boys aged 3-7 and 31 age- and handness-matched male TDs. Secondly, we used clusters with between-group differences as seed regions to generate intrinsic functional connectivity maps based on resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) in order to evaluate the functional impairments induced by structural alterations. Brain-behavior correlations were assessed among GMV, functional connectivity and symptom severity in children with ASD. VBM analyses revealed increased GMV in left superior temporal gyrus (STG) and left postcentral gyrus (PCG) in ASD children, comparing with TDs. Using left PCG as a seed region, ASD children displayed significantly higher positive connectivity with right angular gyrus (AG) and greater negative connectivity with right superior parietal gyrus (SPG) and right superior occipital gyrus (SOG), which were associated with the severity of symptoms in social interaction, communication and self-care ability. We suggest that stronger functional connectivity between left PCG and right AG, SPG, and SOG detected in young boys with ASD may serve as important indicators of disease severity. Our study provided preliminary functional evidence that may underlie impaired higher-order multisensory integration in ASD children.
Wang, Lubin; Zou, Feng; Shao, Yongcong; Ye, Enmao; Jin, Xiao; Tan, Shuwen; Hu, Dewen; Yang, Zheng
2014-12-01
The default mode network (DMN) plays an important role in the physiopathology of schizophrenia. Previous studies have suggested that the cerebellum participates in higher-order cognitive networks such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities in schizophrenia has yet to be established. In this study, we investigated cerebellar functional connectivity differences between 60 patients with schizophrenia and 60 healthy controls from a public resting-state fMRI database. Seed-based correlation analysis was performed by using seeds from the left Crus I, right Crus I and Lobule IX, which have previously been identified as being involved in the DMN. Our results revealed that, compared with the healthy controls, the patients showed significantly reduced cerebellar functional connectivity with the thalamus and several frontal regions including the middle frontal gyrus, anterior cingulate cortex, and supplementary motor area. Moreover, the positive correlations between the strength of frontocerebellar and thalamocerebellar functional connectivity observed in the healthy subjects were diminished in the patients. Our findings implicate disruptive changes of the fronto-thalamo-cerebellar circuit in schizophrenia, which may provide further evidence for the "cognitive dysmetria" concept of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.
Multisite Reliability of MR-Based Functional Connectivity
Noble, Stephanie; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Papademetris, Xenophon; McEwen, Sarah C.; Bearden, Carrie E.; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S.; Mirzakhanian, Heline; Cornblatt, Barbara A.; Olvet, Doreen M.; Mathalon, Daniel H.; McGlashan, Thomas H.; Perkins, Diana O.; Belger, Aysenil; Seidman, Larry J.; Thermenos, Heidi; Tsuang, Ming T.; van Erp, Theo G.M.; Walker, Elaine F.; Hamann, Stephan; Woods, Scott W.; Cannon, Tyrone D.; Constable, R. Todd
2016-01-01
Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies. While multisite studies are an efficient way to speed up data collection and increase sample sizes, especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and weaken results. Little data exists on the stability of functional connectivity measurements across sites and sessions. In this study, we assess the influence of site and session on resting state functional connectivity measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex (RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach assessing connectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate connectivity analyses; instead, subject effects dominated relative to the other measured factors. However, summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all connectivity measures, although subject variance was three times the site variance, the residual represented 60–80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5 min scan, reliability across connectivity measures was poor (ICC=0.07–0.17), but increases with increasing scan duration (ICC=0.21–0.36 at 25 min). The limited effects of site and scanner manufacturer support the use of multisite studies, such as NAPLS, as a viable means of collecting data on rare populations and increasing power in univariate functional connectivity studies. However, the results indicate that aggregation of fcMRI data across longer scan durations is necessary to increase the reliability of connectivity estimates at the single-subject level. PMID:27746386
Personality Is Reflected in the Brain's Intrinsic Functional Architecture
Adelstein, Jonathan S.; Shehzad, Zarrar; Mennes, Maarten; DeYoung, Colin G.; Zuo, Xi-Nian; Kelly, Clare; Margulies, Daniel S.; Bloomfield, Aaron; Gray, Jeremy R.; Castellanos, F. Xavier; Milham, Michael P.
2011-01-01
Personality describes persistent human behavioral responses to broad classes of environmental stimuli. Investigating how personality traits are reflected in the brain's functional architecture is challenging, in part due to the difficulty of designing appropriate task probes. Resting-state functional connectivity (RSFC) can detect intrinsic activation patterns without relying on any specific task. Here we use RSFC to investigate the neural correlates of the five-factor personality domains. Based on seed regions placed within two cognitive and affective ‘hubs’ in the brain—the anterior cingulate and precuneus—each domain of personality predicted RSFC with a unique pattern of brain regions. These patterns corresponded with functional subdivisions responsible for cognitive and affective processing such as motivation, empathy and future-oriented thinking. Neuroticism and Extraversion, the two most widely studied of the five constructs, predicted connectivity between seed regions and the dorsomedial prefrontal cortex and lateral paralimbic regions, respectively. These areas are associated with emotional regulation, self-evaluation and reward, consistent with the trait qualities. Personality traits were mostly associated with functional connections that were inconsistently present across participants. This suggests that although a fundamental, core functional architecture is preserved across individuals, variable connections outside of that core encompass the inter-individual differences in personality that motivate diverse responses. PMID:22140453
Nair, Aarti; Treiber, Jeffrey M; Shukla, Dinesh K; Shih, Patricia; Müller, Ralph-Axel
2013-06-01
The thalamus plays crucial roles in the development and mature functioning of numerous sensorimotor, cognitive and attentional circuits. Currently limited evidence suggests that autism spectrum disorder may be associated with thalamic abnormalities, potentially related to sociocommunicative and other impairments in this disorder. We used functional connectivity magnetic resonance imaging and diffusion tensor imaging probabilistic tractography to study the functional and anatomical integrity of thalamo-cortical connectivity in children and adolescents with autism spectrum disorder and matched typically developing children. For connectivity with five cortical seeds (prefontal, parieto-occipital, motor, somatosensory and temporal), we found evidence of both anatomical and functional underconnectivity. The only exception was functional connectivity with the temporal lobe, which was increased in the autism spectrum disorders group, especially in the right hemisphere. However, this effect was robust only in partial correlation analyses (partialling out time series from other cortical seeds), whereas findings from total correlation analyses suggest that temporo-thalamic overconnectivity in the autism group was only relative to the underconnectivity found for other cortical seeds. We also found evidence of microstructural compromise within the thalamic motor parcel, associated with compromise in tracts between thalamus and motor cortex, suggesting that the thalamus may play a role in motor abnormalities reported in previous autism studies. More generally, a number of correlations of diffusion tensor imaging and functional connectivity magnetic resonance imaging measures with diagnostic and neuropsychological scores indicate involvement of abnormal thalamocortical connectivity in sociocommunicative and cognitive impairments in autism spectrum disorder.
Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok
2015-01-07
Late preterm birth is increasingly recognized as a risk factor for cognitive and social deficits. The prefrontal cortex is particularly vulnerable to injury in late prematurity because of its protracted development and extensive cortical connections. Our study examined children born late preterm without access to advanced postnatal care to assess structural and functional connectivity related to the prefrontal cortex. Thirty-eight preadolescents [19 born late preterm (34-36 /7 weeks gestational age) and 19 at term] were recruited from a developing community in Brazil. Participants underwent neuropsychological testing. Individuals underwent three-dimensional T1-weighted, diffusion-weighted, and resting state functional MRI. Probabilistic tractography and functional connectivity analyses were carried out using unilateral seeds combining the medial prefrontal cortex and the anterior cingulate cortex. Late preterm children showed increased functional connectivity within regions of the default mode, salience, and central-executive networks from both right and left frontal cortex seeds. Decreased functional connectivity was observed within the right parahippocampal region from left frontal seeding. Probabilistic tractography showed a pattern of decreased streamlines in frontal white matter pathways and the corpus callosum, but also increased streamlines in the left orbitofrontal white matter and the right frontal white matter when seeded from the right. Late preterm children and term control children scored similarly on neuropsychological testing. Prefrontal cortical connectivity is altered in late prematurity, with hyperconnectivity observed in key resting state networks in the absence of neuropsychological deficits. Abnormal structural connectivity indicated by probabilistic tractography suggests subtle changes in white matter development, implying disruption of normal maturation during the late gestational period.
Straub, J; Metzger, C D; Plener, P L; Koelch, M G; Groen, G; Abler, B
2017-02-01
Current resting state imaging findings support suggestions that the neural signature of depression and therefore also its therapy should be conceptualized as a network disorder rather than a dysfunction of specific brain regions. In this study, we compared neural connectivity of adolescent patients with depression (PAT) and matched healthy controls (HC) and analysed pre-to-post changes of seed-based network connectivities in PAT after participation in a cognitive behavioral group psychotherapy (CBT). 38 adolescents (30 female; 19 patients; 13-18 years) underwent an eyes-closed resting-state scan. PAT were scanned before (pre) and after (post) five sessions of CBT. Resting-state functional connectivity was analysed in a seed-based approach for right-sided amygdala and subgenual anterior cingulate cortex (sgACC). Symptom severity was assessed using the Beck Depression Inventory Revision (BDI-II). Prior to group CBT, between groups amygdala and sgACC connectivity with regions of the default mode network was stronger in the patients group relative to controls. Within the PAT group, a similar pattern significantly decreased after successful CBT. Conversely, seed-based connectivity with affective regions and regions processing cognition and salient stimuli was stronger in HC relative to PAT before CBT. Within the PAT group, a similar pattern changed with CBT. Changes in connectivity correlated with the significant pre-to-post symptom improvement, and pre-treatment amygdala connectivity predicted treatment response in depressed adolescents. Sample size and missing long-term follow-up limit the interpretability. Successful group psychotherapy of depression in adolescents involved connectivity changes in resting state networks to that of healthy controls. Copyright © 2016 Elsevier B.V. All rights reserved.
Shin, N-Y; Shin, Y S; Lee, P H; Yoon, U; Han, S; Kim, D J; Lee, S-K
2016-05-01
The higher cortical burden of Lewy body and Alzheimer disease-type pathology has been reported to be associated with a faster onset of cognitive impairment of Parkinson disease. So far, there has been a few studies only about the changes of gray matter volume depending on duration of cognitive impairment in Parkinson disease. Therefore, our aim was to evaluate the different patterns of structural and functional changes in Parkinson disease with mild cognitive impairment according to the duration of parkinsonism before mild cognitive impairment. Fifty-nine patients with Parkinson disease with mild cognitive impairment were classified into 2 groups on the basis of shorter (<1 year, n = 16) and longer (≥1 year, n = 43) durations of parkinsonism before mild cognitive impairment. Fifteen drug-naïve patients with de novo Parkinson disease with intact cognition were included for comparison. Cortical thickness, Tract-Based Spatial Statistics, and seed-based resting-state functional connectivity analyses were performed. Age, sex, years of education, age at onset of parkinsonism, and levodopa-equivalent dose were included as covariates. The group with shorter duration of parkinsonism before mild cognitive impairment showed decreased fractional anisotropy and increased mean and radial diffusivity values in the frontal areas compared with the group with longer duration of parkinsonism before mild cognitive impairment (corrected P < .05). The group with shorter duration of parkinsonism before mild cognitive impairment showed decreased resting-state functional connectivity in the default mode network area when the left or right posterior cingulate was used as a seed, and in the dorsolateral prefrontal areas when the left or right caudate was used as a seed (corrected P < .05). The group with longer duration of parkinsonism before mild cognitive impairment showed decreased resting-state functional connectivity mainly in the medial prefrontal cortex when the left or right posterior cingulate was used as a seed, and in the parieto-occipital areas when the left or right caudate was used as a seed (corrected P < .05). No differences in cortical thickness were found in all group contrasts. Resting-state functional connectivity and WM alterations might be useful imaging biomarkers for identifying changes in patients with Parkinson disease with mild cognitive impairment according to the duration of parkinsonism before mild cognitive impairment. The functional and microstructural substrates may topographically differ depending on the rate of cognitive decline in these patients. © 2016 by American Journal of Neuroradiology.
Chen, Xingui; Tao, Longxiang; Li, Jingjing; Wu, Jiaonan; Zhu, Chunyan; Yu, Fengqiong; Zhang, Lei; Zhang, Jingjie; Qiu, Bensheng; Yu, Yongqiang; He, Xiaoxuan
2017-01-01
Abstract Background: Tamoxifen is the most widely used drug for treating patients with estrogen receptor-sensitive breast cancer. There is evidence that breast cancer patients treated with tamoxifen exhibit cognitive dysfunction. However, the underlying neural mechanism remains unclear. The present study aimed to investigate the neural mechanisms underlying working memory deficits in combination with functional connectivity changes in premenopausal women with breast cancer who received long-term tamoxifen treatment. Methods: A total of 31 premenopausal women with breast cancer who received tamoxifen and 32 matched healthy control participants were included. The participants completed n-back tasks and underwent resting-state functional magnetic resonance imaging, which measure working memory performance and brain functional connectivity, respectively. A seed-based functional connectivity analysis within the whole brain was conducted, for which the dorsolateral prefrontal cortex was chosen as the seed region. Results: Our results indicated that the tamoxifen group had significant deficits in working memory and general executive function performance and significantly lower functional connectivity of the right dorsolateral prefrontal cortex with the right hippocampus compared with the healthy controls. There were no significant changes in functional connectivity in the left dorsolateral prefrontal cortex within the whole brain between the tamoxifen group and healthy controls. Moreover, significant correlations were found in the tamoxifen group between the functional connectivity strength of the dorsolateral prefrontal cortex with the right hippocampus and decreased working memory performance. Conclusion: This study demonstrates that the prefrontal cortex and hippocampus may be affected by tamoxifen treatment, supporting an antagonistic role of tamoxifen in the long-term treatment of breast cancer patients. PMID:28177081
Meier, Timothy B.; Desphande, Alok S.; Vergun, Svyatoslav; Nair, Veena A.; Song, Jie; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Prabhakaran, Vivek
2012-01-01
Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5 mm3 radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual’s three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. PMID:22227886
Meier, Timothy B; Desphande, Alok S; Vergun, Svyatoslav; Nair, Veena A; Song, Jie; Biswal, Bharat B; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek
2012-03-01
Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5mm(3) radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual's three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. Copyright © 2011 Elsevier Inc. All rights reserved.
Specialization and integration of functional thalamocortical connectivity in the human infant.
Toulmin, Hilary; Beckmann, Christian F; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Edwards, A David
2015-05-19
Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.
Specialization and integration of functional thalamocortical connectivity in the human infant
Toulmin, Hilary; Beckmann, Christian F.; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J.; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A.; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V.; Edwards, A. David
2015-01-01
Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions. PMID:25941391
Hierarchical multivariate covariance analysis of metabolic connectivity
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-01-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI). PMID:25294129
Beaty, Roger E; Benedek, Mathias; Wilkins, Robin W; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J; Hodges, Donald A; Koschutnig, Karl; Neubauer, Aljoscha C
2014-11-01
The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bellana, Buddhika; Liu, Zhongxu; Anderson, John A E; Moscovitch, Morris; Grady, Cheryl L
2016-01-08
The angular gyrus (AG) is consistently reported in neuroimaging studies of episodic memory retrieval and is a fundamental node within the default mode network (DMN). Its specific contribution to episodic memory is debated, with some suggesting it is important for the subjective experience of episodic recollection, rather than retrieval of objective episodic details. Across studies of episodic retrieval, the left AG is recruited more reliably than the right. We explored functional connectivity of the right and left AG with the DMN during rest and retrieval to assess whether connectivity could provide insight into the nature of this laterality effect. Using data from the publically available 1000 Functional Connectome Project, 8min of resting fMRI data from 180 healthy young adults were analysed. Whole-brain functional connectivity at rest was measured using a seed-based Partial Least Squares (seed-PLS) approach (McIntosh and Lobaugh, 2004) with bilateral AG seeds. A subsequent analysis used 6-min of rest and 6-min of unconstrained, silent retrieval of autobiographical events from a new sample of 20 younger adults. Analysis of this dataset took a more targeted approach to functional connectivity analysis, consisting of univariate pairwise correlations restricted to nodes of the DMN. The seed-PLS analysis resulted in two Latent Variables that together explained ~86% of the shared cross-block covariance. The first LV revealed a common network consistent with the DMN and engaging the AG bilaterally, whereas the second LV revealed a less robust, yet significant, laterality effect in connectivity - the left AG was more strongly connected to the DMN. Univariate analyses of the second sample again revealed better connectivity between the left AG and the DMN at rest. However, during retrieval the left AG was more strongly connected than the right to non-medial temporal (MTL) nodes of the DMN, and MTL nodes were more strongly connected to the right AG. The multivariate analysis of resting connectivity revealed that the left and right AG show similar connectivity with the DMN. Only after accounting for this commonality were we able to detect a left laterality effect in DMN connectivity. Further probing with univariate connectivity analyses during retrieval demonstrates that the left preference we observe is restricted to the non-MTL regions of the DMN, whereas the right AG shows significantly better connectivity with the MTL. These data suggest bilateral involvement of the AG during retrieval, despite the focus on the left AG in the literature. Furthermore, the results suggest that the contribution of the left AG to retrieval may be separable from that of the MTL, consistent with a role for the left AG in the subjective aspects of recollection in memory, whereas the MTL and the right AG may contribute to objective recollection of specific memory details. Copyright © 2015 Elsevier Ltd. All rights reserved.
The development of regional functional connectivity in preterm infants into early childhood.
Lee, Wayne; Morgan, Benjamin R; Shroff, Manohar M; Sled, John G; Taylor, Margot J
2013-09-01
Resting state networks are proposed to reflect the neuronal connectivity that underlies cognitive processes. Consequently, abnormal behaviour of these networks due to disease or altered development may predict poor cognitive outcome. To understand how very preterm birth may affect the development of resting state connectivity, we followed a cohort of very preterm-born infants from birth through to 4 years of age using resting state functional MRI. From a larger longitudinal cohort of infants born very preterm (<32 weeks gestational age), 36 at birth, 30 at term, 21 two-year and 22 four-year resting state fMRI datasets were acquired. Using seed-based connectivity analyses with seeds in the anterior cingulate cortex, posterior cingulate cortex, left and right motor-hand regions and left and right temporal lobes, we investigated local and inter-region connectivity as a function of group and age. We found strong local connectivity during the preterm period, which matured into inter-hemispheric and preliminary default-mode network correlations by 4 years of age. This development is comparable to the resting state networks found in term-born infants of equivalent age. The results of this study suggest that differences in developmental trajectory between preterm-born and term-born infants are small and, if present, would require a large sample from both populations to be detected.
Patient-specific connectivity pattern of epileptic network in frontal lobe epilepsy
Luo, Cheng; An, Dongmei; Yao, Dezhong; Gotman, Jean
2014-01-01
There is evidence that focal epilepsy may involve the dysfunction of a brain network in addition to the focal region. To delineate the characteristics of this epileptic network, we collected EEG/fMRI data from 23 patients with frontal lobe epilepsy. For each patient, EEG/fMRI analysis was first performed to determine the BOLD response to epileptic spikes. The maximum activation cluster in the frontal lobe was then chosen as the seed to identify the epileptic network in fMRI data. Functional connectivity analysis seeded at the same region was also performed in 63 healthy control subjects. Nine features were used to evaluate the differences of epileptic network patterns in three connection levels between patients and controls. Compared with control subjects, patients showed overall more functional connections between the epileptogenic region and the rest of the brain and higher laterality. However, the significantly increased connections were located in the neighborhood of the seed, but the connections between the seed and remote regions actually decreased. Comparing fMRI runs with interictal epileptic discharges (IEDs) and without IEDs, the patient-specific connectivity pattern was not changed significantly. These findings regarding patient-specific connectivity patterns of epileptic networks in FLE reflect local high connectivity and connections with distant regions differing from those of healthy controls. Moreover, the difference between the two groups in most features was observed in the strictest of the three connection levels. The abnormally high connectivity might reflect a predominant attribute of the epileptic network, which may facilitate propagation of epileptic activity among regions in the network. PMID:24936418
Addiction Related Alteration in Resting-state Brain Connectivity
Ma, Ning; Liu, Ying; Li, Nan; Wang, Chang-Xin; Zhang, Hao; Jiang, Xiao-Feng; Xu, Hu-Sheng; Fu, Xian-Ming; Hu, Xiaoping; Zhang, Da-Ren
2009-01-01
It is widely accepted that addictive drug use is related to abnormal functional organization in the user’s brain. The present study aimed to identify this type of abnormality within the brain networks implicated in addiction by resting-state functional connectivity measured with functional magnetic resonance imaging (fMRI). With fMRI data acquired during resting state from 14 chronic heroin users (12 of whom were being treated with methadone) and 13 non-addicted controls, we investigated the addiction related alteration in functional connectivity between the regions in the circuits implicated in addiction with seed-based correlation analysis. Compared with controls, chronic heroin users showed increased functional connectivity between nucleus accumbens and ventral/rostral anterior cingulate cortex (ACC), and orbital frontal cortex (OFC), between amygdala and OFC; and reduced functional connectivity between prefrontal cortex and OFC, and ACC. These observations of altered resting-state functional connectivity suggested abnormal functional organization in the addicted brain and may provide additional evidence supporting the theory of addiction that emphasizes enhanced salience value of a drug and its related cues but weakened cognitive control in the addictive state. PMID:19703568
Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease
Franzmeier, Nicolai; Duering, Marco; Weiner, Michael; Dichgans, Martin
2017-01-01
Objective: To test whether higher global functional connectivity of the left frontal cortex (LFC) in Alzheimer disease (AD) is associated with more years of education (a proxy of cognitive reserve [CR]) and mitigates the association between AD-related fluorodeoxyglucose (FDG)-PET hypometabolism and episodic memory. Methods: Forty-four amyloid-PET–positive patients with amnestic mild cognitive impairment (MCI-Aβ+) and 24 amyloid-PET–negative healthy controls (HC) were included. Voxel-based linear regression analyses were used to test the association between years of education and FDG-PET in MCI-Aβ+, controlled for episodic memory performance. Global LFC (gLFC) connectivity was computed through seed-based resting-state fMRI correlations between the LFC (seed) and each voxel in the gray matter. In linear regression analyses, education as a predictor of gLFC connectivity and the interaction of gLFC connectivity × FDG-PET hypometabolism on episodic memory were tested. Results: FDG-PET metabolism in the precuneus was reduced in MCI-Aβ+ compared to HC (p = 0.028), with stronger reductions observed in MCI-Aβ+ with more years of education (p = 0.006). In MCI-Aβ+, higher gLFC connectivity was associated with more years of education (p = 0.021). At higher levels of gLFC connectivity, the association between precuneus FDG-PET hypometabolism and lower memory performance was attenuated (p = 0.027). Conclusions: Higher gLFC connectivity is a functional substrate of CR that helps to maintain episodic memory relatively well in the face of emerging FDG-PET hypometabolism in early-stage AD. PMID:28188306
Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease.
Franzmeier, Nicolai; Duering, Marco; Weiner, Michael; Dichgans, Martin; Ewers, Michael
2017-03-14
To test whether higher global functional connectivity of the left frontal cortex (LFC) in Alzheimer disease (AD) is associated with more years of education (a proxy of cognitive reserve [CR]) and mitigates the association between AD-related fluorodeoxyglucose (FDG)-PET hypometabolism and episodic memory. Forty-four amyloid-PET-positive patients with amnestic mild cognitive impairment (MCI-Aβ+) and 24 amyloid-PET-negative healthy controls (HC) were included. Voxel-based linear regression analyses were used to test the association between years of education and FDG-PET in MCI-Aβ+, controlled for episodic memory performance. Global LFC (gLFC) connectivity was computed through seed-based resting-state fMRI correlations between the LFC (seed) and each voxel in the gray matter. In linear regression analyses, education as a predictor of gLFC connectivity and the interaction of gLFC connectivity × FDG-PET hypometabolism on episodic memory were tested. FDG-PET metabolism in the precuneus was reduced in MCI-Aβ+ compared to HC ( p = 0.028), with stronger reductions observed in MCI-Aβ+ with more years of education ( p = 0.006). In MCI-Aβ+, higher gLFC connectivity was associated with more years of education ( p = 0.021). At higher levels of gLFC connectivity, the association between precuneus FDG-PET hypometabolism and lower memory performance was attenuated ( p = 0.027). Higher gLFC connectivity is a functional substrate of CR that helps to maintain episodic memory relatively well in the face of emerging FDG-PET hypometabolism in early-stage AD. © 2017 American Academy of Neurology.
Heine, Lizette; Castro, Maïté; Martial, Charlotte; Tillmann, Barbara; Laureys, Steven; Perrin, Fabien
2015-01-01
Preferred music is a highly emotional and salient stimulus, which has previously been shown to increase the probability of auditory cognitive event-related responses in patients with disorders of consciousness (DOC). To further investigate whether and how music modifies the functional connectivity of the brain in DOC, five patients were assessed with both a classical functional connectivity scan (control condition), and a scan while they were exposed to their preferred music (music condition). Seed-based functional connectivity (left or right primary auditory cortex), and mean network connectivity of three networks linked to conscious sound perception were assessed. The auditory network showed stronger functional connectivity with the left precentral gyrus and the left dorsolateral prefrontal cortex during music as compared to the control condition. Furthermore, functional connectivity of the external network was enhanced during the music condition in the temporo-parietal junction. Although caution should be taken due to small sample size, these results suggest that preferred music exposure might have effects on patients auditory network (implied in rhythm and music perception) and on cerebral regions linked to autobiographical memory. PMID:26617542
The Functional Integration in the Sensory-Motor System Predicts Aging in Healthy Older Adults.
He, Hui; Luo, Cheng; Chang, Xin; Shan, Yan; Cao, Weifang; Gong, Jinnan; Klugah-Brown, Benjamin; Bobes, Maria A; Biswal, Bharat; Yao, Dezhong
2016-01-01
Healthy aging is typically accompanied by a decrease in the motor capacity. Although the disrupted neural representations and performance of movement have been observed in older age in previous studies, the relationship between the functional integration of sensory-motor (SM) system and aging could be further investigated. In this study, we examine the impact of healthy aging on the resting-state functional connectivity (rsFC) of the SM system, and investigate as to how aging is affecting the rsFC in SM network. The SM network was identified and evaluated in 52 healthy older adults and 51 younger adults using two common data analytic approaches: independent component analysis and seed-based functional connectivity (seed at bilateral M1 and S1). We then evaluated whether the altered rsFC of the SM network could delineate trajectories of the age of older adults using a machine learning methodology. Compared with the younger adults, the older demonstrated reduced functional integration with increasing age in the mid-posterior insula of SM network and increased rsFC among the sensorimotor cortex. Moreover, the reduction in the rsFC of mid-posterior insula is associated with the age of older adults. Critically, the analysis based on two-aspect connectivity-based prediction frameworks revealed that the age of older adults could be reliably predicted by this reduced rsFC. These findings further indicated that healthy aging has a marked influence on the SM system that would be associated with a reorganization of SM system with aging. Our findings provide further insight into changes in sensorimotor function in the aging brain.
Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean
2015-04-01
There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.
A selective involvement of putamen functional connectivity in youth with internet gaming disorder.
Hong, Soon-Beom; Harrison, Ben J; Dandash, Orwa; Choi, Eun-Jung; Kim, Seong-Chan; Kim, Ho-Hyun; Shim, Do-Hyun; Kim, Chang-Dai; Kim, Jae-Won; Yi, Soon-Hyung
2015-03-30
Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder. Copyright © 2015. Published by Elsevier B.V.
Stoeckel, Luke E.; Chai, Xiaoqian J.; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A. Eden
2015-01-01
Rationale While nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. Objectives (1) To evaluate grey matter density and functional connectivity of the anterior insula in cigarette smokers and never-smokers and (2) characterize how differences in these measures related to smoking behavior. Methods We compared structural MRI (grey matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never-smokers. Results Compared to controls, smokers had lower grey matter density in left anterior insula extending into inferior frontal and temporal cortex. Grey matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lateral prefrontal cortex) and semantic processing / emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. Conclusions There were differences in the anterior insula, a central region in the brain’s salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, was also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865
Stoeckel, Luke E; Chai, Xiaoqian J; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A Eden
2016-07-01
Although nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. This study aimed to (1) evaluate gray matter density and functional connectivity of the anterior insula in cigarette smokers and never smokers and (2) characterize how differences in these measures were related to smoking behavior. We compared structural magnetic resonance imaging (MRI) (gray matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never smokers. Compared with controls, smokers had lower gray matter density in left anterior insula extending into inferior frontal and temporal cortex. Gray matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lPFC) and semantic processing/emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. There were differences in the anterior insula, a central region in the brain's salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, were also associated with an aspect of smoking behavior (daily cigarettes smoked). © 2015 Society for the Study of Addiction.
Association between heart rate variability and fluctuations in resting-state functional connectivity
Chang, Catie; Metzger, Coraline D.; Glover, Gary H.; Duyn, Jeff H.; Heinze, Hans-Jochen; Walter, Martin
2012-01-01
Functional connectivity has been observed to fluctuate across the course of a resting state scan, though the origins and functional relevance of this phenomenon remain to be shown. The present study explores the link between endogenous dynamics of functional connectivity and autonomic state in an eyes-closed resting condition. Using a sliding window analysis on resting state fMRI data from 35 young, healthy male subjects, we examined how heart rate variability (HRV) covaries with temporal changes in whole-brain functional connectivity with seed regions previously described to mediate effects of vigilance and arousal (amygdala and dorsal anterior cingulate cortex; dACC). We identified a set of regions, including brainstem, thalamus, putamen, and dorsolateral prefrontal cortex, that became more strongly coupled with the dACC and amygdala seeds during states of elevated HRV. Effects differed between high and low frequency components of HRV, suggesting specific contributions of parasympathetic and sympathetic tone on individual connections. Furthermore, dynamics of functional connectivity could be separated from those primarily related to BOLD signal fluctuations. The present results contribute novel information about the neural basis of transient changes of autonomic nervous system states, and suggest physiological and psychological components of the recently observed non-stationarity in resting state functional connectivity. PMID:23246859
NASA Astrophysics Data System (ADS)
Boucharin, Alexis; Oguz, Ipek; Vachet, Clement; Shi, Yundi; Sanchez, Mar; Styner, Martin
2011-03-01
The use of regional connectivity measurements derived from diffusion imaging datasets has become of considerable interest in the neuroimaging community in order to better understand cortical and subcortical white matter connectivity. Current connectivity assessment methods are based on streamline fiber tractography, usually applied in a Monte-Carlo fashion. In this work we present a novel, graph-based method that performs a fully deterministic, efficient and stable connectivity computation. The method handles crossing fibers and deals well with multiple seed regions. The computation is based on a multi-directional graph propagation method applied to sampled orientation distribution function (ODF), which can be computed directly from the original diffusion imaging data. We show early results of our method on synthetic and real datasets. The results illustrate the potential of our method towards subjectspecific connectivity measurements that are performed in an efficient, stable and reproducible manner. Such individual connectivity measurements would be well suited for application in population studies of neuropathology, such as Autism, Huntington's Disease, Multiple Sclerosis or leukodystrophies. The proposed method is generic and could easily be applied to non-diffusion data as long as local directional data can be derived.
Yoshimura, Shinpei; Okamoto, Yasumasa; Matsunaga, Miki; Onoda, Keiichi; Okada, Go; Kunisato, Yoshihiko; Yoshino, Atsuo; Ueda, Kazutaka; Suzuki, Shin-Ichi; Yamawaki, Shigeto
2017-01-15
Depression is characterized by negative self-cognition. Our previous study (Yoshimura et al. 2014) revealed changes in brain activity after cognitive behavioral therapy (CBT) for depression, but changes in functional connectivity were not assessed. This study included 29 depressive patients and 15 healthy control participants. Functional Magnetic Resonance Imaging was used to investigate possible CBT-related functional connectivity changes associated with negative emotional self-referential processing. Depressed and healthy participants (overlapping with our previous study, Yoshimura et al. 2014) were included. We defined a seed region (medial prefrontal cortex) and coupled region (ACC) based on our previous study, and we examined changes in MPFC-ACC functional connectivity from pretreatment to posttreatment. CBT was associated with reduced functional connectivity between the MPFC and ACC. Symptom change with CBT was positively correlated with change in MPFC-ACC functional connectivity. Patients received pharmacotherapy including antidepressant. The present sample size was quite small and more study is needed. Statistical threshold in fMRI analysis was relatively liberal. CBT for depression may disrupt MPFC-ACC connectivity, with associated improvements in depressive symptoms and dysfunctional cognition. Copyright © 2016 Elsevier B.V. All rights reserved.
Philip, Noah S; Barredo, Jennifer; van 't Wout-Frank, Mascha; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L
2018-02-01
Repetitive transcranial magnetic stimulation (TMS) therapy can modulate pathological neural network functional connectivity in major depressive disorder (MDD). Posttraumatic stress disorder is often comorbid with MDD, and symptoms of both disorders can be alleviated with TMS therapy. This is the first study to evaluate TMS-associated changes in connectivity in patients with comorbid posttraumatic stress disorder and MDD. Resting-state functional connectivity magnetic resonance imaging was acquired before and after TMS therapy in 33 adult outpatients in a prospective open trial. TMS at 5 Hz was delivered, in up to 40 daily sessions, to the left dorsolateral prefrontal cortex. Analyses used a priori seeds relevant to TMS, posttraumatic stress disorder, or MDD (subgenual anterior cingulate cortex [sgACC], left dorsolateral prefrontal cortex, hippocampus, and basolateral amygdala) to identify imaging predictors of response and to evaluate clinically relevant changes in connectivity after TMS, followed by leave-one-out cross-validation. Imaging results were explored using data-driven multivoxel pattern activation. More negative pretreatment connectivity between the sgACC and the default mode network predicted clinical improvement, as did more positive amygdala-to-ventromedial prefrontal cortex connectivity. After TMS, symptom reduction was associated with reduced connectivity between the sgACC and the default mode network, left dorsolateral prefrontal cortex, and insula, and reduced connectivity between the hippocampus and the salience network. Multivoxel pattern activation confirmed seed-based predictors and correlates of treatment outcomes. These results highlight the central role of the sgACC, default mode network, and salience network as predictors of TMS response and suggest their involvement in mechanisms of action. Furthermore, this work indicates that there may be network-based biomarkers of clinical response relevant to these commonly comorbid disorders. Published by Elsevier Inc.
Superior Temporal Sulcus Disconnectivity During Processing of Metaphoric Gestures in Schizophrenia
Straube, Benjamin; Green, Antonia; Sass, Katharina; Kircher, Tilo
2014-01-01
The left superior temporal sulcus (STS) plays an important role in integrating audiovisual information and is functionally connected to disparate regions of the brain. For the integration of gesture information in an abstract sentence context (metaphoric gestures), intact connectivity between the left STS and the inferior frontal gyrus (IFG) should be important. Patients with schizophrenia have problems with the processing of metaphors (concretism) and show aberrant structural connectivity of long fiber bundles. Thus, we tested the hypothesis that patients with schizophrenia differ in the functional connectivity of the left STS to the IFG for the processing of metaphoric gestures. During functional magnetic resonance imaging data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing gestures in a concrete (iconic, IC) and abstract (metaphoric, MP) sentence context. A psychophysiological interaction analysis based on the seed region from a previous analysis in the left STS was performed. In both groups we found common positive connectivity for IC and MP of the STS seed region to the left middle temporal gyrus (MTG) and left ventral IFG. The interaction of group (C>P) and gesture condition (MP>IC) revealed effects in the connectivity to the bilateral IFG and the left MTG with patients exhibiting lower connectivity for the MP condition. In schizophrenia the left STS is misconnected to the IFG, particularly during the processing of MP gestures. Dysfunctional integration of gestures in an abstract sentence context might be the basis of certain interpersonal communication problems in the patients. PMID:23956120
Fan, Jie; Zhong, Mingtian; Zhu, Xiongzhao; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Yi, Jinyao; Tan, Changlian
2017-01-01
Few studies have explored the neurobiological basis of insight level in obsessive-compulsive disorder (OCD), though the salience network (SN) has been implicated in insight deficits in schizophrenia. This study was then designed to investigate whether resting-state (rs) functional connectivity (FC) of SN was associated with insight level in OCD patients. We analyzed rs-functional magnetic resonance imaging (fMRI) data from 21 OCD patients with good insight (OCD-GI), 19 OCD patients with poor insight (OCD-PI), and 24 healthy controls (HCs). Seed-based whole-brain FC and ROI (region of interest)-wise connectivity analyses were performed with seeds/ROIs in the bilateral anterior insula (AI) and dorsal anterior cingulate cortex (dACC). The right AI-right medial orbital frontal cortex (mOFC) connectivity was found to be uniquely decreased in the OCD-PI group, and the value of this aberrant connectivity correlated with insight level in OCD patients. In addition, we found that the OCD-GI group had significantly increased right AI-left dACC connectivity within the SN, relative to HCs (overall trend for groups: OCD-GI > OCD-PI > HC). Our findings suggest that abnormal right AI-right mOFC FC may mediate insight deficits in OCD, perhaps due to impaired encoding and integration of self-evaluative information about OCD-related beliefs and behaviors. Our findings indicate a SN connectivity dissociation between OCD-GI and OCD-PI patients and support the notion of considering OCD-GI and OCD-PI as two distinct disorder subtypes.
Huang, Zirui; Davis, Henry Hap; Wolff, Annemarie; Northoff, Georg
2017-01-01
Brain plasticity studies have shown functional reorganization in participants with outstanding motor expertise. Little is known about neural plasticity associated with exceptionally long motor training or of its predictive value for motor performance excellence. The present study utilised resting-state functional magnetic resonance imaging (rs-fMRI) in a unique sample of world-class athletes: Olympic, elite, and internationally ranked swimmers ( n = 30). Their world ranking ranged from 1st to 250th: each had prepared for participation in the Olympic Games. Combining rs-fMRI graph-theoretical and seed-based functional connectivity analyses, it was discovered that the thalamus has its strongest connections with the sensorimotor network in elite swimmers with the highest world rankings (career best rank: 1-35). Strikingly, thalamo-sensorimotor functional connections were highly correlated with the swimmers' motor performance excellence, that is, accounting for 41% of the individual variance in best world ranking. Our findings shed light on neural correlates of long-term athletic performance involving thalamo-sensorimotor functional circuits.
Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe
2018-03-16
A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.
Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses
Nickerson, Lisa D.; Smith, Stephen M.; Öngür, Döst; Beckmann, Christian F.
2017-01-01
Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects, respectively, in resting state connectivity analyses. We illustrate these concepts using realistic simulated resting state FMRI data and in vivo data acquired in healthy subjects and patients with bipolar disorder and schizophrenia. PMID:28348512
Altered resting brain function and structure in professional badminton players.
Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi
2012-01-01
Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.
Osmanski, Bruno-Félix; Pezet, Sophie; Ricobaraza, Ana; Lenkei, Zsolt; Tanter, Mickael
2014-01-01
Long-range coherences in spontaneous brain activity reflect functional connectivity. Here we propose a novel, highly resolved connectivity mapping approach, using ultrafast functional ultrasound (fUS), which enables imaging of cerebral microvascular haemodynamics deep in the anaesthetized rodent brain, through a large thinned-skull cranial window, with pixel dimensions of 100 μm × 100 μm in-plane. The millisecond-range temporal resolution allows unambiguous cancellation of low-frequency cardio-respiratory noise. Both seed-based and singular value decomposition analysis of spatial coherences in the low-frequency (<0.1 Hz) spontaneous fUS signal fluctuations reproducibly report, at different coronal planes, overlapping high-contrast, intrinsic functional connectivity patterns. These patterns are similar to major functional networks described in humans by resting-state fMRI, such as the lateral task-dependent network putatively anticorrelated with the midline default-mode network. These results introduce fUS as a powerful novel neuroimaging method, which could be extended to portable systems for three-dimensional functional connectivity imaging in awake and freely moving rodents. PMID:25277668
Verdier, Jerome; Lalanne, David; Pelletier, Sandra; Torres-Jerez, Ivone; Righetti, Karima; Bandyopadhyay, Kaustav; Leprince, Olivier; Chatelain, Emilie; Vu, Benoit Ly; Gouzy, Jerome; Gamas, Pascal; Udvardi, Michael K; Buitink, Julia
2013-10-01
In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states.
Verdier, Jerome; Lalanne, David; Pelletier, Sandra; Torres-Jerez, Ivone; Righetti, Karima; Bandyopadhyay, Kaustav; Leprince, Olivier; Chatelain, Emilie; Vu, Benoit Ly; Gouzy, Jerome; Gamas, Pascal; Udvardi, Michael K.; Buitink, Julia
2013-01-01
In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states. PMID:23929721
Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C
2017-06-01
Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.
Wang, Rui-Sheng; Loscalzo, Joseph
2018-05-20
Understanding the genetic basis of complex diseases is challenging. Prior work shows that disease-related proteins do not typically function in isolation. Rather, they often interact with each other to form a network module that underlies dysfunctional mechanistic pathways. Identifying such disease modules will provide insights into a systems-level understanding of molecular mechanisms of diseases. Owing to the incompleteness of our knowledge of disease proteins and limited information on the biological mediators of pathobiological processes, the key proteins (seed proteins) for many diseases appear scattered over the human protein-protein interactome and form a few small branches, rather than coherent network modules. In this paper, we develop a network-based algorithm, called the Seed Connector algorithm (SCA), to pinpoint disease modules by adding as few additional linking proteins (seed connectors) to the seed protein pool as possible. Such seed connectors are hidden disease module elements that are critical for interpreting the functional context of disease proteins. The SCA aims to connect seed disease proteins so that disease mechanisms and pathways can be decoded based on predicted coherent network modules. We validate the algorithm using a large corpus of 70 complex diseases and binding targets of over 200 drugs, and demonstrate the biological relevance of the seed connectors. Lastly, as a specific proof of concept, we apply the SCA to a set of seed proteins for coronary artery disease derived from a meta-analysis of large-scale genome-wide association studies and obtain a coronary artery disease module enriched with important disease-related signaling pathways and drug targets not previously recognized. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mentalizing in schizophrenia: A multivariate functional MRI study.
Martin, Andrew K; Dzafic, Ilvana; Robinson, Gail A; Reutens, David; Mowry, Bryan
2016-12-01
Schizophrenia is associated with mentalizing deficits that impact on social functioning and quality of life. Recently, schizophrenia has been conceptualized as a disorder of neural dysconnectivity and network level analyses offers a means of understanding the underlying deficits leading to mentalizing difficulty. Using an established mentalizing task (The Triangles Task), functional magnetic resonance images (fMRI) were acquired from 19 patients with schizophrenia and 17 age- and sex-matched healthy controls (HCs). Participants were required to watch short animations of two triangles interacting with each other with the interactions either random (no interaction), physical (patterned movement), or mental (intentional movement). Task-based Partial Least Squares (PLS) was used to analyze activation differences and commonalities between the three conditions and the two groups. Seed-based PLS was used to assess functional connectivity with peaks identified in the task-based PLS. Behavioural PLS was then performed using the accuracy from the mental conditions. Patients with schizophrenia performed worse on the mentalizing condition compared to HCs. Task-based PLS revealed one significant latent variable (LV) that explained 42.9% of the variance in the task, with theLV separating the mental condition from the physical and random conditions in patients with schizophrenia, but only the mental from physical in healthy controls. The mental animations were associated with increased modulation of the inferior frontal gyri bilaterally, left superior temporal gyrus, right postcentral gyrus, and left caudate nucleus. The physical/random animations were associated with increased modulation of the right medial frontal gyrus and left superior frontal gyrus. Seed-based PLS identified increased functional connectivity with the left inferior frontal gyrus (liFG) and caudate nucleus in patients with schizophrenia, during the mental and physical interactions, with functional connectivity with the liFG associated with increased performance on the mental animations. The results suggest that mentalizing deficits in schizophrenia may arise due to inefficient social brain networks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Goodin, Peter; Lamp, Gemma; Vidyasagar, Rishma; McArdle, David; Seitz, Rüdiger J; Carey, Leeanne M
2018-01-01
One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke survivors with impaired touch sensation. Hemisphere of lesion was associated with different patterns of altered functional connectivity within the somatosensory network and with related function was associated with different patterns of altered functional connectivity within the somatosensory network and with related functional networks.
Gupta, Arpana; Mayer, Emeran A; Labus, Jennifer S; Bhatt, Ravi R; Ju, Tiffany; Love, Aubrey; Bal, Amanat; Tillisch, Kirsten; Naliboff, Bruce; Sanmiguel, Claudia P; Kilpatrick, Lisa A
2018-02-01
This study aimed to characterize obesity-related sex differences in the intrinsic activity and connectivity of the brain's reward networks. Eighty-six women (n = 43) and men (n = 43) completed a 10-minute resting functional magnetic resonance imaging scan. Sex differences and commonalities in BMI-related frequency power distribution and reward seed-based connectivity were investigated by using partial least squares analysis. For whole-brain activity in both men and women, increased BMI was associated with increased slow-5 activity in the left globus pallidus (GP) and substantia nigra. In women only, increased BMI was associated with increased slow-4 activity in the right GP and bilateral putamen. For seed-based connectivity in women, increased BMI was associated with reduced slow-5 connectivity between the left GP and putamen and the emotion and cortical regulation regions, but in men, increased BMI was associated with increased connectivity with the medial frontal cortex. In both men and women, increased BMI was associated with increased slow-4 connectivity between the right GP and bilateral putamen and the emotion regulation and sensorimotor-related regions. The stronger relationship between increased BMI and decreased connectivity of core reward network components with cortical and emotion regulation regions in women may be related to the greater prevalence of emotional eating. The present findings suggest the importance of personalized treatments for obesity that consider the sex of the affected individual. © 2017 The Obesity Society.
Functional connectivity of the rodent brain using optical imaging
NASA Astrophysics Data System (ADS)
Guevara Codina, Edgar
The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis showed a decreasing trend of homologous correlation in the motor and cingulate cortices. Graph analyses showed a randomization of the cortex functional networks, suggesting a loss of connectivity, more specifically in the motor cortex ipsilateral to the treated carotid; however these changes are not reflected in differentiated metabolic estimates. Confounds remain due to the fact that carotid rigidification gives rise to neural decline in the hippocampus as well as unilateral alteration of vascular pulsatility; however the results support the need to look at several hemodynamic parameters when imaging the brain after arterial remodeling. The third article of this thesis studies a model of inflammatory injury on the newborn rat. Oxygen saturation and functional connectivity were assessed with photoacoustic tomography. Oxygen saturation was decreased in the site of the lesion and on the cortex ipsilateral to the injury; however this decrease is not fully explained by hypovascularization revealed by histology. Seed-based functional connectivity analysis showed that inter-hemispheric connectivity is not affected by inflammatory injury.
NASA Astrophysics Data System (ADS)
Chang, Gang; Zhang, Zhibin
2014-02-01
Network structure in plant-animal systems has been widely investigated but the roles of functional traits of plants and animals in formation of mutualism and predation interactions and community structure are still not fully understood. In this study, we quantitatively assessed interaction strength of mutualism and predation between 5 tree species and 7 rodent species by using semi-natural enclosures in a subtropical forest in southwest China. Seeds with high handling-time and nutrition traits (for both rat and mouse species) or high tannin trait (for mouse species) show high mutualism but low predation with rodents; while seeds with low handling-time and low nutrition traits show high predation but low mutualism with rodents. Large-sized rat species are more linked to seeds with high handling-time and high nutrition traits, while small-sized mouse species are more connected with seeds with low handling-time, low nutrition value and high tannin traits. Anti-predation seed traits tend to increase chance of mutualism instead of reducing predation by rodents, suggesting formation of mutualism may be connected with that of predation. Our study demonstrates that seed and animal traits play significant roles in the formation of mutualism and predation and network structure of the seed-rodent dispersal system.
Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang
2017-03-01
Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus. Copyright © 2017 Elsevier B.V. All rights reserved.
Gao, Zhenni; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Li, Junchao; Gao, Mengxia; Liu, Xiaojin; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming
2017-11-01
The present study aimed to explore the association between resting-state functional connectivity and creativity ability. Toward this end, the figural Torrance Tests of Creative Thinking (TTCT) scores were collected from 180 participants. Based on the figural TTCT measures, we collected resting-state functional magnetic resonance imaging data for participants with two different levels of creativity ability (a high-creativity group [HG, n = 22] and a low-creativity group [LG, n = 20]). For the aspect of group difference, this study combined voxel-wise functional connectivity strength (FCS) and seed-based functional connectivity to identify brain regions with group-change functional connectivity. Furthermore, the connectome properties of the identified regions and their associations with creativity were investigated using the permutation test, discriminative analysis, and brain-behavior correlation analysis. The results indicated that there were 4 regions with group differences in FCS, and these regions were linked to 30 other regions, demonstrating different functional connectivity between the groups. Together, these regions form a creativity-related network, and we observed higher network efficiency in the HG compared with the LG. The regions involved in the creativity network were widely distributed across the modality-specific/supramodality cerebral cortex, subcortex, and cerebellum. Notably, properties of regions in the supramodality networks (i.e., the default mode network and attention network) carried creativity-level discriminative information and were significantly correlated with the creativity performance. Together, these findings demonstrate a link between intrinsic brain connectivity and creative ability, which should provide new insights into the neural basis of creativity.
Peeters, Sanne C T; van de Ven, Vincent; Gronenschild, Ed H B M; Patel, Ameera X; Habets, Petra; Goebel, Rainer; van Os, Jim; Marcelis, Machteld
2015-01-01
Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder. Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology. There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity. Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network "connectivity at rest" intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure.
Timóteo, Sérgio; Correia, Marta; Rodríguez-Echeverría, Susana; Freitas, Helena; Heleno, Ruben
2018-01-10
Species interaction networks are traditionally explored as discrete entities with well-defined spatial borders, an oversimplification likely impairing their applicability. Using a multilayer network approach, explicitly accounting for inter-habitat connectivity, we investigate the spatial structure of seed-dispersal networks across the Gorongosa National Park, Mozambique. We show that the overall seed-dispersal network is composed by spatially explicit communities of dispersers spanning across habitats, functionally linking the landscape mosaic. Inter-habitat connectivity determines spatial structure, which cannot be accurately described with standard monolayer approaches either splitting or merging habitats. Multilayer modularity cannot be predicted by null models randomizing either interactions within each habitat or those linking habitats; however, as habitat connectivity increases, random processes become more important for overall structure. The importance of dispersers for the overall network structure is captured by multilayer versatility but not by standard metrics. Highly versatile species disperse many plant species across multiple habitats, being critical to landscape functional cohesion.
Functional connectivity patterns reflect individual differences in conflict adaptation.
Wang, Xiangpeng; Wang, Ting; Chen, Zhencai; Hitchman, Glenn; Liu, Yijun; Chen, Antao
2015-04-01
Individuals differ in the ability to utilize previous conflict information to optimize current conflict resolution, which is termed the conflict adaptation effect. Previous studies have linked individual differences in conflict adaptation to distinct brain regions. However, the network-based neural mechanisms subserving the individual differences of the conflict adaptation effect have not been studied. The present study employed a psychophysiological interaction (PPI) analysis with a color-naming Stroop task to examine this issue. The main results were as follows: (1) the anterior cingulate cortex (ACC)-seeded PPI revealed the involvement of the salience network (SN) in conflict adaptation, while the posterior parietal cortex (PPC)-seeded PPI revealed the engagement of the central executive network (CEN). (2) Participants with high conflict adaptation effect showed higher intra-CEN connectivity and lower intra-SN connectivity; while those with low conflict adaptation effect showed higher intra-SN connectivity and lower intra-CEN connectivity. (3) The PPC-centered intra-CEN connectivity positively predicted the conflict adaptation effect; while the ACC-centered intra-SN connectivity had a negative correlation with this effect. In conclusion, our data demonstrated that conflict adaptation is likely supported by the CEN and the SN, providing a new perspective on studying individual differences in conflict adaptation on the basis of large-scale networks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity
Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu
2014-01-01
Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242
Altered Resting Brain Function and Structure in Professional Badminton Players
Di, Xin; Zhu, Senhua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan
2012-01-01
Abstract Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills. PMID:22840241
Changes in default mode network as automaticity develops in a categorization task.
Shamloo, Farzin; Helie, Sebastien
2016-10-15
The default mode network (DMN) is a set of brain regions in which blood oxygen level dependent signal is suppressed during attentional focus on the external environment. Because automatic task processing requires less attention, development of automaticity in a rule-based categorization task may result in less deactivation and altered functional connectivity of the DMN when compared to the initial learning stage. We tested this hypothesis by re-analyzing functional magnetic resonance imaging data of participants trained in rule-based categorization for over 10,000 trials (Helie et al., 2010) [12,13]. The results show that some DMN regions are deactivated in initial training but not after automaticity has developed. There is also a significant decrease in DMN deactivation after extensive practice. Seed-based functional connectivity analyses with the precuneus, medial prefrontal cortex (two important DMN regions) and Brodmann area 6 (an important region in automatic categorization) were also performed. The results show increased functional connectivity with both DMN and non-DMN regions after the development of automaticity, and a decrease in functional connectivity between the medial prefrontal cortex and ventromedial orbitofrontal cortex. Together, these results further support the hypothesis of a strategy shift in automatic categorization and bridge the cognitive and neuroscientific conceptions of automaticity in showing that the reduced need for cognitive resources in automatic processing is accompanied by a disinhibition of the DMN and stronger functional connectivity between DMN and task-related brain regions. Copyright © 2016 Elsevier B.V. All rights reserved.
Baczkowski, Blazej M; Johnstone, Tom; Walter, Henrik; Erk, Susanne; Veer, Ilya M
2017-06-01
We evaluated whether sliding-window analysis can reveal functionally relevant brain network dynamics during a well-established fear conditioning paradigm. To this end, we tested if fMRI fluctuations in amygdala functional connectivity (FC) can be related to task-induced changes in physiological arousal and vigilance, as reflected in the skin conductance level (SCL). Thirty-two healthy individuals participated in the study. For the sliding-window analysis we used windows that were shifted by one volume at a time. Amygdala FC was calculated for each of these windows. Simultaneously acquired SCL time series were averaged over time frames that corresponded to the sliding-window FC analysis, which were subsequently regressed against the whole-brain seed-based amygdala sliding-window FC using the GLM. Surrogate time series were generated to test whether connectivity dynamics could have occurred by chance. In addition, results were contrasted against static amygdala FC and sliding-window FC of the primary visual cortex, which was chosen as a control seed, while a physio-physiological interaction (PPI) was performed as cross-validation. During periods of increased SCL, the left amygdala became more strongly coupled with the bilateral insula and anterior cingulate cortex, core areas of the salience network. The sliding-window analysis yielded a connectivity pattern that was unlikely to have occurred by chance, was spatially distinct from static amygdala FC and from sliding-window FC of the primary visual cortex, but was highly comparable to that of the PPI analysis. We conclude that sliding-window analysis can reveal functionally relevant fluctuations in connectivity in the context of an externally cued task. Copyright © 2017 Elsevier Inc. All rights reserved.
Sex-related differences in amygdala functional connectivity during resting conditions.
Kilpatrick, L A; Zald, D H; Pardo, J V; Cahill, L F
2006-04-01
Recent neuroimaging studies have established a sex-related hemispheric lateralization of amygdala involvement in memory for emotionally arousing material. Here, we examine the possibility that sex-related differences in amygdala involvement in memory for emotional material develop from differential patterns of amygdala functional connectivity evident in the resting brain. Seed voxel partial least square analyses of regional cerebral blood flow data revealed significant sex-related differences in amygdala functional connectivity during resting conditions. The right amygdala was associated with greater functional connectivity in men than in women. In contrast, the left amygdala was associated with greater functional connectivity in women than in men. Furthermore, the regions displaying stronger functional connectivity with the right amygdala in males (sensorimotor cortex, striatum, pulvinar) differed from those displaying stronger functional connectivity with the left amygdala in females (subgenual cortex, hypothalamus). These differences in functional connectivity at rest may link to sex-related differences in medical and psychiatric disorders.
Satterthwaite, T D; Cook, P A; Bruce, S E; Conway, C; Mikkelsen, E; Satchell, E; Vandekar, S N; Durbin, T; Shinohara, R T; Sheline, Y I
2016-07-01
Depressive symptoms are common in multiple psychiatric disorders and are frequent sequelae of trauma. A dimensional conceptualization of depression suggests that symptoms should be associated with a continuum of deficits in specific neural circuits. However, most prior investigations of abnormalities in functional connectivity have typically focused on a single diagnostic category using hypothesis-driven seed-based analyses. Here, using a sample of 105 adult female participants from three diagnostic groups (healthy controls, n=17; major depression, n=38; and post-traumatic stress disorder, n=50), we examine the dimensional relationship between resting-state functional dysconnectivity and severity of depressive symptoms across diagnostic categories using a data-driven analysis (multivariate distance-based matrix regression). This connectome-wide analysis identified foci of dysconnectivity associated with depression severity in the bilateral amygdala. Follow-up seed analyses using subject-specific amygdala segmentations revealed that depression severity was associated with amygdalo-frontal hypo-connectivity in a network of regions including bilateral dorsolateral prefrontal cortex, anterior cingulate and anterior insula. In contrast, anxiety was associated with elevated connectivity between the amygdala and the ventromedial prefrontal cortex. Taken together, these results emphasize the centrality of the amygdala in the pathophysiology of depressive symptoms, and suggest that dissociable patterns of amygdalo-frontal dysconnectivity are a critical neurobiological feature across clinical diagnostic categories.
Functional Disconnectivity during Inter-Task Resting State in Dementia with Lewy Bodies.
Chabran, Eléna; Roquet, Daniel; Gounot, Daniel; Sourty, Marion; Armspach, Jean-Paul; Blanc, Frédéric
2018-01-01
Limited research has been done on the functional connectivity in visuoperceptual regions in dementia with Lewy bodies (DLB) patients. This study aimed to investigate the functional connectivity differences between a task condition and an inter-task resting state condition within a visuoperceptual paradigm, in DLB patients compared with Alzheimer disease (AD) patients and healthy elderly control subjects. Twenty-six DLB, 29 AD, and 22 healthy subjects underwent a detailed clinical and neuropsychological examination along with a functional MRI during the different conditions of a visuoperceptual paradigm. Functional images were analyzed using group-level spatial independent component analysis and seed-based connectivity analyses. While the DLB patients scored well and did not differ from the control and AD groups in terms of functional activity and connectivity during the task conditions, they showed decreased functional connectivity in visuoperceptual regions during the resting state condition, along with a temporal impairment of the default-mode network activity. Functional connectivity disturbances were also found within two attentional-executive networks and between these networks and visuoperceptual regions. We found a specific functional profile in the switching between task and resting state conditions in DLB patients. This result could help better characterize functional impairments in DLB and their contribution to several core symptoms of this pathology such as visual hallucinations and cognitive fluctuations. © 2018 S. Karger AG, Basel.
Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan
2016-01-01
Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Amygdala subnuclei resting-state functional connectivity sex and estrogen differences.
Engman, Jonas; Linnman, Clas; Van Dijk, Koene R A; Milad, Mohammed R
2016-01-01
The amygdala is a hub in emotional processing, including that of negative affect. Healthy men and women have distinct differences in amygdala responses, potentially setting the stage for the observed sex differences in the prevalence of fear, anxiety, and pain disorders. Here, we examined how amygdala subnuclei resting-state functional connectivity is affected by sex, as well as explored how the functional connectivity is related to estrogen levels. Resting-state functional connectivity was measured using functional magnetic resonance imaging (fMRI) with seeds placed in the left and right laterobasal (LB) and centromedial (CM) amygdala. Sex differences were studied in 48 healthy men and 48 healthy women, matched for age, while the association with estrogen was analyzed in a subsample of 24 women, for whom hormone levels had been assessed. For the hormone analyses, the subsample was further divided into a lower and higher estrogen levels group based on a median split. We found distinct sex differences in the LB and CM amygdala resting-state functional connectivity, as well as preliminary evidence for an association between estrogen levels and connectivity patterns. These results are potentially valuable in explaining why women are more afflicted by conditions of negative affect than are men, and could imply a mechanistic role for estrogen in modulating emotion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Normative development of ventral striatal resting state connectivity in humans.
Fareri, Dominic S; Gabard-Durnam, Laurel; Goff, Bonnie; Flannery, Jessica; Gee, Dylan G; Lumian, Daniel S; Caldera, Christina; Tottenham, Nim
2015-09-01
Incentives play a crucial role in guiding behavior throughout our lives, but perhaps no more so than during the early years of life. The ventral striatum is a critical piece of an incentive-based learning circuit, sharing robust anatomical connections with subcortical (e.g., amygdala, hippocampus) and cortical structures (e.g., medial prefrontal cortex (mPFC), insula) that collectively support incentive valuation and learning. Resting-state functional connectivity (rsFC) is a powerful method that provides insight into the development of the functional architecture of these connections involved in incentive-based learning. We employed a seed-based correlation approach to investigate ventral striatal rsFC in a cross-sectional sample of typically developing individuals between the ages of 4.5 and 23-years old (n=66). Ventral striatal rsFC with the mPFC showed regionally specific linear age-related changes in connectivity that were associated with age-related increases in circulating testosterone levels. Further, ventral striatal connectivity with the posterior hippocampus and posterior insula demonstrated quadratic age-related changes characterized by negative connectivity in adolescence. Finally, across this age range, the ventral striatum demonstrated positive coupling with the amygdala beginning during childhood and remaining consistently positive across age. In sum, our findings suggest that normative ventral striatal rsFC development is dynamic and characterized by early establishment of connectivity with medial prefrontal and limbic structures supporting incentive-based learning, as well as substantial functional reorganization with later developing regions during transitions into and out of adolescence. Copyright © 2015. Published by Elsevier Inc.
The Effects of Taekwondo Training on Brain Connectivity and Body Intelligence.
Kim, Young Jae; Cha, Eun Joo; Kim, Sun Mi; Kang, Kyung Doo; Han, Doug Hyun
2015-07-01
Many studies have reported that Taekwondo training could improve body perception, control and brain activity, as assessed with an electroencephalogram. This study aimed to assess body intelligence and brain connectivity in children with Taekwondo training as compared to children without Taekwondo training. Fifteen children with Taekwondo training (TKD) and 13 age- and sex-matched children who had no previous experience of Taekwondo training (controls) were recruited. Body intelligence, clinical characteristics and brain connectivity in all children were assessed with the Body Intelligence Scale (BIS), self-report, and resting state functional magnetic resonance imaging. The mean BIS score in the TKD group was higher than that in the control group. The TKD group showed increased low-frequency fluctuations in the right frontal precentral gyrus and the right parietal precuneus, compared to the control group. The TKD group showed positive cerebellum vermis (lobe VII) seed to the right frontal, left frontal, and left parietal lobe. The control group showed positive cerebellum seed to the left frontal, parietal, and occipital cortex. Relative to the control group, the TKD group showed increased functional connectivity from cerebellum seed to the right inferior frontal gyrus. To the best of our knowledge, this is the first study to assess the effect of Taekwondo training on brain connectivity in children. Taekwondo training improved body intelligence and brain connectivity from the cerebellum to the parietal and frontal cortex.
Altered striatal intrinsic functional connectivity in pediatric anxiety
Dorfman, Julia; Benson, Brenda; Farber, Madeline; Pine, Daniel; Ernst, Monique
2016-01-01
Anxiety disorders are among the most common psychiatric disorders of adolescence. Behavioral and task-based imaging studies implicate altered reward system function, including striatal dysfunction, in adolescent anxiety. However, no study has yet examined alterations of the striatal intrinsic functional connectivity in adolescent anxiety disorders. The current study examines striatal intrinsic functional connectivity (iFC), using six bilateral striatal seeds, among 35 adolescents with anxiety disorders and 36 healthy comparisons. Anxiety is associated with abnormally low iFC within the striatum (e.g., between nucleus accumbens and caudate nucleus), and between the striatum and prefrontal regions, including subgenual anterior cingulate cortex, posterior insula and supplementary motor area. The current findings extend prior behavioral and task-based imaging research, and provide novel data implicating decreased striatal iFC in adolescent anxiety. Alterations of striatal neurocircuitry identified in this study may contribute to the perturbations in the processing of motivational, emotional, interoceptive, and motor information seen in pediatric anxiety disorders. This pattern of the striatal iFC perturbations can guide future research on specific mechanisms underlying anxiety. PMID:27004799
Chekroud, Adam M; Anand, Geetha; Yong, Jean; Pike, Michael; Bridge, Holly
2017-01-01
Opsoclonus-myoclonus syndrome (OMS) is a rare, poorly understood condition that can result in long-term cognitive, behavioural, and motor sequelae. Several studies have investigated structural brain changes associated with this condition, but little is known about changes in function. This study aimed to investigate changes in brain functional connectivity in patients with OMS. Seven patients with OMS and 10 age-matched comparison participants underwent 3T magnetic resonance imaging (MRI) to acquire resting-state functional MRI data (whole-brain echo-planar images; 2mm isotropic voxels; multiband factor ×2) for a cross-sectional study. A seed-based analysis identified brain regions in which signal changes over time correlated with the cerebellum. Model-free analysis was used to determine brain networks showing altered connectivity. In patients with OMS, the motor cortex showed significantly reduced connectivity, and the occipito-parietal region significantly increased connectivity with the cerebellum relative to the comparison group. A model-free analysis also showed extensive connectivity within a visual network, including the cerebellum and basal ganglia, not present in the comparison group. No other networks showed any differences between groups. Patients with OMS showed reduced connectivity between the cerebellum and motor cortex, but increased connectivity with occipito-parietal regions. This pattern of change supports widespread brain involvement in OMS. © 2016 Mac Keith Press.
Limbic hyperconnectivity in the vegetative state.
Di Perri, Carol; Bastianello, Stefano; Bartsch, Andreas J; Pistarini, Caterina; Maggioni, Giorgio; Magrassi, Lorenzo; Imberti, Roberto; Pichiecchio, Anna; Vitali, Paolo; Laureys, Steven; Di Salle, Francesco
2013-10-15
To investigate functional connectivity between the default mode network (DMN) and other networks in disorders of consciousness. We analyzed MRI data from 11 patients in a vegetative state and 7 patients in a minimally conscious state along with age- and sex-matched healthy control subjects. MRI data analysis included nonlinear spatial normalization to compensate for disease-related anatomical distortions. We studied brain connectivity data from resting-state MRI temporal series, combining noninferential (independent component analysis) and inferential (seed-based general linear model) methods. In DMN hypoconnectivity conditions, a patient's DMN functional connectivity shifts and paradoxically increases in limbic structures, including the orbitofrontal cortex, insula, hypothalamus, and the ventral tegmental area. Concurrently with DMN hypoconnectivity, we report limbic hyperconnectivity in patients in vegetative and minimally conscious states. This hyperconnectivity may reflect the persistent engagement of residual neural activity in self-reinforcing neural loops, which, in turn, could disrupt normal patterns of connectivity.
Mothersill, Omar; Tangney, Noreen; Morris, Derek W; McCarthy, Hazel; Frodl, Thomas; Gill, Michael; Corvin, Aiden; Donohoe, Gary
2017-06-01
Resting-state functional magnetic resonance imaging (rs-fMRI) has repeatedly shown evidence of altered functional connectivity of large-scale networks in schizophrenia. The relationship between these connectivity changes and behaviour (e.g. symptoms, neuropsychological performance) remains unclear. Functional connectivity in 27 patients with schizophrenia or schizoaffective disorder, and 25 age and gender matched healthy controls was examined using rs-fMRI. Based on seed regions from previous studies, we examined functional connectivity of the default, cognitive control, affective and attention networks. Effects of symptom severity and theory of mind performance on functional connectivity were also examined. Patients showed increased connectivity between key nodes of the default network including the precuneus and medial prefrontal cortex compared to controls (p<0.01, FWE-corrected). Increasing positive symptoms and increasing theory of mind performance were both associated with altered connectivity of default regions within the patient group (p<0.01, FWE-corrected). This study confirms previous findings of default hyper-connectivity in schizophrenia spectrum patients and reveals an association between altered default connectivity and positive symptom severity. As a novel find, this study also shows that default connectivity is correlated to and predictive of theory of mind performance. Extending these findings by examining the effects of emerging social cognition treatments on both default connectivity and theory of mind performance is now an important goal for research. Copyright © 2016 Elsevier B.V. All rights reserved.
Peeters, Sanne C. T.; van de Ven, Vincent; Gronenschild, Ed H. B. M; Patel, Ameera X.; Habets, Petra; Goebel, Rainer; van Os, Jim; Marcelis, Machteld
2015-01-01
Background Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder. Methods Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology. Results There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity. Discussion Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network “connectivity at rest” intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure. PMID:25790002
Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease
Price, J.L.; Yan, Z.; Morris, J.C.; Sheline, Y.I.
2011-01-01
Objective: Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB. Methods: Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus. Results: Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus. Conclusions: Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD. PMID:21525427
Corridors cause differential seed predation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrock, John L.; Damschen, Ellen I.
2005-06-01
Orrock, John, L., and Ellen I. Damschen. 2005. Corridors cause differential seed predation. Ecol. Apps. 15(3):793-798. Abstract. Corridors that connect disjunct populations are heavily debated in conservation, largely because the effects of corridors have rarely been evaluated by replicated, large-scale studies. Using large-scale experimental landscapes, we found that, in addition to documented positive effects, corridors also have negative impacts on bird-dispersed plants by affecting seed predation, and that overall predation is a function of the seeds primary consumer (rodents or arthropods). Both large-seeded Prunus serotina and small-seeded Rubus allegheniensis experienced greater predation in connected patches. However, P. serotina experienced significantlymore » less seed predation compared to R. allegheniensis in unconnected patches, due to decreased impacts of rodent seed predators on this large-seeded species. Viewed in light of previous evidence that corridors have beneficial impacts by increasing pollination and seed dispersal, this work demonstrates that corridors may have both positive and negative effects for the same plant species at different life stages. Moreover, these effects may differentially affect plant species within the same community: seeds primarily consumed by rodents suffer less predation in unconnected patches. By shifting the impact of rodent and arthropod seed predators, corridors constructed for plant conservation could lead to shifts in the seed bank.« less
Dopamine-induced changes in neural network patterns supporting aversive conditioning.
Diaconescu, Andreea Oliviana; Menon, Mahesh; Jensen, Jimmy; Kapur, Shitij; McIntosh, Anthony Randal
2010-02-08
The aim of the present paper is to assess the effects of altered dopamine (DA) transmission on the functional connectivity among brain regions mediating aversive conditioning in humans. To this aim, we analyzed a previous published data set from a double-blind design combined with functional magnetic resonance imaging (fMRI) recordings in which healthy volunteers were randomly assigned to one of three drug groups: amphetamine (an indirect DA agonist), haloperidol (DA D2 receptor antagonist), and placebo. Participants were exposed to an aversive classical conditioning paradigm using cutaneous electrical stimulation as the unconditioned stimulus (US), and visual cues as the conditioned stimuli (CS) where one colour (CS+) was followed by the US in 33% of the trials and another colour (CS-) had no consequences. All participants reported awareness of stimulus contingencies. Group analysis of fMRI data revealed that the left ventral striatum (VS) and amygdala activated in response to the CS+ in all the three groups. Because of their activation patterns and documented involvement in aversive conditioning, both regions were used as seeds in the functional connectivity analysis. To constrain the functional networks obtained to relate to the conditioned response, we also correlated seed activity with the Galvanic Skin Response (GSR). In the placebo group, the right ventral tegmental area/substantia nigra (VTA/SN), bilateral caudate, right parahippocampal gyrus, left inferior parietal lobule (IPL), bilateral postcentral gyrus, bilateral middle frontal (BA 46), orbitofrontal, and ventromedial prefrontal cortices (PFC, BA 10/11) correlated with the VS and amygdala seeds in response to the CS+ compared to the CS-. Enhancing dopamine transmission via amphetamine was associated with reduced task differences and significant functional connectivity for both CS+ and CS- conditions between the left VS seed and regions modulated by DA, such as the left VTA/SN, right caudate, left amygdala, left middle frontal gyrus (BA 46), and bilateral ventromedial PFC (BA 10). Blocking dopamine transmission via haloperidol was associated with significant functional connectivity across an alternate network of regions including the left amygdala seed and the right insula, the left ACC (BA 24/32), bilateral IPL (BA 40), precuneus (BA 7), post-central gyrus, middle frontal gyrus (BA 46), and supplementary motor area (SMA, BA 6) to the CS+ versus the CS-. These data provide insight into the distinct effects of DA agents on the functional connectivity between striatal, limbic, and prefrontal areas. Copyright 2009 Elsevier B.V. All rights reserved.
Yang, Xun; Kendrick, Keith Maurice; Wu, Qizhu; Chen, Taolin; Lama, Sunima; Cheng, Bochao; Li, Shiguang; Huang, Xiaoqi; Gong, Qiyong
2013-01-01
Shyness and social anxiety are correlated to some extent and both are associated with hyper-responsivity to social stimuli in the frontal cortex and limbic system. However to date no studies have investigated whether common structural and functional connectivity differences in the brain may contribute to these traits. We addressed this issue in a cohort of 61 healthy adult subjects. Subjects were first assessed for their levels of shyness (Cheek and Buss Shyness scale) and social anxiety (Liebowitz Social Anxiety scale) and trait anxiety. They were then given MRI scans and voxel-based morphometry and seed-based, resting-state functional connectivity analysis investigated correlations with shyness and anxiety scores. Shyness scores were positively correlated with gray matter density in the cerebellum, bilateral superior temporal gyri and parahippocampal gyri and right insula. Functional connectivity correlations with shyness were found between the superior temporal gyrus, parahippocampal gyrus and the frontal gyri, between the insula and precentral gyrus and inferior parietal lobule, and between the cerebellum and precuneus. Additional correlations were found for amygdala connectivity with the medial frontal gyrus, superior frontal gyrus and inferior parietal lobule, despite the absence of any structural correlation. By contrast no structural or functional connectivity measures correlated with social or trait anxiety. Our findings show that shyness is specifically associated with structural and functional connectivity changes in cortical and limbic regions involved with processing social stimuli. These associations are not found with social or trait anxiety in healthy subjects despite some behavioral correlations with shyness.
Ji-Wook Jeong; Seung-Hoon Chae; Eun Young Chae; Hak Hee Kim; Young Wook Choi; Sooyeul Lee
2016-08-01
A computer-aided detection (CADe) algorithm for clustered microcalcifications (MCs) in reconstructed digital breast tomosynthesis (DBT) images is suggested. The MC-like objects were enhanced by a Hessian-based 3D calcification response function, and a signal-to-noise ratio (SNR) enhanced image was also generated to screen the MC clustering seed objects. A connected component segmentation method was used to detect the cluster seed objects, which were considered as potential clustering centers of MCs. Bounding cubes for the accepted clustering seed candidate were generated and the overlapping cubes were combined and examined. After the MC clustering and false-positive (FP) reduction step, the average number of FPs was estimated to be 0.87 per DBT volume with a sensitivity of 90.5%.
Zhu, Xi; Helpman, Liat; Papini, Santiago; Schneier, Franklin; Markowitz, John C; Van Meter, Page E; Lindquist, Martin A; Wager, Tor D; Neria, Yuval
2017-07-01
Individuals with comorbid posttraumatic stress disorder and major depressive disorder (PTSD-MDD) often exhibit greater functional impairment and poorer treatment response than individuals with PTSD alone. Research has not determined whether PTSD-MDD is associated with different network connectivity abnormalities than PTSD alone. We used functional magnetic resonance imaging (fMRI) to measure resting state functional connectivity (rs-FC) patterns of brain regions involved in fear and reward processing in three groups: patients with PTSD-alone (n = 27), PTSD-MDD (n = 21), and trauma-exposed healthy controls (TEHCs, n = 34). Based on previous research, seeds included basolateral amygdala (BLA), centromedial amygdala (CMA), and nucleus accumbens (NAcc). Regardless of MDD comorbidity, PTSD was associated with decreased connectivity of BLA-orbitalfrontal cortex (OFC) and CMA-thalamus pathways, key to fear processing, and fear expression, respectively. PTSD-MDD, compared to PTSD-alone and TEHC, was associated with decreased connectivity across multiple amygdala and striatal-subcortical pathways: BLA-OFC, NAcc-thalamus, and NAcc-hippocampus. Further, while both the BLA-OFC and the NAcc-thalamus pathways were correlated with MDD symptoms, PTSD symptoms correlated with the amygdala pathways (BLA-OFC; CMA-thalamus) only. Comorbid PTSD-MDD may be associated with multifaceted functional connectivity alterations in both fear and reward systems. Clinical implications are discussed. © 2016 Wiley Periodicals, Inc.
Li, Xiaobo; Branch, Craig A; Nierenberg, Jay; Delisi, Lynn E
2010-03-01
Schizophrenia has a strong genetic component that is relevant to the understanding of the pathophysiology of the syndrome. Thus, recent investigations have shifted from studies of diagnosed patients with schizophrenia to examining their unaffected relatives. Previous studies found that during language processing, relatives thought to be at genetic high-risk for the disorder exhibit aberrant functional activation in regions of language processing, specifically in the left inferior frontal gyrus (Broca's area). However, functional connectivity among the regions involved in language pathways is not well understood. In this study, we examined the functional connectivity between a seed located in Broca's area and the remainder of the brain during a visual lexical decision task, in 20 schizophrenia patients, 21 subjects at genetic high risk for the disorder and 21 healthy controls. Both the high-risk subjects and patients showed significantly reduced activation correlations between seed and regions related to visual language processing. Compared to the high-risk subjects, the schizophrenia patients showed even fewer regions that were correlated with the seed regions. These results suggest that there is aberrant functional connectivity within cortical language circuitry in high-risk subjects and patients with schizophrenia. Broca's area, which is one of the important regions for language processing in healthy controls, had a significantly reduced role in the high-risk subjects and patients with schizophrenia. Our findings are consistent with the existence of an underlying biological disturbance that begins in genetically at risk individuals and progresses to a greater extent in those who eventually develop schizophrenia.
Evoked itch perception is associated with changes in functional brain connectivity.
Desbordes, Gaëlle; Li, Ang; Loggia, Marco L; Kim, Jieun; Schalock, Peter C; Lerner, Ethan; Tran, Thanh N; Ring, Johannes; Rosen, Bruce R; Kaptchuk, Ted J; Pfab, Florian; Napadow, Vitaly
2015-01-01
Chronic itch, a highly debilitating condition, has received relatively little attention in the neuroimaging literature. Recent studies suggest that brain regions supporting itch in chronic itch patients encompass sensorimotor and salience networks, and corticostriatal circuits involved in motor preparation for scratching. However, how these different brain areas interact with one another in the context of itch is still unknown. We acquired BOLD fMRI scans in 14 atopic dermatitis patients to investigate resting-state functional connectivity before and after allergen-induced itch exacerbated the clinical itch perception in these patients. A seed-based analysis revealed decreased functional connectivity from baseline resting state to the evoked-itch state between several itch-related brain regions, particularly the insular and cingulate cortices and basal ganglia, where decreased connectivity was significantly correlated with increased levels of perceived itch. In contrast, evoked itch increased connectivity between key nodes of the frontoparietal control network (superior parietal lobule and dorsolateral prefrontal cortex), where higher increase in connectivity was correlated with a lesser increase in perceived itch, suggesting that greater interaction between nodes of this executive attention network serves to limit itch sensation via enhanced top-down regulation. Overall, our results provide the first evidence of itch-dependent changes in functional connectivity across multiple brain regions.
Donald, Kirsten A; Ipser, Jonathan C; Howells, Fleur M; Roos, Annerine; Fouche, Jean-Paul; Riley, Edward P; Koen, Nastassja; Woods, Roger P; Biswal, Bharat; Zar, Heather J; Narr, Katherine L; Stein, Dan J
2016-01-01
Children exposed to alcohol in utero demonstrate reduced white matter microstructural integrity. While early evidence suggests altered functional brain connectivity in the lateralization of motor networks in school-age children with prenatal alcohol exposure (PAE), the specific effects of alcohol exposure on the establishment of intrinsic connectivity in early infancy have not been explored. Sixty subjects received functional imaging at 2 to 4 weeks of age for 6 to 8 minutes during quiet natural sleep. Thirteen alcohol-exposed (PAE) and 14 age-matched control (CTRL) participants with usable data were included in a multivariate model of connectivity between sensorimotor intrinsic functional connectivity networks. Seed-based analyses of group differences in interhemispheric connectivity of intrinsic motor networks were also conducted. The Dubowitz neurological assessment was performed at the imaging visit. Alcohol exposure was associated with significant increases in connectivity between somatosensory, motor networks, brainstem/thalamic, and striatal intrinsic networks. Reductions in interhemispheric connectivity of motor and somatosensory networks did not reach significance. Although results are preliminary, findings suggest PAE may disrupt the temporal coherence in blood oxygenation utilization in intrinsic networks underlying motor performance in newborn infants. Studies that employ longitudinal designs to investigate the effects of in utero alcohol exposure on the evolving resting-state networks will be key in establishing the distribution and timing of connectivity disturbances already described in older children. Copyright © 2016 by the Research Society on Alcoholism.
Void space inside the developing seed of Brassica napus and the modelling of its function
Verboven, Pieter; Herremans, Els; Borisjuk, Ljudmilla; Helfen, Lukas; Ho, Quang Tri; Tschiersch, Henning; Fuchs, Johannes; Nicolaï, Bart M; Rolletschek, Hardy
2013-01-01
The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected. In silico modelling revealed a three orders of magnitude range in oxygen diffusivity from tissue to tissue, and identified major barriers to gas exchange. The oxygen pool stored in the voids is consumed about once per minute. The function of the void space was related to the tissue-specific distribution of storage oils, storage protein and starch, as well as oxygen, water, sugars, amino acids and the level of respiratory activity, analysed using a combination of magnetic resonance imaging, specific oxygen sensors, laser micro-dissection, biochemical and histological methods. We conclude that the size and inter-connectivity of void spaces are major determinants of gas exchange potential, and locally affect the respiratory activity of a developing seed. PMID:23692271
Extraversion modulates functional connectivity hubs of resting-state brain networks.
Pang, Yajing; Cui, Qian; Duan, Xujun; Chen, Heng; Zeng, Ling; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu
2017-09-01
Personality dimension extraversion describes individual differences in social behaviour and socio-emotional functioning. The intrinsic functional connectivity patterns of the brain are reportedly associated with extraversion. However, whether or not extraversion is associated with functional hubs warrants clarification. Functional hubs are involved in the rapid integration of neural processing, and their dysfunction contributes to the development of neuropsychiatric disorders. In this study, we employed the functional connectivity density (FCD) method for the first time to distinguish the energy-efficient hubs associated with extraversion. The resting-state functional magnetic resonance imaging data of 71 healthy subjects were used in the analysis. Short-range FCD was positively correlated with extraversion in the left cuneus, revealing a link between the local functional activity of this region and extraversion in risk-taking. Long-range FCD was negatively correlated with extraversion in the right superior frontal gyrus and the inferior frontal gyrus. Seed-based resting-state functional connectivity (RSFC) analyses revealed that a decreased long-range FCD in individuals with high extraversion scores showed a low long-range functional connectivity pattern between the medial and dorsolateral prefrontal cortex, middle temporal gyrus, and anterior cingulate cortex. This result suggests that decreased RSFC patterns are responsible for self-esteem, self-evaluation, and inhibitory behaviour system that account for the modulation and shaping of extraversion. Overall, our results emphasize specific brain hubs, and reveal long-range functional connections in relation to extraversion, thereby providing a neurobiological basis of extraversion. © 2015 The British Psychological Society.
Sleep and meal-time misalignment alters functional connectivity: a pilot resting-state study.
Yoncheva, Y N; Castellanos, F X; Pizinger, T; Kovtun, K; St-Onge, M-P
2016-11-01
Delayed sleep and meal times promote metabolic dysregulation and obesity. Altered coordination of sleeping and eating times may impact food-reward valuation and interoception in the brain, yet the independent and collective contributions of sleep and meal times are unknown. This randomized, in-patient crossover study experimentally manipulates sleep and meal times while preserving sleep duration (7.05±0.44 h for 5 nights). Resting-state functional magnetic resonance imaging scans (2 × 5-minute runs) were obtained for four participants (three males; 25.3±4.6 years), each completing all study phases (normal sleep/normal meal; late sleep/normal meal; normal sleep/late meal; and late sleep/late meal). Normal mealtimes were 1, 5, 11 and 12.5 h after awakening; late mealtimes were 4.5, 8.5, 14.5 and 16 h after awakening. Seed-based resting-state functional connectivity (RSFC) was computed for a priori regions-of-interest (seeds) and contrasted across conditions. Statistically significant (P<0.05, whole-brain corrected) regionally specific effects were found for multiple seeds. The strongest effects were linked to the amygdala: increased RSFC for late versus normal mealtimes (equivalent to skipping breakfast). A main effect of sleep and interaction with meal time were also observed. Preliminary findings support the feasibility of examining the effects of sleep and meal-time misalignment, independent of sleep duration, on RSFC in regions relevant to food reward and interoception.
Piervincenzi, Claudia; Galli, Manuela; Melgari, Jean Marc; Salomone, Gaetano; Sale, Patrizio; Mallio, Carlo Augusto; Carducci, Filippo; Stocchi, Fabrizio
2015-01-01
Objective The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease. Methods Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition. Results Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79). Conclusions Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration. Classification of Evidence This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest. Trial Registration Clinical Trials.gov NCT01815281 PMID:26469868
Quattrocchi, Carlo Cosimo; de Pandis, Maria Francesca; Piervincenzi, Claudia; Galli, Manuela; Melgari, Jean Marc; Salomone, Gaetano; Sale, Patrizio; Mallio, Carlo Augusto; Carducci, Filippo; Stocchi, Fabrizio
2015-01-01
The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease. Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition. Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79). Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration. This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest. Clinical Trials.gov NCT01815281.
Mackey, Scott; Olafsson, Valur; Aupperle, Robin L; Lu, Kun; Fonzo, Greg A; Parnass, Jason; Liu, Thomas; Paulus, Martin P
2016-09-01
The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior.
Mackey, Scott; Olafsson, Valur; Aupperle, Robin; Lu, Kun; Fonzo, Greg; Parnass, Jason; Liu, Thomas; Paulus, Martin P.
2015-01-01
The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior. PMID:26271206
Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder
Miller, Danielle R.; Hayes, Scott M.; Hayes, Jasmeet P.; Spielberg, Jeffrey M.; Lafleche, Ginette; Verfaellie, Mieke
2017-01-01
Background Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Methods Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Results Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Conclusions Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology. PMID:28435932
Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder.
Miller, Danielle R; Hayes, Scott M; Hayes, Jasmeet P; Spielberg, Jeffrey M; Lafleche, Ginette; Verfaellie, Mieke
2017-05-01
Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology.
NASA Astrophysics Data System (ADS)
Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong
2013-03-01
The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.
Carbonell, F; Bellec, P; Shmuel, A
2014-02-01
The effect of regressing out the global average signal (GAS) in resting state fMRI data has become a concern for interpreting functional connectivity analyses. It is not clear whether the reported anti-correlations between the Default Mode and the Dorsal Attention Networks are intrinsic to the brain, or are artificially created by regressing out the GAS. Here we introduce a concept, Impact of the Global Average on Functional Connectivity (IGAFC), for quantifying the sensitivity of seed-based correlation analyses to the regression of the GAS. This voxel-wise IGAFC index is defined as the product of two correlation coefficients: the correlation between the GAS and the fMRI time course of a voxel, times the correlation between the GAS and the seed time course. This definition enables the calculation of a threshold at which the impact of regressing-out the GAS would be large enough to introduce spurious negative correlations. It also yields a post-hoc impact correction procedure via thresholding, which eliminates spurious correlations introduced by regressing out the GAS. In addition, we introduce an Artificial Negative Correlation Index (ANCI), defined as the absolute difference between the IGAFC index and the impact threshold. The ANCI allows a graded confidence scale for ranking voxels according to their likelihood of showing artificial correlations. By applying this method, we observed regions in the Default Mode and Dorsal Attention Networks that were anti-correlated. These findings confirm that the previously reported negative correlations between the Dorsal Attention and Default Mode Networks are intrinsic to the brain and not the result of statistical manipulations. Our proposed quantification of the impact that a confound may have on functional connectivity can be generalized to global effect estimators other than the GAS. It can be readily applied to other confounds, such as systemic physiological or head movement interferences, in order to quantify their impact on functional connectivity in the resting state. © 2013.
White matter structural connectivity is associated with sensorimotor function in stroke survivors☆
Kalinosky, Benjamin T.; Schindler-Ivens, Sheila; Schmit, Brian D.
2013-01-01
Purpose Diffusion tensor imaging (DTI) provides functionally relevant information about white matter structure. Local anatomical connectivity information combined with fractional anisotropy (FA) and mean diffusivity (MD) may predict functional outcomes in stroke survivors. Imaging methods for predicting functional outcomes in stroke survivors are not well established. This work uses DTI to objectively assess the effects of a stroke lesion on white matter structure and sensorimotor function. Methods A voxel-based approach is introduced to assess a stroke lesion's global impact on motor function. Anatomical T1-weighted and diffusion tensor images of the brain were acquired for nineteen subjects (10 post-stroke and 9 age-matched controls). A manually selected volume of interest was used to alleviate the effects of stroke lesions on image registration. Images from all subjects were registered to the images of the control subject that was anatomically closest to Talairach space. Each subject's transformed image was uniformly seeded for DTI tractography. Each seed was inversely transformed into the individual subject space, where DTI tractography was conducted and then the results were transformed back to the reference space. A voxel-wise connectivity matrix was constructed from the fibers, which was then used to calculate the number of directly and indirectly connected neighbors of each voxel. A novel voxel-wise indirect structural connectivity (VISC) index was computed as the average number of direct connections to a voxel's indirect neighbors. Voxel-based analyses (VBA) were performed to compare VISC, FA, and MD for the detection of lesion-induced changes in sensorimotor function. For each voxel, a t-value was computed from the differences between each stroke brain and the 9 controls. A series of linear regressions was performed between Fugl-Meyer (FM) assessment scores of sensorimotor impairment and each DTI metric's log number of voxels that differed from the control group. Results Correlation between the logarithm of the number of significant voxels in the ipsilesional hemisphere and total Fugl-Meyer score was moderate for MD (R2 = 0.512), and greater for VISC (R2 = 0.796) and FA (R2 = 0.674). The slopes of FA (p = 0.0036), VISC (p = 0.0005), and MD (p = 0.0199) versus the total FM score were significant. However, these correlations were driven by the upper extremity motor component of the FM score (VISC: R2 = 0.879) with little influence of the lower extremity motor component (FA: R2 = 0.177). Conclusion The results suggest that a voxel-wise metric based on DTI tractography can predict upper extremity sensorimotor function of stroke survivors, and that supraspinal intraconnectivity may have a less dominant role in lower extremity function. PMID:24179827
Deogaonkar, Milind; Sharma, Mayur; Oluigbo, Chima; Nielson, Dylan M; Yang, Xiangyu; Vera-Portocarrero, Louis; Molnar, Gregory F; Abduljalil, Amir; Sederberg, Per B; Knopp, Michael; Rezai, Ali R
2016-02-01
The neurophysiological basis of pain relief due to spinal cord stimulation (SCS) and the related cortical processing of sensory information are not completely understood. The aim of this study was to use resting state functional magnetic resonance imaging (rs-fMRI) to detect changes in cortical networks and cortical processing related to the stimulator-induced pain relief. Ten patients with complex regional pain syndrome (CRPS) or neuropathic leg pain underwent thoracic epidural spinal cord stimulator implantation. Stimulation parameters associated with "optimal" pain reduction were evaluated prior to imaging studies. Rs-fMRI was obtained on a 3 Tesla, Philips Achieva MRI. Rs-fMRI was performed with stimulator off (300TRs) and stimulator at optimum (Opt, 300 TRs) pain relief settings. Seed-based analysis of the resting state functional connectivity was conducted using seeds in regions established as participating in pain networks or in the default mode network (DMN) in addition to the network analysis. NCUT (normalized cut) parcellation was used to generate 98 cortical and subcortical regions of interest in order to expand our analysis of changes in functional connections to the entire brain. We corrected for multiple comparisons by limiting the false discovery rate to 5%. Significant differences in resting state connectivity between SCS off and optimal state were seen between several regions related to pain perception, including the left frontal insula, right primary and secondary somatosensory cortices, as well as in regions involved in the DMN, such as the precuneus. In examining changes in connectivity across the entire brain, we found decreased connection strength between somatosensory and limbic areas and increased connection strength between somatosensory and DMN with optimal SCS resulting in pain relief. This suggests that pain relief from SCS may be reducing negative emotional processing associated with pain, allowing somatosensory areas to become more integrated into default mode activity. SCS reduces the affective component of pain resulting in optimal pain relief. Study shows a decreased connectivity between somatosensory and limbic areas associated with optimal pain relief due to SCS. © 2015 International Neuromodulation Society.
BOLD signal and functional connectivity associated with loving kindness meditation
Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A
2014-01-01
Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as “may all beings be happy,” to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices. PMID:24944863
Development of the Intrinsic Language Network in Preschool Children from Ages 3 to 5 Years.
Xiao, Yaqiong; Brauer, Jens; Lauckner, Mark; Zhai, Hongchang; Jia, Fucang; Margulies, Daniel S; Friederici, Angela D
2016-01-01
Resting state studies of spontaneous fluctuations in the functional magnetic resonance imaging (fMRI) blood oxygen level dependent signal have shown great potential in mapping the intrinsic functional connectivity of the human brain underlying cognitive functions. The aim of the present study was to explore the developmental changes in functional networks of the developing human brain exemplified with the language network in typically developing preschool children. To this end, resting-sate fMRI data were obtained from native Chinese children at ages of 3 and 5 years, 15 in each age group. Resting-state functional connectivity (RSFC) was analyzed for four regions of interest; these are the left and right anterior superior temporal gyrus (aSTG), left posterior superior temporal gyrus (pSTG), and left inferior frontal gyrus (IFG). The comparison of these RSFC maps between 3- and 5-year-olds revealed that RSFC decreases in the right aSTG and increases in the left hemisphere between aSTG seed and IFG, between pSTG seed and IFG, as well as between IFG seed and posterior superior temporal sulcus. In a subsequent analysis, functional asymmetry of the language network seeding in aSTG, pSTG and IFG was further investigated. The results showed an increase of left lateralization in both RSFC of pSTG and of IFG from ages 3 to 5 years. The IFG showed a leftward lateralized trend in 3-year-olds, while pSTG demonstrated rightward asymmetry in 5-year-olds. These findings suggest clear developmental trajectories of the language network between 3- and 5-year-olds revealed as a function of age, characterized by increasing long-range connections and dynamic hemispheric lateralization with age. Our study provides new insights into the developmental changes of a well-established functional network in young children and also offers a basis for future cross-culture and cross-age studies of the resting-state language network.
Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain.
Hawasli, Ammar H; Rutlin, Jerrel; Roland, Jarod L; Murphy, Rory K J; Song, Sheng-Kwei; Leuthardt, Eric C; Shimony, Joshua S; Ray, Wilson Z
2018-03-15
Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.
Ard, Tyler; Carver, Frederick W; Holroyd, Tom; Horwitz, Barry; Coppola, Richard
2015-08-01
In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers select one of several methods that measure a relationship between regions to determine connectivity, such as coherence, power correlations, and others. However, it is largely unknown if some are more suited than others for various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are able to assess the metrics' performances at detecting audiovisual integration by investigating connectivity between auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity measures in the beta band detect strong connections between visual and auditory areas during audiovisual integration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based connectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audiovisual integration in the current experimental context, it may not always be the best measure to detect connectivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may produce differential types of temporal relationships.
Neural Connectivity Evidence for a Categorical-Dimensional Hybrid Model of Autism Spectrum Disorder.
Elton, Amanda; Di Martino, Adriana; Hazlett, Heather Cody; Gao, Wei
2016-07-15
Autism spectrum disorder (ASD) encompasses a complex manifestation of symptoms that include deficits in social interaction and repetitive or stereotyped interests and behaviors. In keeping with the increasing recognition of the dimensional characteristics of ASD symptoms and the categorical nature of a diagnosis, we sought to delineate the neural mechanisms of ASD symptoms based on the functional connectivity of four known neural networks (i.e., default mode network, dorsal attention network, salience network, and executive control network). We leveraged an open data resource (Autism Brain Imaging Data Exchange) providing resting-state functional magnetic resonance imaging data sets from 90 boys with ASD and 95 typically developing boys. This data set also included the Social Responsiveness Scale as a dimensional measure of ASD traits. Seed-based functional connectivity was paired with linear regression to identify functional connectivity abnormalities associated with categorical effects of ASD diagnosis, dimensional effects of ASD-like behaviors, and their interaction. Our results revealed the existence of dimensional mechanisms of ASD uniquely affecting each network based on the presence of connectivity-behavioral relationships; these were independent of diagnostic category. However, we also found evidence of categorical differences (i.e., diagnostic group differences) in connectivity strength for each network as well as categorical differences in connectivity-behavioral relationships (i.e., diagnosis-by-behavior interactions), supporting the coexistence of categorical mechanisms of ASD. Our findings support a hybrid model for ASD characterization that includes a combination of categorical and dimensional brain mechanisms and provide a novel understanding of the neural underpinnings of ASD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Gould van Praag, Cassandra D; Garfinkel, Sarah N; Sparasci, Oliver; Mees, Alex; Philippides, Andrew O; Ware, Mark; Ottaviani, Cristina; Critchley, Hugo D
2017-03-27
Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition. These changes were accompanied by an increase in peak high frequency heart rate variability, indicating an increase in parasympathetic activity in the naturalistic condition in line with the Stress Recovery Theory of nature exposure. Changes in heart rate and the peak high frequency were correlated with baseline functional connectivity within the DMN and baseline parasympathetic tone respectively, highlighting the importance of individual neural and autonomic differences in the response to nature exposure. Our findings may help explain reported health benefits of exposure to natural environments, through identification of alterations to autonomic activity and functional coupling within the DMN when listening to naturalistic sounds.
Gould van Praag, Cassandra D.; Garfinkel, Sarah N.; Sparasci, Oliver; Mees, Alex; Philippides, Andrew O.; Ware, Mark; Ottaviani, Cristina; Critchley, Hugo D.
2017-01-01
Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition. These changes were accompanied by an increase in peak high frequency heart rate variability, indicating an increase in parasympathetic activity in the naturalistic condition in line with the Stress Recovery Theory of nature exposure. Changes in heart rate and the peak high frequency were correlated with baseline functional connectivity within the DMN and baseline parasympathetic tone respectively, highlighting the importance of individual neural and autonomic differences in the response to nature exposure. Our findings may help explain reported health benefits of exposure to natural environments, through identification of alterations to autonomic activity and functional coupling within the DMN when listening to naturalistic sounds. PMID:28345604
Thalamocortical dysconnectivity in schizophrenia
Woodward, Neil D.; Karbasforoushan, Haleh; Heckers, Stephan
2013-01-01
Objective The thalamus and cerebral cortex are connected via topographically organized, reciprocal connections. Previous studies revealed thalamic abnormalities in schizophrenia; however, it is not known if thalamocortical networks are differentially affected in the disorder. To explore this possibility, we examined functional connectivity in intrinsic low frequency blood-oxygen-level-dependent (BOLD) signal fluctuations between major divisions of the cortex and thalamus using resting-state functional magnetic resonance imaging. Method 77 healthy subjects and 62 patients with schizophrenia underwent resting-state fMRI. To identify functional subdivisions of the thalamus, we parceled the cortex into six regions-of-interest; prefrontal, motor, somatosensory, temporal, posterior parietal, and occipital cortex. Mean BOLD time-series was extracted from each of the regions-of-interest and entered into a seed-based functional connectivity analysis. Results Consistent with prior reports, activity in distinct cortical areas correlated with specific, largely non-overlapping regions of the thalamus in both healthy subjects and schizophrenia patients. Direct comparison between groups revealed reduced prefrontal-thalamic connectivity and increased motor/somatosensory-thalamic connectivity in schizophrenia. The changes in connectivity were unrelated to local grey matter content within the thalamus and antipsychotic medication dosage. No differences were observed in temporal, posterior parietal, and occipital cortex connectivity with the thalamus. Conclusions This study establishes differential abnormalities of thalamocortical networks in schizophrenia. The etiology of schizophrenia may disrupt the development of prefrontal-thalamic connectivity and refinement of somatomotor connectivity with the thalamus that occurs during brain maturation. PMID:23032387
Brunet-Benkhoucha, M; Verhaegen, F; Lassalle, S; Béliveau-Nadeau, D; Reniers, B; Donath, D; Taussky, D; Carrier, J-F
2008-07-01
To develop a tomosynthesis-based dose assessment procedure that can be performed after an I-125 prostate seed implantation, while the patient is still under anaesthesia on the treatment table. Our seed detection procedure involves the reconstruction of a volume of interest based on the backprojection of 7 seed-only binary images acquired over an angle of 60° with an isocentric imaging system. A binary seed-only volume is generated by a simple thresholding of the volume of interest. Seeds positions are extracted from this volume with a 3D connected component analysis and a statistical classifier that determines the number of seeds in each cluster of connected voxels. A graphical user interface (GUI) allows to visualize the result and to introduce corrections, if needed. A phantom and a clinical study (24 patients) were carried out to validate the technique. A phantom study demonstrated a very good localization accuracy of (0.4+/-0.4) mm when compared to CT-based reconstruction. This leads to dosimetric error on D90 and V100 of respectively 0.5% and 0.1%. In a patient study with an average of 56 seeds per implant, the automatic tomosynthesis-based reconstruction yields a detection rate of 96% of the seeds and less than 1.5% of false-positives. With the help of the GUI, the user can achieve a 100% detection rate in an average of 3 minutes. This technique would allow to identify possible underdosage and to correct it by potentially reimplanting additional seeds. A more uniform dose coverage could then be achieved in LDR prostate brachytherapy. © 2008 American Association of Physicists in Medicine.
Altered Resting State Functional Connectivity in Young Survivors of Acute Lymphoblastic Leukemia
Kesler, Shelli R.; Gugel, Meike; Pritchard-Berman, Mika; Lee, Clement; Kutner, Emily; Hosseini, S.M. Hadi; Dahl, Gary; Lacayo, Norman
2014-01-01
Background Chemotherapy treatment for pediatric acute lymphoblastic leukemia (ALL) has been associated with long-term cognitive impairments in some patients. However, the neurobiologic mechanisms underlying these impairments, particularly in young survivors, are not well understood. This study aimed to examine intrinsic functional brain connectivity in pediatric ALL and its relationship with cognitive status. Procedure We obtained resting state functional magnetic resonance imaging (rsfMRI) and cognitive testing data from 15 ALL survivors age 8–15 years and 14 matched healthy children. The ALL group had a history of intrathecal chemotherapy treatment but were off-therapy for at least 6 months at the time of enrollment. We used seed-based analyses to compare intrinsic functional brain network connectivity between the groups. We also explored correlations between connectivity and cognitive performance, demographic, medical, and treatment variables. Results We demonstrated significantly reduced connectivity between bilateral hippocampus, left inferior occipital, left lingual gyrus, bilateral calcarine sulcus, and right amygdala in the ALL group compared to controls. The ALL group also showed regions of functional hyperconnectivity including right lingual gyrus, precuneus, bilateral superior occipital lobe, and right inferior occipital lobe. Functional hypoconnectivity was associated with reduced cognitive function as well as younger age at diagnosis in the ALL group. Conclusions This is the first study to demonstrate that intrinsic functional brain connectivity is disrupted in pediatric ALL following chemotherapy treatment. These results help explain cognitive dysfunction even when objective test performance is seemingly normal. Children diagnosed at a younger age may show increased vulnerability to altered functional brain connectivity. PMID:24619953
Ferraro, Stefania; Nigri, Anna; Bruzzone, Maria Grazia; Brivio, Luca; Proietti Cecchini, Alberto; Verri, Mattia; Chiapparini, Luisa; Leone, Massimo
2018-01-01
Objective We tested the hypothesis of a defective functional connectivity between the posterior hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache based on: a) clinical and neuro-endocrinological findings in cluster headache patients; b) neuroimaging findings during cluster headache attacks; c) neuroimaging findings in drug-refractory chronic cluster headache patients improved after successful deep brain stimulation. Methods Resting state functional magnetic resonance imaging, associated with a seed-based approach, was employed to investigate the functional connectivity of the posterior hypothalamus in chronic cluster headache patients (n = 17) compared to age and sex-matched healthy subjects (n = 16). Random-effect analyses were performed to study differences between patients and controls in ipsilateral and contralateral-to-the-pain posterior hypothalamus functional connectivity. Results Cluster headache patients showed an increased functional connectivity between the ipsilateral posterior hypothalamus and a number of diencephalic-mesencephalic structures, comprising ventral tegmental area, dorsal nuclei of raphe, and bilateral substantia nigra, sub-thalamic nucleus, and red nucleus ( p < 0.005 FDR-corrected vs . control group). No difference between patients and controls was found comparing the contralateral hypothalami. Conclusions The observed deranged functional connectivity between the posterior ipsilateral hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache patients mainly involves structures that are part of (i.e. ventral tegmental area, substantia nigra) or modulate (dorsal nuclei of raphe, sub-thalamic nucleus) the midbrain dopaminergic systems. The midbrain dopaminergic systems could play a role in cluster headache pathophysiology and in particular in the chronicization process. Future studies are needed to better clarify if this finding is specific to cluster headache or if it represents an unspecific response to chronic pain.
Green, Tamar; Saggar, Manish; Ishak, Alexandra; Hong, David S; Reiss, Allan L
2017-07-18
Attention deficit hyperactivity disorder (ADHD) is strongly affected by sex, but sex chromosomes' effect on brain attention networks and cognition are difficult to examine in humans. This is due to significant etiologic heterogeneity among diagnosed individuals. In contrast, individuals with Turner syndrome (TS), who have substantially increased risk for ADHD symptoms, share a common genetic risk factor related to the absence of the X-chromosome, thus serving as a more homogeneous genetic model. Resting-state functional MRI was employed to examine differences in attention networks between girls with TS (n = 40) and age- sex- and Tanner-matched controls (n = 33). We compared groups on resting-state functional connectivity measures from data-driven independent components analysis (ICA) and hypothesis-based seed analysis. Using ICA, reduced connectivity was observed in both frontoparietal and dorsal attention networks. Similarly, using seeds in the bilateral intraparietal sulcus (IPS), reduced connectivity was observed between IPS and frontal and cerebellar regions. Finally, we observed a brain-behavior correlation between IPS-cerebellar connectivity and cognitive attention measures. These findings indicate that X-monosomy contributes affects to attention networks and cognitive dysfunction that might increase risk for ADHD. Our findings not only have clinical relevance for girls with TS, but might also serve as a biological marker in future research examining the effects of the intervention that targets attention skills. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms.
Ferri, J; Ford, J M; Roach, B J; Turner, J A; van Erp, T G; Voyvodic, J; Preda, A; Belger, A; Bustillo, J; O'Leary, D; Mueller, B A; Lim, K O; McEwen, S C; Calhoun, V D; Diaz, M; Glover, G; Greve, D; Wible, C G; Vaidya, J G; Potkin, S G; Mathalon, D H
2018-02-15
Schizophrenia (SZ) is a severe neuropsychiatric disorder associated with disrupted connectivity within the thalamic-cortico-cerebellar network. Resting-state functional connectivity studies have reported thalamic hypoconnectivity with the cerebellum and prefrontal cortex as well as thalamic hyperconnectivity with sensory cortical regions in SZ patients compared with healthy comparison participants (HCs). However, fundamental questions remain regarding the clinical significance of these connectivity abnormalities. Resting state seed-based functional connectivity was used to investigate thalamus to whole brain connectivity using multi-site data including 183 SZ patients and 178 matched HCs. Statistical significance was based on a voxel-level FWE-corrected height threshold of p < 0.001. The relationships between positive and negative symptoms of SZ and regions of the brain demonstrating group differences in thalamic connectivity were examined. HC and SZ participants both demonstrated widespread positive connectivity between the thalamus and cortical regions. Compared with HCs, SZ patients had reduced thalamic connectivity with bilateral cerebellum and anterior cingulate cortex. In contrast, SZ patients had greater thalamic connectivity with multiple sensory-motor regions, including bilateral pre- and post-central gyrus, middle/inferior occipital gyrus, and middle/superior temporal gyrus. Thalamus to middle temporal gyrus connectivity was positively correlated with hallucinations and delusions, while thalamus to cerebellar connectivity was negatively correlated with delusions and bizarre behavior. Thalamic hyperconnectivity with sensory regions and hypoconnectivity with cerebellar regions in combination with their relationship to clinical features of SZ suggest that thalamic dysconnectivity may be a core neurobiological feature of SZ that underpins positive symptoms.
Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity
Finn, Emily S.; Shen, Xilin; Holahan, John M.; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E.; Shaywitz, Bennett A.; Constable, R. Todd
2013-01-01
Background Functional connectivity analyses of fMRI data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which may result in mixing distinct activation timecourses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Methods Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Results Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Conclusions Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words based on their visual properties, while DYS readers recruit altered reading circuits and rely on laborious phonology-based “sounding out” strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. PMID:24124929
Dacosta-Aguayo, Rosalia; Graña, Manuel; Iturria-Medina, Yasser; Fernández-Andújar, Marina; López-Cancio, Elena; Cáceres, Cynthia; Bargalló, Núria; Barrios, Maite; Clemente, Immaculada; Toran, Pera; Forés, Rosa; Dávalos, Antoni; Auer, Tibor; Mataró, Maria
2015-01-01
Resting-state studies conducted with stroke patients are scarce. The study of brain activity and connectivity at rest provides a unique opportunity for the investigation of brain rewiring after stroke and plasticity changes. This study sought to identify dynamic changes in the functional organization of the default mode network (DMN) of stroke patients at three months after stroke. Eleven patients (eight male and three female; age range: 48–72) with right cortical and subcortical ischemic infarctions and 17 controls (eleven males and six females; age range: 57–69) were assessed by neurological and neuropsychological examinations and scanned with resting-state functional magnetic ressonance imaging. First, we explored group differences in functional activity within the DMN by means of probabilistic independent component analysis followed by a dual regression approach. Second, we estimated functional connectivity between 11 DMN nodes both locally by means of seed-based connectivity analysis, as well as globally by means of graph-computation analysis. We found that patients had greater DMN activity in the left precuneus and the left anterior cingulate gyrus when compared with healthy controls (P < 0.05 family-wise error corrected). Seed-based connectivity analysis showed that stroke patients had significant impairment (P = 0.014; threshold = 2.00) in the connectivity between the following five DMN nodes: left superior frontal gyrus (lSFG) and posterior cingulate cortex (t = 2.01); left parahippocampal gyrus and right superior frontal gyrus (t = 2.11); left parahippocampal gyrus and lSFG (t = 2.39); right parietal and lSFG (t = 2.29). Finally, mean path length obtained from graph-computation analysis showed positive correlations with semantic fluency test (rs = 0.454; P = 0.023), phonetic fluency test (rs = 0.523; P = 0.007) and the mini mental state examination (rs = 0.528; P = 0.007). In conclusion, the ability to regulate activity of the DMN appears to be a central part of normal brain function in stroke patients. Our study expands the understanding of the changes occurring in the brain after stroke providing a new avenue for investigating lesion-induced network plasticity. Hum Brain Mapp 36:577–590, 2015. © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:25324040
Kolla, Nathan J; Dunlop, Katharine; Meyer, Jeffrey H; Downar, Jonathan
2018-05-09
The influence of genetic variation on resting-state neural networks represents a burgeoning line of inquiry in psychiatric research. Monoamine oxidase A, an X-linked gene, is one example of a molecular target linked to brain activity in psychiatric illness. Monoamine oxidase A genetic variants, including the high and low variable nucleotide tandem repeat polymorphisms, have been shown to differentially affect brain functional connectivity in healthy humans. However, it is currently unknown whether these same polymorphisms influence resting-state brain activity in clinical conditions. Given its high burden on society and strong connection to violent behavior, antisocial personality disorder is a logical condition to study, since in vivo markers of monoamine oxidase A brain enzyme are reduced in key affect-modulating regions, and striatal levels of monoamine oxidase A show a relation with the functional connectivity of this same region. We utilized monoamine oxidase A genotyping and seed-to-voxel-based functional connectivity to investigate the relationship between genotype and corticostriatal connectivity in 21 male participants with severe antisocial personality disorder and 19 male healthy controls. Dorsal striatal connectivity to the frontal pole and anterior cingulate gyrus differentiated antisocial personality disorder subjects and healthy controls by monoamine oxidase A genotype. Furthermore, the linear relationship of proactive aggression to superior ventral striatal-angular gyrus functional connectivity differed by monoamine oxidase A genotype in the antisocial personality disorder groups. These results suggest that monoamine oxidase A genotype may affect corticostriatal connectivity in antisocial personality disorder and that these functional connections may also underlie use of proactive aggression in a genotype-specific manner.
Akiki, Teddy J; Averill, Christopher L; Wrocklage, Kristen M; Scott, J Cobb; Averill, Lynnette A; Schweinsburg, Brian; Alexander-Bloch, Aaron; Martini, Brenda; Southwick, Steven M; Krystal, John H; Abdallah, Chadi G
2018-08-01
Disruption in the default mode network (DMN) has been implicated in numerous neuropsychiatric disorders, including posttraumatic stress disorder (PTSD). However, studies have largely been limited to seed-based methods and involved inconsistent definitions of the DMN. Recent advances in neuroimaging and graph theory now permit the systematic exploration of intrinsic brain networks. In this study, we used resting-state functional magnetic resonance imaging (fMRI), diffusion MRI, and graph theoretical analyses to systematically examine the DMN connectivity and its relationship with PTSD symptom severity in a cohort of 65 combat-exposed US Veterans. We employed metrics that index overall connectivity strength, network integration (global efficiency), and network segregation (clustering coefficient). Then, we conducted a modularity and network-based statistical analysis to identify DMN regions of particular importance in PTSD. Finally, structural connectivity analyses were used to probe whether white matter abnormalities are associated with the identified functional DMN changes. We found decreased DMN functional connectivity strength to be associated with increased PTSD symptom severity. Further topological characterization suggests decreased functional integration and increased segregation in subjects with severe PTSD. Modularity analyses suggest a spared connectivity in the posterior DMN community (posterior cingulate, precuneus, angular gyrus) despite overall DMN weakened connections with increasing PTSD severity. Edge-wise network-based statistical analyses revealed a prefrontal dysconnectivity. Analysis of the diffusion networks revealed no alterations in overall strength or prefrontal structural connectivity. DMN abnormalities in patients with severe PTSD symptoms are characterized by decreased overall interconnections. On a finer scale, we found a pattern of prefrontal dysconnectivity, but increased cohesiveness in the posterior DMN community and relative sparing of connectivity in this region. The DMN measures established in this study may serve as a biomarker of disease severity and could have potential utility in developing circuit-based therapeutics. Published by Elsevier Inc.
Compensatory Hyperconnectivity in Developing Brains of Young Children With Type 1 Diabetes.
Saggar, Manish; Tsalikian, Eva; Mauras, Nelly; Mazaika, Paul; White, Neil H; Weinzimer, Stuart; Buckingham, Bruce; Hershey, Tamara; Reiss, Allan L
2017-03-01
Sustained dysregulation of blood glucose (hyper- or hypoglycemia) associated with type 1 diabetes (T1D) has been linked to cognitive deficits and altered brain anatomy and connectivity. However, a significant gap remains with respect to how T1D affects spontaneous at-rest connectivity in young developing brains. Here, using a large multisite study, resting-state functional MRI data were examined in young children with T1D ( n = 57; mean age = 7.88 years; 27 females) as compared with age-matched control subjects without diabetes ( n = 26; mean age = 7.43 years; 14 females). Using both model-driven seed-based analysis and model-free independent component analysis and controlling for age, data acquisition site, and sex, converging results were obtained, suggesting increased connectivity in young children with T1D as compared with control subjects without diabetes. Further, increased connectivity in children with T1D was observed to be positively associated with cognitive functioning. The observed positive association of connectivity with cognitive functioning in T1D, without overall group differences in cognitive function, suggests a putative compensatory role of hyperintrinsic connectivity in the brain in children with this condition. Altogether, our study attempts to fill a critical gap in knowledge regarding how dysglycemia in T1D might affect the brain's intrinsic connectivity at very young ages. © 2017 by the American Diabetes Association.
Jeong, Ji-Wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul
2016-01-01
We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.
Kirsch, Muriëlle; Guldenmund, Pieter; Ali Bahri, Mohamed; Demertzi, Athena; Baquero, Katherine; Heine, Lizette; Charland-Verville, Vanessa; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Gosseries, Olivia; Di Perri, Carol; Ziegler, Erik; Brichant, Jean-François; Soddu, Andrea; Bonhomme, Vincent; Laureys, Steven
2017-02-01
To reduce head movement during resting state functional magnetic resonance imaging, post-coma patients with disorders of consciousness (DOC) are frequently sedated with propofol. However, little is known about the effects of this sedation on the brain connectivity patterns in the damaged brain essential for differential diagnosis. In this study, we aimed to assess these effects. Using resting state functional magnetic resonance imaging 3T data obtained over several years of scanning patients for diagnostic and research purposes, we employed a seed-based approach to examine resting state connectivity in higher-order (default mode, bilateral external control, and salience) and lower-order (auditory, sensorimotor, and visual) resting state networks and connectivity with the thalamus, in 20 healthy unsedated controls, 8 unsedated patients with DOC, and 8 patients with DOC sedated with propofol. The DOC groups were matched for age at onset, etiology, time spent in DOC, diagnosis, standardized behavioral assessment scores, movement intensities, and pattern of structural brain injury (as assessed with T1-based voxel-based morphometry). DOC were associated with severely impaired resting state network connectivity in all but the visual network. Thalamic connectivity to higher-order network regions was also reduced. Propofol administration to patients was associated with minor further decreases in thalamic and insular connectivity. Our findings indicate that connectivity decreases associated with propofol sedation, involving the thalamus and insula, are relatively small compared with those already caused by DOC-associated structural brain injury. Nonetheless, given the known importance of the thalamus in brain arousal, its disruption could well reflect the diminished movement obtained in these patients. However, more research is needed on this topic to fully address the research question.
Berninger, Virginia W; Richards, Todd L; Abbott, Robert D
2017-11-01
This brief research report examines brain-behavioral relationships specific to levels of language in the complex reading brain. The first specific aim was to examine prior findings for significant fMRI connectivity from four seeds (left precuneus, left occipital temporal, left supramarginal, left inferior frontal) for each of four levels of language-subword, word (word-specific spelling or affixed words), syntax (with and without homonym foils or affix foils), and multi-sentence text to identify significant fMRI connectivity (a) unique to the lower level of language when compared to the immediately higher adjacent level of language across subword-word, word-syntax, and syntax-text comparisons; and (b) involving a brain region associated with executive functions. The second specific aim was to correlate the magnitude of that connectivity with standard scores on tests of Focused Attention (D-K EFS Color Word Form Inhibition) and Switching Attention (Wolf & Denckla Rapid Automatic Switching). Seven correlations were significant. Focused Attention was significantly correlated with the word level (word-specific spellings of real words) fMRI task in left cingulum from left inferior frontal seed. Switching Attention was significantly correlated with the (a) subword level (grapheme-phoneme correspondence) fMRI task in left and right Cerebellum V from left supramarginal seed; (b) the word level (word-specific spelling) fMRI task in right Cerebellum V from left precuneus seed; (c) the syntax level (with and without homonym foils) fMRI task in right Cerebellum V from left precuneus seed and from left supramarginal seed; and (d) syntax level (with and without affix foils) fMRI task in right Cerebellum V from left precuneus seed. Results are discussed in reference to neuropsychological assessment of supervisory attention (focused and switching) for specific levels of language related to reading acquisition in students with and without language-related specific learning disabilities and self-regulation of the complex reading brain.
Berninger, Virginia W.; Richards, Todd L.; Abbott, Robert D.
2017-01-01
This brief research report examines brain-behavioral relationships specific to levels of language in the complex reading brain. The first specific aim was to examine prior findings for significant fMRI connectivity from four seeds (left precuneus, left occipital temporal, left supramarginal, left inferior frontal) for each of four levels of language—subword, word (word-specific spelling or affixed words), syntax (with and without homonym foils or affix foils), and multi-sentence text to identify significant fMRI connectivity (a) unique to the lower level of language when compared to the immediately higher adjacent level of language across subword-word, word-syntax, and syntax-text comparisons; and (b) involving a brain region associated with executive functions. The second specific aim was to correlate the magnitude of that connectivity with standard scores on tests of Focused Attention (D-K EFS Color Word Form Inhibition) and Switching Attention (Wolf & Denckla Rapid Automatic Switching). Seven correlations were significant. Focused Attention was significantly correlated with the word level (word-specific spellings of real words) fMRI task in left cingulum from left inferior frontal seed. Switching Attention was significantly correlated with the (a) subword level (grapheme-phoneme correspondence) fMRI task in left and right Cerebellum V from left supramarginal seed; (b) the word level (word-specific spelling) fMRI task in right Cerebellum V from left precuneus seed; (c) the syntax level (with and without homonym foils) fMRI task in right Cerebellum V from left precuneus seed and from left supramarginal seed; and (d) syntax level (with and without affix foils) fMRI task in right Cerebellum V from left precuneus seed. Results are discussed in reference to neuropsychological assessment of supervisory attention (focused and switching) for specific levels of language related to reading acquisition in students with and without language-related specific learning disabilities and self-regulation of the complex reading brain. PMID:29104930
Functional connectivity of dissociation in patients with psychogenic non-epileptic seizures.
van der Kruijs, Sylvie J M; Bodde, Nynke M G; Vaessen, Maarten J; Lazeron, Richard H C; Vonck, Kristl; Boon, Paul; Hofman, Paul A M; Backes, Walter H; Aldenkamp, Albert P; Jansen, Jacobus F A
2012-03-01
Psychogenic non-epileptic seizures (PNES) resemble epileptic seizures, but lack epileptiform brain activity. Instead, the cause is assumed to be psychogenic. An abnormal coping strategy may be exhibited by PNES patients, as indicated by their increased tendency to dissociate. Investigation of resting-state networks may reveal altered routes of information and emotion processing in PNES patients. The authors therefore investigated whether PNES patients differ from healthy controls in their resting-state functional connectivity characteristics and whether these connections are associated with the tendency to dissociate. 11 PNES patients without psychiatric comorbidity and 12 healthy controls underwent task-related paradigms (picture-encoding and Stroop paradigms) and resting-state functional MRI (rsfMRI). Global cognitive performance was tested using the Raven's Matrices test and participants completed questionnaires for evaluating dissociation. Functional connectivity analysis on rsfMRI was based on seed regions extracted from task-related fMRI activation maps. The patients displayed a significantly lower cognitive performance and significantly higher dissociation scores. No significant differences were found between the picture-encoding and Stroop colour-naming activation maps between controls and patients with PNES. However, functional connectivity maps from the rsfMRI were statistically different. For PNES patients, stronger connectivity values between areas involved in emotion (insula), executive control (inferior frontal gyrus and parietal cortex) and movement (precentral sulcus) were observed, which were significantly associated with dissociation scores. The abnormal, strong functional connectivity in PNES patients provides a neurophysiological correlate for the underlying psychoform and somatoform dissociation mechanism where emotion can influence executive control, resulting in altered motor function (eg, seizure-like episodes).
Garrison, Kathleen A; Sinha, Rajita; Lacadie, Cheryl M; Scheinost, Dustin; Jastreboff, Ania M; Constable, R Todd; Potenza, Marc N
2016-09-01
Tobacco-use disorder is a complex condition involving multiple brain networks and presenting with multiple behavioral correlates including changes in diet and stress. In a previous functional magnetic resonance imaging (fMRI) study of neural responses to favorite-food, stress, and neutral-relaxing imagery, smokers versus nonsmokers demonstrated blunted corticostriatal-limbic responses to favorite-food cues. Based on other recent reports of alterations in functional brain networks in smokers, the current study examined functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery in smokers and nonsmokers, using the same dataset. The intrinsic connectivity distribution was measured to identify brain regions that differed in degree of functional connectivity between groups during each imagery condition. Resulting clusters were evaluated for seed-to-voxel connectivity to identify the specific connections that differed between groups during each imagery condition. During exposure to favorite-food imagery, smokers versus nonsmokers showed lower connectivity in the supramarginal gyrus, and differences in connectivity between the supramarginal gyrus and the corticostriatal-limbic system. During exposure to neutral-relaxing imagery, smokers versus nonsmokers showed greater connectivity in the precuneus, and greater connectivity between the precuneus and the posterior insula and rolandic operculum. During exposure to stress imagery, smokers versus nonsmokers showed lower connectivity in the cerebellum. These findings provide data-driven insights into smoking-related alterations in brain functional connectivity patterns related to appetitive, relaxing, and stressful states. This study uses a data-driven approach to demonstrate that smokers and nonsmokers show differential patterns of functional connectivity during guided imagery related to personalized favorite-food, stress, and neutral-relaxing cues, in brain regions implicated in attention, reward-related, emotional, and motivational processes. For smokers, these differences in connectivity may impact appetite, stress, and relaxation, and may interfere with smoking cessation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sinha, Rajita; Lacadie, Cheryl M.; Scheinost, Dustin; Jastreboff, Ania M.; Constable, R. Todd; Potenza, Marc N.
2016-01-01
Introduction: Tobacco-use disorder is a complex condition involving multiple brain networks and presenting with multiple behavioral correlates including changes in diet and stress. In a previous functional magnetic resonance imaging (fMRI) study of neural responses to favorite-food, stress, and neutral-relaxing imagery, smokers versus nonsmokers demonstrated blunted corticostriatal-limbic responses to favorite-food cues. Based on other recent reports of alterations in functional brain networks in smokers, the current study examined functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery in smokers and nonsmokers, using the same dataset. Methods: The intrinsic connectivity distribution was measured to identify brain regions that differed in degree of functional connectivity between groups during each imagery condition. Resulting clusters were evaluated for seed-to-voxel connectivity to identify the specific connections that differed between groups during each imagery condition. Results: During exposure to favorite-food imagery, smokers versus nonsmokers showed lower connectivity in the supramarginal gyrus, and differences in connectivity between the supramarginal gyrus and the corticostriatal-limbic system. During exposure to neutral-relaxing imagery, smokers versus nonsmokers showed greater connectivity in the precuneus, and greater connectivity between the precuneus and the posterior insula and rolandic operculum. During exposure to stress imagery, smokers versus nonsmokers showed lower connectivity in the cerebellum. Conclusions: These findings provide data-driven insights into smoking-related alterations in brain functional connectivity patterns related to appetitive, relaxing, and stressful states. Implications: This study uses a data-driven approach to demonstrate that smokers and nonsmokers show differential patterns of functional connectivity during guided imagery related to personalized favorite-food, stress, and neutral-relaxing cues, in brain regions implicated in attention, reward-related, emotional, and motivational processes. For smokers, these differences in connectivity may impact appetite, stress, and relaxation, and may interfere with smoking cessation. PMID:26995796
Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina
2018-01-01
Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772
Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina
2018-04-01
Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.
Aboud, Katherine S.; Bailey, Stephen K.; Petrill, Stephen A.; Cutting, Laurie E.
2016-01-01
Skilled reading depends on recognizing words efficiently in isolation (word-level processing; WL) and extracting meaning from text (discourse-level processing; DL); deficiencies in either result in poor reading. FMRI has revealed consistent overlapping networks in word and passage reading, as well as unique regions for DL processing, however less is known about how WL and DL processes interact. Here we examined functional connectivity from seed regions derived from where BOLD signal overlapped during word and passage reading in 38 adolescents ranging in reading ability, hypothesizing that even though certain regions support word- and higher-level language, connectivity patterns from overlapping regions would be task modulated. Results indeed revealed that the left-lateralized semantic and working memory (WM) seed regions showed task-dependent functional connectivity patterns: during DL processes, semantic and WM nodes all correlated with the left angular gyrus, a region implicated in semantic memory/coherence building. In contrast, during WL, these nodes coordinated with a traditional WL area (left occipitotemporal region). Additionally, these WL and DL findings were modulated by decoding and comprehension abilities, respectively, with poorer abilities correlating with decreased connectivity. Findings indicate that key regions may uniquely contribute to multiple levels of reading; we speculate that these connectivity patterns may be especially salient for reading outcomes and intervention response. PMID:27147257
Resting-state functional connectivity assessed with two diffuse optical tomographic systems.
Niu, Haijing; Khadka, Sabin; Tian, Fenghua; Lin, Zi-Jing; Lu, Chunming; Zhu, Chaozhe; Liu, Hanli
2011-04-01
Functional near-infrared spectroscopy (fNIRS) is recently utilized as a new approach to assess resting-state functional connectivity (RSFC) in the human brain. For any new technique or new methodology, it is necessary to be able to replicate similar experiments using different instruments in order to establish its liability and reproducibility. We apply two different diffuse optical tomographic (DOT) systems (i.e., DYNOT and CW5), with various probe arrangements to evaluate RSFC in the sensorimotor cortex by utilizing a previously published experimental protocol and seed-based correlation analysis. Our results exhibit similar spatial patterns and strengths in RSFC between the bilateral motor cortexes. The consistent observations are obtained from both DYNOT and CW5 systems, and are also in good agreement with the previous fNIRS study. Overall, we demonstrate that the fNIRS-based RSFC is reproducible by various DOT imaging systems among different research groups, enhancing the confidence of neuroscience researchers and clinicians to utilize fNIRS for future applications.
Default-Mode-Like Network Activation in Awake Rodents
Upadhyay, Jaymin; Baker, Scott J.; Chandran, Prasant; Miller, Loan; Lee, Younglim; Marek, Gerard J.; Sakoglu, Unal; Chin, Chih-Liang; Luo, Feng; Fox, Gerard B.; Day, Mark
2011-01-01
During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess ‘DMN-like’ functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = −0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks. PMID:22125628
VanBuren, Robert; Wai, Ching Man; Zhang, Qingwei; Song, Xiaomin; Edger, Patrick P; Bryant, Doug; Michael, Todd P; Mockler, Todd C; Bartels, Dorothea
2017-10-01
Resurrection plants desiccate during periods of prolonged drought stress, then resume normal cellular metabolism upon water availability. Desiccation tolerance has multiple origins in flowering plants, and it likely evolved through rewiring seed desiccation pathways. Oropetium thomaeum is an emerging model for extreme drought tolerance, and its genome, which is the smallest among surveyed grasses, was recently sequenced. Combining RNA-seq, targeted metabolite analysis and comparative genomics, we show evidence for co-option of seed-specific pathways during vegetative desiccation. Desiccation-related gene co-expression clusters are enriched in functions related to seed development including several seed-specific transcription factors. Across the metabolic network, pathways involved in programmed cell death inhibition, ABA signalling and others are activated during dehydration. Oleosins and oil bodies that typically function in seed storage are highly abundant in desiccated leaves and may function for membrane stability and storage. Orthologs to seed-specific LEA proteins from rice and maize have neofunctionalized in Oropetium with high expression during desiccation. Accumulation of sucrose, raffinose and stachyose in drying leaves mirrors sugar accumulation patterns in maturing seeds. Together, these results connect vegetative desiccation with existing seed desiccation and drought responsive pathways and provide some key candidate genes for engineering improved drought tolerance in crop plants. © 2017 John Wiley & Sons Ltd.
Schmidt, Sara A; Carpenter-Thompson, Jake; Husain, Fatima T
2017-01-01
Resting state functional connectivity studies of tinnitus have provided inconsistent evidence concerning its neural bases. This may be due to differences in the methodology used, but it is also likely related to the heterogeneity of the tinnitus population. In this study, our goal was to identify resting state functional connectivity alterations that consistently appear across tinnitus subgroups. We examined two sources of variability in the subgroups: tinnitus severity and the length of time a person has had chronic tinnitus (referred to as tinnitus duration). Data for the current large-scale analysis of variance originated partly from our earlier investigations (Schmidt et al., 2013; Carpenter-Thompson et al., 2015) and partly from previously unpublished studies. Decreased correlations between seed regions in the default mode network and the precuneus were consistent across individuals with long-term tinnitus (who have had tinnitus for greater than one year), with more bothersome tinnitus demonstrating stronger decreases. In the dorsal attention network, patients with moderately severe tinnitus showed increased correlations between seeds in the network and the precuneus, with this effect also present in only some patients with mild tinnitus. The same effects were not seen in patients with mild tinnitus and tinnitus duration between 6 and 12 months. Our results are promising initial steps towards identifying invariant neural correlates of tinnitus and indexing differences between subgroups.
Chen, Shuaiyu; Dong, Debo; Jackson, Todd; Su, Yanhua; Chen, Hong
2016-01-29
Theory and research have indicated that restrained eating (RE) increases risk for binge-eating and eating disorder symptoms. According to the goal conflict model, such risk may result from disrupted hedonic-feeding control and its interaction with reward-driven eating. However, RE-related alterations in functional interactions among associated underlying brain regions, especially between the cerebral hemispheres, have rarely been examined directly. Therefore, we investigated inter-hemispheric resting-state functional connectivity (RSFC) among female restrained eaters (REs) (n=23) and unrestrained eaters (UREs) (n=24) following food deprivation as well as its relation to overall bulimia nervosa (BN) symptoms using voxel-mirrored homotopic connectivity (VMHC). Seed-based RSFC associated with areas exhibiting significant VMHC differences was also assessed. Compared to UREs, REs showed reduced VMHC in the dorsal-lateral prefrontal cortex (DLPFC), an area involved in inhibiting hedonic overeating. REs also displayed decreased RSFC between the right DLPFC and regions associated with reward estimation--the ventromedial prefrontal cortex (VMPFC) and posterior cingulate cortex (PCC). Finally, bulimic tendencies had a negative correlation with VMHC in the DLPFC and a positive correlation with functional connectivity (DLPFC and VMPFC) among REs but not UREs. Findings suggested that reduced inter-hemispheric functional connectivity in appetite inhibition regions and altered functional connectivity in reward related regions may help to explain why some REs fail to control hedonically-motivated feeding and experience higher associated levels of BN symptomatology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P
2018-05-18
An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance. Copyright © 2018. Published by Elsevier Inc.
Imbalance in subregional connectivity of the right temporoparietal junction in major depression.
Poeppl, Timm B; Müller, Veronika I; Hoffstaedter, Felix; Bzdok, Danilo; Laird, Angela R; Fox, Peter T; Langguth, Berthold; Rupprecht, Rainer; Sorg, Christian; Riedl, Valentin; Goya-Maldonado, Roberto; Gruber, Oliver; Eickhoff, Simon B
2016-08-01
Major depressive disorder (MDD) involves impairment in cognitive and interpersonal functioning. The right temporoparietal junction (RTPJ) is a key brain region subserving cognitive-attentional and social processes. Yet, findings on the involvement of the RTPJ in the pathophysiology of MDD have so far been controversial. Recent connectivity-based parcellation data revealed a topofunctional dualism within the RTPJ, linking its anterior and posterior part (aRTPJ/pRTPJ) to antagonistic brain networks for attentional and social processing, respectively. Comparing functional resting-state connectivity of the aRTPJ and pRTPJ in 72 MDD patients and 76 well-matched healthy controls, we found a seed (aRTPJ/pRTPJ) × diagnosis (MDD/controls) interaction in functional connectivity for eight regions. Employing meta-data from a large-scale neuroimaging database, functional characterization of these regions exhibiting differentially altered connectivity with the aRTPJ/pRTPJ revealed associations with cognitive (dorsolateral prefrontal cortex, parahippocampus) and behavioral (posterior medial frontal cortex) control, visuospatial processing (dorsal visual cortex), reward (subgenual anterior cingulate cortex, medial orbitofrontal cortex, posterior cingulate cortex), as well as memory retrieval and social cognition (precuneus). These findings suggest that an imbalance in connectivity of subregions, rather than disturbed connectivity of the RTPJ as a whole, characterizes the connectional disruption of the RTPJ in MDD. This imbalance may account for key symptoms of MDD in cognitive, emotional, and social domains. Hum Brain Mapp 37:2931-2942, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Neural networks underlying trait aggression depend on MAOA gene alleles.
Klasen, Martin; Wolf, Dhana; Eisner, Patrick D; Habel, Ute; Repple, Jonathan; Vernaleken, Ingo; Schlüter, Thorben; Eggermann, Thomas; Zerres, Klaus; Zepf, Florian D; Mathiak, Klaus
2018-03-01
Low expressing alleles of the MAOA gene (MAOA-L) have been associated with an increased risk for developing an aggressive personality. This suggests an MAOA-L-specific neurobiological vulnerability associated with trait aggression. The neural networks underlying this vulnerability are unknown. The present study investigated genotype-specific associations between resting state brain networks and trait aggression (Buss-Perry Aggression Questionnaire) in 82 healthy Caucasian males. Genotype influences on aggression-related networks were studied for intrinsic and seed-based brain connectivity. Intrinsic connectivity was higher in the ventromedial prefrontal cortex (VMPFC) of MAOA-L compared to high expressing allele (MAOA-H) carriers. Seed-based connectivity analyses revealed genotype differences in the functional involvement of this region. MAOA genotype modulated the relationship between trait aggression and VMPFC connectivity with supramarginal gyrus (SMG) and areas of the default mode network (DMN). Separate analyses for the two groups were performed to better understand how the genotype modulated the relationship between aggression and brain networks. They revealed a positive correlation between VMPFC connectivity and aggression in right angular gyrus (AG) and a negative correlation in right SMG in the MAOA-L group. No such effect emerged in the MAOA-H carriers. The results indicate a particular relevance of VMPFC for aggression in MAOA-L carriers; in specific, a detachment from the DMN along with a strengthened coupling to the AG seems to go along with lower trait aggression. MAOA-L carriers may thus depend on a synchronization of emotion regulation systems (VMPFC) with core areas of empathy (SMG) to prevent aggression.
Abdallah, C G; Wrocklage, K M; Averill, C L; Akiki, T; Schweinsburg, B; Roy, A; Martini, B; Southwick, S M; Krystal, J H; Scott, J C
2017-02-28
The anterior hippocampus (aHPC) has a central role in the regulation of anxiety-related behavior, stress response, emotional memory and fear. However, little is known about the presence and extent of aHPC abnormalities in posttraumatic stress disorder (PTSD). In this study, we used a multimodal approach, along with graph-based measures of global brain connectivity (GBC) termed functional GBC with global signal regression (f-GBCr) and diffusion GBC (d-GBC), in combat-exposed US Veterans with and without PTSD. Seed-based aHPC anatomical connectivity analyses were also performed. A whole-brain voxel-wise data-driven investigation revealed a significant association between elevated PTSD symptoms and reduced medial temporal f-GBCr, particularly in the aHPC. Similarly, aHPC d-GBC negatively correlated with PTSD severity. Both functional and anatomical aHPC dysconnectivity measures remained significant after controlling for hippocampal volume, age, gender, intelligence, education, combat severity, depression, anxiety, medication status, traumatic brain injury and alcohol/substance comorbidities. Depression-like PTSD dimensions were associated with reduced connectivity in the ventromedial and dorsolateral prefrontal cortex. In contrast, hyperarousal symptoms were positively correlated with ventromedial and dorsolateral prefrontal connectivity. We believe the findings provide first evidence of functional and anatomical dysconnectivity in the aHPC of veterans with high PTSD symptomatology. The data support the putative utility of aHPC connectivity as a measure of overall PTSD severity. Moreover, prefrontal global connectivity may be of clinical value as a brain biomarker to potentially distinguish between PTSD subgroups.
Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy; Carter, Cameron S
2015-06-01
Suicide is highly prevalent in schizophrenia (SZ), yet it remains unclear how suicide risk factors such as past suicidal ideation or behavior relate to brain function. Circuits modulated by the prefrontal cortex (PFC) are altered in SZ, including in dorsal anterior cingulate cortex (dACC) during conflict-monitoring (an important component of cognitive control), and dACC changes are observed in post-mortem studies of heterogeneous suicide victims. We tested whether conflict-related dACC functional connectivity is associated with past suicidal ideation and behavior in SZ. 32 patients with recent-onset of DSM-IV-TR-defined SZ were evaluated with the Columbia Suicide Severity Rating Scale and functional MRI during cognitive control (AX-CPT) task performance. Group-level regression models relating past history of suicidal ideation or behavior to dACC-seeded functional connectivity during conflict-monitoring controlled for severity of depression, psychosis and impulsivity. Past suicidal ideation was associated with relatively higher functional connectivity of the dACC with the precuneus during conflict-monitoring. Intensity of worst-point past suicidal ideation was associated with relatively higher dACC functional connectivity in medial parietal lobe and striato-thalamic nuclei. In contrast, among those with past suicidal ideation (n = 17), past suicidal behavior was associated with lower conflict-related dACC connectivity with multiple lateral and medial PFC regions, parietal and temporal cortical regions. This study provides unique evidence that recent-onset schizophrenia patients with past suicidal ideation or behavior show altered dACC-based circuit function during conflict-monitoring. Suicidal ideation and suicidal behavior have divergent patterns of associated dACC functional connectivity, suggesting a differing pattern of conflict-related brain dysfunction with these two distinct features of suicide phenomenology. Published by Elsevier Ltd.
Young, Kymberly D; Siegle, Greg J; Misaki, Masaya; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy
2018-01-01
We have previously shown that in participants with major depressive disorder (MDD) trained to upregulate their amygdala hemodynamic response during positive autobiographical memory (AM) recall with real-time fMRI neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. Here, we assessed the effect of rtfMRI-nf on amygdala functional connectivity during both positive AM recall and rest. The current manuscript consists of a secondary analysis on data from our published clinical trial of neurofeedback. Patients with MDD completed two rtfMRI-nf sessions (18 received amygdala rtfMRI-nf, 16 received control parietal rtfMRI-nf). One-week prior-to and following training participants also completed a resting-state fMRI scan. A GLM-based functional connectivity analysis was applied using a seed ROI in the left amygdala. We compared amygdala functional connectivity changes while recalling positive AMs from the baseline run to the final transfer run during rtfMRI-nf training, as well during rest from the baseline to the one-week follow-up visit. Finally, we assessed the correlation between change in depression scores and change in amygdala connectivity, as well as correlations between amygdala regulation success and connectivity changes. Following training, amygdala connectivity during positive AM recall increased with widespread regions in the frontal and limbic network. During rest, amygdala connectivity increased following training within the fronto-temporal-limbic network. During both task and resting-state analyses, amygdala-temporal pole connectivity decreased. We identified increased amygdala-precuneus and amygdala-inferior frontal gyrus connectivity during positive memory recall and increased amygdala-precuneus and amygdala-thalamus connectivity during rest as functional connectivity changes that explained significant variance in symptom improvement. Amygdala-precuneus connectivity changes also explain a significant amount of variance in neurofeedback regulation success. Neurofeedback training to increase amygdala hemodynamic activity during positive AM recall increased amygdala connectivity with regions involved in self-referential, salience, and reward processing. Results suggest future targets for neurofeedback interventions, particularly interventions involving the precuneus.
Wang, Junkai; Fan, Yunli; Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian
2016-01-01
Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity.
Rzepa, Ewelina; Dean, Zola; McCabe, Ciara
2017-06-01
Patients on the selective serotonergic reuptake inhibitors like citalopram report emotional blunting. We showed previously that citalopram reduces resting-state functional connectivity in healthy volunteers in a number of brain regions, including the dorso-medial prefrontal cortex, which may be related to its clinical effects. Bupropion is a dopaminergic and noradrenergic reuptake inhibitor and is not reported to cause emotional blunting. However, how bupropion affects resting-state functional connectivity in healthy controls remains unknown. Using a within-subjects, repeated-measures, double-blind, crossover design, we examined 17 healthy volunteers (9 female, 8 male). Volunteers received 7 days of bupropion (150 mg/d) and 7 days of placebo treatment and underwent resting-state functional Magnetic Resonance Imaging. We selected seed regions in the salience network (amygdala and pregenual anterior cingulate cortex) and the central executive network (dorsal medial prefrontal cortex). Mood and anhedonia measures were also recorded and examined in relation to resting-state functional connectivity. Relative to placebo, bupropion increased resting-state functional connectivity in healthy volunteers between the dorsal medial prefrontal cortex seed region and the posterior cingulate cortex and the precuneus cortex, key parts of the default mode network. These results are opposite to that which we found with 7 days treatment of citalopram in healthy volunteers. These results reflect a different mechanism of action of bupropion compared with selective serotonergic reuptake inhibitors. These results help explain the apparent lack of emotional blunting caused by bupropion in depressed patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong
2016-01-01
This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.
The Effects of Music Intervention on Functional Connectivity Strength of the Brain in Schizophrenia.
Yang, Mi; He, Hui; Duan, Mingjun; Chen, Xi; Chang, Xin; Lai, Yongxiu; Li, Jianfu; Liu, Tiejun; Luo, Cheng; Yao, Dezhong
2018-01-01
Schizophrenia is often associated with behavior abnormality in the cognitive and affective domain. Music intervention is used as a complementary treatment for improving symptoms in patients with schizophrenia. However, the neurophysiological correlates of these remissions remain poorly understood. Here, we investigated the effects of music intervention in neural circuits through functional magnetic resonance imaging (fMRI) study in schizophrenic subjects. Under the standard care, patients were randomly assigned to music and non-music interventions (MTSZ, UMTSZ) for 1 month. Resting-state fMRI were acquired over three time points (baseline, 1 month, and 6 months later) in patients and analyzed using functional connectivity strength (FCS) and seed-based functional connection (FC) approaches. At baseline, compared with healthy controls, decreased FCS in the right middle temporal gyrus (MTG) was observed in patients. However, after music intervention, the functional circuitry of the right MTG, which was related with the function of emotion and sensorimotor, was improved in MTSZ. Furthermore, the FC increments were significantly correlated with the improvement of symptoms, while vanishing 6 months later. Together, these findings provided evidence that music intervention might positively modulate the functional connectivity of MTG in patients with schizophrenia; such changes might be associated with the observed therapeutic effects of music intervention on neurocognitive function. This trial is registered with ChiCTR-OPC-14005339.
Sharma, Anup; Wolf, Daniel H; Ciric, Rastko; Kable, Joseph W; Moore, Tyler M; Vandekar, Simon N; Katchmar, Natalie; Daldal, Aylin; Ruparel, Kosha; Davatzikos, Christos; Elliott, Mark A; Calkins, Monica E; Shinohara, Russell T; Bassett, Danielle S; Satterthwaite, Theodore D
2017-07-01
Anhedonia is central to multiple psychiatric disorders and causes substantial disability. A dimensional conceptualization posits that anhedonia severity is related to a transdiagnostic continuum of reward deficits in specific neural networks. Previous functional connectivity studies related to anhedonia have focused on case-control comparisons in specific disorders, using region-specific seed-based analyses. Here, the authors explore the entire functional connectome in relation to reward responsivity across a population of adults with heterogeneous psychopathology. In a sample of 225 adults from five diagnostic groups (major depressive disorder, N=32; bipolar disorder, N=50; schizophrenia, N=51; psychosis risk, N=39; and healthy control subjects, N=53), the authors conducted a connectome-wide analysis examining the relationship between a dimensional measure of reward responsivity (the reward sensitivity subscale of the Behavioral Activation Scale) and resting-state functional connectivity using multivariate distance-based matrix regression. The authors identified foci of dysconnectivity associated with reward responsivity in the nucleus accumbens, the default mode network, and the cingulo-opercular network. Follow-up analyses revealed dysconnectivity among specific large-scale functional networks and their connectivity with the nucleus accumbens. Reward deficits were associated with decreased connectivity between the nucleus accumbens and the default mode network and increased connectivity between the nucleus accumbens and the cingulo-opercular network. In addition, impaired reward responsivity was associated with default mode network hyperconnectivity and diminished connectivity between the default mode network and the cingulo-opercular network. These results emphasize the centrality of the nucleus accumbens in the pathophysiology of reward deficits and suggest that dissociable patterns of connectivity among large-scale networks are critical to the neurobiology of reward dysfunction across clinical diagnostic categories.
Kay, Benjamin P; Holland, Scott K; Privitera, Michael D; Szaflarski, Jerzy P
2014-01-01
Summary Objective Patients with genetic generalized epilepsy (GGE) frequently continue to suffer from seizures despite appropriate clinical management. GGE is associated with changes in the resting-state networks modulated by clinical factors such as duration of disease and response to treatment. However, the effect of GSWDs and/or seizures on resting-state functional connectivity (RSFC) is not well understood. Methods We investigated the effects of GSWD frequency (in GGE patients), GGE (patients vs. healthy controls), and seizures (uncontrolled vs. controlled) on RSFC using seed-based voxel correlation in simultaneous EEG and resting-state fMRI (EEG/fMRI) data from 72 GGE patients (23 w/uncontrolled seizures) and 38 healthy controls. We used seeds in paracingulate cortex, thalamus, cerebellum, and posterior cingulate cortex to examine changes in cortical-subcortical resting-state networks and the default mode network (DMN). We excluded from analyses time points surrounding GSWDs to avoid possible contamination of the resting state. Results (1) Higher frequency of GSWDs was associated with an increase in seed-based voxel correlation with cortical and subcortical brain regions associated with executive function, attention, and the DMN, (2) RSFC in patients with GGE, when compared to healthy controls, was increased between paracingulate cortex and anterior, but not posterior, thalamus, and (3) GGE patients with uncontrolled seizures exhibited decreased cereballar RSFC. Significance Our findings in this large sample of patients with GGE (1) demonstrate an effect of interictal GSWDs on resting-state networks, (2) provide evidence that different thalamic nuclei may be affected differently by GGE, and (3) suggest that cerebellum is a modulator of ictogenic circuits. PMID:24447031
Rashid, Barnaly; Damaraju, Eswar; Pearlson, Godfrey D; Calhoun, Vince D
2014-01-01
Schizophrenia (SZ) and bipolar disorder (BP) share significant overlap in clinical symptoms, brain characteristics, and risk genes, and both are associated with dysconnectivity among large-scale brain networks. Resting state functional magnetic resonance imaging (rsfMRI) data facilitates studying macroscopic connectivity among distant brain regions. Standard approaches to identifying such connectivity include seed-based correlation and data-driven clustering methods such as independent component analysis (ICA) but typically focus on average connectivity. In this study, we utilize ICA on rsfMRI data to obtain intrinsic connectivity networks (ICNs) in cohorts of healthy controls (HCs) and age matched SZ and BP patients. Subsequently, we investigated difference in functional network connectivity, defined as pairwise correlations among the timecourses of ICNs, between HCs and patients. We quantified differences in both static (average) and dynamic (windowed) connectivity during the entire scan duration. Disease-specific differences were identified in connectivity within different dynamic states. Notably, results suggest that patients make fewer transitions to some states (states 1, 2, and 4) compared to HCs, with most such differences confined to a single state. SZ patients showed more differences from healthy subjects than did bipolars, including both hyper and hypo connectivity in one common connectivity state (dynamic state 3). Also group differences between SZ and bipolar patients were identified in patterns (states) of connectivity involving the frontal (dynamic state 1) and frontal-parietal regions (dynamic state 3). Our results provide new information about these illnesses and strongly suggest that state-based analyses are critical to avoid averaging together important factors that can help distinguish these clinical groups.
Zheng, Li Juan; Su, Yun Yan; Wang, Yun Fei; Schoepf, U Joseph; Varga-Szemes, Akos; Pannell, Jonathan; Liang, Xue; Zheng, Gang; Lu, Guang Ming; Yang, Gui Fen; Zhang, Long Jiang
2018-04-01
This study aims to explore the hippocampus-based functional connectivity patterns in young, healthy APP and/or presenilin-1/2 mutation carriers and APOE ε4 subjects. Seventy-eight healthy young adults (33 male, mean age 24.0 ± 2.2 years; 18 APP and/or presenilin1/2 mutation carriers [APP/presenilin-1/2 group], 30 APOE ε4 subjects [APOE ε4 group], and 30 subjects without the above-mentioned genes [control group]) underwent resting-state functional MR imaging and neuropsychological assessments. Bilateral hippocampus functional connectivity patterns were compared among three groups. The brain regions with statistical differences were then extracted, and correlation analyses were performed between Z values of the brain regions and neuropsychological results. Compared with control group, both APOE ε4 group and APP/presenilin-1/2 group showed increased functional connectivity in medial prefrontal cortex and precuneus for the seeds of bilateral hippocampi. The APOE ε4 group displayed increased functional connectivity from bilateral hippocampi to the left middle temporal gyrus compared with the control group. Moreover, compared with the APP/presenilin-1/2 group, the APOE ε4 group also had markedly increased functional connectivity in right hippocampus-left middle temporal gyrus. The Z values of right hippocampus-left middle temporal gyrus correlated with various neuropsychological results across all the subjects, as well as in APOE ε4 group. Young healthy adults carrying APOE ε4 and APP/presenilin-1/2 displayed different hippocampus functional connectivity patterns, which may underlie the discrepant mechanisms of gene-modulated cognitive dysfunction in Alzheimer's disease.
Brain intrinsic network connectivity in individuals with frequent tanning behavior.
Ketcherside, Ariel; Filbey, Francesca M; Aubert, Pamela M; Seibyl, John P; Price, Julianne L; Adinoff, Bryon
2018-05-01
Emergent studies suggest a bidirectional relationship between brain functioning and the skin. This neurocutaneous connection may be responsible for the reward response to tanning and, thus, may contribute to excessive tanning behavior. To date, however, this association has not yet been examined. To explore whether intrinsic brain functional connectivity within the default mode network (DMN) is related to indoor tanning behavior. Resting state functional connectivity (rsFC) was obtained in twenty adults (16 females) with a history of indoor tanning. Using a seed-based [(posterior cingulate cortex (PCC)] approach, the relationship between tanning severity and FC strength was assessed. Tanning severity was measured with symptom count from the Structured Clinical Interview for Tanning Abuse and Dependence (SITAD) and tanning intensity (lifetime indoor tanning episodes/years tanning). rsFC strength between the PCC and other DMN regions (left globus pallidus, left medial frontal gyrus, left superior frontal gyrus) is positively correlated with tanning symptom count. rsFC strength between the PCC and salience network regions (right anterior cingulate cortex, left inferior parietal lobe, left inferior temporal gyrus) is correlated with tanning intensity. Greater connectivity between tanning severity and DMN and salience network connectivity suggests that heightened self-awareness of salient stimuli may be a mechanism that underlies frequent tanning behavior. These findings add to the growing evidence of brain-skin connection and reflect dysregulation in the reward processing networks in those with frequent tanning.
Patel, Ameera X; Bullmore, Edward T
2016-11-15
Connectome mapping using techniques such as functional magnetic resonance imaging (fMRI) has become a focus of systems neuroscience. There remain many statistical challenges in analysis of functional connectivity and network architecture from BOLD fMRI multivariate time series. One key statistic for any time series is its (effective) degrees of freedom, df, which will generally be less than the number of time points (or nominal degrees of freedom, N). If we know the df, then probabilistic inference on other fMRI statistics, such as the correlation between two voxel or regional time series, is feasible. However, we currently lack good estimators of df in fMRI time series, especially after the degrees of freedom of the "raw" data have been modified substantially by denoising algorithms for head movement. Here, we used a wavelet-based method both to denoise fMRI data and to estimate the (effective) df of the denoised process. We show that seed voxel correlations corrected for locally variable df could be tested for false positive connectivity with better control over Type I error and greater specificity of anatomical mapping than probabilistic connectivity maps using the nominal degrees of freedom. We also show that wavelet despiked statistics can be used to estimate all pairwise correlations between a set of regional nodes, assign a P value to each edge, and then iteratively add edges to the graph in order of increasing P. These probabilistically thresholded graphs are likely more robust to regional variation in head movement effects than comparable graphs constructed by thresholding correlations. Finally, we show that time-windowed estimates of df can be used for probabilistic connectivity testing or dynamic network analysis so that apparent changes in the functional connectome are appropriately corrected for the effects of transient noise bursts. Wavelet despiking is both an algorithm for fMRI time series denoising and an estimator of the (effective) df of denoised fMRI time series. Accurate estimation of df offers many potential advantages for probabilistically thresholding functional connectivity and network statistics tested in the context of spatially variant and non-stationary noise. Code for wavelet despiking, seed correlational testing and probabilistic graph construction is freely available to download as part of the BrainWavelet Toolbox at www.brainwavelet.org. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing
2016-03-01
To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.
Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain.
Contreras-Rodríguez, Oren; Martín-Pérez, Cristina; Vilar-López, Raquel; Verdejo-Garcia, Antonio
2017-05-01
The food addiction model proposes that obesity overlaps with addiction in terms of neurobiological alterations in the striatum and related clinical manifestations (i.e., craving and persistence of unhealthy habits). Therefore, we aimed to examine the functional connectivity of the striatum in excess-weight versus normal-weight subjects and to determine the extent of the association between striatum connectivity and individual differences in food craving and changes in body mass index (BMI). Forty-two excess-weight participants (BMI > 25) and 39 normal-weight participants enrolled in the study. Functional connectivity in the ventral and dorsal striatum was indicated by seed-based analyses on resting-state data. Food craving was indicated with subjective ratings of visual cues of high-calorie food. Changes in BMI between baseline and 12 weeks follow-up were assessed in 28 excess-weight participants. Measures of connectivity in the ventral striatum and dorsal striatum were compared between groups and correlated with craving and BMI change. Participants with excess weight displayed increased functional connectivity between the ventral striatum and the medial prefrontal and parietal cortices and between the dorsal striatum and the somatosensory cortex. Dorsal striatum connectivity correlated with food craving and predicted BMI gains. Obesity is linked to alterations in the functional connectivity of dorsal striatal networks relevant to food craving and weight gain. These neural alterations are associated with habit learning and thus compatible with the food addiction model of obesity. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Lin, Hsiang-Yuan; Tseng, Wen-Yih Isaac; Lai, Meng-Chuan; Matsuo, Kayako; Gau, Susan Shur-Fen
2015-04-01
The frontoparietal control network, anatomically and functionally interposed between the dorsal attention network and default mode network, underpins executive control functions. Individuals with attention-deficit/hyperactivity disorder (ADHD) commonly exhibit deficits in executive functions, which are mainly mediated by the frontoparietal control network. Involvement of the frontoparietal control network based on the anterior prefrontal cortex in neurobiological mechanisms of ADHD has yet to be tested. We used resting-state functional MRI and seed-based correlation analyses to investigate functional connectivity of the frontoparietal control network in a sample of 25 children with ADHD (7-14 years; mean 9.94 ± 1.77 years; 20 males), and 25 age-, sex-, and performance IQ-matched typically developing (TD) children. All participants had limited in-scanner head motion. Spearman's rank correlations were used to test the associations between altered patterns of functional connectivity with clinical symptoms and executive functions, measured by the Conners' Continuous Performance Test and Spatial Span in the Cambridge Neuropsychological Test Automated Battery. Compared with TD children, children with ADHD demonstrated weaker connectivity between the right anterior prefrontal cortex (PFC) and the right ventrolateral PFC, and between the left anterior PFC and the right inferior parietal lobule. Furthermore, this aberrant connectivity of the frontoparietal control network in ADHD was associated with symptoms of impulsivity and opposition-defiance, as well as impaired response inhibition and attentional control. The findings support potential integration of the disconnection model and the executive dysfunction model for ADHD. Atypical frontoparietal control network may play a pivotal role in the pathophysiology of ADHD.
Johnson, Daniel M.; Brodersen, Craig R.; Reed, Mary; Domec, Jean-Christophe; Jackson, Robert B.
2014-01-01
Background and Aims Despite the importance of vessels in angiosperm roots for plant water transport, there is little research on the microanatomy of woody plant roots. Vessels in roots can be interconnected networks or nearly solitary, with few vessel–vessel connections. Species with few connections are common in arid habitats, presumably to isolate embolisms. In this study, measurements were made of root vessel pit sizes, vessel air-seeding pressures, pit membrane thicknesses and the degree of vessel interconnectedness in deep (approx. 20 m) and shallow (<10 cm) roots of two co-occurring species, Sideroxylon lanuginosum and Quercus fusiformis. Methods Scanning electron microscopy was used to image pit dimensions and to measure the distance between connected vessels. The number of connected vessels in larger samples was determined by using high-resolution computed tomography and three-dimensional (3-D) image analysis. Individual vessel air-seeding pressures were measured using a microcapillary method. The thickness of pit membranes was measured using transmission electron microscopy. Key Results Vessel pit size varied across both species and rooting depths. Deep Q. fusiformis roots had the largest pits overall (>500 µm) and more large pits than either shallow Q. fusiformis roots or S. lanuginosum roots. Vessel air-seeding pressures were approximately four times greater in Q. fusiformis than in S. lanuginosum and 1·3–1·9 times greater in shallow roots than in deep roots. Sideroxylon lanuginosum had 34–44 % of its vessels interconnected, whereas Q. fusiformis only had 1–6 % of its vessels connected. Vessel air-seeding pressures were unrelated to pit membrane thickness but showed a positive relationship with vessel interconnectedness. Conclusions These data support the hypothesis that species with more vessel–vessel integration are often less resistant to embolism than species with isolated vessels. This study also highlights the usefulness of tomography for vessel network analysis and the important role of 3-D xylem organization in plant hydraulic function. PMID:24363350
Frontal Hyperconnectivity Related to Discounting and Reversal Learning in Cocaine Subjects
Camchong, Jazmin; MacDonald, Angus W; Nelson, Brent; Bell, Christopher; Mueller, Bryon A; Specker, Sheila; Lim, Kelvin O
2011-01-01
BACKGROUND Functional neuroimaging studies suggest that chronic cocaine use is associated with frontal lobe abnormalities. Functional connectivity (FC) alterations of cocaine dependent individuals (CD), however, are not yet clear. This is the first study to our knowledge that examines resting FC of anterior cingulate cortex (ACC) in CD. Because ACC is known to integrate inputs from different brain regions to regulate behavior, we hypothesize that CD will have connectivity abnormalities in ACC networks. In addition, we hypothesized that abnormalities would be associated with poor performance in delayed discounting and reversal learning tasks. METHODS Resting functional magnetic resonance imaging data were collected to look for FC differences between twenty-seven cocaine dependent individuals (CD) (5 females, age: M=39.73, SD=6.14) and twenty-four controls (5 females, age: M=39.76, SD = 7.09). Participants were assessed with delayed discounting and reversal learning tasks. Using seed-based FC measures, we examined FC in CD and controls within five ACC connectivity networks with seeds in subgenual, caudal, dorsal, rostral, and perigenual ACC. RESULTS CD showed increased FC within the perigenual ACC network in left middle frontal gyrus, ACC and middle temporal gyrus when compared to controls. FC abnormalities were significantly positively correlated with task performance in delayed discounting and reversal learning tasks in CD. CONCLUSIONS The present study shows that participants with chronic cocaine-dependency have hyperconnectivity within an ACC network known to be involved in social processing and mentalizing. In addition, FC abnormalities found in CD were associated with difficulties with delay rewards and slower adaptive learning. PMID:21371689
Modeling conflict and error in the medial frontal cortex.
Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E
2012-12-01
Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.
Early Functional Connectome Integrity and 1-Year Recovery in Comatose Survivors of Cardiac Arrest.
Sair, Haris I; Hannawi, Yousef; Li, Shanshan; Kornbluth, Joshua; Demertzi, Athena; Di Perri, Carol; Chabanne, Russell; Jean, Betty; Benali, Habib; Perlbarg, Vincent; Pekar, James; Luyt, Charles-Edouard; Galanaud, Damien; Velly, Lionel; Puybasset, Louis; Laureys, Steven; Caffo, Brian; Stevens, Robert D
2018-04-01
Purpose To assess whether early brain functional connectivity is associated with functional recovery 1 year after cardiac arrest (CA). Materials and Methods Enrolled in this prospective multicenter cohort were 46 patients who were comatose after CA. Principal outcome was cerebral performance category at 12 months, with favorable outcome (FO) defined as cerebral performance category 1 or 2. All participants underwent multiparametric structural and functional magnetic resonance (MR) imaging less than 4 weeks after CA. Within- and between-network connectivity was measured in dorsal attention network (DAN), default-mode network (DMN), salience network (SN), and executive control network (ECN) by using seed-based analysis of resting-state functional MR imaging data. Structural changes identified with fluid-attenuated inversion recovery and diffusion-weighted imaging sequences were analyzed by using validated morphologic scales. The association between connectivity measures, structural changes, and the principal outcome was explored with multivariable modeling. Results Patients underwent MR imaging a mean 12.6 days ± 5.6 (standard deviation) after CA. At 12 months, 11 patients had an FO. Patients with FO had higher within-DMN connectivity and greater anticorrelation between SN and DMN and between SN and ECN compared with patients with unfavorable outcome, an effect that was maintained after multivariable adjustment. Anticorrelation of SN-DMN predicted outcomes with higher accuracy than fluid-attenuated inversion recovery or diffusion-weighted imaging scores (area under the receiver operating characteristic curves, respectively, 0.88, 0.74, and 0.71). Conclusion MR imaging-based measures of cerebral functional network connectivity obtained in the acute phase of CA were independently associated with FO at 1 year, warranting validation as early markers of long-term recovery potential in patients with anoxic-ischemic encephalopathy. © RSNA, 2017.
Wijngaarden, M A; Veer, I M; Rombouts, S A R B; van Buchem, M A; Willems van Dijk, K; Pijl, H; van der Grond, J
2015-01-01
We hypothesized that brain circuits involved in reward and salience respond differently to fasting in obese versus lean individuals. We compared functional connectivity networks related to food reward and saliency after an overnight fast (baseline) and after a prolonged fast of 48 h in lean versus obese subjects. We included 13 obese (2 males, 11 females, BMI 35.4 ± 1.2 kg/m(2), age 31 ± 3 years) and 11 lean subjects (2 males, 9 females, BMI 23.2 ± 0.5 kg/m(2), age 28 ± 3 years). Resting-state functional magnetic resonance imaging scans were made after an overnight fast (baseline) and after a prolonged 48 h fast. Functional connectivity of the amygdala, hypothalamus and posterior cingulate cortex (default-mode) networks was assessed using seed-based correlations. At baseline, we found a stronger connectivity between hypothalamus and left insula in the obese subjects. This effect diminished upon the prolonged fast. After prolonged fasting, connectivity of the hypothalamus with the dorsal anterior cingulate cortex (dACC) increased in lean subjects and decreased in obese subjects. Amygdala connectivity with the ventromedial prefrontal cortex was stronger in lean subjects at baseline, which did not change upon the prolonged fast. No differences in posterior cingulate cortex connectivity were observed. In conclusion, obesity is marked by alterations in functional connectivity networks involved in food reward and salience. Prolonged fasting differentially affected hypothalamic connections with the dACC and the insula between obese and lean subjects. Our data support the idea that food reward and nutrient deprivation are differently perceived and/or processed in obesity. Copyright © 2015 Elsevier B.V. All rights reserved.
Seo, Dongju; Lacadie, Cheryl M.; Sinha, Rajita
2016-01-01
BACKGROUND Stress triggers impulsive and addictive behaviors, and alcoholism has been frequently associated with increased stress sensitivity and impulse control problems. However, neural correlates underlying the link between alcoholism and impulsivity in the context of stress in patients with alcohol use disorders (AUD) have not been well studied. METHOD The current study investigated neural correlates and connectivity patterns associated with impulse control difficulties in abstinent AUD patients. Using functional magnetic resonance imaging, brain responses of 37 AUD inpatients and 37 demographically-matched healthy controls were examined during brief individualized imagery trials of stress, alcohol-cue and neutral-relaxing conditions. Stress-related impulsivity was measured using a subscale score of impulse control problems from Difficulties in Emotion Regulation Scale (DERS). RESULTS Impulse control difficulties in AUD patients were significantly associated with hypoactive response to stress in the ventromedial prefrontal cortex (VmPFC), right caudate, and left lateral PFC (LPFC) compared to the neutral condition (p<0.01, whole-brain corrected). These regions were used as seed regions to further examine the connectivity patterns with other brain regions. With the VmPFC seed, AUD patients showed reduced connectivity with the anterior cingulate cortex (ACC) compared to controls, which are core regions of emotion regulation, suggesting AUD patients’ decreased ability to modulate emotional response under distressed state. With the right caudate seed, patients showed increased connectivity with the right motor cortex, suggesting increased tendency toward habitually driven behaviors. With the left LPFC seed, decreased connectivity with the dorsomedial PFC (DmPFC), but increased connectivity with sensory and motor cortices were found in AUD patients compared to controls (p<0.05, whole-brain corrected). Reduced connectivity between the left LPFC and DmPFC was further associated with increased stress-induced anxiety in AUD patients (p<0.05, with adjusted Bonferroni correction). CONCLUSION Hypoactive response to stress and altered connectivity in key emotion regulatory regions may account for greater stress-related impulse control problems in alcoholism. PMID:27501356
Seo, Dongju; Lacadie, Cheryl M; Sinha, Rajita
2016-09-01
Stress triggers impulsive and addictive behaviors, and alcoholism has been frequently associated with increased stress sensitivity and impulse control problems. However, neural correlates underlying the link between alcoholism and impulsivity in the context of stress in patients with alcohol use disorders (AUD) have not been well studied. This study investigated neural correlates and connectivity patterns associated with impulse control difficulties in abstinent AUD patients. Using functional magnetic resonance imaging, brain responses of 37 AUD inpatients, and 37 demographically matched healthy controls were examined during brief individualized imagery trials of stress, alcohol cue, and neutral-relaxing conditions. Stress-related impulsivity was measured using a subscale score of impulse control problems from Difficulties in Emotion Regulation Scale. Impulse control difficulties in AUD patients were significantly associated with hypo-active response to stress in the ventromedial prefrontal cortex (VmPFC), right caudate, and left lateral PFC (LPFC) compared to the neutral condition (p < 0.01, whole-brain corrected). These regions were used as seed regions to further examine the connectivity patterns with other brain regions. With the VmPFC seed, AUD patients showed reduced connectivity with the anterior cingulate cortex compared to controls, which are core regions of emotion regulation, suggesting AUD patients' decreased ability to modulate emotional response under distressed state. With the right caudate seed, patients showed increased connectivity with the right motor cortex, suggesting increased tendency toward habitually driven behaviors. With the left LPFC seed, decreased connectivity with the dorsomedial PFC (DmPFC), but increased connectivity with sensory and motor cortices were found in AUD patients compared to controls (p < 0.05, whole-brain corrected). Reduced connectivity between the left LPFC and DmPFC was further associated with increased stress-induced anxiety in AUD patients (p < 0.05, with adjusted Bonferroni correction). Hypo-active response to stress and altered connectivity in key emotion regulatory regions may account for greater stress-related impulse control problems in alcoholism. Copyright © 2016 by the Research Society on Alcoholism.
Moran-Santa Maria, Megan M; Hartwell, Karen J; Hanlon, Colleen A; Canterberry, Melanie; Lematty, Todd; Owens, Max; Brady, Kathleen T; George, Mark S
2015-03-01
The insula has been implicated in cue-induced craving and relapse in nicotine-dependent tobacco cigarette smokers. The aims of the present study were to identify brain regions that exhibit greater functional connectivity with the right anterior insula in response to smoking cues than to neutral cues and the role of functional connectivity between these regions in mediating cue-induced craving in healthy (free of axis I psychiatric disorders) nicotine-dependent tobacco cigarette smokers. Functional magnetic resonance imaging data were collected from 63 healthy nicotine-dependent smokers viewing blocks of smoking and neutral cues. Craving ratings were obtained after each block. A psychophysiologic interaction approach was used to identify regions that exhibited significantly greater functional connectivity with the right anterior insula (seed) during the smoking cues than during the neutral (corrected cluster thresholding, Z > 2.3, P = 0.05). Parameter estimates of the interaction effects from each region were regressed against the mean cue-induced craving scores. Significant task by seed interactions were observed in two clusters centered in the bilateral precuneus and left angular gyrus. The strength of connectivity between the right anterior insula and the precuneus, which is involved interoceptive processing and self-awareness, was positively correlated with the magnitude of the craving response to the smoking cues (r(2) = 0.15; P < 0.01). These data suggest that among smokers, cue-induced craving may be a function of connectivity between two regions involved in interoception and self-awareness. Moreover, treatment strategies that incorporate mindful attention may be effective in attenuating cue-induced craving and relapse in nicotine-dependent smokers. © 2014 Society for the Study of Addiction.
Jaspers, Ellen; Balsters, Joshua H; Kassraian Fard, Pegah; Mantini, Dante; Wenderoth, Nicole
2017-03-01
Over the last decade, structure-function relationships have begun to encompass networks of brain areas rather than individual structures. For example, corticostriatal circuits have been associated with sensorimotor, limbic, and cognitive information processing, and damage to these circuits has been shown to produce unique behavioral outcomes in Autism, Parkinson's Disease, Schizophrenia and healthy ageing. However, it remains an open question how abnormal or absent connectivity can be detected at the individual level. Here, we provide a method for clustering gross morphological structures into subregions with unique functional connectivity fingerprints, and generate network probability maps usable as a baseline to compare individual cases against. We used connectivity metrics derived from resting-state fMRI (N = 100), in conjunction with hierarchical clustering methods, to parcellate the striatum into functionally distinct clusters. We identified three highly reproducible striatal subregions, across both hemispheres and in an independent replication dataset (N = 100) (dice-similarity values 0.40-1.00). Each striatal seed region resulted in a highly reproducible distinct connectivity fingerprint: the putamen showed predominant connectivity with cortical and cerebellar sensorimotor and language processing areas; the ventromedial striatum cluster had a distinct limbic connectivity pattern; the caudate showed predominant connectivity with the thalamus, frontal and occipital areas, and the cerebellum. Our corticostriatal probability maps agree with existing connectivity data in humans and non-human primates, and showed a high degree of replication. We believe that these maps offer an efficient tool to further advance hypothesis driven research and provide important guidance when investigating deviant connectivity in neurological patient populations suffering from e.g., stroke or cerebral palsy. Hum Brain Mapp 38:1478-1491, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure.
Göttlich, Martin; Jandl, Nico M; Wojak, Jann F; Sprenger, Andreas; von der Gablentz, Janina; Münte, Thomas F; Krämer, Ulrike M; Helmchen, Christoph
2014-01-01
Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual-vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These changes in the resting brain are robust and task-independent as they were found in the absence of sensory stimulation and without a region-related a priori hypothesis. Therefore they may indicate a fundamental disease-related change in the resting brain. They may account for the patients' persistent deficits in visuo-spatial attention, spatial orientation and unsteadiness. The relation of increasing connectivity in the inferior parietal lobe, specifically SMG, to improvement of VOR during active head movements reflects cortical plasticity in BVF and may play a clinical role in vestibular rehabilitation.
Krause, Anna Linda; Borchardt, Viola; Li, Meng; van Tol, Marie-José; Demenescu, Liliana Ramona; Strauss, Bernhard; Kirchmann, Helmut; Buchheim, Anna; Metzger, Coraline D; Nolte, Tobias; Walter, Martin
2016-01-01
Attachment patterns influence actions, thoughts and feeling through a person's "inner working model". Speech charged with attachment-dependent content was proposed to modulate the activation of cognitive-emotional schemata in listeners. We performed a 7 Tesla rest-task-rest functional magnetic resonance imaging (fMRI)-experiment, presenting auditory narratives prototypical of dismissing attachment representations to investigate their effect on 23 healthy males. We then examined effects of participants' attachment style and childhood trauma on brain state changes using seed-based functional connectivity (FC) analyses, and finally tested whether subjective differences in responsivity to narratives could be predicted by baseline network states. In comparison to a baseline state, we observed increased FC in a previously described "social aversion network" including dorsal anterior cingulated cortex (dACC) and left anterior middle temporal gyrus (aMTG) specifically after exposure to insecure-dismissing attachment narratives. Increased dACC-seeded FC within the social aversion network was positively related to the participants' avoidant attachment style and presence of a history of childhood trauma. Anxious attachment style on the other hand was positively correlated with FC between the dACC and a region outside of the "social aversion network", namely the dorsolateral prefrontal cortex, which suggests decreased network segregation as a function of anxious attachment. Finally, the extent of subjective experience of friendliness towards the dismissing narrative was predicted by low baseline FC-values between hippocampus and inferior parietal lobule (IPL). Taken together, our study demonstrates an activation of networks related to social aversion in terms of increased connectivity after listening to insecure-dismissing attachment narratives. A causal interrelation of brain state changes and subsequent changes in social reactivity was further supported by our observation of direct prediction of neuronal responses by individual attachment and trauma characteristics and reversely prediction of subjective experience by intrinsic functional connections. We consider these findings of activation of within-network and between-network connectivity modulated by inter-individual differences as substantial for the understanding of interpersonal processes, particularly in clinical settings.
Zeng, Ling-Li; Long, Lili; Shen, Hui; Fang, Peng; Song, Yanmin; Zhang, Linlin; Xu, Lin; Gong, Jian; Zhang, Yunci; Zhang, Yong; Xiao, Bo; Hu, Dewen
2015-10-01
Benign adult familial myoclonic epilepsy (BAFME) is a non-progressive monogenic epilepsy syndrome. So far, the structural and functional brain reorganizations in BAFME remain uncharacterized. This study aims to investigate gray matter atrophy and related functional connectivity alterations in patients with BAFME using magnetic resonance imaging (MRI).Eleven BAFME patients from a Chinese pedigree and 15 matched healthy controls were enrolled in the study. Optimized voxel-based morphometric and resting-state functional MRI approaches were performed to measure gray matter atrophy and related functional connectivity, respectively. The Trail-Making Test-part A and part B, Digit Symbol Test (DST), and Verbal Fluency Test (VFT) were carried out to evaluate attention and executive functions.The BAFME patients exhibited significant gray matter loss in the right hippocampus, right temporal pole, left orbitofrontal cortex, and left dorsolateral prefrontal cortex. With these regions selected as seeds, the voxel-wise functional connectivity analysis revealed that the right hippocampus showed significantly enhanced connectivity with the right inferior parietal lobule, bilateral middle cingulate cortex, left precuneus, and left precentral gyrus. Moreover, the BAFME patients showed significant lower scores in DST and VFT tests compared with the healthy controls. The gray matter densities of the right hippocampus, right temporal pole, and left orbitofrontal cortex were significantly positively correlated with the DST scores. In addition, the gray matter density of the right temporal pole was significantly positively correlated with the VFT scores, and the gray matter density of the right hippocampus was significantly negatively correlated with the duration of illness in the patients.The current study demonstrates gray matter loss and related functional connectivity alterations in the BAFME patients, perhaps underlying deficits in attention and executive functions in the BAFME.
Nicotine restores functional connectivity of the ventral attention network in schizophrenia.
Smucny, Jason; Olincy, Ann; Tregellas, Jason R
2016-09-01
While previous work has suggested that nicotine may transiently improve attention deficits in schizophrenia, the neuronal mechanisms are poorly understood. This study is the first to examine the effects of nicotine on connectivity within the ventral attention network (VAN) during a selective attention task in schizophrenia. Using a crossover design, 17 nonsmoking patients with schizophrenia and 20 age/gender-matched nonsmoking healthy controls performed a go/no-go task with environmental noise distractors during application of a 7 mg nicotine or placebo patch. Psychophysiological interaction analysis was performed to analyze task-associated changes in connectivity between a ventral parietal cortex (VPC) seed and the inferior frontal gyrus (IFG), key components of the human VAN. Effects of nicotine on resting state VAN connectivity were also examined. A significant diagnosis × drug interaction was observed on task-associated connectivity between the VPC seed and the left IFG (F(1,35) = 8.03, p < 0.01). This effect was driven by decreased connectivity after placebo in patients and greater connectivity after nicotine. Resting state connectivity analysis showed a significant main effect of diagnosis between the seed and right IFG (F = 4.25, p = 0.023) due to increased connectivity in patients during placebo, but no drug × diagnosis interactions or main effects of drug. This study is the first to demonstrate that 1) the VAN is disconnected in schizophrenia during selective attention, and 2) nicotine may normalize this pathological state. Copyright © 2016 Elsevier Ltd. All rights reserved.
Achal, Sanjay; Hoeft, Fumiko; Bray, Signe
2016-01-01
Reading skills vary widely in both children and adults, with a number of factors contributing to this variability. The most prominent factor may be related to efficiency of storage, representation, or retrieval of speech sounds. This phonological hypothesis is supported by findings of reduced activation in poor readers in left hemisphere ventro-lateral prefrontal and temporo-parietal phonological processing regions. Less well explained by phonological theories are reported hyperactivation in prefrontal, striatal, and insular regions. This study investigated functional connectivity of a core phonological processing region, the temporo-parietal junction (TPJ), in relation to reading skill in an adult community sample. We hypothesized that connectivity between TPJ and regions implicated in meta-analyses of reading disorder would correlate with individual differences in reading. Forty-four adults aged 30–54, ranging in reading ability, underwent resting fMRI scans. Data-driven connectivity clustering was used to identify TPJ subregions for seed-based connectivity analyses. Correlations were assessed between TPJ connectivity and timed-pseudoword reading (decoding) ability. We found a significant correlation wherein greater left supramarginal gyrus to anterior caudate connectivity was associated with weaker decoding. This suggests that hyperactivation of the dorsal striatum, reported in poor readers during reading tasks, may reflect compensatory or inefficient overintegration into attention networks. PMID:26400921
Roussotte, Florence F; Rudie, Jeffrey D; Smith, Lynne; O'Connor, Mary J; Bookheimer, Susan Y; Narr, Katherine L; Sowell, Elizabeth R
2012-01-01
Various abnormalities in frontal and striatal regions have been reported in children with prenatal alcohol and/or methamphetamine exposure. In a recent fMRI study, we observed a correlation between accuracy on a working-memory task and functional activation in the putamen in children with prenatal methamphetamine and polydrug exposure. Because the putamen is part of the corticostriatal motor loop whereas the caudate is involved in the executive loop, we hypothesized that a loss of segregation between distinct corticostriatal networks may occur in these participants. The current study was designed to test this hypothesis using functional connectivity MRI. We examined 50 children ranging in age from 7 to 15, including 19 with prenatal methamphetamine exposure (15 of whom had concomitant prenatal alcohol exposure), 13 with prenatal exposure to alcohol but not methamphetamine, and 18 unexposed controls. We measured the coupling between blood oxygenation level dependent (BOLD) fluctuations during a working-memory task in four striatal seed regions and those in the rest of the brain. We found that the putamen seeds showed increased connectivity with frontal brain regions involved in executive functions while the caudate seeds showed decreased connectivity with some of these regions in both groups of exposed subjects compared to controls. These findings suggest that localized brain abnormalities resulting from prenatal exposure to alcohol and/or methamphetamine lead to a partial rewiring of corticostriatal networks. These results represent important progress in the field, and could have substantial clinical significance in helping devise more targeted treatments and remediation strategies designed to better serve the needs of this population. Copyright © 2012 S. Karger AG, Basel.
Liu, Xiaolin; Lauer, Kathryn K; Ward, Barney D; Rao, Stephen M; Li, Shi-Jiang; Hudetz, Anthony G
2012-10-01
Current theories suggest that disrupting cortical information integration may account for the mechanism of general anesthesia in suppressing consciousness. Human cognitive operations take place in hierarchically structured neural organizations in the brain. The process of low-order neural representation of sensory stimuli becoming integrated in high-order cortices is also known as cognitive binding. Combining neuroimaging, cognitive neuroscience, and anesthetic manipulation, we examined how cognitive networks involved in auditory verbal memory are maintained in wakefulness, disrupted in propofol-induced deep sedation, and re-established in recovery. Inspired by the notion of cognitive binding, an functional magnetic resonance imaging-guided connectivity analysis was utilized to assess the integrity of functional interactions within and between different levels of the task-defined brain regions. Task-related responses persisted in the primary auditory cortex (PAC), but vanished in the inferior frontal gyrus (IFG) and premotor areas in deep sedation. For connectivity analysis, seed regions representing sensory and high-order processing of the memory task were identified in the PAC and IFG. Propofol disrupted connections from the PAC seed to the frontal regions and thalamus, but not the connections from the IFG seed to a set of widely distributed brain regions in the temporal, frontal, and parietal lobes (with exception of the PAC). These later regions have been implicated in mediating verbal comprehension and memory. These results suggest that propofol disrupts cognition by blocking the projection of sensory information to high-order processing networks and thus preventing information integration. Such findings contribute to our understanding of anesthetic mechanisms as related to information and integration in the brain. Copyright © 2011 Wiley Periodicals, Inc.
García-Casares, Natalia; Bernal-López, María R; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; Fernández-García, Jose C; García-Arnés, Juan A; Ramos-Rodriguez, José R; Alfaro, Francisco; Santamaria-Fernández, Sonia; Steward, Trevor; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J; Gómez-Huelgas, Ricardo
2017-07-01
Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m²) was 38.15 ± 4.7 vs. 34.18 ± 4.5 ( p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 ( p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex ( p < 0.001), left posterior cingulate ( p < 0.001), and right posterior cingulate ( p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex ( p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex ( p < 0.025); and decreased connectivity between the left and right posterior cingulate ( p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise.
Age differences in the frontoparietal cognitive control network: Implications for distractibility
Campbell, Karen L.; Grady, Cheryl L.; Ng, Charisa; Hasher, Lynn
2016-01-01
Current evidence suggests that older adults have reduced suppression of, and greater implicit memory for, distracting stimuli, due to age-related declines in frontal-based control mechanisms. In this study, we used fMRI to examine age differences in the neural underpinnings of attentional control and their relationship to differences in distractibility and subsequent memory for distraction. Older and younger adults were shown a rapid stream of words or nonwords superimposed on objects and performed a 1-back task on either the letters or the objects, while ignoring the other modality. Older adults were more distracted than younger adults by the overlapping words during the 1-back task, and they subsequently showed more priming for these words on an implicit memory task. A multivariate analysis of the imaging data revealed a set of regions, including the rostral PFC and inferior parietal cortex, that younger adults activated to a greater extent than older adults during the ignore-words condition, and activity in this set of regions was negatively correlated with priming for the distracting words. Functional connectivity analyses using right and left rostral PFC seeds revealed a network of putative control regions, including bilateral parietal cortex, connected to the frontal seeds at rest. Older adults showed reduced functional connectivity within this frontoparietal network, suggesting that their greater distractibility may be due to decreased activity and coherence within a cognitive control network that normally acts to reduce interference from distraction. PMID:22659108
The reorganization of functional architecture in the early-stages of Parkinson's disease.
Tuovinen, Noora; Seppi, Klaus; de Pasquale, Francesco; Müller, Christoph; Nocker, Michael; Schocke, Michael; Gizewski, Elke R; Kremser, Christian; Wenning, Gregor K; Poewe, Werner; Djamshidian, Atbin; Scherfler, Christoph; Seki, Morinobu
2018-05-01
The study aim was to identify longitudinal abnormalities of functional connectivity and its relation with motor disability in early to moderately advanced stages of Parkinson's disease patients. 3.0T structural and resting-state functional MRI was performed in healthy subjects (n = 16) and Parkinson's disease patients (n = 16) with mean disease duration of 2.2 ± 1.2 years at baseline with a clinical follow-up of 1.5 ± 0.3 years. Resting-state fMRI analysis included region-to-region connectivity in correlation with UPDRS-III scores and computation of Global Efficiency and Degree Centrality. At baseline, patients' connectivity increased between the cerebellum and somatomotor network, and decreased between motor regions (Rolandic operculum, precentral gyrus, supplementary motor area, postcentral gyrus) and cingulate connectivity. At 1.5 years follow-up, connectivity remained altered in the same regions identified at baseline. The cerebellum showed additional hyperconnectivity within itself and to the caudate nucleus, thalamus and amygdala compared to controls. These differences correlated with UPDRS-III scores. Seed-based connectivity revealed increased involvement of the default mode network with precentral gyrus in patients at follow-up investigation. Resting-state fMRI identified marked disturbances of the overall architecture of connectivity in Parkinson's disease. The noted alterations in cortical motor areas were associated with cerebellar hyperconnectivity in early to moderately advanced stages of Parkinson's disease suggesting ongoing attempts of recovery and compensatory mechanism for affected functions. The potential to identify connectivity alterations in regions related to both motor and attentional functions requires further evaluation as an objective marker to monitor disease progression, and medical, as well as surgical interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kolla, Nathan J; Dunlop, Katharine; Downar, Jonathan; Links, Paul; Bagby, R Michael; Wilson, Alan A; Houle, Sylvain; Rasquinha, Fawn; Simpson, Alexander I; Meyer, Jeffrey H
2016-04-01
Impulsivity is a core feature of antisocial personality disorder (ASPD) associated with abnormal brain function and neurochemical alterations. The ventral striatum (VS) is a key region of the neural circuitry mediating impulsive behavior, and low monoamine oxidase-A (MAO-A) level in the VS has shown a specific relationship to the impulsivity of ASPD. Because it is currently unknown whether phenotypic MAO-A markers can influence brain function in ASPD, we investigated VS MAO-A level and the functional connectivity (FC) of two seed regions, superior and inferior VS (VSs, VSi). Nineteen impulsive ASPD males underwent [(11)C] harmine positron emission tomography scanning to measure VS MAO-A VT, an index of MAO-A density, and resting-state functional magnetic resonance imaging that assessed the FC of bilateral seed regions in the VSi and VSs. Subjects also completed self-report impulsivity measures. Results revealed functional coupling of the VSs with bilateral dorsomedial prefrontal cortex (DMPFC) that was correlated with VS MAO-A VT (r=0.47, p=0.04), and functional coupling of the VSi with right hippocampus that was anti-correlated with VS MAO-A VT (r=-0.55, p=0.01). Additionally, VSs-DMPFC FC was negatively correlated with NEO Personality Inventory-Revised impulsivity (r=-0.49, p=0.03), as was VSi-hippocampus FC with Barratt Impulsiveness Scale-11 motor impulsiveness (r=-0.50, p=0.03). These preliminary results highlight an association of VS MAO-A level with the FC of striatal regions linked to impulsive behavior in ASPD and suggest that phenotype-based brain markers of ASPD have relevance to understanding brain function. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Sarpal, Deepak K; Robinson, Delbert G; Fales, Christina; Lencz, Todd; Argyelan, Miklos; Karlsgodt, Katherine H; Gallego, Juan A; John, Majnu; Kane, John M; Szeszko, Philip R; Malhotra, Anil K
2017-10-01
Patients with first-episode psychosis experience psychotic symptoms for a mean of up to 2 years prior to initiation of treatment, and long duration of untreated psychosis (DUP) is associated with poor clinical outcomes. Meanwhile, evidence compiled from numerous studies suggests that longer DUP is not associated with structural brain abnormalities. To date, few studies have examined the relationship between DUP and functional neuroimaging measures. In the present study, we used seed-based resting-state functional connectivity to examine the impact of DUP on corticostriatal circuitry. We included 83 patients with early phase schizophrenia and minimal exposure to antipsychotic drugs (<2 years), who underwent resting state scanning while entering 12 weeks of prospective treatment with second-generation antipsychotic drugs. Functional connectivity maps of the striatum were generated and examined in relation to DUP as a covariate. Mediation analyses were performed on a composite measure of corticostriatal connectivity derived from the significant results of our DUP analysis. We found that longer DUP correlated with worse response to treatment as well as overall decreased functional connectivity between striatal nodes and specific regions within frontal and parietal cortices. Moreover, the relationship between DUP and treatment response was significantly mediated by corticostriatal connectivity. Our results indicate that variation in corticostriatal circuitry may play a role in the relationship between longer DUP and worsened response to treatment. Future prospective studies are necessary to further characterize potential causal links between DUP, striatal circuitry and clinical outcomes.
Stillman, Chelsea M; You, Xiaozhen; Seaman, Kendra L; Vaidya, Chandan J; Howard, James H; Howard, Darlene V
2016-08-01
Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60-90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning.
Sawaya, Helen; Johnson, Kevin; Schmidt, Matthew; Arana, Ashley; Chahine, George; Atoui, Mia; Pincus, David; George, Mark S; Panksepp, Jaak; Nahas, Ziad
2015-03-05
Major depressive disorder has been associated with abnormal resting-state functional connectivity (FC), especially in cognitive processing and emotional regulation networks. Although studies have found abnormal FC in regions of the default mode network (DMN), no study has investigated the FC of specific regions within the anterior DMN based on cytoarchitectonic subdivisions of the antero-medial pre-frontal cortex (PFC). Studies from different areas in the field have shown regions within the anterior DMN to be involved in emotional intelligence. Although abnormalities in this region have been observed in depression, the relationship between the ventromedial PFC (vmPFC) function and emotional intelligence has yet to be investigated in depressed individuals. Twenty-one medication-free, non-treatment resistant, depressed patients and 21 healthy controls underwent a resting state functional magnetic resonance imaging session. The participants also completed an ability-based measure of emotional intelligence: the Mayer-Salovey-Caruso Emotional Intelligence Test. FC maps of Brodmann areas (BA) 25, 10 m, 10r, and 10p were created and compared between the two groups. Mixed-effects analyses showed that the more anterior seeds encompassed larger areas of the DMN. Compared to healthy controls, depressed patients had significantly lower connectivity between BA10p and the right insula and between BA25 and the perigenual anterior cingulate cortex. Exploratory analyses showed an association between vmPFC connectivity and emotional intelligence. These results suggest that individuals with depression have reduced FC between antero-medial PFC regions and regions involved in emotional regulation compared to control subjects. Moreover, vmPFC functional connectivity appears linked to emotional intelligence. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Martucci, Katherine T.; Shirer, William R.; Bagarinao, Epifanio; Johnson, Kevin A.; Farmer, Melissa A.; Labus, Jennifer S.; Apkarian, A. Vania; Deutsch, Georg; Harris, Richard E.; Mayer, Emeran A.; Clauw, Daniel J.; Greicius, Michael D.; Mackey, Sean C.
2015-01-01
Altered resting-state brain activity, as a measure of functional connectivity, is commonly observed in chronic pain. Identifying a reliable signature pattern of altered resting-state activity for chronic pain could provide strong mechanistic insights and serve as a highly beneficial neuroimaging-based diagnostic tool. We collected and analyzed resting-state fMRI data from female patients with urologic chronic pelvic pain syndrome (UCPPS, N = 45) and matched healthy participants (N = 45) as part of a NIDDK funded multicenter project (www.mappnetwork.org). Using dual regression and seed-based analyses, we observed significantly decreased functional connectivity of the default mode network (DMN) to two regions in the posterior medial cortex (PMC): the posterior cingulate cortex (PCC) and left precuneus (TFCE, FWE corrected p<0.05). Further investigation revealed that patients demonstrated increased functional connectivity between the PCC and several brain regions implicated in pain, sensory, motor, and emotion regulation processes (e.g., insular cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus, putamen, amygdala, hippocampus). The left precuneus demonstrated decreased functional connectivity to several regions of pain processing, reward, and higher executive functioning within the prefrontal (orbitofrontal, anterior cingulate, ventromedial prefrontal) and parietal cortices (angular gyrus, superior and inferior parietal lobules). The altered PMC connectivity was associated with several phenotype measures, including pain and urologic symptom intensity, depression, anxiety, quality of relationships and self-esteem levels in patients. Collectively, these findings indicate that in UCPPS patients, regions of the PMC are detached from the DMN, while neurological processes of self-referential thought and introspection may be joined to pain and emotion regulatory processes. PMID:26010458
Pieruzzi, Fernanda P.; Dias, Leonardo L. C.; Balbuena, Tiago S.; Santa-Catarina, Claudete; dos Santos, André L. W.; Floh, Eny I. S.
2011-01-01
Background and Aims Plant growth regulators play an important role in seed germination. However, much of the current knowledge about their function during seed germination was obtained using orthodox seeds as model systems, and there is a paucity of information about the role of plant growth regulators during germination of recalcitrant seeds. In the present work, two endangered woody species with recalcitrant seeds, Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm), native to the Atlantic Rain Forest, Brazil, were used to study the mobilization of polyamines (PAs), indole-acetic acid (IAA) and abscisic acid (ABA) during seed germination. Methods Data were sampled from embryos of O. odorifera and embryos and megagametophytes of A. angustifolia throughout the germination process. Biochemical analyses were carried out in HPLC. Key Results During seed germination, an increase in the (Spd + Spm) : Put ratio was recorded in embryos in both species. An increase in IAA and PA levels was also observed during seed germination in both embryos, while ABA levels showed a decrease in O. odorifera and an increase in A. angustifolia embryos throughout the period studied. Conclusions The (Spd + Spm) : Put ratio could be used as a marker for germination completion. The increase in IAA levels, prior to germination, could be associated with variations in PA content. The ABA mobilization observed in the embryos could represent a greater resistance to this hormone in recalcitrant seeds, in comparison to orthodox seeds, opening a new perspective for studies on the effects of this regulator in recalcitrant seeds. The gymnosperm seed, though without a connective tissue between megagametophyte and embryo, seems to be able to maintain communication between the tissues, based on the likely transport of plant growth regulators. PMID:21685432
Uddin, Lucina Q.; Clare Kelly, A. M.; Biswal, Bharat B.; Castellanos, F. Xavier; Milham, Michael P.
2013-01-01
The default mode network (DMN), based in ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC), exhibits higher metabolic activity at rest than during performance of externally-oriented cognitive tasks. Recent studies have suggested that competitive relationships between the DMN and various task-positive networks involved in task performance are intrinsically represented in the brain in the form of strong negative correlations (anticorrelations) between spontaneous fluctuations in these networks. Most neuroimaging studies characterize the DMN as a homogenous network, thus few have examined the differential contributions of DMN components to such competitive relationships. Here we examined functional differentiation within the default mode network, with an emphasis on understanding competitive relationships between this and other networks. We used a seed correlation approach on resting-state data to assess differences in functional connectivity between these two regions and their anticorrelated networks. While the positively correlated networks for the vmPFC and PCC seeds largely overlapped, the anticorrelated networks for each showed striking differences. Activity in vmPFC negatively predicted activity in parietal visual spatial and temporal attention networks, whereas activity in PCC negatively predicted activity in prefrontal-based motor control circuits. Granger causality analyses suggest that vmPFC and PCC exert greater influence on their anticorrelated networks than the other way around, suggesting that these two default mode nodes may directly modulate activity in task-positive networks. Thus, the two major nodes comprising the default mode network are differentiated with respect to the specific brain systems with which they interact, suggesting greater heterogeneity within this network than is commonly appreciated. PMID:18219617
Kim, Hyeon Jin; Lee, Jung Hwa; Park, Chang-hyun; Hong, Hye-Sun; Choi, Yun Seo; Yoo, Jeong Hyun
2018-01-01
Background and Purpose Benign childhood epilepsy with centrotemporal spikes (BECTS) does not always have a benign cognitive outcome. We investigated the relationship between cognitive performance and altered functional connectivity (FC) in the resting-state brain networks of BECTS patients. Methods We studied 42 subjects, comprising 19 BECTS patients and 23 healthy controls. Cognitive performance was assessed using the Korean version of the Wechsler Intelligence Scale for Children-III, in addition to verbal and visuospatial memory tests and executive function tests. Resting-state functional magnetic resonance imaging was acquired in addition to high-resolution structural data. We selected Rolandic and language-related areas as regions of interest (ROIs) and analyzed the seed-based FC to voxels throughout the brain. We evaluated the correlations between the neuropsychological test scores and seed-based FC values using the same ROIs. Results The verbal intelligence quotient (VIQ) and full-scale intelligence quotient (FSIQ) were lower in BECTS patients than in healthy controls (p<0.001). The prevalence of subjects with a higher performance IQ than VIQ was significantly higher in BECTS patients than in healthy controls (73.7% vs. 26.1%, respectively; p=0.002). Both the Rolandic and language-related ROIs exhibited more enhanced FC to voxels in the left inferior temporal gyrus in BECTS patients than in healthy controls. A particularly interestingly finding was that the enhanced FC was correlated with lower cognitive performance as measured by the VIQ and the FSIQ in both patients and control subjects. Conclusions Our findings suggest that the FC alterations in resting-state brain networks related to the seizure onset zone and language processing areas could be related to adaptive plasticity for coping with cognitive dysfunction. PMID:29629540
Does resting-state connectivity reflect depressive rumination? A tale of two analyses.
Berman, Marc G; Misic, Bratislav; Buschkuehl, Martin; Kross, Ethan; Deldin, Patricia J; Peltier, Scott; Churchill, Nathan W; Jaeggi, Susanne M; Vakorin, Vasily; McIntosh, Anthony R; Jonides, John
2014-12-01
Major Depressive Disorder (MDD) is characterized by rumination. Prior research suggests that resting-state brain activation reflects rumination when depressed individuals are not task engaged. However, no study has directly tested this. Here we investigated whether resting-state epochs differ from induced ruminative states for healthy and depressed individuals. Most previous research on resting-state networks comes from seed-based analyses with the posterior cingulate cortex (PCC). By contrast, we examined resting state connectivity by using the complete multivariate connectivity profile (i.e., connections across all brain nodes) and by comparing these results to seeded analyses. We find that unconstrained resting-state intervals differ from active rumination states in strength of connectivity and that overall connectivity was higher for healthy vs. depressed individuals. Relationships between connectivity and subjective mood (i.e., behavior) were strongly observed during induced rumination epochs. Furthermore, connectivity patterns that related to subjective mood were strikingly different for MDD and healthy control (HC) groups suggesting different mood regulation mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Sex-specific neural circuits of emotion regulation in the centromedial amygdala.
Wu, Yan; Li, Huandong; Zhou, Yuan; Yu, Jian; Zhang, Yuanchao; Song, Ming; Qin, Wen; Yu, Chunshui; Jiang, Tianzi
2016-03-23
Sex-related differences in emotion regulation (ER) in the frequency power distribution within the human amygdala, a brain region involved in emotion processing, have been reported. However, how sex differences in ER are manifested in the brain networks which are seeded on the amygdala subregions is unclear. The goal of this study was to investigate this issue from a brain network perspective. Utilizing resting-state functional connectivity (RSFC) analysis, we found that the sex-specific functional connectivity patterns associated with ER trait level were only seeded in the centromedial amygdala (CM). Women with a higher trait-level ER had a stronger negative RSFC between the right CM and the medial superior frontal gyrus (mSFG), and stronger positive RSFC between the right CM and the anterior insula (AI) and the superior temporal gyrus (STG). But men with a higher trait-level ER was associated with weaker negative RSFC of the right CM-mSFG and positive RSFCs of the right CM-left AI, right CM-right AI/STG, and right CM-left STG. These results provide evidence for the sex-related effects in ER based on CM and indicate that men and women may differ in the neural circuits associated with emotion representation and integration.
Alterations in conflict monitoring are related to functional connectivity in Parkinson's disease.
Rosenberg-Katz, Keren; Maidan, Inbal; Jacob, Yael; Giladi, Nir; Mirelman, Anat; Hausdorff, Jeffrey M
2016-09-01
Patients with Parkinson's disease (PD) have difficulties in executive functions including conflict monitoring. The neural mechanisms underlying these difficulties are not yet fully understood. In order to examine the neural mechanisms related to conflict monitoring in PD, we evaluated 35 patients with PD and 20 healthy older adults while they performed a word-color Stroop paradigm in the MRI. Specifically, we focused on changes between the groups in task-related functional connectivity using psycho-physiological interaction (PPI) analysis. The anterior cingulate cortex (ACC), which is a brain node previously associated with the Stroop paradigm, was selected as the seed region for this analysis. Patients with PD, as compared to healthy controls, had reduced task-related functional connectivity between the ACC and parietal regions including the precuneus and inferior parietal lobe. This was seen only in the incongruent Stroop condition. A higher level of connectivity between the ACC and precuneus was correlated with a lower error rate in the conflicting, incongruent Stroop condition in the healthy controls, but not in the patients with PD. Furthermore, the patients also had reduced functional connectivity between the ACC and the superior frontal gyrus which was present in both the incongruent and congruent task condition. The present findings shed light on brain mechanisms that are apparently associated with specific cognitive difficulties in patients with PD. Among patients with PD, impaired conflict monitoring processing within the ACC-based fronto-parietal network may contribute to difficulties under increased executive demands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Functional Connectivity of the Amygdala in Early Childhood Onset Depression
Luking, Katherine R.; Repovs, Grega; Belden, Andy C.; Gaffrey, Michael S.; Botteron, Kelly N.; Luby, Joan L.; Barch, Deanna M.
2011-01-01
Objective Adult major depressive disorder (MDD) is associated with reduced cortico-limbic functional connectivity thought to indicate decreased top-down control of emotion. However, it is unclear whether such connectivity alterations are also present in early childhood onset MDD. Method Fifty-one children ages 7–11 years, prospectively studied since preschool age, completed resting state fMRI and were assigned to four groups: 1) C-MDD (N=13) personal history of early childhood onset MDD; 2) M-MDD (N=11) a maternal history of affective disorders; 3) CM-MDD (N=13) both maternal and early childhood onset MDD or 4) CON (N=14) without either a personal or maternal history. We used seed-based resting state functional connectivity (rsfcMRI) analysis in an independent sample of adults to identify networks showing both positive (e.g., limbic regions) and negative (e.g., dorsal frontal/parietal regions) connectivity with the amygdala. These regions were then used in ROI based analyses of our child sample. Results We found a significant interaction between maternal affective disorder history and the child's MDD history for both positive and negative rsfcMRI networks. Specifically, when copared to CON, we found reduced connectivity between the amygdala and the “Negative Network” in children with C-MDD, M-MDD and CM-MDD. Children with either C-MDD or a maternal history of MDD (but not CM-MDD) displayed reduced connectivity between the amygdala and the “Positive Network”. Conclusions Our finding of an attenuated relationship between the amygdala, a region affected in MDD and involved in emotion processing, and cognitive control regions is consistent with a hypothesis of altered regulation of emotional processing in C-MDD suggesting developmental continuity of this alteration into early childhood. PMID:21961777
Iorio, Francesco; Shrestha, Roshan L.; Levin, Nicolas; Boilot, Viviane; Garnett, Mathew J.; Saez-Rodriguez, Julio; Draviam, Viji M.
2015-01-01
We present a novel strategy to identify drug-repositioning opportunities. The starting point of our method is the generation of a signature summarising the consensual transcriptional response of multiple human cell lines to a compound of interest (namely the seed compound). This signature can be derived from data in existing databases, such as the connectivity-map, and it is used at first instance to query a network interlinking all the connectivity-map compounds, based on the similarity of their transcriptional responses. This provides a drug neighbourhood, composed of compounds predicted to share some effects with the seed one. The original signature is then refined by systematically reducing its overlap with the transcriptional responses induced by drugs in this neighbourhood that are known to share a secondary effect with the seed compound. Finally, the drug network is queried again with the resulting refined signatures and the whole process is carried on for a number of iterations. Drugs in the final refined neighbourhood are then predicted to exert the principal mode of action of the seed compound. We illustrate our approach using paclitaxel (a microtubule stabilising agent) as seed compound. Our method predicts that glipizide and splitomicin perturb microtubule function in human cells: a result that could not be obtained through standard signature matching methods. In agreement, we find that glipizide and splitomicin reduce interphase microtubule growth rates and transiently increase the percentage of mitotic cells–consistent with our prediction. Finally, we validated the refined signatures of paclitaxel response by mining a large drug screening dataset, showing that human cancer cell lines whose basal transcriptional profile is anti-correlated to them are significantly more sensitive to paclitaxel and docetaxel. PMID:26452147
Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N
2017-12-01
Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.
Wang, Houliang; Guo, Wenbin; Liu, Feng; Wang, Guodong; Lyu, Hailong; Wu, Renrong; Chen, Jindong; Wang, Shuai; Li, Lehua; Zhao, Jingping
2016-05-18
Increased cerebellar-default mode network (DMN) connectivity has been observed in first-episode, drug-naive patients with schizophrenia. However, it remains unclear whether increased cerebellar-DMN connectivity starts earlier than disease onset. Thirty-four ultra-high risk (UHR) subjects, 31 first-episode, drug-naive patients with schizophrenia and 37 healthy controls were enrolled for a resting-state scan. The imaging data were analyzed using the seed-based functional connectivity (FC) method. Compared with the controls, UHR subjects and patients with schizophrenia shared increased connectivity between the right Crus I and bilateral posterior cingulate cortex/precuneus and between Lobule IX and the left superior medial prefrontal cortex. There are positive correlations between the right Crus I-bilateral precuneus connectivity and clinical variables (Structured Interview for Prodromal Syndromes/Positive and Negative Symptom Scale negative symptoms/total scores) in the UHR subjects. Increased cerebellar-DMN connectivity shared by the UHR subjects and the patients not only highlights the importance of the DMN in the pathophysiology of psychosis but also may be a trait alteration for psychosis.
Definition and characterization of an extended multiple-demand network.
Camilleri, J A; Müller, V I; Fox, P; Laird, A R; Hoffstaedter, F; Kalenscher, T; Eickhoff, S B
2018-01-15
Neuroimaging evidence suggests that executive functions (EF) depend on brain regions that are not closely tied to specific cognitive demands but rather to a wide range of behaviors. A multiple-demand (MD) system has been proposed, consisting of regions showing conjoint activation across multiple demands. Additionally, a number of studies defining networks specific to certain cognitive tasks suggest that the MD system may be composed of a number of sub-networks each subserving specific roles within the system. We here provide a robust definition of an extended MDN (eMDN) based on task-dependent and task-independent functional connectivity analyses seeded from regions previously shown to be convergently recruited across neuroimaging studies probing working memory, attention and inhibition, i.e., the proposed key components of EF. Additionally, we investigated potential sub-networks within the eMDN based on their connectional and functional similarities. We propose an eMDN network consisting of a core whose integrity should be crucial to performance of most operations that are considered higher cognitive or EF. This then recruits additional areas depending on specific demands. Copyright © 2017 Elsevier Inc. All rights reserved.
Doucet, Gaëlle E.; Pustina, Dorian; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael R.; Tracy, Joseph I.
2015-01-01
In temporal lobe epilepsy (TLE), determining the hemispheric specialization for language before surgery is critical to preserving a patient's cognitive abilities post-surgery. To date, the major techniques utilized are limited by the capacity of patients to efficiently realize the task. We determined whether resting-state functional connectivity (rsFC) is a reliable predictor of language hemispheric dominance in right and left TLE patients, relative to controls. We chose three subregions of the inferior frontal cortex (pars orbitalis, pars triangularis and pars opercularis) as the seed regions. All participants performed both a verb generation task and a resting-state fMRI procedure. Based on the language task, we computed a laterality index (LI) for the resulting network. This revealed that 96% of the participants were left-hemisphere dominant, although there remained a large degree of variability in the strength of left lateralization. We tested whether LI correlated with rsFC values emerging from each seed. We revealed a set of regions that was specific to each group. Unique correlations involving the epileptic mesial temporal lobe were revealed for the right and left TLE patients, but not for the controls. Importantly, for both TLE groups, the rsFC emerging from a contralateral seed was the most predictive of LI. Overall, our data depict the broad patterns of rsFC that support strong versus weak left hemisphere language laterality. This project provides the first evidence that rsFC data may potentially be used on its own to verify the strength of hemispheric dominance for language in impaired or pathologic populations. PMID:25187327
Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity.
Finn, Emily S; Shen, Xilin; Holahan, John M; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E; Shaywitz, Bennett A; Constable, R Todd
2014-09-01
Functional connectivity analyses of functional magnetic resonance imaging data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which might result in mixing distinct activation time-courses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words on the basis of their visual properties, whereas DYS readers recruit altered reading circuits and rely on laborious phonology-based "sounding out" strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
Yang, Wenjing; Cun, Lingli; Du, Xue; Yang, Junyi; Wang, Yanqiu; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang
2015-06-25
Although cognitive and personality studies have observed gender differences in narcissism, the neural bases of these differences remain unknown. The current study combined the voxel-based morphometry and resting state functional connectivity (rsFC) analyses to explore the sex-specific neural basis of narcissistic personality. The VBM results showed that the relationship between narcissistic personality and regional gray matter volume (rGMV) differed between sexes. Narcissistic scores had a significant positive correlation with the rGMV of the right SPL in females, but not in males. Further analyses were conducted to investigate the sex-specific relationship between rsFC and narcissism, using right SPL/frontal eye fields (FEF) as the seed regions (key nodes of the dorsal attention network, DAN). Interestingly, decreased anticorrelations between the right SPL/FEF and areas of the precuneus and middle frontal gyrus (key nodes of the the default mode network, DMN) were associated with higher narcissistic personality scores in males, whereas females showed the opposite tendency. The findings indicate that gender differences in narcissism may be associated with differences in the intrinsic and dynamic interplay between the internally-directed DMN and the externally-directed TPN. Morphometry and functional connectivity analyses can enhance our understanding of the neural basis of sex-specific narcissism.
Yang, Wenjing; Cun, Lingli; Du, Xue; Yang, Junyi; Wang, Yanqiu; Wei, Dongtao; Zhang, Qinglin; Qiu, Jiang
2015-01-01
Although cognitive and personality studies have observed gender differences in narcissism, the neural bases of these differences remain unknown. The current study combined the voxel-based morphometry and resting state functional connectivity (rsFC) analyses to explore the sex-specific neural basis of narcissistic personality. The VBM results showed that the relationship between narcissistic personality and regional gray matter volume (rGMV) differed between sexes. Narcissistic scores had a significant positive correlation with the rGMV of the right SPL in females, but not in males. Further analyses were conducted to investigate the sex-specific relationship between rsFC and narcissism, using right SPL/frontal eye fields (FEF) as the seed regions (key nodes of the dorsal attention network, DAN). Interestingly, decreased anticorrelations between the right SPL/FEF and areas of the precuneus and middle frontal gyrus (key nodes of the the default mode network, DMN) were associated with higher narcissistic personality scores in males, whereas females showed the opposite tendency. The findings indicate that gender differences in narcissism may be associated with differences in the intrinsic and dynamic interplay between the internally-directed DMN and the externally-directed TPN. Morphometry and functional connectivity analyses can enhance our understanding of the neural basis of sex-specific narcissism. PMID:26109334
Nicholson, Andrew A; Densmore, Maria; Frewen, Paul A; Théberge, Jean; Neufeld, Richard WJ; McKinnon, Margaret C; Lanius, Ruth A
2015-01-01
Previous studies point towards differential connectivity patterns among basolateral (BLA) and centromedial (CMA) amygdala regions in patients with posttraumatic stress disorder (PTSD) as compared with controls. Here we describe the first study to compare directly connectivity patterns of the BLA and CMA complexes between PTSD patients with and without the dissociative subtype (PTSD+DS and PTSD−DS, respectively). Amygdala connectivity to regulatory prefrontal regions and parietal regions involved in consciousness and proprioception were expected to differ between these two groups based on differential limbic regulation and behavioral symptoms. PTSD patients (n=49) with (n=13) and without (n=36) the dissociative subtype and age-matched healthy controls (n=40) underwent resting-state fMRI. Bilateral BLA and CMA connectivity patterns were compared using a seed-based approach via SPM Anatomy Toolbox. Among patients with PTSD, the PTSD+DS group exhibited greater amygdala functional connectivity to prefrontal regions involved in emotion regulation (bilateral BLA and left CMA to the middle frontal gyrus and bilateral CMA to the medial frontal gyrus) as compared with the PTSD−DS group. In addition, the PTSD+DS group showed greater amygdala connectivity to regions involved in consciousness, awareness, and proprioception—implicated in depersonalization and derealization (left BLA to superior parietal lobe and cerebellar culmen; left CMA to dorsal posterior cingulate and precuneus). Differences in amygdala complex connectivity to specific brain regions parallel the unique symptom profiles of the PTSD subgroups and point towards unique biological markers of the dissociative subtype of PTSD. PMID:25790021
Meshi, Dar; Mamerow, Loreen; Kirilina, Evgeniya; Morawetz, Carmen; Margulies, Daniel S.; Heekeren, Hauke R.
2016-01-01
Human beings are social animals and they vary in the degree to which they share information about themselves with others. Although brain networks involved in self-related cognition have been identified, especially via the use of resting-state experiments, the neural circuitry underlying individual differences in the sharing of self-related information is currently unknown. Therefore, we investigated the intrinsic functional organization of the brain with respect to participants’ degree of self-related information sharing using resting state functional magnetic resonance imaging and self-reported social media use. We conducted seed-based correlation analyses in cortical midline regions previously shown in meta-analyses to be involved in self-referential cognition: the medial prefrontal cortex (MPFC), central precuneus (CP), and caudal anterior cingulate cortex (CACC). We examined whether and how functional connectivity between these regions and the rest of the brain was associated with participants’ degree of self-related information sharing. Analyses revealed associations between the MPFC and right dorsolateral prefrontal cortex (DLPFC), as well as the CP with the right DLPFC, the left lateral orbitofrontal cortex and left anterior temporal pole. These findings extend our present knowledge of functional brain connectivity, specifically demonstrating how the brain’s intrinsic functional organization relates to individual differences in the sharing of self-related information. PMID:26948055
Functional resting-state networks are differentially affected in schizophrenia
Woodward, Neil D.; Rogers, Baxter; Heckers, Stephan
2011-01-01
Neurobiological theories posit that schizophrenia relates to disturbances in connectivity between brain regions. Resting-state functional magnetic resonance imaging is a powerful tool for examining functional connectivity and has revealed several canonical brain networks, including the default mode, dorsal attention, executive control, and salience networks. The purpose of this study was to examine changes in these networks in schizophrenia. 42 patients with schizophrenia and 61 healthy subjects completed a RS-fMRI scanning session. Seed-based region-of-interest correlation analysis was used to identify the default mode, dorsal attention, executive control, and salience networks. Compared to healthy subjects, individuals with schizophrenia demonstrated greater connectivity between the posterior cingulate cortex, a key hub of the default mode, and the left inferior gyrus, left middle frontal gyrus, and left middle temporal gyrus. Interestingly, these regions were more strongly connected to the executive control network in healthy control subjects. In contrast to the default mode, patients demonstrated less connectivity in the executive control and dorsal attention networks. No differences were observed in the salience network. The results indicate that resting-state networks are differentially affected in schizophrenia. The alterations are characterized by reduced segregation between the default mode and executive control networks in the prefrontal cortex and temporal lobe, and reduced connectivity in the dorsal attention and executive control networks. The changes suggest that the process of functional specialization is altered in schizophrenia. Further work is needed to determine if the alterations are related to disturbances in white matter connectivity, neurodevelopmental abnormalities, and genetic risk for schizophrenia. PMID:21458238
Default mode network connectivity and reciprocal social behavior in 22q11.2 deletion syndrome
Schreiner, Matthew J.; Karlsgodt, Katherine H.; Uddin, Lucina Q.; Chow, Carolyn; Congdon, Eliza; Jalbrzikowski, Maria
2014-01-01
22q11.2 deletion syndrome (22q11DS) is a genetic mutation associated with disorders of cortical connectivity and social dysfunction. However, little is known about the functional connectivity (FC) of the resting brain in 22q11DS and its relationship with social behavior. A seed-based analysis of resting-state functional magnetic resonance imaging data was used to investigate FC associated with the posterior cingulate cortex (PCC), in (26) youth with 22qDS and (51) demographically matched controls. Subsequently, the relationship between PCC connectivity and Social Responsiveness Scale (SRS) scores was examined in 22q11DS participants. Relative to 22q11DS participants, controls showed significantly stronger FC between the PCC and other default mode network (DMN) nodes, including the precuneus, precentral gyrus and left frontal pole. 22q11DS patients did not show age-associated FC changes observed in typically developing controls. Increased connectivity between PCC, medial prefrontal regions and the anterior cingulate cortex, was associated with lower SRS scores (i.e. improved social competence) in 22q11DS. DMN integrity may play a key role in social information processing. We observed disrupted DMN connectivity in 22q11DS, paralleling reports from idiopathic autism and schizophrenia. Increased strength of long-range DMN connectivity was associated with improved social functioning in 22q11DS. These findings support a ‘developmental-disconnection’ hypothesis of symptom development in this disorder. PMID:23912681
Decreased functional connectivity to posterior cingulate cortex in major depressive disorder.
Yang, Rui; Gao, Chengge; Wu, Xiaoping; Yang, Junle; Li, Shengbin; Cheng, Hu
2016-09-30
The default mode network (DMN) and its interaction with other key networks such as the salience network and executive network are keys to understand psychiatric and neurological disorders including major depressive disorder (MDD). In this study, we combined independent component analysis and seed based connectivity analysis to study the posterior default mode network between 20 patients with MDD and 25 normal controls, as well as pre-treatment and post-treatment conditions of the patients. Both correlated and anti-correlated networks centered at the posterior cingulate cortex (PCC) were examined (PCC+ and PCC-). Our results showed aberrant functional connectivity of the PCC+ and PCC- networks between patients and normal controls. Specifically, normal controls exhibited significantly higher connectivity between the PCC and frontal/temporal regions for the PCC+ network and stronger connectivity strength between the PCC and the insula/middle frontal cortex for the PCC- network. The overall connectivity strength of the PCC+ and PCC- networks was also significantly lower in MDD. Because the PCC is a hub in the DMN that interacts with other networks, our result suggested a stronger interaction between the DMN and the salience network but a weak interaction between the DMN and the executive network in MDD. The treatment using sertraline did increase the functional connectivity strength, especially in the PCC+ network. Despite a large inter-subject variability in the overall connectivity strengths and change of the PCC network in response to the treatment, a high correlation between change of connectivity strength and the Hamilton depression score was observed for both the PCC+ and PCC- network. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Case, Michelle; Zhang, Huishi; Mundahl, John; Datta, Yvonne; Nelson, Stephen; Gupta, Kalpna; He, Bin
2017-01-01
Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.
Patterson, Dianne K.; Van Petten, Cyma; Beeson, Pélagie M.; Rapcsak, Steven Z.; Plante, Elena
2014-01-01
This paper introduces a Bidirectional Iterative Parcellation (BIP) procedure designed to identify the location and size of connected cortical regions (parcellations) at both ends of a white matter tract in diffusion weighted images. The procedure applies the FSL option “probabilistic tracking with classification targets” in a bidirectional and iterative manner. To assess the utility of BIP, we applied the procedure to the problem of parcellating a limited set of well-established gray matter seed regions associated with the dorsal (arcuate fasciculus/superior longitudinal fasciculus) and ventral (extreme capsule fiber system) white matter tracts in the language networks of 97 participants. These left hemisphere seed regions and the two white matter tracts, along with their right hemisphere homologues, provided an excellent test case for BIP because the resulting parcellations overlap and their connectivity via the arcuate fasciculi and extreme capsule fiber systems are well studied. The procedure yielded both confirmatory and novel findings. Specifically, BIP confirmed that each tract connects within the seed regions in unique, but expected ways. Novel findings included increasingly left-lateralized parcellations associated with the arcuate fasciculus/superior longitudinal fasciculus as a function of age and education. These results demonstrate that BIP is an easily implemented technique that successfully confirmed cortical connectivity patterns predicted in the literature, and has the potential to provide new insights regarding the architecture of the brain. PMID:25173414
Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G
2014-09-01
Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.
Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin.
Carhart-Harris, Robin L; Erritzoe, David; Williams, Tim; Stone, James M; Reed, Laurence J; Colasanti, Alessandro; Tyacke, Robin J; Leech, Robert; Malizia, Andrea L; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G; Nutt, David J
2012-02-07
Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition.
Frontal hyperconnectivity related to discounting and reversal learning in cocaine subjects.
Camchong, Jazmin; MacDonald, Angus W; Nelson, Brent; Bell, Christopher; Mueller, Bryon A; Specker, Sheila; Lim, Kelvin O
2011-06-01
Functional neuroimaging studies suggest that chronic cocaine use is associated with frontal lobe abnormalities. Functional connectivity (FC) alterations of cocaine-dependent individuals (CD), however, are not yet clear. This is the first study to our knowledge that examines resting FC of anterior cingulate cortex (ACC) in CD. Because ACC is known to integrate inputs from different brain regions to regulate behavior, we hypothesized that CD will have connectivity abnormalities in ACC networks. In addition, we hypothesized that abnormalities would be associated with poor performance in delayed discounting and reversal learning tasks. Resting functional magnetic resonance imaging data were collected to look for FC differences between 27 CD (5 women, age: M = 39.73, SD = 6.14 years) and 24 control subjects (5 women, age: M = 39.76, SD = 7.09 years). Participants were assessed with delayed discounting and reversal learning tasks. With seed-based FC measures, we examined FC in CD and control subjects within five ACC connectivity networks with seeds in subgenual, caudal, dorsal, rostral, and perigenual ACC. The CD showed increased FC within the perigenual ACC network in left middle frontal gyrus, ACC, and middle temporal gyrus when compared with control subjects. The FC abnormalities were significantly positively correlated with task performance in delayed discounting and reversal learning tasks in CD. The present study shows that participants with chronic cocaine-dependency have hyperconnectivity within an ACC network known to be involved in social processing and "mentalizing." In addition, FC abnormalities found in CD were associated with difficulties with delay rewards and slower adaptive learning. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Franzmeier, Nicolai; Göttler, Jens; Grimmer, Timo; Drzezga, Alexander; Áraque-Caballero, Miguel A; Simon-Vermot, Lee; Taylor, Alexander N W; Bürger, Katharina; Catak, Cihan; Janowitz, Daniel; Müller, Claudia; Duering, Marco; Sorg, Christian; Ewers, Michael
2017-01-01
Reserve refers to the phenomenon of relatively preserved cognition in disproportion to the extent of neuropathology, e.g., in Alzheimer's disease. A putative functional neural substrate underlying reserve is global functional connectivity of the left lateral frontal cortex (LFC, Brodmann Area 6/44). Resting-state fMRI-assessed global LFC-connectivity is associated with protective factors (education) and better maintenance of memory in mild cognitive impairment (MCI). Since the LFC is a hub of the fronto-parietal control network that regulates the activity of other networks, the question arises whether LFC-connectivity to specific networks rather than the whole-brain may underlie reserve. We assessed resting-state fMRI in 24 MCI and 16 healthy controls (HC) and in an independent validation sample (23 MCI/32 HC). Seed-based LFC-connectivity to seven major resting-state networks (i.e., fronto-parietal, limbic, dorsal-attention, somatomotor, default-mode, ventral-attention, visual) was computed, reserve was quantified as residualized memory performance after accounting for age and hippocampal atrophy. In both samples of MCI, LFC-activity was anti-correlated with the default-mode network (DMN), but positively correlated with the dorsal-attention network (DAN). Greater education predicted stronger LFC-DMN-connectivity (anti-correlation) and LFC-DAN-connectivity. Stronger LFC-DMN and LFC-DAN-connectivity each predicted higher reserve, consistently in both MCI samples. No associations were detected for LFC-connectivity to other networks. These novel results extend our previous findings on global functional connectivity of the LFC, showing that LFC-connectivity specifically to the DAN and DMN, two core memory networks, enhances reserve in the memory domain in MCI.
Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol
2016-01-01
Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.
Neural correlates of childhood trauma with executive function in young healthy adults.
Lu, Shaojia; Pan, Fen; Gao, Weijia; Wei, Zhaoguo; Wang, Dandan; Hu, Shaohua; Huang, Manli; Xu, Yi; Li, Lingjiang
2017-10-03
The aim of this study was to investigate the relationship among childhood trauma, executive impairments, and altered resting-state brain function in young healthy adults. Twenty four subjects with childhood trauma and 24 age- and gender-matched subjects without childhood trauma were recruited. Executive function was assessed by a series of validated test procedures. Localized brain activity was evaluated by fractional amplitude of low frequency fluctuation (fALFF) method and compared between two groups. Areas with altered fALFF were further selected as seeds in subsequent functional connectivity analysis. Correlations of fALFF and connectivity values with severity of childhood trauma and executive dysfunction were analyzed as well. Subjects with childhood trauma exhibited impaired executive function as assessed by Wisconsin Card Sorting Test and Stroop Color Word Test. Traumatic individuals also showed increased fALFF in the right precuneus and decreased fALFF in the right superior temporal gyrus. Significant correlations of specific childhood trauma severity with executive dysfunction and fALFF value in the right precuneus were found in the whole sample. In addition, individuals with childhood trauma also exhibited diminished precuneus-based connectivity in default mode network with left ventromedial prefrontal cortex, left orbitofrontal cortex, and right cerebellum. Decreased default mode network connectivity was also associated with childhood trauma severity and executive dysfunction. The present findings suggest that childhood trauma is associated with executive deficits and aberrant default mode network functions even in healthy adults. Moreover, this study demonstrates that executive dysfunction is related to disrupted default mode network connectivity.
van Holst, Ruth J; Chase, Henry W; Clark, Luke
2014-01-01
Frontostriatal circuitry is implicated in the cognitive distortions associated with gambling behaviour. 'Near-miss' events, where unsuccessful outcomes are proximal to a jackpot win, recruit overlapping neural circuitry with actual monetary wins. Personal control over a gamble (e.g., via choice) is also known to increase confidence in one's chances of winning (the 'illusion of control'). Using psychophysiological interaction (PPI) analyses, we examined changes in functional connectivity as regular gamblers and non-gambling participants played a slot-machine game that delivered wins, near-misses and full-misses, and manipulated personal control. We focussed on connectivity with striatal seed regions, and associations with gambling severity, using voxel-wise regression. For the interaction term of near-misses (versus full-misses) by personal choice (participant-chosen versus computer-chosen), ventral striatal connectivity with the insula, bilaterally, was positively correlated with gambling severity. In addition, some effects for the contrast of wins compared to all non-wins were observed at an uncorrected (p < .001) threshold: there was an overall increase in connectivity between the striatal seeds and left orbitofrontal cortex and posterior insula, and a negative correlation for gambling severity with the connectivity between the right ventral striatal seed and left anterior cingulate cortex. These findings corroborate the 'non-categorical' nature of reward processing in gambling: near-misses and full-misses are objectively identical outcomes that are processed differentially. Ventral striatal connectivity with the insula correlated positively with gambling severity in the illusion of control contrast, which could be a risk factor for the cognitive distortions and loss-chasing that are characteristic of problem gambling.
Olivé, Isadora; Densmore, Maria; Harricharan, Sherain; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth
2018-01-01
The innate alarm system (IAS) models the neurocircuitry involved in threat processing in posttraumatic stress disorder (PTSD). Here, we investigate a primary subcortical structure of the IAS model, the superior colliculus (SC), where the SC is thought to contribute to the mechanisms underlying threat-detection in PTSD. Critically, the functional connectivity between the SC and other nodes of the IAS remains unexplored. We conducted a resting-state fMRI study to investigate the functional architecture of the IAS, focusing on connectivity of the SC in PTSD (n = 67), its dissociative subtype (n = 41), and healthy controls (n = 50) using region-of-interest seed-based analysis. We observed group-specific resting state functional connectivity between the SC for both PTSD and its dissociative subtype, indicative of dedicated IAS collicular pathways in each group of patients. When comparing PTSD to its dissociative subtype, we observed increased resting state functional connectivity between the left SC and the right dorsolateral prefrontal cortex (DLPFC) in PTSD. The DLPFC is involved in modulation of emotional processes associated with active defensive responses characterising PTSD. Moreover, when comparing PTSD to its dissociative subtype, increased resting state functional connectivity was observed between the right SC and the right temporoparietal junction in the dissociative subtype. The temporoparietal junction is involved in depersonalization responses associated with passive defensive responses typical of the dissociative subtype. Our findings suggest that unique resting state functional connectivity of the SC parallels the unique symptom profile and defensive responses observed in PTSD and its dissociative subtype. Hum Brain Mapp 39:563-574, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
fMRI functional connectivity of the periaqueductal gray in PTSD and its dissociative subtype.
Harricharan, Sherain; Rabellino, Daniela; Frewen, Paul A; Densmore, Maria; Théberge, Jean; McKinnon, Margaret C; Schore, Allan N; Lanius, Ruth A
2016-12-01
Posttraumatic stress disorder (PTSD) is associated with hyperarousal and active fight or flight defensive responses. By contrast, the dissociative subtype of PTSD, characterized by depersonalization and derealization symptoms, is frequently accompanied by additional passive or submissive defensive responses associated with autonomic blunting. Here, the periaqueductal gray (PAG) plays a central role in defensive responses, where the dorsolateral (DL-PAG) and ventrolateral PAG (VL-PAG) are thought to mediate active and passive defensive responses, respectively. We examined PAG subregion (dorsolateral and ventrolateral) resting-state functional connectivity in three groups: PTSD patients without the dissociative subtype ( n = 60); PTSD patients with the dissociative subtype ( n = 37); and healthy controls ( n = 40) using a seed-based approach via PickAtlas and SPM12. All PTSD patients showed extensive DL- and VL-PAG functional connectivity at rest with areas associated with emotional reactivity and defensive action as compared to controls ( n = 40). Although all PTSD patients demonstrated DL-PAG functional connectivity with areas associated with initiation of active coping strategies and hyperarousal (e.g., dorsal anterior cingulate; anterior insula), only dissociative PTSD patients exhibited greater VL-PAG functional connectivity with brain regions linked to passive coping strategies and increased levels of depersonalization (e.g., temporoparietal junction; rolandic operculum). These findings suggest greater defensive posturing in PTSD patients even at rest and demonstrate that those with the dissociative subtype show unique patterns of PAG functional connectivity when compared to those without the subtype. Taken together, these findings represent an important first step toward identifying neural and behavioral targets for therapeutic interventions that address defensive strategies in trauma-related disorders.
Brain Changes in Responders vs. Non-Responders in Chronic Migraine: Markers of Disease Reversal
Hubbard, Catherine S.; Becerra, Lino; Smith, Jonathan H.; DeLange, Justin M.; Smith, Ryan M.; Black, David F.; Welker, Kirk M.; Burstein, Rami; Cutrer, Fred M.; Borsook, David
2016-01-01
The aim of this study was to identify structural and functional brain changes that accompanied the transition from chronic (CM; ≥15 headache days/month) to episodic (EM; <15 headache days/month) migraine following prophylactic treatment with onabotulinumtoxinA (BoNT-A). Specifically, we examined whether CM patients responsive to prophylaxis (responders; n = 11), as evidenced by a reversal in disease status (defined by at least a 50% reduction in migraine frequency and <15 headache days/month), compared to CM patients whose migraine frequency remained unchanged (non-responders; n = 12), showed differences in cortical thickness using surface-based morphometry. We also investigated whether areas showing group differences in cortical thickness displayed altered resting-state functional connectivity (RS-FC) using seed-to-voxel analyses. Migraine characteristics measured across groups included disease duration, pain intensity and headache frequency. Patient reports of headache frequency over the 4 weeks prior to (pre-treatment) and following (post-treatment) prophylaxis were compared (post minus pre) and this measure served as the clinical endpoint that determined group assignment. All patients were scanned within 2 weeks of the post-treatment visit. Results revealed that responders showed significant cortical thickening in the right primary somatosensory cortex (SI) and anterior insula (aINS), and left superior temporal gyrus (STG) and pars opercularis (ParsOp) compared to non-responders. In addition, disease duration was negatively correlated with cortical thickness in fronto-parietal and temporo-occipital regions in responders but not non-responders, with the exception of the primary motor cortex (MI) that showed the opposite pattern; disease duration was positively associated with MI cortical thickness in responders versus non-responders. Our seed-based RS-FC analyses revealed anti-correlations between the SI seed and lateral occipital (LOC) and dorsomedial prefrontal cortices (DMPFC) in responders, whereas non-responders showed increased connectivity between the ParsOp seed and LOC. Overall, our findings revealed distinct morphometric and functional brain changes in CM patients that reverted to EM following prophylactic treatment compared to CM patients that showed no change in disease status. Elucidating the CNS changes involved in disease reversal may be critical to discovering interventions that prevent or slow the progression of CM. Such changes may aid in the evaluation of treatments as well as provide markers for disease “de-chronification”. PMID:27766076
Weissman, David G; Schriber, Roberta A; Fassbender, Catherine; Atherton, Olivia; Krafft, Cynthia; Robins, Richard W; Hastings, Paul D; Guyer, Amanda E
2015-12-01
Early adolescent onset of substance use is a robust predictor of future substance use disorders. We examined the relation between age of substance use initiation and resting state functional connectivity (RSFC) of the core reward processing (nucleus accumbens; NAcc) to cognitive control (prefrontal cortex; PFC) brain networks. Adolescents in a longitudinal study of Mexican-origin youth reported their substance use annually from ages 10 to 16 years. At age 16, 69 adolescents participated in a resting state functional magnetic resonance imaging scan. Seed-based correlational analyses were conducted using regions of interest in bilateral NAcc. The earlier that adolescents initiated substance use, the stronger the connectivity between bilateral NAcc and right dorsolateral PFC, right dorsomedial PFC, right pre-supplementary motor area, right inferior parietal lobule, and left medial temporal gyrus. The regions that demonstrated significant positive linear relationships between the number of adolescent years using substances and connectivity with NAcc are nodes in the right frontoparietal network, which is central to cognitive control. The coupling of reward and cognitive control networks may be a mechanism through which earlier onset of substance use is related to brain function over time, a trajectory that may be implicated in subsequent substance use disorders. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Functional Connectivity Substrates for tDCS Response in Minimally Conscious State Patients
Cavaliere, Carlo; Aiello, Marco; Di Perri, Carol; Amico, Enrico; Martial, Charlotte; Thibaut, Aurore; Laureys, Steven; Soddu, Andrea
2016-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half of minimally conscious state (MCS) patients. Although the rising evidences about its possible role in the treatment of many neurological and psychiatric conditions exist, no evidences exist about brain functional connectivity substrates underlying tDCS response. We retrospectively evaluated resting state functional Magnetic Resonance Imaging (fMRI) of 16 sub-acute and chronic MCS patients (6 tDCS responders) who successively received a single left dorsolateral prefrontal cortex (DLPFC) tDCS in a double-blind randomized cross-over trial. A seed-based approach for regions of left extrinsic control network (ECN) and default-mode network (DMN) was performed. tDCS responders showed an increased left intra-network connectivity for regions co-activated with left DLPFC, and significantly with left inferior frontal gyrus. Non-responders (NR) MCS patients showed an increased connectivity between left DLPFC and midline cortical structures, including anterior cingulate cortex and precuneus. Our findings suggest that a prior high connectivity with regions belonging to ECN can facilitate transitory recovery of consciousness in a subgroup of MCS patients that underwent tDCS treatment. Therefore, resting state-fMRI could be very valuable in detecting the neuronal conditions necessary for tDCS to improve behavior in MCS. PMID:27857682
Functional Connectivity Substrates for tDCS Response in Minimally Conscious State Patients.
Cavaliere, Carlo; Aiello, Marco; Di Perri, Carol; Amico, Enrico; Martial, Charlotte; Thibaut, Aurore; Laureys, Steven; Soddu, Andrea
2016-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half of minimally conscious state (MCS) patients. Although the rising evidences about its possible role in the treatment of many neurological and psychiatric conditions exist, no evidences exist about brain functional connectivity substrates underlying tDCS response. We retrospectively evaluated resting state functional Magnetic Resonance Imaging (fMRI) of 16 sub-acute and chronic MCS patients (6 tDCS responders) who successively received a single left dorsolateral prefrontal cortex (DLPFC) tDCS in a double-blind randomized cross-over trial. A seed-based approach for regions of left extrinsic control network (ECN) and default-mode network (DMN) was performed. tDCS responders showed an increased left intra-network connectivity for regions co-activated with left DLPFC, and significantly with left inferior frontal gyrus. Non-responders (NR) MCS patients showed an increased connectivity between left DLPFC and midline cortical structures, including anterior cingulate cortex and precuneus. Our findings suggest that a prior high connectivity with regions belonging to ECN can facilitate transitory recovery of consciousness in a subgroup of MCS patients that underwent tDCS treatment. Therefore, resting state-fMRI could be very valuable in detecting the neuronal conditions necessary for tDCS to improve behavior in MCS.
Nicholson, Andrew A; Sapru, Iman; Densmore, Maria; Frewen, Paul A; Neufeld, Richard W J; Théberge, Jean; McKinnon, Margaret C; Lanius, Ruth A
2016-04-30
The insula and amygdala are implicated in the pathophysiology of posttraumatic stress disorder (PTSD), where both have been shown to be hyper/hypoactive in non-dissociative (PTSD-DS) and dissociative subtype (PTSD+DS) PTSD patients, respectively, during symptom provocation. However, the functional connectivity between individual insula subregions and the amygdala has not been investigated in persons with PTSD, with or without the dissociative subtype. We examined insula subregion (anterior, mid, and posterior) functional connectivity with the bilateral amygdala using a region-of-interest seed-based approach via PickAtlas and SPM8. Resting-state fMRI was conducted with (n=61) PTSD patients (n=44 PTSD-DS; n=17 PTSD+DS), and (n=40) age-matched healthy controls. When compared to controls, the PTSD-DS group displayed increased insula connectivity (bilateral anterior, bilateral mid, and left posterior) to basolateral amygdala clusters in both hemispheres, and the PTSD+DS group displayed increased insula connectivity (bilateral anterior, left mid, and left posterior) to the left basolateral amygdala complex. Moreover, as compared to PTSD-DS, increased insula subregion connectivity (bilateral anterior, left mid, and right posterior) to the left basolateral amygdala was found in PTSD+DS. Depersonalization/derealization symptoms and PTSD symptom severity correlated with insula subregion connectivity to the basolateral amygdala within PTSD patients. This study is an important first step in elucidating patterns of neural connectivity associated with unique symptoms of arousal/interoception, emotional processing, and awareness of bodily states, in PTSD and its dissociative subtype. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Veldsman, Michele; Churilov, Leonid; Werden, Emilio; Li, Qi; Cumming, Toby; Brodtmann, Amy
2017-02-01
Attention is frequently impaired after stroke, and its impairment is associated with poor quality of life. Physical activity benefits attention in healthy populations and has also been associated with recovery after brain injury. We investigated the relationship between objectively measured daily physical activity, attention network connectivity, and attention task performance after stroke. We hypothesized that increased daily physical activity would be associated with improved attention network function. Stroke patients (n = 62; mean age = 67 years, SD = 12.6 years) and healthy controls (n = 27; mean age = 68 years, SD = 6 years) underwent cognitive testing and 7 minutes of functional magnetic resonance imaging in the resting-state. Patients were tested 3 months after ischemic stroke. Physical activity was monitored with an electronic armband worn for 7 days. Dorsal and ventral attention network function was examined using seed-based connectivity analyses. Greater daily physical activity was associated with increased interhemispheric connectivity of the superior parietal lobule in the dorsal attention network (DAN; P < .05, false discovery rate corrected). This relationship was not explained by stroke lesion volume. Importantly, stronger connectivity in this region was related to faster reaction time in 3 attention tasks, as revealed by robust linear regression. The relationship remained after adjusting for age, gray matter volume, and white matter hyperintensity load. Daily physical activity was associated with increased resting interhemispheric connectivity of the DAN. Increased connectivity was associated with faster attention performance, suggesting a cognitive correlate to increased network connectivity. Attentional modulation by physical activity represents a key focus for intervention studies.
The correlated network of acupuncture effect: a functional connectivity study.
Qin, Wei; Tian, Jie; Pan, Xiaohong; Yang, Lin; Zhen, Zonglei
2006-01-01
A functional connectivity, which are temporally correlated in functionally related brain regions, before and after acupuncture manipulation was measured by MRI. Amygdala, as the control system of endogenetic analgesia, was selected for "seed" point. We found that compelling similarity existed in the network of resting state before and after acupuncture manipulation. A paired student t-test was implemented to investigate under the different conditions. The main difference was found in the limbic system, brainstem and cerebellum. We conclude that the default endogenous analgesia functional network exists in human brain at a low level, and it could be increased to a higher level by acupuncture modulation.
Analysis of bHLH coding genes using gene co-expression network approach.
Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok
2016-07-01
Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.
Tan, Ao; Hu, Li; Tu, Yiheng; Chen, Rui; Hung, Yeung Sam; Zhang, Zhiguo
2016-07-01
N1 component of auditory evoked potentials is extensively used to investigate the propagation and processing of auditory inputs. However, the substantial interindividual variability of N1 could be a possible confounding factor when comparing different individuals or groups. Therefore, identifying the neuronal mechanism and origin of the interindividual variability of N1 is crucial in basic research and clinical applications. This study is aimed to use simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data to investigate the coupling between N1 and spontaneous functional connectivity (FC). EEG and fMRI data were simultaneously collected from a group of healthy individuals during a pure-tone listening task. Spontaneous FC was estimated from spontaneous blood oxygenation level-dependent (BOLD) signals that were isolated by regressing out task evoked BOLD signals from raw BOLD signals and then was correlated to N1 magnitude across individuals. It was observed that spontaneous FC between bilateral Heschl's gyrus was significantly and positively correlated with N1 magnitude across individuals (Spearman's R = 0.829, p < 0.001). The specificity of this observation was further confirmed by two whole-brain voxelwise analyses (voxel-mirrored homotopic connectivity analysis and seed-based connectivity analysis). These results enriched our understanding of the functional significance of the coupling between event-related brain responses and spontaneous brain connectivity, and hold the potential to increase the applicability of brain responses as a probe to the mechanism underlying pathophysiological conditions.
Disrupted intrinsic and remote functional connectivity in heterotopia-related epilepsy.
Liu, W; Hu, X; An, D; Gong, Q; Zhou, D
2018-01-01
Several neuroimaging studies have examined neural interactions in patients with periventricular nodular heterotopia (PNH). However, features of the underlying functional network remain poorly understood. In this study, we examined alterations in the local (regional) and remote (interregional) cerebral networks in this disorder. Twenty-eight subjects all having suffered from PNH with epilepsy, as well as 28 age- and sex- matched healthy controls, were enrolled in this study. Amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) were calculated to detect regional neural function and functional network integration, respectively. Compared with healthy controls, patients with PNH-related epilepsy showed decreased ALFF in the ventromedial prefrontal cortex (vmPFC) and precuneus areas. ALFF values in both areas were negative correlated with epilepsy duration (P < .05, Bonferroni-corrected). Furthermore, patients with PNH-related epilepsy had increased remote interregional FC mainly in bilateral prefrontal and parietal cortices, supramarginal gyrus, dorsal cingulate gyrus, and right insula; lower FC was found in posterior brain regions including bilateral parahippocampal gyrus and inferior temporal gyrus. Focal spontaneous hypofunction, as assessed by ALFF, correlates with epilepsy duration in patients with PNH-related epilepsy. Abnormalities existed both within the default-mode network and then across the whole brain, demonstrating that intrinsic brain dysfunction may be related to specific network interactions. Our findings provide novel understanding of the connectivity-based pathophysiological mechanisms of PNH. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Disrupted functional connectivity of the periaqueductal gray in chronic low back pain
Yu, Rongjun; Gollub, Randy L.; Spaeth, Rosa; Napadow, Vitaly; Wasan, Ajay; Kong, Jian
2014-01-01
Chronic low back pain is a common neurological disorder. The periaqueductal gray (PAG) plays a key role in the descending modulation of pain. In this study, we investigated brain resting state PAG functional connectivity (FC) differences between patients with chronic low back pain (cLBP) in low pain or high pain condition and matched healthy controls (HCs). PAG seed based functional connectivity (FC) analysis of the functional MR imaging data was performed to investigate the difference among the connectivity maps in the cLBP in the low or high pain condition and HC groups as well as within the cLBP at differing endogenous back pain intensities. Results showed that FC between the PAG and the ventral medial prefrontal cortex (vmPFC)/rostral anterior cingulate cortex (rACC) increased in cLBP patients compared to matched controls. In addition, we also found significant negative correlations between pain ratings and PAG–vmPFC/rACC FC in cLBP patients after pain-inducing maneuver. The duration of cLBP was negatively correlated with PAG–insula and PAG–amygdala FC before pain-inducing maneuver in the patient group. These findings are in line with the impairments of the descending pain modulation reported in patients with cLBP. Our results provide evidence showing that cLBP patients have abnormal FC in PAG centered pain modulation network during rest. PMID:25379421
Van Ombergen, Angelique; Wuyts, Floris L; Jeurissen, Ben; Sijbers, Jan; Vanhevel, Floris; Jillings, Steven; Parizel, Paul M; Sunaert, Stefan; Van de Heyning, Paul H; Dousset, Vincent; Laureys, Steven; Demertzi, Athena
2017-06-12
Spaceflight severely impacts the human body. However, little is known about how gravity and gravitational alterations affect the human brain. Here, we aimed at measuring the effects of acute exposure to gravity transitions. We exposed 28 naïve participants to repetitive alterations between normal, hyper- and microgravity induced by a parabolic flight (PF) and measured functional MRI connectivity changes. Scans were acquired before and after the PF. To mitigate motion sickness, PF participants received scopolamine prior to PF. To account for the scopolamine effects, 12 non-PF controls were scanned prior to and after scopolamine injection. Changes in functional connectivity were explored with the Intrinsic Connectivity Contrast (ICC). Seed-based analysis on the regions exhibiting localized changes was subsequently performed to understand the networks associated with the identified nodes. We found that the PF group was characterized by lower ICC scores in the right temporo-parietal junction (rTPJ), an area involved in multisensory integration and spatial tasks. The encompassed network revealed PF-related decreases in within- and inter-hemispheric anticorrelations between the rTPJ and the supramarginal gyri, indicating both altered vestibular and self-related functions. Our findings shed light on how the brain copes with gravity transitions, on gravity internalization and are relevant for the understanding of bodily self-consciousness.
Stillman, Chelsea M.; You, Xiaozhen; Seaman, Kendra L.; Vaidya, Chandan J.; Howard, James H.; Howard, Darlene V.
2016-01-01
Accumulating evidence shows a positive relationship between mindfulness and explicit cognitive functioning, i.e., that which occurs with conscious intent and awareness. However, recent evidence suggests that there may be a negative relationship between mindfulness and implicit types of learning, or those that occur without conscious awareness or intent. Here we examined the neural mechanisms underlying the recently reported negative relationship between dispositional mindfulness and implicit probabilistic sequence learning in both younger and older adults. We tested the hypothesis that the relationship is mediated by communication, or functional connectivity, of brain regions once traditionally considered to be central to dissociable learning systems: the caudate, medial temporal lobe (MTL), and prefrontal cortex (PFC). We first replicated the negative relationship between mindfulness and implicit learning in a sample of healthy older adults (60–90 years old) who completed three event-related runs of an implicit sequence learning task. Then, using a seed-based connectivity approach, we identified task-related connectivity associated with individual differences in both learning and mindfulness. The main finding was that caudate-MTL connectivity (bilaterally) was positively correlated with learning and negatively correlated with mindfulness. Further, the strength of task-related connectivity between these regions mediated the negative relationship between mindfulness and learning. This pattern of results was limited to the older adults. Thus, at least in healthy older adults, the functional communication between two interactive learning-relevant systems can account for the relationship between mindfulness and implicit probabilistic sequence learning. PMID:27121302
Neural intrinsic connectivity networks associated with risk aversion in old age.
Han, S Duke; Boyle, Patricia A; Arfanakis, Konstantinos; Fleischman, Debra A; Yu, Lei; Edmonds, Emily C; Bennett, David A
2012-02-01
Risk aversion is associated with several important real world outcomes. Although the neurobiological correlates of risk aversion have been studied in young persons, little is known of the neurobiological correlates of risk aversion among older persons. Resting-state functional MRI data were collected on 134 non-demented participants of the Rush Memory and Aging Project, a community-based cohort study of aging. Risk aversion was measured using a series of standard questions in which participants were asked to choose between a certain monetary payment ($15) versus a gamble in which they could gain more than $15 or gain nothing, with potential gains varied across questions. Participants determined to be "high" (n=27) and "low" (n=27) in risk aversion were grouped accordingly. Using a spherical seed region of interest in the anterior cingulate cortex, voxel-wise functional connectivity network similarities were observed in bilateral frontal, anterior and posterior cingulate, insula, basal ganglia, temporal, parietal, and thalamic regions. Differences in functional connectivity were observed such that those low in risk aversion had greater connectivity to clusters in the superior, middle, and medial frontal regions, as well as cerebellar, parietal, occipital, and inferior temporal regions. Those high in risk aversion had greater connectivity to clusters in the inferior and orbital frontal, parahippocampal, and insula regions, as well as thalamic, parietal, precentral gyrus, postcentral gyrus, and middle temporal regions. Similarities and differences in functional connectivity patterns may reflect the historical recruitment of specific brain regions as a network in the active processing of risk in older adults. Copyright © 2011 Elsevier B.V. All rights reserved.
Neural Intrinsic Connectivity Networks Associated with Risk Aversion in Old Age
Han, S. Duke; Boyle, Patricia A.; Arfanakis, Konstantinos; Fleischman, Debra A.; Yu, Lei; Edmonds, Emily C.; Bennett, David A.
2011-01-01
Risk aversion is associated with several important real world outcomes. Although the neurobiological correlates of risk aversion have been studied in young persons, little is known of the neurobiological correlates of risk aversion among older persons. Resting-state functional MRI data were collected on 134 non-demented participants of the Rush Memory and Aging Project, a community-based cohort study of aging. Risk aversion was measured using a series of standard questions in which participants were asked to choose between a certain monetary payment ($15) versus a gamble in which they could gain more than $15 or gain nothing, with potential gains varied across questions. Participants determined to be “high” (n=27) and “low” (n=27) in risk aversion were grouped accordingly. Using a spherical seed region of interest in the anterior cingulate cortex, voxel-wise functional connectivity network similarities were observed in bilateral frontal, anterior and posterior cingulate, insula, basal ganglia, temporal, parietal, and thalamic regions. Differences in functional connectivity were observed such that those low in risk aversion had greater connectivity to clusters in the superior, middle, and medial frontal regions, as well as cerebellar, parietal, occipital, and inferior temporal regions. Those high in risk aversion had greater connectivity to clusters in the inferior and orbital frontal, parahippocampal, and insula regions, as well as thalamic, parietal, precentral gyrus, postcentral gyrus, and middle temporal regions. Similarities and differences in functional connectivity patterns may reflect the historical recruitment of specific brain regions as a network in the active processing of risk in older adults. PMID:22044475
Wei, Luqing; Hu, Xiao; Yuan, Yonggui; Liu, Weiguo; Chen, Hong
2018-07-16
Neuropathology suggests that Parkinson's disease (PD) with depression may involve a progressive degeneration of the nigrostriatal and mesocorticolimbic dopaminergic systems. Previous positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies have shown that dopamine changes in individual brain regions constituting the nigrostriatal and mesocorticolimbic circuits are associated with depression in PD. However, few studies have been conducted on the circuit-level alterations in this disease. The present study used resting-state fMRI and seed-based functional connectivity of putative dopaminergic midbrain regions (i.e., substantia nigra (SN) and ventral tegmental area (VTA)) to investigate the circuit-related abnormalities in PD with depression. The results showed that depressed PD (DPD) patients relative to healthy controls (HC) and non-depressed PD (NDPD) patients had increased functional connectivity between VTA and anterior cingulate cortex (ACC), demonstrating that dysfunctional mesocorticolimbic dopaminergic neurotransmission may be associated with depression in PD. Compared with HC, DPD and NDPD patients showed increased functional connectivity from SN to sensorimotor cortex, validating that alterations in the nigrostriatal circuitry could be responsible for cardinal motor features in PD. In addition, aberrant connectivity between VTA and ACC was correlated with the severity of depression in PD patients, further supporting that abnormal mesocorticolimbic system may account for depressive symptoms in PD. These results have provided potential circuit-level biomarkers of depression in PD, and suggested that resting state functional connectivity of midbrain dopaminergic nuclei may be useful for understanding the underlying pathology in PD with depression. Copyright © 2018 Elsevier B.V. All rights reserved.
Gullifer, Jason W; Chai, Xiaoqian J; Whitford, Veronica; Pivneva, Irina; Baum, Shari; Klein, Denise; Titone, Debra
2018-05-01
We investigated the independent contributions of second language (L2) age of acquisition (AoA) and social diversity of language use on intrinsic brain organization using seed-based resting-state functional connectivity among highly proficient French-English bilinguals. There were two key findings. First, earlier L2 AoA related to greater interhemispheric functional connectivity between homologous frontal brain regions, and to decreased reliance on proactive executive control in an AX-Continuous Performance Task completed outside the scanner. Second, greater diversity in social language use in daily life related to greater connectivity between the anterior cingulate cortex and the putamen bilaterally, and to increased reliance on proactive control in the same task. These findings suggest that early vs. late L2 AoA links to a specialized neural framework for processing two languages that may engage a specific type of executive control (e.g., reactive control). In contrast, higher vs. lower degrees of diversity in social language use link to a broadly distributed set of brain networks implicated in proactive control and context monitoring. Copyright © 2018 Elsevier Ltd. All rights reserved.
Role of habenula and amygdala dysfunction in Parkinson disease patients with punding.
Markovic, Vladana; Agosta, Federica; Canu, Elisa; Inuggi, Alberto; Petrovic, Igor; Stankovic, Iva; Imperiale, Francesca; Stojkovic, Tanja; Kostic, Vladimir S; Filippi, Massimo
2017-06-06
To assess whether a functional dysregulation of the habenula and amygdala, as modulators of the reward brain circuit, contributes to Parkinson disease (PD) punding. Structural and resting-state functional MRI were obtained from 22 patients with PD punding, 30 patients with PD without any impulsive-compulsive behavior (ICB) matched for disease stage and duration, motor impairment, and cognitive status, and 30 healthy controls. Resting-state functional connectivity of the habenula and amygdala bilaterally was assessed using a seed-based approach. Habenula and amygdala volumes and cortical thickness measures were obtained. Compared to both healthy controls and PD cases without any ICB (PD-no ICB), PD-punding patients showed higher functional connectivity of habenula and amygdala with thalamus and striatum bilaterally, and lower connectivity between bilateral habenula and left frontal and precentral cortices. In PD-punding relative to PD-no ICB patients, a lower functional connectivity between right amygdala and hippocampus was also observed. Habenula and amygdala volumes were not different among groups. PD-punding patients showed a cortical thinning of the left superior frontal and precentral gyri and right middle temporal gyrus and isthmus cingulate compared to healthy controls, and of the right inferior frontal gyrus compared to both controls and PD-no ICB patients. A breakdown of the connectivity among the crucial nodes of the reward circuit (i.e., habenula, amygdala, basal ganglia, frontal cortex) might be a contributory factor to punding in PD. This study provides potential instruments to detect and monitor punding in patients with PD. © 2017 American Academy of Neurology.
Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease
Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B
2016-01-01
Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest (‘task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems. PMID:26837463
Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease.
Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B
2016-07-01
Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest ('task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems.
Functional brain networks in schizophrenia: a review.
Calhoun, Vince D; Eichele, Tom; Pearlson, Godfrey
2009-01-01
Functional magnetic resonance imaging (fMRI) has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event-related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA) which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large-scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their inter-relationships with fMRI has great potential to improve our understanding of schizophrenia.
Doucet, Gaëlle E; Pustina, Dorian; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael R; Tracy, Joseph I
2015-01-01
In temporal lobe epilepsy (TLE), determining the hemispheric specialization for language before surgery is critical to preserving a patient's cognitive abilities post-surgery. To date, the major techniques utilized are limited by the capacity of patients to efficiently realize the task. We determined whether resting-state functional connectivity (rsFC) is a reliable predictor of language hemispheric dominance in right and left TLE patients, relative to controls. We chose three subregions of the inferior frontal cortex (pars orbitalis, pars triangularis, and pars opercularis) as the seed regions. All participants performed both a verb generation task and a resting-state fMRI procedure. Based on the language task, we computed a laterality index (LI) for the resulting network. This revealed that 96% of the participants were left-hemisphere dominant, although there remained a large degree of variability in the strength of left lateralization. We tested whether LI correlated with rsFC values emerging from each seed. We revealed a set of regions that was specific to each group. Unique correlations involving the epileptic mesial temporal lobe were revealed for the right and left TLE patients, but not for the controls. Importantly, for both TLE groups, the rsFC emerging from a contralateral seed was the most predictive of LI. Overall, our data depict the broad patterns of rsFC that support strong versus weak left hemisphere language laterality. This project provides the first evidence that rsFC data may potentially be used on its own to verify the strength of hemispheric dominance for language in impaired or pathologic populations. © 2014 Wiley Periodicals, Inc.
Corridors and some ecological and evolutionary consequences of connectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrock, John L
2004-07-01
Abstract - By connecting disjunct patches, corridors may offset the effects of fragmentation by promoting gene flow and population persistence. However, the ultimate effect of corridors on a focal species may hinge upon two considerations: how corridors may affect ecological interactions that impinge upon that species, and how corridors might affect the fixation of novel alleles that ultimately determine fitness and persistence. Using an experimental landscape, I show that corridor-mediated changes in patch shape change seed predation in connected and unconnected patches, and shift the behavior, abundance, and distribution of seed predators. Rodent seed predators removed more seeds in connectedmore » patches, arthropod seed predators removed more seeds in rectangular patches, and avian seed predation did not differ due to patch type. Rodent foraging was greater in the interior of connected patches because changes in patch shape influenced risk perceived by rodents while foraging. Ant communities were also affected by changes in patch shape caused by corridors, rather than corridor effects per se. The distribution and abundance of ants differed among edge-rich areas (corridors and wings), edges, and the patch interior. In rectangular patches, fire ants (Solenopsis spp.) had negative impacts on other ant species. By changing the activity of rodents, and the composition of ant communities, corridors may have important impacts on seeds. Bird-dispersed seeds may benefit from increased dispersal among connected patches, but connected patches also have greater predation risk. Using a simulation model, I demonstrate that gene flow between a stable population and a population that experiences local extinction or a reduction in size (e.g. due to natural or anthropogenic disturbance) can dramatically affect fixation of alleles in the stable population. Alone or in concert, frequent disturbance, high rates of movement, and low habitat quality make it more likely that connectivity-mediated fixation will promote fixation of harmful alleles and reduce fixation of beneficial alleles.« less
Elfmarková, Nela; Gajdoš, Martin; Mračková, Martina; Mekyska, Jiří; Mikl, Michal; Rektorová, Irena
2016-01-01
Impaired speech prosody is common in Parkinson's disease (PD). We assessed the impact of PD and levodopa on MRI resting-state functional connectivity (rs-FC) underlying speech prosody control. We studied 19 PD patients in the OFF and ON dopaminergic conditions and 15 age-matched healthy controls using functional MRI and seed partial least squares correlation (PLSC) analysis. In the PD group, we also correlated levodopa-induced rs-FC changes with the results of acoustic analysis. The PLCS analysis revealed a significant impact of PD but not of medication on the rs-FC strength of spatial correlation maps seeded by the anterior cingulate (p = 0.006), the right orofacial primary sensorimotor cortex (OF_SM1; p = 0.025) and the right caudate head (CN; p = 0.047). In the PD group, levodopa-induced changes in the CN and OF_SM1 connectivity strengths were related to changes in speech prosody. We demonstrated an impact of PD but not of levodopa on rs-FC within the brain networks related to speech prosody control. When only the PD patients were taken into account, the association between treatment-induced changes in speech prosody and changes in rs-FC within the associative striato-prefrontal and motor speech networks was found. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kubit, Benjamin; Jack, Anthony I.
2013-01-01
The right temporo-parietal junction (rTPJ) has been associated with two apparently disparate functional roles: in attention and in social cognition. According to one account, the rTPJ initiates a “circuit-breaking” signal that interrupts ongoing attentional processes, effectively reorienting attention. It is argued this primary function of the rTPJ has been extended beyond attention, through a process of evolutionarily cooption, to play a role in social cognition. We propose an alternative account, according to which the capacity for social cognition depends on a network which is both distinct from and in tension with brain areas involved in focused attention and target detection: the default mode network (DMN). Theory characterizing the rTPJ based on the area's purported role in reorienting may be falsely guided by the co-occurrence of two distinct effects in contiguous regions: activation of the supramarginal gyrus (SMG), associated with its functional role in target detection; and the transient release, during spatial reorienting, of suppression of the angular gyrus (AG) associated with focused attention. Findings based on meta-analysis and resting functional connectivity are presented which support this alternative account. We find distinct regions, possessing anti-correlated patterns of resting connectivity, associated with social reasoning (AG) and target detection (SMG) at the rTPJ. The locus for reorienting was spatially intermediate between the AG and SMG and showed a pattern of connectivity with similarities to social reasoning and target detection seeds. These findings highlight a general methodological concern for brain imaging. Given evidence that certain tasks not only activate some areas but also suppress activity in other areas, it is suggested that researchers need to distinguish two distinct putative mechanisms, either of which may produce an increase in activity in a brain area: functional engagement in the task vs. release of suppression. PMID:23847497
Segregated Fronto-Cerebellar Circuits Revealed by Intrinsic Functional Connectivity
Buckner, Randy L.
2009-01-01
Multiple, segregated fronto-cerebellar circuits have been characterized in nonhuman primates using transneuronal tracing techniques including those that target prefrontal areas. Here, we used functional connectivity MRI (fcMRI) in humans (n = 40) to identify 4 topographically distinct fronto-cerebellar circuits that target 1) motor cortex, 2) dorsolateral prefrontal cortex, 3) medial prefrontal cortex, and 4) anterior prefrontal cortex. All 4 circuits were replicated and dissociated in an independent data set (n = 40). Direct comparison of right- and left-seeded frontal regions revealed contralateral lateralization in the cerebellum for each of the segregated circuits. The presence of circuits that involve prefrontal regions confirms that the cerebellum participates in networks important to cognition including a specific fronto-cerebellar circuit that interacts with the default network. Overall, the extent of the cerebellum associated with prefrontal cortex included a large portion of the posterior hemispheres consistent with a prominent role of the cerebellum in nonmotor functions. We conclude by providing a provisional map of the topography of the cerebellum based on functional correlations with the frontal cortex. PMID:19592571
Dismissing Attachment Characteristics Dynamically Modulate Brain Networks Subserving Social Aversion
Krause, Anna Linda; Borchardt, Viola; Li, Meng; van Tol, Marie-José; Demenescu, Liliana Ramona; Strauss, Bernhard; Kirchmann, Helmut; Buchheim, Anna; Metzger, Coraline D.; Nolte, Tobias; Walter, Martin
2016-01-01
Attachment patterns influence actions, thoughts and feeling through a person’s “inner working model”. Speech charged with attachment-dependent content was proposed to modulate the activation of cognitive-emotional schemata in listeners. We performed a 7 Tesla rest-task-rest functional magnetic resonance imaging (fMRI)-experiment, presenting auditory narratives prototypical of dismissing attachment representations to investigate their effect on 23 healthy males. We then examined effects of participants’ attachment style and childhood trauma on brain state changes using seed-based functional connectivity (FC) analyses, and finally tested whether subjective differences in responsivity to narratives could be predicted by baseline network states. In comparison to a baseline state, we observed increased FC in a previously described “social aversion network” including dorsal anterior cingulated cortex (dACC) and left anterior middle temporal gyrus (aMTG) specifically after exposure to insecure-dismissing attachment narratives. Increased dACC-seeded FC within the social aversion network was positively related to the participants’ avoidant attachment style and presence of a history of childhood trauma. Anxious attachment style on the other hand was positively correlated with FC between the dACC and a region outside of the “social aversion network”, namely the dorsolateral prefrontal cortex, which suggests decreased network segregation as a function of anxious attachment. Finally, the extent of subjective experience of friendliness towards the dismissing narrative was predicted by low baseline FC-values between hippocampus and inferior parietal lobule (IPL). Taken together, our study demonstrates an activation of networks related to social aversion in terms of increased connectivity after listening to insecure-dismissing attachment narratives. A causal interrelation of brain state changes and subsequent changes in social reactivity was further supported by our observation of direct prediction of neuronal responses by individual attachment and trauma characteristics and reversely prediction of subjective experience by intrinsic functional connections. We consider these findings of activation of within-network and between-network connectivity modulated by inter-individual differences as substantial for the understanding of interpersonal processes, particularly in clinical settings. PMID:27014016
Guevara, Edgar; Pierre, Wyston C.; Tessier, Camille; Akakpo, Luis; Londono, Irène; Lesage, Frédéric; Lodygensky, Gregory A.
2017-01-01
Very preterm newborns have an increased risk of developing an inflammatory cerebral white matter injury that may lead to severe neuro-cognitive impairment. In this study we performed functional connectivity (fc) analysis using resting-state optical imaging of intrinsic signals (rs-OIS) to assess the impact of inflammation on resting-state networks (RSN) in a pre-clinical model of perinatal inflammatory brain injury. Lipopolysaccharide (LPS) or saline injections were administered in postnatal day (P3) rat pups and optical imaging of intrinsic signals were obtained 3 weeks later. (rs-OIS) fc seed-based analysis including spatial extent were performed. A support vector machine (SVM) was then used to classify rat pups in two categories using fc measures and an artificial neural network (ANN) was implemented to predict lesion size from those same fc measures. A significant decrease in the spatial extent of fc statistical maps was observed in the injured group, across contrasts and seeds (*p = 0.0452 for HbO2 and **p = 0.0036 for HbR). Both machine learning techniques were applied successfully, yielding 92% accuracy in group classification and a significant correlation r = 0.9431 in fractional lesion volume prediction (**p = 0.0020). Our results suggest that fc is altered in the injured newborn brain, showing the long-standing effect of inflammation. PMID:28725174
Resting-state Functional Connectivity is an Age-dependent Predictor of Motor Learning Abilities.
Mary, Alison; Wens, Vincent; Op de Beeck, Marc; Leproult, Rachel; De Tiège, Xavier; Peigneux, Philippe
2017-10-01
This magnetoencephalography study investigates how ageing modulates the relationship between pre-learning resting-state functional connectivity (rsFC) and subsequent learning. Neuromagnetic resting-state activity was recorded 5 min before motor sequence learning in 14 young (19-30 years) and 14 old (66-70 years) participants. We used a seed-based beta-band power envelope correlation approach to estimate rsFC maps, with the seed located in the right primary sensorimotor cortex. In each age group, the relation between individual rsFC and learning performance was investigated using Pearson's correlation analyses. Our results show that rsFC is predictive of subsequent motor sequence learning but involves different cross-network interactions in the two age groups. In young adults, decreased coupling between the sensorimotor network and the cortico-striato-cerebellar network is associated with better motor learning, whereas a similar relation is found in old adults between the sensorimotor, the dorsal-attentional and the DMNs. Additionally, age-related correlational differences were found in the dorsolateral prefrontal cortex, known to subtend attentional and controlled processes. These findings suggest that motor skill learning depends-in an age-dependent manner-on subtle interactions between resting-state networks subtending motor activity on the one hand, and controlled and attentional processes on the other hand. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Compulsive sexual behavior: Prefrontal and limbic volume and interactions.
Schmidt, Casper; Morris, Laurel S; Kvamme, Timo L; Hall, Paula; Birchard, Thaddeus; Voon, Valerie
2017-03-01
Compulsive sexual behaviors (CSB) are relatively common and associated with significant personal and social dysfunction. The underlying neurobiology is still poorly understood. The present study examines brain volumes and resting state functional connectivity in CSB compared with matched healthy volunteers (HV). Structural MRI (MPRAGE) data were collected in 92 subjects (23 CSB males and 69 age-matched male HV) and analyzed using voxel-based morphometry. Resting state functional MRI data using multi-echo planar sequence and independent components analysis (ME-ICA) were collected in 68 subjects (23 CSB subjects and 45 age-matched HV). CSB subjects showed greater left amygdala gray matter volumes (small volume corrected, Bonferroni adjusted P < 0.01) and reduced resting state functional connectivity between the left amygdala seed and bilateral dorsolateral prefrontal cortex (whole brain, cluster corrected FWE P < 0.05) compared with HV. CSB is associated with elevated volumes in limbic regions relevant to motivational salience and emotion processing, and impaired functional connectivity between prefrontal control regulatory and limbic regions. Future studies should aim to assess longitudinal measures to investigate whether these findings are risk factors that predate the onset of the behaviors or are consequences of the behaviors. Hum Brain Mapp 38:1182-1190, 2017. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Resting-state functional connectivity and motor imagery brain activation
Saiote, Catarina; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Bommarito, Giulia; Cordano, Christian; Battaglia, Mario; Mancardi, Giovanni Luigi; Inglese, Matilde
2016-01-01
Motor imagery (MI) relies on the mental simulation of an action without any overt motor execution (ME), and can facilitate motor learning and enhance the effect of rehabilitation in patients with neurological conditions. While functional magnetic resonance imaging (fMRI) during MI and ME reveals shared cortical representations, the role and functional relevance of the resting-state functional connectivity (RSFC) of brain regions involved in MI is yet unknown. Here, we performed resting-state fMRI followed by fMRI during ME and MI with the dominant hand. We used a behavioral chronometry test to measure ME and MI movement duration and compute an index of performance (IP). Then, we analyzed the voxel-matched correlation between the individual MI parameter estimates and seed-based RSFC maps in the MI network to measure the correspondence between RSFC and MI fMRI activation. We found that inter-individual differences in intrinsic connectivity in the MI network predicted several clusters of activation. Taken together, present findings provide first evidence that RSFC within the MI network is predictive of the activation of MI brain regions, including those associated with behavioral performance, thus suggesting a role for RSFC in obtaining a deeper understanding of neural substrates of MI and of MI ability. PMID:27273577
van Holst, Ruth J.; Chase, Henry W.; Clark, Luke
2014-01-01
Frontostriatal circuitry is implicated in the cognitive distortions associated with gambling behaviour. ‘Near-miss’ events, where unsuccessful outcomes are proximal to a jackpot win, recruit overlapping neural circuitry with actual monetary wins. Personal control over a gamble (e.g., via choice) is also known to increase confidence in one's chances of winning (the ‘illusion of control’). Using psychophysiological interaction (PPI) analyses, we examined changes in functional connectivity as regular gamblers and non-gambling participants played a slot-machine game that delivered wins, near-misses and full-misses, and manipulated personal control. We focussed on connectivity with striatal seed regions, and associations with gambling severity, using voxel-wise regression. For the interaction term of near-misses (versus full-misses) by personal choice (participant-chosen versus computer-chosen), ventral striatal connectivity with the insula, bilaterally, was positively correlated with gambling severity. In addition, some effects for the contrast of wins compared to all non-wins were observed at an uncorrected (p < .001) threshold: there was an overall increase in connectivity between the striatal seeds and left orbitofrontal cortex and posterior insula, and a negative correlation for gambling severity with the connectivity between the right ventral striatal seed and left anterior cingulate cortex. These findings corroborate the ‘non-categorical’ nature of reward processing in gambling: near-misses and full-misses are objectively identical outcomes that are processed differentially. Ventral striatal connectivity with the insula correlated positively with gambling severity in the illusion of control contrast, which could be a risk factor for the cognitive distortions and loss-chasing that are characteristic of problem gambling. PMID:25068112
García-Casares, Natalia; Bernal-López, María R.; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; García-Arnés, Juan A.; Ramos-Rodriguez, José R.; Alfaro, Francisco; Santamaria-Fernández, Sonia; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J.; Gómez-Huelgas, Ricardo
2017-01-01
Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m2) was 38.15 ± 4.7 vs. 34.18 ± 4.5 (p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 (p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex (p < 0.001), left posterior cingulate (p < 0.001), and right posterior cingulate (p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex (p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex (p < 0.025); and decreased connectivity between the left and right posterior cingulate (p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise. PMID:28671558
Jannusch, Kai; Jockwitz, Christiane; Bidmon, Hans-Jürgen; Moebus, Susanne; Amunts, Katrin; Caspers, Svenja
2017-01-01
Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults ( N > 600; age: 55-85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels.
Jannusch, Kai; Jockwitz, Christiane; Bidmon, Hans-Jürgen; Moebus, Susanne; Amunts, Katrin; Caspers, Svenja
2017-01-01
Aging is associated with brain atrophy, functional brain network reorganization and decline of cognitive performance, albeit characterized by high interindividual variability. Among environmental influencing factors accounting for this variability, nutrition and particularly vitamin supply is thought to play an important role. While evidence exists that supplementation of vitamins B6 and B1 might be beneficial for cognition and brain structure, at least in deficient states and neurodegenerative diseases, little is known about this relation during healthy aging and in relation to reorganization of functional brain networks. We thus assessed the relation between blood levels of vitamins B1 and B6 and cognitive performance, cortical folding, and functional resting-state connectivity in a large sample of older adults (N > 600; age: 55–85 years), drawn from the population-based 1000BRAINS study. In addition to blood sampling, subjects underwent structural and functional resting-state neuroimaging as well as extensive neuropsychological testing in the domains of executive functions, (working) memory, attention, and language. Brain regions showing changes in the local gyrification index as calculated using FreeSurfer in relation to vitamin levels were used for subsequent seed-based resting-state functional connectivity analysis. For B6, a positive correlation with local cortical folding was found throughout the brain, while only slight changes in functional connectivity were observed. Contrarily, for B1, a negative correlation with cortical folding as well as problem solving and visuo-spatial working memory performance was found, which was accompanied by pronounced increases of interhemispheric and decreases of intrahemispheric functional connectivity. While the effects for B6 expand previous knowledge on beneficial effects of B6 supplementation on brain structure, they also showed that additional effects on cognition might not be recognizable in healthy older subjects with normal B6 blood levels. The cortical atrophy and pronounced functional reorganization associated with B1, contrarily, was more in line with the theory of a disturbed B1 metabolism in older adults, leading to B1 utilization deficits, and thus, an effective B1 deficiency in the brain, despite normal to high-normal blood levels. PMID:29163003
Muraskin, Jordan; Dodhia, Sonam; Lieberman, Gregory; Garcia, Javier O; Verstynen, Timothy; Vettel, Jean M; Sherwin, Jason; Sajda, Paul
2016-12-01
Post-task resting state dynamics can be viewed as a task-driven state where behavioral performance is improved through endogenous, non-explicit learning. Tasks that have intrinsic value for individuals are hypothesized to produce post-task resting state dynamics that promote learning. We measured simultaneous fMRI/EEG and DTI in Division-1 collegiate baseball players and compared to a group of controls, examining differences in both functional and structural connectivity. Participants performed a surrogate baseball pitch Go/No-Go task before a resting state scan, and we compared post-task resting state connectivity using a seed-based analysis from the supplementary motor area (SMA), an area whose activity discriminated players and controls in our previous results using this task. Although both groups were equally trained on the task, the experts showed differential activity in their post-task resting state consistent with motor learning. Specifically, we found (1) differences in bilateral SMA-L Insula functional connectivity between experts and controls that may reflect group differences in motor learning, (2) differences in BOLD-alpha oscillation correlations between groups suggests variability in modulatory attention in the post-task state, and (3) group differences between BOLD-beta oscillations that may indicate cognitive processing of motor inhibition. Structural connectivity analysis identified group differences in portions of the functionally derived network, suggesting that functional differences may also partially arise from variability in the underlying white matter pathways. Generally, we find that brain dynamics in the post-task resting state differ as a function of subject expertise and potentially result from differences in both functional and structural connectivity. Hum Brain Mapp 37:4454-4471, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Angular default mode network connectivity across working memory load.
Vatansever, D; Manktelow, A E; Sahakian, B J; Menon, D K; Stamatakis, E A
2017-01-01
Initially identified during no-task, baseline conditions, it has now been suggested that the default mode network (DMN) engages during a variety of working memory paradigms through its flexible interactions with other large-scale brain networks. Nevertheless, its contribution to whole-brain connectivity dynamics across increasing working memory load has not been explicitly assessed. The aim of our study was to determine which DMN hubs relate to working memory task performance during an fMRI-based n-back paradigm with parametric increases in difficulty. Using a voxel-wise metric, termed the intrinsic connectivity contrast (ICC), we found that the bilateral angular gyri (core DMN hubs) displayed the greatest change in global connectivity across three levels of n-back task load. Subsequent seed-based functional connectivity analysis revealed that the angular DMN regions robustly interact with other large-scale brain networks, suggesting a potential involvement in the global integration of information. Further support for this hypothesis comes from the significant correlations we found between angular gyri connectivity and reaction times to correct responses. The implication from our study is that the DMN is actively involved during the n-back task and thus plays an important role related to working memory, with its core angular regions contributing to the changes in global brain connectivity in response to increasing environmental demands. Hum Brain Mapp 38:41-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Resting-state functional brain connectivity: lessons from functional near-infrared spectroscopy.
Niu, Haijing; He, Yong
2014-04-01
Resting-state functional near-infrared spectroscopy (R-fNIRS) is an active area of interest and is currently attracting considerable attention as a new imaging tool for the study of resting-state brain function. Using variations in hemodynamic concentration signals, R-fNIRS measures the brain's low-frequency spontaneous neural activity, combining the advantages of portability, low-cost, high temporal sampling rate and less physical burden to participants. The temporal synchronization of spontaneous neuronal activity in anatomically separated regions is referred to as resting-state functional connectivity (RSFC). In the past several years, an increasing body of R-fNIRS RSFC studies has led to many important findings about functional integration among local or whole-brain regions by measuring inter-regional temporal synchronization. Here, we summarize recent advances made in the R-fNIRS RSFC methodologies, from the detection of RSFC (e.g., seed-based correlation analysis, independent component analysis, whole-brain correlation analysis, and graph-theoretical topological analysis), to the assessment of RSFC performance (e.g., reliability, repeatability, and validity), to the application of RSFC in studying normal development and brain disorders. The literature reviewed here suggests that RSFC analyses based on R-fNIRS data are valid and reliable for the study of brain function in healthy and diseased populations, thus providing a promising imaging tool for cognitive science and clinics.
Lu, Shaojia; Gao, Weijia; Wei, Zhaoguo; Wang, Dandan; Hu, Shaohua; Huang, Manli; Xu, Yi; Li, Lingjiang
2017-06-01
Childhood trauma confers great risk for the development of multiple psychiatric disorders; however, the neural basis for this association is still unknown. The present resting-state functional magnetic resonance imaging study aimed to detect the effects of childhood trauma on brain function in a group of young healthy adults. In total, 24 healthy individuals with childhood trauma and 24 age- and sex-matched adults without childhood trauma were recruited. Each participant underwent resting-state functional magnetic resonance imaging scanning. Intra-regional brain activity was evaluated by regional homogeneity method and compared between groups. Areas with altered regional homogeneity were further selected as seeds in subsequent functional connectivity analysis. Statistical analyses were performed by setting current depression and anxiety as covariates. Adults with childhood trauma showed decreased regional homogeneity in bilateral superior temporal gyrus and insula, and the right inferior parietal lobule, as well as increased regional homogeneity in the right cerebellum and left middle temporal gyrus. Regional homogeneity values in the left middle temporal gyrus, right insula and right cerebellum were correlated with childhood trauma severity. In addition, individuals with childhood trauma also exhibited altered default mode network, cerebellum-default mode network and insula-default mode network connectivity when the left middle temporal gyrus, right cerebellum and right insula were selected as seed area, respectively. The present outcomes suggest that childhood trauma is associated with disturbed intrinsic brain function, especially the default mode network, in adults even without psychiatric diagnoses, which may mediate the relationship between childhood trauma and psychiatric disorders in later life.
Zhai, Tian-Ye; Shao, Yong-Cong; Xie, Chun-Ming; Ye, En-Mao; Zou, Feng; Fu, Li-Ping; Li, Wen-Jun; Chen, Gang; Chen, Guang-Yu; Zhang, Zheng-Guo; Li, Shi-Jiang; Yang, Zheng
2014-01-01
Converging evidence suggests that addiction can be considered a disease of aberrant learning and memory with impulsive decision-making. In the past decades, numerous studies have demonstrated that drug addiction is involved in multiple memory systems such as classical conditioned drug memory, instrumental learning memory and the habitual learning memory. However, most of these studies have focused on the contributions of non-declarative memory, and declarative memory has largely been neglected in the research of addiction. Based on a recent finding that hippocampus, as a core functioning region of declarative memory, was proved biased the decision-making process based on past experiences by spreading associated reward values throughout memory. Our present study focused on the hippocampus. By utilizing seed-based network analysis on the resting-state functional MRI datasets with the seed hippocampus we tested how the intrinsic hippocampal memory network altered towards drug addiction, and examined how the functional connectivity strength within the altered hippocampal network correlated with behavioral index ‘impulsivity’. Our results demonstrated that HD group showed enhanced coherence between hippocampus which represents declarative memory system and non-declarative rewardguided learning memory system, and also showed attenuated intrinsic functional link between hippocampus and top-down control system, compared to the CN group. This alteration was furthered found to have behavioral significance over the behavioral index ‘impulsivity’ measured with Barratt Impulsiveness Scale (BIS). These results provide insights into the mechanism of declarative memory underlying the impulsive behavior in drug addiction. PMID:25008351
Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L . Orrock; B. J. Danielson; M. J. Burns
2003-02-03
J.L. Orrock, B.J. Danielson, M.J. Burns, and D.J. Levey. 2003. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation. Ecology, 84(10):2589-2599. Abstract: Corridors that connect patches of disjunct habitat may be promising tools for mediating the negative impacts of habitat fragmentation, but little is known about how corridors affect ecological interactions. In eight 12-ha experimental landscapes, we examined how corridors affect the impact of invertebrate, rodent, and avian seed predators on pokeweed, Phytolacca americana. Over 13 months in 2000 and 2001, we quantified the effects of patch shape, connectivity, and predator type on the number of seedsmore » germinating in the field (germinants), seed removal, and the viability of remaining seeds. Corridors did not affect the number of P. americana germinants in experimental exclosures or the viability of seeds remaining in exclosures. However, corridors affected the removal of seeds in a predator-specific manner: invertebrates removed more seeds in unconnected patches, whereas rodents removed more seeds in connected patches. Seed removal by birds was similar in connected and unconnected patches. Total seed removal by all seed predators was not affected by corridors, because invertebrates removed more seeds where rodents removed fewer seeds, and vice versa. Overall, seed predation signi®cantly reduced the number and viability of remaining seeds, and reduced the number of germinants in 2000 but not in 2001. The abundance of naturally occurring P. americana plants in our experimental patches in 2000 decreased with increasing seed removal from exclosures but was not related to viability or germinants in 2000, suggesting that seed removal may shape the distribution and abundance of this species. Complementary patterns of seed removal by rodents and invertebrates suggest that corridors alter the effects of these predator taxa by changing the relative amounts of edge and core (nonedge) habitats in a patch. Because invertebrates and rodents do not completely overlap in the seeds they consume, corridors may change predation pressure on seeds that are primarily consumed by one predator type, with potential consequences for the composition of plant and seed predator communities.« less
Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin
Carhart-Harris, Robin L.; Erritzoe, David; Williams, Tim; Stone, James M.; Reed, Laurence J.; Colasanti, Alessandro; Tyacke, Robin J.; Leech, Robert; Malizia, Andrea L.; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G.; Nutt, David J.
2012-01-01
Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition. PMID:22308440
Structural Covariance of the Default Network in Healthy and Pathological Aging
Turner, Gary R.
2013-01-01
Significant progress has been made uncovering functional brain networks, yet little is known about the corresponding structural covariance networks. The default network's functional architecture has been shown to change over the course of healthy and pathological aging. We examined cross-sectional and longitudinal datasets to reveal the structural covariance of the human default network across the adult lifespan and through the progression of Alzheimer's disease (AD). We used a novel approach to identify the structural covariance of the default network and derive individual participant scores that reflect the covariance pattern in each brain image. A seed-based multivariate analysis was conducted on structural images in the cross-sectional OASIS (N = 414) and longitudinal Alzheimer's Disease Neuroimaging Initiative (N = 434) datasets. We reproduced the distributed topology of the default network, based on a posterior cingulate cortex seed, consistent with prior reports of this intrinsic connectivity network. Structural covariance of the default network scores declined in healthy and pathological aging. Decline was greatest in the AD cohort and in those who progressed from mild cognitive impairment to AD. Structural covariance of the default network scores were positively associated with general cognitive status, reduced in APOEε4 carriers versus noncarriers, and associated with CSF biomarkers of AD. These findings identify the structural covariance of the default network and characterize changes to the network's gray matter integrity across the lifespan and through the progression of AD. The findings provide evidence for the large-scale network model of neurodegenerative disease, in which neurodegeneration spreads through intrinsically connected brain networks in a disease specific manner. PMID:24048852
Resting-state functional connectivity in combat veterans suffering from impulsive aggression
Heesink, Lieke; van Honk, Jack; Geuze, Elbert
2017-01-01
Abstract Impulsive aggression is common among military personnel after deployment and may arise because of impaired top-down regulation of the amygdala by prefrontal regions. This study sought to further explore this hypothesis via resting-state functional connectivity analyses in impulsively aggressive combat veterans. Male combat veterans with (n = 28) and without (n = 30) impulsive aggression problems underwent resting-state functional magnetic resonance imaging. Functional connectivity analyses were conducted with the following seed-regions: basolateral amygdala (BLA), centromedial amygdala, anterior cingulate cortex (ACC), and anterior insular cortex (AIC). Regions-of-interest analyses focused on the orbitofrontal cortex and periaqueductal gray, and yielded no significant results. In exploratory cluster analyses, we observed reduced functional connectivity between the (bilateral) BLA and left dorsolateral prefrontal cortex in the impulsive aggression group, relative to combat controls. This finding indicates that combat-related impulsive aggression may be marked by weakened functional connectivity between the amygdala and prefrontal regions, already in the absence of explicit emotional stimuli. Group differences in functional connectivity were also observed between the (bilateral) ACC and left cuneus, which may be related to heightened vigilance to potentially threatening visual cues, as well as between the left AIC and right temporal pole, possibly related to negative memory association in impulsive aggression. PMID:29040723
Gardini, Simona; Venneri, Annalena; Sambataro, Fabio; Cuetos, Fernando; Fasano, Fabrizio; Marchi, Massimo; Crisi, Girolamo; Caffarra, Paolo
2015-01-01
Semantic memory decline and changes of default mode network (DMN) connectivity have been reported in mild cognitive impairment (MCI). Only a few studies, however, have investigated the role of changes of activity in the DMN on semantic memory in this clinical condition. The present study aimed to investigate more extensively the relationship between semantic memory impairment and DMN intrinsic connectivity in MCI. Twenty-one MCI patients and 21 healthy elderly controls matched for demographic variables took part in this study. All participants underwent a comprehensive semantic battery including tasks of category fluency, visual naming and naming from definition for objects, actions and famous people, word-association for early and late acquired words and reading. A subgroup of the original sample (16 MCI patients and 20 healthy elderly controls) was also scanned with resting state functional magnetic resonance imaging and DMN connectivity was estimated using a seed-based approach. Compared with healthy elderly, patients showed an extensive semantic memory decline in category fluency, visual naming, naming from definition, words-association, and reading tasks. Patients presented increased DMN connectivity between the medial prefrontal regions and the posterior cingulate and between the posterior cingulate and the parahippocampus and anterior hippocampus. MCI patients also showed a significant negative correlation of medial prefrontal gyrus connectivity with parahippocampus and posterior hippocampus and visual naming performance. Our findings suggest that increasing DMN connectivity may contribute to semantic memory deficits in MCI, specifically in visual naming. Increased DMN connectivity with posterior cingulate and medio-temporal regions seems to represent a maladaptive reorganization of brain functions in MCI, which detrimentally contributes to cognitive impairment in this clinical population.
Palomero-Gallagher, Nicola; Eickhoff, Simon B; Hoffstaedter, Felix; Schleicher, Axel; Mohlberg, Hartmut; Vogt, Brent A; Amunts, Katrin; Zilles, Karl
2015-07-15
Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region. Copyright © 2015 Elsevier Inc. All rights reserved.
Lin, Hsiang-Yuan
2016-01-01
Background: Although atomoxetine demonstrates efficacy in individuals with attention-deficit hyperactivity disorder, its treatment effects on brain resting-state functional connectivity remain unknown. Therefore, we aimed to investigate major brain functional networks in medication-naïve adults with attention-deficit hyperactivity disorder and the efficacy of atomoxetine treatment on resting-state functional connectivity. Methods: After collecting baseline resting-state functional MRI scans from 24 adults with attention-deficit hyperactivity disorder (aged 18–52 years) and 24 healthy controls (matched in demographic characteristics), the participants with attention-deficit hyperactivity disorder were randomly assigned to atomoxetine (n=12) and placebo (n=12) arms in an 8-week, double-blind, placebo-controlled trial. The primary outcome was functional connectivity assessed by a resting-state functional MRI. Seed-based functional connectivity was calculated and compared for the affective, attention, default, and cognitive control networks. Results: At baseline, we found atypical cross talk between the default, cognitive control, and dorsal attention networks and hypoconnectivity within the dorsal attention and default networks in adults with attention-deficit hyperactivity disorder. Our first-ever placebo-controlled clinical trial incorporating resting-state functional MRI showed that treatment with atomoxetine strengthened an anticorrelated relationship between the default and task-positive networks and modulated all major brain networks. The strengthened anticorrelations were associated with improving clinical symptoms in the atomoxetine-treated adults. Conclusions: Our results support the idea that atypical default mode network task-positive network interaction plays an important role in the pathophysiology of adult attention-deficit hyperactivity disorder. Strengthening this atypical relationship following atomoxetine treatment suggests an important pathway to treat attention-deficit hyperactivity disorder. PMID:26377368
Lin, Hsiang-Yuan; Gau, Susan Shur-Fen
2015-09-16
Although atomoxetine demonstrates efficacy in individuals with attention-deficit hyperactivity disorder, its treatment effects on brain resting-state functional connectivity remain unknown. Therefore, we aimed to investigate major brain functional networks in medication-naïve adults with attention-deficit hyperactivity disorder and the efficacy of atomoxetine treatment on resting-state functional connectivity. After collecting baseline resting-state functional MRI scans from 24 adults with attention-deficit hyperactivity disorder (aged 18-52 years) and 24 healthy controls (matched in demographic characteristics), the participants with attention-deficit hyperactivity disorder were randomly assigned to atomoxetine (n=12) and placebo (n=12) arms in an 8-week, double-blind, placebo-controlled trial. The primary outcome was functional connectivity assessed by a resting-state functional MRI. Seed-based functional connectivity was calculated and compared for the affective, attention, default, and cognitive control networks. At baseline, we found atypical cross talk between the default, cognitive control, and dorsal attention networks and hypoconnectivity within the dorsal attention and default networks in adults with attention-deficit hyperactivity disorder. Our first-ever placebo-controlled clinical trial incorporating resting-state functional MRI showed that treatment with atomoxetine strengthened an anticorrelated relationship between the default and task-positive networks and modulated all major brain networks. The strengthened anticorrelations were associated with improving clinical symptoms in the atomoxetine-treated adults. Our results support the idea that atypical default mode network task-positive network interaction plays an important role in the pathophysiology of adult attention-deficit hyperactivity disorder. Strengthening this atypical relationship following atomoxetine treatment suggests an important pathway to treat attention-deficit hyperactivity disorder. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Financial literacy is associated with medial brain region functional connectivity in old age.
Han, S Duke; Boyle, Patricia A; Yu, Lei; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A
2014-01-01
Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest (ROI) in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Financial Literacy is Associated with Medial Brain Region Functional Connectivity in Old Age
Han, S. Duke; Boyle, Patricia A.; Yu, Lei; Fleischman, Debra A.; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A.
2014-01-01
Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post-hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. PMID:24893911
Dong, Li; Wang, Pu; Peng, Rui; Jiang, Sisi; Klugah-Brown, Benjamin; Luo, Cheng; Yao, Dezhong
2016-12-01
The purpose of this study was to investigate alterations of basal ganglia-cortical functional connections in patients with frontal lobe epilepsy (FLE). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from 19 FLE patients and 19 age- and gender-matched healthy controls. Functional connectivity (FC) analysis was used to assess the functional connections between basal ganglia and cerebral cortex. Regions of interest, including the left/right caudate, putamen, pallidum and thalamus, were selected as the seeds. Two sample t-test was used to determine the difference between patients and controls, while controlling the age, gender and head motions. Compared with controls, FLE patients demonstrated increased FCs between basal ganglia and regions including the right fusiform gyrus, the bilateral cingulate gyrus, the precuneus and anterior cingulate gyrus. Reduced FCs were mainly located in a range of brain regions including the bilateral middle occipital gyrus, the ventral frontal lobe, the right putamen, the left fusiform gyrus and right rolandic operculum. In addition, the relationships between basal ganglia-cingulate connections and durations of epilepsy were also found. The alterations of functional integrity within the basal ganglia, as well as its connections to limbic and ventral frontal areas, indicate the important roles of the basal ganglia-cortical functional connections in FLE, and provide new insights in the pathophysiological mechanism of FLE. Copyright © 2016 Elsevier B.V. All rights reserved.
Bharath, R D; Biswal, B B; Bhaskar, M V; Gohel, S; Jhunjhunwala, K; Panda, R; George, L; Gupta, A K; Pal, P K
2015-05-01
Writer's cramp (WC) is a focal task-specific dystonia of the hand which is increasingly being accepted as a network disorder. Non-invasive cortical stimulation using repetitive transcranial magnetic stimulation (rTMS) has produced therapeutic benefits in some of these patients. This study aimed to visualize the motor network abnormalities in WC and also its rTMS induced modulations using resting state functional magnetic resonance imaging (rsfMRI). Nineteen patients with right-sided WC and 20 matched healthy controls (HCs) were prospectively evaluated. All patients underwent a single session of rTMS and rsfMRI was acquired before (R1) and after (R2) rTMS. Seed-based functional connectivity analysis of several regions in the motor network was performed for HCs, R1 and R2 using SPM8 software. Thresholded (P < 0.05, false discovery rate corrected) group level mean correlation maps were used to derive significantly connected region of interest pairs. Writer's cramp showed a significant reduction in resting state functional connectivity in comparison with HCs involving the left cerebellum, thalamus, globus pallidus, putamen, bilateral supplementary motor area, right medial prefrontal lobe and right post central gyrus. After rTMS there was a significant increase in the contralateral resting state functional connectivity through the left thalamus-right globus pallidus-right thalamus-right prefrontal lobe network loop. It is concluded that WC is a network disorder with widespread dysfunction much larger than clinically evident and changes induced by rTMS probably act through subcortical and trans-hemispheric unaffected connections. Longitudinal studies with therapeutic rTMS will be required to ascertain whether such information could be used to select patients prior to rTMS therapy. © 2015 EAN.
Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease
Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman
2014-01-01
Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970
Roth, Jennifer K.; Johnson, Marcia K.; Tokoglu, Fuyuze; Murphy, Isabella; Constable, R. Todd
2014-01-01
Supplementary motor area (SMA), the inferior frontal junction (IFJ), superior frontal junction (SFJ) and parietal cortex are active in many cognitive tasks. In a previous study, we found that subregions of each of these major areas were differentially active in component processes of executive function during working memory tasks. In the present study, each of these subregions was used as a seed in a whole brain functional connectivity analysis of working memory and resting state data. These regions show functional connectivity to different networks, thus supporting the parcellation of these major regions into functional subregions. Many regions showing significant connectivity during the working memory residual data (with task events regressed from the data) were also significantly connected during rest suggesting that these network connections to subregions within major regions of cortex are intrinsic. For some of these connections, task demands modulate activity in these intrinsic networks. Approximately half of the connections significant during task were significant during rest, indicating that some of the connections are intrinsic while others are recruited only in the service of the task. Furthermore, the network connections to traditional ‘task positive’ and ‘task negative’ (a.k.a ‘default mode’) regions shift from positive connectivity to negative connectivity depending on task demands. These findings demonstrate that such task-identified subregions are part of distinct networks, and that these networks have different patterns of connectivity for task as they do during rest, engaging connections both to task positive and task negative regions. These results have implications for understanding the parcellation of commonly active regions into more specific functional networks. PMID:24637793
Jang, Joon Hwan; Lee, Do-Hyeong; Lee, Kyung-Jun; Lee, Won Joon; Moon, Jee Youn; Kim, Yong Chul
2017-01-01
Given that the insula plays a contributory role in the perception of chronic pain, we examined the resting-state functional connectivity between the insular cortex and other brain regions to investigate neural underpinnings of persisting perception of background pain in patients with complex regional pain syndrome (CRPS). A total of 25 patients with CRPS and 25 matched healthy controls underwent functional magnetic resonance imaging at rest. With the anterior and posterior insular cortices as seed regions, we compared the strength of the resting-state functional connectivity between the two groups. Functional connectivity between the anterior and posterior insular cortices and the postcentral and inferior frontal gyri, cingulate cortices was reduced in patients with CRPS compared with controls. Additionally, greater reductions in functional connectivity between the anterior insula and right postcentral gyrus were associated with more severe sensory pain in patients with CRPS (short-form McGill Pain Questionnaire sensory subscores, r = -.517, P = .023). The present results imply a possible role of the insula in aberrant processing of pain information in patients with CRPS. The findings suggest that a functional derangement of the connection between one of the somatosensory cortical functions of perception and one of the insular functions of awareness can play a significant role in the persistent experience of regional pain that is not confined to a specific nerve territory. PMID:28692702
Darwin's wind hypothesis: does it work for plant dispersal in fragmented habitats?
Riba, Miquel; Mayol, Maria; Giles, Barbara E; Ronce, Ophélie; Imbert, Eric; van der Velde, Marco; Chauvet, Stéphanie; Ericson, Lars; Bijlsma, R; Vosman, Ben; Smulders, M J M; Olivieri, Isabelle
2009-08-01
Using the wind-dispersed plant Mycelis muralis, we examined how landscape fragmentation affects variation in seed traits contributing to dispersal. Inverse terminal velocity (Vt(-1)) of field-collected achenes was used as a proxy for individual seed dispersal ability. We related this measure to different metrics of landscape connectivity, at two spatial scales: in a detailed analysis of eight landscapes in Spain and along a latitudinal gradient using 29 landscapes across three European regions. In the highly patchy Spanish landscapes, seed Vt(-1)increased significantly with increasing connectivity. A common garden experiment suggested that differences in Vt(-1) may be in part genetically based. The Vt(-1) was also found to increase with landscape occupancy, a coarser measure of connectivity, on a much broader (European) scale. Finally, Vt(-1)was found to increase along a south-north latitudinal gradient. Our results for M. muralis are consistent with 'Darwin's wind dispersal hypothesis' that high cost of dispersal may select for lower dispersal ability in fragmented landscapes, as well as with the 'leading edge hypothesis' that most recently colonized populations harbour more dispersive phenotypes.
Tractometer: towards validation of tractography pipelines.
Côté, Marc-Alexandre; Girard, Gabriel; Boré, Arnaud; Garyfallidis, Eleftherios; Houde, Jean-Christophe; Descoteaux, Maxime
2013-10-01
We have developed the Tractometer: an online evaluation and validation system for tractography processing pipelines. One can now evaluate the results of more than 57,000 fiber tracking outputs using different acquisition settings (b-value, averaging), different local estimation techniques (tensor, q-ball, spherical deconvolution) and different tracking parameters (masking, seeding, maximum curvature, step size). At this stage, the system is solely based on a revised FiberCup analysis, but we hope that the community will get involved and provide us with new phantoms, new algorithms, third party libraries and new geometrical metrics, to name a few. We believe that the new connectivity analysis and tractography characteristics proposed can highlight limits of the algorithms and contribute in solving open questions in fiber tracking: from raw data to connectivity analysis. Overall, we show that (i) averaging improves quality of tractography, (ii) sharp angular ODF profiles helps tractography, (iii) seeding and multi-seeding has a large impact on tractography outputs and must be used with care, and (iv) deterministic tractography produces less invalid tracts which leads to better connectivity results than probabilistic tractography. Copyright © 2013 Elsevier B.V. All rights reserved.
Altered resting-state functional connectivity in women with chronic fatigue syndrome.
Kim, Byung-Hoon; Namkoong, Kee; Kim, Jae-Jin; Lee, Seojung; Yoon, Kang Joon; Choi, Moonjong; Jung, Young-Chul
2015-12-30
The biological underpinnings of the psychological factors characterizing chronic fatigue syndrome (CFS) have not been extensively studied. Our aim was to evaluate alterations of resting-state functional connectivity in CFS patients. Participants comprised 18 women with CFS and 18 age-matched female healthy controls who were recruited from the local community. Structural and functional magnetic resonance images were acquired during a 6-min passive-viewing block scan. Posterior cingulate cortex seeded resting-state functional connectivity was evaluated, and correlation analyses of connectivity strength were performed. Graph theory analysis of 90 nodes of the brain was conducted to compare the global and local efficiency of connectivity networks in CFS patients with that in healthy controls. The posterior cingulate cortex in CFS patients showed increased resting-state functional connectivity with the dorsal and rostral anterior cingulate cortex. Connectivity strength of the posterior cingulate cortex to the dorsal anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score, while the Beck Depression Inventory (BDI) score was controlled. Connectivity strength to the rostral anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score. Global efficiency of the posterior cingulate cortex was significantly lower in CFS patients, while local efficiency showed no difference from findings in healthy controls. The findings suggest that CFS patients show inefficient increments in resting-state functional connectivity that are linked to the psychological factors observed in the syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Jafri, Madiha J; Pearlson, Godfrey D; Stevens, Michael; Calhoun, Vince D
2008-02-15
Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.
Jafri, Madiha J; Pearlson, Godfrey D; Stevens, Michael; Calhoun, Vince D
2011-01-01
Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in patients versus controls. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject’s ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients. PMID:18082428
Connectopic mapping with resting-state fMRI.
Haak, Koen V; Marquand, Andre F; Beckmann, Christian F
2018-04-15
Brain regions are often topographically connected: nearby locations within one brain area connect with nearby locations in another area. Mapping these connection topographies, or 'connectopies' in short, is crucial for understanding how information is processed in the brain. Here, we propose principled, fully data-driven methods for mapping connectopies using functional magnetic resonance imaging (fMRI) data acquired at rest by combining spectral embedding of voxel-wise connectivity 'fingerprints' with a novel approach to spatial statistical inference. We apply the approach in human primary motor and visual cortex, and show that it can trace biologically plausible, overlapping connectopies in individual subjects that follow these regions' somatotopic and retinotopic maps. As a generic mechanism to perform inference over connectopies, the new spatial statistics approach enables rigorous statistical testing of hypotheses regarding the fine-grained spatial profile of functional connectivity and whether that profile is different between subjects or between experimental conditions. The combined framework offers a fundamental alternative to existing approaches to investigating functional connectivity in the brain, from voxel- or seed-pair wise characterizations of functional association, towards a full, multivariate characterization of spatial topography. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Cortical Signatures of Dyslexia and Remediation: An Intrinsic Functional Connectivity Approach
Koyama, Maki S.; Di Martino, Adriana; Kelly, Clare; Jutagir, Devika R.; Sunshine, Jessica; Schwartz, Susan J.; Castellanos, Francisco X.; Milham, Michael P.
2013-01-01
This observational, cross-sectional study investigates cortical signatures of developmental dyslexia, particularly from the perspective of behavioral remediation. We employed resting-state fMRI, and compared intrinsic functional connectivity (iFC) patterns of known reading regions (seeds) among three dyslexia groups characterized by (a) no remediation (current reading and spelling deficits), (b) partial remediation (only reading deficit remediated), and (c) full remediation (both reading and spelling deficits remediated), and a group of age- and IQ-matched typically developing children (TDC) (total N = 44, age range = 7–15 years). We observed significant group differences in iFC of two seeds located in the left posterior reading network – left intraparietal sulcus (L.IPS) and left fusiform gyrus (L.FFG). Specifically, iFC between L.IPS and left middle frontal gyrus was significantly weaker in all dyslexia groups, irrespective of remediation status/literacy competence, suggesting that persistent dysfunction in the fronto-parietal attention network characterizes dyslexia. Additionally, relative to both TDC and the no remediation group, the remediation groups exhibited stronger iFC between L.FFG and right middle occipital gyrus (R.MOG). The full remediation group also exhibited stronger negative iFC between the same L.FFG seed and right medial prefrontal cortex (R.MPFC), a core region of the default network These results suggest that behavioral remediation may be associated with compensatory changes anchored in L.FFG, which reflect atypically stronger coupling between posterior visual regions (L.FFG-R.MOG) and greater functional segregation between task-positive and task-negative regions (L.FFG-R.MPFC). These findings were bolstered by significant relationships between the strength of the identified functional connections and literacy scores. We conclude that examining iFC can reveal cortical signatures of dyslexia with particular promise for monitoring neural changes associated with behavioral remediation. PMID:23408984
Definition and characterization of an extended social-affective default network.
Amft, Maren; Bzdok, Danilo; Laird, Angela R; Fox, Peter T; Schilbach, Leonhard; Eickhoff, Simon B
2015-03-01
Recent evidence suggests considerable overlap between the default mode network (DMN) and regions involved in social, affective and introspective processes. We considered these overlapping regions as the social-affective part of the DMN. In this study, we established a robust mapping of the underlying brain network formed by these regions and those strongly connected to them (the extended social-affective default network). We first seeded meta-analytic connectivity modeling and resting-state analyses in the meta-analytically defined DMN regions that showed statistical overlap with regions associated with social and affective processing. Consensus connectivity of each seed was subsequently delineated by a conjunction across both connectivity analyses. We then functionally characterized the ensuing regions and performed several cluster analyses. Among the identified regions, the amygdala/hippocampus formed a cluster associated with emotional processes and memory functions. The ventral striatum, anterior cingulum, subgenual cingulum and ventromedial prefrontal cortex formed a heterogeneous subgroup associated with motivation, reward and cognitive modulation of affect. Posterior cingulum/precuneus and dorsomedial prefrontal cortex were associated with mentalizing, self-reference and autobiographic information. The cluster formed by the temporo-parietal junction and anterior middle temporal sulcus/gyrus was associated with language and social cognition. Taken together, the current work highlights a robustly interconnected network that may be central to introspective, socio-affective, that is, self- and other-related mental processes.
Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation.
Farb, Norman A S; Grady, Cheryl L; Strother, Stephen; Tang-Wai, David F; Masellis, Mario; Black, Sandra; Freedman, Morris; Pollock, Bruce G; Campbell, Karen L; Hasher, Lynn; Chow, Tiffany W
2013-01-01
Degraded social function, disinhibition, and stereotypy are defining characteristics of frontotemporal dementia (FTD), manifesting in both the behavioral variant of frontotemporal dementia (bvFTD) and semantic dementia (SD) subtypes. Recent neuroimaging research also associates FTD with alterations in the brain's intrinsic connectivity networks. The present study explored the relationship between neural network connectivity and specific behavioral symptoms in FTD. Resting-state functional magnetic resonance imaging was employed to investigate neural network changes in bvFTD and SD. We used independent components analysis (ICA) to examine changes in frontolimbic network connectivity, as well as several metrics of local network strength, such as the fractional amplitude of low-frequency fluctuations, regional homogeneity, and seed-based functional connectivity. For each analysis, we compared each FTD subgroup to healthy controls, characterizing general and subtype-unique network changes. The relationship between abnormal connectivity in FTD and behavior disturbances was explored. Across multiple analytic approaches, both bvFTD and SD were associated with disrupted frontolimbic connectivity and elevated local connectivity within the prefrontal cortex. Even after controlling for structural atrophy, prefrontal hyperconnectivity was robustly associated with apathy scores. Frontolimbic disconnection was associated with lower disinhibition scores, suggesting that abnormal frontolimbic connectivity contributes to positive symptoms in dementia. Unique to bvFTD, stereotypy was associated with elevated default network connectivity in the right angular gyrus. The behavioral variant was also associated with marginally higher apathy scores and a more diffuse pattern of prefrontal hyperconnectivity than SD. The present findings support a theory of FTD as a disorder of frontolimbic disconnection leading to unconstrained prefrontal connectivity. Prefrontal hyperconnectivity may represent a compensatory response to the absence of affective feedback during the planning and execution of behavior. Increased reliance upon prefrontal processes in isolation from subcortical structures appears to be maladaptive and may drive behavioral withdrawal that is commonly observed in later phases of neurodegeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Disruption of Semantic Network in Mild Alzheimer’s Disease Revealed by Resting-State fMRI
Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico
2018-01-01
Subtle semantic deficits can be observed in Alzheimer’s disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke’s area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. PMID:29197559
Cross-talk in abscisic acid signaling
NASA Technical Reports Server (NTRS)
Fedoroff, Nina V.
2002-01-01
"Cross-talk" in hormone signaling reflects an organism's ability to integrate different inputs and respond appropriately, a crucial function at the heart of signaling network operation. Abscisic acid (ABA) is a plant hormone involved in bud and seed dormancy, growth regulation, leaf senescence and abscission, stomatal opening, and a variety of plant stress responses. This review summarizes what is known about ABA signaling in the control of stomatal opening and seed dormancy and provides an overview of emerging knowledge about connections between ABA, ethylene, sugar, and auxin synthesis and signaling.
Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao
2014-10-01
The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Psilocybin modulates functional connectivity of the amygdala during emotional face discrimination.
Grimm, O; Kraehenmann, R; Preller, K H; Seifritz, E; Vollenweider, F X
2018-04-24
Recent studies suggest that the antidepressant effects of the psychedelic 5-HT2A receptor agonist psilocybin are mediated through its modulatory properties on prefrontal and limbic brain regions including the amygdala. To further investigate the effects of psilocybin on emotion processing networks, we studied for the first-time psilocybin's acute effects on amygdala seed-to-voxel connectivity in an event-related face discrimination task in 18 healthy volunteers who received psilocybin and placebo in a double-blind balanced cross-over design. The amygdala has been implicated as a salience detector especially involved in the immediate response to emotional face content. We used beta-series amygdala seed-to-voxel connectivity during an emotional face discrimination task to elucidate the connectivity pattern of the amygdala over the entire brain. When we compared psilocybin to placebo, an increase in reaction time for all three categories of affective stimuli was found. Psilocybin decreased the connectivity between amygdala and the striatum during angry face discrimination. During happy face discrimination, the connectivity between the amygdala and the frontal pole was decreased. No effect was seen during discrimination of fearful faces. Thus, we show psilocybin's effect as a modulator of major connectivity hubs of the amygdala. Psilocybin decreases the connectivity between important nodes linked to emotion processing like the frontal pole or the striatum. Future studies are needed to clarify whether connectivity changes predict therapeutic effects in psychiatric patients. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.
Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.
2016-01-01
Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011
Gu, Quanquan; Cao, Hengyi; Xuan, Min; Luo, Wei; Guan, Xiaojun; Xu, Jingjing; Huang, Peiyu; Zhang, Minming; Xu, Xiaojun
2017-01-01
Evidence has indicated a strong association between hyperactivity in the cerebello-thalamo-motor cortical loop and resting tremor in Parkinson's disease (PD). Within this loop, the thalamus serves as a central hub based on its structural centrality in the generation of resting tremor. To study whether this thalamic abnormality leads to an alteration at the whole-brain level, our study investigated the role of the thalamus in patients with parkinsonian resting tremor in a large-scale brain network context. Forty-one patients with PD (22 with resting tremor, TP and 19 without resting tremor, NTP) and 45 healthy controls (HC) were included in this resting-state functional MRI study. Graph theory-based network analysis was performed to examine the centrality measures of bilateral thalami across the three groups. To further provide evidence to the central role of the thalamus in parkinsonian resting tremor, the seed-based functional connectivity analysis was then used to quantify the functional interactions between the basal ganglia and the thalamus. Compared with the HC group, patients with the TP group exhibited increased degree centrality ( p < .04), betweenness centrality ( p < .01), and participation coefficient ( p < .01) in the bilateral thalami. Two of these alterations (degree centrality and participation coefficient) were significantly correlated with tremor severity, especially in the left hemisphere ( p < .02). The modular analysis showed that the TP group had more intermodular connections between the thalamus and the regions within the cerebello-thalamo-motor cortical loop. Furthermore, the data revealed significantly enhanced functional connectivity between the putamen and the thalamus in the TP group ( p = .027 corrected for family-wise error). These findings suggest increased thalamic centrality as a potential tremor-specific imaging measure for PD, and provide evidence for the altered putamen-thalamic interaction in patients with resting tremor.
van Rooij, Daan; Hartman, Catharina A.; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V.; Buitelaar, Jan K.; Hoekstra, Pieter J.
2015-01-01
Introduction Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional connectivity during response inhibition compared to their unaffected siblings and healthy controls. Methods Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior- and superior frontal nodes of the response inhibition network. Resulting networks were compared between adolescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125). Results Control subjects showed stronger functional connectivity than the other two groups within the response inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity. Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects during failed inhibition. Additionally, siblings showed decreased connectivity with the primary motor areas as compared to both participants with ADHD and controls. Discussion Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD. PMID:25610797
van Rooij, Daan; Hartman, Catharina A; Mennes, Maarten; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Heslenfeld, Dirk; Faraone, Stephen V; Buitelaar, Jan K; Hoekstra, Pieter J
2015-01-01
Response inhibition is one of the executive functions impaired in attention-deficit/hyperactivity disorder (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional connectivity during response inhibition compared to their unaffected siblings and healthy controls. Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior- and superior frontal nodes of the response inhibition network. Resulting networks were compared between adolescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125). Control subjects showed stronger functional connectivity than the other two groups within the response inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity. Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects during failed inhibition. Additionally, siblings showed decreased connectivity with the primary motor areas as compared to both participants with ADHD and controls. Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD.
Zhai, Tian-Ye; Shao, Yong-Cong; Xie, Chun-Ming; Ye, En-Mao; Zou, Feng; Fu, Li-Ping; Li, Wen-Jun; Chen, Gang; Chen, Guang-Yu; Zhang, Zheng-Guo; Li, Shi-Jiang; Yang, Zheng
2014-10-01
Converging evidence suggests that addiction can be considered a disease of aberrant learning and memory with impulsive decision-making. In the past decades, numerous studies have demonstrated that drug addiction is involved in multiple memory systems such as classical conditioned drug memory, instrumental learning memory and the habitual learning memory. However, most of these studies have focused on the contributions of non-declarative memory, and declarative memory has largely been neglected in the research of addiction. Based on a recent finding that hippocampus, as a core functioning region of declarative memory, was proved biased the decision-making process based on past experiences by spreading associated reward values throughout memory. Our present study focused on the hippocampus. By utilizing seed-based network analysis on the resting-state functional MRI datasets with the seed hippocampus we tested how the intrinsic hippocampal memory network altered toward drug addiction, and examined how the functional connectivity strength within the altered hippocampal network correlated with behavioral index 'impulsivity'. Our results demonstrated that HD group showed enhanced coherence between hippocampus which represents declarative memory system and non-declarative reward-guided learning memory system, and also showed attenuated intrinsic functional link between hippocampus and top-down control system, compared to the CN group. This alteration was furthered found to have behavioral significance over the behavioral index 'impulsivity' measured with Barratt Impulsiveness Scale (BIS). These results provide insights into the mechanism of declarative memory underlying the impulsive behavior in drug addiction. Copyright © 2014 Elsevier B.V. All rights reserved.
Yun, Je-Yeon; Jang, Joon Hwan; Jung, Wi Hoon; Shin, Na Young; Kim, Sung Nyun; Hwang, Jae Yeon
2017-01-01
Objective Executive dysfunction might be an important determinant for response to pharmacotherapy in obsessive-compulsive disorder (OCD), and could be sustained independently of symptom relief. The anterior cingulate cortex (ACC) has been indicated as a potential neural correlate of executive functioning in OCD. The present study examined the brain-executive function relationships in OCD from the ACC-based resting state functional connectivity networks (rs-FCNs), which reflect information processing mechanisms during task performance. Methods For a total of 58 subjects [OCD, n=24; healthy controls (HCs), n=34], four subdomains of executive functioning were measured using the Rey-Osterrieth Complex Figure Test (RCFT), the Stroop Color-Word Test (SCWT), the Wisconsin Card Sorting Test (WCST), and the Trail Making Test part B (TMT-B). To probe for differential patterns of the brain-cognition relationship in OCD compared to HC, the ACC-centered rs-FCN were calculated using five seed regions systemically placed throughout the ACC. Results Significant differences between the OCD group and the HCs with respect to the WCST perseverative errors, SCWT interference scores, and TMT-B reaction times (p<0.05) were observed. Moreover, significant interactions between diagnosis×dorsal ACC [S3]-based rs-FCN strength in the right dorsolateral prefrontal cortex for RCFT organization summary scores as well as between diagnosis×perigenual ACC [S7]-based rs-FCN strength in the left frontal eye field for SCWT color-word interference scores were unveiled. Conclusion These network-based neural foundations for executive dysfunction in OCD could become a potential target of future treatment, which could improve global domains of functioning broader than symptomatic relief. PMID:28539952
The Association between Resting Functional Connectivity and Visual Creativity.
Li, Wenfu; Yang, Junyi; Zhang, Qinglin; Li, Gongying; Qiu, Jiang
2016-05-03
Resting-state functional connectivity (RSFC), the temporal correlation of intrinsic activation between different brain regions, has become one of the most fascinating field in the functional imaging studies. To better understand the association between RSFC and individual creativity, we used RSFC and the figure Torrance Tests of Creative Thinking (TTCT-F) to investigate the relationship between creativity measured by TTCT and RSFC within two different brain networks, default mode network and the cognitive control network, in a large healthy sample (304). We took the medial prefrontal cortex (MPFC) and the bilateral dorsolateral prefrontal cortices (DLPFC) to be the seed regions and investigated the association across subjects between the score of TTCT-F and the strength of RSFC between these seed regions and other voxels in the whole brain. Results revealed that the strength of RSFC with the MPFC was significantly and negatively correlated with the score of TTCT-F in the precuneus. Meanwhile, we also found that the strength of RSFC with the left DLPFC was significantly and positively correlated with the score of TTCT-F in the right DLPFC. It suggests that the decreased RSFC within DMN and the increased RSFC within CCN presents a potential interaction mechanism between different region for higher creativity.
Giménez, Carlos Sebastián; Locatelli, Paola; Montini Ballarin, Florencia; Orlowski, Alejandro; Dewey, Ricardo A; Pena, Milagros; Abraham, Gustavo Abel; Aiello, Ernesto Alejandro; Bauzá, María Del Rosario; Cuniberti, Luis; Olea, Fernanda Daniela; Crottogini, Alberto
2018-04-01
Diaphragmatic myoblasts (DMs) are precursors of type-1 muscle cells displaying high exhaustion threshold on account that they contract and relax 20 times/min over a lifespan, making them potentially useful in cardiac regeneration strategies. Besides, it has been shown that biomaterials for stem cell delivery improve cell retention and viability in the target organ. In the present study, we aimed at developing a novel approach based on the use of poly (L-lactic acid) (PLLA) scaffolds seeded with DMs overexpressing connexin-43 (cx43), a gap junction protein that promotes inter-cell connectivity. DMs isolated from ovine diaphragm biopsies were characterized by immunohistochemistry and ability to differentiate into myotubes (MTs) and transduced with a lentiviral vector encoding cx43. After confirming cx43 expression (RT-qPCR and Western blot) and its effect on inter-cell connectivity (fluorescence recovery after photobleaching), DMs were grown on fiber-aligned or random PLLA scaffolds. DMs were successfully isolated and characterized. Cx43 mRNA and protein were overexpressed and favored inter-cell connectivity. Alignment of the scaffold fibers not only aligned but also elongated the cells, increasing the contact surface between them. This novel approach is feasible and combines the advantages of bioresorbable scaffolds as delivery method and a cell type that on account of its features may be suitable for cardiac regeneration. Future studies on animal models of myocardial infarction are needed to establish its usefulness on scar reduction and cardiac function.
Frontal networks associated with command following after hemorrhagic stroke.
Mikell, Charles B; Banks, Garrett P; Frey, Hans-Peter; Youngerman, Brett E; Nelp, Taylor B; Karas, Patrick J; Chan, Andrew K; Voss, Henning U; Connolly, E Sander; Claassen, Jan
2015-01-01
Level of consciousness is frequently assessed by command-following ability in the clinical setting. However, it is unclear what brain circuits are needed to follow commands. We sought to determine what networks differentiate command following from noncommand following patients after hemorrhagic stroke. Structural MRI, resting-state functional MRI, and electroencephalography were performed on 25 awake and unresponsive patients with acute intracerebral and subarachnoid hemorrhage. Structural injury was assessed via volumetric T1-weighted MRI analysis. Functional connectivity differences were analyzed against a template of standard resting-state networks. The default mode network (DMN) and the task-positive network were investigated using seed-based functional connectivity. Networks were interrogated by pairwise coherence of electroencephalograph leads in regions of interest defined by functional MRI. Functional imaging of unresponsive patients identified significant differences in 6 of 16 standard resting-state networks. Significant voxels were found in premotor cortex, dorsal anterior cingulate gyrus, and supplementary motor area. Direct interrogation of the DMN and task-positive network revealed loss of connectivity between the DMN and the orbitofrontal cortex and new connections between the task-positive network and DMN. Coherence between electrodes corresponding to right executive network and visual networks was also decreased in unresponsive patients. Resting-state functional MRI and electroencephalography coherence data support a model in which multiple, chiefly frontal networks are required for command following. Loss of DMN anticorrelation with task-positive network may reflect a loss of inhibitory control of the DMN by motor-executive regions. Frontal networks should thus be a target for future investigations into the mechanism of responsiveness in the intensive care unit environment. © 2014 American Heart Association, Inc.
Neuro-Epigenetic Indications of Acute Stress Response in Humans: The Case of MicroRNA-29c
Farberov, Luba; Lin, Tamar; Sharon, Haggai; Gilam, Avital; Volk, Naama; Admon, Roee; Edry, Liat; Fruchter, Eyal; Wald, Ilan; Bar-Haim, Yair; Tarrasch, Ricardo; Chen, Alon; Shomron, Noam; Hendler, Talma
2016-01-01
Stress research has progressively become more integrative in nature, seeking to unfold crucial relations between the different phenotypic levels of stress manifestations. This study sought to unravel stress-induced variations in expression of human microRNAs sampled in peripheral blood mononuclear cells and further assess their relationship with neuronal and psychological indices. We obtained blood samples from 49 healthy male participants before and three hours after performing a social stress task, while undergoing functional magnetic resonance imaging (fMRI). A seed-based functional connectivity (FC) analysis was conducted for the ventro-medial prefrontal cortex (vmPFC), a key area of stress regulation. Out of hundreds of microRNAs, a specific increase was identified in microRNA-29c (miR-29c) expression, corresponding with both the experience of sustained stress via self-reports, and alterations in vmPFC functional connectivity. Explicitly, miR-29c expression levels corresponded with both increased connectivity of the vmPFC with the anterior insula (aIns), and decreased connectivity of the vmPFC with the left dorso-lateral prefrontal cortex (dlPFC). Our findings further revealed that miR-29c mediates an indirect path linking enhanced vmPFC-aIns connectivity during stress with subsequent experiences of sustained stress. The correlative patterns of miR-29c expression and vmPFC FC, along with the mediating effects on subjective stress sustainment and the presumed localization of miR-29c in astrocytes, together point to an intriguing assumption; miR-29c may serve as a biomarker in the blood for stress-induced functional neural alterations reflecting regulatory processes. Such a multi-level model may hold the key for future personalized intervention in stress psychopathology. PMID:26730965
Remote humidity and temperature real time monitoring system for studying seed biology
NASA Astrophysics Data System (ADS)
Balachandran, Thiruparan
This thesis discusses the design, prototyping, and testing of a remote monitoring system that is used to study the biology of seeds under various controlled conditions. Seed scientists use air-tight boxes to maintain relative humidity, which influences seed longevity and seed dormancy break. The common practice is the use of super-saturated solutions either with different chemicals or different concentrations of LiCl to create various relative humidity. Theretofore, no known system has been developed to remotely monitor the environmental conditions inside these boxes in real time. This thesis discusses the development of a remote monitoring system that can be used to accurately monitor and measure the relative humidity and temperature inside sealed boxes for the study of seed biology. The system allows the remote and real-time monitoring of these two parameters in five boxes with different conditions. It functions as a client that is connected to the internet using Wireless Fidelity (Wi-Fi) technology while Google spreadsheet is used as the server for uploading and plotting the data. This system directly gets connected to the Google sever through Wi-Fi and uploads the sensors' values in a Google spread sheet. Application-specific software is created and the user can monitor the data in real time and/or download the data into Excel for further analyses. Using Google drive app the data can be viewed using a smart phone or a tablet. Furthermore, an electronic mail (e-mail) alert is also integrated into the system. Whenever measured values go beyond the threshold values, the user will receive an e-mail alert.
Using population genetic analyses to understand seed dispersal patterns
NASA Astrophysics Data System (ADS)
Hamrick, J. L.; Trapnell, Dorset W.
2011-11-01
Neutral genetic markers have been employed in several ways to understand seed dispersal patterns in natural and human modified landscapes. Genetic differentiation among spatially separated populations, using biparentally and maternally inherited genetic markers, allows determination of the relative historical effectiveness of pollen and seed dispersal. Genetic relatedness among individuals, estimated as a function of spatial separation between pairs of individuals, has also been used to indirectly infer seed dispersal distances. Patterns of genetic relatedness among plants in recently colonized populations provide insights into the role of seed dispersal in population colonization and expansion. High genetic relatedness within expanding populations indicates original colonization by a few individuals and population expansion by the recruitment of the original colonists' progeny; low relatedness should occur if population growth results primarily from continuous seed immigration from multiple sources. Parentage analysis procedures can identify maternal parents of dispersed fruits, seeds, or seedlings providing detailed descriptions of contemporary seed dispersal patterns. With standard parent-pair analyses of seeds or seedlings, problems can arise in distinguishing the maternal parent. However, the use of maternal DNA from dispersed fruits or seed coats allows direct identification of maternal individuals and, as a consequence, the distance and patterns of seed dispersal and deposition. Application of combinations of these approaches provides additional insights into the role seed dispersal plays in the genetic connectivity between populations in natural and disturbed landscapes.
Lee, Deokjong; Lee, Junghan; Lee, Jung Eun; Jung, Young-Chul
2017-04-03
Internet gaming disorder (IGD) is a type of behavioral addiction characterized by abnormal executive control, leading to loss of control over excessive gaming. Attention deficit and hyperactivity disorder (ADHD) is one of the most common comorbid disorders in IGD, involving delayed development of the executive control system, which could predispose individuals to gaming addiction. We investigated the influence of childhood ADHD on neural network features of IGD. Resting-state functional magnetic resonance imaging analysis was performed on 44 young, male IGD subjects with and without childhood ADHD and 19 age-matched, healthy male controls. Posterior cingulate cortex (PCC)-seeded connectivity was evaluated to assess abnormalities in default mode network (DMN) connectivity, which is associated with deficits in executive control. IGD subjects without childhood ADHD showed expanded functional connectivity (FC) between DMN-related regions (PCC, medial prefrontal cortex, thalamus) compared with controls. These subjects also exhibited expanded FC between the PCC and brain regions implicated in salience processing (anterior insula, orbitofrontal cortex) compared with IGD subjects with childhood ADHD. IGD subjects with childhood ADHD showed expanded FC between the PCC and cerebellum (crus II), a region involved in executive control. The strength of connectivity between the PCC and cerebellum (crus II) was positively correlated with self-reporting scales reflecting impulsiveness. Individuals with IGD showed altered PCC-based FC, the characteristics of which might be dependent upon history of childhood ADHD. Our findings suggest that altered neural networks for executive control in ADHD would be a predisposition for developing IGD. Copyright © 2017 Elsevier Inc. All rights reserved.
Motor network disruption in essential tremor: a functional and effective connectivity study.
Buijink, Arthur W G; van der Stouwe, A M Madelein; Broersma, Marja; Sharifi, Sarvi; Groot, Paul F C; Speelman, Johannes D; Maurits, Natasha M; van Rootselaar, Anne-Fleur
2015-10-01
Although involvement of the cerebello-thalamo-cortical network has often been suggested in essential tremor, the source of oscillatory activity remains largely unknown. To elucidate mechanisms of tremor generation, it is of crucial importance to study the dynamics within the cerebello-thalamo-cortical network. Using a combination of electromyography and functional magnetic resonance imaging, it is possible to record the peripheral manifestation of tremor simultaneously with brain activity related to tremor generation. Our first aim was to study the intrinsic activity of regions within the cerebello-thalamo-cortical network using dynamic causal modelling to estimate effective connectivity driven by the concurrently recorded tremor signal. Our second aim was to objectify how the functional integrity of the cerebello-thalamo-cortical network is affected in essential tremor. We investigated the functional connectivity between cerebellar and cortical motor regions showing activations during a motor task. Twenty-two essential tremor patients and 22 healthy controls were analysed. For the effective connectivity analysis, a network of tremor-signal related regions was constructed, consisting of the left primary motor cortex, premotor cortex, supplementary motor area, left thalamus, and right cerebellar motor regions lobule V and lobule VIII. A measure of variation in tremor severity over time, derived from the electromyogram, was included as modulatory input on intrinsic connections and on the extrinsic cerebello-thalamic connections, giving a total of 128 models. Bayesian model selection and random effects Bayesian model averaging were used. Separate seed-based functional connectivity analyses for the left primary motor cortex, left supplementary motor area and right cerebellar lobules IV, V, VI and VIII were performed. We report two novel findings that support an important role for the cerebellar system in the pathophysiology of essential tremor. First, in the effective connectivity analysis, tremor variation during the motor task has an excitatory effect on both the extrinsic connection from cerebellar lobule V to the thalamus, and the intrinsic activity of cerebellar lobule V and thalamus. Second, the functional integrity of the motor network is affected in essential tremor, with a decrease in functional connectivity between cortical and cerebellar motor regions. This decrease in functional connectivity, related to the motor task, correlates with an increase in clinical tremor severity. Interestingly, increased functional connectivity between right cerebellar lobules I-IV and the left thalamus correlates with an increase in clinical tremor severity. In conclusion, our findings suggest that cerebello-dentato-thalamic activity and cerebello-cortical connectivity is disturbed in essential tremor, supporting previous evidence of functional cerebellar changes in essential tremor. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Emmorey, Karen; Xu, Jiang; Gannon, Patrick; Goldin-Meadow, Susan; Braun, Allen
2010-01-01
Deaf signers have extensive experience using their hands to communicate. Using fMRI, we examined the neural systems engaged during the perception of manual communication in 14 deaf signers and 14 hearing non-signers. Participants passively viewed blocked video clips of pantomimes (e.g., peeling an imaginary banana) and action verbs in American Sign Language (ASL) that were rated as meaningless by non-signers (e.g., TO-DANCE). In contrast to visual fixation, pantomimes strongly activated fronto-parietal regions (the mirror neuron system, MNS) in hearing non-signers, but only bilateral middle temporal regions in deaf signers. When contrasted with ASL verbs, pantomimes selectively engaged inferior and superior parietal regions in hearing non-signers, but right superior temporal cortex in deaf signers. The perception of ASL verbs recruited similar regions as pantomimes for deaf signers, with some evidence of greater involvement of left inferior frontal gyrus for ASL verbs. Functional connectivity analyses with left hemisphere seed voxels (ventral premotor, inferior parietal lobule, fusiform gyrus) revealed robust connectivity with the MNS for the hearing non-signers. Deaf signers exhibited functional connectivity with the right hemisphere that was not observed for the hearing group for the fusiform gyrus seed voxel. We suggest that life-long experience with manual communication, and/or auditory deprivation, may alter regional connectivity and brain activation when viewing pantomimes. We conclude that the lack of activation within the MNS for deaf signers does not support an account of human communication that depends upon automatic sensorimotor resonance between perception and action.
Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R
2017-08-30
Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang
2017-01-01
A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.
Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.
Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo
2014-05-01
All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted modulation of neurotransmitter networks. Copyright © 2013 Wiley Periodicals, Inc.
Holschneider, Daniel P.; Wang, Zhuo; Pang, Raina D.
2014-01-01
Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [14C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas–findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture. PMID:24966831
Holschneider, Daniel P; Wang, Zhuo; Pang, Raina D
2014-01-01
Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [(14)C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas-findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture.
Guo, Zhongwei; Liu, Xiaozheng; Hou, Hongtao; Wei, Fuquan; Liu, Jian; Chen, Xingli
2016-06-15
Depression is common in Alzheimer's disease (AD) and occurs in AD patients with a prevalence of up to 40%. It reduces cognitive function and increases the burden on caregivers. Currently, there are very few medications that are useful for treating depression in AD patients. Therefore, understanding the brain abnormalities in AD patients with depression (D-AD) is crucial for developing effective interventions. The aim of this study was to investigate the intrinsic dysconnectivity pattern of whole-brain functional networks at the voxel level in D-AD patients based on degree centrality (DC) as measured by resting-state functional magnetic resonance imaging (R-fMRI). Our study included 32 AD patients. All patients were evaluated using the Neuropsychiatric Inventory and Hamilton Depression Rating Scale and further divided into two groups: 15 D-AD patients and 17 non-depressed AD (nD-AD) patients. R-fMRI datasets were acquired from these D-AD and nD-AD patients. First, we performed a DC analysis to identify voxels that showed altered whole brain functional connectivity (FC) with other voxels. We then further investigated FC using the abnormal DC regions to examine in more detail the connectivity patterns of the identified DC changes. D-AD patients had lower DC values in the right middle frontal, precentral, and postcentral gyrus than nD-AD patients. Seed-based analysis revealed decreased connectivity between the precentral and postcentral gyrus to the supplementary motor area and middle cingulum. FC also decreased in the right middle frontal, precentral, and postcentral gyrus. Thus, AD patients with depression fit a 'network dysfunction model' distinct from major depressive disorder and AD. Copyright © 2016. Published by Elsevier Inc.
Cropley, Vanessa; Ganella, Eleni; Wannan, Cassandra; Zalesky, Andrew; Van Rheenen, Tamsyn; Bousman, Chad; Everall, Ian; Fornito, Alexander; Pantelis, Christos
2018-01-01
Abstract Background The frontostriatal circuits linking different parts of the frontal cortex to subregions of the striatum are proposed to regulate different aspects of cognition, executive function, affect and reward processing. Dysregulation of these brain circuits is also known to be important in the etiology of psychotic disorders, with the magnitude of dysfunction correlating with the severity of positive symptoms. These observations suggest that the integrity of brain circuits connected to the striatum is important for antipsychotic treatment response as well as specific cognitive processes. However, not all individuals with schizophrenia benefit from antipsychotic treatment, with up to 20% of individuals considered to be treatment-resistant. These individuals also show pervasive impairments in cognition, including cognitive flexibility. Nevertheless, few studies have examined striatal connectivity in treatment-resistant schizophrenia (TRS), particularly in relation to positive symptomatology and specific cognitive deficits subserved by the striatal circuits. This study therefore aimed to (i) assess for disruptions in frontostriatal connectivity in a sample of TRS and (ii) assess the relationship between the frontostriatal circuits with positive symptoms and attentional set-shifting (cognitive flexibility) given recent associations with the dorsal striatal circuit. Methods Resting-state functional magnetic resonance imaging was used to investigate functional connectivity (FC) in 42 TRS participants prescribed clozapine (30 males, mean age=41.3(10)), and 42 healthy controls (24 males, mean age=38.4(10)). The whole striatum (caudate, putamen and nucleus accumbens) and the left and right dorsal striatum were separately seeded as regions of interest, and Pearson’s correlations between the seeds and all other voxels comprising cortical and subcortical gray matter were investigated. For brain regions that showed significant group differences in FC with the striatal seeds, Pearson’s correlations explored the relationship between the strength of connectivity with positive symptoms and attentional set-shifting (extradimensional shift errors) as measured with the CANTAB intra-/extradimensional set shift task. Results In comparison with healthy controls, TRS patients displayed significantly reduced FC between the whole striatum and the bilateral anterior cingulate, cerebellum, precuneus, right and left frontal pole and left insular/temporal pole, and reduced FC of the left and right dorsal striatum with cerebellum, and between the right dorsal striatum and bilateral cingulate and right frontal pole. Reduced FC between the whole striatum and precuneus and insular/temporal pole was associated with greater delusions of jealousy (p<.002 uncorrected); no other associations with positive symptoms were detected. In the entire sample, reduced FC from all striatal seeds was associated with greater extradimensional errors, indicating worse cognitive flexibility. These associations were not detected in TRS and controls separately. Discussion Our preliminary findings reveal reduced striatal FC in TRS, including hypoconnectivity of the dorsal striatal circuit. In contrast to early psychosis, reduced dorsal striatal connectivity does not appear to mediate positive symptoms. Our finding relating hypoconnectivity of the striatal circuits with impaired cognitive flexibility is partly consistent with recent observations in other psychiatric disorders, although such deficits appear not specific to the dorsal circuit and to TRS. Future work will examine connectivity of the ventral striatum, as well as striatal connectivity in early-onset psychosis and siblings of patients with schizophrenia.
Emotional speech synchronizes brains across listeners and engages large-scale dynamic brain networks
Nummenmaa, Lauri; Saarimäki, Heini; Glerean, Enrico; Gotsopoulos, Athanasios; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko
2014-01-01
Speech provides a powerful means for sharing emotions. Here we implement novel intersubject phase synchronization and whole-brain dynamic connectivity measures to show that networks of brain areas become synchronized across participants who are listening to emotional episodes in spoken narratives. Twenty participants' hemodynamic brain activity was measured with functional magnetic resonance imaging (fMRI) while they listened to 45-s narratives describing unpleasant, neutral, and pleasant events spoken in neutral voice. After scanning, participants listened to the narratives again and rated continuously their feelings of pleasantness–unpleasantness (valence) and of arousal–calmness. Instantaneous intersubject phase synchronization (ISPS) measures were computed to derive both multi-subject voxel-wise similarity measures of hemodynamic activity and inter-area functional dynamic connectivity (seed-based phase synchronization, SBPS). Valence and arousal time series were subsequently used to predict the ISPS and SBPS time series. High arousal was associated with increased ISPS in the auditory cortices and in Broca's area, and negative valence was associated with enhanced ISPS in the thalamus, anterior cingulate, lateral prefrontal, and orbitofrontal cortices. Negative valence affected functional connectivity of fronto-parietal, limbic (insula, cingulum) and fronto-opercular circuitries, and positive arousal affected the connectivity of the striatum, amygdala, thalamus, cerebellum, and dorsal frontal cortex. Positive valence and negative arousal had markedly smaller effects. We propose that high arousal synchronizes the listeners' sound-processing and speech-comprehension networks, whereas negative valence synchronizes circuitries supporting emotional and self-referential processing. PMID:25128711
Pace-Schott, Edward F; Zimmerman, Jared P; Bottary, Ryan M; Lee, Erik G; Milad, Mohammed R; Camprodon, Joan A
2017-07-30
Sleep abnormalities are extremely common in anxiety disorders and may contribute to their development and persistence. Their shared pathophysiological mechanisms could thus serve as biomarkers or targets for novel therapeutics. Individuals with Primary Insomnia were age- and sex-matched to controls and to persons with Generalized Anxiety Disorder. All underwent fMRI resting-state scans at 3-T. In Primary Insomnia and controls, sleep was recorded for 2 weeks using diaries and actigraphy. All participants completed state-anxiety and neuroticism inventories. Whole-brain connectivity of 6 fear- and extinction-related seeds were compared between the 3 groups using ANOVA. The only significant between-group main effect was seen for connectivity between the left amygdala seed and a bilateral cluster in the rostral anterior cingulate cortex. The latter is believed to exert top-down control over amygdala activity and their interaction may thus constitute an emotion regulatory circuit. This connectivity was significantly greatest in controls while Primary Insomnia was intermediate between that of controls and Generalized Anxiety Disorder. Across Primary Insomnia and control subjects, mean connectivity decreased with poorer sleep. Across all 3 groups, connectivity decreased with greater neuroticism and pre-scan anxiety. Decreased top-down control of the amygdala may increase risk of developing an anxiety disorder with preexisting Primary Insomnia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Opposing Amygdala and Ventral Striatum Connectivity During Emotion Identification
Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James
2011-01-01
Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed a well-characterized emotion identification task. As expected, the amygdala responded to THREAT (angry or fearful) faces more than NON-THREAT (sad or happy) faces. A functional connectivity analysis of the time series from an anatomically defined amygdala seed revealed a strong anti-correlation between the amygdala and the ventral striatum /ventral pallidum, consistent with an opposing role for these regions in during emotion identification. A second functional connectivity analysis (psychophysiological interaction) investigating relative connectivity on THREAT vs. NON-THREAT trials demonstrated that the amygdala had increased connectivity with the orbitofrontal cortex during THREAT trials, whereas the ventral striatum demonstrated increased connectivity with the posterior hippocampus on NON-THREAT trials. These results indicate that activity in the amygdala and ventral striatum may be inversely related, and that both regions may provide opposing affective bias signals during emotion identification. PMID:21600684
Algarin, Cecilia; Karunakaran, Keerthana Deepti; Reyes, Sussanne; Morales, Cristian; Lozoff, Betsy; Peirano, Patricio; Biswal, Bharat
2017-01-01
Iron deficiency continues to be the most prevalent micronutrient deficit worldwide. Since iron is involved in several processes including myelination, dopamine neurotransmission and neuronal metabolism, the presence of iron deficiency anemia (IDA) in infancy relates to long-lasting neurofunctional effects. There is scarce data regarding whether these effects would extend to former iron deficient anemic human adults. Resting state functional magnetic resonance imaging (fMRI) is a novel technique to explore patterns of functional connectivity. Default Mode Network (DMN), one of the resting state networks, is deeply involved in memory, social cognition and self-referential processes. The four core regions consistently identified in the DMN are the medial prefrontal cortex, posterior cingulate/retrosplenial cortex and left and right inferior parietal cortex. Therefore to investigate the DMN in former iron deficient anemic adults is a particularly useful approach to elucidate de long term effects on functional brain. We conducted this research to explore the connection between IDA in infancy and altered patterns of resting state brain functional networks in young adults. Resting-state fMRI studies were performed to 31 participants that belong to a follow-up study since infancy. Of them, 14 participants were former iron deficient anemic in infancy and 17 were controls, with mean age of 21.5 years (±1.5) and 54.8% were males. Resting-state fMRI protocol was used and the data was analyzed using the seed based connectivity statistical analysis to assess the DMN. We found that compared to controls, former iron deficient anemic subjects showed posterior DMN decreased connectivity to the left posterior cingulate cortex (PCC), whereas they exhibited increased anterior DMN connectivity to the right PCC. Differences between groups were also apparent in the left medial frontal gyrus, with former iron deficient anemic participants having increased connectivity with areas included in DMN and dorsal attention networks. These preliminary results suggest different patterns of functional connectivity between former iron deficient anemic and control young adults. Indeed, IDA in infancy, a common nutritional problem among human infants, may turn out to be important for understanding the mechanisms of cognitive alterations, common in adulthood. PMID:28326037
Rajtmajer, Sarah M; Roy, Arnab; Albert, Reka; Molenaar, Peter C M; Hillary, Frank G
2015-01-01
Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs) that do not require investigator supervision and permit examination of change in networks over time (or plasticity). Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g., choice of seed-region, anatomical landmarks). These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. An ideal method would permit investigators to study network plasticity due to learning, maturation effects, or clinical recovery via multiple time point data that can be compared to one another in the same ROI while also preserving the voxel-level data in those ROIs at each time point. Data-driven approaches (e.g., whole-brain voxelwise approaches) ameliorate concerns regarding investigator bias, but the fundamental problem of comparing the results between distinct data sets remains. In this paper we propose an approach, aggregate-initialized label propagation (AILP), which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity). To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity.
Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.
Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J
2018-04-18
Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.
Demirakca, Traute; Cardinale, Vita; Dehn, Sven; Ruf, Matthias; Ende, Gabriele
2016-01-01
This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation. PMID:26819776
Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.
Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P
2017-12-13
A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.
Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia
Collins, Jessica A; Montal, Victor; Hochberg, Daisy; Quimby, Megan; Mandelli, Maria Luisa; Makris, Nikos; Seeley, William W; Gorno-Tempini, Maria Luisa; Dickerson, Bradford C
2017-01-01
Abstract A wealth of neuroimaging research has associated semantic variant primary progressive aphasia with distributed cortical atrophy that is most prominent in the left anterior temporal cortex; however, there is little consensus regarding which region within the anterior temporal cortex is most prominently damaged, which may indicate the putative origin of neurodegeneration. In this study, we localized the most prominent and consistent region of atrophy in semantic variant primary progressive aphasia using cortical thickness analysis in two independent patient samples (n = 16 and 28, respectively) relative to age-matched controls (n = 30). Across both samples the point of maximal atrophy was located in the same region of the left temporal pole. This same region was the point of maximal atrophy in 100% of individual patients in both semantic variant primary progressive aphasia samples. Using resting state functional connectivity in healthy young adults (n = 89), we showed that the seed region derived from the semantic variant primary progressive aphasia analysis was strongly connected with a large-scale network that closely resembled the distributed atrophy pattern in semantic variant primary progressive aphasia. In both patient samples, the magnitude of atrophy within a brain region was predicted by that region’s strength of functional connectivity to the temporopolar seed region in healthy adults. These findings suggest that cortical atrophy in semantic variant primary progressive aphasia may follow connectional pathways within a large-scale network that converges on the temporal pole. PMID:28040670
Guell, Xavier; Gabrieli, John D E; Schmahmann, Jeremy D
2018-05-15
Delineation of functional topography is critical to the evolving understanding of the cerebellum's role in a wide range of nervous system functions. We used data from the Human Connectome Project (n = 787) to analyze cerebellar fMRI task activation (motor, working memory, language, social and emotion processing) and resting-state functional connectivity calculated from cerebral cortical seeds corresponding to the peak Cohen's d of each task contrast. The combination of exceptional statistical power, activation from both motor and multiple non-motor tasks in the same participants, and convergent resting-state networks in the same participants revealed novel aspects of the functional topography of the human cerebellum. Consistent with prior studies there were two distinct representations of motor activation. Newly revealed were three distinct representations each for working memory, language, social, and emotional task processing that were largely separate for these four cognitive and affective domains. In most cases, the task-based activations and the corresponding resting-network correlations were congruent in identifying the two motor representations and the three non-motor representations that were unique to working memory, language, social cognition, and emotion. The definitive localization and characterization of distinct triple representations for cognition and emotion task processing in the cerebellum opens up new basic science questions as to why there are triple representations (what different functions are enabled by the different representations?) and new clinical questions (what are the differing consequences of lesions to the different representations?). Copyright © 2018 Elsevier Inc. All rights reserved.
Decreased cerebellar-cerebral connectivity contributes to complex task performance
Knops, André
2016-01-01
The cerebellum's role in nonmotor processes is now well accepted, but cerebellar interaction with cerebral targets is not well understood. Complex cognitive tasks activate cerebellar, parietal, and frontal regions, but the effective connectivity between these regions has never been tested. To this end, we used psycho-physiological interactions (PPI) analysis to test connectivity changes of cerebellar and parietal seed regions in complex (2-digit by 1-digit multiplication, e.g., 12 × 3) vs. simple (1-digit by 1-digit multiplication, e.g., 4 × 3) task conditions (“complex − simple”). For cerebellar seed regions (lobule VI, hemisphere and vermis), we found significantly decreased cerebellar-parietal, cerebellar-cingulate, and cerebellar-frontal connectivity in complex multiplication. For parietal seed regions (PFcm, PFop, PFm) we found significantly increased parietal-parietal and parietal-frontal connectivity in complex multiplication. These results suggest that decreased cerebellar-cerebral connectivity contributes to complex task performance. Interestingly, BOLD activity contrasts revealed partially overlapping parietal areas of increased BOLD activity but decreased cerebellar-parietal PPI connectivity. PMID:27334957
Plue, J; Colas, F; Auffret, A G; Cousins, S A O
2017-03-01
Persistent seed banks are a key plant regeneration strategy, buffering environmental variation to allow population and species persistence. Understanding seed bank functioning within herb layer dynamics is therefore important. However, rather than assessing emergence from the seed bank in herb layer gaps, most studies evaluate the seed bank functioning via a greenhouse census. We hypothesise that greenhouse data may not reflect seed bank-driven emergence in disturbance gaps due to methodological differences. Failure in detecting (specialist) species may then introduce methodological bias into the ecological interpretation of seed bank functions using greenhouse data. The persistent seed bank was surveyed in 40 semi-natural grassland plots across a fragmented landscape, quantifying seedling emergence in both the greenhouse and in disturbance gaps. Given the suspected interpretational bias, we tested whether each census uncovers similar seed bank responses to fragmentation. Seed bank characteristics were similar between censuses. Census type affected seed bank composition, with >25% of species retrieved better by either census type, dependent on functional traits including seed longevity, production and size. Habitat specialists emerged more in disturbance gaps than in the greenhouse, while the opposite was true for ruderal species. Both censuses uncovered fragmentation-induced seed bank patterns. Low surface area sampling, larger depth of sampling and germination conditions cause underrepresentation of the habitat-specialised part of the persistent seed bank flora during greenhouse censuses. Methodological bias introduced in the recorded seed bank data may consequently have significant implications for the ecological interpretation of seed bank community functions based on greenhouse data. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids1[OPEN
Santiago, James P.; Tegeder, Mechthild
2016-01-01
Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield. PMID:27016446
Fujimoto, Toshiro; Okumura, Eiichi; Kodabashi, Atsushi; Takeuchi, Kouzou; Otsubo, Toshiaki; Nakamura, Katsumi; Yatsushiro, Kazutaka; Sekine, Masaki; Kamiya, Shinichiro; Shimooki, Susumu; Tamura, Toshiyo
2016-01-01
We studied sex-related differences in gamma oscillation during an auditory oddball task, using magnetoencephalography and electroencephalography assessment of imaginary coherence (IC). We obtained a statistical source map of event-related desynchronization (ERD) / event-related synchronization (ERS), and compared females and males regarding ERD / ERS. Based on the results, we chose respectively seed regions for IC determinations in low (30-50 Hz), mid (50-100 Hz) and high gamma (100-150 Hz) bands. In males, ERD was increased in the left posterior cingulate cortex (CGp) at 500 ms in the low gamma band, and in the right caudal anterior cingulate cortex (cACC) at 125 ms in the mid-gamma band. ERS was increased in the left rostral anterior cingulate cortex (rACC) at 375 ms in the high gamma band. We chose the CGp, cACC and rACC as seeds, and examined IC between the seed and certain target regions using the IC map. IC changes depended on the height of the gamma frequency and the time window in the gamma band. Although IC in the mid and high gamma bands did not show sex-specific differences, IC at 30-50 Hz in males was increased between the left rACC and the frontal, orbitofrontal, inferior temporal and fusiform target regions. Increased IC in males suggested that males may acomplish the task constructively, analysingly, emotionally, and by perfoming analysis, and that information processing was more complicated in the cortico-cortical circuit. On the other hand, females showed few differences in IC. Females planned the task with general attention and economical well-balanced processing, which was explained by the higher overall functional cortical connectivity. CGp, cACC and rACC were involved in sex differences in information processing and were likely related to differences in neuroanatomy, hormones and neurotransmitter systems.
Coherent white light amplification
Jovanovic, Igor; Barty, Christopher P.
2004-05-25
A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.
Michels, Lars; O'Gorman, Ruth; Kucian, Karin
2018-04-01
Developmental dyscalculia (DD) is a developmental learning disability associated with deficits in processing numerical and mathematical information. Although behavioural training can reduce these deficits, it is unclear which neuronal resources show a functional reorganization due to training. We examined typically developing (TD) children (N=16, mean age: 9.5 years) and age-, gender-, and handedness-matched children with DD (N=15, mean age: 9.5 years) during the performance of a numerical order task with fMRI and functional connectivity before and after 5-weeks of number line training. Using the intraparietal sulcus (IPS) as seed region, DD showed hyperconnectivity in parietal, frontal, visual, and temporal regions before the training controlling for age and IQ. Hyperconnectivity disappeared after training, whereas math abilities improved. Multivariate classification analysis of task-related fMRI data corroborated the connectivity results as the same group of TD could be discriminated from DD before but not after number line training (86.4 vs. 38.9%, respectively). Our results indicate that abnormally high functional connectivity in DD can be normalized on the neuronal level by intensive number line training. As functional connectivity in DD was indistinguishable to TD's connectivity after training, we conclude that training lead to a re-organization of inter-regional task engagement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Brain Activity and Functional Connectivity Associated with Hypnosis.
Jiang, Heidi; White, Matthew P; Greicius, Michael D; Waelde, Lynn C; Spiegel, David
2017-08-01
Hypnosis has proven clinical utility, yet changes in brain activity underlying the hypnotic state have not yet been fully identified. Previous research suggests that hypnosis is associated with decreased default mode network (DMN) activity and that high hypnotizability is associated with greater functional connectivity between the executive control network (ECN) and the salience network (SN). We used functional magnetic resonance imaging to investigate activity and functional connectivity among these three networks in hypnosis. We selected 57 of 545 healthy subjects with very high or low hypnotizability using two hypnotizability scales. All subjects underwent four conditions in the scanner: rest, memory retrieval, and two different hypnosis experiences guided by standard pre-recorded instructions in counterbalanced order. Seeds for the ECN, SN, and DMN were left and right dorsolateral prefrontal cortex, dorsal anterior cingulate cortex (dACC), and posterior cingulate cortex (PCC), respectively. During hypnosis there was reduced activity in the dACC, increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC;ECN) and the insula in the SN, and reduced connectivity between the ECN (DLPFC) and the DMN (PCC). These changes in neural activity underlie the focused attention, enhanced somatic and emotional control, and lack of self-consciousness that characterizes hypnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Altered fronto-cerebellar connectivity in alcohol-naïve youth with a family history of alcoholism
Herting, Megan M.; Fair, Damien; Nagel, Bonnie J.
2011-01-01
Fronto-cerebellar connections are thought to be involved in higher-order cognitive functioning. It is suspected that damage to this network may contribute to cognitive deficits in chronic alcoholics. However, it remains to be elucidated if fronto-cerebellar circuitry is altered in high-risk individuals even prior to alcohol use onset. The current study used functional connectivity MRI (fcMRI) to examine fronto-cerebellar circuitry in 13 alcohol-naïve, at-risk youth with a family history of alcoholism (FH+) and 14 age-matched controls. In addition, we examined how white matter microstructure, as evidenced by fractional anisotropy (FA) related to fcMRI. FH+ youth showed significantly reduced functional connectivity between bilateral anterior prefrontal cortices and contralateral cerebellar seed regions compared to controls. We found that this reduction in connectivity significantly correlated with reduced FA in the anterior limb of the internal capsule and the superior longitudinal fasciculus. Taken together, our findings reflect associated aberrant functional and structural connectivity in substance-naïve FH+ adolescents, perhaps suggesting an identifiable neurophenotypic precursor to substance use. Given the role of frontal and cerebellar brain regions in subserving executive functioning, the presence of premorbid abnormalities in fronto-cerebellar circuitry may heighten the risk for developing an alcohol use disorder in FH+ youth through atypical control processing. PMID:20970506
NASA Astrophysics Data System (ADS)
Daams, Michiel N.; Sijtsma, Frans J.
2013-09-01
In this paper we address the characteristics of a publicly accessible Spatial Economic Ecological Database (SEED) and its ability to support a shared understanding among planners and experts of the economy and ecology of the Dutch Wadden area. Theoretical building blocks for a Wadden SEED are discussed. Our SEED contains a comprehensive set of stakeholder validated spatially explicit data on key economic and ecological indicators. These data extend over various spatial scales. Spatial issues relevant to the specification of a Wadden-SEED and its data needs are explored in this paper and illustrated using empirical data for the Dutch Wadden area. The purpose of the SEED is to integrate basic economic and ecologic information in order to support the resolution of specific (policy) questions and to facilitate connections between project level and strategic level in the spatial planning process. Although modest in its ambitions, we will argue that a Wadden SEED can serve as a valuable element in the much debated science-policy interface. A Wadden SEED is valuable since it is a consensus-based common knowledge base on the economy and ecology of an area rife with ecological-economic conflict, including conflict in which scientific information is often challenged and disputed.
Gerretsen, Philip; Menon, Mahesh; Mamo, David C.; Fervaha, Gagan; Remington, Gary; Pollock, Bruce G.; Graff-Guerrero, Ariel
2015-01-01
Background Impaired insight into illness (clinical insight) in schizophrenia has negative effects on treatment adherence and clinical outcomes. Schizophrenia is described as a disorder of disrupted brain connectivity. In line with this concept, resting state networks (RSNs) appear differentially affected in persons with schizophrenia. Therefore, impaired clinical, or the related construct of cognitive insight (which posits that impaired clinical insight is a function of metacognitive deficits), may reflect alterations in RSN functional connectivity (fc). Based on our previous research, which showed that impaired insight into illness was associated with increased left hemisphere volume relative to right, we hypothesized that impaired clinical insight would be associated with increased connectivity in the DMN with specific left hemisphere brain regions. Methods Resting state MRI scans were acquired for participants with schizophrenia or schizoaffective disorder (n = 20). Seed-to-voxel and ROI-to-ROI fc analyses were performed using the CONN-fMRI fc toolbox v13 for established RSNs. Clinical and cognitive insight were measured with the Schedule for the Assessment of Insight—Expanded Version and Beck Cognitive Insight Scale, respectively, and included as the regressors in fc analyses. Results As hypothesized, impaired clinical insight was associated with increased connectivity in the default mode network (DMN) with the left angular gyrus, and also in the self-referential network (SRN) with the left insula. Cognitive insight was associated with increased connectivity in the dorsal attention network (DAN) with the right inferior frontal cortex (IFC) and left anterior cingulate cortex (ACC). Conclusion Increased connectivity in DMN and SRN with the left angular gyrus and insula, respectively, may represent neural correlates of impaired clinical insight in schizophrenia spectrum disorders, and is consistent with the literature attributing impaired insight to left hemisphere dominance. Increased connectivity in the DAN with the IFC and ACC in relation to cognitive insight may facilitate enhanced mental flexibility in this sample. PMID:25458571
Disruption of Semantic Network in Mild Alzheimer's Disease Revealed by Resting-State fMRI.
Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico
2018-02-10
Subtle semantic deficits can be observed in Alzheimer's disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke's area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Carbonell, Felix; Bellec, Pierre; Shmuel, Amir
2011-01-01
The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.
Ho, S. Shaun; Swain, James E.
2017-01-01
Maternal attachment-related parenting behaviors require mothers to regulate self-related and child-related distress. Emotion regulation is, in turn, influenced by maternal mood and personal developmental history. In the current study we examined how depressive mood may alter maternal limbic system function and functional connectivity underlying defensive and hedonic motivations. Twenty nine mothers were recruited to undergo a baby-cry task during a functional magnetic resonance imaging (fMRI) scan. Based on self-reported depression symptoms and clinical interview, the participants were grouped as healthy controls (n = 15) and currently depressed (n = 14). In the baby-cry task, 30s-long auditory stimuli of baby-cry sounds were presented to simulate four conditions: generic baby-cry (Just-Listen), baby-cry as if it were their own child’s cry (Your-Baby), baby-cry as if it were themselves (Self), and matched control sounds (Noise). Depressed mothers, as compared to healthy controls, showed greater Self versus Just-Listen responses in left extended amygdala and decreased functional coupling between this left extended amygdala as the seed and nucleus accumbens (NAc) in self-oriented (Self versus Just-Listen) and child-oriented (Your-Baby versus Just-Listen) distress signals. Moreover, the extended amygdala’s differential functional connectivity with dorsomedial prefrontal cortex (dmPFC) during the Your-Baby versus Self was increased for depressed mothers and decreased for healthy controls. Thus, depression may affect mothers by increasing baby-cry threat responses and dysregulating associations between threat and heathy child-oriented parenting motivations. These results are discussed in the context of attachment and self-psychology. PMID:28263829
Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin
2011-02-14
The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations. Copyright © 2010 Elsevier Inc. All rights reserved.
Findings in resting-state fMRI by differences from K-means clustering.
Chyzhyk, Darya; Graña, Manuel
2014-01-01
Resting state fMRI has growing number of studies with diverse aims, always centered on some kind of functional connectivity biomarker obtained from correlation regarding seed regions, or by analytical decomposition of the signal towards the localization of the spatial distribution of functional connectivity patterns. In general, studies are computationally costly and very sensitive to noise and preprocessing of data. In this paper we consider clustering by K-means as a exploratory procedure which can provide some results with little computational effort, due to efficient implementations that are readily available. We demonstrate the approach on a dataset of schizophrenia patients, finding differences between patients with and without auditory hallucinations.
Altered brain connectivity in sagittal craniosynostosis.
Beckett, Joel S; Brooks, Eric D; Lacadie, Cheryl; Vander Wyk, Brent; Jou, Roger J; Steinbacher, Derek M; Constable, R Todd; Pelphrey, Kevin A; Persing, John A
2014-06-01
Sagittal nonsyndromic craniosynostosis (sNSC) is the most common form of NSC. The condition is associated with a high prevalence (> 50%) of deficits in executive function. The authors employed diffusion tensor imaging (DTI) and functional MRI to evaluate whether hypothesized structural and functional connectivity differences underlie the observed neurocognitive morbidity of sNSC. Using a 3-T Siemens Trio MRI system, the authors collected DTI and resting-state functional connectivity MRI data in 8 adolescent patients (mean age 12.3 years) with sNSC that had been previously corrected via total vault cranioplasty and 8 control children (mean age 12.3 years) without craniosynostosis. Data were analyzed using the FMRIB Software Library and BioImageSuite. Analyses of the DTI data revealed white matter alterations approaching statistical significance in all supratentorial lobes. Statistically significant group differences (sNSC < control group) in mean diffusivity were localized to the right supramarginal gyrus. Analysis of the resting-state seed in relation to whole-brain data revealed significant increases in negative connectivity (anticorrelations) of Brodmann area 8 to the prefrontal cortex (Montreal Neurological Institute [MNI] center of mass coordinates [x, y, z]: -6, 53, 6) and anterior cingulate cortex (MNI coordinates 6, 43, 14) in the sNSC group relative to controls. Furthermore, in the sNSC patients versus controls, the Brodmann area 7, 39, and 40 seed had decreased connectivity to left angular gyrus (MNI coordinates -31, -61, 34), posterior cingulate cortex (MNI coordinates 13, -52, 18), precuneus (MNI coordinates 10, -55, 54), left and right parahippocampus (MNI coordinates -13, -52, 2 and MNI coordinates 11, -50, 2, respectively), lingual (MNI coordinates -11, -86, -10), and fusiform gyri (MNI coordinates -30, -79, -18). Intrinsic connectivity analysis also revealed altered connectivity between central nodes in the default mode network in sNSC relative to controls; the left and right posterior cingulate cortices (MNI coordinates -5, -35, 34 and MNI coordinates 6, -42, 39, respectively) were negatively correlated to right hemisphere precuneus (MNI coordinates 6, -71, 46), while the left ventromedial prefrontal cortex (MNI coordinates 6, 34, -8) was negatively correlated to right middle frontal gyrus (MNI coordinates 40, 4, 33). All group comparisons (sNSC vs controls) were conducted at a whole brain-corrected threshold of p < 0.05. This study demonstrates altered neocortical structural and functional connectivity in sNSC that may, in part or substantially, underlie the neuropsychological deficits commonly reported in this population. Future studies combining analysis of multimodal MRI and clinical characterization data in larger samples of participants are warranted.
Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol
2016-01-01
Study Objectives: Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). Methods: The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Results: Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Conclusion: Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. Citation: Suh S, Kim H, Dang-Vu TT, Joo E, Shin C. Cortical thinning and altered cortico-cortical structural covariance of the default mode network in patients with persistent insomnia symptoms. SLEEP 2016;39(1):161–171. PMID:26414892
Rohleder, Cathrin; Wiedermann, Dirk; Neumaier, Bernd; Drzezga, Alexander; Timmermann, Lars; Graf, Rudolf; Leweke, F Markus; Endepols, Heike
2016-01-01
Prepulse inhibition (PPI) is a neuropsychological process during which a weak sensory stimulus ("prepulse") attenuates the motor response ("startle reaction") to a subsequent strong startling stimulus. It is measured as a surrogate marker of sensorimotor gating in patients suffering from neuropsychological diseases such as schizophrenia, as well as in corresponding animal models. A variety of studies has shown that PPI of the acoustical startle reaction comprises three brain circuitries for: (i) startle mediation, (ii) PPI mediation, and (iii) modulation of PPI mediation. While anatomical connections and information flow in the startle and PPI mediation pathways are well known, spatial and temporal interactions of the numerous regions involved in PPI modulation are incompletely understood. We therefore combined [(18)F]fluoro-2-deoxyglucose positron-emission-tomography (FDG-PET) with PPI and resting state control paradigms in awake rats. A battery of subtractive, correlative as well as seed-based functional connectivity analyses revealed a default mode-like network (DMN) active during resting state only. Furthermore, two functional networks were observed during PPI: Metabolic activity in the lateral circuitry was positively correlated with PPI effectiveness and involved the auditory system and emotional regions. The medial network was negatively correlated with PPI effectiveness, i.e., associated with startle, and recruited a spatial/cognitive network. Our study provides evidence for two distinct neuronal networks, whose continuous interplay determines PPI effectiveness in rats, probably by either protecting the prepulse or facilitating startle processing. Discovering similar networks affected in neuropsychological disorders may help to better understand mechanisms of sensorimotor gating deficits and provide new perspectives for therapeutic strategies.
Default Mode Network Mechanisms of Transcranial Magnetic Stimulation in Depression
Liston, Conor; Chen, Ashley C.; Zebley, Benjamin D.; Drysdale, Andrew T.; Gordon, Rebecca; Leuchter, Bruce; Voss, Henning U.; Casey, B.J.; Etkin, Amit; Dubin, Marc J.
2014-01-01
Background Repetitive transcranial magnetic stimulation (TMS) of the dorsolateral prefrontal cortex (DLPFC) is an established treatment for depression, but its underlying mechanism of action remains unknown. Abnormalities in two large-scale neuronal networks—the frontoparietal central executive network (CEN) and the medial prefrontal-medial parietal default mode network (DMN)—are consistent findings in depression and potential therapeutic targets for TMS. Here, we assessed the impact of TMS on activity in these networks and their relation to treatment response. Methods We used resting state functional magnetic resonance imaging (rs-fMRI) to measure functional connectivity within and between the DMN and CEN in 17 depressed patients, before and after a five-week course of TMS. Motivated by prior reports, we focused on connectivity seeded from the DLPFC and the subgenual cingulate, a key region closely aligned with the DMN in depression. Connectivity was also compared to a cohort of 35 healthy controls. Results Prior to treatment, functional connectivity in depressed patients was abnormally elevated within the DMN and diminished within the CEN, and connectivity between these two networks was altered. TMS normalized depression-related subgenual hyperconnectivity in the DMN but did not alter connectivity in the CEN. TMS also induced anticorrelated connectivity between the DLPFC and medial prefrontal DMN nodes. Baseline subgenual connectivity predicted subsequent clinical improvement. Conclusions TMS selectively modulates functional connectivity both within and between the CEN and DMN, and modulation of subgenual cingulate connectivity may play an important mechanistic role in alleviating depression. The results also highlight potential neuroimaging biomarkers for predicting treatment response. PMID:24629537
Magon, Stefano; Donath, Lars; Gaetano, Laura; Thoeni, Alain; Radue, Ernst-Wilhelm; Faude, Oliver; Sprenger, Till
2016-09-01
Practice-induced effects of specific balance training on brain structure and activity in elderly people are largely unknown. In the present study, we investigated morphological and functional brain changes following slacking training (balancing over nylon ribbons) in a group of elderly people. Twenty-eight healthy volunteers were recruited and randomly assigned to the intervention (mean age: 62.3±5.4years) or control group (mean age: 61.8±5.3years). The intervention group completed six-weeks of slackline training. Brain morphological changes were investigated using voxel-based morphometry and functional connectivity changes were computed via independent component analysis and seed-based analyses. All analyses were applied to the whole sample and to a subgroup of participants who improved in slackline performance. The repeated measures analysis of variance showed a significant interaction effect between groups and sessions. Specifically, the Tukey post-hoc analysis revealed a significantly improved slackline standing performance after training for the left leg stance time (pre: 4.5±3.6s vs. 26.0±30.0s, p<0.038) as well as for tandem stance time (pre: 1.4±0.6s vs. post: 4.5±4.0s, p=0.003) in the intervention group. No significant changes in balance performance were observed in the control group. The MRI analysis did not reveal morphological or functional connectivity differences before or after the training between the intervention and control groups (whole sample). However, subsequent analysis in subjects with improved slackline performance showed a decrease of connectivity between the striatum and other brain areas during the training period. These preliminary results suggest that improved balance performance with slackline training goes along with an increased efficiency of the striatal network. Copyright © 2016 Elsevier B.V. All rights reserved.
The Association between Resting Functional Connectivity and Visual Creativity
Li, Wenfu; Yang, Junyi; Zhang, Qinglin; Li, Gongying; Qiu, Jiang
2016-01-01
Resting-state functional connectivity (RSFC), the temporal correlation of intrinsic activation between different brain regions, has become one of the most fascinating field in the functional imaging studies. To better understand the association between RSFC and individual creativity, we used RSFC and the figure Torrance Tests of Creative Thinking (TTCT-F) to investigate the relationship between creativity measured by TTCT and RSFC within two different brain networks, default mode network and the cognitive control network, in a large healthy sample (304). We took the medial prefrontal cortex (MPFC) and the bilateral dorsolateral prefrontal cortices (DLPFC) to be the seed regions and investigated the association across subjects between the score of TTCT-F and the strength of RSFC between these seed regions and other voxels in the whole brain. Results revealed that the strength of RSFC with the MPFC was significantly and negatively correlated with the score of TTCT-F in the precuneus. Meanwhile, we also found that the strength of RSFC with the left DLPFC was significantly and positively correlated with the score of TTCT-F in the right DLPFC. It suggests that the decreased RSFC within DMN and the increased RSFC within CCN presents a potential interaction mechanism between different region for higher creativity. PMID:27138732
Differences in resting corticolimbic functional connectivity in bipolar I euthymia
Torrisi, Salvatore; Moody, Teena D; Vizueta, Nathalie; Thomason, Moriah E; Monti, Martin M; Townsend, Jennifer D; Bookheimer, Susan Y; Altshuler, Lori L
2012-01-01
Objective We examined resting state functional connectivity in the brain between key emotion regulation regions in bipolar I disorder to delineate differences in coupling from healthy subjects. Methods Euthymic subjects with bipolar I disorder (n = 20) and matched healthy subjects (n = 20) participated in a resting state functional magnetic resonance imaging scan. Low frequency fluctuations in blood oxygen level-dependent (BOLD) signal were correlated in the six connections between four anatomically-defined nodes: left and right amygdala and left and right ventrolateral prefrontal cortex (vlPFC). Seed-to-voxel connectivity results were probed for commonly coupled regions. Following this, an identified region was included in a mediation analysis to determine the potential of mediation. Results The bipolar I disorder group exhibited significant hyperconnectivity between right amygdala and right vlPFC relative to healthy subjects. The connectivity between these regions in the bipolar I disorder group was partially mediated by activity in the anterior cingulate cortex (ACC). Conclusions Greater coupling between right amygdala and right vlPFC and their partial mediation by the ACC were found in bipolar I disorder subjects in remission and in the absence of a psychological task. These findings have implications for a trait-related and clinically-important imaging biomarker. PMID:23347587
Altered Brain Connectivity in Early Postmenopausal Women with Subjective Cognitive Impairment
Vega, Jennifer N.; Zurkovsky, Lilia; Albert, Kimberly; Melo, Alyssa; Boyd, Brian; Dumas, Julie; Woodward, Neil; McDonald, Brenna C.; Saykin, Andrew J.; Park, Joon H.; Naylor, Magdalena; Newhouse, Paul A.
2016-01-01
Cognitive changes after menopause are a common complaint, especially as the loss of estradiol at menopause has been hypothesized to contribute to the higher rates of dementia in women. To explore the neural processes related to subjective cognitive complaints, this study examined resting state functional connectivity in 31 postmenopausal women (aged 50–60) in relationship to cognitive complaints following menopause. A cognitive complaint index was calculated using responses to a 120-item questionnaire. Seed regions were identified for resting state brain networks important for higher-order cognitive processes and for areas that have shown differences in volume and functional activity associated with cognitive complaints in prior studies. Results indicated a positive correlation between the executive control network and cognitive complaint score, weaker negative functional connectivity within the frontal cortex, and stronger positive connectivity within the right middle temporal gyrus in postmenopausal women who report more cognitive complaints. While longitudinal studies are needed to confirm this hypothesis, these data are consistent with previous findings suggesting that high levels of cognitive complaints may reflect changes in brain connectivity and may be a potential marker for the risk of late-life cognitive dysfunction in postmenopausal women with otherwise normal cognitive performance. PMID:27721740
Leavitt, Victoria M; Wylie, Glenn R; Girgis, Peter A; DeLuca, John; Chiaravalloti, Nancy D
2014-09-01
Identifying effective behavioral treatments to improve memory in persons with learning and memory impairment is a primary goal for neurorehabilitation researchers. Memory deficits are the most common cognitive symptom in multiple sclerosis (MS), and hold negative professional and personal consequences for people who are often in the prime of their lives when diagnosed. A 10-session behavioral treatment, the modified Story Memory Technique (mSMT), was studied in a randomized, placebo-controlled clinical trial. Behavioral improvements and increased fMRI activation were shown after treatment. Here, connectivity within the neural networks underlying memory function was examined with resting-state functional connectivity (RSFC) in a subset of participants from the clinical trial. We hypothesized that the treatment would result in increased integrity of connections within two primary memory networks of the brain, the hippocampal memory network, and the default network (DN). Seeds were placed in left and right hippocampus, and the posterior cingulate cortex. Increased connectivity was found between left hippocampus and cortical regions specifically involved in memory for visual imagery, as well as among critical hubs of the DN. These results represent the first evidence for efficacy of a behavioral intervention to impact the integrity of neural networks subserving memory functions in persons with MS.
Structure and function of seed storage proteins in faba bean (Vicia faba L.).
Liu, Yujiao; Wu, Xuexia; Hou, Wanwei; Li, Ping; Sha, Weichao; Tian, Yingying
2017-05-01
The protein subunit is the most important basic unit of protein, and its study can unravel the structure and function of seed storage proteins in faba bean. In this study, we identified six specific protein subunits in Faba bean (cv. Qinghai 13) combining liquid chromatography (LC), liquid chromatography-electronic spray ionization mass (LC-ESI-MS/MS) and bio-information technology. The results suggested a diversity of seed storage proteins in faba bean, and a total of 16 proteins (four GroEL molecular chaperones and 12 plant-specific proteins) were identified from 97-, 96-, 64-, 47-, 42-, and 38-kD-specific protein subunits in faba bean based on the peptide sequence. We also analyzed the composition and abundance of the amino acids, the physicochemical characteristics, secondary structure, three-dimensional structure, transmembrane domain, and possible subcellular localization of these identified proteins in faba bean seed, and finally predicted function and structure. The three-dimensional structures were generated based on homologous modeling, and the protein function was analyzed based on the annotation from the non-redundant protein database (NR database, NCBI) and function analysis of optimal modeling. The objective of this study was to identify the seed storage proteins in faba bean and confirm the structure and function of these proteins. Our results can be useful for the study of protein nutrition and achieve breeding goals for optimal protein quality in faba bean.
Li, Wenjun; Antuono, Piero G; Xie, Chunming; Chen, Gang; Jones, Jennifer L; Ward, B Douglas; Singh, Suraj P; Franczak, Malgorzata B; Goveas, Joseph S; Li, Shi-Jiang
2014-08-01
The main objective of this study is to detect the early changes in resting-state Papez circuit functional connectivity using the hippocampus as the seed, and to determine the associations between altered functional connectivity (FC) and the episodic memory performance in cognitively intact middle-aged apolipoprotein E4 (APOE4) carriers who are at risk of Alzheimer's disease (AD). Forty-six cognitively intact, middle-aged participants, including 20 APOE4 carriers and 26 age-, sex-, and education-matched noncarriers were studied. The resting-state FC of the hippocampus (HFC) was compared between APOE4 carriers and noncarriers. APOE4 carriers showed significantly decreased FC in brain areas that involve learning and memory functions, including the frontal, cingulate, thalamus and basal ganglia regions. Multiple linear regression analysis showed significant correlations between HFC and the episodic memory performance. Conjunction analysis between neural correlates of memory and altered HFC showed the overlapping regions, especially the subcortical regions such as thalamus, caudate nucleus, and cingulate cortices involved in the Papez circuit. Thus, changes in connectivity in the Papez circuit may be used as an early risk detection for AD. Copyright © 2014. Published by Elsevier Ltd.
Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder
Sripada, Rebecca K.; King, Anthony P.; Garfinkel, Sarah N.; Wang, Xin; Sripada, Chandra S.; Welsh, Robert C.; Liberzon, Israel
2012-01-01
Background Converging neuroimaging research suggests altered emotion neurocircuitry in individuals with posttraumatic stress disorder (PTSD). Emotion activation studies in these individuals have shown hyperactivation in emotion-related regions, including the amygdala and insula, and hypoactivation in emotion-regulation regions, including the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). However, few studies have examined patterns of connectivity at rest in individuals with PTSD, a potentially powerful method for illuminating brain network structure. Methods Using the amygdala as a seed region, we measured resting-state brain connectivity using 3 T functional magnetic resonance imaging in returning male veterans with PTSD and combat controls without PTSD. Results Fifteen veterans with PTSD and 14 combat controls enrolled in our study. Compared with controls, veterans with PTSD showed greater positive connectivity between the amygdala and insula, reduced positive connectivity between the amygdala and hippocampus, and reduced anticorrelation between the amygdala and dorsal ACC and rostral ACC. Limitations Only male veterans with combat exposure were tested, thus our findings cannot be generalized to women or to individuals with non–combat related PTSD. Conclusion These results demonstrate that studies of functional connectivity during resting state can discern aberrant patterns of coupling within emotion circuits and suggest a possible brain basis for emotion-processing and emotion-regulation deficits in individuals with PTSD. PMID:22313617
Rayan, Ahmed M; Morsy, Noha E; Youssef, Khaled M
2018-02-01
The present study investigated the effects of adding the powder of cactus Opuntia dillenii ( O. dillenii ) seeds on the functional properties, fiber, antioxidants and acceptability of rice-based extrudates. The control blend consisting basically of rice flour was replaced with O. dillenii seed powder at 2, 4, 6, 8, 10, 15 and 20% then extruded at the optimum processing conditions. The extruded products were evaluated for their chemical composition, functional properties, color attributes, antioxidant activity and sensory characteristics. The results revealed that adding O. dillenii seeds powder enhanced the fiber, phenolics, flavonoid contents and antioxidant activity of extrudates. Expansion, bulk density and breaking strength were significantly decreased, while water absorption index, water solubility index and oil absorption index were significantly increased compared to the control. Furthermore, the mean scores of sensory evaluation indicated clear improvements in all tested sensory attributes, which significantly increased by increasing the level of O. dillenii seed powder up to 15%. The results confirmed that O. dillenii seed powder could be incorporated in rice to develop snack products of acceptable functional, nutritional and sensory properties.
Liang, Peipeng; Wang, Zhiqun; Yang, Yanhui; Li, Kuncheng
2012-01-01
The Inferior parietal cortex (IPC), including the intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus (SG), plays an important role in episodic memory, and is considered to be one of the specific neuroimaging markers in predicting the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, it is still unclear whether the connectivity of the IPC is impaired in MCI patients. In the present study, we used resting state fMRI to examine the functional connectivity of the three subdivisions of the IPC in MCI patients after controlling the impact of regional grey matter atrophy. It was found that, using IPS, AG, and SG as seeds of functional connectivity, three canonical functional networks could be correspondingly traced, i.e., executive control network (ECN), default mode network (DMN), and salience network (SN), and the three networks are differently altered in MCI patients. In contrast to the healthy controls, it was found that in MCI patients: 1) AG connectivity was significantly reduced within the DMN; 2) IPS showed decreased connectivity with the right inferior frontal gyrus while showing increased connectivity with the left frontal regions within the ECN; and 3) SG displayed decreased connectivity with a distribution of regions including the frontal and parietal regions, and increased connectivity with some sub-cortical areas within the SN. Moreover, the connectivity within the three networks was correlated with episodic memory and general cognitive impairment in MCI patients. These results extend well beyond the DMN, and further suggest that MCI is associated with alteration of large-scale functional brain networks.
Golkar, Armita; Johansson, Emilia; Kasahara, Maki; Osika, Walter; Perski, Aleksander; Savic, Ivanka
2014-01-01
Despite mounting reports about the negative effects of chronic occupational stress on cognitive and emotional functions, the underlying mechanisms are unknown. Recent findings from structural MRI raise the question whether this condition could be associated with a functional uncoupling of the limbic networks and an impaired modulation of emotional stress. To address this, 40 subjects suffering from burnout symptoms attributed to chronic occupational stress and 70 controls were investigated using resting state functional MRI. The participants' ability to up- regulate, down-regulate, and maintain emotion was evaluated by recording their acoustic startle response while viewing neutral and negatively loaded images. Functional connectivity was calculated from amygdala seed regions, using explorative linear correlation analysis. Stressed subjects were less capable of down-regulating negative emotion, but had normal acoustic startle responses when asked to up-regulate or maintain emotion and when no regulation was required. The functional connectivity between the amygdala and the anterior cingulate cortex correlated with the ability to down-regulate negative emotion. This connectivity was significantly weaker in the burnout group, as was the amygdala connectivity with the dorsolateral prefrontal cortex and the motor cortex, whereas connectivity from the amygdala to the cerebellum and the insular cortex were stronger. In subjects suffering from chronic occupational stress, the functional couplings within the emotion- and stress-processing limbic networks seem to be altered, and associated with a reduced ability to down-regulate the response to emotional stress, providing a biological substrate for a further facilitation of the stress condition. PMID:25184294
Prenatal stress alters amygdala functional connectivity in preterm neonates.
Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R
2016-01-01
Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p < 0.05). Similarly, when compared to extremely preterm neonates without exposure to prenatal stress, extremely preterm neonates with exposure to prenatal stress show significantly less connectivity between the left amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p < 0.05). Exploratory analysis of the combined cohorts suggests additive effects of prenatal stress on alterations in amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.
Utilizing forest tree genetic diversity for an adaptation of forest to climate change
NASA Astrophysics Data System (ADS)
Schueler, Silvio; Lackner, Magdalena; Chakraborty, Debojyoti
2017-04-01
Since climate conditions are considered to be major determinants of tree species' distribution ranges and drivers of local adaptation, anthropogenic climate change (CC) is expected to modify the distribution of tree species, tree species diversity and the forest ecosystems connected to these species. The expected speed of environmental change is significantly larger than the natural migration and adaptation capacity of trees and makes spontaneous adjustment of forest ecosystems improbable. Planting alternative tree species and utilizing the tree species' intrinsic adaptive capacity are considered to be the most promising adaptation strategy. Each year about 900 million seedlings of the major tree species are being planted in Central Europe. At present, the utilization of forest reproductive material is mainly restricted to nationally defined ecoregions (seed/provenance zones), but when seedlings planted today become adult, they might be maladapted, as the climate conditions within ecoregions changed significantly. In the cooperation project SUSTREE, we develop transnational delineation models for forest seed transfer and genetic conservation based on species distribution models and available intra-specific climate-response function. These models are being connected to national registers of forest reproductive material in order support nursery and forest managers by selecting the appropriate seedling material for future plantations. In the long-term, European and national policies as well as regional recommendations for provenances use need to adapted to consider the challenges of climate change.
Yu, Yang; Li, Quan-Feng; Zhang, Jin-Ping; Zhang, Fan; Zhou, Yan-Fei; Feng, Yan-Zhao; Chen, Yue-Qin; Zhang, Yu-Chan
2017-01-01
Seed setting rate is one of the most important components of rice grain yield. To date, only several genes regulating setting rate have been identified in plant. In this study, we showed that laccase-13 ( OsLAC13 ), a member of laccase family genes which are known for their roles in modulating phenylpropanoid pathway and secondary lignification in cell wall, exerts a regulatory function in rice seed setting rate. OsLAC13 expressed in anthers and promotes hydrogen peroxide production both in vitro and in the filaments and anther connectives. Knock-out of OsLAC13 showed significantly increased seed setting rate, while overexpression of this gene exhibited induced mitochondrial damage and suppressed sugar transportation in anthers, which in turn affected seed setting rate. OsLAC13 also induced H 2 O 2 production and mitochondrial damage in the root tip cells which caused the lethal phenotype. We also showed that high abundant of OsmiR397, the suppressor of OsLAC13 mRNA, increased the seed setting rate of rice plants, and restrains H 2 O 2 accumulation in roots during oxidative stress. Our results suggested a novel regulatory role of OsLAC13 gene in regulating seed setting rate by affecting H 2 O 2 dynamics and mitochondrial integrity in rice.
Haut, Kristen; Saxena, Abhishek; Yin, Hong; Carol, Emily; Dodell-Feder, David; Lincoln, Sarah Hope; Tully, Laura; Keshavan, Matcheri; Seidman, Larry J.; Nahum, Mor; Hooker, Christine
2017-01-01
Abstract Background: Deficits in social cognition are prominent features of schizophrenia that play a large role in functional impairments and disability. Performance deficits in these domains are associated with altered activity in functional networks, including those that support social cognitive abilities such as emotion recognition. These social cognitive deficits and alterations in neural networks are present prior to the onset of frank psychotic symptoms and thus present a potential target for intervention in early phases of the illness, including in individuals at clinical high risk (CHR) for psychosis. This study assessed changes in social cognitive functional networks following targeted cognitive training (TCT) in CHR individuals. Methods: 14 CHR subjects (7 male, mean age = 21.9) showing attenuated psychotic symptoms as assessed by the SIPS were included in the study. Subjects underwent a clinical evaluation and a functional MRI session prior to and subsequent to completing 40 hours (8 weeks) of targeted cognitive and social cognitive training using Lumosity and SocialVille. 14 matched healthy control (HC) subjects also underwent a single fMRI session as a comparison group for functional activity. Resting state fMRI was acquired as well as fMRI during performance of an emotion recognition task. Group level differences in BOLD activity between HC and CHR group before TCT, and CHR group before and after TCT were computed. Changes in social cognitive network functional connectivity at rest and during task performance was evaluated using seed-based connectivity analyses and psychophysiological interaction (PPI). Results: Prior to training, CHR individuals demonstrated hyperactivity in the amygdala, posterior cingulate, and superior temporal sulcus (STS) during emotion recognition, suggesting inefficient processing. This hyperactivity normalized somewhat after training, with CHR individuals showing less hyperactivity in the amygdala in response to emotional faces. In addition, training was associated with increased connectivity in emotion processing networks, including greater STS-medial prefrontal connectivity and normalization of amygdala connectivity patterns. Conclusion: These results suggest that targeted cognitive training produced improvements in emotion recognition and may be effective in altering functional network connectivity in networks associated with psychosis risk. TCT may be a useful tool for early intervention in individuals at risk for psychotic disorders to address behaviors that impact functional outcome.
Murphy, Kevin; Birn, Rasmus M.; Handwerker, Daniel A.; Jones, Tyler B.; Bandettini, Peter A.
2009-01-01
Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step. PMID:18976716
Murphy, Kevin; Birn, Rasmus M; Handwerker, Daniel A; Jones, Tyler B; Bandettini, Peter A
2009-02-01
Low-frequency fluctuations in fMRI signal have been used to map several consistent resting state networks in the brain. Using the posterior cingulate cortex as a seed region, functional connectivity analyses have found not only positive correlations in the default mode network but negative correlations in another resting state network related to attentional processes. The interpretation is that the human brain is intrinsically organized into dynamic, anti-correlated functional networks. Global variations of the BOLD signal are often considered nuisance effects and are commonly removed using a general linear model (GLM) technique. This global signal regression method has been shown to introduce negative activation measures in standard fMRI analyses. The topic of this paper is whether such a correction technique could be the cause of anti-correlated resting state networks in functional connectivity analyses. Here we show that, after global signal regression, correlation values to a seed voxel must sum to a negative value. Simulations also show that small phase differences between regions can lead to spurious negative correlation values. A combination breath holding and visual task demonstrates that the relative phase of global and local signals can affect connectivity measures and that, experimentally, global signal regression leads to bell-shaped correlation value distributions, centred on zero. Finally, analyses of negatively correlated networks in resting state data show that global signal regression is most likely the cause of anti-correlations. These results call into question the interpretation of negatively correlated regions in the brain when using global signal regression as an initial processing step.
Song, Andrew H.
2017-01-01
State-dependent activity of locus ceruleus (LC) neurons has long suggested a role for noradrenergic modulation of arousal. However, in vivo insights into noradrenergic arousal circuitry have been constrained by the fundamental inaccessibility of the human brain for invasive studies. Functional magnetic resonance imaging (fMRI) studies performed during site-specific pharmacological manipulations of arousal levels may be used to study brain arousal circuitry. Dexmedetomidine is an anesthetic that alters the level of arousal by selectively targeting α2 adrenergic receptors on LC neurons, resulting in reduced firing rate and norepinephrine release. Thus, we hypothesized that dexmedetomidine-induced altered arousal would manifest with reduced functional connectivity between the LC and key brain regions involved in the regulation of arousal. To test this hypothesis, we acquired resting-state fMRI data in right-handed healthy volunteers 18–36 years of age (n = 15, 6 males) at baseline, during dexmedetomidine-induced altered arousal, and recovery states. As previously reported, seed-based resting-state fMRI analyses revealed that the LC was functionally connected to a broad network of regions including the reticular formation, basal ganglia, thalamus, posterior cingulate cortex (PCC), precuneus, and cerebellum. Functional connectivity of the LC to only a subset of these regions (PCC, thalamus, and caudate nucleus) covaried with the level of arousal. Functional connectivity of the PCC to the ventral tegmental area/pontine reticular formation and thalamus, in addition to the LC, also covaried with the level of arousal. We propose a framework in which the LC, PCC, thalamus, and basal ganglia comprise a functional arousal circuitry. SIGNIFICANCE STATEMENT Electrophysiological studies of locus ceruleus (LC) neurons have long suggested a role for noradrenergic mechanisms in mediating arousal. However, the fundamental inaccessibility of the human brain for invasive studies has limited a precise understanding of putative brain regions that integrate with the LC to regulate arousal. Our results suggest that the PCC, thalamus, and basal ganglia are key components of a LC-noradrenergic arousal circuit. PMID:28626012
The influence of large wood accumulations on riparian seed bank diversity
NASA Astrophysics Data System (ADS)
Osei, N. A.
2012-04-01
Little is known about the structure and complexity of seed bank within the riparian corridor and the how large wood accumulations contribute to riparian seed bank diversity. This study aimed to examine and quantify seed bank assemblage and diversity along the undisturbed riparian corridor of the Highland Water, a second order lowland stream draining the New Forest. Seed bank samples were collected from five riparian corridor microhabitats namely mid-channel bars, floodplains, bare banks, banks adjacent large wood accumulations and within large wood accumulations that differed in their hydrologic connectivity with the river. Descriptive statistics and ordination methods applied to the floristic and sediment data sets indicates that sediment organic matter content, species richness and proportions of functional types distinctly differed among the riparian microhabitats types but there was no difference in viable seed densities. Banks adjacent large wood accumulations were the most floristically diverse and rich in organic matter with mid-channel bars exhibiting the reverse. This was due to the ability of large wood accumulations to buffer varying magnitudes of physical gradients and sort seeds and sediments, therefore altering the character of bare banks. This study not only strengthen the evidence that riparian corridors exhibit elevated spatial sediment and vegetation heterogeneity but also demonstrates the importance of large wood accumulation as habitat modifiers, ecosystem engineers and conservation sink for moisture, organic matter and seeds, resources essential for riparian vegetation conservation, recovery and restoration efforts.
Müller, Veronika I.; Cieslik, Edna C.; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.
2013-01-01
The inferior parietal cortex (IPC) is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition) in schizophrenia. By using task-independent (resting state) and task-dependent meta-analytic connectivity modeling (MACM) analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC), medial orbitofrontal cortex (mOFC), left middle frontal (MFG) as well as inferior frontal (IFG) gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups. PMID:23781190
Yang, Xin-Hua; Tian, Kai; Wang, Dong-Fang; Wang, Yi; Cheung, Eric F C; Xie, Guang-Rong; Chan, Raymond C K
2017-08-15
Recent empirical findings have suggested that imbalanced neural networks may underlie the pathophysiology of major depressive disorder (MDD). However, the contribution of the superior temporal gyrus (STG) and the caudate nucleus to its pathophysiology remains unclear. Functional magnetic resonance imaging (MRI) date were acquired from 40 patients with first-episode drug-naive MDD and 36 matched healthy controls during wakeful rest. We used whole-brain voxel-wise statistical maps to quantify within-group resting state functional connectivity (RSFC) and between-group differences of bilateral caudate and STG seeds. Compared with healthy controls, first-episode MDD patients were found to have reduced connectivity between the ventral caudate and several brain regions including the superior frontal gyrus (SFG), the superior parietal lobule (SPL) and the middle temporal gyrus (MTG), as well as increased connectivity with the cuneus. We also found increased connectivity between the left STG and the precuneus, the angular gyrus and the cuneus. Moreover, we found that increased anhedonia severity was correlated with the magnitude of ventral caudate functional connectivity with the cuneus and the MTG in MDD patients. Due to our small sample size, we did not correct the statistical threshold in the correlation analyses between clinical variables and connectivity abnormalities. The present study suggests that anhedonia is mainly associated with altered ventral caudate-cortical connectivity and highlights the importance of the ventral caudate in the neurobiology of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.
Hamamci, Andac; Kucuk, Nadir; Karaman, Kutlay; Engin, Kayihan; Unal, Gozde
2012-03-01
In this paper, we present a fast and robust practical tool for segmentation of solid tumors with minimal user interaction to assist clinicians and researchers in radiosurgery planning and assessment of the response to the therapy. Particularly, a cellular automata (CA) based seeded tumor segmentation method on contrast enhanced T1 weighted magnetic resonance (MR) images, which standardizes the volume of interest (VOI) and seed selection, is proposed. First, we establish the connection of the CA-based segmentation to the graph-theoretic methods to show that the iterative CA framework solves the shortest path problem. In that regard, we modify the state transition function of the CA to calculate the exact shortest path solution. Furthermore, a sensitivity parameter is introduced to adapt to the heterogeneous tumor segmentation problem, and an implicit level set surface is evolved on a tumor probability map constructed from CA states to impose spatial smoothness. Sufficient information to initialize the algorithm is gathered from the user simply by a line drawn on the maximum diameter of the tumor, in line with the clinical practice. Furthermore, an algorithm based on CA is presented to differentiate necrotic and enhancing tumor tissue content, which gains importance for a detailed assessment of radiation therapy response. Validation studies on both clinical and synthetic brain tumor datasets demonstrate 80%-90% overlap performance of the proposed algorithm with an emphasis on less sensitivity to seed initialization, robustness with respect to different and heterogeneous tumor types, and its efficiency in terms of computation time.
Bueno, Rafael S; Guevara, Roger; Ribeiro, Milton C; Culot, Laurence; Bufalo, Felipe S; Galetti, Mauro
2013-01-01
Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers.
Guo, Yiqun; Chen, Zhiyi; Feng, Tingyong
2017-08-14
Balanced time perspective (BTP), which is defined as a mental ability to switch flexibly among different time perspectives Zimbardo and Boyd (1999), has been suggested to be a central component of positive psychology Boniwell and Zimbardo (2004). BTP reflects individual's cognitive flexibility towards different time frames, which leads to many positive outcomes, including positive mood, subjective wellbeing, emotional intelligence, fluid intelligence, and executive control. However, the neural basis of BTP is still unclear. To address this question, we quantified individual's deviation from the BTP (DBTP), and investigated the neural substrates of DBTP using both voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods VBM analysis found that DBTP scores were positively correlated with gray matter volume (GMV) in the ventral precuneus. We further found that DBTP scores were negatively associated with RSFCs between the ventral precuneus seed region and medial prefrontal cortex (mPFC), bilateral temporoparietal junction (TPJ), parahippocampa gyrus (PHG), and middle frontal gyrus (MFG). These brain regions found in both VBM and RSFC analyses are commonly considered as core nodes of the default mode network (DMN) that is known to be involved in many functions, including episodic and autobiographical memory, self-related processing, theory of mind, and imagining the future. These functions of the DMN are also essential to individuals with BTP. Taken together, we provide the first evidence for the structural and functional neural basis of BTP, and highlight the crucial role of the DMN in cultivating an individual's BTP. Copyright © 2017 Elsevier B.V. All rights reserved.
Mohanty, Rosaleena; Sinha, Anita M; Remsik, Alexander B; Dodd, Keith C; Young, Brittany M; Jacobson, Tyler; McMillan, Matthew; Thoma, Jaclyn; Advani, Hemali; Nair, Veena A; Kang, Theresa J; Caldera, Kristin; Edwards, Dorothy F; Williams, Justin C; Prabhakaran, Vivek
2018-01-01
Interventional therapy using brain-computer interface (BCI) technology has shown promise in facilitating motor recovery in stroke survivors; however, the impact of this form of intervention on functional networks outside of the motor network specifically is not well-understood. Here, we investigated resting-state functional connectivity (rs-FC) in stroke participants undergoing BCI therapy across stages, namely pre- and post-intervention, to identify discriminative functional changes using a machine learning classifier with the goal of categorizing participants into one of the two therapy stages. Twenty chronic stroke participants with persistent upper-extremity motor impairment received neuromodulatory training using a closed-loop neurofeedback BCI device, and rs-functional MRI (rs-fMRI) scans were collected at four time points: pre-, mid-, post-, and 1 month post-therapy. To evaluate the peak effects of this intervention, rs-FC was analyzed from two specific stages, namely pre- and post-therapy. In total, 236 seeds spanning both motor and non-motor regions of the brain were computed at each stage. A univariate feature selection was applied to reduce the number of features followed by a principal component-based data transformation used by a linear binary support vector machine (SVM) classifier to classify each participant into a therapy stage. The SVM classifier achieved a cross-validation accuracy of 92.5% using a leave-one-out method. Outside of the motor network, seeds from the fronto-parietal task control, default mode, subcortical, and visual networks emerged as important contributors to the classification. Furthermore, a higher number of functional changes were observed to be strengthening from the pre- to post-therapy stage than the ones weakening, both of which involved motor and non-motor regions of the brain. These findings may provide new evidence to support the potential clinical utility of BCI therapy as a form of stroke rehabilitation that not only benefits motor recovery but also facilitates recovery in other brain networks. Moreover, delineation of stronger and weaker changes may inform more optimal designs of BCI interventional therapy so as to facilitate strengthened and suppress weakened changes in the recovery process.
Fick, Stephen E; Decker, Cheryl E.; Duniway, Michael C.; Miller, Mark E.
2016-01-01
Anthropogenic desertification is a problem that plagues drylands globally; however, the factors which maintain degraded states are often unclear. In Canyonlands National Park on the Colorado Plateau of southeastern Utah, many degraded grasslands have not recovered structure and function >40 yr after release from livestock grazing pressure, necessitating active restoration. We hypothesized that multiple factors contribute to the persistent degraded state, including lack of seed availability, surficial soil-hydrological properties, and high levels of spatial connectivity (lack of perennial vegetation and other surface structure to retain water, litter, seed, and sediment). In combination with seeding and surface raking treatments, we tested the effect of small barrier structures (“ConMods”) designed to disrupt the loss of litter, seed and sediment in degraded soil patches within the park. Grass establishment was highest when all treatments (structures, seed addition, and soil disturbance) were combined, but only in the second year after installation, following favorable climatic conditions. We suggest that multiple limiting factors were ameliorated by treatments, including seed limitation and microsite availability, seed removal by harvester ants, and stressful abiotic conditions. Higher densities of grass seedlings on the north and east sides of barrier structures following the summer months suggest that structures may have functioned as artificial “nurse-plants”, sheltering seedlings from wind and radiation as well as accumulating wind-blown resources. Barrier structures increased the establishment of both native perennial grasses and exotic annuals, although there were species-specific differences in mortality related to spatial distribution of seedlings within barrier structures. The unique success of all treatments combined, and even then only under favorable climatic conditions and in certain soil patches, highlights that restoration success (and potentially, natural regeneration) often is contingent on many interacting factors.
Cai, Suping; Huang, Liyu; Zou, Jia; Jing, Longlong; Zhai, Buzhong; Ji, Gongjun; von Deneen, Karen M.; Ren, Junchan; Ren, Aifeng
2015-01-01
We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer’s disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI. PMID:25679386
Cai, Suping; Huang, Liyu; Zou, Jia; Jing, Longlong; Zhai, Buzhong; Ji, Gongjun; von Deneen, Karen M; Ren, Junchan; Ren, Aifeng
2015-01-01
We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer's disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI.
Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter
2016-01-01
Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038
Gao, Yujun; Zheng, Jinou; Li, Yaping; Guo, Danni; Wang, Mingli; Cui, Xiangxiang; Ye, Wei
2018-04-01
Patients with temporal lobe epilepsy (TLE) often suffer from alertness alterations. However, specific regions connected with alertness remain controversial, and whether these regions have structural impairment is also elusive. This study aimed to investigate the characteristics and neural mechanisms underlying the functions and structures of alertness network in patients with right-sided temporal lobe epilepsy (rTLE) by performing the attentional network test (ANT), resting-state functional magnetic resonance imaging (R-SfMRI), and diffusion tensor imaging (DTI).A total of 47 patients with rTLE and 34 healthy controls underwent ANT, R-SfMRI, and DTI scan. The seed-based functional connectivity (FC) method and deterministic tractography were used to analyze the data.Patients with rTLE had longer reaction times in the no-cue and double-cue conditions. However, no differences were noted in the alertness effect between the 2 groups. The patient group had lower FC compared with the control group in the right inferior parietal lobe (IPL), amygdala, and insula. Structural deficits were found in the right parahippocampal gyrus, superior temporal pole, insula, and amygdala in the patient group compared with the control group. Also significantly negative correlations were observed between abnormal fractional anisotropy (between the right insula and the superior temporal pole) and illness duration in the patients with rTLE.The findings of this study suggested abnormal intrinsic and phasic alertness, decreased FC, and structural deficits within the alerting network in the rTLE. This study provided new insights into the mechanisms of alertness alterations in rTLE.
Default mode network connectivity in children with a history of preschool onset depression.
Gaffrey, Michael S; Luby, Joan L; Botteron, Kelly; Repovš, Grega; Barch, Deanna M
2012-09-01
Atypical Default Mode Network (DMN) functional connectivity has been previously reported in depressed adults. However, there is relatively little data informing the developmental nature of this phenomenon. The current case-control study examined the DMN in a unique prospective sample of school-age children with a previous history of preschool depression. DMN functional connectivity was assessed using resting state functional connectivity magnetic resonance imaging data and the posterior cingulate (PCC) as a seed region of interest. Thirty-nine medication naïve school age children (21 with a history of preschool depression and 18 healthy peers) and their families who were ascertained as preschoolers and prospectively assessed over at least 4 annual waves as part of a federally funded study of preschool depression were included. Decreased connectivity between the PCC and regions within the middle temporal gyrus (MTG), inferior parietal lobule, and cerebellum was found in children with known depression during the preschool period. Increased connectivity between the PCC and regions within the subgenual and anterior cingulate cortices and anterior MTG bilaterally was also found in these children. Additionally, a clinically relevant 'brain-behavior' relationship between atypical functional connectivity of the PCC and disruptions in emotion regulation was identified. To our knowledge, this is the first study to examine the DMN in children known to have experienced the onset of a clinically significant depressive syndrome during preschool. Results suggest that a history of preschool depression is associated with atypical DMN connectivity. However, longitudinal studies are needed to clarify whether the current findings of atypical DMN connectivity are a precursor or a consequence of preschool depression. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.
The structural and functional correlates of the efficiency in fearful face detection.
Wang, Yongchao; Guo, Nana; Zhao, Li; Huang, Hui; Yao, Xiaonan; Sang, Na; Hou, Xin; Mao, Yu; Bi, Taiyong; Qiu, Jiang
2017-06-01
Human visual system is found to be much efficient in searching for a fearful face. Some individuals are more sensitive to this threat-related stimulus. However, we still know little about the neural correlates of such variability. In the current study, we exploited a visual search paradigm, and asked the subjects to search for a fearful face or a target gender. Every subject showed a shallower search function for fearful face search than face gender search, indicating a stable fearful face advantage. We then used voxel-based morphometry (VBM) analysis and correlated this advantage to the gray matter volume (GMV) of some presumably face related cortical areas. The result revealed that only the left fusiform gyrus showed a significant positive correlation. Next, we defined the left fusiform gyrus as the seed region and calculated its resting state functional connectivity to the whole brain. Correlations were also calculated between fearful face advantage and these connectivities. In this analysis, we found positive correlations in the inferior parietal lobe and the ventral medial prefrontal cortex. These results suggested that the anatomical structure of the left fusiform gyrus might determine the search efficiency of fearful face, and frontoparietal attention network involved in this process through top-down attentional modulation. Copyright © 2017. Published by Elsevier Ltd.
Jin, Ye; Ni, Di-An; Ruan, Yong-Ling
2009-07-01
Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in tomato (Solanum lycopersicum). Expression of a INVINH1:green fluorescent protein fusion revealed its apoplasmic localization. Ectopic overexpression of INVINH1 in Arabidopsis thaliana specifically reduced cell wall invertase activity. By contrast, silencing its expression in tomato significantly increased the activity of cell wall invertase without altering activities of cytoplasmic and vacuolar invertases. Elevation of cell wall invertase activity in RNA interference transgenic tomato led to (1) a prolonged leaf life span involving in a blockage of abscisic acid-induced senescence and (2) an increase in seed weight and fruit hexose level, which is likely achieved through enhanced sucrose hydrolysis in the apoplasm of the fruit vasculature. This assertion is based on (1) coexpression of INVINH1 and a fruit-specific cell wall invertase Lin5 in phloem parenchyma cells of young fruit, including the placenta regions connecting developing seeds; (2) a physical interaction between INVINH1 and Lin5 in vivo; and (3) a symplasmic discontinuity at the interface between placenta and seeds. Together, the results demonstrate that INVINH1 encodes a protein that specifically inhibits the activity of cell wall invertase and regulates leaf senescence and seed and fruit development in tomato by limiting the invertase activity in planta.
Carbonell, Felix; Bellec, Pierre
2011-01-01
Abstract The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)–based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations. PMID:22444074
Aberrant cerebellar connectivity in bipolar disorder with psychosis.
Shinn, Ann K; Roh, Youkyung S; Ravichandran, Caitlin T; Baker, Justin T; Öngür, Dost; Cohen, Bruce M
2017-07-01
The cerebellum, which modulates affect and cognition in addition to motor functions, may contribute substantially to the pathophysiology of mood and psychotic disorders, such as bipolar disorder. A growing literature points to cerebellar abnormalities in bipolar disorder. However, no studies have investigated the topographic representations of resting state cerebellar networks in bipolar disorder, specifically their functional connectivity to cerebral cortical networks. Using a well-defined cerebral cortical parcellation scheme as functional connectivity seeds, we compared ten cerebellar resting state networks in 49 patients with bipolar disorder and a lifetime history of psychotic features and 55 healthy control participants matched for age, sex, and image signal-to-noise ratio. Patients with psychotic bipolar disorder showed reduced cerebro-cerebellar functional connectivity in somatomotor A, ventral attention, salience, and frontoparietal control A and B networks relative to healthy control participants. These findings were not significantly correlated with current symptoms. Patients with psychotic bipolar disorder showed evidence of cerebro-cerebellar dysconnectivity in selective networks. These disease-related changes were substantial and not explained by medication exposure or substance use. Therefore, they may be mechanistically relevant to the underlying susceptibility to mood dysregulation and psychosis. Cerebellar mechanisms deserve further exploration in psychiatric conditions, and this study's findings may have value in guiding future studies on pathophysiology and treatment of mood and psychotic disorders, in particular.
The association between resting functional connectivity and dispositional optimism.
Ran, Qian; Yang, Junyi; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Dong
2017-01-01
Dispositional optimism is an individual characteristic that plays an important role in human experience. Optimists are people who tend to hold positive expectations for their future. Previous studies have focused on the neural basis of optimism, such as task response neural activity and brain structure volume. However, the functional connectivity between brain regions of the dispositional optimists are poorly understood. Previous study suggested that the ventromedial prefrontal cortex (vmPFC) are associated with individual differences in dispositional optimism, but it is unclear whether there are other brain regions that combine with the vmPFC to contribute to dispositional optimism. Thus, the present study used the resting-state functional connectivity (RSFC) approach and set the vmPFC as the seed region to examine if differences in functional brain connectivity between the vmPFC and other brain regions would be associated with individual differences in dispositional optimism. The results found that dispositional optimism was significantly positively correlated with the strength of the RSFC between vmPFC and middle temporal gyrus (mTG) and negativly correlated with RSFC between vmPFC and inferior frontal gyrus (IFG). These findings may be suggested that mTG and IFG which associated with emotion processes and emotion regulation also play an important role in the dispositional optimism.
The association between resting functional connectivity and dispositional optimism
Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Dong
2017-01-01
Dispositional optimism is an individual characteristic that plays an important role in human experience. Optimists are people who tend to hold positive expectations for their future. Previous studies have focused on the neural basis of optimism, such as task response neural activity and brain structure volume. However, the functional connectivity between brain regions of the dispositional optimists are poorly understood. Previous study suggested that the ventromedial prefrontal cortex (vmPFC) are associated with individual differences in dispositional optimism, but it is unclear whether there are other brain regions that combine with the vmPFC to contribute to dispositional optimism. Thus, the present study used the resting-state functional connectivity (RSFC) approach and set the vmPFC as the seed region to examine if differences in functional brain connectivity between the vmPFC and other brain regions would be associated with individual differences in dispositional optimism. The results found that dispositional optimism was significantly positively correlated with the strength of the RSFC between vmPFC and middle temporal gyrus (mTG) and negativly correlated with RSFC between vmPFC and inferior frontal gyrus (IFG). These findings may be suggested that mTG and IFG which associated with emotion processes and emotion regulation also play an important role in the dispositional optimism. PMID:28700613
Kroczek, A M; Häußinger, F B; Rohe, T; Schneider, S; Plewnia, C; Batra, A; Fallgatter, A J; Ehlis, A-C
2016-11-01
Drug-related cue exposure elicits craving and risk for relapse during recovery. Transcranial direct current stimulation is a promising research tool and possible treatment for relapse prevention. Enhanced functional neuroconnectivity is discussed as a treatment target. The goal of this research was to examine whether transcranial direct current stimulation affected cortical hemodynamic indicators of functional connectivity, craving, and heart rate variability during smoking-related cue exposure in non-treatment-seeking smokers. In vivo smoking cue exposure supported by a 2mA transcranial direct current stimulation (anode: dorsolateral prefrontal cortex, cathode: orbitofrontal cortex; placebo-controlled, randomized, double-blind) in 29 (age: M=25, SD=5) German university students (smoking at least once a week). Cue reactivity was assessed on an autonomous (heart rate variability) and a subjective level (craving ratings). Functional near-infrared spectroscopy measured changes in the concentration of deoxygenated hemoglobin, and seed-based correlation analysis was used to quantify prefrontal connectivity of brain regions involved in cue reactivity. Cue exposure elicited increased subjective craving and heart rate variability changes in smokers. Connectivity between the orbitofrontal and dorsolateral prefrontal cortex was increased in subjects receiving verum compared to placebo stimulation (d=0.66). Hemodynamics in the left dorsolateral prefrontal cortex, however, increased in the group receiving sham stimulation (η 2 =0.140). Transcranial direct current stimulation did not significantly alter craving or heart rate variability during cue exposure. Prefrontal connectivity - between regions involved in the processing of reinforcement value and cognitive control - was increased by anodal transcranial direct current stimulation during smoking cue exposure. Possible clinical implications should be considered in future studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Abnormal functional global and local brain connectivity in female patients with anorexia nervosa
Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan
2016-01-01
Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451
Andreescu, Carmen; Sheu, Lei K.; Tudorascu, Dana; Gross, James J.; Walker, Sarah; Banihashemi, Layla; Aizenstein, Howard
2014-01-01
Objectives Generalized Anxiety Disorder (GAD) is one of the most prevalent mental disorders in the elderly, but its functional neuroanatomy is not well understood. Given the role of emotion dysregulation in GAD, we sought to describe the neural bases of emotion regulation in late-life GAD by analyzing the functional connectivity (FC) in the Salience Network and the Executive Control Network during worry induction and worry reappraisal. Design, setting and participants Twenty-eight elderly GAD and thirty-one non-anxious comparison participants were included. Twelve elderly GAD completed a 12-week pharmacotherapy trial. We used an in-scanner worry script that alternates blocks of worry induction and reappraisal. We assessed network FC, employing the following seeds: anterior insula (AI), dorso-lateral prefrontal cortex (dlPFC), the bed nucleus of stria terminalis (BNST), the paraventricular nucleus (PVN). Results GAD participants exhibited greater FC during worry induction between the left AI and the right orbito-frontal cortex (OFC), and between the BNST and the subgenual cingulate. During worry reappraisal, the non-anxious participants had greater FC between the left dlPFC and the medial PFC, as well as between the left AI and the medial PFC, while elderly GAD had greater FC between the PVN and the amygdala. Following twelve weeks of pharmacotherapy, GAD participants had greater connectivity between the dlPFC and several prefrontal regions during worry reappraisal. Conclusion FC during worry induction and reappraisal points toward abnormalities in both worry generation and worry reappraisal. Following successful pharmacologic treatment, we observed greater connectivity in the prefrontal nodes of the Executive Control Network during reappraisal of worry. PMID:24996397
Abnormal functional global and local brain connectivity in female patients with anorexia nervosa.
Geisler, Daniel; Borchardt, Viola; Lord, Anton R; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan
2016-01-01
Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. The present results may be limited to the methods applied during preprocessing and network construction. We demonstrated anorexia nervosa-related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger.
Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang
2017-08-01
Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.
Ruan, Y. L.; Chourey, P. S.; Delmer, D. P.; Perez-Grau, L.
1997-01-01
Developing cotton (Gossypium hirsutum L.) seed exhibits complex patterns of carbon allocation in which incoming sucrose (Suc) is partitioned to three major sinks: the fibers, seed coat, and cotyledons, which synthesize cellulose, starch, and storage proteins or oils, respectively. In this study we investigated the role of Suc synthase (SuSy) in the mobilization of Suc into such sinks. Assessments of SuSy gene expression at various levels led to the surprising conclusion that, in contrast to that found for other plants, SuSy does not appear to play a role in starch synthesis in the cotton seed. However, our demonstration of functional symplastic connections between the phloem-unloading area and the fiber cells, as well as the SuSy expression pattern in fibers, indicates a major role of SuSy in partitioning carbon to fiber cellulose synthesis. SuSy expression is also high in transfer cells of the seed coat facing the cotyledons. Such high levels of SuSy could contribute to the synthesis of the thickened cell walls and to the energy generation for Suc efflux to the seed apoplast. The expression of SuSy in cotyledons also suggests a role in protein and lipid synthesis. In summary, the developing cotton seed provides an excellent example of the diverse roles played by SuSy in carbon metabolism. PMID:12223814
Kendall, Matthew S; Poti, Matt; Karnauskas, Kristopher B
2016-04-01
Changes in larval import, export, and self-seeding will affect the resilience of coral reef ecosystems. Climate change will alter the ocean currents that transport larvae and also increase sea surface temperatures (SST), hastening development, and shortening larval durations. Here, we use transport simulations to estimate future larval connectivity due to: (1) physical transport of larvae from altered circulation alone, and (2) the combined effects of altered currents plus physiological response to warming. Virtual larvae from islands throughout Micronesia were moved according to present-day and future ocean circulation models. The Hybrid Coordinate Ocean Model (HYCOM) spanning 2004-2012 represented present-day currents. For future currents, we altered HYCOM using analysis from the National Center for Atmospheric Research Community Earth System Model, version 1-Biogeochemistry, Representative Concentration Pathway 8.5 experiment. Based on the NCAR model, regional SST is estimated to rise 2.74 °C which corresponds to a ~17% decline in larval duration for some taxa. This reduction was the basis for a separate set of simulations. Results predict an increase in self-seeding in 100 years such that 62-76% of islands experienced increased self-seeding, there was an average domainwide increase of ~1-3% points in self-seeding, and increases of up to 25% points for several individual islands. When changed currents alone were considered, approximately half (i.e., random) of all island pairs experienced decreased connectivity but when reduced PLD was added as an effect, ~65% of connections were weakened. Orientation of archipelagos relative to currents determined the directional bias in connectivity changes. There was no universal relationship between climate change and connectivity applicable to all taxa and settings. Islands that presently export large numbers of larvae but that also maintain or enhance this role into the future should be the focus of conservation measures that promote long-term resilience of larval supply. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Marusak, Hilary A; Etkin, Amit; Thomason, Moriah E
2015-01-01
Childhood trauma exposure is a potent risk factor for psychopathology. Emerging research suggests that aberrant saliency processing underlies the link between early trauma exposure and later cognitive and socioemotional deficits that are hallmark of several psychiatric disorders. Here, we examine brain and behavioral responses during a face categorization conflict task, and relate these to intrinsic connectivity of the salience network (SN). The results demonstrate a unique pattern of SN dysfunction in youth exposed to trauma (n = 14) relative to comparison youth (n = 19) matched on age, sex, IQ, and sociodemographic risk. We find that trauma-exposed youth are more susceptible to conflict interference and this correlates with higher fronto-insular responses during conflict. Resting-state functional connectivity data collected in the same participants reveal increased connectivity of the insula to SN seed regions that is associated with diminished reward sensitivity, a critical risk/resilience trait following stress. In addition to altered intrinsic connectivity of the SN, we observed altered connectivity between the SN and default mode network (DMN) in trauma-exposed youth. These data uncover network-level disruptions in brain organization following one of the strongest predictors of illness, early life trauma, and demonstrate the relevance of observed neural effects for behavior and specific symptom dimensions. SN dysfunction may serve as a diathesis that contributes to illness and negative outcomes following childhood trauma.
Ibrahim, George M; Morgan, Benjamin R; Lee, Wayne; Smith, Mary Lou; Donner, Elizabeth J; Wang, Frank; Beers, Craig A; Federico, Paolo; Taylor, Margot J; Doesburg, Sam M; Rutka, James T; Snead, O Carter
2014-11-01
Typical childhood development is characterized by the emergence of intrinsic connectivity networks (ICNs) by way of internetwork segregation and intranetwork integration. The impact of childhood epilepsy on the maturation of ICNs is, however, poorly understood. The developmental trajectory of ICNs in 26 children (8-17 years) with localization-related epilepsy and 28 propensity-score matched controls was evaluated using graph theoretical analysis of whole brain connectomes from resting-state functional magnetic resonance imaging (fMRI) data. Children with epilepsy demonstrated impaired development of regional hubs in nodes of the salience and default mode networks (DMN). Seed-based connectivity and hierarchical clustering analysis revealed significantly decreased intranetwork connections, and greater internetwork connectivity in children with epilepsy compared to controls. Significant interactions were identified between epilepsy duration and the expected developmental trajectory of ICNs, indicating that prolonged epilepsy may cause progressive alternations in large-scale networks throughout childhood. DMN integration was also associated with better working memory, whereas internetwork segregation was associated with higher full-scale intelligence quotient scores. Furthermore, subgroup analyses revealed the thalamus, hippocampus, and caudate were weaker hubs in children with secondarily generalized seizures, relative to other patient subgroups. Our findings underscore that epilepsy interferes with the developmental trajectory of brain networks underlying cognition, providing evidence supporting the early treatment of affected children. Copyright © 2014 Wiley Periodicals, Inc.
Aberrant cerebellar connectivity in motor and association networks in schizophrenia
Shinn, Ann K.; Baker, Justin T.; Lewandowski, Kathryn E.; Öngür, Dost; Cohen, Bruce M.
2015-01-01
Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the “cognitive dysmetria” and “dysmetria of thought” models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks) relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of schizophrenia. PMID:25852520
Kujur, Alice; Bajaj, Deepak; Saxena, Maneesha S.; Tripathi, Shailesh; Upadhyaya, Hari D.; Gowda, C.L.L.; Singh, Sube; Jain, Mukesh; Tyagi, Akhilesh K.; Parida, Swarup K.
2013-01-01
We developed 1108 transcription factor gene-derived microsatellite (TFGMS) and 161 transcription factor functional domain-associated microsatellite (TFFDMS) markers from 707 TFs of chickpea. The robust amplification efficiency (96.5%) and high intra-specific polymorphic potential (34%) detected by markers suggest their immense utilities in efficient large-scale genotyping applications, including construction of both physical and functional transcript maps and understanding population structure. Candidate gene-based association analysis revealed strong genetic association of TFFDMS markers with three major seed and pod traits. Further, TFGMS markers in the 5′ untranslated regions of TF genes showing differential expression during seed development had higher trait association potential. The significance of TFFDMS markers was demonstrated by correlating their allelic variation with amino acid sequence expansion/contraction in the functional domain and alteration of secondary protein structure encoded by genes. The seed weight-associated markers were validated through traditional bi-parental genetic mapping. The determination of gene-specific linkage disequilibrium (LD) patterns in desi and kabuli based on single nucleotide polymorphism-microsatellite marker haplotypes revealed extended LD decay, enhanced LD resolution and trait association potential of genes. The evolutionary history of a strong seed-size/weight-associated TF based on natural variation and haplotype sharing among desi, kabuli and wild unravelled useful information having implication for seed-size trait evolution during chickpea domestication. PMID:23633531
Kaur, Harmanmeet; Yadav, Shikha; Ahuja, Munish; Dilbaghi, Neeraj
2012-11-06
In the present study, thiol-functionalization of tamarind seed polysaccharide was carried out by esterification with thioglycolic acid. Thiol-functionalization was confirmed by SH stretch in Fourier-transformed infra-red spectra at 2586 cm(-1). It was found to possess 104.5 mM of thiol groups per gram. The results of differential scanning calorimetry and X-ray diffraction study indicate increase in crystallinity. Polymer compacts of thiolated tamarind seed polysaccharide required 6.85-fold greater force to detach from the mucin coated membrane than that of tamarind seed polysaccharide. Comparative evaluation of Carbopol-based metronidazole gels containing thiolated tamarind seed polysaccharide with gels containing tamarind seed polysaccharide for mucoadhesive strength using chicken ileum by modified balance method revealed higher mucoadhesion of gels containing thiolated tamarind seed polysaccharide. Further, the gels containing tamarind seed polysaccharide and thiolated tamarind seed polysaccharide released the drug by Fickian-diffusion following the first-order and Higuchi's-square root release kinetics, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.
2016-01-01
The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902
Functional Connectivity Measures After Psilocybin Inform a Novel Hypothesis of Early Psychosis
Carhart-Harris, Robin L.
2013-01-01
Psilocybin is a classic psychedelic and a candidate drug model of psychosis. This study measured the effects of psilocybin on resting-state network and thalamocortical functional connectivity (FC) using functional magnetic resonance imaging (fMRI). Fifteen healthy volunteers received intravenous infusions of psilocybin and placebo in 2 task-free resting-state scans. Primary analyses focused on changes in FC between the default-mode- (DMN) and task-positive network (TPN). Spontaneous activity in the DMN is orthogonal to spontaneous activity in the TPN, and it is well known that these networks support very different functions (ie, the DMN supports introspection, whereas the TPN supports externally focused attention). Here, independent components and seed-based FC analyses revealed increased DMN-TPN FC and so decreased DMN-TPN orthogonality after psilocybin. Increased DMN-TPN FC has been found in psychosis and meditatory states, which share some phenomenological similarities with the psychedelic state. Increased DMN-TPN FC has also been observed in sedation, as has decreased thalamocortical FC, but here we found preserved thalamocortical FC after psilocybin. Thus, we propose that thalamocortical FC may be related to arousal, whereas DMN-TPN FC is related to the separateness of internally and externally focused states. We suggest that this orthogonality is compromised in early psychosis, explaining similarities between its phenomenology and that of the psychedelic state and supporting the utility of psilocybin as a model of early psychosis. PMID:23044373
Functional connectivity measures after psilocybin inform a novel hypothesis of early psychosis.
Carhart-Harris, Robin L; Leech, Robert; Erritzoe, David; Williams, Tim M; Stone, James M; Evans, John; Sharp, David J; Feilding, Amanda; Wise, Richard G; Nutt, David J
2013-11-01
Psilocybin is a classic psychedelic and a candidate drug model of psychosis. This study measured the effects of psilocybin on resting-state network and thalamocortical functional connectivity (FC) using functional magnetic resonance imaging (fMRI). Fifteen healthy volunteers received intravenous infusions of psilocybin and placebo in 2 task-free resting-state scans. Primary analyses focused on changes in FC between the default-mode- (DMN) and task-positive network (TPN). Spontaneous activity in the DMN is orthogonal to spontaneous activity in the TPN, and it is well known that these networks support very different functions (ie, the DMN supports introspection, whereas the TPN supports externally focused attention). Here, independent components and seed-based FC analyses revealed increased DMN-TPN FC and so decreased DMN-TPN orthogonality after psilocybin. Increased DMN-TPN FC has been found in psychosis and meditatory states, which share some phenomenological similarities with the psychedelic state. Increased DMN-TPN FC has also been observed in sedation, as has decreased thalamocortical FC, but here we found preserved thalamocortical FC after psilocybin. Thus, we propose that thalamocortical FC may be related to arousal, whereas DMN-TPN FC is related to the separateness of internally and externally focused states. We suggest that this orthogonality is compromised in early psychosis, explaining similarities between its phenomenology and that of the psychedelic state and supporting the utility of psilocybin as a model of early psychosis.
Crippa, Alessandro; Cerliani, Leonardo; Nanetti, Luca; Roerdink, Jos B T M
2011-02-01
We propose the use of force-directed graph layout as an explorative tool for connectivity-based brain parcellation studies. The method can be used as a heuristic to find the number of clusters intrinsically present in the data (if any) and to investigate their organisation. It provides an intuitive representation of the structure of the data and facilitates interactive exploration of properties of single seed voxels as well as relations among (groups of) voxels. We validate the method on synthetic data sets and we investigate the changes in connectivity in the supplementary motor cortex, a brain region whose parcellation has been previously investigated via connectivity studies. This region is supposed to present two easily distinguishable connectivity patterns, putatively denoted by SMA (supplementary motor area) and pre-SMA. Our method provides insights with respect to the connectivity patterns of the premotor cortex. These present a substantial variation among subjects, and their subdivision into two well-separated clusters is not always straightforward. Copyright © 2010 Elsevier Inc. All rights reserved.
Ellard, Kristen K; Zimmerman, Jared P; Kaur, Navneet; Van Dijk, Koene R A; Roffman, Joshua L; Nierenberg, Andrew A; Dougherty, Darin D; Deckersbach, Thilo; Camprodon, Joan A
2018-05-01
Patients with bipolar depression are characterized by dysregulation across the full spectrum of mood, differentiating them from patients with unipolar depression. The ability to switch neural resources among the default mode network, salience network, and executive control network (ECN) has been proposed as a key mechanism for adaptive mood regulation. The anterior insula is implicated in the modulation of functional network switching. Differential connectivity between anterior insula and functional networks may provide insights into pathophysiological differences between bipolar and unipolar mood disorders, with implications for diagnosis and treatment. Resting-state functional magnetic resonance imaging data were collected from 98 subjects (35 unipolar, 24 bipolar, and 39 healthy control subjects). Pearson correlations were computed between bilateral insula seed regions and a priori defined target regions from the default mode network, salience network, and ECN. After r-to-z transformation, a one-way multivariate analysis of covariance was conducted to identify significant differences in connectivity between groups. Post hoc pairwise comparisons were conducted and Bonferroni corrections were applied. Receiver-operating characteristics were computed to assess diagnostic sensitivity. Patients with bipolar depression evidenced significantly altered right anterior insula functional connectivity with the inferior parietal lobule of the ECN relative to patients with unipolar depression and control subjects. Right anterior insula-inferior parietal lobule connectivity significantly discriminated patients with bipolar depression. Impaired functional connectivity between the anterior insula and the inferior parietal lobule of the ECN distinguishes patients with bipolar depression from those with unipolar depression and healthy control subjects. This finding highlights a pathophysiological mechanism with potential as a therapeutic target and a clinical biomarker for bipolar disorder, exhibiting reasonable sensitivity and specificity. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
The effects of a virtual reality treatment program for online gaming addiction.
Park, Sung Yong; Kim, Sun Mi; Roh, Sungwon; Soh, Min-Ah; Lee, Sang Hoon; Kim, Hyungjin; Lee, Young Sik; Han, Doug Hyun
2016-06-01
Neuroimaging studies have demonstrated dysfunction in the brain reward circuit in individuals with online gaming addiction (OGA). We hypothesized that virtual reality therapy (VRT) for OGA would improve the functional connectivity (FC) of the cortico-striatal-limbic circuit by stimulating the limbic system. Twenty-four adults with OGA were randomly assigned to a cognitive behavior therapy (CBT) group or VRT group. Before and after the four-week treatment period, the severity of OGA was evaluated with Young's Internet Addiction Scale (YIAS). Using functional magnetic resonance imaging, the amplitude of low-frequency fluctuation (ALFF) and FC from the posterior cingulate cortex (PCC) seed to other brain areas were evaluated. Twelve casual game users were also recruited and underwent only baseline assessment. After treatment, both CBT and VRT groups showed reductions in YIAS scores. At baseline, the OGA group showed a smaller ALFF within the right middle frontal gyrus and reduced FC in the cortico-striatal-limbic circuit. In the VRT group, connectivity from the PCC seed to the left middle frontal and bilateral temporal lobe increased after VRT. VRT seemed to reduce the severity of OGA, showing effects similar to CBT, and enhanced the balance of the cortico-striatal-limbic circuit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D.; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.
2015-01-01
The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea. PMID:26635822
Functional Redundancy and Complementarities of Seed Dispersal by the Last Neotropical Megafrugivores
Bueno, Rafael S.; Guevara, Roger; Ribeiro, Milton C.; Culot, Laurence; Bufalo, Felipe S.; Galetti, Mauro
2013-01-01
Background Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. Methodology/Principal Findings We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Conclusions/Significance Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers. PMID:23409161
7 CFR 361.10 - Costs and charges.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE IMPORTATION OF SEED AND SCREENINGS UNDER THE FEDERAL SEED ACT § 361.10 Costs and..., and salaries of officers or employees of the Department) in connection with the monitoring of cleaning, labeling, other reconditioning, or destruction of seed, screenings, or refuse under this part shall be...
Innate spatial-temporal reasoning and the identification of genius.
Peterson, Matthew R; Balzarini, Doreen; Bodner, Mark; Jones, Edward G; Phillips, Tiffany; Richardson, Debra; Shaw, Gordon L
2004-01-01
The teaching of mathematics is invariably language-based, but spatial-temporal (ST) reasoning (making a mental image and thinking ahead in space and time) is crucial to the understanding of math. Here we report that Big Seed, a demanding ST video game, based upon the mathematics of knot theory and previously applied to understanding DNA structure and function, can be used to reveal innate ST reasoning. Big Seed studies with middle and elementary school children provide strong evidence that ST reasoning ability is not only innate but far exceeds optimistic expectations based on age, the percentage of children achieving exceptional ST performance in less than 7 h of training, and retention of ability. A third grader has been identified as a genius (functionally defined) in ST performance. Big Seed may be used for training and assessing 'creativity' (functionally defined) and ST reasoning as well as discovering genius.
[Status of traditional Chinese medicine materials seed and seedling breeding bases].
Li, Ying; Huang, Lu-Qi; Zhang, Xiao-Bo; Wang, Hui; Cheng, Meng; Zhang, Tian; Yang, Guang
2017-11-01
Seeds and seedlings are the material basis of traditional Chinese medicine materials production, and the construction of traditional Chinese medicine materials seed and seedling breeding bases is beneficial to the production of high-quality traditional Chinese medicine materials. The construction of traditional Chinese medicine materials seed and seedling breeding bases is one of the major topics of Chinese medica resources census pilot. Targets, tasks of traditional Chinese medicine materials seed and seedling breeding bases based on Chinese medica resources census pilot were expounded.Construction progress including hardware construction, germplasm conservation and breeding, procedures and standardsestablishment, social servicesare presented. Development counter measures were proposed for the next step: perfect the standard and system, maintain and strengthen the breeding function, strengthen the cultivation of multi-level talents, explore market development model, joint efforts to deepen services and development. Copyright© by the Chinese Pharmaceutical Association.
Aberrant striatal functional connectivity in children with autism.
Di Martino, Adriana; Kelly, Clare; Grzadzinski, Rebecca; Zuo, Xi-Nian; Mennes, Maarten; Mairena, Maria Angeles; Lord, Catherine; Castellanos, F Xavier; Milham, Michael P
2011-05-01
Models of autism spectrum disorders (ASD) as neural disconnection syndromes have been predominantly supported by examinations of abnormalities in corticocortical networks in adults with autism. A broader body of research implicates subcortical structures, particularly the striatum, in the physiopathology of autism. Resting state functional magnetic resonance imaging has revealed detailed maps of striatal circuitry in healthy and psychiatric populations and vividly captured maturational changes in striatal circuitry during typical development. Using resting state functional magnetic resonance imaging, we examined striatal functional connectivity (FC) in 20 children with ASD and 20 typically developing children between the ages of 7.6 and 13.5 years. Whole-brain voxelwise statistical maps quantified within-group striatal FC and between-group differences for three caudate and three putamen seeds for each hemisphere. Children with ASD mostly exhibited prominent patterns of ectopic striatal FC (i.e., functional connectivity present in ASD but not in typically developing children), with increased functional connectivity between nearly all striatal subregions and heteromodal associative and limbic cortex previously implicated in the physiopathology of ASD (e.g., insular and right superior temporal gyrus). Additionally, we found striatal functional hyperconnectivity with the pons, thus expanding the scope of functional alterations implicated in ASD. Secondary analyses revealed ASD-related hyperconnectivity between the pons and insula cortex. Examination of FC of striatal networks in children with ASD revealed abnormalities in circuits involving early developing areas, such as the brainstem and insula, with a pattern of increased FC in ectopic circuits that likely reflects developmental derangement rather than immaturity of functional circuits. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Alterations in Anatomical Covariance in the Prematurely Born
Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R.; Schneider, Karen C.; Papademetris, Xenophon; Constable, R. Todd; Ment, Laura R.
2017-01-01
Abstract Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. PMID:26494796
Michels, Lars; Christidi, Foteini; Steiger, Vivian R; Sándor, Peter S; Gantenbein, Andreas R; Landmann, Gunther; Schreglmann, Sebastian R; Kollias, Spyros; Riederer, Franz
2017-07-01
Background Neuroimaging studies revealed structural and functional changes in medication-overuse headache (MOH), but it remains unclear whether similar changes could be observed in other chronic pain disorders. Methods In this cross-sectional study, we investigated functional connectivity (FC) with resting-state functional magnetic resonance imaging (fMRI) and white matter integrity using diffusion tensor imaging (DTI) to measure fractional anisotropy (FA) and mean diffusivity (MD) in patients with MOH ( N = 12) relative to two control groups: patients with chronic myofascial pain (MYO; N = 11) and healthy controls (CN; N = 16). Results In a data-driven approach we found hypoconnectivity in the fronto-parietal attention network in both pain groups relative to CN (i.e. MOH < CN and MYO < CN). In contrast, hyperconnectivity in the saliency network (SN) was detected only in MOH, which correlated with FA in the insula. In a seed-based analysis we investigated FC between the periaqueductal grey (PAG) and all other brain regions. In addition to overlapping hyperconnectivity seen in patient groups (relative to CN), MOH had a distinct connectivity pattern with lower FC to parieto-occipital regions and higher FC to orbitofrontal regions compared to controls. FA and MD abnormalities were mostly observed in MOH, involving the insula. Conclusions Hyperconnectivity within the SN along with associated white matter changes therein suggest a particular role of this network in MOH. In addition, abnormal connectivity between the PAG and other pain modulatory (frontal) regions in MOH are consistent with dysfunctional central pain control.
McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.
2014-01-01
Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075
Miernyk, Ján A; Hajduch, Martin
2011-04-01
Seeds comprise a protective covering, a small embryonic plant, and a nutrient-storage organ. Seeds are protein-rich, and have been the subject of many mass spectrometry-based analyses. Seed storage proteins (SSP), which are transient depots for reduced nitrogen, have been studied for decades by cell biologists, and many of the complicated aspects of their processing, assembly, and compartmentation are now well understood. Unfortunately, the abundance and complexity of the SSP requires that they be avoided or removed prior to gel-based analysis of non-SSP. While much of the extant data from MS-based proteomic analysis of seeds is descriptive, it has nevertheless provided a preliminary metabolic picture explaining much of their biology. Contemporary studies are moving more toward analysis of protein interactions and posttranslational modifications, and functions of metabolic networks. Many aspects of the biology of seeds make then an attractive platform for heterologous protein expression. Herein we present a broad review of the results from the proteomic studies of seeds, and speculate on a potential future research directions. Copyright © 2010 Elsevier B.V. All rights reserved.
Seaver, Samuel M. D.; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M. T.; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D.; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D.; Henry, Christopher S.
2014-01-01
The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today’s annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed. PMID:24927599
Seaver, Samuel M D; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M T; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D; Henry, Christopher S
2014-07-01
The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed.
Weiler, Marina; de Campos, Brunno Machado; Teixeira, Camila Vieira de Ligo; Casseb, Raphael Fernandes; Carletti-Cassani, Ana Flávia Mac Knight; Vicentini, Jéssica Elias; Magalhães, Thamires Naela Cardoso; Talib, Leda Leme; Forlenza, Orestes Vicente; Balthazar, Marcio Luiz Figueredo
2017-11-01
In the last decade, many studies have reported abnormal connectivity within the default mode network (DMN) in patients with Alzheimer disease. Few studies, however, have investigated other networks and their association with pathophysiological proteins obtained from cerebrospinal fluid (CSF). We performed 3 T imaging in patients with mild Alzheimer disease, patients with amnestic mild cognitive impairment (aMCI) and healthy controls, and we collected CSF samples from the patients with aMCI and mild Alzheimer disease. We analyzed 57 regions from 8 networks. Additionally, we performed correlation tests to investigate possible associations between the networks' functional connectivity and the protein levels obtained from the CSF of patients with aMCI and Alzheimer disease. Our sample included 41 patients with Alzheimer disease, 35 with aMCI and 48 controls. We found that the main connectivity abnormalities in those with Alzheimer disease occurred between the DMN and task-positive networks: these patients presented not only a decreased anticorrelation between some regions, but also an inversion of the correlation signal (positive correlation instead of anticorrelation). Those with aMCI did not present statistically different connectivity from patients with Alzheimer disease or controls. Abnormal levels of CSF proteins were associated with functional disconnectivity between several regions in both the aMCI and mild Alzheimer disease groups, extending well beyond the DMN or temporal areas. The presented data are cross-sectional in nature, and our findings are dependent on the choice of seed regions used. We found that the main functional connectivity abnormalities occur between the DMN and task-positive networks and that the pathological levels of CSF biomarkers correlate with functional connectivity disruption in patients with Alzheimer disease.
Weiler, Marina; de Campos, Brunno Machado; de Ligo Teixeira, Camila Vieira; Casseb, Raphael Fernandes; Mac Knight Carletti-Cassani, Ana Flávia; Vicentini, Jéssica Elias; Magalhães, Thamires Naela Cardoso; Talib, Leda Leme; Forlenza, Orestes Vicente; Balthazar, Marcio Luiz Figueredo
2017-01-01
Background In the last decade, many studies have reported abnormal connectivity within the default mode network (DMN) in patients with Alzheimer disease. Few studies, however, have investigated other networks and their association with pathophysiological proteins obtained from cerebrospinal fluid (CSF). Methods We performed 3 T imaging in patients with mild Alzheimer disease, patients with amnestic mild cognitive impairment (aMCI) and healthy controls, and we collected CSF samples from the patients with aMCI and mild Alzheimer disease. We analyzed 57 regions from 8 networks. Additionally, we performed correlation tests to investigate possible associations between the networks’ functional connectivity and the protein levels obtained from the CSF of patients with aMCI and Alzheimer disease. Results Our sample included 41 patients with Alzheimer disease, 35 with aMCI and 48 controls. We found that the main connectivity abnormalities in those with Alzheimer disease occurred between the DMN and task-positive networks: these patients presented not only a decreased anticorrelation between some regions, but also an inversion of the correlation signal (positive correlation instead of anti-correlation). Those with aMCI did not present statistically different connectivity from patients with Alzheimer disease or controls. Abnormal levels of CSF proteins were associated with functional disconnectivity between several regions in both the aMCI and mild Alzheimer disease groups, extending well beyond the DMN or temporal areas. Limitations The presented data are cross-sectional in nature, and our findings are dependent on the choice of seed regions used. Conclusion We found that the main functional connectivity abnormalities occur between the DMN and task-positive networks and that the pathological levels of CSF biomarkers correlate with functional connectivity disruption in patients with Alzheimer disease. PMID:28375076
Lavagnino, Luca; Amianto, Federico; D’Agata, Federico; Huang, Zirui; Mortara, Paolo; Abbate-Daga, Giovanni; Marzola, Enrica; Spalatro, Angela; Fassino, Secondo; Northoff, Georg
2014-01-01
Background: Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Methods: Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. Results: Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = −0.4; P = 0.02) and interoceptive awareness (r = −0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates. Conclusion: Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size. PMID:25136302
Lavagnino, Luca; Amianto, Federico; D'Agata, Federico; Huang, Zirui; Mortara, Paolo; Abbate-Daga, Giovanni; Marzola, Enrica; Spalatro, Angela; Fassino, Secondo; Northoff, Georg
2014-01-01
Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = -0.4; P = 0.02) and interoceptive awareness (r = -0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates. Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.
NASA Astrophysics Data System (ADS)
Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel
2014-12-01
Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.
Automatic target validation based on neuroscientific literature mining for tractography
Vasques, Xavier; Richardet, Renaud; Hill, Sean L.; Slater, David; Chappelier, Jean-Cedric; Pralong, Etienne; Bloch, Jocelyne; Draganski, Bogdan; Cif, Laura
2015-01-01
Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/. PMID:26074781
Seed: a user-friendly tool for exploring and visualizing microbial community data.
Beck, Daniel; Dennis, Christopher; Foster, James A
2015-02-15
In this article we present Simple Exploration of Ecological Data (Seed), a data exploration tool for microbial communities. Seed is written in R using the Shiny library. This provides access to powerful R-based functions and libraries through a simple user interface. Seed allows users to explore ecological datasets using principal coordinate analyses, scatter plots, bar plots, hierarchal clustering and heatmaps. Seed is open source and available at https://github.com/danlbek/Seed. danlbek@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Altered Insula Connectivity under MDMA.
Walpola, Ishan C; Nest, Timothy; Roseman, Leor; Erritzoe, David; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L
2017-10-01
Recent work with noninvasive human brain imaging has started to investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA) on large-scale patterns of brain activity. MDMA, a potent monoamine-releaser with particularly pronounced serotonin- releasing properties, has unique subjective effects that include: marked positive mood, pleasant/unusual bodily sensations and pro-social, empathic feelings. However, the neurobiological basis for these effects is not properly understood, and the present analysis sought to address this knowledge gap. To do this, we administered MDMA-HCl (100 mg p.o.) and, separately, placebo (ascorbic acid) in a randomized, double-blind, repeated-measures design with twenty-five healthy volunteers undergoing fMRI scanning. We then employed a measure of global resting-state functional brain connectivity and follow-up seed-to-voxel analysis to the fMRI data we acquired. Results revealed decreased right insula/salience network functional connectivity under MDMA. Furthermore, these decreases in right insula/salience network connectivity correlated with baseline trait anxiety and acute experiences of altered bodily sensations under MDMA. The present findings highlight insular disintegration (ie, compromised salience network membership) as a neurobiological signature of the MDMA experience, and relate this brain effect to trait anxiety and acutely altered bodily sensations-both of which are known to be associated with insular functioning.
Migraine classification using magnetic resonance imaging resting-state functional connectivity data.
Chong, Catherine D; Gaw, Nathan; Fu, Yinlin; Li, Jing; Wu, Teresa; Schwedt, Todd J
2017-08-01
Background This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers from resting-state functional magnetic resonance neuroimaging ( rs-fMRI) data that distinguish between individual migraine patients and healthy controls. Methods This study included 58 migraine patients (mean age = 36.3 years; SD = 11.5) and 50 healthy controls (mean age = 35.9 years; SD = 11.0). The functional connections of 33 seeded pain-related regions were used as input for a brain classification algorithm that tested the accuracy of determining whether an individual brain MRI belongs to someone with migraine or to a healthy control. Results The best classification accuracy using a 10-fold cross-validation method was 86.1%. Resting functional connectivity of the right middle temporal, posterior insula, middle cingulate, left ventromedial prefrontal and bilateral amygdala regions best discriminated the migraine brain from that of a healthy control. Migraineurs with longer disease durations were classified more accurately (>14 years; 96.7% accuracy) compared to migraineurs with shorter disease durations (≤14 years; 82.1% accuracy). Conclusions Classification of migraine using rs-fMRI provides insights into pain circuits that are altered in migraine and could potentially contribute to the development of a new, noninvasive migraine biomarker. Migraineurs with longer disease burden were classified more accurately than migraineurs with shorter disease burden, potentially indicating that disease duration leads to reorganization of brain circuitry.
J. A. Larsen; R. J. Smith
1913-01-01
In connection with the sowing of Yellow pine, White pine and Western larch on The Blackfeet National Forest during the sea sons of 1911 and 1912, seventeen and one-half acres were sowed directly in seed spots.
Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns
Lee, You-Yun; Hsieh, Shulan
2014-01-01
This study aimed to classify different emotional states by means of EEG-based functional connectivity patterns. Forty young participants viewed film clips that evoked the following emotional states: neutral, positive, or negative. Three connectivity indices, including correlation, coherence, and phase synchronization, were used to estimate brain functional connectivity in EEG signals. Following each film clip, participants were asked to report on their subjective affect. The results indicated that the EEG-based functional connectivity change was significantly different among emotional states. Furthermore, the connectivity pattern was detected by pattern classification analysis using Quadratic Discriminant Analysis. The results indicated that the classification rate was better than chance. We conclude that estimating EEG-based functional connectivity provides a useful tool for studying the relationship between brain activity and emotional states. PMID:24743695
The caudate: a key node in the neuronal network imbalance of insomnia?
Altena, Ellemarije; van der Werf, Ysbrand D.; Sanz-Arigita, Ernesto J.; Voorn, Thom A.; Astill, Rebecca G.; Strijers, Rob L. M.; Waterman, Dé; Van Someren, Eus J. W.
2014-01-01
Insomnia is prevalent, severe and partially heritable. Unfortunately, its neuronal correlates remain enigmatic, hampering the development of mechanistic models and rational treatments. Consistently reported impairments concern fragmented sleep, hyper-arousal and executive dysfunction. Because fronto-striatal networks could well play a role in sleep, arousal regulation and executive functioning, the present series of studies used an executive task to evaluate fronto-striatal functioning in disturbed sleep. Patients with insomnia showed reduced recruitment of the head of the left caudate nucleus during executive functioning, which was not secondary to altered performance or baseline perfusion. Individual differences in caudate recruitment were associated with hyper-arousal severity. Seed-based functional connectivity analysis suggested that attenuated input from a projecting orbitofrontal area with reduced grey matter density contributes to altered caudate recruitment in patients with insomnia. Attenuated caudate recruitment persisted after successful treatment of insomnia, warranting evaluation as a potential vulnerability trait. A similar selective reduction in caudate recruitment could be elicited in participants without sleep complaints by slow-wave sleep fragmentation, providing a model to facilitate investigation of the causes and consequences of insomnia. PMID:24285642
Synchronous activation within the default mode network correlates with perceived social support.
Che, Xianwei; Zhang, Qinglin; Zhao, Jizheng; Wei, Dongtao; Li, Bingbing; Guo, Yanan; Qiu, Jiang; Liu, Yijun
2014-10-01
Perceived social support emphasizes subjective feeling of provisions offered by family, friends and significant others. In consideration of the great significance of perceived social support to health outcomes, attempt to reveal the neural substrates of perceived social support will facilitate its application in a series of mental disorders. Perceived social support potentially relies on healthy interpersonal relationships calling for cognitive processes like perspective taking, empathy and theory of mind. Interestingly, functional activations and connectivity within the default mode network (DMN) are extensively involved in these interpersonal skills. As a result, it is proposed that synchronous activities among brain regions within the DMN will correlate with self-report of perceived social support. In the present study, we tried to investigate the associations between coherence among the DMN regions and perceived social support at resting state. A total of 333 (145 men) participants were directed to fulfill the Multidimensional Scale of Perceived Social Support (MSPSS) after a 484-s functional magnetic resonance imaging (fMRI) scanning without any task. As a result, seed-based functional connectivity and power spectrum analyses revealed that heightened synchronicity among the DMN regions was associated with better performance on perceived social support. Moreover, results in the present study were independent of different methods, structural changes, and general cognitive performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fedota, John R; Matous, Allison L; Salmeron, Betty Jo; Gu, Hong; Ross, Thomas J; Stein, Elliot A
2016-09-01
Deficits in cognitive control processes are a primary characteristic of nicotine addiction. However, while network-based connectivity measures of dysfunction have frequently been observed, empirical evidence of task-based dysfunction in these processes has been inconsistent. Here, in a sample of smokers (n=35) and non-smokers (n=21), a previously validated parametric flanker task is employed to characterize addiction-related alterations in responses to varying (ie, high, intermediate, and low) demands for cognitive control. This approach yields a demand-response curve that aims to characterize potential non-linear responses to increased demand for control, including insensitivities or lags in fully activating the cognitive control network. We further used task-based differences in activation between groups as seeds for resting-state analysis of network dysfunction in an effort to more closely link prior inconsistencies in task-related activation with evidence of impaired network connectivity in smokers. For both smokers and non-smokers, neuroimaging results showed similar increases in activation in brain areas associated with cognitive control. However, reduced activation in right insula was seen only in smokers and only when processing intermediate demand for cognitive control. Further, in smokers, this task-modulated right insula showed weaker functional connectivity with the superior frontal gyrus, a component of the task-positive executive control network. These results demonstrate that the neural instantiation of salience attribution in smokers is both more effortful to fully activate and has more difficulty communicating with the exogenous, task-positive, executive control network. Together, these findings further articulate the cognitive control dysfunction associated with smoking and illustrate a specific brain circuit potentially responsible.
High-Speed Real-Time Resting-State fMRI Using Multi-Slab Echo-Volumar Imaging
Posse, Stefan; Ackley, Elena; Mutihac, Radu; Zhang, Tongsheng; Hummatov, Ruslan; Akhtari, Massoud; Chohan, Muhammad; Fisch, Bruce; Yonas, Howard
2013-01-01
We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications. PMID:23986677
Multivariate pattern dependence
Saxe, Rebecca
2017-01-01
When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD): a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity. PMID:29155809
Ries, Michele L; McLaren, Donald G; Bendlin, Barbara B; Guofanxu; Rowley, Howard A; Birn, Rasmus; Kastman, Erik K; Sager, Mark A; Asthana, Sanjay; Johnson, Sterling C
2012-04-01
It is tentatively estimated that 25% of people with early Alzheimer's disease (AD) show impaired awareness of disease-related changes in their own cognition. Research examining both normative self-awareness and altered awareness resulting from brain disease or injury points to the central role of the medial prefrontal cortex (MPFC) in generating accurate self-appraisals. The current project builds on this work - examining changes in MPFC functional connectivity that correspond to impaired self-appraisal accuracy early in the AD time course. Our behavioral focus was self-appraisal accuracy for everyday memory function, and this was measured using the Memory Function Scale of the Memory Awareness Rating Scale - an instrument psychometrically validated for this purpose. Using regression analysis of data from people with healthy memory (n=12) and people with impaired memory due to amnestic mild cognitive impairment or early AD (n=12), we tested the hypothesis that altered MPFC functional connectivity - particularly with other cortical midline structures and dorsolateral prefrontal cortex - explains variation in memory self-appraisal accuracy. We spatially constrained (i.e., explicitly masked) our regression analyses to those regions that work in conjunction with the MPFC to evoke self-appraisals in a normative group. This empirically derived explicit mask was generated from the result of a psychophysiological interaction analysis of fMRI self-appraisal task data in a separate, large group of cognitively healthy individuals. Results of our primary analysis (i.e., the regression of memory self-appraisal accuracy on MPFC functional connectivity) were generally consistent with our hypothesis: people who were less accurate in making memory self-appraisals showed attenuated functional connectivity between the MPFC seed region and proximal areas within the MPFC (including subgenual anterior cingulate cortex), bilateral dorsolateral prefrontal cortex, bilateral caudate, and left posterior hippocampus. Contrary to our expectations, MPFC functional connectivity with the posterior cingulate was not significantly related to accuracy of memory self-appraisals. Results reported here corroborate findings of variable memory self-appraisal accuracy during the earliest emergence of AD symptoms and reveal alterations in MPFC functional connectivity that correspond to impaired memory self-appraisal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Larson, Julie E; Sheley, Roger L; Hardegree, Stuart P; Doescher, Paul S; James, Jeremy J
2016-05-01
Seedling recruitment is a critical driver of population dynamics and community assembly, yet we know little about functional traits that define different recruitment strategies. For the first time, we examined whether trait relatedness across germination and seedling stages allows the identification of general recruitment strategies which share core functional attributes and also correspond to recruitment outcomes in applied settings. We measured six seed and eight seedling traits (lab- and field-collected, respectively) for 47 varieties of dryland grasses and used principal component analysis (PCA) and cluster analysis to identify major dimensions of trait variation and to isolate trait-based recruitment groups, respectively. PCA highlighted some links between seed and seedling traits, suggesting that relative growth rate and root elongation rate are simultaneously but independently associated with seed mass and initial root mass (first axis), and with leaf dry matter content, specific leaf area, coleoptile tissue density and germination rate (second axis). Third and fourth axes captured separate tradeoffs between hydrothermal time and base water potential for germination, and between specific root length and root mass ratio, respectively. Cluster analysis separated six recruitment types along dimensions of germination and growth rates, but classifications did not correspond to patterns of germination, emergence or recruitment in the field under either of two watering treatments. Thus, while we have begun to identify major threads of functional variation across seed and seedling stages, our understanding of how this variation influences demographic processes-particularly germination and emergence-remains a key gap in functional ecology.
Altered cerebro-cerebellum resting-state functional connectivity in HIV-infected male patients.
Wang, Huijuan; Li, Ruili; Zhou, Yawen; Wang, Yanming; Cui, Jin; Nguchu, Benedictor Alexander; Qiu, Bensheng; Wang, Xiaoxiao; Li, Hongjun
2018-05-21
In addition to the role of planning and executing movement, the cerebellum greatly contributes to cognitive process. Numerous studies have reported structural and functional abnormalities in the cerebellum for HIV-infected patients, but little is known about the altered functional connectivity of particular cerebellar subregions and the cerebrum. Therefore, this study aimed to explore the resting-state functional connectivity (rsFC) changes of the cerebellum and further analyze the relationship between the rsFC changes and the neuropsychological evaluation. The experiment involved 26 HIV-infected men with asymptomatic neurocognitive impairment (ANI) and 28 healthy controls (HC). We selected bilateral hemispheric lobule VI and lobule IX as seed regions and mapped the whole-brain rsFC for each subregion. Results revealed that right lobule VI showed significant increased rsFC with the anterior cingulate cortex (ACC) in HIV-infected subjects. In addition, the correlation analysis on HIV-infected subjects illustrated the increased rsFC was negatively correlated with the attention/working memory score. Moreover, significantly increased cerebellar rsFCs were also observed in HIV-infected patients related to right inferior frontal gyrus (IFG) and right superior medial gyrus (SMG) while decreased rsFC was just found between right lobule VI and the left hippocampus (HIP). These findings suggested that, abnormalities of cerebro-cerebellar functional connectivity might be associated with cognitive dysfunction in HIV-infected men, particularly working memory impairment. It could also be the underlying mechanism of ANI, providing further evidence for early injury in the neural substrate of HIV-infected patients.
Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases.
Berger, Seth I; Posner, Jeremy M; Ma'ayan, Avi
2007-10-04
In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes. Genes2Networks is a software system that integrates the content of ten mammalian interaction network datasets. Filtering techniques to prune low-confidence interactions were implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from "seed" lists of human Entrez gene symbols. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Genes2Networks is powerful web-based software that can help experimental biologists to interpret lists of genes and proteins such as those commonly produced through genomic and proteomic experiments, as well as lists of genes and proteins associated with disease processes. This system can be used to find relationships between genes and proteins from seed lists, and predict additional genes or proteins that may play key roles in common pathways or protein complexes.
Development of SNP Genotyping Assays for Seed Composition Traits in Soybean
Patil, Gunvant; Chaudhary, Juhi; Vuong, Tri D.; Jenkins, Brian; Qiu, Dan; Kadam, Suhas; Shannon, Grover J.
2017-01-01
Seed composition is one of the most important determinants of the economic values in soybean. The quality and quantity of different seed components, such as oil, protein, and carbohydrates, are crucial ingredients in food, feed, and numerous industrial products. Soybean researchers have successfully developed and utilized a diverse set of molecular markers for seed trait improvement in soybean breeding programs. It is imperative to design and develop molecular assays that are accurate, robust, high-throughput, cost-effective, and available on a common genotyping platform. In the present study, we developed and validated KASP (Kompetitive allele-specific polymerase chain reaction) genotyping assays based on previously known functional mutant alleles for the seed composition traits, including fatty acids, oligosaccharides, trypsin inhibitor, and lipoxygenase. These assays were validated on mutant sources as well as mapping populations and precisely distinguish the homozygotes and heterozygotes of the mutant genes. With the obvious advantages, newly developed KASP assays in this study can substitute the genotyping assays that were previously developed for marker-assisted selection (MAS). The functional gene-based assay resource developed using common genotyping platform will be helpful to accelerate efforts to improve soybean seed composition traits. PMID:28630621
Tao, Jing; Liu, Jiao; Egorova, Natalia; Chen, Xiangli; Sun, Sharon; Xue, Xiehua; Huang, Jia; Zheng, Guohua; Wang, Qin; Chen, Lidian; Kong, Jian
2016-01-01
Previous studies provide evidence that aging is associated with the decline of memory function and alterations in the hippocampal (HPC) function, including functional connectivity to the medial prefrontal cortex (mPFC). In this study, we investigated if longitudinal (12-week) Tai Chi Chuan and Baduanjin practice can improve memory function and modulate HPC resting-state functional connectivity (rs-FC). Memory function measurements and resting-state functional magnetic resonance imaging (rs-fMRI) were applied at the beginning and the end of the experiment. The results showed that (1) the memory quotient (MQ) measured by the Wechsler Memory Scale-Chinese Revision significantly increased after Tai Chi Chuan and Baduanjin practice as compared with the control group, and no significant difference was observed in MQ between the Tai Chi Chuan and Baduanjin groups; (2) rs-FC between the bilateral hippocampus and mPFC significantly increased in the Tai Chi Chuan group compared to the control group (also in the Baduanjin group compared to the control group, albeit at a lower threshold), and no significant difference between the Tai Chi Chuan and Baduanjin groups was observed; (3) rs-FC increases between the bilateral hippocampus and mPFC were significantly associated with corresponding memory function improvement across all subjects. Similar results were observed using the left or right hippocampus as seeds. Our results suggest that both Tai Chi Chuan and Baduanjin may be effective exercises to prevent memory decline during aging. PMID:26909038
Tao, Jing; Liu, Jiao; Egorova, Natalia; Chen, Xiangli; Sun, Sharon; Xue, Xiehua; Huang, Jia; Zheng, Guohua; Wang, Qin; Chen, Lidian; Kong, Jian
2016-01-01
Previous studies provide evidence that aging is associated with the decline of memory function and alterations in the hippocampal (HPC) function, including functional connectivity to the medial prefrontal cortex (mPFC). In this study, we investigated if longitudinal (12-week) Tai Chi Chuan and Baduanjin practice can improve memory function and modulate HPC resting-state functional connectivity (rs-FC). Memory function measurements and resting-state functional magnetic resonance imaging (rs-fMRI) were applied at the beginning and the end of the experiment. The results showed that (1) the memory quotient (MQ) measured by the Wechsler Memory Scale-Chinese Revision significantly increased after Tai Chi Chuan and Baduanjin practice as compared with the control group, and no significant difference was observed in MQ between the Tai Chi Chuan and Baduanjin groups; (2) rs-FC between the bilateral hippocampus and mPFC significantly increased in the Tai Chi Chuan group compared to the control group (also in the Baduanjin group compared to the control group, albeit at a lower threshold), and no significant difference between the Tai Chi Chuan and Baduanjin groups was observed; (3) rs-FC increases between the bilateral hippocampus and mPFC were significantly associated with corresponding memory function improvement across all subjects. Similar results were observed using the left or right hippocampus as seeds. Our results suggest that both Tai Chi Chuan and Baduanjin may be effective exercises to prevent memory decline during aging.
Sánchez, Stella M; Abulafia, Carolina; Duarte-Abritta, Barbara; de Guevara, M Soledad Ladrón; Castro, Mariana N; Drucaroff, Lucas; Sevlever, Gustavo; Nemeroff, Charles B; Vigo, Daniel E; Loewenstein, David A; Villarreal, Mirta F; Guinjoan, Salvador M
2017-01-01
We have obtained previous evidence of limbic dysfunction in middle-aged, asymptomatic offspring of late-onset Alzheimer's disease (LOAD) patients, and failure to recover from proactive semantic interference has been shown to be a sensitive cognitive test in other groups at risk for LOAD. To assess the effects of specific proactive semantic interference deficits as they relate to functional magnetic resonance imaging (fMRI) neocortical and limbic functional connectivity in middle aged offspring of individuals with LOAD (O-LOAD) and age-equivalent controls. We examined 21 O-LOAD and 20 controls without family history of neurodegenerative disorders (CS) on traditional measures of cognitive functioning and the LASSI-L, a novel semantic interference test uniquely sensitive to the failure to recover from proactive interference (frPSI). Cognitive tests then were correlated to fMRI connectivity of seeds located in entorhinal cortex and anterodorsal thalamic nuclei among O-LOAD and CS participants. Relative to CS, O-LOAD participants evidenced lower connectivity between entorhinal cortex and orbitofrontal, anterior cingulate, and anterior temporal cortex. In the offspring of LOAD patients, LASSI-L measures of frPSI were inversely associated with connectivity between anterodorsal thalamus and contralateral posterior cingulate. Intrusions on the task related to frPSI were inversely correlated with a widespread connectivity network involving hippocampal, insular, posterior cingulate, and dorsolateral prefrontal cortices, along with precunei and anterior thalamus in this group. Different patterns of connectivity associated with frPSI were observed among controls. The present results suggest that both semantic interference deficits and connectivity abnormalities might reflect limbic circuit dysfunction as a very early clinical signature of LOAD pathology, as previously demonstrated for other limbic phenotypes, such as sleep and circadian alterations.
Pollen Deposition Is More Important than Species Richness for Seed Set in Luffa Gourd.
Ali, M; Saeed, S; Sajjad, A
2016-10-01
In the context of global biodiversity decline, it is imperative to understand the different aspects of bee communities for sustaining the vital ecosystem service of pollination. Bee species can be assigned to functional groups (average difference among species in functionally related traits) on the basis of complementarity (trait variations exhibited by individual organisms) in their behavior but is not yet known which functional group trait is most important for seed set. In this study, first, the functional groups of bees were made based on their five selected traits (pollen deposition, visitation rate, stay time, visiting time of the day, body size) and then related to the seed set of obligate cross-pollinated Luffa gourd (Luffa aegyptiaca). We found that bee diversity and abundance differed significantly among the studied plots, but only the bee species richness was positively related to the seed set. Functional group diversity in terms of pollen deposition explained even more of the variance in seed set (r 2 = 0.74) than did the species richness (r 2 = 0.53) making it the most important trait of bee species for predicting the crop reproductive success.
Picó-Pérez, Maria; Alonso, Pino; Contreras-Rodríguez, Oren; Martínez-Zalacaín, Ignacio; López-Solà, Clara; Jiménez-Murcia, Susana; Verdejo-García, Antonio; Menchón, José M; Soriano-Mas, Carles
2017-09-02
Neuroimaging functional connectivity (FC) analyses have shown that the negative coupling between the amygdala and cortical regions is linked to better emotion regulation in experimental settings. Nevertheless, no studies have examined the association between resting-state cortico-amygdalar FC and the dispositional use of emotion regulation strategies. We aim at assessing the relationship between the resting-state FC patterns of two different amygdala territories, with different functions in the emotion response process, and trait-like measures of cognitive reappraisal and expressive suppression. Forty-eight healthy controls completed the Emotion Regulation Questionnaire (ERQ) and underwent a resting-state functional magnetic resonance imaging acquisition. FC maps of basolateral and centromedial amygdala (BLA/CMA) with different cortical areas were estimated with a seed-based approach, and were then correlated with reappraisal and suppression scores from the ERQ. FC between left BLA and left insula and right BLA and the supplementary motor area (SMA) correlated inversely with reappraisal scores. Conversely, FC between left BLA and the dorsal anterior cingulate cortex correlated directly with suppression scores. Finally, FC between left CMA and the SMA was inversely correlated with suppression. Top-down regulation from the SMA seems to account for the dispositional use of both reappraisal and suppression depending on the specific amygdala nucleus being modulated. In addition, modulation of amygdala activity from cingulate and insular cortices seem to also account for the habitual use of the different emotion regulation strategies.
Amid, Bahareh Tabatabaee; Mirhosseini, Hamed
2012-01-01
In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus) seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05) effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05) effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like) behavior compared to the viscous (liquid like) behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed. PMID:23203099
Altered resting brain connectivity in persistent cancer related fatigue
Hampson, Johnson P.; Zick, Suzanna M.; Khabir, Tohfa; Wright, Benjamin D.; Harris, Richard E.
2015-01-01
There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF) disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued) who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI). Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected). This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52) and poor sleep quality (P = 0.04, r = 0.52) in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected). Mental fatigue scores were associated with greater default mode network (DMN) connectivity to the superior frontal gyrus (P = 0.05 FDR corrected) among fatigued subjects (r = 0.82) and less connectivity in the non-fatigued group (r = −0.88). These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent fatigue. As the DMN is a network involved in self-referential thinking we speculate that enhanced connectivity between the DMN and the frontal gyrus may be related to mental fatigue and poor sleep quality. In contrast, enhanced connectivity between the DMN and regions in the subgenual cingulate and brainstem may serve a protective function in the non-fatigued group. PMID:26106555
Altered resting brain connectivity in persistent cancer related fatigue.
Hampson, Johnson P; Zick, Suzanna M; Khabir, Tohfa; Wright, Benjamin D; Harris, Richard E
2015-01-01
There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF) disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued) who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI). Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected). This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52) and poor sleep quality (P = 0.04, r = 0.52) in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected). Mental fatigue scores were associated with greater default mode network (DMN) connectivity to the superior frontal gyrus (P = 0.05 FDR corrected) among fatigued subjects (r = 0.82) and less connectivity in the non-fatigued group (r = -0.88). These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent fatigue. As the DMN is a network involved in self-referential thinking we speculate that enhanced connectivity between the DMN and the frontal gyrus may be related to mental fatigue and poor sleep quality. In contrast, enhanced connectivity between the DMN and regions in the subgenual cingulate and brainstem may serve a protective function in the non-fatigued group.
Zhang, Kai; Lu, Kun; Qu, Cunmin; Liang, Ying; Wang, Rui; Chai, Yourong; Li, Jiana
2013-01-01
Yellow-seed (i.e., yellow seed coat) is one of the most important agronomic traits of Brassica plants, which is correlated with seed oil and meal qualities. Previous studies on the Brassicaceae, including Arabidopsis and Brassica species, proposed that the seed-color trait is correlative to flavonoid and lignin biosynthesis, at the molecular level. In Arabidopsis thaliana, the oxidative polymerization of flavonoid and biosynthesis of lignin has been demonstrated to be catalyzed by laccase 15, a functional enzyme encoded by the AtTT10 gene. In this study, eight Brassica TT10 genes (three from B. napus, three from B. rapa and two from B. oleracea) were isolated and their roles in flavonoid oxidation/polymerization and lignin biosynthesis were investigated. Based on our phylogenetic analysis, these genes could be divided into two groups with obvious structural and functional differentiation. Expression studies showed that Brassica TT10 genes are active in developing seeds, but with differential expression patterns in yellow- and black-seeded near-isogenic lines. For functional analyses, three black-seeded B. napus cultivars were chosen for transgenic studies. Transgenic B. napus plants expressing antisense TT10 constructs exhibited retarded pigmentation in the seed coat. Chemical composition analysis revealed increased levels of soluble proanthocyanidins, and decreased extractable lignin in the seed coats of these transgenic plants compared with that of the controls. These findings indicate a role for the Brassica TT10 genes in proanthocyanidin polymerization and lignin biosynthesis, as well as seed coat pigmentation in B. napus. PMID:23613820
Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics.
Suzuki, Hiroshi I; Spengler, Ryan M; Grigelioniene, Giedre; Kobayashi, Tatsuya; Sharp, Phillip A
2018-05-01
RNA interference (RNAi) is a major, powerful platform for gene perturbations, but is restricted by off-target mechanisms. Communication between RNAs, small RNAs, and RNA-binding proteins (RBPs) is a pervasive feature of cellular RNA networks. We present a crosstalk scenario, designated as crosstalk with endogenous RBPs' (ceRBP), in which small interfering RNAs or microRNAs with seed sequences that overlap RBP motifs have extended biological effects by perturbing endogenous RBP activity. Systematic analysis of small interfering RNA (siRNA) off-target data and genome-wide RNAi cancer lethality screens using 501 human cancer cell lines, a cancer dependency map, identified that seed-to-RBP crosstalk is widespread, contributes to off-target activity, and affects RNAi performance. Specifically, deconvolution of the interactions between gene knockdown and seed-mediated silencing effects in the cancer dependency map showed widespread contributions of seed-to-RBP crosstalk to growth-phenotype modulation. These findings suggest a novel aspect of microRNA biology and offer a basis for improvement of RNAi agents and RNAi-based functional genomics.
Anderson, Britt; Soliman, Sherif; O’Malley, Shannon; Danckert, James; Besner, Derek
2015-01-01
Drawing on theoretical and computational work with the localist dual route reading model and results from behavioral studies, Besner et al. (2011) proposed that the ability to perform tasks that require overriding stimulus-specific defaults (e.g., semantics when naming Arabic numerals, and phonology when evaluating the parity of number words) necessitate the ability to modulate the strength of connections between cognitive modules for lexical representation, semantics, and phonology on a task- and stimulus-specific basis. We used functional magnetic resonance imaging to evaluate this account by assessing changes in functional connectivity while participants performed tasks that did and did not require such stimulus-task default overrides. The occipital region showing the greatest modulation of BOLD signal strength for the two stimulus types was used as the seed region for Granger causality mapping (GCM). Our GCM analysis revealed a region of rostromedial frontal cortex with a crossover interaction. When participants performed tasks that required overriding stimulus type defaults (i.e., parity judgments of number words and naming Arabic numerals) functional connectivity between the occipital region and rostromedial frontal cortex was present. Statistically significant functional connectivity was absent when the tasks were the default for the stimulus type (i.e., parity judgments of Arabic numerals and reading number words). This frontal region (BA 10) has previously been shown to be involved in goal-directed behavior and maintenance of a specific task set. We conclude that overriding stimulus-task defaults requires a modulation of connection strengths between cognitive modules and that the override mechanism predicted from cognitive theory is instantiated by frontal modulation of neural activity of brain regions specialized for sensory processing. PMID:25870571
Ichesco, Eric; Quintero, Andres; Clauw, Daniel J; Peltier, Scott; Sundgren, Pia M; Gerstner, Geoffrey E; Schmidt-Wilcke, Tobias
2012-03-01
Among the most common chronic pain conditions, yet poorly understood, are temporomandibular disorders (TMDs), with a prevalence estimate of 3-15% for Western populations. Although it is increasingly acknowledged that central nervous system mechanisms contribute to pain amplification and chronicity in TMDs, further research is needed to unravel neural correlates that might abet the development of chronic pain. The insular cortex (IC) and cingulate cortex (CC) are both critically involved in the experience of pain. The current study sought specifically to investigate IC-CC functional connectivity in TMD patients and healthy controls (HCs), both during resting state and during the application of a painful stimulus. Eight patients with TMD, and 8 age- and sex-matched HCs were enrolled in the present study. Functional magnetic resonance imaging data during resting state and during the performance of a pressure pain stimulus to the temple were acquired. Predefined seed regions were placed in the IC (anterior and posterior insular cortices) and the extracted signal was correlated with brain activity throughout the whole brain. Specifically, we were interested whether TMD patients and HCs would show differences in IC-CC connectivity, both during resting state and during the application of a painful stimulus to the face. As a main finding, functional connectivity analyses revealed an increased functional connectivity between the left anterior IC and pregenual anterior cingulate cortex (ACC) in TMD patients, during both resting state and applied pressure pain. Within the patient group, there was a negative correlation between the anterior IC-ACC connectivity and clinical pain intensity as measured by a visual analog scale. Since the pregenual region of the ACC is critically involved in antinociception, we hypothesize that an increase in anterior IC-ACC connectivity is indicative of an adaptation of the pain modulatory system early in the chronification process. © 2011 American Headache Society.
Linking disease-associated genes to regulatory networks via promoter organization
Döhr, S.; Klingenhoff, A.; Maier, H.; de Angelis, M. Hrabé; Werner, T.; Schneider, R.
2005-01-01
Pathway- or disease-associated genes may participate in more than one transcriptional co-regulation network. Such gene groups can be readily obtained by literature analysis or by high-throughput techniques such as microarrays or protein-interaction mapping. We developed a strategy that defines regulatory networks by in silico promoter analysis, finding potentially co-regulated subgroups without a priori knowledge. Pairs of transcription factor binding sites conserved in orthologous genes (vertically) as well as in promoter sequences of co-regulated genes (horizontally) were used as seeds for the development of promoter models representing potential co-regulation. This approach was applied to a Maturity Onset Diabetes of the Young (MODY)-associated gene list, which yielded two models connecting functionally interacting genes within MODY-related insulin/glucose signaling pathways. Additional genes functionally connected to our initial gene list were identified by database searches with these promoter models. Thus, data-driven in silico promoter analysis allowed integrating molecular mechanisms with biological functions of the cell. PMID:15701758
Correlating climate and longleaf pine cone crops: Is there a connection?
Neil Pederson; John S. Kush; Ralph S. Meldahl
1998-01-01
The physiological development of longleaf pine seed from flower through cone to seed is a lengthy process, extending over three calendar years. The duration of this process may be the main reason why longleaf pine produces infrequent seed crops with which to regenerate itself. Adequate crops occur every 5-7 years, on average, causing problems for those interested in...
Glenne Øie, Merete; Endestad, Tor; Bruun Wyller, Vegard
2017-01-01
Impairments in cognition, pain intolerance, and physical inactivity characterize adolescent chronic fatigue syndrome (CFS), yet little is known about its neurobiology. The right dorsal anterior insular (dAI) connectivity of the salience network provides a motivational context to stimuli. In this study, we examined regional functional connectivity (FC) patterns of the right dAI in adolescent CFS patients and healthy participants. Eighteen adolescent patients with CFS and 18 aged-matched healthy adolescent control participants underwent resting-state functional magnetic resonance imaging. The right dAI region of interest was examined in a seed-to-voxel resting-state FC analysis using SPM and CONN toolbox. Relative to healthy adolescents, CFS patients demonstrated reduced FC of the right dAI to the right posterior parietal cortex (PPC) node of the central executive network. The decreased FC of the right dAI–PPC might indicate impaired cognitive control development in adolescent CFS. Immature FC of the right dAI–PPC in patients also lacked associations with three known functional domains: cognition, pain and physical activity, which were observed in the healthy group. These results suggest a distinct biological signature of adolescent CFS and might represent a fundamental role of the dAI in motivated behavior. PMID:28880891
Wortinger, Laura Anne; Glenne Øie, Merete; Endestad, Tor; Bruun Wyller, Vegard
2017-01-01
Impairments in cognition, pain intolerance, and physical inactivity characterize adolescent chronic fatigue syndrome (CFS), yet little is known about its neurobiology. The right dorsal anterior insular (dAI) connectivity of the salience network provides a motivational context to stimuli. In this study, we examined regional functional connectivity (FC) patterns of the right dAI in adolescent CFS patients and healthy participants. Eighteen adolescent patients with CFS and 18 aged-matched healthy adolescent control participants underwent resting-state functional magnetic resonance imaging. The right dAI region of interest was examined in a seed-to-voxel resting-state FC analysis using SPM and CONN toolbox. Relative to healthy adolescents, CFS patients demonstrated reduced FC of the right dAI to the right posterior parietal cortex (PPC) node of the central executive network. The decreased FC of the right dAI-PPC might indicate impaired cognitive control development in adolescent CFS. Immature FC of the right dAI-PPC in patients also lacked associations with three known functional domains: cognition, pain and physical activity, which were observed in the healthy group. These results suggest a distinct biological signature of adolescent CFS and might represent a fundamental role of the dAI in motivated behavior.
Deshpande, Gopikrishna; Santhanam, Priya; Hu, Xiaoping
2011-01-15
Most neuroimaging studies of resting state networks have concentrated on functional connectivity (FC) based on instantaneous correlation in a single network. In this study we investigated both FC and effective connectivity (EC) based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data - default mode network (DMN), hippocampal cortical memory network (HCMN), dorsal attention network (DAN) and fronto-parietal control network (FPCN). A method called correlation-purged Granger causality analysis was used, not only enabling the simultaneous evaluation of FC and EC of all networks using a single multivariate model, but also accounting for the interaction between them resulting from the smoothing of neuronal activity by hemodynamics. FC was visualized using a force-directed layout upon which causal interactions were overlaid. FC results revealed that DAN is very tightly coupled compared to the other networks while the DMN forms the backbone around which the other networks amalgamate. The pattern of bidirectional causal interactions indicates that posterior cingulate and posterior inferior parietal lobule of DMN act as major hubs. The pattern of unidirectional causal paths revealed that hippocampus and anterior prefrontal cortex (aPFC) receive major inputs, likely reflecting memory encoding/retrieval and cognitive integration, respectively. Major outputs emanating from anterior insula and middle temporal area, which are directed at aPFC, may carry information about interoceptive awareness and external environment, respectively, into aPFC for integration, supporting the hypothesis that aPFC-seeded FPCN acts as a control network. Our findings indicate the following. First, regions whose activities are not synchronized interact via time-delayed causal influences. Second, the causal interactions are organized such that cingulo-parietal regions act as hubs. Finally, segregation of different resting state networks is not clear cut but only by soft boundaries. Copyright © 2010 Elsevier Inc. All rights reserved.
15. FIRST FLOOR WAREHOUSE SPACE, SHOWING COLUMN / BEAM CONNECTION. ...
15. FIRST FLOOR WAREHOUSE SPACE, SHOWING COLUMN / BEAM CONNECTION. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA
fMRI during natural sleep as a method to study brain function during early childhood.
Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric
2007-12-01
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
Sex differences in orbitofrontal connectivity in male and female veterans with TBI.
McGlade, Erin; Rogowska, Jadwiga; Yurgelun-Todd, Deborah
2015-09-01
More female soldiers are now serving in combat theaters than at any other time. However, little is known about possible sex differences underlying the neuropathology and manifestation of one of modern war's signature injuries, traumatic brain injury (TBI). The paucity of information regarding sex differences in TBI is particularly evident when examining changes in executive function and emotion regulation associated with post concussive events. The current study objective was to observe whether patterns of orbitofrontal (OFC) functional connectivity would differ between female veterans with TBI and their male counterparts. The study further sought to determine whether OFC connectivity might be differentially associated with clinical measures of aggression and hostility. Seventeen female veterans and 24 male veterans, age 18 to 25, who met criteria for TBI completed resting state magnetic resonance imaging (MRI) and clinical assessment measures. Imaging data were analyzed using left and right seed regions of the OFC, and regression analyses were conducted to observe the relationship between resting state connectivity and self-reported aggression. Females and males in this study differed in OFC connectivity, with females demonstrating greater connectivity between left and right OFC and parietal and occipital regions and males demonstrating greater connectivity between left and right OFC and frontal and temporal regions. Significant associations between resting state connectivity and clinical measures were found only in male veterans. These findings suggest that TBI may interact with sex-specific patterns of brain connectivity in male and female veterans and exert divergent effects on clinical profiles of aggression post-injury.
Konova, Anna B.; Moeller, Scott J.; Tomasi, Dardo; Volkow, Nora D.; Goldstein, Rita Z.
2015-01-01
Importance Cocaine addiction is associated with altered resting-state functional connectivity among regions of the mesocorticolimbic dopamine pathways. Methylphenidate hydrochloride, an indirect dopamine agonist, normalizes task-related regional brain activity and associated behavior in cocaine users; however, the neural systems–level effects of methylphenidate in this population have not yet been described. Objective To use resting-state functional magnetic resonance imaging to examine changes in mesocorticolimbic connectivity with methylphenidate and how connectivity of affected pathways relates to severity of cocaine addiction. Design Randomized, placebo-controlled, before-after, crossover study. Setting Clinical research center. Participants Eighteen nonabstaining individuals with cocaine use disorders. Interventions Single doses of oral methylphenidate (20 mg) or placebo were administered at each of 2 study sessions. At each session, resting scans were acquired twice: immediately after drug administration (before the onset of effects [baseline]) and 120 minutes later (within the window of peak effects). Main outcomes and Measures Functional connectivity strength was evaluated using a seed voxel correlation approach. Changes in this measure were examined to characterize the neural systems–level effects of methylphenidate; severity of cocaine addiction was assessed by interview and questionnaire. Results Short-term methylphenidate administration reduced an abnormally strong connectivity of the ventral striatum with the dorsal striatum (putamen/globus pallidus), and lower connectivity between these regions during placebo administration uniquely correlated with less severe addiction. In contrast, methylphenidate strengthened several corticolimbic and corticocortical connections. Conclusions and Relevance These findings help elucidate the neural systems–level effects of methylphenidate and suggest that short-term methylphenidate can, at least transiently, remodel abnormal circuitry relevant to the pathophysiologic characteristics of cocaine addiction. In particular, the effects of methylphenidate within striatal and cortical pathways constitute a potentially viable mechanism by which methylphenidate could facilitate control of behavior in cocaine addiction. PMID:23803700
Insular subdivisions functional connectivity dysfunction within major depressive disorder.
Peng, Xiaolong; Lin, Pan; Wu, Xiaoping; Gong, Ruxue; Yang, Rui; Wang, Jue
2018-02-01
Major depressive disorder (MDD) is a mental disorder characterized by cognitive and affective deficits. Previous studies suggested that insula is a crucial node of the salience network for initiating network switching, and dysfunctional connection to this region may be related to the mechanism of MDD. In this study, we systematically investigated and quantified the altered functional connectivity (FC) of the specific insular subdivisions and its relationship to psychopathology of MDD. Resting-state FC of insular subdivisions, including bilateral ventral/dorsal anterior insula and posterior insula, were estimated in 19 MDD patients and 19 healthy controls. Abnormal FC was quantified between groups. Additionally, we investigated the relationships between insular connectivity and depressive symptom severity. MDD patients demonstrated aberrant FC for insular subdivisions to superior temporal sulcus, inferior prefrontal gyrus, amygdala and posterior parietal cortex. Moreover, depression symptoms (Hamilton Depression Rating Scale and Hamilton Anxiety Rating Scale scorers) were associated with the FC values of insular subdivisions. First, the sample size of our current study is relatively small, which may affect the statistic power. Second, using standardized insular subdivision seeds for FC analyses may neglect subtle natural differences in size and location of functional area across individuals and may thus affect connectivity maps. Abnormal FC of insular subdivisions to default network and central executive network may represent impaired intrinsic networks switching which may affect the underlying emotional and sensory disturbances in MDD. And our findings can help to understand the pathophysiology and underlying neural mechanisms of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.
Steuwe, Carolin; Daniels, Judith K; Frewen, Paul A; Densmore, Maria; Theberge, Jean; Lanius, Ruth A
2015-05-30
In healthy individuals, direct eye contact is thought to modulate a cortical route eliciting social cognitive processes via activation of a fast subcortical pathway. This study aimed to examine functional brain connectivity during direct eye contact in women with posttraumatic stress disorder (PTSD) related to childhood abuse as compared with healthy controls. We conducted psychophysiological interaction (PPI) analyses in Statistical Parametric Mapping-8 (SPM8) using the superior colliculus (SC) and locus coeruleus (LC) as seed regions while 16 healthy subjects and 16 patients with a primary diagnosis of PTSD related to childhood maltreatment viewed a functional magnetic resonance imaging (fMRI) paradigm involving direct (D) versus averted (A) gaze (happy, sad, neutral). The PTSD group showed a significantly enhanced connectivity between the SC and the anterior cingulate, and between the LC and the thalamus, caudate, putamen, insula, cingulate gyrus, and amygdala, as compared with healthy individuals. Symptom severity scores on the Clinician-Administered PTSD Scale (CAPS) showed significant positive correlations with superior colliculus connectivity with the perigenual and posterior cingulate, insula, and sublenticular extended amygdala. Functional connectivity data suggest increased recruitment of brain regions involved in emotion processing during direct gaze in PTSD in association with the fast subcortical pathway. The interpretation of eye contact as a signal of threat may require more emotion regulatory capacities in patients with PTSD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.