Science.gov

Sample records for seeded knitted silk

  1. Long-term effects of knitted silk-collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention.

    PubMed

    Shen, Weiliang; Chen, Xiao; Hu, Yejun; Yin, Zi; Zhu, Ting; Hu, Jiajie; Chen, Jialin; Zheng, Zefeng; Zhang, Wei; Ran, Jisheng; Heng, Boon Chin; Ji, Junfeng; Chen, Weishan; Ouyang, Hong-Wei

    2014-09-01

    Anterior cruciate ligament (ACL) is difficult to heal after injury due to the dynamic fluid environment of joint. Previously, we have achieved satisfactory regeneration of subcutaneous tendon/ligament with knitted silk-collagen sponge scaffold due to its specific "internal-space-preservation" property. This study aims to investigate the long-term effects of knitted silk-collagen sponge scaffold on ACL regeneration and osteoarthritis prevention. The knitted silk-collagen sponge scaffold was fabricated and implanted into a rabbit ACL injury model. The knitted silk-collagen sponge scaffold was found to enhance migration and adhesion of spindle-shaped cells into the scaffold at 2 months post-surgery. After 6 months, ACL treated with the knitted silk-collagen sponge scaffold exhibited increased expression of ligament genes and better microstructural morphology. After 18 months, the knitted silk-collagen sponge scaffold-treated group had more mature ligament structure and direct ligament-to-bone healing. Implanted knitted silk-collagen sponge scaffolds degraded much more slowly compared to subcutaneous implantation. Furthermore, the knitted silk-collagen sponge scaffold effectively protected joint surface cartilage and preserved joint space for up to 18 months post-surgery. These findings thus demonstrated that the knitted silk-collagen sponge scaffold can regenerate functional ACL and prevent osteoarthritis in the long-term, suggesting its clinical use as a functional bioscaffold for ACL reconstruction.

  2. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications.

    PubMed

    Dodel, M; Hemmati Nejad, N; Bahrami, S H; Soleimani, M; Hanaee-Ahvaz, H

    2016-01-01

    Tissue reconstruction is among the increasing applications of polymer nanofibers. Fibrous scaffolds (mats) can be easily produced using the electrospinning method with structure and biomechanical properties similar to those of a cellular matrix. Electrospinning is widely used in the production of nanofibers and the GAP-method electrospinning is one of the means of producing fully aligned nanofibers. In this research, using the GAP-method, knitted fibrous scaffolds were made of silk fibroin, which is a biocompatible and biodegradable polymer. To extract fibroin from cocoons, the sodium chloride solution as well as dialysis and freeze-drying techniques were employed. The molecular weight of the extracted fibroin was measured with the SDS-Page electrophoresis technique. Moreover, the pure fibroin structure was examined using the ATR-FTIR method, and the viscosity of the solution used for electrospinning was measured with the Brookfield rotational viscometer. The scaffolds were prepared through electrospinning of the silk fibroin in pure formic acid solution. The following three structures were electrospun: 1) a random structure; 2) a knitted structure with an interstitial angle of 60 degrees; 3) a knitted structure with an interstitial angle of 90 degrees. Morphology of the resulting fibers was studied with a SEM (scanning electron microscope). Fibroin scaffolds are degradable in water. Therefore, they were fixated through immersion in methanol to be prepared for assays. The mechanical properties of the scaffolds were also studied using a tensile strength test device. The effect of methanol on the strength properties of the samples was also assessed. The hydrophilic potential of the samples was measured via a contact angle test. To increase the hydrophilicity of the scaffold surfaces, the cold oxygen plasma technique was employed. Finally, the biocompatibility and cell adhesion of the resulting scaffolds were examined through a HEK 293 cell culture, and the results

  3. Modifying the mechanical properties of silk nanofiber scaffold by knitted orientation for regenerative medicine applications.

    PubMed

    Dodel, M; Hemmati Nejad, N; Bahrami, S H; Soleimani, M; Hanaee-Ahvaz, H

    2016-01-01

    Tissue reconstruction is among the increasing applications of polymer nanofibers. Fibrous scaffolds (mats) can be easily produced using the electrospinning method with structure and biomechanical properties similar to those of a cellular matrix. Electrospinning is widely used in the production of nanofibers and the GAP-method electrospinning is one of the means of producing fully aligned nanofibers. In this research, using the GAP-method, knitted fibrous scaffolds were made of silk fibroin, which is a biocompatible and biodegradable polymer. To extract fibroin from cocoons, the sodium chloride solution as well as dialysis and freeze-drying techniques were employed. The molecular weight of the extracted fibroin was measured with the SDS-Page electrophoresis technique. Moreover, the pure fibroin structure was examined using the ATR-FTIR method, and the viscosity of the solution used for electrospinning was measured with the Brookfield rotational viscometer. The scaffolds were prepared through electrospinning of the silk fibroin in pure formic acid solution. The following three structures were electrospun: 1) a random structure; 2) a knitted structure with an interstitial angle of 60 degrees; 3) a knitted structure with an interstitial angle of 90 degrees. Morphology of the resulting fibers was studied with a SEM (scanning electron microscope). Fibroin scaffolds are degradable in water. Therefore, they were fixated through immersion in methanol to be prepared for assays. The mechanical properties of the scaffolds were also studied using a tensile strength test device. The effect of methanol on the strength properties of the samples was also assessed. The hydrophilic potential of the samples was measured via a contact angle test. To increase the hydrophilicity of the scaffold surfaces, the cold oxygen plasma technique was employed. Finally, the biocompatibility and cell adhesion of the resulting scaffolds were examined through a HEK 293 cell culture, and the results

  4. Allogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair.

    PubMed

    Shen, Weiliang; Chen, Jialin; Yin, Zi; Chen, Xiao; Liu, Huanhuan; Heng, Boon Chin; Chen, Weishan; Ouyang, Hong-Wei

    2012-01-01

    Tendon stem/progenitor cells (TSPCs) were recently identified within tendon tissues. The aim of this study was to investigate TSPC-seeded knitted silk-collagen sponge scaffold for functional shoulder repair. The multidifferentiation potential, proliferation, and immune properties of TSPCs were investigated in vitro, while the efficacy of TSPC-seeded knitted silk-collagen sponge scaffolds in promoting rotator cuff regeneration was evaluated in vivo within a rabbit model. TSPCs, which exhibited universal stem cell characteristics (i.e., clonogenicity, high proliferative capacity, and multidifferentiation potential), nonimmunogenicity, and immunosuppression, proliferated well on our scaffold in vitro. Implantation of allogenous TSPC-seeded scaffolds within a rabbit rotator cuff injury model did not elicit an immunological reaction, but instead increased fibroblastic cell ingrowth and reduced infiltration of lymphocytes within the implantation sites at 4 and 8 weeks postsurgery. After 12 weeks, the allogenous TSPC-treated group exhibited increased collagen deposition and had better structural and biomechanical properties compared to the control group. This study thus demonstrated that the allogenous TSPC-seeded knitted silk-collagen sponge scaffold enhanced the efficacy of rotator cuff tendon regeneration by differentiating into tenocytes, and by secreting anti-inflammatory cytokines that prevent immunological rejection. Hence, allogenous TSPC-seeded knitted silk-collagen sponge scaffolds can be a clinically useful application for tendon tissue engineering.

  5. Interactions between Spider Silk and Cells – NIH/3T3 Fibroblasts Seeded on Miniature Weaving Frames

    PubMed Central

    Kuhbier, Joern W.; Allmeling, Christina; Reimers, Kerstin; Hillmer, Anja; Kasper, Cornelia; Menger, Bjoern; Brandes, Gudrun; Guggenheim, Merlin; Vogt, Peter M.

    2010-01-01

    Background Several materials have been used for tissue engineering purposes, since the ideal matrix depends on the desired tissue. Silk biomaterials have come to focus due to their great mechanical properties. As untreated silkworm silk has been found to be quite immunogenic, an alternative could be spider silk. Not only does it own unique mechanical properties, its biocompatibility has been shown already in vivo. In our study, we used native spider dragline silk which is known as the strongest fibre in nature. Methodology/Principal Findings Steel frames were originally designed and manufactured and woven with spider silk, harvesting dragline silk directly out of the animal. After sterilization, scaffolds were seeded with fibroblasts to analyse cell proliferation and adhesion. Analysis of cell morphology and actin filament alignment clearly revealed adherence. Proliferation was measured by cell count as well as determination of relative fluorescence each after 1, 2, 3, and 5 days. Cell counts for native spider silk were also compared with those for trypsin-digested spider silk. Spider silk specimens displayed less proliferation than collagen- and fibronectin-coated cover slips, enzymatic treatment reduced adhesion and proliferation rates tendentially though not significantly. Nevertheless, proliferation could be proven with high significance (p<0.01). Conclusion/Significance Native spider silk does not require any modification to its application as a biomaterial that can rival any artificial material in terms of cell growth promoting properties. We could show adhesion mechanics on intracellular level. Additionally, proliferation kinetics were higher than in enzymatically digested controls, indicating that spider silk does not require modification. Recent findings concerning reduction of cell proliferation after exposure could not be met. As biotechnological production of the hierarchical composition of native spider silk fibres is still a challenge, our study has a

  6. Seed-Specific Expression of Spider Silk Protein Multimers Causes Long-Term Stability

    PubMed Central

    Weichert, Nicola; Hauptmann, Valeska; Helmold, Christine; Conrad, Udo

    2016-01-01

    Seeds enable plants to germinate and to grow in situations of limited availability of nutrients. The stable storage of different seed proteins is a remarkable presumption for successful germination and growth. These strategies have been adapted and used in several molecular farming projects. In this study, we explore the benefits of seed-based expression to produce the high molecular weight spider silk protein FLAG using intein-based trans-splicing. Multimers larger than 460 kDa in size are routinely produced, which is above the native size of the FLAG protein. The storage of seeds for 8 weeks and 1 year at an ambient temperature of 15°C does not influence the accumulation level. Even the extended storage time does not influence the typical pattern of multimerized bands. These results show that seeds are the method of choice for stable accumulation of products of complex transgenes and have the capability for long-term storage at moderate conditions, an important feature for the development of suitable downstream processes. PMID:26858734

  7. Seed-Specific Expression of Spider Silk Protein Multimers Causes Long-Term Stability.

    PubMed

    Weichert, Nicola; Hauptmann, Valeska; Helmold, Christine; Conrad, Udo

    2016-01-01

    Seeds enable plants to germinate and to grow in situations of limited availability of nutrients. The stable storage of different seed proteins is a remarkable presumption for successful germination and growth. These strategies have been adapted and used in several molecular farming projects. In this study, we explore the benefits of seed-based expression to produce the high molecular weight spider silk protein FLAG using intein-based trans-splicing. Multimers larger than 460 kDa in size are routinely produced, which is above the native size of the FLAG protein. The storage of seeds for 8 weeks and 1 year at an ambient temperature of 15°C does not influence the accumulation level. Even the extended storage time does not influence the typical pattern of multimerized bands. These results show that seeds are the method of choice for stable accumulation of products of complex transgenes and have the capability for long-term storage at moderate conditions, an important feature for the development of suitable downstream processes. PMID:26858734

  8. In vitro evaluation of combined sulfated silk fibroin scaffolds for vascular cell growth.

    PubMed

    Liu, Haifeng; Ding, Xili; Bi, Yanxue; Gong, Xianghui; Li, Xiaoming; Zhou, Gang; Fan, Yubo

    2013-06-01

    A combined sulfated silk fibroin scaffold is fabricated by modifying a knitted silk scaffold with sulfated silk fibroin sponges. In vitro hemocompatibility evaluation reveals that the combined sulfated silk fibroin scaffolds reduce platelet adhesion and activation, and prolong the activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT). The response of porcine endothelial cells (ECs) and smooth muscle cells (SMCs) on the scaffolds is studied to evaluate the cytocompatibility of the scaffolds. Vascular cells are seeded on the scaffolds and cultured for 2 weeks. The scaffolds demonstrate enhanced EC adhesion, proliferation, and maintenance of cellular functions. Moreover, the scaffolds inhibit SMC proliferation and induce expression of contractile SMC marker genes. PMID:23610045

  9. A Need to Knit

    ERIC Educational Resources Information Center

    Gruener, Barbara

    2006-01-01

    In this article, the author talks about the Westwood Elementary's knitting and crochet club. The idea for this group unraveled when one of their third graders received a knitting kit as a birthday gift. The mother of the student told the author what a wonderful hobby knitting had become for her daughter and how this craft worked to help develop…

  10. Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs.

    PubMed

    Bissoyi, Akalabya; Pramanik, K; Panda, Niladri Nath; Sarangi, S K

    2014-06-01

    Long term cryopreservation of tissue engineering constructs is of paramount importance to meet off-the shelf requirements for medical applications. In the present study, the effect of cryopreservation using natural osmolytes such as trehalose and ectoin with and without conventional Me2SO on the cryopreservation of tissue engineered constructs (TECs) was evaluated. MSCs derived from umbilical cord were seeded on electrospun nanofibrous silk fibroin scaffolds and cultured to develop TECs. TECs were subjected to controlled rate freezing using nine different freezing solutions. Among these, freezing medium consisting of natural osmolytes like trehalose (40mM), ectoin (40mM), catalase (100μg) as antioxidant and Me2SO (2.5%) was found to be the most effective. Optimality of the chosen cryoprotectants was confirmed by cell viability (PI live/dead staining), cell proliferation (MTT assay), microstructure analysis (SEM), membrane integrity (confocal microscopy) and in vitro osteogenic differentiation (ALP assay, RT-PCR and histology) study carried out with post-thaw cryopreserved TECs. The mechanical integrity of the cryopreserved scaffold was found to be unaltered. The performance of the freezing medium towards cryopreservation of TEC was superior than the performance achieved using conventional Me2SO and similar to the non cryopreserved TEC. Overall we have formulated an efficient freezing medium that may pave the way of long term preservation of TECs with maintaining its integrity, MSCs viability and differentiation potentiality. It was observed that the performance of freezing medium for cryopreservation of TECs was better than the Me2SO.

  11. Cryopreservation of hMSCs seeded silk nanofibers based tissue engineered constructs.

    PubMed

    Bissoyi, Akalabya; Pramanik, K; Panda, Niladri Nath; Sarangi, S K

    2014-06-01

    Long term cryopreservation of tissue engineering constructs is of paramount importance to meet off-the shelf requirements for medical applications. In the present study, the effect of cryopreservation using natural osmolytes such as trehalose and ectoin with and without conventional Me2SO on the cryopreservation of tissue engineered constructs (TECs) was evaluated. MSCs derived from umbilical cord were seeded on electrospun nanofibrous silk fibroin scaffolds and cultured to develop TECs. TECs were subjected to controlled rate freezing using nine different freezing solutions. Among these, freezing medium consisting of natural osmolytes like trehalose (40mM), ectoin (40mM), catalase (100μg) as antioxidant and Me2SO (2.5%) was found to be the most effective. Optimality of the chosen cryoprotectants was confirmed by cell viability (PI live/dead staining), cell proliferation (MTT assay), microstructure analysis (SEM), membrane integrity (confocal microscopy) and in vitro osteogenic differentiation (ALP assay, RT-PCR and histology) study carried out with post-thaw cryopreserved TECs. The mechanical integrity of the cryopreserved scaffold was found to be unaltered. The performance of the freezing medium towards cryopreservation of TEC was superior than the performance achieved using conventional Me2SO and similar to the non cryopreserved TEC. Overall we have formulated an efficient freezing medium that may pave the way of long term preservation of TECs with maintaining its integrity, MSCs viability and differentiation potentiality. It was observed that the performance of freezing medium for cryopreservation of TECs was better than the Me2SO. PMID:24759299

  12. Human Dental Pulp Stem Cells and Gingival Fibroblasts Seeded into Silk Fibroin Scaffolds Have the Same Ability in Attracting Vessels

    PubMed Central

    Woloszyk, Anna; Buschmann, Johanna; Waschkies, Conny; Stadlinger, Bernd; Mitsiadis, Thimios A.

    2016-01-01

    Neovascularization is one of the most important processes during tissue repair and regeneration. Current healing approaches based on the use of biomaterials combined with stem cells in critical-size bone defects fail due to the insufficient implant vascularization and integration into the host tissues. Therefore, here we studied the attraction, ingrowth, and distribution of blood vessels from the chicken embryo chorioallantoic membrane into implanted silk fibroin scaffolds seeded with either human dental pulp stem cells or human gingival fibroblasts. Perfusion capacity was evaluated by non-invasive in vivo Magnetic Resonance Imaging while the number and density of blood vessels were measured by histomorphometry. Our results demonstrate that human dental pulp stem cells and gingival fibroblasts possess equal abilities in attracting vessels within silk fibroin scaffolds. Additionally, the prolonged in vitro pre-incubation period of these two cell populations favors the homogeneous distribution of vessels within silk fibroin scaffolds, which further improves implant survival and guarantees successful healing and regeneration. PMID:27148078

  13. Human Dental Pulp Stem Cells and Gingival Fibroblasts Seeded into Silk Fibroin Scaffolds Have the Same Ability in Attracting Vessels.

    PubMed

    Woloszyk, Anna; Buschmann, Johanna; Waschkies, Conny; Stadlinger, Bernd; Mitsiadis, Thimios A

    2016-01-01

    Neovascularization is one of the most important processes during tissue repair and regeneration. Current healing approaches based on the use of biomaterials combined with stem cells in critical-size bone defects fail due to the insufficient implant vascularization and integration into the host tissues. Therefore, here we studied the attraction, ingrowth, and distribution of blood vessels from the chicken embryo chorioallantoic membrane into implanted silk fibroin scaffolds seeded with either human dental pulp stem cells or human gingival fibroblasts. Perfusion capacity was evaluated by non-invasive in vivo Magnetic Resonance Imaging while the number and density of blood vessels were measured by histomorphometry. Our results demonstrate that human dental pulp stem cells and gingival fibroblasts possess equal abilities in attracting vessels within silk fibroin scaffolds. Additionally, the prolonged in vitro pre-incubation period of these two cell populations favors the homogeneous distribution of vessels within silk fibroin scaffolds, which further improves implant survival and guarantees successful healing and regeneration. PMID:27148078

  14. Adult Stem Cells Seeded on Electrospinning Silk Fibroin Nanofiberous Scaffold Enhance Wound Repair and Regeneration.

    PubMed

    Xie, Sheng-Yang; Peng, Li-Hua; Shan, Ying-Hui; Niu, Jie; Xiong, Jie; Gao, Jian-Qing

    2016-06-01

    Development of novel strategy stimulating the healing with skin appendages regeneration is the critical goal for wound therapy. In this study, influence of the transplantation of bone marrow derived mesenchymal stem cells (MSCs) and epidermal stem cells (ESCs) with the nanofiberous scaffold prepared from silk fibroin protein in wound re-epithelization, collagen synthesis, as well as the skin appendages regeneration were investigated. It was shown that both the transplantation of MSCs and ESCs could significantly accelerate the skin re-epithelization, stimulate the collagen synthesis. Furthermore, the regenerative features of MSCs and ESCs in activating the blood vessels and hair follicles formation, respectively were suggested. These results demonstrated that the electrospinning nanofiberous scaffold is an advantageous carrier for the cells transplantation, but also provided the experimental proofs for the application of MSCs and ESCs as promising therapeutics in skin tissue engineering. PMID:27427589

  15. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect.

    PubMed

    Lin, Si; Chen, Mengxia; Jiang, Huayue; Fan, Linpeng; Sun, Binbin; Yu, Fan; Yang, Xingxing; Lou, Xiangxin; He, Chuanglong; Wang, Hongsheng

    2016-03-01

    Silk fibroin (SF) from Bombyx mori has an excellent biocompatibility and thus be widely applied in the biomedical field. Recently, various SF-based composite nanofibers have been developed for more demanding applications. Additionally, grape seed extract (GSE) has been demonstrated to be powerful on antioxidation. In the present study, we dedicate to fabricate a GSE-loaded SF/polyethylene oxide (PEO) composite nanofiber by green electrospinning. Our results indicated the successful loading of GSE into the SF/PEO composite nanofibers. The introduction of GSE did not affect the morphology of the SF/PEO nanofibers and GSE can be released from the nanofibers with a sustained manner. Furthermore, comparing with the raw SF/PEO nanofibrous mats, the GSE-loaded SF/PEO nanofibrous mats significantly enhanced the proliferation of the skin fibroblasts and also protected them against the damage from tert-butyl hydroperoxide-induced oxidative stress. All these findings suggest a promising potential of this novel GSE-loaded SF/PEO composite nanofibrous mats applied in skin care, tissue regeneration and wound healing.

  16. Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect.

    PubMed

    Lin, Si; Chen, Mengxia; Jiang, Huayue; Fan, Linpeng; Sun, Binbin; Yu, Fan; Yang, Xingxing; Lou, Xiangxin; He, Chuanglong; Wang, Hongsheng

    2016-03-01

    Silk fibroin (SF) from Bombyx mori has an excellent biocompatibility and thus be widely applied in the biomedical field. Recently, various SF-based composite nanofibers have been developed for more demanding applications. Additionally, grape seed extract (GSE) has been demonstrated to be powerful on antioxidation. In the present study, we dedicate to fabricate a GSE-loaded SF/polyethylene oxide (PEO) composite nanofiber by green electrospinning. Our results indicated the successful loading of GSE into the SF/PEO composite nanofibers. The introduction of GSE did not affect the morphology of the SF/PEO nanofibers and GSE can be released from the nanofibers with a sustained manner. Furthermore, comparing with the raw SF/PEO nanofibrous mats, the GSE-loaded SF/PEO nanofibrous mats significantly enhanced the proliferation of the skin fibroblasts and also protected them against the damage from tert-butyl hydroperoxide-induced oxidative stress. All these findings suggest a promising potential of this novel GSE-loaded SF/PEO composite nanofibrous mats applied in skin care, tissue regeneration and wound healing. PMID:26707696

  17. Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells

    PubMed Central

    Yudintceva, Natalia M; Nashchekina, Yulia A; Blinova, Miralda I; Orlova, Nadezhda V; Muraviov, Alexandr N; Vinogradova, Tatiana I; Sheykhov, Magomed G; Shapkova, Elena Y; Emeljannikov, Dmitriy V; Yablonskii, Petr K; Samusenko, Igor A; Mikhrina, Anastasiya L; Pakhomov, Artem V; Shevtsov, Maxim A

    2016-01-01

    In the present study, a poly-l-lactide/silk fibroin (PL-SF) bilayer scaffold seeded with allogenic bone marrow stromal cells (BMSCs) was investigated as a potential approach for bladder tissue engineering in a model of partial bladder wall cystectomy in rabbits. The inner porous layer of the scaffold produced from silk fibroin was designed to promote cell proliferation and the outer layer produced from poly-l-lactic acid to serve as a waterproof barrier. To compare the feasibility and efficacy of BMSC application in the reconstruction of bladder defects, 12 adult male rabbits were divided into experimental and control groups (six animals each) that received a scaffold seeded with BMSCs or an acellular one, respectively. For BMSC tracking in the graft in in vivo studies using magnetic resonance imaging, cells were labeled with superparamagnetic iron oxide nanoparticles. In vitro studies demonstrated high intracellular incorporation of nanoparticles and the absence of a toxic influence on BMSC viability and proliferation. Following implantation of the graft with BMSCs into the bladder, we observed integration of the scaffold with surrounding bladder tissues (as detected by magnetic resonance imaging). During the follow-up period of 12 weeks, labeled BMSCs resided in the implanted scaffold. The functional activity of the reconstructed bladder was confirmed by electromyography. Subsequent histological assay demonstrated enhanced biointegrative properties of the PL-SF scaffold with cells in comparison to the control graft, as related to complete regeneration of the smooth muscle and urothelium tissues in the implant. Confocal microscopy studies confirmed the presence of the superparamagnetic iron oxide nanoparticle-labeled BMSCs in newly formed bladder layers, thus indicating the role of stem cells in bladder regeneration. The results of this study demonstrate that application of a PL-SF scaffold seeded with allogenic BMSCs can enhance biointegration of the graft in

  18. Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells

    PubMed Central

    Yudintceva, Natalia M; Nashchekina, Yulia A; Blinova, Miralda I; Orlova, Nadezhda V; Muraviov, Alexandr N; Vinogradova, Tatiana I; Sheykhov, Magomed G; Shapkova, Elena Y; Emeljannikov, Dmitriy V; Yablonskii, Petr K; Samusenko, Igor A; Mikhrina, Anastasiya L; Pakhomov, Artem V; Shevtsov, Maxim A

    2016-01-01

    In the present study, a poly-l-lactide/silk fibroin (PL-SF) bilayer scaffold seeded with allogenic bone marrow stromal cells (BMSCs) was investigated as a potential approach for bladder tissue engineering in a model of partial bladder wall cystectomy in rabbits. The inner porous layer of the scaffold produced from silk fibroin was designed to promote cell proliferation and the outer layer produced from poly-l-lactic acid to serve as a waterproof barrier. To compare the feasibility and efficacy of BMSC application in the reconstruction of bladder defects, 12 adult male rabbits were divided into experimental and control groups (six animals each) that received a scaffold seeded with BMSCs or an acellular one, respectively. For BMSC tracking in the graft in in vivo studies using magnetic resonance imaging, cells were labeled with superparamagnetic iron oxide nanoparticles. In vitro studies demonstrated high intracellular incorporation of nanoparticles and the absence of a toxic influence on BMSC viability and proliferation. Following implantation of the graft with BMSCs into the bladder, we observed integration of the scaffold with surrounding bladder tissues (as detected by magnetic resonance imaging). During the follow-up period of 12 weeks, labeled BMSCs resided in the implanted scaffold. The functional activity of the reconstructed bladder was confirmed by electromyography. Subsequent histological assay demonstrated enhanced biointegrative properties of the PL-SF scaffold with cells in comparison to the control graft, as related to complete regeneration of the smooth muscle and urothelium tissues in the implant. Confocal microscopy studies confirmed the presence of the superparamagnetic iron oxide nanoparticle-labeled BMSCs in newly formed bladder layers, thus indicating the role of stem cells in bladder regeneration. The results of this study demonstrate that application of a PL-SF scaffold seeded with allogenic BMSCs can enhance biointegration of the graft in

  19. Smarten up garments through knitting

    NASA Astrophysics Data System (ADS)

    Schwarz-Pfeiffer, A.; Obermann, M.; Weber, M. O.; Ehrmann, A.

    2016-07-01

    Smart textiles are a growing and fascinating field with enormous potential in the field of wearable electronics: shirts with integrated electrodes, socks stimulating the blood circulation or heating clothing are just a few examples of wearable, smart textile products. Most often, the technology of choice for on-the-body-worn smart textiles is knitting as it results in stretchable and, hence comfortable garments. This presentation explores the knitting technology in respect to smart textiles giving an overview of current research activities as well as commercially available products on the market. It further intends to foster the transfer of research approaches into business applications as well as to develop new challenging research ideas.

  20. Synergistic effect of exogeneous and endogeneous electrostimulation on osteogenic differentiation of human mesenchymal stem cells seeded on silk scaffolds.

    PubMed

    Çakmak, Anıl S; Çakmak, Soner; White, James D; Raja, Waseem K; Kim, Kyungsook; Yiğit, Sezin; Kaplan, David L; Gümüşderelioğlu, Menemşe

    2016-04-01

    Bioelectrical regulation of bone fracture healing is important for many cellular events such as proliferation, migration, and differentiation. The aim of this study was to investigate the osteogenic differentiation potential of human mesenchymal stem cells (hMSCs) cultivated on silk scaffolds in response to different modes of electrostimulation (e.g., exogeneous and/or endogeneous). Endogeneous electrophysiology was altered through the use of monensin (10 nM) and glibenclamide (10 μM), along with external electrostimulation (60 kHz; 100-500 mV). Monensin enhanced the expression of early osteogenic markers such as alkaline phosphatase (ALP) and runt-related transcription factor 2 (RUNX-2). When exogeneous electrostimulation was combined with glibenclamide, more mature osteogenic marker upregulation based on bone sialoprotein expression (BSP) and mineralization was found. These results suggest the potential to exploit both exogeneous and endogeneous biophysical control of cell functions towards tissue-specific goals.

  1. A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration.

    PubMed

    Xu, Yunqiang; Zhang, Zhenhui; Chen, Xuyi; Li, Ruixin; Li, Dong; Feng, Shiqing

    2016-01-01

    As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the body's natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs) and adipose-derived stem cells (ADSCs) as seed cells and introduced them into a silk fibroin (SF)/collagen scaffold to construct a tissue-engineered nerve conduit (TENC). Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft) were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair. PMID:26799619

  2. Mechanics of a Knitted Fabric

    NASA Astrophysics Data System (ADS)

    Poincloux, Samuel; Lechenault, Frederic; Adda-Bedia, Mokhtar

    A simple knitted fabric can be seen as a topologically constrained slender rod following a periodic path. The non-linear properties of the fabric, such as large reversible deformation and characteristic shape under stress, arise from topological features known as stitches and are distinct from the constitutive yarn properties. Through experiments we studied a model stockinette fabric made of a single elastic thread, where the mechanical properties and local stitch displacements were measured. Then, we derived a model based on the yarn bending energy at the stitch level resulting in an evaluation of the displacement fields of the repetitive units which describe the fabric shape. The comparison between the predicted and the measured shape gives very good agreement and the right order of magnitude for the mechanical response is captured. This work aims at providing a fundamental framework for the understanding of knitted systems, paving the way to thread based smart materials. Contract ANR-14-CE07-0031-01 METAMAT.

  3. Knitted Patterns as a Model for Anisotropy

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2012-01-01

    Anisotropy is a difficult concept, although it is often met in everyday life. This paper describes a simple model--knitted patterns--having anisotropic elastic properties. The elastic constant is measured for the force applied in different directions with respect to the knitting direction. It is also shown that the deformation of the knitted…

  4. Modification of sericin-free silk fibers for ligament tissue engineering application.

    PubMed

    Liu, Haifeng; Ge, Zigang; Wang, Yue; Toh, Siew Lok; Sutthikhum, Vallaya; Goh, James C H

    2007-07-01

    Biomedical application of silk requires the removal of sericin that is the gumming material of native silk fibers. This is because sericin can elicit an adverse immune response after implantation in the human body. However, the removal of sericin causes the silk fiber to fray and weakens its structural property, making it very difficult to knit or braid them into a scaffold for ligament tissue engineering applications. The aim of this study was to replace sericin with gelatin using NDGA as a cross-linking agent to biomimic the natural structure of native silk fibers. The physical properties and biocompatibility of the modified and native silk fibers were compared by in vitro and in vivo models. The mechanical and swelling properties of sericin-free silk fibers were greatly increased after modification with gelatin. Both modified and native silk fibers were shown to be nontoxic by in vitro cytotoxicity tests. The in vivo study demonstrated that the modified silk fibers, after 4 weeks' subcutaneous implantation in rats, caused little or no inflammatory reaction as compared with native silk fibers. The superior mechanical properties and lower inflammatory potential of modified silk fibers make them a promising candidate for ligament tissue engineering applications.

  5. Properties of honeycomb polyester knitted fabrics

    NASA Astrophysics Data System (ADS)

    Feng, A. F.

    2016-07-01

    The properties of honeycomb polyester weft-knitted fabrics were studied to understand their advantages. Seven honeycomb polyester weft-knitted fabrics and one common polyester weft-knitted fabric were selected for testing. Their bursting strengths, fuzzing and pilling, air permeability, abrasion resistance and moisture absorption and perspiration were studied. The results show that the honeycomb polyester weft-knitted fabrics have excellent moisture absorption and liberation. The smaller their thicknesses and area densities are, the better their moisture absorption and liberation will be. Their anti-fuzzing and anti-pilling is good, whereas their bursting strengths and abrasion resistance are poorer compared with common polyester fabric's. In order to improve the hygroscopic properties of the fabrics, the proportion of the honeycomb microporous structure modified polyester in the fabrics should not be less than 40%.

  6. High sensitivity knitted fabric strain sensors

    NASA Astrophysics Data System (ADS)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  7. Science off the Sphere: Knitting Needles

    NASA Video Gallery

    International Space Station Expedition 30 astronaut Don Pettit uses knitting needles and water droplets to demonstrate physics in space for 'Science off the Sphere.' Through a partnership between N...

  8. Spider Webs and Silks.

    ERIC Educational Resources Information Center

    Vollrath, Fritz

    1992-01-01

    Compares the attributes of the silk from spiders with those of the commercially harvested silk from silkworms. Discusses the evolution, design, and effectiveness of spider webs; the functional mechanics of the varieties of silk that can be produced by the same spider; and the composite, as well as molecular, structure of spider silk thread. (JJK)

  9. Influence of miss knit repeat on parameters and properties of elasticized knitted fabric

    NASA Astrophysics Data System (ADS)

    Kyzymchuk, O.; Melnyk, L.

    2016-07-01

    The features of elasticized knitted fabric are: high extensibility, elasticity and adaptability to a body shape and a compression effect when it is used in the extended state. The elasticity of a knitted fabric is enhanced by the incorporation of elastane thread or core-spun yarn into the knitted structure as the weft yarn that is laid in the stretching direction. The quality of elasticized knitted fabrics is determined by the reliability of the how the elastomeric yarn is fixed within as the structure is deformed with an increase in the contact areas between the elastomeric and conventional yarns. The high fixing level can be achieved by the nature of loops formed from the elastomeric yarn. The simultaneous union of both conditions is possible with miss-knitting of elastomeric yarn through a certain number of needles. The main purpose of this study is to establish the influence of miss knit repeat of elastomeric yarn on the structural parameters and determine the stretch properties of the elasticized knitted fabric that formed by an alternation of two courses of 1x1 rib from cotton yarn and one course of miss knit (from 2 to 10 wales between the loops) from core-spun yarn with elastane core.

  10. Development of a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering.

    PubMed

    Fan, Hongbin; Liu, Haifeng; Wang, Yue; Toh, Siew Lok; Goh, James Cho Hong

    2008-01-01

    The objective of this study was to develop a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering. The scaffold was fabricated by lyophilizing the cross-linked gelatin and silk fibroin mixture with braided silk cables. Scanning electronic microscopy (SEM) observation showed that microporous gelatin/silk fibroin sponges formed around silk cables mimicked the microstructures of ligament extracellular matrix (ECM). The silk cables significantly increased the tensile strength of the scaffold to meet the mechanical requirements for ligament tissue engineering. The scaffold possessed good cell adhesion property, and when mesenchymal stem cells (MSCs) were seeded on it, cells proliferated profusely. After 2 weeks of culture, seeded MSCs were distributed uniformly throughout the scaffold and were highly viable. Occurrence of cell death during culture was not significant. Deposition of collagen on the scaffold was found to increase with time. Differentiation of MSCs into ligament fibroblasts was verified by expressions of ligament ECM specific genes including collagen type I, collagen type III, and tenascin-C in mRNA and protein level. Immunohistochemistry stains also confirmed the production of key ligament ECM components on the scaffold. The results demonstrate that silk cable-reinforced gelatin/silk fibroin scaffold possesses the appropriate mechanical properties and has enlarged surface area. It is also capable of supporting cell proliferation and differentiation for ligament tissue engineering.

  11. The effect of sterilization on silk fibroin biomaterial properties.

    PubMed

    Rnjak-Kovacina, Jelena; DesRochers, Teresa M; Burke, Kelly A; Kaplan, David L

    2015-06-01

    The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges are described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, γ radiation, dry heat, exposure to ethylene oxide, or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution, and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, γ irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding. PMID:25761231

  12. The effect of sterilization on silk fibroin biomaterial properties

    PubMed Central

    Rnjak-Kovacina, Jelena; DesRochers, Teresa M; Burke, Kelly A; Kaplan, David L

    2015-01-01

    The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges is described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, gamma radiation, dry heat, exposure to ethylene oxide or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, gamma irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding. PMID:25761231

  13. Evolution of arthropod silks.

    PubMed

    Craig, C L

    1997-01-01

    Silks belong to the class of molecules called structural proteins. The ability to produce silk proteins has evolved multiple times in the arthropods, and silk secreting glands have evolved via two different pathways. The comparative data and phylogenetic analyses in this review suggest that the silk-secreting systems of spiders and insects are homologous and linked to the crural gland (origin of systemic pathway to silk production) and cuticular secretions (origin of surficial pathway to silk production) of an onychophoran-like ancestor. The evolution of silk secreting organs via a surficial pathway is possible in adult and larval hexapods, regardless of their developmental mode. Silk secretion via a systemic pathway is possible in either adult or larval hexapods, but only larval insects have dedicated silk producing glands. Spiders, however, have evolved silk producing systems via both systemic pathway and surficial pathways, and a single individual retains both throughout its lifespan. Early in the evolution of spiders, silk glands were undifferentiated, suggesting that the number of silk secreting glands of any individual was related to the spider's energetic need to produce large quantities of protein. However, the complex silk-producing systems that characterize the aerial web-building spiders and the diverse types of proteins they produce suggest that their silks reflect the diverse and increasing number of ways in which spiders use them. Because the muscular and innervated spinnerets and spigots of spiders allow them to control fiber functional properties, silk proteins represent an avenue through which animal behavior may directly affect the molecular properties of a protein.

  14. Needle bar for warp knitting machines

    DOEpatents

    Hagel, Adolf; Thumling, Manfred

    1979-01-01

    Needle bar for warp knitting machines with a number of needles individually set into slits of the bar and having shafts cranked to such an extent that the head section of each needle is in alignment with the shaft section accommodated by the slit. Slackening of the needles will thus not influence the needle spacing.

  15. Silk structure and degradation.

    PubMed

    Liu, Bin; Song, Yu-wei; Jin, Li; Wang, Zhi-jian; Pu, De-yong; Lin, Shao-qiang; Zhou, Chan; You, Hua-jian; Ma, Yan; Li, Jin-min; Yang, Li; Sung, K L Paul; Zhang, Yao-guang

    2015-07-01

    To investigate the structure of silk and its degradation properties, we have monitored the structure of silk using scanning electron microscopy and frozen sections. Raw silk and degummed raw silk were immersed in four types of degradation solutions for 156 d to observe their degradation properties. The subcutaneous implants in rats were removed after 7, 14, 56, 84, 129, and 145 d for frozen sectioning and subsequent staining with hematoxylin and eosin (H.E.), DAPI, Beta-actin and Collagen I immunofluorescence staining. The in vitro weight loss ratio of raw silk and degummed raw silk in water, PBS, DMEM and DMEM containing 10% FBS (F-DMEM) were, respectively, 14%/11%, 12.5%/12.9%, 11.1%/14.3%, 8.8%/11.6%. Silk began to degrade after 7 d subcutaneous implantation and after 145 d non-degraded silk was still observed. These findings suggest the immunogenicity of fibroin and sericin had no essential difference. In the process of in vitro degradation of silk, the role of the enzyme is not significant. The in vivo degradation of silk is related to phagocytotic activity and fibroblasts may be involved in this process to secrete collagen. This study also shows the developing process of cocoons and raw silk. PMID:25982316

  16. Comparative Study of Silk-Silk Alloy Materials

    NASA Astrophysics Data System (ADS)

    Xue, Ye; Jao, Dave; Hu, Wenbing; Wolf, Nathan; Rocks, Eva-Marie; Hu, Xiao

    Silk fibroin materials can be used for various kinds of biomedical applications. We report a comparative study of silk-silk blend materials using thermal analysis and infrared spectroscopy. Four groups of silk-silk blend films: Mori-Tussah, Mori-Muga, Mori-Eri and Mori-Thai, were fabricated from aqueous solutions and blended at different weight ratios, respectively. These silk-silk blend systems exploit the beneficial material properties of both silks. DSC and temperature-modulated DSC were used to measure the transition temperatures and heat capacity of these water-based silk-silk blend films. Fourier transform infrared spectrometer was used to characterize secondary structures of silk-silk blends. This study demonstrates that Mori silk are fully miscible with Tussah, Muga, Eri and Thai silk at different weight ratios without phase separation. Glass transition temperatures, degradation temperatures and the contents of alpha-helix and random coils of those silk-silk blend films can be controlled by changing the contents of different silks in the blend system. The features of Mori silk combined with the attributes of Tussah, Muga, Eri and Thai silk offer a useful suite of materials for a variety of applications in the future.

  17. Silk as a Biomaterial

    PubMed Central

    Vepari, Charu

    2009-01-01

    Silks are fibrous proteins with remarkable mechanical properties produced in fiber form by silkworms and spiders. Silk fibers in the form of sutures have been used for centuries. Recently regenerated silk solutions have been used to form a variety of biomaterials, such as gels, sponges and films, for medical applications. Silks can be chemically modified through amino acid side chains to alter surface properties or to immobilize cellular growth factors. Molecular engineering of silk sequences has been used to modify silks with specific features, such as cell recognition or mineralization. The degradability of silk biomaterials can be related to the mode of processing and the corresponding content of beta sheet crystallinity. Several primary cells and cell lines have been successfully grown on different silk biomaterials to demonstrate a range of biological outcomes. Silk biomaterials are biocompatible when studied in vitro and in vivo. Silk scaffolds have been successfully used in wound healing and in tissue engineering of bone, cartilage, tendon and ligament tissues. PMID:19543442

  18. Industrial applications of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Kaufmann, James R.

    1992-01-01

    Over the past few years, multiaxial warp knit (MWK) fabrics have made significant inroads into the industrial composites arena. This paper examines the use of MWK fabrics in industrial composite applications. Although the focus is on current applications of MWK fabrics in composites, this paper also discusses the physical properties, advantages and disadvantages of MWK fabrics. The author also offers possibilities for the future of MWK fabrics in the industrial composites arena.

  19. INDUSTRIE 4.0 - Automation in weft knitting technology

    NASA Astrophysics Data System (ADS)

    Simonis, K.; Gloy, Y.-S.; Gries, T.

    2016-07-01

    Industry 4.0 applies to the knitting industry. Regarding the knitting process retrofitting activities are executed mostly manually by an operator on the basis on the operator's experience. In doing so, the knitted fabric is not necessarily produced in the most efficient way regarding process speed and fabric quality aspects. The knitting division at ITA is concentrating on project activities regarding automation and Industry 4.0. ITA is working on analysing the correspondences of the knitting process parameters and their influence on the fabric quality. By using e.g. the augmented reality technology, the operator will be supported when setting up the knitting machine in case of product or pattern change - or in case of an intervention when production errors occur. Furthermore, the RFID-Technology offers great possibilities to ensure information flow between sub-processes of the fragmented textile process chain. ITA is using RFID-chips to save yarn production information and connect the information to the fabric producing machine control. In addition, ITA is currently working on integrating image processing systems into the large circular knitting machine in order to ensure online-quality measurement of the knitted fabrics. This will lead to a self-optimizing and selflearning knitting machine.

  20. A novel marine silk.

    PubMed

    Kronenberger, Katrin; Dicko, Cedric; Vollrath, Fritz

    2012-01-01

    The discovery of a novel silk production system in a marine amphipod provides insights into the wider potential of natural silks. The tube-building corophioid amphipod Crassicorophium bonellii produces from its legs fibrous, adhesive underwater threads that combine barnacle cement biology with aspects of spider silk thread extrusion spinning. We characterised the filamentous silk as a mixture of mucopolysaccharides and protein deriving from glands representing two distinct types. The carbohydrate and protein silk secretion is dominated by complex β-sheet structures and a high content of charged amino acid residues. The filamentous secretion product exits the gland through a pore near the tip of the secretory leg after having moved through a duct, which subdivides into several small ductules all terminating in a spindle-shaped chamber. This chamber communicates with the exterior and may be considered the silk reservoir and processing/mixing space, in which the silk is mechanically and potentially chemically altered and becomes fibrous. We assert that further study of this probably independently evolved, marine arthropod silk processing and secretion system can provide not only important insights into the more complex arachnid and insect silks but also into crustacean adhesion cements.

  1. Water-insoluble Silk Films with Silk I Structure

    SciTech Connect

    Lu, Q.; Hu, X; Wang, X; Kluge, J; Lu, S; Cebe, P; Kaplan, D

    2010-01-01

    Water-insoluble regenerated silk materials are normally produced by increasing the {beta}-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and {alpha}-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 C, without crystallization above the T{sub g}, but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low {beta}-sheet content.

  2. Water-Insoluble Silk Films with Silk I Structure

    PubMed Central

    Lu, Qiang; Hu, Xiao; Wang, Xiaoqin; Kluge, Jonathan A.; Lu, Shenzhou; Cebe, Peggy; Kaplan, David L.

    2009-01-01

    Water-insoluble regenerated silk materials are normally achieved by increasing β-sheet content (silk II). In the present study, water-insoluble silk films were prepared by controlling very slow drying of B. mori silk solutions, resulting in the formation of stable films with dominating silk I instead of silk II structure. Wide angle x-ray scattering (WAXS) indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared through slow drying had a globule-like structure in the core with nano-filaments. The core region was composed of silk I and silk II, and these regions are surrounded by hydrophilic nano-filaments containing random, turns, and α-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. DSC results revealed that silk I crystals had stable thermal properties up to 250°C, without crystallization above the Tg, but degraded in lower temperature than silk II structure. Compared with water- and methanol-annealed films, the films prepared through slow drying achieved better mechanical ductility and more rapid enzymatic degradation, reflective of the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated in the present approach of very slow drying, mimicking the natural process. The results also point to a new mode to generate new types of silk biomaterials, where mechanical properties can be enhanced, and degradation rates increased, yet water insolubility is maintained along with low beta sheet content. PMID:19874919

  3. Water-insoluble silk films with silk I structure.

    PubMed

    Lu, Qiang; Hu, Xiao; Wang, Xiaoqin; Kluge, Jonathan A; Lu, Shenzhou; Cebe, Peggy; Kaplan, David L

    2010-04-01

    Water-insoluble regenerated silk materials are normally produced by increasing the beta-sheet content (silk II). In the present study water-insoluble silk films were prepared by controlling the very slow drying of Bombyx mori silk solutions, resulting in the formation of stable films with a predominant silk I instead of silk II structure. Wide angle X-ray scattering indicated that the silk films stabilized by slow drying were mainly composed of silk I rather than silk II, while water- and methanol-annealed silk films had a higher silk II content. The silk films prepared by slow drying had a globule-like structure at the core surrounded by nano-filaments. The core region was composed of silk I and silk II, surrounded by hydrophilic nano-filaments containing random turns and alpha-helix secondary structures. The insoluble silk films prepared by slow drying had unique thermal, mechanical and degradative properties. Differential scanning calorimetry results revealed that silk I crystals had stable thermal properties up to 250 degrees C, without crystallization above the T(g), but degraded at lower temperatures than silk II structure. Compared with water- and methanol-annealed films the films prepared by slow drying had better mechanical ductility and were more rapidly enzymatically degraded, reflecting the differences in secondary structure achieved via differences in post processing of the cast silk films. Importantly, the silk I structure, a key intermediate secondary structure for the formation of mechanically robust natural silk fibers, was successfully generated by the present approach of very slow drying, mimicking the natural process. The results also point to a new mode of generating new types of silk biomaterials with enhanced mechanical properties and increased degradation rates, while maintaining water insolubility, along with a low beta-sheet content.

  4. Silk Batik using Cochineal Dye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The history of silk, including sericulture (the production of raw silk, which requires the raising of silkworms on their natural diet, mulberry leaves) and silk manufacturing, is rich and extensive. It encompasses several famous “silk roads” (trade routes), various cultures and technologies, ideas,...

  5. Art on Silk Hoops

    ERIC Educational Resources Information Center

    Padrick, Deborah

    2012-01-01

    Painting on silk has a magic all its own. Versions of painting on silk can be found throughout the world from Japan and Europe to the United States. Themes for the paintings can be most any type of design or imagery. Applying the liquid dyes is exciting, as the vivid liquid colors flow and blend into the fabric. The process captures students'…

  6. The research of knitting needle status monitoring setup

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Liao, Xiao-qing; Zhu, Yong-kang; Yang, Wei; Zhang, Pei; Zhao, Yong-kai; Huang, Hui-jie

    2013-09-01

    In textile production, quality control and testing is the key to ensure the process and improve the efficiency. Defect of the knitting needles is the main factor affecting the quality of the appearance of textiles. Defect detection method based on machine vision and image processing technology is universal. This approach does not effectively identify the defect generated by damaged knitting needles and raise the alarm. We developed a knitting needle status monitoring setup using optical imaging, photoelectric detection and weak signal processing technology to achieve real-time monitoring of weaving needles' position. Depending on the shape of the knitting needle, we designed a kind of Glass Optical Fiber (GOF) light guides with a rectangular port used for transmission of the signal light. To be able to capture the signal of knitting needles accurately, we adopt a optical 4F system which has better imaging quality and simple structure and there is a rectangle image on the focal plane after the system. When a knitting needle passes through position of the rectangle image, the reflected light from needle surface will back to the GOF light guides along the same optical system. According to the intensity of signals, the computer control unit distinguish that the knitting needle is broken or curving. The experimental results show that this system can accurately detect the broken needles and the curving needles on the knitting machine in operating condition.

  7. Development of Knitted Warm Garments from Speciality Jute Yarns

    NASA Astrophysics Data System (ADS)

    Roy, Alok Nath

    2013-09-01

    Jute-polyester blended core and textured polyester multifilament cover spun-wrapped yarn was produced using existing jute spinning machines. The spun-wrapped yarn so produced show a reduction in hairiness up to 86.1 %, improvement in specific work of rupture up to 9.8 % and specific flexural rigidity up to 23.6 % over ordinary jute-polyester blended yarn. The knitted swatch produced out of these spun-wrapped yarn using seven gauge and nine gauge needle in both single jersey and double jersey knitting machines showed very good dimensional stability even after three washing. The two-ply and three-ply yarn produced from single spun-wrapped yarn can be easily used in knitting machines and also in hand-knitting for the production of sweaters. The thermal insulation value of the sweaters produced with jute-polyester blended spun-wrapped yarn is comparable with thermal insulation value of sweaters made from 100 % acrylic and 100 % wool. However, the hand-knitted sweaters showed higher thermal insulation value than the machine-knitted sweaters due to less packing of yarn in hand knitted structure as compared to machine knitting.

  8. Mechanical Characteristics of Composite Knitted Stents

    SciTech Connect

    Tokuda, Takanori Shomura, Yuzo; Tanigawa, Noboru; Kariya, Shuji; Komemushi, Atsushi; Kojima, Hiroyuki; Sawada, Satoshi

    2009-09-15

    We used metal wires and fibers to fabricate a composite knitted stent and then compare the mechanical characteristics of this stent with those of a pure metallic stent of the same construction in order to develop a stent that offers a comparable degree of expandability as metallic stents but can be used for highly curved lesions that cannot be treated using metallic stents. We fabricated two types of composite knitted stent (N-Z stents), using nitinol wire with a diameter of 0.12 mm and polypara-phenylene-benzobisoxazole (PBO) multifilament fiber (Zyron AS; Toyobo, Osaka, Japan). Stents were knitted into a cylindrical shape using the same textile pattern as a Strecker stent. Two loop lengths (L) of nitinol wire were used in the N-Z stents: L = 1.84 mm (N-Z stent L = 1.84) and L = 2.08 mm (N-Z stent L = 2.08). For the sake of comparison, we fabricated a metallic stent of nitinol using the same textile pattern (N-N stent L = 1.92). We applied a radial compression force diametrically to each stent and applied a bending force diametrically at the free end of a stent with one end fixed in order to evaluate the relationship between stent elasticity and load values. In addition, we macroscopically evaluated the generation of kinks when the stent was bent 180{sup o}. The radial compressive force when the stent diameter was reduced by 53% was 6.44 N in the case of N-Z stent L = 1.84, 6.14 N in the case of N-Z stent L = 2.08, and 4.96 N in the case of N-N stent L = 1.92 mm. The composite stent had a radial compressive force higher than that of a metallic stent. The restoring force to longitudinal direction at a 90{sup o} bending angle was 0.005 N for N-Z stent L = 1.84, 0.003 N for N-Z stent L = 2.08, and 0.034 N for N-N stent L = 1.92. The restoring force of the composite stent was significantly lower. Finally, the composite stent generated no definitive kinks at a bending angle of 180{sup o}, regardless of loop length. However, the N-N stent clearly produced kinks, causing

  9. Characterization of multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.; Cano, Roberto J.

    1991-01-01

    The objectives were to characterize the mechanical behavior and damage tolerance of two multiaxial warp knit fabrics to determine the acceptability of these fabrics for high performance composite applications. The tests performed included compression, tension, open hole compression, compression after impact and compression-compression fatigue. Tests were performed on as-fabricated fabrics and on multi-layer fabrics that were stitched together with either carbon or Kevlar stitching yarn. Results of processing studies for vacuum impregnation with Hercules 3501-6 epoxy resin and pressure impregnation with Dow Tactix 138/H41 epoxy resin and British Petroleum BP E905L epoxy resin are presented.

  10. Silk scaffolds for musculoskeletal tissue engineering

    PubMed Central

    Yao, Danyu

    2015-01-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues. PMID:26445979

  11. Silk scaffolds for musculoskeletal tissue engineering.

    PubMed

    Yao, Danyu; Liu, Haifeng; Fan, Yubo

    2016-02-01

    The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues.

  12. Three-layer knitted materials for protective clothing

    NASA Astrophysics Data System (ADS)

    Mielicka, E.; Janicka, J.; Kozminska, R.; Walak, A.

    2016-07-01

    The results of investigating multifunctional 3D knitted materials dedicated for protective clothing were presented. The 3D design structures were made on a circular knitting machine using yarns with flame retardant or electrostatic properties. The functionality imparted to each of the assortments developed was verified during the tests in accredited laboratories as well as by assessing their biophysical properties. Based on the analysis of the test results, a beneficial effect of the raw materials and the 3D structure of knitted fabrics were demonstrated. Designed garments could be useful as individual protection clothing for workers exposed to harmful occupational environment factors, such as heat and static electricity. The study was conducted within the project EUREKA E! 5799 BATAN “Multifunctional knitted fabrics with barrier properties for clothing”.

  13. Knitted outer gloves in primary hip and knee arthroplasty.

    PubMed

    Tanner, J; Wraighte, P; Howard, P

    2006-01-01

    A randomised trial was carried out to determine the rate of perforation to inner gloves when comparing latex with knitted gloves during hip and knee arthroplasty. Members of the surgical team were randomised to wear either two pairs of latex gloves (standard double gloving) or a knitted glove on top of a latex glove. In addition, participants completed a visual analogue assessment of their overall satisfaction with the gloves. A total of 406 inner gloves were tested for perforations over a four-month period: 23% of inner gloves were perforated when latex outer gloves were used and 6% of inner gloves were perforated when knitted outer gloves were used. In total, there were 64 perforations to the inner gloves; only one of these perforations was detected by the glove wearer. Wearing knitted outer gloves during hip and knee arthroplasty statistically significantly reduces the risk of perforation to inner latex gloves (p<0.0001).

  14. Functional regeneration of ligament-bone interface using a triphasic silk-based graft.

    PubMed

    Li, Hongguo; Fan, Jiabing; Sun, Liguo; Liu, Xincheng; Cheng, Pengzhen; Fan, Hongbin

    2016-11-01

    The biodegradable silk-based scaffold with unique mechanical property and biocompatibility represents a favorable ligamentous graft for tissue-engineering anterior cruciate ligament (ACL) reconstruction. However, the low efficiency of ligament-bone interface restoration barriers the isotropic silk graft to common ACL therapeutics. To enhance the regeneration of the silk-mediated interface, we developed a specialized stratification approach implementing a sequential modification on isotropic silk to constitute a triphasic silk-based graft in which three regions respectively referring to ligament, cartilage and bone layers of interface were divided, followed by respective biomaterial coating. Furthermore, three types of cells including bone marrow mesenchymal stem cells (BMSCs), chondrocytes and osteoblasts were respectively seeded on the ligament, cartilage and bone region of the triphasic silk graft, and the cell/scaffold complex was rolled up as a multilayered graft mimicking the stratified structure of native ligament-bone interface. In vitro, the trilineage cells loaded on the triphasic silk scaffold revealed a high proliferative capacity as well as enhanced differentiation ability into their corresponding cell lineage. 24 weeks postoperatively after the construct was implanted to repair the ACL defect in rabbit model, the silk-based ligamentous graft exhibited the enhancement of osseointegration detected by a robust pullout force and formation of three-layered structure along with conspicuously corresponding matrix deposition via micro-CT and histological analysis. These findings potentially broaden the application of silk-based ligamentous graft for ACL reconstruction and further large animal study. PMID:27566867

  15. Proteomic Analysis of Silk Viability in Maize Inbred Lines and Their Corresponding Hybrids

    PubMed Central

    Wang, Yafei; Zhao, Xiaofeng; Zhang, Fangfang; Tang, Jihua; Fu, Zhiyuan

    2015-01-01

    A long period of silk viability is critical for a good seed setting rate in maize (Zea mays L.), especially for inbred lines and hybrids with a long interval between anthesis and silking. To explore the molecular mechanism of silk viability and its heterosis, three inbred lines with different silk viability characteristics (Xun928, Lx9801, and Zong3) and their two hybrids (Xun928×Zong3 and Lx9801×Zong3) were analyzed at different developmental stages by a proteomic method. The differentially accumulated proteins were identified by mass spectrometry and classified into metabolism, protein biosynthesis and folding, signal transduction and hormone homeostasis, stress and defense responses, and cellular processes. Proteins involved in nutrient (methionine) and energy (ATP) supply, which support the pollen tube growth in the silk, were important for silk viability and its heterosis. The additive and dominant effects at a single locus, as well as complex epistatic interactions at two or more loci in metabolic pathways, were the primary contributors for mid-parent heterosis of silk viability. Additionally, the proteins involved in the metabolism of anthocyanins, which indirectly negatively regulate local hormone accumulation, were also important for the mid-parent heterosis of silk viability. These results also might imply the developmental dependence of heterosis, because many of the differentially accumulated proteins made distinct contributions to the heterosis of silk viability at specific developmental stages. PMID:26630375

  16. Silk Fibroin Electrogelation Mechanisms

    PubMed Central

    Lu, Qiang; Huang, Yongli; Li, Mingzhong; Zuo, Baoqi; Lu, Shenzhou; Wang, Jiannan; Zhu, Hesun; Kaplan, David L.

    2012-01-01

    A silk fibroin gel system (e-gel), formed with weak electric fields has potential utility in medical materials and devices. The mechanism of silk e-gel formation was studied to gain additional insight into the process and control of the material properties. Silk fibroin nanoparticles with sizes of several ten nanometers, composed of metastable conformations, were involved in e-gel formation. Under electric fields, the nanoparticles rapidly assembled into larger nano- or microspheres with size ranges from tens nanometers to several microns. Repulsive forces from the negative surface charge of the acidic groups on the protein were screened by the local decrease in solution pH in the vicinity of the positive electrode. By controlling the formation and content of silk fibroin nanoparticles e-gel could be formed even from low concentration silk fibroin solutions (1%). When e-gel was reversed to the solution state, the aggregated nano- and microspheres dispersed into solution, a significant observation related to future applications for this process, such as for drug delivery. PMID:21345387

  17. Biomimetic magnetic silk scaffolds.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Shelyakova, Tatiana; Declercq, Heidi A; Uhlarz, Marc; Bañobre-López, Manuel; Dubruel, Peter; Cornelissen, Maria; Herrmannsdörfer, Thomas; Rivas, Jose; Padeletti, Giuseppina; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek

    2015-03-25

    Magnetic silk fibroin protein (SFP) scaffolds integrating magnetic materials and featuring magnetic gradients were prepared for potential utility in magnetic-field assisted tissue engineering. Magnetic nanoparticles (MNPs) were introduced into SFP scaffolds via dip-coating methods, resulting in magnetic SFP scaffolds with different strengths of magnetization. Magnetic SFP scaffolds showed excellent hyperthermia properties achieving temperature increases up to 8 °C in about 100 s. The scaffolds were not toxic to osteogenic cells and improved cell adhesion and proliferation. These findings suggest that tailored magnetized silk-based biomaterials can be engineered with interesting features for biomaterials and tissue-engineering applications.

  18. Preparation of conductive silk fabric with antibacterial properties by electroless silver plating

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Kang, Gengen; Tian, Weicheng; Lin, Lu; Wang, Wei

    2015-12-01

    To obtain an efficient approach to metalize silk fabric, a novel method was explored and silver-plated silk was prepared. In this study, tris (2-carboxyethyl) phosphine (TCEP) was utilized as a reducing agent to generate thiol groups on the silk surface. These thiol groups react with silver ions to form metal complexes, which were used as catalytic seeds and successfully initiated electroless silver plating. A variety of methods, including Raman, XRD, TG, SEM and EDS were used to characterize the intermediates and final products. The results showed that a uniform and smooth metal layer could be obtained when compared with that without TCEP pretreatment. The silver-plated silk fabric exhibited good electrical conductivity and high anti-bacterial properties. These attractive features enable this conductive silk fabric to be a good candidate as a biomedical material.

  19. Optically switchable natural silk

    SciTech Connect

    Krasnov, Igor Müller, Martin; Krekiehn, Nicolai R.; Jung, Ulrich; Magnussen, Olaf M.; Krywka, Christina; Zillohu, Ahnaf U.; Strunskus, Thomas; Elbahri, Mady

    2015-03-02

    An optically active bio-material is created by blending natural silk fibers with photoisomerizable chromophore molecules—azobenzenebromide (AzBr). The material converts the energy of unpolarized light directly into mechanical work with a well-defined direction of action. The feasibility of the idea to produce optically driven microsized actuators on the basis of bio-material (silk) is proven. The switching behavior of the embedded AzBr molecules was studied in terms of UV/Vis spectroscopy. To test the opto-mechanical properties of the modified fibers and the structural changes they undergo upon optically induced switching, single fiber X-ray diffraction with a micron-sized synchrotron radiation beam was combined in situ with optical switching as well as with mechanical testing and monitoring. The crystalline regions of silk are not modified by the presence of the guest molecules, hence occupy only the amorphous part of the fibers. It is shown that chromophore molecules embedded into fibers can be reversibly switched between the trans and cis conformation by illumination with light of defined wavelengths. The host fibers respond to this switching with a variation of the internal stress. The amplitude of the mechanical response is independent of the applied external stress and its characteristic time is shorter than the relaxation time of the usual mechanical response of silk.

  20. Functional silk: colored and luminescent.

    PubMed

    Tansil, Natalia C; Koh, Leng Duei; Han, Ming-Yong

    2012-03-15

    Silkworm silk is among the most widely used natural fibers for textile and biomedical applications due to its extraordinary mechanical properties and superior biocompatibility. A number of physical and chemical processes have also been developed to reconstruct silk into various forms or to artificially produce silk-like materials. In addition to the direct use and the delicate replication of silk's natural structure and properties, there is a growing interest to introduce more new functionalities into silk while maintaining its advantageous intrinsic properties. In this review we assess various methods and their merits to produce functional silk, specifically those with color and luminescence, through post-processing steps as well as biological approaches. There is a highlight on intrinsically colored and luminescent silk produced directly from silkworms for a wide range of applications, and a discussion on the suitable molecular properties for being incorporated effectively into silk while it is being produced in the silk gland. With these understanding, a new generation of silk containing various functional materials (e.g., drugs, antibiotics and stimuli-sensitive dyes) would be produced for novel applications such as cancer therapy with controlled release feature, wound dressing with monitoring/sensing feature, tissue engineering scaffolds with antibacterial, anticoagulant or anti-inflammatory feature, and many others.

  1. Neural Responses to Electrical Stimulation on Patterned Silk Films

    PubMed Central

    Hronik-Tupaj, Marie; Raja, Waseem Khan; Tang-Schomer, Min; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Peripheral nerve injury is a critical issue for trauma patients. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 minutes each day for 7 days. Responses were compared to neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared to the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on day 5 and day 7 compared to the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 minutes daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment. PMID:23401351

  2. Performance of resin transfer molded multiaxial warp knit composites

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Hasko, Gregory H.

    1993-01-01

    Composite materials that are subjected to complex loads have traditionally been fabricated with multidirectionally oriented prepreg tape materials. Some of the problems associated with this type of construction include low delamination resistance, poor out-of-plane strength, and labor intensive fabrication processes. Textile reinforced composites with through-the-thickness reinforcement have the potential to solve some of these problems. Recently, a relatively new class of noncrimp fabrics designated as multiaxial warp knits have been developed to minimize some of the high cost and damage tolerance concerns. Multiple stacks of warp knit fabrics can be knitted or stitched together to reduce layup labor cost. The through-the-thickness reinforcement can provide significant improvements in damage tolerance and out-of-plane strength. Multilayer knitted/stitched preforms, in conjunction with resin transfer molding (RTM), offer potential for significant cost savings in fabrication of primary aircraft structures. The objectives of this investigation were to conduct RTM processing studies and to characterize the mechanical behavior of composites reinforced with three multiaxial warp knit fabrics. The three fabrics investigated were produced by Hexcel and Milliken in the United States, and Saerbeck in Germany. Two resin systems, British Petroleum E9O5L and 3M PR 500, were characterized for RTM processing. The performance of Hexcel and Milliken quasi-isotropic knitted fabrics are compared to conventional prepreg tape laminates. The performance of the Saerbeck fabric is compared to uniweave wing skin layups being investigated by Douglas Aircraft Company in the NASA Advanced Composites Technology (ACT) program. Tests conducted include tension, open hole tension, compression, open hole compression, and compression after impact. The effects of fabric defects, such as misaligned fibers and gaps between tows, on material performance are also discussed. Estimated material and labor

  3. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.

    PubMed

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm(2)) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections. PMID:26478392

  4. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.

    PubMed

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm(2)) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections.

  5. Knitting Mochilas: A Sociocultural, Developmental Practice in Arhuaco Indigenous Communities

    PubMed Central

    Rodríguez-Burgos, Lilian Patricia; Rodríguez-Castro, Jennifer; Bojacá-Rodríguez, Sandra Milena; Izquierdo-Martínez, Dwrya Elena; Amórtegui-Lozano, Allain Alexander; Prieto-Castellanos, Miguel Angel

    2016-01-01

    The purpose of this article is to analyze the psycho-cultural processes involved in knitting “mochilas” (traditional bags), a common craft in the Arhuaco indigenous community located in the Sierra Nevada de Santa Marta, Colombia. The article is structured in three parts, as follows: first, issues related to child development are discussed; then, the analysis method used to study the processes involved in the practice of knitting is presented and, finally, we reflect on the importance of recovering the sense and meaning of this everyday practice as a way to study child development. PMID:27298634

  6. Spider silk reduces insect herbivory.

    PubMed

    Rypstra, Ann L; Buddle, Christopher M

    2013-02-23

    The role of predators in food webs extends beyond their ability to kill and consume prey. Such trait-mediated effects occur when signals of the predator influence the behaviour of other animals. Because all spiders are silk-producing carnivores, we hypothesized that silk alone would signal other arthropods and enhance non-lethal effects of spiders. We quantified the herbivory inflicted by two beetle species on green bean plants (Phaseolus vulgaris) in the presence of silkworm silk and spider silk along with no silk controls. Single leaflets were treated and enclosed with herbivores in the laboratory and field. Another set of leaflets were treated and left to experience natural herbivory in the field. Entire plants in the field were treated with silk and enclosed with herbivores or left exposed to herbivory. In all cases, the lowest levels of herbivory occurred with spider silk treatments and, in general, silkworm silk produced intermediate levels of leaf damage. These results suggest that silk may be a mechanism for the trait-mediated impacts of spiders and that it might contribute to integrated pest management programmes.

  7. 21 CFR 184.1262 - Corn silk and corn silk extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Corn silk and corn silk extract. 184.1262 Section... Affirmed as GRAS § 184.1262 Corn silk and corn silk extract. (a) Corn silk is the fresh styles and stigmas of Zea mays L. collected when the corn is in milk. The filaments are extracted with dilute ethanol...

  8. Lightweight, variable solidity knitted parachute fabric. [for aerodynamic decelerators

    NASA Technical Reports Server (NTRS)

    Matthews, F. R., Jr.; White, E. C. (Inventor)

    1973-01-01

    A parachute fabric for aerodynamic decelerator applications is described. The fabric will permit deployment of the decelerator at high altitudes and low density conditions. The fabric consists of lightweight, highly open, circular knitted parachute fabric with ribbon-like yarns to assist in air deflection.

  9. Mechanical properties and in vitro degradation of bioresorbable knitted stents.

    PubMed

    Nuutinen, Juha-Pekka; Välimaa, Tero; Clerc, Claude; Törmälä, Pertti

    2002-01-01

    The aim of this study was to characterize the mechanical properties and in vitro degradation of bioresorbable knitted stents. Each stent was knitted using a single self-reinforced fibre made out of either PLLA or 96L/4D PLA or 80L/20G PLGA. The mechanical and physical properties of the fibres and stents were measured before and after gamma sterilization, as well as during in vitro degradation. The mechanical properties of the knitted stents made out of bioresorbable fibres were similar to those of commercially available metallic stents. The knitting geometry (loop height) had a marked effect on the mechanical properties of the stents. The rate of in vitro degradation in mechanical and physical properties for the PLLA and 96L/4D PLA stents was similar and significantly lower than that of the 80L/20G PLGA stents. The 80L/20G PLGA stents lost about 35% of their initial weight at 11 weeks. At this time, they had lost all their compression resistance strength. These data can be used as a guideline in planning further studies in vivo. PMID:12555898

  10. Thermo-mechanical behavior of stainless steel knitted structures

    NASA Astrophysics Data System (ADS)

    Hamdani, Syed Talha Ali; Fernando, Anura; Maqsood, Muhammad

    2016-09-01

    Heating fabric is an advanced textile material that is extensively researched by the industrialists and the scientists alike. Ability to create highly flexible and drapeable heating fabrics has many applications in everyday life. This paper presents a study conducted on the comparison of heatability of knitted fabric made of stainless steel yarn. The purpose of the study is to find a suitable material for protective clothing against cold environments. In the current research the ampacity of stainless steel yarn is observed in order to prevent the overheating of the heating fabrics. The behavior of the knitted structure is studied for different levels of supply voltage. Infrared temperature sensing is used to measure the heat generated from the fabrics in order to measure the temperature of the fabrics without physical contact. It is concluded that interlock structure is one of the most suited structures for knitted heating fabrics. As learnt through this research, fabrics made of stainless steel yarn are capable of producing a higher level of heating compared to that of knitted fabric made using silver coated polymeric yarn at the same supply voltage.

  11. Silk Fibroin under Osmotic Stress

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun; Strey, Helmut H.; Gido, Samuel P.

    2003-03-01

    The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. Controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules get pressurized to align together to form a water-soluble crystalline mesophase (Silk-I), and then gradually become anti-parallel b-sheet structure (Silk-II) at higher osmotic pressure. This behavior becomes more sensitive as the salt concentration decreases. A partial ternary phase diagram of Water-Silk fibroin-LiBr was constructed based on the results. This phase diagram can be utilized to help design a new route for wet spinning of re-generated silk fibroin. Precise control of compositions and corresponding crystalline structure of a silk fibroin solution may enable us to simulate the natural Bombyx mori silkworm spinning process.

  12. Recombinant DNA production of spider silk proteins

    PubMed Central

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-01-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078

  13. Anterior Cruciate Ligament Reconstruction in a Rabbit Model Using Silk-Collagen Scaffold and Comparison with Autograft

    PubMed Central

    Bi, Fanggang; Shi, Zhongli; Liu, An; Guo, Peng; Yan, Shigui

    2015-01-01

    The objective of the present study was to perform an in vivo assessment of a novel silk-collagen scaffold for anterior cruciate ligament (ACL) reconstruction. First, a silk-collagen scaffold was fabricated by combining sericin-extracted knitted silk fibroin mesh and type I collagen to mimic the components of the ligament. Scaffolds were electron-beam sterilized and rolled up to replace the ACL in 20 rabbits in the scaffold group, and autologous semitendinosus tendons were used to reconstruct the ACL in the autograft control group. At 4 and 16 weeks after surgery, grafts were retrieved and analyzed for neoligament regeneration and tendon-bone healing. To evaluate neoligament regeneration, H&E and immunohistochemical staining was performed, and to assess tendon-bone healing, micro-CT, biomechanical test, H&E and Russell-Movat pentachrome staining were performed. Cell infiltration increased over time in the scaffold group, and abundant fibroblast-like cells were found in the core of the scaffold graft at 16 weeks postoperatively. Tenascin-C was strongly positive in newly regenerated tissue at 4 and 16 weeks postoperatively in the scaffold group, similar to observations in the autograft group. Compared with the autograft group, tendon-bone healing was better in the scaffold group with trabecular bone growth into the scaffold. The results indicate that the silk-collagen scaffold has considerable potential for clinical application. PMID:25938408

  14. Effects of liquid ammonia treatment on the physical properties of knit fabric

    NASA Astrophysics Data System (ADS)

    Lee, I. Y.; Kim, S. D.; Hwang, C. S.; Kim, S. R.; Park, S. W.

    2016-07-01

    The cellulosic knit fabric must be treated by NaOH solution in silket process to modify dyeability, luster, physical property, etc. But the silket treated knit fabric has a stiff touch, and must be treated with much of silicone softener. But it has bad durability of laundry. And the silket process has a problem that must discharge a lot of alkaline wastewater. In case of woven fabrics, as an alternative to silket process, liquid ammonia process was developed and this process is eco-friendly because the used ammonia is recovered by 98%. But the knit fabrics are not applicable to the conventional liquid ammonia process because they have selvedge curling problem and are very sensitive to tension. Recently, Korea High Tech Textile Research Institute(Korea) and Lafer SPA(Italy) worked together to develop the new liquid ammonia process for knit fabrics. In the present study, the physical properties of knit fabric after the newly-developed liquid ammonia treatment were investigated. The basic physical properties of knit fabric were measured using the Kawabata evaluation system. In addition, the dyeability, dimensional stability, eco-friendliness were investigated. The results showed that liquid ammonia treatment gave improved physical properties, which can be attributed to fast and uniform swelling, to knit fabric and resulted in a dimensional stability. The knit fabric treated in liquid ammonia showed a darker colour and unique appearance. Above all, the knit fabric treated in liquid ammonia had softer touch and superior gloss than the knit fabric of silket process. The new liquid ammonia process for knit fabrics will become the highest quality standard for knits and will be considered the preferred finish also thanks to eco-friendliness.

  15. Carbon nanotubes on a spider silk scaffold

    PubMed Central

    Steven, Eden; Saleh, Wasan R.; Lebedev, Victor; Acquah, Steve F. A.; Laukhin, Vladimir; Alamo, Rufina G.; Brooks, James S.

    2013-01-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations. PMID:24022336

  16. Carbon nanotubes on a spider silk scaffold.

    PubMed

    Steven, Eden; Saleh, Wasan R; Lebedev, Victor; Acquah, Steve F A; Laukhin, Vladimir; Alamo, Rufina G; Brooks, James S

    2013-01-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.

  17. Carbon nanotubes on a spider silk scaffold

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Saleh, Wasan R.; Lebedev, Victor; Acquah, Steve F. A.; Laukhin, Vladimir; Alamo, Rufina G.; Brooks, James S.

    2013-09-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.

  18. Cell culture's spider silk road.

    PubMed

    Perkel, Jeffrey

    2014-06-01

    A number of synthetic and natural materials have been tried in cell culture and tissue engineering applications in recent years. Now Jeffrey Perkel takes a look at one new culture component that might surprise you-spider silk.

  19. A new route for silk

    NASA Astrophysics Data System (ADS)

    Omenetto, Fiorenzo G.; Kaplan, David L.

    2008-11-01

    Famous for its use in clothing since early times, silk is now finding a new application as a useful biocompatible material in photonic devices. Thin films, diffraction gratings and organic photonic crystals are just a few of the exciting possibilities.

  20. Cell culture's spider silk road.

    PubMed

    Perkel, Jeffrey

    2014-06-01

    A number of synthetic and natural materials have been tried in cell culture and tissue engineering applications in recent years. Now Jeffrey Perkel takes a look at one new culture component that might surprise you-spider silk. PMID:24924388

  1. Mechanical Improvements to Reinforced Porous Silk Scaffolds

    PubMed Central

    Gil, Eun Seok; Kluge, Jonathan A.; Rockwood, Danielle N.; Rajkhowa, Rangam; Wang, Lijing; Wang, Xungai; Kaplan, David L

    2012-01-01

    Load bearing porous biodegradable scaffolds are required to engineer functional tissues such as bone. Mechanical improvements to porogen leached scaffolds prepared from silk proteins were systematically studied through the addition of silk particles in combination with silk solution concentration, exploiting interfacial compatibility between the two components. Solvent solutions of silk up to 32 w/v% were successfully prepared in hexafluoroisopropanaol (HFIP) for the study. The mechanical properties of the reinforced silk scaffolds correlated to the material density and matched by a power law relationship, independent of the ratio of silk particles to matrix. These results were similar to the relationships previously shown for cancellous bone. The mechanism behind the increased mechanical properties was a densification effect, and not the effect of including stiffer silk particles into the softer silk continuous matrix. A continuous interface between the silk matrix and the silk particles, as well as homogeneous distribution of the silk particles within the matrix were observed. Furthermore, we note that the roughness of the pore walls was controllable by varying the ratio of particles matrix, providing a route to control topography. The rate of proteolytic hydrolysis of the scaffolds decreased with increase in mass of silk used in the matrix and with increasing silk particle content. PMID:21793193

  2. Phase behavior and hydration of silk fibroin.

    PubMed

    Sohn, Sungkyun; Strey, Helmut H; Gido, Samuel P

    2004-01-01

    The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. By controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules are crowded together to form silk I structure and then with further increase in osmotic pressure become an antiparallel beta-sheet structure, silk II. A partial ternary phase diagram of water-silk fibroin-LiBr was constructed based on the results. The results provide quantitative evidence that the silk I structure must contain water of hydration. The enhanced control over structure and phase behavior using osmotic stress, as embodied in the phase diagram, could potentially be utilized to design a new route for water-based wet spinning of regenerated silk fibroin.

  3. Optically probing torsional superelasticity in spider silks

    SciTech Connect

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.

    2013-11-11

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.

  4. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    PubMed

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-10-20

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements.

  5. Characterization and mechanical performance study of silk/PVA cryogels: towards nucleus pulposus tissue engineering.

    PubMed

    Neo, Puay Yong; Shi, Pujiang; Goh, James Cho-Hong; Toh, Siew Lok

    2014-12-01

    Poly (vinyl) alcohol (PVA) cryogels are reported in the literature for application in nucleus pulposus (NP) replacement strategies. However, these studies are mainly limited to acellular approaches-in part due to the high hydrophilicity of PVA gels that renders cellular adhesion difficult. Silk is a versatile biomaterial with excellent biocompatibility. We hypothesize that the incorporation of silk with PVA will (i) improve the cell-hosting abilities of PVA cryogels and (ii) allow better tailoring of physical properties of the composite cryogels for an NP tissue engineering purpose. 5% (wt/vol) PVA is blended with 5% silk fibroin (wt/vol) to investigate the effect of silk : PVA ratios on the cryogels' physical properties. Results show that the addition of silk results in composite cryogels that are able to swell to more than 10 times its original dry weight and rehydrate to at least 70% of its original wet weight. Adding at least 20% silk significantly improves surface hydrophobicity and is correlated with an improvement in cell-hosting abilities. Cell-seeded cryogels also display an increment in compressive modulus and hoop stress values. In all, adding silk to PVA creates cryogels that can be potentially used as NP replacements. PMID:25329452

  6. Reproducing natural spider silks' copolymer behavior in synthetic silk mimics.

    PubMed

    An, Bo; Jenkins, Janelle E; Sampath, Sujatha; Holland, Gregory P; Hinman, Mike; Yarger, Jeffery L; Lewis, Randolph

    2012-12-10

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia , indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure. PMID:23110450

  7. Reproducing Natural Spider Silks' Copolymer Behavior in Synthetic Silk Mimics

    SciTech Connect

    An, Bo; Jenkins, Janelle E; Sampath, Sujatha; Holland, Gregory P; Hinman, Mike; Yarger, Jeffery L; Lewis, Randolph

    2012-10-30

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure.

  8. The natural silk spinning process. A nucleation-dependent aggregation mechanism?

    PubMed

    Li, G; Zhou, P; Shao, Z; Xie, X; Chen, X; Wang, H; Chunyu, L; Yu, T

    2001-12-01

    The spinning mechanism of natural silk has been an open issue. In this study, both the conformation transition from random coil to beta sheet and the beta sheet aggregation growth of silk fibroin are identified in the B. mori regenerated silk fibroin aqueous solution by circular dichroism (CD) spectroscopy. A nucleation-dependent aggregation mechanism, similar to that found in prion protein, amyloid beta (Abeta) protein, and alpha-synuclein protein with the conformation transition from a soluble protein to a neurotoxic, insoluble beta sheet containing aggregate, is a novel suggestion for the silk spinning process. We present evidence that two steps are involved in this mechanism: (a) nucleation, a rate-limiting step involving the conversion of the soluble random coil to insoluble beta sheet and subsequently a series of thermodynamically unfavorable association of beta sheet unit, i.e. the formation of a nucleus or seed; (b) once the nucleus forms, further growth of the beta sheet unit becomes thermodynamically favorable, resulting a rapid extension of beta sheet aggregation. The aggregation growth follows a first order kinetic process with respect to the random coil fibroin concentration. The increase of temperature accelerates the beta sheet aggregation growth if the beta sheet seed is introduced into the random coil fibroin solution. This work enhances our understanding of the natural silk spinning process in vivo.

  9. Social Interactions and Learning in an Informal Setting: An Ethnography of Communication in a Knitting Circle.

    ERIC Educational Resources Information Center

    Jacobson, Anna

    This paper describes a study of a speech community, a group of approximately 10 women, aged 25 to 65, who met at least 3 times a month to knit, drink coffee, and chat. The paper notes that knitting circles have survived through history because they serve a social function that surpasses historical events--they are communities that co-construct the…

  10. Non-destructive X-ray examination of weft knitted wire structures

    NASA Astrophysics Data System (ADS)

    Obermann, M.; Ellouz, M.; Aumann, S.; Martens, Y.; Bartelt, P.; Klöcker, M.; Kordisch, T.; Ehrmann, A.; Weber, M. O.

    2016-07-01

    Conductive yarns or wires are often integrated in smart textiles to enable data or energy transmission. In woven fabrics, these conductive parts are fixed at defined positions and thus protected from external loads. Knitted fabrics, however, have relatively loose structures, resulting in higher impacts of possible mechanical forces on the individual yarns. Hence, metallic wires with smaller diameters in particular are prone to break when integrated in knitted fabrics. In a recent project, wires of various materials including copper, silver and nickel with diameters varying between 0.05 mm and 0.23 mm were knitted in combination with textile yarns. Hand flat knitting machines of appropriate gauges were used to produce different structures. On these samples, non-destructive examinations, using an industrial X-ray system Seifert x|cube (225 kV) equipped with a minifocus X-ray tube, were carried out, directly after knitting as well as after different mechanical treatments (tensile, burst, and washing tests). In this way, structural changes of the stitch geometry could be visualized before failure. In this paper, the loop geometries in the knitted fabrics are depicted depending on knitted structures, wire properties and the applied mechanical load. Consequently, it is shown which metallic wires and yarns are most suitable to be integrated into knitted smart textiles.

  11. Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers.

    PubMed

    Seyedin, Shayan; Razal, Joselito M; Innis, Peter C; Jeiranikhameneh, Ali; Beirne, Stephen; Wallace, Gordon G

    2015-09-30

    A scaled-up fiber wet-spinning production of electrically conductive and highly stretchable PU/PEDOT:PSS fibers is demonstrated for the first time. The PU/PEDOT:PSS fibers possess the mechanical properties appropriate for knitting various textile structures. The knitted textiles exhibit strain sensing properties that were dependent upon the number of PU/PEDOT:PSS fibers used in knitting. The knitted textiles show sensitivity (as measured by the gauge factor) that increases with the number of PU/PEDOT:PSS fibers deployed. A highly stable sensor response was observed when four PU/PEDOT:PSS fibers were co-knitted with a commercial Spandex yarn. The knitted textile sensor can distinguish different magnitudes of applied strain with cyclically repeatable sensor responses at applied strains of up to 160%. When used in conjunction with a commercial wireless transmitter, the knitted textile responded well to the magnitude of bending deformations, demonstrating potential for remote strain sensing applications. The feasibility of an all-polymeric knitted textile wearable strain sensor was demonstrated in a knee sleeve prototype with application in personal training and rehabilitation following injury. PMID:26334190

  12. 40 CFR 410.50 - Applicability; description of the knit fabric finishing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fabric finishing subcategory. 410.50 Section 410.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.50 Applicability; description of the knit fabric finishing subcategory....

  13. Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers.

    PubMed

    Seyedin, Shayan; Razal, Joselito M; Innis, Peter C; Jeiranikhameneh, Ali; Beirne, Stephen; Wallace, Gordon G

    2015-09-30

    A scaled-up fiber wet-spinning production of electrically conductive and highly stretchable PU/PEDOT:PSS fibers is demonstrated for the first time. The PU/PEDOT:PSS fibers possess the mechanical properties appropriate for knitting various textile structures. The knitted textiles exhibit strain sensing properties that were dependent upon the number of PU/PEDOT:PSS fibers used in knitting. The knitted textiles show sensitivity (as measured by the gauge factor) that increases with the number of PU/PEDOT:PSS fibers deployed. A highly stable sensor response was observed when four PU/PEDOT:PSS fibers were co-knitted with a commercial Spandex yarn. The knitted textile sensor can distinguish different magnitudes of applied strain with cyclically repeatable sensor responses at applied strains of up to 160%. When used in conjunction with a commercial wireless transmitter, the knitted textile responded well to the magnitude of bending deformations, demonstrating potential for remote strain sensing applications. The feasibility of an all-polymeric knitted textile wearable strain sensor was demonstrated in a knee sleeve prototype with application in personal training and rehabilitation following injury.

  14. Effect of biopolishing and UV absorber treatment on the UV protection properties of cotton knitted fabrics.

    PubMed

    Kan, C W; Au, C H

    2014-01-30

    Cotton knitted fabrics were manufactured with gauge number 20 G by circular knitting machine with conventional ring spun yarn and torque-free ring spun yarn. Torque-free ring spinning is a new spinning technology that produces yarns with low twist and balanced torque. This study examined whether the impact of biopolishing and UV absorber treatment on UV protection properties on cotton knitted fabric made of torque-free ring spun yarn is different. Biopolishing agent and UV absorber were used to treat the cotton knitted fabrics after scouring and bleaching. The UV protection properties were measured in terms of UV protection factor (UPF) and UV ray transmittance. Experimental results revealed that knitted fabric made from torque-free ring spun has better UPF than knitted fabric made from conventional ring spun yarn in untreated and biopolished states. However, knitted fabric made from conventional ring spun yarn has better UPF than knitted fabric made from torque-free ring spun after UV absorber treatment and combined UV absorber and biopolishing treatment. PMID:24299797

  15. Ovary Apical Abortion under Water Deficit Is Caused by Changes in Sequential Development of Ovaries and in Silk Growth Rate in Maize.

    PubMed

    Oury, Vincent; Tardieu, François; Turc, Olivier

    2016-06-01

    Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit.

  16. Ovary Apical Abortion under Water Deficit Is Caused by Changes in Sequential Development of Ovaries and in Silk Growth Rate in Maize1[OPEN

    PubMed Central

    Tardieu, François

    2016-01-01

    Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit. PMID:26598464

  17. Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly.

    PubMed

    Meirovitch, Sigal; Shtein, Zvi; Ben-Shalom, Tal; Lapidot, Shaul; Tamburu, Carmen; Hu, Xiao; Kluge, Jonathan A; Raviv, Uri; Kaplan, David L; Shoseyov, Oded

    2016-01-01

    The fabrication of cellulose-spider silk bio-nanocomposites comprised of cellulose nanocrystals (CNCs) and recombinant spider silk protein fused to a cellulose binding domain (CBD) is described. Silk-CBD successfully binds cellulose, and unlike recombinant silk alone, silk-CBD self-assembles into microfibrils even in the absence of CNCs. Silk-CBD-CNC composite sponges and films show changes in internal structure and CNC alignment related to the addition of silk-CBD. The silk-CBD sponges exhibit improved thermal and structural characteristics in comparison to control recombinant spider silk sponges. The glass transition temperature (Tg) of the silk-CBD sponge was higher than the control silk sponge and similar to native dragline spider silk fibers. Gel filtration analysis, dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (TEM) indicated that silk-CBD, but not the recombinant silk control, formed a nematic liquid crystalline phase similar to that observed in native spider silk during the silk spinning process. Silk-CBD microfibrils spontaneously formed in solution upon ultrasonication. We suggest a model for silk-CBD assembly that implicates CBD in the central role of driving the dimerization of spider silk monomers, a process essential to the molecular assembly of spider-silk nanofibers and silk-CNC composites. PMID:27649169

  18. Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly

    PubMed Central

    Meirovitch, Sigal; Shtein, Zvi; Ben-Shalom, Tal; Lapidot, Shaul; Tamburu, Carmen; Hu, Xiao; Kluge, Jonathan A.; Raviv, Uri; Kaplan, David L.; Shoseyov, Oded

    2016-01-01

    The fabrication of cellulose-spider silk bio-nanocomposites comprised of cellulose nanocrystals (CNCs) and recombinant spider silk protein fused to a cellulose binding domain (CBD) is described. Silk-CBD successfully binds cellulose, and unlike recombinant silk alone, silk-CBD self-assembles into microfibrils even in the absence of CNCs. Silk-CBD-CNC composite sponges and films show changes in internal structure and CNC alignment related to the addition of silk-CBD. The silk-CBD sponges exhibit improved thermal and structural characteristics in comparison to control recombinant spider silk sponges. The glass transition temperature (Tg) of the silk-CBD sponge was higher than the control silk sponge and similar to native dragline spider silk fibers. Gel filtration analysis, dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (TEM) indicated that silk-CBD, but not the recombinant silk control, formed a nematic liquid crystalline phase similar to that observed in native spider silk during the silk spinning process. Silk-CBD microfibrils spontaneously formed in solution upon ultrasonication. We suggest a model for silk-CBD assembly that implicates CBD in the central role of driving the dimerization of spider silk monomers, a process essential to the molecular assembly of spider-silk nanofibers and silk-CNC composites. PMID:27649169

  19. Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly.

    PubMed

    Meirovitch, Sigal; Shtein, Zvi; Ben-Shalom, Tal; Lapidot, Shaul; Tamburu, Carmen; Hu, Xiao; Kluge, Jonathan A; Raviv, Uri; Kaplan, David L; Shoseyov, Oded

    2016-09-18

    The fabrication of cellulose-spider silk bio-nanocomposites comprised of cellulose nanocrystals (CNCs) and recombinant spider silk protein fused to a cellulose binding domain (CBD) is described. Silk-CBD successfully binds cellulose, and unlike recombinant silk alone, silk-CBD self-assembles into microfibrils even in the absence of CNCs. Silk-CBD-CNC composite sponges and films show changes in internal structure and CNC alignment related to the addition of silk-CBD. The silk-CBD sponges exhibit improved thermal and structural characteristics in comparison to control recombinant spider silk sponges. The glass transition temperature (Tg) of the silk-CBD sponge was higher than the control silk sponge and similar to native dragline spider silk fibers. Gel filtration analysis, dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (TEM) indicated that silk-CBD, but not the recombinant silk control, formed a nematic liquid crystalline phase similar to that observed in native spider silk during the silk spinning process. Silk-CBD microfibrils spontaneously formed in solution upon ultrasonication. We suggest a model for silk-CBD assembly that implicates CBD in the central role of driving the dimerization of spider silk monomers, a process essential to the molecular assembly of spider-silk nanofibers and silk-CNC composites.

  20. Biocompatible silk step-index optical waveguides

    PubMed Central

    Applegate, Matthew B.; Perotto, Giovanni; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  1. Modifying the Mechanical Properties of Silk Fiber by Genetically Disrupting the Ionic Environment for Silk Formation.

    PubMed

    Wang, Xin; Zhao, Ping; Li, Yi; Yi, Qiying; Ma, Sanyuan; Xie, Kang; Chen, Huifang; Xia, Qingyou

    2015-10-12

    Silks are widely used biomaterials, but there are still weaknesses in their mechanical properties. Here we report a method for improving the silk fiber mechanical properties by genetic disruption of the ionic environment for silk fiber formation. An anterior silk gland (ASG) specific promoter was identified and used for overexpressing ion-transporting protein in the ASG of silkworm. After isolation of the transgenic silkworms, we found that the metal ion content, conformation and mechanical properties of transgenic silk fibers changed accordingly. Notably, overexpressing endoplasmic reticulum Ca2+-ATPase in ASG decreased the calcium content of silks. As a consequence, silk fibers had more α-helix and β-sheet conformations, and their tenacity and extension increased significantly. These findings represent the in vivo demonstration of a correlation between metal ion content in the spinning duct and the mechanical properties of silk fibers, thus providing a novel method for modifying silk fiber properties. PMID:26302212

  2. Modifying the Mechanical Properties of Silk Fiber by Genetically Disrupting the Ionic Environment for Silk Formation.

    PubMed

    Wang, Xin; Zhao, Ping; Li, Yi; Yi, Qiying; Ma, Sanyuan; Xie, Kang; Chen, Huifang; Xia, Qingyou

    2015-10-12

    Silks are widely used biomaterials, but there are still weaknesses in their mechanical properties. Here we report a method for improving the silk fiber mechanical properties by genetic disruption of the ionic environment for silk fiber formation. An anterior silk gland (ASG) specific promoter was identified and used for overexpressing ion-transporting protein in the ASG of silkworm. After isolation of the transgenic silkworms, we found that the metal ion content, conformation and mechanical properties of transgenic silk fibers changed accordingly. Notably, overexpressing endoplasmic reticulum Ca2+-ATPase in ASG decreased the calcium content of silks. As a consequence, silk fibers had more α-helix and β-sheet conformations, and their tenacity and extension increased significantly. These findings represent the in vivo demonstration of a correlation between metal ion content in the spinning duct and the mechanical properties of silk fibers, thus providing a novel method for modifying silk fiber properties.

  3. Proteomic Evidence for Components of Spider Silk Synthesis from Black Widow Silk Glands and Fibers.

    PubMed

    Chaw, Ro Crystal; Correa-Garhwal, Sandra M; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y

    2015-10-01

    Spider silk research has largely focused on spidroins, proteins that are the primary components of spider silk fibers. Although a number of spidroins have been characterized, other types of proteins associated with silk synthesis are virtually unknown. Previous analyses of tissue-specific RNA-seq libraries identified 647 predicted genes that were differentially expressed in silk glands of the Western black widow, Latrodectus hesperus. Only ∼5% of these silk-gland specific transcripts (SSTs) encode spidroins; although the remaining predicted genes presumably encode other proteins associated with silk production, this is mostly unverified. Here, we used proteomic analysis of multiple silk glands and dragline silk fiber to investigate the translation of the differentially expressed genes. We find 48 proteins encoded by the differentially expressed transcripts in L. hesperus major ampullate, minor ampullate, and tubuliform silk glands and detect 17 SST encoded proteins in major ampullate silk fibers. The observed proteins include known silk-related proteins, but most are uncharacterized, with no annotation. These unannotated proteins likely include novel silk-associated proteins. Major and minor ampullate glands have the highest overlap of identified proteins, consistent with their shared, distinctive ampullate shape and the overlapping functions of major and minor ampullate silks. Our study substantiates and prioritizes predictions from differential expression analysis of spider silk gland transcriptomes.

  4. Proteomic Evidence for Components of Spider Silk Synthesis from Black Widow Silk Glands and Fibers

    PubMed Central

    2015-01-01

    Spider silk research has largely focused on spidroins, proteins that are the primary components of spider silk fibers. Although a number of spidroins have been characterized, other types of proteins associated with silk synthesis are virtually unknown. Previous analyses of tissue-specific RNA-seq libraries identified 647 predicted genes that were differentially expressed in silk glands of the Western black widow, Latrodectus hesperus. Only ∼5% of these silk-gland specific transcripts (SSTs) encode spidroins; although the remaining predicted genes presumably encode other proteins associated with silk production, this is mostly unverified. Here, we used proteomic analysis of multiple silk glands and dragline silk fiber to investigate the translation of the differentially expressed genes. We find 48 proteins encoded by the differentially expressed transcripts in L. hesperus major ampullate, minor ampullate, and tubuliform silk glands and detect 17 SST encoded proteins in major ampullate silk fibers. The observed proteins include known silk-related proteins, but most are uncharacterized, with no annotation. These unannotated proteins likely include novel silk-associated proteins. Major and minor ampullate glands have the highest overlap of identified proteins, consistent with their shared, distinctive ampullate shape and the overlapping functions of major and minor ampullate silks. Our study substantiates and prioritizes predictions from differential expression analysis of spider silk gland transcriptomes. PMID:26302244

  5. Silks produced by insect labial glands

    PubMed Central

    Sutherland, Tara

    2008-01-01

    Insect silks are secreted from diverse gland types; this chapter deals with the silks produced by labial glands of Holometabola (insects with pupa in their life cycle). Labial silk glands are composed of a few tens or hundreds of large polyploid cells that secrete polymerizing proteins which are stored in the gland lumen as a semi-liquid gel. Polymerization is based on weak molecular interactions between repetitive amino acid motifs present in one or more silk proteins; cross-linking by disulfide bonds may be important in the silks spun under water. The mechanism of long-term storage of the silk dope inside the glands and its conversion into the silk fiber during spinning is not fully understood. The conversion occurs within seconds at ambient temperature and pressure, under minimal drawing force and in some cases under water. The silk filament is largely built of proteins called fibroins and in Lepidoptera and Trichoptera coated by glue-type proteins known as sericins. Silks often contain small amounts of additional proteins of poorly known function. The silk components controlling dope storage and filament formation seem to be conserved at the level of orders, while the nature of polymerizing motifs in the fibroins, which determine the physical properties of silk, differ at the level of family and even genus. Most silks are based on fibroin β-sheets interrupted with other structures such as α-helices but the silk proteins of certain sawflies have predominantly a collagen-like or polyglycine II arrangement and the silks of social Hymenoptera are formed from proteins in a coiled coil arrangement. PMID:19221523

  6. Energy harvesting “3-D knitted spacer” based piezoelectric textiles

    NASA Astrophysics Data System (ADS)

    Anand, S.; Soin, N.; Shah, T. H.; Siores, E.

    2016-07-01

    The piezoelectric effect in Poly(vinylidene fluoride), PVDF, was discovered over four decades ago and since then, significant work has been carried out aiming at the production of high p-phase fibres and their integration into fabric structures for energy harvesting. However, little work has been done in the area of production of “true piezoelectric fabric structures” based on flexible polymeric materials such as PVDF. In this work, we demonstrate “3-D knitted spacer” technology based all-fibre piezoelectric fabrics as power generators and energy harvesters. The knitted single-structure piezoelectric generator consists of high p-phase (~80%) piezoelectric PVDF monofilaments as the spacer yarn interconnected between silver (Ag) coated polyamide multifilament yarn layers acting as the top and bottom electrodes. The novel and unique textile structure provides an output power density in the range of 1.105.10 gWcm-2 at applied impact pressures in the range of 0.02-0.10 MPa, thus providing significantly higher power outputs and efficiencies over the existing 2-D woven and nonwoven piezoelectric structures. The high energy efficiency, mechanical durability and comfort of the soft, flexible and all-fibre based power generator is highly attractive for a variety of potential applications such as wearable electronic systems and energy harvesters charged from ambient environment or by human movement.

  7. Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm

    NASA Astrophysics Data System (ADS)

    Junghans, F.; Morawietz, M.; Conrad, U.; Scheibel, T.; Heilmann, A.; Spohn, U.

    2006-02-01

    Layers of recombinant spider silks and native silks from silk worms were prepared by spin-coating and casting of various solutions. FT-IR spectra were recorded to investigate the influence of the different mechanical stress occurring during the preparation of the silk layers. The solubility of the recombinant spider silk proteins SO1-ELP, C16, AQ24NR3, and of the silk fibroin from Bombyx mori were investigated in hexafluorisopropanol, ionic liquids and concentrated salt solutions. The morphology and thickness of the layers were determined by Atomic Force Microscopy (AFM) or with a profilometer. The mechanical behaviour was investigated by acoustic impedance analysis by using a quartz crystal microbalance (QCMB) as well as by microindentation. The density of silk layers (d<300 nm) was determined based on AFM and QCMB measurements. At silk layers thicker than 300 nm significant changes of the half-band-half width can be correlated with increasing energy dissipation. Microhardness measurements demonstrate that recombinant spider silk and sericine-free Bombyx mori silk layers achieve higher elastic penetration modules EEP and Martens hardness values HM than those of polyethylenterephthalate (PET) and polyetherimide (PEI) foils.

  8. Judaism and the Silk Route.

    ERIC Educational Resources Information Center

    Foltz, Richard

    1998-01-01

    Demonstrates that the Judeans traveled along the Ancient Silk Route. Discusses the Iranian influence on the formation of Jewish religious ideas. Considers the development of Jewish trade networks, focusing on the Radanites (Jewish traders), the Jewish presence in the Far East, and the survival of Judaism in central Asia. (CMK)

  9. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    PubMed

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines. PMID:26418537

  10. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    PubMed

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  11. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities.

    PubMed

    Sangkert, Supaporn; Meesane, Jirut; Kamonmattayakul, Suttatip; Chai, Wen Lin

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  12. Lithium-free processing of silk fibroin.

    PubMed

    Zheng, Zhaozhu; Guo, Shaozhe; Liu, Yawen; Wu, Jianbing; Li, Gang; Liu, Meng; Wang, Xiaoqin; Kaplan, David

    2016-09-01

    Silk fibroin protein was purified from Bombyx mori silkworm cocoons using a novel dialysis strategy to avoid fibroin aggregation and pre-mature formation of β-sheets. The degummed silk fibers were dissolved in Ajisawa's reagent, a mixture of CaCl2-EtOH-H2O, that is less expensive than lithium bromide. The dissolved solutions were dialyzed against either water or urea solution with a stepwise decrease in concentration. When the steps of 4 M-2 M-1 M-0 M urea (referred to as silk-TS-4210) were adopted, the purified silk fibroin had smaller aggregates (<10 nm), similar average molecular weight (225 kDa) and a lower content of β-sheet (∼15%) compared to the sample processing methods (silk-TS-210, 10, 0) studied here. This outcome was close to the fibroin purified by the lithium bromide (silk-Li-0) method. Polyvinyl alcohol-emulsified silk microspheres generated using the purified solution had a similar size distribution and morphology when compared to lithium bromide dissolved solutions, while glycerol-blended silk films showed different mechanical properties. The silk-Li-0 generated films with the highest breaking strength (5.7 MPa ± 0.3) while the silk-TS-4210 had the highest extension at break (215.1% ± 12.5). The films prepared from silk-TS-4210 were cytocompatible to support the adhesion and proliferation of human mesenchymal stem cells, with improvements compared to the other samples likely due to the porous morphology of these films. PMID:27298185

  13. Reconstruction of a hard connective tissue utilizing a pressed silk sheet and type-I collagen as the scaffold for fibroblasts.

    PubMed

    Takezawa, Toshiaki; Ozaki, Katsuyuki; Takabayashi, Chiyuki

    2007-06-01

    A pressed silk sheet is a new biomaterial composed of a network of numerous cocoon filaments and having excellent mechanical strength and shape stability compared to a cotton-gauze sheet. To reconstruct a hard connective tissue using the silk sheet and type-I collagen as the scaffold for fibroblasts, three different three-dimensional floating culture systems were designed. "On sheet" system: fibroblasts were seeded on the silk sheet coated with collagen and the cell-attached sheet was cultured. "In gel" system: fibroblasts and the silk sheet were co-embedded in a collagen gel and the gel was cultured. "On vitrigel" system: fibroblasts were seeded on both sides of a collagen vitrigel involving the silk sheet and the vitrigel was cultured. The fibroblasts in all culture systems grew and formed disk-shaped connective tissue models involving the silk sheet by 14 days of culture. The "on sheet" and "on vitrigel" models retained a maximum elastic load of about 23 kgf and an ultimate tensile load of about 3.6 kgf, which were almost the same as for the individual silk sheet. However, the "in gel" system showed a low value for the tensile load. Cell damage following application of mechanical stress was lowest in the "on vitrigel" system. These data demonstrated the advantage of the "on vitrigel" system in reconstructing hard connective tissues. Such a novel culture method would contribute to a regenerative medicine for the failure of ligaments, tendons, and other connective tissues.

  14. Design methodology of the strength properties of medical knitted meshes

    NASA Astrophysics Data System (ADS)

    Mikołajczyk, Z.; Walkowska, A.

    2016-07-01

    One of the most important utility properties of medical knitted meshes intended for hernia and urological treatment is their bidirectional strength along the courses and wales. The value of this parameter, expected by the manufacturers and surgeons, is estimated at 100 N per 5 cm of the sample width. The most frequently, these meshes are produced on the basis of single- or double-guide stitches. They are made of polypropylene and polyester monofilament yarns with the diameter in the range from 0.6 to 1.2 mm, characterized by a high medical purity. The aim of the study was to develop the design methodology of meshes strength based on the geometrical construction of the stitch and strength of yarn. In the environment of the ProCAD warpknit 5 software the simulated stretching process of meshes together with an analysis of their geometry changes was carried out. Simulations were made for four selected representative stitches. Both on a built, unique measuring position and on the tensile testing machine the real parameters of the loops geometry of meshes were measured. Model of mechanical stretching of warp-knitted meshes along the courses and wales was developed. The thesis argument was made, that the force that breaks the loop of warp-knitted fabric is the lowest value of breaking forces of loop link yarns or yarns that create straight sections of loop. This thesis was associate with the theory of strength that uses the “the weakest link concept”. Experimental verification of model was carried out for the basic structure of the single-guide mesh. It has been shown that the real, relative strength of the mesh related to one course is equal to the strength of the yarn breakage in a loop, while the strength along the wales is close to breaking strength of a single yarn. In relation to the specific construction of the medical mesh, based on the knowledge of the density of the loops structure, the a-jour mesh geometry and the yarns strength, it is possible, with high

  15. Sunlight-Induced Coloration of Silk

    NASA Astrophysics Data System (ADS)

    Yao, Ya; Tang, Bin; Chen, Wu; Sun, Lu; Wang, Xungai

    2016-06-01

    Silk fabrics were colored by gold nanoparticles (NPs) that were in situ synthesized through the induction of sunlight. Owing to the localized surface plasmon resonance (LSPR) of gold NPs, the treated silk fabrics presented vivid colors. The photo-induced synthesis of gold NPs was also realized on wet silk through adsorbing gold ions out of solution, which provides a water-saving coloration method for textiles. Besides, the patterning of silk was feasible using this simple sunlight-induced coloration approach. The key factors of coloration including gold ion concentration, pH value, and irradiation time were investigated. Moreover, it was demonstrated that either ultraviolet (UV) light or visible light could induce the generation of gold NPs on silk fabrics. The silk fabrics with gold NPs exhibited high light resistance including great UV-blocking property and excellent fastness to sunlight.

  16. Sunlight-Induced Coloration of Silk.

    PubMed

    Yao, Ya; Tang, Bin; Chen, Wu; Sun, Lu; Wang, Xungai

    2016-12-01

    Silk fabrics were colored by gold nanoparticles (NPs) that were in situ synthesized through the induction of sunlight. Owing to the localized surface plasmon resonance (LSPR) of gold NPs, the treated silk fabrics presented vivid colors. The photo-induced synthesis of gold NPs was also realized on wet silk through adsorbing gold ions out of solution, which provides a water-saving coloration method for textiles. Besides, the patterning of silk was feasible using this simple sunlight-induced coloration approach. The key factors of coloration including gold ion concentration, pH value, and irradiation time were investigated. Moreover, it was demonstrated that either ultraviolet (UV) light or visible light could induce the generation of gold NPs on silk fabrics. The silk fabrics with gold NPs exhibited high light resistance including great UV-blocking property and excellent fastness to sunlight.

  17. Thromboelastometric and platelet responses to silk biomaterials

    PubMed Central

    Kundu, Banani; Schlimp, Christoph J.; Nürnberger, Sylvia; Redl, Heinz; Kundu, S. C.

    2014-01-01

    Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants. The present study, therefore, evaluate the haematocompatibility of silk biomaterials in terms of platelet interaction after exposure to nonmulberry silk of Antheraea mylitta using thromboelastometry (ROTEM). The mulberry silk of Bombyx mori and clinically used Uni-Graft W biomaterial serve as references. Shortened clotting time, clot formation times as well as enhanced clot strength indicate the platelet mediated activation of blood coagulation cascade by tested biomaterials; which is comparable to controls. PMID:24824624

  18. 22. MILL NO. 1, 2nd FLOOR, LIGHT TABLES AND KNITTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. MILL NO. 1, 2nd FLOOR, LIGHT TABLES AND KNITTING MACHINE. LIGHT TABLE USED TO CHECK FOR CLOTH DEFECTS. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  19. Fabrication and Biocompatibility of Electrospun Silk Biocomposites

    PubMed Central

    Wei, Kai; Kim, Byoung-Suhk; Kim, Ick-Soo

    2011-01-01

    Silk fibroin has attracted great interest in tissue engineering because of its outstanding biocompatibility, biodegradability and minimal inflammatory reaction. In this study, two kinds of biocomposites based on regenerated silk fibroin are fabricated by electrospinning and post-treatment processes, respectively. Firstly, regenerated silk fibroin/tetramethoxysilane (TMOS) hybrid nanofibers with high hydrophilicity are prepared, which is superior for fibroblast attachment. The electrospinning process causes adjacent fibers to ‘weld’ at contact points, which can be proved by scanning electron microscope (SEM). The water contact angle of silk/tetramethoxysilane (TMOS) composites shows a sharper decrease than pure regenerated silk fibroin nanofiber, which has a great effect on the early stage of cell attachment behavior. Secondly, a novel tissue engineering scaffold material based on electrospun silk fibroin/nano-hydroxyapatite (nHA) biocomposites is prepared by means of an effective calcium and phosphate (Ca–P) alternate soaking method. nHA is successfully produced on regenerated silk fibroin nanofiber within several min without any pre-treatments. The osteoblastic activities of this novel nanofibrous biocomposites are also investigated by employing osteoblastic-like MC3T3-E1 cell line. The cell functionality such as alkaline phosphatase (ALP) activity is ameliorated on mineralized silk nanofibers. All these results indicate that this silk/nHA biocomposite scaffold material may be a promising biomaterial for bone tissue engineering. PMID:24957869

  20. Development and performance optimization of knitted antibacterial materials using polyester-silver nanocomposite fibres.

    PubMed

    Majumdar, Abhijit; Butola, Bhupendra Singh; Thakur, Sandip

    2015-09-01

    The development and performance optimization of knitted antibacterial materials made from polyester-silver nanocomposite fibres have been attempted in this research. Inherently antibacterial polyester-silver nanocomposite fibres were blended with normal polyester fibres in different weight proportions to prepare yarns. Three parameters, namely blend percentage (wt.%) of nanocomposite fibres, yarn count and knitting machine gauge were varied for producing a large number of knitted samples. The knitted materials were tested for antibacterial activity against Gram-positive bacteria Staphylococcus aureus. Statistical analysis revealed that all the three parameters were significant and the blend percentage of nanocomposite fibre was the most dominant factor influencing the antibacterial activity of knitted materials. The antibacterial activity of the developed materials was found to be extremely durable as there was only about 1% loss even after 25 washes. Linear programming approach was used to optimize the parameters, namely antibacterial activity, air permeability and areal density of knitted materials considering cost minimization as the objective. The properties of validation samples were found to be very close to the targeted values.

  1. Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters.

    PubMed

    Zhang, Pu; Lan, Jing; Wang, Yi; Xiong, Zu Hong; Huang, Cheng Zhi

    2015-01-01

    Silk is an excellent natural material and has been used for a variety of applications. Modification of the pristine silk is usually needed depending on the intended purpose. The technical treatments involved in the modification not only should be easy, rapid, environmentally friendly, and cheap but should also retain the features of the pristine silk. Herein, we demonstrate that luminescent silk and fabric can be produced through nanotechnology. The surface of the natural silk fiber is chemically coated with luminescent gold nanoclusters (AuNCs) composed of tens to hundreds of Au atoms through a redox reaction between the protein-based silk and an Au salt precursor. The luminescent silk coated with AuNCs (called golden silk) possesses good optical properties, including a relatively long wavelength emission, high quantum yields, a long fluorescent lifetime, and photostability. Moreover, golden silk prepared this way has better mechanical properties than pristine silk, is better able to inhibit UV, and has lower toxicity in vitro. This work not only provides an effective strategy for in situ preparation of luminescent metal nanoclusters on a solid substrate but also paves the way for large-scale and industrialized production of novel silk-based materials or fabrics through nanotechnology. PMID:25308521

  2. Effect of silk protein surfactant on silk degumming and its properties.

    PubMed

    Wang, Fei; Cao, Ting-Ting; Zhang, Yu-Qing

    2015-10-01

    The silk protein surfactant (SPS) first used as a silk degumming agent in this study is an amino acid-type anionic surfactant that was synthesized using silk fibroin amino acids and lauroyl chloride. We studied it systematically in comparison with the traditional degumming methods such as sodium carbonate (Na2CO3) and neutral soap (NS). The experimental results showed that the sericin can be completely removed from the silk fibroin fiber after boiling the fibers three times for 30 min and using a bath ratio of 1:80 (g/mL) and a concentration of 0.2% SPS in an aqueous solution. The results of the tensile properties, thermal analysis, and SEM all show that SPS is similar to the NS, far superior to Na2CO3. In short, SPS may be used as an environmentally friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts. PMID:26117747

  3. Effect of silk protein surfactant on silk degumming and its properties.

    PubMed

    Wang, Fei; Cao, Ting-Ting; Zhang, Yu-Qing

    2015-10-01

    The silk protein surfactant (SPS) first used as a silk degumming agent in this study is an amino acid-type anionic surfactant that was synthesized using silk fibroin amino acids and lauroyl chloride. We studied it systematically in comparison with the traditional degumming methods such as sodium carbonate (Na2CO3) and neutral soap (NS). The experimental results showed that the sericin can be completely removed from the silk fibroin fiber after boiling the fibers three times for 30 min and using a bath ratio of 1:80 (g/mL) and a concentration of 0.2% SPS in an aqueous solution. The results of the tensile properties, thermal analysis, and SEM all show that SPS is similar to the NS, far superior to Na2CO3. In short, SPS may be used as an environmentally friendly silk degumming/refining agent in the silk textile industry and in the manufacture of silk floss quilts.

  4. Tunable Silk: Using Microfluidics to Fabricate Silk Fibers with Controllable Properties

    PubMed Central

    Kinahan, Michelle E.; Filippidi, Emmanouela; Köster, Sarah; Hu, Xiao; Evans, Heather M.; Pfohl, Thomas; Kaplan, David L.; Wong, Joyce

    2011-01-01

    Despite widespread use of silk, it remains a significant challenge to fabricate fibers with properties similar to native silk. It has recently been recognized that the key to tuning silk fiber properties lies in controlling internal structure of assembled β-sheets. We report an advance in the precise control of silk fiber formation with control of properties via microfluidic solution spinning. We use an experimental approach combined with modeling to accurately predict and independently tune fiber properties including Young’s modulus and diameter to customize fibers. This is the first reported microfluidic approach capable of fabricating functional fibers with predictable properties and provides new insight into the structural transformations responsible for the unique properties of silk. Unlike bulk processes, our method facilitates the rapid and inexpensive fabrication of fibers from small volumes (50 μL) that can be characterized to investigate sequence-structure-property relationships to optimize recombinant silk technology to match and exceed natural silk properties. PMID:21438624

  5. Silk film biomaterials for ocular surface repair

    NASA Astrophysics Data System (ADS)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  6. Ion Electrodiffusion Governs Silk Electrogelation

    PubMed Central

    Kojic, Nikola; Panzer, Matthew J.; Leisk, Gary G.; Raja, Waseem K.; Kojic, Milos; Kaplan, David L.

    2012-01-01

    Silk electrogelation involves the transition of an aqueous silk fibroin solution to a gel state (E-gel) in the presence of an electric current. The process is based on local pH changes as a result of water electrolysis – generating H+ and OH− ions at the (+) and (−) electrodes, respectively. Silk fibroin has a pI=4.2 and when local pH

  7. Tissue Regeneration: A Silk Road.

    PubMed

    Jao, Dave; Mou, Xiaoyang; Hu, Xiao

    2016-01-01

    Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world's best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies. By understanding the surface interaction of silk materials with living cells, unique characteristics can be implemented through structural modifications, such as controllable wettability, high-strength adhesiveness, and reflectivity properties, suggesting its potential suitability for surgical, optical, and other biomedical applications. All of the interesting features of SF, such as tunable biodegradation, anti-bacterial properties, and mechanical properties combined with potential self-healing modifications, make it ideal for future tissue engineering applications. In this review, we first demonstrate the current understanding of the structures and mechanical properties of SF and the various functionalizations of SF matrices through chemical and physical manipulations. Then the diverse applications of SF architectures and scaffolds for different regenerative medicine will be discussed in detail, including their current applications in bone, eye, nerve, skin, tendon, ligament, and cartilage regeneration.

  8. Tissue Regeneration: A Silk Road.

    PubMed

    Jao, Dave; Mou, Xiaoyang; Hu, Xiao

    2016-01-01

    Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world's best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies. By understanding the surface interaction of silk materials with living cells, unique characteristics can be implemented through structural modifications, such as controllable wettability, high-strength adhesiveness, and reflectivity properties, suggesting its potential suitability for surgical, optical, and other biomedical applications. All of the interesting features of SF, such as tunable biodegradation, anti-bacterial properties, and mechanical properties combined with potential self-healing modifications, make it ideal for future tissue engineering applications. In this review, we first demonstrate the current understanding of the structures and mechanical properties of SF and the various functionalizations of SF matrices through chemical and physical manipulations. Then the diverse applications of SF architectures and scaffolds for different regenerative medicine will be discussed in detail, including their current applications in bone, eye, nerve, skin, tendon, ligament, and cartilage regeneration. PMID:27527229

  9. Tissue Regeneration: A Silk Road

    PubMed Central

    Jao, Dave; Mou, Xiaoyang; Hu, Xiao

    2016-01-01

    Silk proteins are natural biopolymers that have extensive structural possibilities for chemical and mechanical modifications to facilitate novel properties, functions, and applications in the biomedical field. The versatile processability of silk fibroins (SF) into different forms such as gels, films, foams, membranes, scaffolds, and nanofibers makes it appealing in a variety of applications that require mechanically superior, biocompatible, biodegradable, and functionalizable biomaterials. There is no doubt that nature is the world’s best biological engineer, with simple, exquisite but powerful designs that have inspired novel technologies. By understanding the surface interaction of silk materials with living cells, unique characteristics can be implemented through structural modifications, such as controllable wettability, high-strength adhesiveness, and reflectivity properties, suggesting its potential suitability for surgical, optical, and other biomedical applications. All of the interesting features of SF, such as tunable biodegradation, anti-bacterial properties, and mechanical properties combined with potential self-healing modifications, make it ideal for future tissue engineering applications. In this review, we first demonstrate the current understanding of the structures and mechanical properties of SF and the various functionalizations of SF matrices through chemical and physical manipulations. Then the diverse applications of SF architectures and scaffolds for different regenerative medicine will be discussed in detail, including their current applications in bone, eye, nerve, skin, tendon, ligament, and cartilage regeneration. PMID:27527229

  10. Dimensional specific physical properties of fan palm fruits, seeds and seed coats (Washingtonia robusta)

    NASA Astrophysics Data System (ADS)

    Coşkuner, Yalçın; Gökbudak, Ayşe

    2016-07-01

    In this study some physical properties of fan palm (Washingtonia robusta) fruits, seeds and seed coats were determined using dimensional, bulk and single kernel physical analysis. The moisture content of whole fruits, seeds and seed coats was 12.0, 9.86 and 13.87% (d.b.), respectively. The sphericity values showed that seed shape (0.86) is close to a sphere, similar as the fruit shape (0.83), both of which were close to a scalene ellipsoid shape. The surface area values of fruits and seeds were obtained as 163.27 and 80.25 mm2, and volume values were obtained as 190.96 and 66.32 mm3, respectively. Bulk densities of fruits, seeds and seed coats were 559, 783 and 272 kg m-3, and the corresponding true densities were 1143, 1147 and 864 kg m-3, whereas the corresponding porosities were 48.87, 54.12, and 31.52%, respectively. The values of the static coefficient of friction and the angle of repose of fruits, seeds and seed coats of palm fruits were studied on aluminium, canvas, galvanised iron, plywood, PP knitted bag, PVC and stainless steel surfaces. As expected, seed coat has higher values of coefficient of static friction on the all surfaces than fruit and seed.

  11. Functionalized Silk Biomaterials for Wound Healing

    PubMed Central

    Gil, Eun Seok; Panilaitis, Bruce; Bellas, Evangelia

    2013-01-01

    Silk protein-biomaterial wound dressings with epidermal growth factor (EGF) and silver sulfadiazine were studied with a cutaneous excisional mouse wound model. Three different material designs (silk films, lamellar porous silk films, electrospun silk nanofibers) and two different drug functionalization techniques (drug coatings or drug loading into the materials) were studied to compare wound healing responses. Changes in wound size and histological assessments of wound tissues over time confirmed that functionalized silk biomaterial wound dressings increased wound healing rate, including reepithelialization, dermis proliferation, collagen synthesis, epidermal differentiation into hair follicles and sebaceous glands, and reduced scar formation, when compared to air-permeable Tegaderm™ tape (3M) (− control) and a commercially sold wound dressing (Tegaderm™ Hydrocolloid dressing) (+ control). All silk biomaterials studied were effective for wound healing, while the porous features of the silk biomaterials (lamellar porous films and electrospun nanofibers) and the incorporation of EGF/silver sulfadiazine, via drug loading or coating, provided the most rapid wound healing responses. This systematic approach to evaluate functionalized silk biomaterial wound dressings demonstrates a useful strategy to select formulations for further study towards new treatment options for chronic wounds. PMID:23184644

  12. Thermal crystallization mechanism of silk fibroin protein

    NASA Astrophysics Data System (ADS)

    Hu, Xiao

    In this thesis, the thermal crystallization mechanism of silk fibroin protein from Bombyx mori silkworm, was treated as a model for the general study of protein based materials, combining theories from both biophysics and polymer physics fields. A systematic and scientific path way to model the dynamic beta-sheet crystallization process of silk fibroin protein was presented in the following sequence: (1) The crystallinity, fractions of secondary structures, and phase compositions in silk fibroin proteins at any transition stage were determined. Two experimental methods, Fourier transform infrared spectroscopy (FTIR) with Fourier self-deconvolution, and specific reversing heat capacity, were used together for the first time for modeling the static structures and phases in the silk fibroin proteins. The protein secondary structure fractions during the crystallization were quantitatively determined. The possibility of existence of a "rigid amorphous phase" in silk protein was also discussed. (2) The function of bound water during the crystallization process of silk fibroin was studied using heat capacity, and used to build a silk-water dynamic crystallization model. The fundamental concepts and thermal properties of silk fibroin with/without bound water were discussed. Results show that intermolecular bound water molecules, acting as a plasticizer, will cause silk to display a water-induced glass transition around 80°C. During heating, water is lost, and the change of the microenvironment in the silk fibroin chains induces a mesophase prior to thermal crystallization. Real time FTIR during heating and isothermal holding above Tg show the tyrosine side chain changes only during the former process, while beta sheet crystallization occurs only during the latter process. Analogy is made between the crystallization of synthetic polymers according to the four-state scheme of Strobl, and the crystallization process of silk fibroin, which includes an intermediate precursor

  13. Microbial production of spider silk proteins.

    PubMed

    Fahnestock, S R; Yao, Z; Bedzyk, L A

    2000-08-01

    The remarkable properties of spider dragline silk and related protein polymers will find many applications if the materials can be produced economically. We have demonstrated the production of high molecular weight spider dragline silk analog proteins encoded by synthetic genes in several microbial systems, including Escherichia coli and Pichia pastoris. In E. coli, proteins of up to 1000 amino acids in length could be produced efficiently, but the yield and homogeneity of higher molecular weight silk proteins were found to be limited by truncated synthesis, probably as a result of ribosome termination errors. No such phenomenon was observed in the yeast P. pastoris, where higher molecular weight silk proteins could be produced without heterogeneity due to truncated synthesis. Spider dragline silk analog proteins could be secreted by P. pastoris when fused to both the signal sequence and N-terminal pro-sequence of the Saccharomyces cerevisiae alpha-mating factor gene. PMID:11763501

  14. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of a spider silk manufacturing process is of great interest. piggyBac vectors were used to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk prote...

  15. Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process.

    PubMed

    Bai, S; Liu, S; Zhang, C; Xu, W; Lu, Q; Han, H; Kaplan, D L; Zhu, H

    2013-08-01

    Silk fiber is one of the strongest and toughest biological materials with hierarchical structures, where nanofibril with size <20nm is a critical factor in determining its excellent mechanical properties. Although silk nanofibrils have been found in natural and regenerated silk solutions, there is no way to actively control nanofibril formation in aqueous solution. This study shows a simple but effective method of preparing silk nanofibrils by regulating the silk self-assembly process. Through a repeated drying-dissolving process, a silk fibroin solution composed of metastable nanoparticles was first prepared and then used to reassemble nanofibrils with different sizes and secondary conformations under various temperatures and concentrations. These nanofibrils have a similar size to that of natural fibers, providing a suitable unit to further assemble the hierarchical structure in vitro. Several important issues, such as the relationships between silk nanofibrils, secondary conformations and viscosity, are also investigated, giving a new insight into the self-assembly process. In summary, besides rebuilding silk nanofibrils in aqueous solution, this study provides an important model for furthering the understanding of silk structures, properties and forming mechanisms, making it possible to regenerate silk materials with exceptional properties in the future. PMID:23628774

  16. Mechanics and Morphology of Silk Drawn from Anesthetized Spiders

    NASA Astrophysics Data System (ADS)

    Madsen, B.; Vollrath, F.

    CO2 and N2 anesthetized Nephila spiders produced dragline silk with mechanical properties that differed from control silk as a function of time under anesthesia. Silk from CO2 spiders had a significantly lower breaking strain and breaking energy, significantly higher initial modulus, and marginally lower breaking stress. At the onset of anesthesia the silk diameter became highly variable. During deep anesthesia silk either became thinner or retained cross-section but fibrillated.

  17. Mechanics and morphology of silk drawn from anesthetized spiders.

    PubMed

    Madsen, B; Vollrath, F

    2000-03-01

    CO2 and N2 anesthetized Nephila spiders produced dragline silk with mechanical properties that differed from control silk as a function of time under anesthesia. Silk from CO2 spiders had a significantly lower breaking strain and breaking energy, significantly higher initial modulus, and marginally lower breaking stress. At the onset of anesthesia the silk diameter became highly variable. During deep anesthesia silk either became thinner or retained cross-section but fibrillated.

  18. Unraveled mechanism in silk engineering: Fast reeling induced silk toughening

    NASA Astrophysics Data System (ADS)

    Wu, Xiang; Liu, Xiang-Yang; Du, Ning; Xu, Gangqin; Li, Baowen

    2009-08-01

    We theoretically and experimentally study the mechanical response of silkworm and spider silks against stretching and the relationship with the underlying structural factors. It is found that the typical stress-strain profiles are predicted in good agreement with experimental measurements by implementing the "β-sheet splitting" mechanism we discovered and verified, primarily varying the secondary structure of protein macromolecules. The functions of experimentally observed structural factors responding to the external stress have been clearly addressed, and optimization of the microscopic structures to enhance the mechanical strength will be pointed out, beneficial to their biomedical and textile applications.

  19. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties

    PubMed Central

    Teulé, Florence; Miao, Yun-Gen; Sohn, Bong-Hee; Kim, Young-Soo; Hull, J. Joe; Fraser, Malcolm J.; Lewis, Randolph V.; Jarvis, Donald L.

    2012-01-01

    The development of a spider silk-manufacturing process is of great interest. However, there are serious problems with natural manufacturing through spider farming, and standard recombinant protein production platforms have provided limited progress due to their inability to assemble spider silk proteins into fibers. Thus, we used piggyBac vectors to create transgenic silkworms encoding chimeric silkworm/spider silk proteins. The silk fibers produced by these animals were composite materials that included chimeric silkworm/spider silk proteins integrated in an extremely stable manner. Furthermore, these composite fibers were, on average, tougher than the parental silkworm silk fibers and as tough as native dragline spider silk fibers. These results demonstrate that silkworms can be engineered to manufacture composite silk fibers containing stably integrated spider silk protein sequences, which significantly improve the overall mechanical properties of the parental silkworm silk fibers. PMID:22215590

  20. Design for Health and Well Being: Knitted Products for Diabetics

    NASA Astrophysics Data System (ADS)

    Gault, A.

    2016-07-01

    This paper will discuss the design development, manufacturing and testing of knitted products maximizing the use of new innovations in Nano- technology and the integration of Phase Changing Materials specifically for diabetics. The project identified key aspects requiring design solutions to bring improvement to the circulatory problems with specific reference to the diabetic condition. Diabetics have particular difficulty in regulating their body temperature and this can result in the condition worsening, and resulting in loss of digits or limbs. The design of products to prevent the deterioration of the diabetic condition and to help those with limb loss was developed in collaboration with a Northern Ireland diabetic consultant, a product engineer and a knitwear designer. The fusion of ideas between the stakeholders resulted in the development and manufacture of a range of products that have been successfully tested at the yarn and fabric development stage and have been proven to maintain body temperature by either cooling or warming and therefore bring improvement to health and well-being. Whilst the product has a performance element the design ideas created desirable products that not only provided solutions to the brief but also resulted in products that had further market applications.

  1. Histopathological evaluation of woven and knitted Dacron grafts for right ventricular conduits: a comparative experimental study.

    PubMed

    Haverich, A; Oelert, H; Maatz, W; Borst, H G

    1984-05-01

    Composite extracardiac conduits consisting of a low-porosity woven graft and a high-porosity knitted double-velour Dacron graft presealed with fibrin glue were implanted between the right ventricle and the pulmonary artery in 6 dogs under partial heparinization. Two grafts were explanted after 6 weeks, 2 after 12 weeks, and 2 after 6 months. The healing properties of both types of prosthesis were studied macroscopically, under light microscopy, and with scatter electron microscopy. Spontaneous peeling of both the inner and outer capsules of the graft occurred in 3 of 6 woven prostheses during transection. In the remaining 3, peeling could be easily induced by blunt dissection; this was impossible in the knitted grafts. Microscopically, in a comparison of the different weaves after identical time intervals, the inner capsule was noticeably thicker in woven than in knitted grafts. Transtitial ingrowth of fibroblastic tissue could be observed in knitted grafts after 6 weeks; only poor transmural tissue bridging was detectable in woven prostheses after 6 months. Neovascularization of the inner capsule was detectable earlier and was more advanced toward the luminal surface of highly porous grafts. In conclusion, knitted grafts in the position of extracardiac right ventricular conduits showed firmer attachment of both inner and outer capsules to the prosthetic material. Also, the inner capsule remained thinner and revealed a higher degree of neovascularization than in the woven Dacron grafts.

  2. Enzymatic mineralization of silk scaffolds.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Declercq, Heidi A; Gheysens, Tom; Dendooven, Jolien; Van Der Voort, Pascal; Cornelissen, Ria; Dubruel, Peter; Kaplan, David L

    2014-07-01

    The present study focuses on the alkaline phosphatase (ALP) mediated formation of apatitic minerals on porous silk fibroin protein (SFP) scaffolds. Porous SFP scaffolds impregnated with different concentrations of ALP are homogeneously mineralized under physiological conditions. The mineral structure is apatite while the structures differ as a function of the ALP concentration. Cellular adhesion, proliferation, and colonization of osteogenic MC3T3 cells improve on the mineralized SFP scaffolds. These findings suggest a simple process to generate mineralized scaffolds that can be used to enhanced bone tissue engineering-related utility. PMID:24610728

  3. Spider silk gut: Development and characterization of a novel strong spider silk fiber

    PubMed Central

    Jiang, Ping; Marí-Buyé, Núria; Madurga, Rodrigo; Arroyo-Hernández, María; Solanas, Concepción; Gañán, Alfonso; Daza, Rafael; Plaza, Gustavo R.; Guinea, Gustavo V.; Elices, Manuel; Cenis, José Luis; Pérez-Rigueiro, José

    2014-01-01

    Spider silk fibers were produced through an alternative processing route that differs widely from natural spinning. The process follows a procedure traditionally used to obtain fibers directly from the glands of silkworms and requires exposure to an acid environment and subsequent stretching. The microstructure and mechanical behavior of the so-called spider silk gut fibers can be tailored to concur with those observed in naturally spun spider silk, except for effects related with the much larger cross-sectional area of the former. In particular spider silk gut has a proper ground state to which the material can revert independently from its previous loading history by supercontraction. A larger cross-sectional area implies that spider silk gut outperforms the natural material in terms of the loads that the fiber can sustain. This property suggests that it could substitute conventional spider silk fibers in some intended uses, such as sutures and scaffolds in tissue engineering. PMID:25475975

  4. Silk Spinning in Silkworms and Spiders

    PubMed Central

    Andersson, Marlene; Johansson, Jan; Rising, Anna

    2016-01-01

    Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes. PMID:27517908

  5. Silk Electrogel Based Gastroretentive Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  6. Silk Spinning in Silkworms and Spiders.

    PubMed

    Andersson, Marlene; Johansson, Jan; Rising, Anna

    2016-01-01

    Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes. PMID:27517908

  7. Silk Spinning in Silkworms and Spiders.

    PubMed

    Andersson, Marlene; Johansson, Jan; Rising, Anna

    2016-08-09

    Spiders and silkworms spin silks that outcompete the toughness of all natural and manmade fibers. Herein, we compare and contrast the spinning of silk in silkworms and spiders, with the aim of identifying features that are important for fiber formation. Although spiders and silkworms are very distantly related, some features of spinning silk seem to be universal. Both spiders and silkworms produce large silk proteins that are highly repetitive and extremely soluble at high pH, likely due to the globular terminal domains that flank an intermediate repetitive region. The silk proteins are produced and stored at a very high concentration in glands, and then transported along a narrowing tube in which they change conformation in response primarily to a pH gradient generated by carbonic anhydrase and proton pumps, as well as to ions and shear forces. The silk proteins thereby convert from random coil and alpha helical soluble conformations to beta sheet fibers. We suggest that factors that need to be optimized for successful production of artificial silk proteins capable of forming tough fibers include protein solubility, pH sensitivity, and preservation of natively folded proteins throughout the purification and initial spinning processes.

  8. Electrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineering.

    PubMed

    Wang, Guanglin; Hu, Xudong; Lin, Wei; Dong, Changchao; Wu, Hui

    2011-03-01

    Electrospun nanofibrous scaffolds varying different materials are fabricated for tissue engineering. PLGA, silk fibroin, and collagen-derived scaffolds have been proved on good biocompatibility with neurons. However, no systematic studies have been performed to examine the PLGA-silk fibroin-collagen (PLGA-SF-COL) biocomposite fiber matrices for nerve tissue engineering. In this study, different weight ratio PLGA-SF-COL (50:25:25, 30:35:35) scaffolds were produced via electrospinning. The physical and mechanical properties were tested. The average fiber diameter ranged from 280 + 26 to 168 + 21 nm with high porosity and hydrophilicity; the tensile strength was 1.76 ± 0.32 and 1.25 ± 0.20 Mpa, respectively. The results demonstrated that electrospinning polymer blending is a simple and effective approach for fabricating novel biocomposite nanofibrous scaffolds. The properties of the scaffolds can be strongly influenced by the concentration of collagen and silk fibroin in the biocomposite. To assay the cytocompatibility, Schwann cells were seeded on the scaffolds; cell attachment, growth morphology, and proliferation were studied. SEM and MTT results confirmed that PLGA-SF-COL scaffolds particularly the one that contains 50% PLGA, 25% silk fibroin, and 25% collagen is more suitable for nerve tissue engineering compared to PLGA nanofibrous scaffolds. PMID:21181450

  9. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

    PubMed

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering.

  10. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.

    PubMed

    Mirahmadi, Fereshteh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Bonakdar, Shahin

    2013-12-01

    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. In this study, we added degummed chopped silk fibers and electrospun silk fibers to the thermosensitive chitosan/glycerophosphate hydrogels to reinforce two hydrogel constructs which were used as scaffold for hyaline cartilage regeneration. The gelation temperature and gelation time of hydrogel were analyzed by the rheometer and vial tilting method. Mechanical characterization was measured by uniaxial compression, indentation and dynamic mechanical analysis assay. Chondrocytes were then harvested from the knee joint of the New Zealand white rabbits and cultured in constructs. The cell proliferation, viability, production of glycosaminoglycans and collagen type II were assessed. The results showed that mechanical properties of the hydrogel were significantly enhanced when a hybrid with two layers of electrospun silk fibers was made. The results of GAG and collagen type II in cell-seeded scaffolds indicate support of the chondrogenic phenotype for chondrocytes with a significant increase in degummed silk fiber-hydrogel composite for GAG content and in two-layer electrospun fiber-hydrogel composite for Col II. It was concluded that these two modified scaffolds could be employed for cartilage tissue engineering. PMID:24094188

  11. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons.

    PubMed

    Zhang, Qiang; Zhao, Yahong; Yan, Shuqin; Yang, Yumin; Zhao, Huijing; Li, Mingzhong; Lu, Shenzhou; Kaplan, David L

    2012-07-01

    Physical guidance cues have been exploited to stimulate neuron adhesion and neurite outgrowth. In the present study, three-dimensional (3-D) silk fibroin scaffolds with uniaxial multichannels (42-142 μm in diameter) were prepared by a directional temperature field freezing technique, followed by lyophilization. By varying the initial silk fibroin concentration, the chemical potential and quantity of free water around cylindrical ice crystals could be controlled to control the cross-section morphology of the scaffold channels. Aligned ridges also formed on the inner surface of the multichannels in parallel to the direction of the channels. In vitro, primary hippocampal neurons were seeded in these 3-D silk fibroin scaffolds with uniaxial multichannels of ∼120 μm in diameter. The morphology of the neurons was multipolar and alignment along the scaffold channels was observed. Cell-cell networks and cell-matrix interactions established by newly formed axons were observed after 7 days in culture. These neurons expressed β-III-tubulin, nerve filament and microtubule-associated protein, while glial fibrillary acidic protein immunofluorescence was barely above background. The ridges on the inner surface of the channels played a critical role in the adhesion and extension of neurons by providing continuous contact guidance. These new 3-D silk scaffolds with uniaxial multichannels provided a favorable microenvironment for the development of hippocampal neurons by guiding axonal elongation and cell migration.

  12. High-Toughness Silk Produced by a Transgenic Silkworm Expressing Spider (Araneus ventricosus) Dragline Silk Protein

    PubMed Central

    Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura

    2014-01-01

    Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms. PMID:25162624

  13. Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Lazaris, Anthoula; Arcidiacono, Steven; Huang, Yue; Zhou, Jiang-Feng; Duguay, François; Chretien, Nathalie; Welsh, Elizabeth A.; Soares, Jason W.; Karatzas, Costas N.

    2002-01-01

    Spider silks are protein-based ``biopolymer'' filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to ``biomimic'' the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations >20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.

  14. High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein.

    PubMed

    Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura

    2014-01-01

    Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4-2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.

  15. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair

    PubMed Central

    Yodmuang, Supansa; McNamara, Stephanie L.; Nover, Adam B.; Mandal, Biman B.; Agarwal, Monica; Kelly, Terri-Ann N.; Chao, Pen-hsiu Grace; Hung, Clark; Kaplan, David L.; Vunjak-Novakovic, Gordana

    2014-01-01

    Cartilage tissue lacks an intrinsic capacity for self-regeneration due to slow matrix turnover, a limited supply of mature chondrocytes and insufficient vasculature. Although cartilage tissue engineering has achieved some success using agarose as a scaffolding material, major challenges of agarose-based cartilage repair, including non-degradability, poor tissue–scaffold integration and limited processing capability, have prompted the search for an alternative biomaterial. In this study, silk fiber–hydrogel composites (SF–silk hydrogels) made from silk microfibers and silk hydrogels were investigated for their potential use as a support material for engineered cartilage. We demonstrated the use of 100% silk-based fiber–hydrogel composite scaffolds for the development of cartilage constructs with properties comparable to those made with agarose. Cartilage constructs with an equilibrium modulus in the native tissue range were fabricated by mimicking the collagen fiber and proteoglycan composite architecture of native cartilage using biocompatible, biodegradable silk fibroin from Bombyx mori. Excellent chondrocyte response was observed on SF–silk hydrogels, and fiber reinforcement resulted in the development of more mechanically robust constructs after 42 days in culture compared to silk hydrogels alone. Thus, we demonstrate the versatility of silk fibroin as a composite scaffolding material for use in cartilage tissue repair to create functional cartilage constructs that overcome the limitations of agarose biomaterials, and provide a much-needed alternative to the agarose standard. PMID:25281788

  16. High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein.

    PubMed

    Kuwana, Yoshihiko; Sezutsu, Hideki; Nakajima, Ken-ichi; Tamada, Yasushi; Kojima, Katsura

    2014-01-01

    Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4-2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms. PMID:25162624

  17. Highly tunable elastomeric silk biomaterials

    PubMed Central

    Partlow, Benjamin P.; Hanna, Craig W.; Rnjak-Kovacina, Jelena; Moreau, Jodie E.; Applegate, Matthew B.; Burke, Kelly A.; Marelli, Benedetto; Mitropoulos, Alexander N.; Omenetto, Fiorenzo G.

    2014-01-01

    Elastomeric, fully degradable and biocompatible biomaterials are rare, with current options presenting significant limitations in terms of ease of functionalization and tunable mechanical and degradation properties. We report a new method for covalently crosslinking tyrosine residues in silk proteins, via horseradish peroxidase and hydrogen peroxide, to generate highly elastic hydrogels with tunable properties. The tunable mechanical properties, gelation kinetics and swelling properties of these new protein polymers, in addition to their ability to withstand shear strains on the order of 100%, compressive strains greater than 70% and display stiffness between 200 – 10,000 Pa, covering a significant portion of the properties of native soft tissues. Molecular weight and solvent composition allowed control of material mechanical properties over several orders of magnitude while maintaining high resilience and resistance to fatigue. Encapsulation of human bone marrow derived mesenchymal stem cells (hMSC) showed long term survival and exhibited cell-matrix interactions reflective of both silk concentration and gelation conditions. Further biocompatibility of these materials were demonstrated with in vivo evaluation. These new protein-based elastomeric and degradable hydrogels represent an exciting new biomaterials option, with a unique combination of properties, for tissue engineering and regenerative medicine. PMID:25395921

  18. Silk as an innovative biomaterial for cancer therapy

    PubMed Central

    Jastrzebska, Katarzyna; Kucharczyk, Kamil; Florczak, Anna; Dondajewska, Ewelina; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna

    2014-01-01

    Silk has been used for centuries in the textile industry and as surgical sutures. In addition to its unique mechanical properties, silk possesses other properties, such as biocompatibility, biodegradability and ability to self-assemble, which make it an interesting material for biomedical applications. Although silk forms only fibers in nature, synthetic techniques can be used to control the processing of silk into different morphologies, such as scaffolds, films, hydrogels, microcapsules, and micro- and nanospheres. Moreover, the biotechnological production of silk proteins broadens the potential applications of silk. Synthetic silk genes have been designed. Genetic engineering enables modification of silk properties or the construction of a hybrid silk. Bioengineered hybrid silks consist of a silk sequence that self-assembles into the desired morphological structure and the sequence of a polypeptide that confers a function to the silk biomaterial. The functional domains can comprise binding sites for receptors, enzymes, drugs, metals or sugars, among others. Here, we review the current status of potential applications of silk biomaterials in the field of oncology with a focus on the generation of implantable, injectable and targeted drug delivery systems and the three-dimensional cancer models based on silk scaffolds for cancer research. However, the systems described could be applied in many biomedical fields. PMID:25859397

  19. Silk as an innovative biomaterial for cancer therapy.

    PubMed

    Jastrzebska, Katarzyna; Kucharczyk, Kamil; Florczak, Anna; Dondajewska, Ewelina; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna

    2015-01-01

    Silk has been used for centuries in the textile industry and as surgical sutures. In addition to its unique mechanical properties, silk possesses other properties, such as biocompatibility, biodegradability and ability to self-assemble, which make it an interesting material for biomedical applications. Although silk forms only fibers in nature, synthetic techniques can be used to control the processing of silk into different morphologies, such as scaffolds, films, hydrogels, microcapsules, and micro- and nanospheres. Moreover, the biotechnological production of silk proteins broadens the potential applications of silk. Synthetic silk genes have been designed. Genetic engineering enables modification of silk properties or the construction of a hybrid silk. Bioengineered hybrid silks consist of a silk sequence that self-assembles into the desired morphological structure and the sequence of a polypeptide that confers a function to the silk biomaterial. The functional domains can comprise binding sites for receptors, enzymes, drugs, metals or sugars, among others. Here, we review the current status of potential applications of silk biomaterials in the field of oncology with a focus on the generation of implantable, injectable and targeted drug delivery systems and the three-dimensional cancer models based on silk scaffolds for cancer research. However, the systems described could be applied in many biomedical fields. PMID:25859397

  20. In vitro approach to the dilative behavior of knitted vascular prosthetic grafts.

    PubMed

    Chakfe, Nabil; Dieval, Florence; Wang, Lu; Thaveau, Fabien; Rinckenbach, Simon; Edah-Tally, Saleem; Mathieu, Daniel; Le Magnen, Jean-François; Riepe, Gunnar; Kretz, Jean-Georges; Durand, Bernard

    2008-01-01

    The purpose of this report is to propose an in vitro approach to predicting the long-term dilative behavior of knitted polyester prosthetic grafts. Various techniques were applied to five warp knitted fabric prosthetic grafts in order to determine the following fabric properties: knitted fabric structure, textile structure, number and respective linear density of threads and strands, and length of yarn in each stitch. Following these investigations, the prosthetic grafts underwent testing to determine specific strength at break, breaking extension, and stress-strain curve. On two prosthetic grafts, image analysis was performed during circumferential tensile strength testing in order to monitor changes in structural features as a function of stress. Changes in the distance between two wales and two courses of stitches and stitch surface were measured. In addition to surface deformation, thickness was measured, using an induction sensor. Study of fabric structure showed many differences between the five models made by different manufacturers. Knit fabric structure was Indeforma in three cases and half-tricot in two. Strand number and size varied greatly from one model to another. Pattern also varied from one model to another, with knit stitch density varying from 1 to 3. Specific strength at break testing showed great differences in the mechanical properties of the grafts. These differences were especially obvious in the first part of the rheograms, which reflects the ability of the graft to comply in response to low-strength forces, i.e., much lower than those necessary to cause rupture. Image analysis of stitch behavior under stress further confirmed differences in graft behavior depending on the fabric structure adopted by the manufacturers. The in vitro approach proposed in this study to analyze the fabric characteristics of knitted prosthetic grafts effectively revealed differences in construction and behavior. These differences could account for differences in

  1. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall.

    PubMed

    Shoae-Hassani, Alireza; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Seifalian, Alexander Marcus; Azimi, Alireza; Samadikuchaksaraei, Ali; Verdi, Javad

    2015-11-01

    Reconstruction of the bladder wall via in vitro differentiated stem cells on an appropriate scaffold could be used in such conditions as cancer and neurogenic urinary bladder. This study aimed to examine the potential of human endometrial stem cells (EnSCs) to form urinary bladder epithelial cells (urothelium) on nanofibrous silk-collagen scaffolds, for construction of the urinary bladder wall. After passage 4, EnSCs were induced by keratinocyte growth factor (KGF) and epidermal growth factor (EGF) and seeded on electrospun collagen-V, silk and silk-collagen nanofibres. Later we tested urothelium-specific genes and proteins (uroplakin-Ia, uroplakin-Ib, uroplakin-II, uroplakin-III and cytokeratin 20) by immunocytochemistry, RT-PCR and western blot analyses. Scanning electron microscopy (SEM) and histology were used to detect cell-matrix interactions. DMEM/F12 supplemented by KGF and EGF induced EnSCs to express urothelial cell-specific genes and proteins. Either collagen, silk or silk-collagen scaffolds promoted cell proliferation. The nanofibrous silk-collagen scaffolds provided a three-dimensional (3D) structure to maximize cell-matrix penetration and increase differentiation of the EnSCs. Human EnSCs seeded on 3D nanofibrous silk-collagen scaffolds and differentiated to urothelial cells provide a suitable source for potential use in bladder wall reconstruction in women.

  2. 3D printing of weft knitted textile based structures by selective laser sintering of nylon powder

    NASA Astrophysics Data System (ADS)

    Beecroft, M.

    2016-07-01

    3D printing is a form of additive manufacturing whereby the building up of layers of material creates objects. The selective laser sintering process (SLS) uses a laser beam to sinter powdered material to create objects. This paper builds upon previous research into 3D printed textile based material exploring the use of SLS using nylon powder to create flexible weft knitted structures. The results show the potential to print flexible textile based structures that exhibit the properties of traditional knitted textile structures along with the mechanical properties of the material used, whilst describing the challenges regarding fineness of printing resolution. The conclusion highlights the potential future development and application of such pieces.

  3. Composition and Hierarchical Organisation of a Spider Silk

    PubMed Central

    Sponner, Alexander; Vater, Wolfram; Monajembashi, Shamci; Unger, Eberhard; Grosse, Frank; Weisshart, Klaus

    2007-01-01

    Albeit silks are fairly well understood on a molecular level, their hierarchical organisation and the full complexity of constituents in the spun fibre remain poorly defined. Here we link morphological defined structural elements in dragline silk of Nephila clavipes to their biochemical composition and physicochemical properties. Five layers of different make-ups could be distinguished. Of these only the two core layers contained the known silk proteins, but all can vitally contribute to the mechanical performance or properties of the silk fibre. Understanding the composite nature of silk and its supra-molecular organisation will open avenues in the production of high performance fibres based on artificially spun silk material. PMID:17912375

  4. Materials Fabrication from Bombyx mori Silk Fibroin

    PubMed Central

    Rockwood, Danielle N.; Preda, Rucsanda C.; Yücel, Tuna; Wang, Xiaoqin; Lovett, Michael L.; Kaplan, David L.

    2013-01-01

    Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years, and it can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent processing methods can be used to generate silk biomaterials for a range of applications. In this protocol we include methods to extract silk from B. mori cocoons in order to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, and for drug delivery. PMID:21959241

  5. Spider silk as a model biomaterial

    NASA Astrophysics Data System (ADS)

    Vollrath, F.; Porter, D.

    2006-02-01

    Spider silk combines strength and extensibility, and a wide range of mechanical properties can be achieved with only minute (if any) changes in chemical structure. It appears that the full range of thermo-mechanical properties of such silk fibres can be predicted by examining the energy imparted during stretching with the theoretical framework provided by Mean Field Theory for Polymers. This approach attempts to integrate strain and tensile stress with a range of relevant energetic and mechanical parameters such as the loss tangent and potential energy of atomic inter-chain bonding as well as the tensile and bulk elastic moduli. The model reveals that the underlying design principle of silks seems to share an inherent and surprising simplicity at the macromolecular level. We conclude that our modelling approach allows in-depth analysis of natural silks as well as a comparison with synthetic fibres.

  6. Dating silk by capillary electrophoresis mass spectrometry.

    PubMed

    Moini, Mehdi; Klauenberg, Kathryn; Ballard, Mary

    2011-10-01

    A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids.

  7. Dynamic behaviour of silks: Nature's precision nanocomposites

    NASA Astrophysics Data System (ADS)

    Drodge, D. R.; Mortimer, B.; Siviour, C. R.; Holland, C.

    2012-08-01

    Silk is often cited as a material worth imitating, due to its high strength and toughness. In order to produce a synthetic analogue, or enhanced natural version, the microstructural basis of these properties must be understood. Current understanding is that silk deforms through the detachment of nano-scale crystallites, in the manner of a damaged composite. This picture forms the basis for constitutive models, but validation data is limited to low strain-rates. Here we present a programme of research in which high-rate behaviour is studied through ballistic impact experiments. These have been applied to the silk of the Bombyx mori moth, as harvested from cocoons, and to the major ampullate thread of the golden orb weaver spider Nephila edulis. Longitudinal wave-speeds, and air drag coefficients, have been calculated for selected cases. Differences between the response of various silks and a similar synthetic fibre, nylon, are discussed, and future plans are presented.

  8. In vivo bioresponses to silk proteins.

    PubMed

    Thurber, Amy E; Omenetto, Fiorenzo G; Kaplan, David L

    2015-12-01

    Silks are appealing materials for numerous biomedical applications involving drug delivery, tissue engineering, or implantable devices, because of their tunable mechanical properties and wide range of physical structures. In addition to the functionalities needed for specific clinical applications, a key factor necessary for clinical success for any implanted material is appropriate interactions with the body in vivo. This review summarizes our current understanding of the in vivo biological responses to silks, including degradation, the immune and inflammatory response, and tissue remodeling with particular attention to vascularization. While we focus in this review on silkworm silk fibroin protein due to the large quantity of in vivo data thanks to its widespread use in medical materials and consumer products, spider silk information is also included if available. Silk proteins are degraded in the body on a time course that is dependent on the method of silk fabrication and can range from hours to years. Silk protein typically induces a mild inflammatory response that decreases within a few weeks of implantation. The response involves recruitment and activation of macrophages and may include activation of a mild foreign body response with the formation of multinuclear giant cells, depending on the material format and location of implantation. The number of immune cells present decreases with time and granulation tissue, if formed, is replaced by endogenous, not fibrous, tissue. Importantly, silk materials have not been demonstrated to induce mineralization, except when used in calcified tissues. Due to its ability to be degraded, silk can be remodeled in the body allowing for vascularization and tissue ingrowth with eventual complete replacement by native tissue. The degree of remodeling, tissue ingrowth, or other specific cell behaviors can be modulated with addition of growth or other signaling factors. Silk can also be combined with numerous other materials

  9. Soft Tissue Augmentation with Silk Composite Graft

    PubMed Central

    Park, Yong-Tae; Kweon, Hae Yong; Kim, Seong-Gon

    2014-01-01

    Purpose: The objective of this study was to evaluate the interaction between 4-hexylresorcinol (4HR) and antibody as that affects the performance of a silk-4HR combination graft for soft tissue augmentation in an animal model. Methods: The silk graft materials consisted of four types: silk+10% tricalcium phosphate (TCP) (ST0), silk+10% TCP+1% 4HR (ST1), silk+10% TCP+3% 4HR (ST3), and silk+10% TCP+6% 4-HR (ST6). The antibody binding assay tested the 4HR effect and scanning electron microscopic (SEM) exam was done for silk grafts. The animal experiment used a subcutaneous pocket mouse model. The graft – SH0 or SH1 or SH3 or SH6 – was placed in a subcutaneous pocket. The animals were killed at one, two, and four weeks, postoperatively. The specimens were subjected to histological analysis and lysozyme assay. Results: Groups with 4HR applied showed lower antibody binding affinity to antigen compared to groups without 4HR. In the SEM examination, there was no significant difference among groups. Histological examinations revealed many foreign body giant cells in ST0 and ST1 group at four weeks postoperatively. Both ST3 and ST6 groups developed significantly lower levels of giant cell values compared to ST0 and ST1 groups (P <0.001) at four weeks postoperatively. In the lysozyme assay, the ST1 and ST3 groups showed denser signals than the other groups. Conclusion: 4HR combined silk implants resulted in high levels of vascular and connective tissue regeneration. PMID:27489833

  10. Silk hydrogel for cartilage tissue engineering

    PubMed Central

    Chao, Pen-Hsiu Grace; Yodmuang, Supansa; Wang, Xiaoqin; Sun, Lin; Kaplan, David L.; Vunjak-Novakovic, Gordana

    2011-01-01

    Cartilage tissue engineering based on cultivation of immature chondrocytes in agarose hydrogel can yield tissue constructs with biomechanical properties comparable to native cartilage. However, agarose is immunogenic and non-degradable, and our capability to modify the structure, composition, and mechanical properties of this material is rather limited. In contrast, silk hydrogel is biocompatible and biodegradable, and it can be produced using a water-based method without organic solvents that enables precise control of structural and mechanical properties in a range of interest for cartilage tissue engineering. We observed that one particular preparation of silk hydrogel yielded cartilaginous constructs with biochemical content and mechanical properties matching constructs based on agarose. This finding and the possibility to vary the properties of silk hydrogel motivated this study of the factors underlying the suitability of hydrogels for cartilage tissue engineering. We present data resulting from a systematic variation of silk hydrogel properties, silk extraction method, gel concentration, and gel structure. Data suggest that silk hydrogel can be used as a tool for studies of the hydrogel-related factors and mechanisms involved in cartilage formation, as well as a tailorable and fully degradable scaffold for cartilage tissue engineering. PMID:20725950

  11. pH-dependent anticancer drug release from silk nanoparticles.

    PubMed

    Seib, F Philipp; Jones, Gregory T; Rnjak-Kovacina, Jelena; Lin, Yinan; Kaplan, David L

    2013-12-01

    Silk has traditionally been used as a suture material because of its excellent mechanical properties and biocompatibility. These properties have led to the development of different silk-based material formats for tissue engineering and regenerative medicine. Although there have been a small number of studies about the use of silk particles for drug delivery, none of these studies have assessed the potential of silk to act as a stimulus-responsive anticancer nanomedicine. This report demonstrates that an acetone precipitation of silk allows the formation of uniform silk nanoparticles (98 nm diameter, polydispersity index 0.109), with an overall negative surface charge (-33.6 ± 5.8 mV), in a single step. Silk nanoparticles are readily loaded with doxorubicin (40 ng doxorubicin/μg silk) and show pH-dependent release (pH 4.5≫ 6.0 > 7.4). In vitro studies with human breast cancer cell lines demonstrates that the silk nanoparticles are not cytotoxic (IC50 > 120 μg mL(-1) ) and that doxorubicin-loaded silk nanoparticles are able to overcome drug resistance mechanisms. Live cell fluorescence microscopy studies show endocytic uptake and lysosomal accumulation of silk nanoparticles. In summary, the pH-dependent drug release and lysosomal accumulation of silk nanoparticles demonstrate the ability of drug-loaded silk nanoparticles to serve as a lysosomotropic anticancer nanomedicine.

  12. Silk Roads or Steppe Roads? The Silk Roads in World History.

    ERIC Educational Resources Information Center

    Christian, David

    2000-01-01

    Explores the prehistory of the Silk Roads, reexamines their structure and history in the classical era, and explores shifts in their geography in the last one thousand years. Explains that a revised understanding of the Silk Roads demonstrates how the Afro-Eurasian land mass has been linked by networks of exchange since the Bronze Age. (CMK)

  13. Production And Characterization Of Synthetic Spider Silks Based On Nephila Clavipes Major Ampullate Silk Proteins

    NASA Astrophysics Data System (ADS)

    An, Bo

    The extraordinary mechanical properties of orb-weaving spider silks have served spiders for over 400 million years. However, only in the late 20th century did we start to understand the molecular nature of spider silk that contributes to its incredible properties as biomaterials. Among all seven types of spider silks, major ampullate silk from typical orb-weaving spiders is the toughest of all, it consists of primarily two proteins: MaSp1 and MaSp2. Variable ratios and conserved motifs of these two proteins in all the native spider silks demonstrate the significant role of MaSp1 and MaSp2 in controlling the mechanical properties of the fiber. The amino acid sequences of the orb weaving spider silk proteins have remained almost unchanged for more than 100 million years. Interestingly, MaSp1 and MaSp2 are the only two components in all studied dragline silk fibers from these spiders. The mechanical properties of native dragline silk vary slightly between species, which are believed to relate to the ratio of MaSp1 to MaSp2 in the silk. Both of these facts clearly indicate the importance of these two proteins to the mechanical properties of the fiber. Various types of synthetic spider silk fibers have been produced and studied in an effort to mass-produce man-made fibers with qualities comparable to native spider silk. To investigate the roles of MaSp1 and MaSp2 in silk fiber, synthetic MaSp1 (major abundant protein in Nephila clavipes major ampullate silks) only fibers, MaSp1/MaSp2 protein mixture fibers and chimeric protein fibers with both MaSp1 and MaSp2 sequence features have been produced and tested for mechanical properties. Solid-State Nuclear Magnetic Resonance was used to characterize the structure of silk fibers and reveal the relation between fiber spatial structure and mechanical properties.

  14. Engineered 3D Silk-collagen-based Model of Polarized Neural Tissue

    PubMed Central

    Chwalek, Karolina; Sood, Disha; Cantley, William L.; White, James D.; Tang-Schomer, Min; Kaplan, David L.

    2015-01-01

    Despite huge efforts to decipher the anatomy, composition and function of the brain, it remains the least understood organ of the human body. To gain a deeper comprehension of the neural system scientists aim to simplistically reconstruct the tissue by assembling it in vitro from basic building blocks using a tissue engineering approach. Our group developed a tissue-engineered silk and collagen-based 3D brain-like model resembling the white and gray matter of the cortex. The model consists of silk porous sponge, which is pre-seeded with rat brain-derived neurons, immersed in soft collagen matrix. Polarized neuronal outgrowth and network formation is observed with separate axonal and cell body localization. This compartmental architecture allows for the unique development of niches mimicking native neural tissue, thus enabling research on neuronal network assembly, axonal guidance, cell-cell and cell-matrix interactions and electrical functions. PMID:26555926

  15. Silk protein aggregation kinetics revealed by Rheo-IR.

    PubMed

    Boulet-Audet, Maxime; Terry, Ann E; Vollrath, Fritz; Holland, Chris

    2014-02-01

    The remarkable mechanical properties of silk fibres stem from a multi-scale hierarchical structure created when an aqueous protein "melt" is converted to an insoluble solid via flow. To directly relate a silk protein's structure and function in response to flow, we present the first application of a Rheo-IR platform, which couples cone and plate rheology with attenuated total reflectance infrared spectroscopy. This technique provides a new window into silk processing by linking shear thinning to an increase in molecular alignment, with shear thickening affecting changes in the silk protein's secondary structure. Additionally, compared to other static characterization methods for silk, Rheo-IR proved particularly useful at revealing the intrinsic difference between natural (native) and reconstituted silk feedstocks. Hence Rheo-IR offers important novel insights into natural silk processing. This has intrinsic academic merit, but it might also be useful when designing reconstituted silk analogues alongside other polymeric systems, whether natural or synthetic.

  16. Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery

    PubMed Central

    Wang, Xiaoqin; Yucel, Tuna; Lu, Qiang; Hu, Xiao; Kaplan, David L.

    2009-01-01

    Silk fibroin protein-based micro- and nanospheres provide new options for drug delivery due to their biocompatibility, biodegradability and their tunable drug loading and release properties. In the present study, we report a new aqueous-based preparation method for silk spheres with controllable sphere size and shape. The preparation was based on phase separation between silk fibroin and polyvinyl alcohol (PVA) at a weight ratio of 1/1 and 1/4. Water-insoluble silk spheres were easily obtained from the blend in a three step process: (1) air-drying the blend solution into a film, (2) film dissolution in water and (3) removal of residual PVA by subsequent centrifugation. In both cases, the spheres had approximately 30% beta-sheet content and less than 5% residual PVA. Spindle-shaped silk particles, as opposed to the spherical particles formed above, were obtained by stretching the blend films before dissolving in water. Compared to the 1/1 ratio sample, the silk spheres prepared from the 1/4 ratio sample showed a more homogeneous size distribution ranging from 300 nm up to 20 μm. Further studies showed that sphere size and polydispersity could be controlled either by changing the concentration of silk and PVA or by applying ultrasonication on the blend solution. Drug loading was achieved by mixing model drugs in the original silk solution. The distribution and loading efficiency of the drug molecules in silk spheres depended on their hydrophobicity and charge, resulting in different drug release profiles. The entire fabrication procedure could be completed within one day. The only chemical used in the preparation except water was PVA, an FDA-approved ingredient in drug formulations. Silk micro- and nanospheres reported have potential as drug delivery carriers in a variety of biomedical applications. PMID:19945157

  17. Knitting Teacher: A Narrative Inquiry of a Researcher Who Has Been Researched

    ERIC Educational Resources Information Center

    Heydon, Rachel

    2010-01-01

    From the vantages of a teacher who has been researched and an educational researcher who has researched teachers, this inquiry constructs a knitted narrative from journals, letters, and stories written about my time teaching English studies in a remote First Nations' community and articles written about me when I was a research participant in a…

  18. Microdissection of black widow spider silk-producing glands.

    PubMed

    Jeffery, Felicia; La Mattina, Coby; Tuton-Blasingame, Tiffany; Hsia, Yang; Gnesa, Eric; Zhao, Liang; Franz, Andreas; Vierra, Craig

    2011-01-01

    Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion. Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands. Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk], tubuliform [synthesizes egg case silk], flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg

  19. Atomic force microscopy of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand

    NASA Astrophysics Data System (ADS)

    Kane, D. M.; Naidoo, N.; Staib, G. R.

    2010-10-01

    Atomic force microscopy (AFM) study is used to measure the surface topology and roughness of radial and capture spider silks on the micro- and nanoscale. This is done for silks of the orb weaver spider Argiope keyserlingi. Capture silk has a surface roughness that is five times less than that for radial silk. The capture silk has an equivalent flatness of λ /100 (5-6 nm deep surface features) as an optical surface. This is equivalent to a very highly polished optical surface. AFM does show the number of silk fibers that make up a silk thread but geometric distortion occurs during sample preparation. This prevented AFM from accurately measuring the silk topology on the microscale in this study.

  20. Silk from Crickets: A New Twist on Spinning

    PubMed Central

    Walker, Andrew A.; Weisman, Sarah; Church, Jeffrey S.; Merritt, David J.; Mudie, Stephen T.; Sutherland, Tara D.

    2012-01-01

    Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks. PMID:22355311

  1. Post-secretion processing influences spider silk performance

    PubMed Central

    Blamires, Sean J.; Wu, Chung-Lin; Blackledge, Todd A.; Tso, I-Min

    2012-01-01

    Phenotypic variation facilitates adaptations to novel environments. Silk is an example of a highly variable biomaterial. The two-spidroin (MaSp) model suggests that spider major ampullate (MA) silk is composed of two proteins—MaSp1 predominately contains alanine and glycine and forms strength enhancing β-sheet crystals, while MaSp2 contains proline and forms elastic spirals. Nonetheless, mechanical properties can vary in spider silks without congruent amino acid compositional changes. We predicted that post-secretion processing causes variation in the mechanical performance of wild MA silk independent of protein composition or spinning speed across 10 species of spider. We used supercontraction to remove post-secretion effects and compared the mechanics of silk in this ‘ground state’ with wild native silks. Native silk mechanics varied less among species compared with ‘ground state’ silks. Variability in the mechanics of ‘ground state’ silks was associated with proline composition. However, variability in native silks did not. We attribute interspecific similarities in the mechanical properties of native silks, regardless of amino acid compositions, to glandular processes altering molecular alignment of the proteins prior to extrusion. Such post-secretion processing may enable MA silk to maintain functionality across environments, facilitating its function as a component of an insect-catching web. PMID:22628213

  2. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues.

    PubMed

    Han, F; Liu, S; Liu, X; Pei, Y; Bai, S; Zhao, H; Lu, Q; Ma, F; Kaplan, D L; Zhu, H

    2014-02-01

    Although three-dimensional (3-D) porous regenerated silk scaffolds with outstanding biocompatibility, biodegradability and low inflammatory reactions have promising application in different tissue regeneration, the mechanical properties of regenerated scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This study presents woven silk fabric-reinforced silk nanofibrous scaffolds aimed at dermal tissue engineering. To improve the mechanical properties, silk scaffolds prepared by lyophilization were reinforced with degummed woven silk fabrics. The ultimate tensile strength, elongation at break and suture retention strength of the scaffolds were significantly improved, providing suitable mechanical properties strong enough for clinical applications. The stiffness and degradation behaviors were then further regulated by different after-treatment processes, making the scaffolds more suitable for dermal tissue regeneration. The in vitro cell culture results indicated that these scaffolds maintained their excellent biocompatibility after being reinforced with woven silk fabrics. Without sacrifice of porous structure and biocompatibility, the fabric-reinforced scaffolds with better mechanical properties could facilitate future clinical applications of silk as matrices in skin repair. PMID:24090985

  3. Non-equilibrium Silk Fibroin Adhesives

    PubMed Central

    Yucel, Tuna; Kojic, Nikola; Leisk, Gary G.; Lo, Tim J.; Kaplan, David L.

    2009-01-01

    Regenerated silkworm silk solutions formed metastable, soft-solid-like materials (e-gels) under weak electric fields, displaying interesting mechanical characteristics such as dynamic adhesion and strain stiffening. Raman spectroscopy, in situ electric field dynamic oscillatory rheology and polarized optical microscopy indicated that silk fibroin electrogelation involved intermolecular self-assembly of silk molecules into amorphous, micron-scale, micellar structures and the formation of relatively long lifetime, intermicellar entanglement crosslinks. Overall, the electrogelation process did not require significant intramolecular β-strand or intermolecular β-sheet formation, unlike silk hydrogels. The kinetics of e-gel formation could be tuned by changing the field strength and assembly conditions, such as silk concentration and solution pH, while e-gel stiffness was partially reversible by removal of the applied field. Transient adhesion testing indicated that the adhesive characteristics of e-gels could at least partially be attributed to a local increase in proton concentration around the positive electrode due to the applied field and surface effects. A working model of electrogelation was described en route to understanding the origins of the adhesive characteristics. PMID:20026216

  4. Impact of Silk Biomaterial Structure on Proteolysis

    PubMed Central

    Brown, Joseph; Lu, Chia-Li; Coburn, Jeannine; Kaplan, David L.

    2014-01-01

    The goal of this study was to determine the impact of silk biomaterial structure (e.g., solution, hydrogel, film) on proteolytic susceptibility. In vitro enzymatic degradation of silk fibroin hydrogels and films was studied using a variety of proteases, including proteinase K, protease XIV, α-chymotrypsin, collagenase, matrix metalloproteinase-1 (MMP-1) and MMP-2. Hydrogels were used to assess bulk degradation while films were used to assess surface degradation. Weight loss, secondary structure determined by Fourier Transform Infrared (FT-IR) spectroscopy and degradation products analyzed via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were used to evaluate degradation through five days. Silk films were significantly degraded by proteinase K, while silk hydrogels were degraded more extensively by protease XIV and proteinase K. Collagenase preferentially degraded the β-sheet content in hydrogels while protease XIV and α-chymotrypsin degraded the amorphous structures. MMP-1 and MMP-2 degraded silk fibroin in solution resulting in a decrease in peptide fragment sizes over time. The link between primary sequence mapping with protease susceptibility provides insight into the role of secondary structure in impacting proteolytic access by comparing solution vs. solid state proteolytic susceptibility. PMID:25240984

  5. Silk: A Potential Medium for Tissue Engineering

    PubMed Central

    Sobajo, Cassandra; Behzad, Farhad; Yuan, Xue-Feng; Bayat, Ardeshir

    2008-01-01

    Objective: Human skin is a complex bilayered organ that serves as a protective barrier against the environment. The loss of integrity of skin by traumatic experiences such as burns and ulcers may result in considerable disability or ultimately death. Therefore, in skin injuries, adequate dermal substitutes are among primary care targets, aimed at replacing the structural and functional properties of native skin. To date, there are very few single application tissue-engineered dermal constructs fulfilling this criterion. Silk produced by the domestic silkworm, Bombyx mori, has a long history of use in medicine. It has recently been increasingly investigated as a promising biomaterial for dermal constructs. Silk contains 2 fibrous proteins, sericin and fibroin. Each one exhibits unique mechanical and biological properties. Methods: Comprehensive review of randomized-controlled trials investigating current dermal constructs and the structures and properties of silk-based constructs on wound healing. Results: This review revealed that silk-fibroin is regarded as the most promising biomaterial, providing options for the construction of tissue-engineered skin. Conclusion: The research available indicates that silk fibroin is a suitable biomaterial scaffold for the provision of adequate dermal constructs. PMID:18997857

  6. E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation.

    PubMed

    Zhu, Bofan; Li, Wen; Lewis, Randolph V; Segre, Carlo U; Wang, Rong

    2015-01-12

    Biocomposite matrices with high mechanical strength, high stability, and the ability to direct matrix-specific stem cell differentiation are essential for the reconstruction of lesioned tissues in tissue engineering and cell therapeutics. Toward this end, we used the electrospinning technique to fabricate well-aligned composite fibers from collagen and spider dragline silk protein, obtained from the milk of transgenic goats, mimicking the native extracellular matrix (ECM) on a similar scale. Collagen and the dragline silk proteins were found to mix homogeneously at all ratios in the electrospun (E-spun) fibers. As a result, the ultimate tensile strength and elasticity of the fibers increased monotonically with silk percentage, whereas the stretchability was slightly reduced. Strikingly, we found that the incorporation of silk proteins to collagen dramatically increased the matrix stability against excessive fiber swelling and shape deformation in cell culture medium. When human decidua parietalis placental stem cells (hdpPSCs) were seeded on the collagen-silk matrices, the matrices were found to support cell proliferation at a similar rate as that of the pure collagen matrix, but they provided cell adhesion with reduced strengths and induced cell polarization at varied levels. Matrices containing 15 and 30 wt % silk in collagen (CS15, CS30) were found to induce a level of neural differentiation comparable to that of pure collagen. In particular, CS15 matrix induced the highest extent of cell polarization and promoted the development of extended 1D neural filaments strictly in-line with the aligned fibers. Taking the increased mechanical strength and fiber stability into consideration, CS15 and CS30 E-spun fibers offer better alternatives to pure collagen fibers as scaffolds that can be potentially utilized in neural tissue repair and the development of future nanobiodevices.

  7. E-Spun Composite Fibers of Collagen and Dragline Silk Protein: Fiber Mechanics, Biocompatibility, and Application in Stem Cell Differentiation

    PubMed Central

    2015-01-01

    Biocomposite matrices with high mechanical strength, high stability, and the ability to direct matrix-specific stem cell differentiation are essential for the reconstruction of lesioned tissues in tissue engineering and cell therapeutics. Toward this end, we used the electrospinning technique to fabricate well-aligned composite fibers from collagen and spider dragline silk protein, obtained from the milk of transgenic goats, mimicking the native extracellular matrix (ECM) on a similar scale. Collagen and the dragline silk proteins were found to mix homogeneously at all ratios in the electrospun (E-spun) fibers. As a result, the ultimate tensile strength and elasticity of the fibers increased monotonically with silk percentage, whereas the stretchability was slightly reduced. Strikingly, we found that the incorporation of silk proteins to collagen dramatically increased the matrix stability against excessive fiber swelling and shape deformation in cell culture medium. When human decidua parietalis placental stem cells (hdpPSCs) were seeded on the collagen–silk matrices, the matrices were found to support cell proliferation at a similar rate as that of the pure collagen matrix, but they provided cell adhesion with reduced strengths and induced cell polarization at varied levels. Matrices containing 15 and 30 wt % silk in collagen (CS15, CS30) were found to induce a level of neural differentiation comparable to that of pure collagen. In particular, CS15 matrix induced the highest extent of cell polarization and promoted the development of extended 1D neural filaments strictly in-line with the aligned fibers. Taking the increased mechanical strength and fiber stability into consideration, CS15 and CS30 E-spun fibers offer better alternatives to pure collagen fibers as scaffolds that can be potentially utilized in neural tissue repair and the development of future nanobiodevices. PMID:25405355

  8. E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation.

    PubMed

    Zhu, Bofan; Li, Wen; Lewis, Randolph V; Segre, Carlo U; Wang, Rong

    2015-01-12

    Biocomposite matrices with high mechanical strength, high stability, and the ability to direct matrix-specific stem cell differentiation are essential for the reconstruction of lesioned tissues in tissue engineering and cell therapeutics. Toward this end, we used the electrospinning technique to fabricate well-aligned composite fibers from collagen and spider dragline silk protein, obtained from the milk of transgenic goats, mimicking the native extracellular matrix (ECM) on a similar scale. Collagen and the dragline silk proteins were found to mix homogeneously at all ratios in the electrospun (E-spun) fibers. As a result, the ultimate tensile strength and elasticity of the fibers increased monotonically with silk percentage, whereas the stretchability was slightly reduced. Strikingly, we found that the incorporation of silk proteins to collagen dramatically increased the matrix stability against excessive fiber swelling and shape deformation in cell culture medium. When human decidua parietalis placental stem cells (hdpPSCs) were seeded on the collagen-silk matrices, the matrices were found to support cell proliferation at a similar rate as that of the pure collagen matrix, but they provided cell adhesion with reduced strengths and induced cell polarization at varied levels. Matrices containing 15 and 30 wt % silk in collagen (CS15, CS30) were found to induce a level of neural differentiation comparable to that of pure collagen. In particular, CS15 matrix induced the highest extent of cell polarization and promoted the development of extended 1D neural filaments strictly in-line with the aligned fibers. Taking the increased mechanical strength and fiber stability into consideration, CS15 and CS30 E-spun fibers offer better alternatives to pure collagen fibers as scaffolds that can be potentially utilized in neural tissue repair and the development of future nanobiodevices. PMID:25405355

  9. In vitro assessment of ultraviolet protection of coloured cotton knitted fabrics with different structures under stretched and wet conditions.

    PubMed

    Wong, W Y; Lam, J K C; Kan, C W; Postle, R

    2015-04-01

    Clothing provides intrinsic ultraviolet (UV) protection that can be improved by colouration. However, the daily wearing condition can undermine the UV protection of coloured clothing wherein garments are stretched by body movement and/or wetted by perspiration of wearers. Knitwear is an indispensable clothing in summer, but its UV protection against wearing conditions lacks extensive study especially in a fabric structural approach. This article aimed at narrowing the research gap by focusing on the UV protection against stretch and wetness provided by various knitted fabric constructions incorporating the knit, tuck and miss stitches. The results show that the black knitted fabrics exhibit a significant reduction in the UV protection factor by 53% on average at a 10% stretch level. Knitted fabrics with miss stitches retained good UV protection even when the fabrics were stretched by 20% of its original dimensions. PMID:25205834

  10. Silk patterns made by direct femtosecond laser writing.

    PubMed

    Maximova, Ksenia; Wang, Xuewen; Balčytis, Armandas; Fan, Linpeng; Li, Jingliang; Juodkazis, Saulius

    2016-09-01

    Silk patterns in a film of amorphous water-soluble fibroin are created by tailored exposure to femtosecond-laser pulses (1030 nm/230 fs) without the use of photo-initiators. This shows that amorphous silk can be used as a negative tone photo-resist. It is also shown that water insoluble crystalline silk films can be precisely ablated from a glass substrate achieving the patterns of crystalline silk gratings on a glass substrate. Bio-compatible/degradable silk can be laser structured to achieve conformational transformations as demonstrated by infrared spectroscopy. PMID:27679677

  11. Surface immobilization of antibody on silk fibroin through conformational transition.

    PubMed

    Lu, Qiang; Wang, Xiaoqin; Zhu, Hesun; Kaplan, David L

    2011-07-01

    In recent studies silk fibroin has been explored as a new material platform for biosensors. Based on these developments, a procedure for the immobilization of antibodies on silk fibroin substrates was developed as a route to functionalizing these biosensor systems. By controlling the conformational transition of the silk fibroin, a primary antibody was immobilized and enriched at the surface of silk fibroin substrates under mild reaction conditions to maintain antibody function. Compared to chemical crosslinking, the immobilization efficiency in the present approach was increased significantly. This method, achieving high loading of antibody while retaining function, improves the feasibility of silk fibroin as a platform material for biosensor applications.

  12. Biomedical Applications of Mulberry Silk and its Proteins: A Review

    NASA Astrophysics Data System (ADS)

    Nivedita, S.; Sivaprasad, V.

    2014-04-01

    Silk is a natural fibre used mainly for aesthetic purposes. It has also been used for making surgical sutures for centuries. The recent rediscovery of silk's biological properties have led to new areas of research and utilization in cosmetic, health and medical fields. The silk proteins, fibroin and sericin are processed into biomaterials because of bio-compatibility, bio-degradability, excellent mechanical properties, thermo tolerance and UV protective properties. Silk proteins could be obtained as pure liquids and regenerated in different forms suitable for tissue engineering applications. This paper presents some of the biomedical products and biomaterials made from native, degraded and regenerated silk and their fabrication techniques.

  13. Native spider silk as a biological optical fiber

    NASA Astrophysics Data System (ADS)

    Huby, N.; Vié, V.; Renault, A.; Beaufils, S.; Lefèvre, T.; Paquet-Mercier, F.; Pézolet, M.; Bêche, B.

    2013-03-01

    In this study, we demonstrate the use of eco-friendly native spider silk as an efficient optical fiber in air, highly bent fibers, and physiological liquid. We also integrated the silk filament in a photonic chip made of polymer microstructures fabricated by UV lithography. The molding process is non-destructive for silk and leads to an efficient micro-optical coupling between silk and synthetic optical structures. These optical performances combined with the unique biocompatibility, bioresorbability, flexibility, and tensile strength of silk filaments pave the way for new applications in biological media and for original biophotonic purposes.

  14. Spider silk: from soluble protein to extraordinary fiber.

    PubMed

    Heim, Markus; Keerl, David; Scheibel, Thomas

    2009-01-01

    Spider silks outrival natural and many synthetic fibers in terms of their material characteristics. In nature, the formation of a solid fiber from soluble spider silk proteins is the result of complex biochemical and physical processes that take place within specialized spinning organs. Herein, we present natural and artificial silk production processes, from gene transcription to silk protein processing and finally fiber assembly. In-vivo and in-vitro findings in the field of spider silk research are the basis for the design of new proteins and processing strategies, which will enable applications of these fascinating protein-based materials in technical and medical sciences. PMID:19212993

  15. Multifunctional silk-tropoelastin biomaterial systems

    PubMed Central

    Ghezzi, Chiara E.; Rnjak-Kovacina, Jelena; Weiss, Anthony S.; Kaplan, David L.

    2015-01-01

    New multifunctional, degradable, polymeric biomaterial systems would provide versatile platforms to address cell and tissue needs in both in vitro and in vivo environments. While protein-based composites or alloys are the building blocks of biological organisms, similar systems have not been largely exploited to dates to generate ad hoc biomaterials able to control and direct biological functions, by recapitulating their inherent structural and mechanical complexities. Therefore, we have recently proposed silk-tropoelastin material platforms able to conjugate a mechanically robust and durable protein, silk, to a highly flexible and biologically active protein, tropoelastin. This review focuses on the elucidation of the interactions between silk and tropoelastin in order to control material structure, properties, and ultimately functions. In addition, an approach is provided for novel material designs to provide tools to control biological outcomes via surface roughness, elasticity, and net charge for neuronal and mesenchymal stem cell-based tissue engineering. PMID:26005219

  16. The impact behaviour of silk cocoons.

    PubMed

    Chen, Fujia; Hesselberg, Thomas; Porter, David; Vollrath, Fritz

    2013-07-15

    Silk cocoons, constructed by silkmoths (Lepidoptera), are protective structural composites. Some cocoons appear to have evolved towards structural and material optimisation in order to sustain impact strikes from predators and hinder parasite ingress. This study investigates the protective properties of silk cocoons with different morphologies by evaluating their impact resistance and damage tolerance. Finite element analysis was used to analyse empirical observations of the quasi-static impact response of the silk cocoons, and to evaluate the separate benefits of the structures and materials through the deformation and damage mechanism. We use design principles from composite engineering in order to understand the structure-property-function relationship of silkworm cocoons. Understanding the highly evolved survival strategies of the organisms building natural cocoons will hopefully lead to inspiration that in turn could lead to improved composite design.

  17. Atomistic model of the spider silk nanostructure

    NASA Astrophysics Data System (ADS)

    Keten, Sinan; Buehler, Markus J.

    2010-04-01

    Spider silk is an ultrastrong and extensible self-assembling biopolymer that outperforms the mechanical characteristics of many synthetic materials including steel. Here we report atomic-level structures that represent aggregates of MaSp1 proteins from the N. Clavipes silk sequence based on a bottom-up computational approach using replica exchange molecular dynamics. We discover that poly-alanine regions predominantly form distinct and orderly beta-sheet crystal domains while disorderly structures are formed by poly-glycine repeats, resembling 31-helices. These could be the molecular source of the large semicrystalline fraction observed in silks, and also form the basis of the so-called "prestretched" molecular configuration. Our structures are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content.

  18. Silk fibroin in tissue engineering.

    PubMed

    Kasoju, Naresh; Bora, Utpal

    2012-07-01

    Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field.

  19. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications

    PubMed Central

    Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  20. Salt-leached silk scaffolds with tunable mechanical properties.

    PubMed

    Yao, Danyu; Dong, Sen; Lu, Qiang; Hu, Xiao; Kaplan, David L; Zhang, Bingbo; Zhu, Hesun

    2012-11-12

    Substrate mechanical properties have remarkable influences on cell behavior and tissue regeneration. Although salt-leached silk scaffolds have been used in tissue engineering, applications in softer tissue regeneration can be encumbered with excessive stiffness. In the present study, silk-bound water interactions were regulated by controlling processing to allow the preparation of salt-leached porous scaffolds with tunable mechanical properties. Increasing silk-bound water interactions resulted in reduced silk II (β-sheet crystal) formation during salt-leaching, which resulted in a modulus decrease in the scaffolds. The microstructures as well as degradation behavior were also changed, implying that this water control and salt-leaching approach can be used to achieve tunable mechanical properties. Considering the utility of silk in various fields of biomedicine, the results point to a new approach to generate silk scaffolds with controllable properties to better mimic soft tissues by combining scaffold preparation methods and silk self-assembly in aqueous solutions.

  1. Molecular nanosprings in spider capture-silk threads

    NASA Astrophysics Data System (ADS)

    Becker, Nathan; Oroudjev, Emin; Mutz, Stephanie; Cleveland, Jason P.; Hansma, Paul K.; Hayashi, Cheryl Y.; Makarov, Dmitrii E.; Hansma, Helen G.

    2003-04-01

    Spider capture silk is a natural material that outperforms almost any synthetic material in its combination of strength and elasticity. The structure of this remarkable material is still largely unknown, because spider-silk proteins have not been crystallized. Capture silk is the sticky spiral in the webs of orb-weaving spiders. Here we are investigating specifically the capture spiral threads from Araneus, an ecribellate orb-weaving spider. The major protein of these threads is flagelliform protein, a variety of silk fibroin. We present models for molecular and supramolecular structures of flagelliform protein, derived from amino acid sequences, force spectroscopy (molecular pulling) and stretching of bulk capture web. Pulling on molecules in capture-silk fibres from Araneus has revealed rupture peaks due to sacrificial bonds, characteristic of other self-healing biomaterials. The overall force changes are exponential for both capture-silk molecules and intact strands of capture silk.

  2. Silk-microfluidics for advanced biotechnological applications: A progressive review.

    PubMed

    Konwarh, Rocktotpal; Gupta, Prerak; Mandal, Biman B

    2016-01-01

    Silk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk. Microfluidic channel networks within porous silk scaffolds ensure optimal nutrient and oxygen supply apart from serving as precursors for vascularization in tissue engineering applications. On the other hand, unique topographical features and surface wettability of natural silk fibers have inspired development of a number of simple and cost-effective devices for applications like blood typing and chemical sensing. This review mirrors the recent progress and challenges in the domain of silk-microfluidics for prospective avant-garde applications in the realm of biotechnology. PMID:27165254

  3. Variation in Protein Intake Induces Variation in Spider Silk Expression

    PubMed Central

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  4. From silk spinning in insects and spiders to advanced silk fibroin drug delivery systems.

    PubMed

    Werner, Vera; Meinel, Lorenz

    2015-11-01

    The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin (SF) to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load.

  5. From silk spinning in insects and spiders to advanced silk fibroin drug delivery systems.

    PubMed

    Werner, Vera; Meinel, Lorenz

    2015-11-01

    The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin (SF) to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load. PMID:25801494

  6. Sensitization to silk allergen among workers of silk filatures in India: a comparative study

    PubMed Central

    Gowda, Giriyanna; Vijayeendra, Anagha Manakari; Sarkar, Nivedita; Nagaraj, Chitra; Masthi, Nugehally Raju Ramesh

    2016-01-01

    Background Sericulture plays an eminent role in development of rural economy in India. Silk filature is a unit where silk is unwound from the cocoons and the strands are collected into skeins. During the process workers are exposed to the high molecular weight proteins like Sericin and Fibroin which are potent allergens leading to sensitization over a period of time and subsequently occupational related health disorders. Objective To identify and compare the magnitude of silk allergen sensitization in workers of silk filatures. Methods A community based comparative descriptive study was conducted for a period of 1 year at Ramanagara in south India. One hundred twenty subjects working in the silk filatures formed the study group. For comparison, 2 types of controls were selected viz.120 subjects who were not working in the silk filatures but resided in the same geographical area (control A) and 360 subjects who were not working in silk filatures as well not residing in the same geographical area (control B). Skin prick test was used to identify the silk allergen sensitization. Results Mean age was 34.14 ± 2.84 years in the study group. Mean age was 40.59 ± 14.40 years and 38.54 ± 12.20 years in control A and control B, respectively. There were 35 males (29.16%) and 85 females (70.84%) in the study group. There were 58 (48.34%) males and 62 (51.66%) females and 152 (42.2%) males and 208 females (57.8%) in control A and control B, respectively. Sensitization to silk allergen was 35.83% in the study group and 20.83% in the control group A and 11.11% in control group B. There was difference in the allergen sensitivity between the study group and control groups and it was statistically significant (chi-square = 38.08; p < 0.001). Conclusion There is high burden of silk allergen sensitization among silk filature workers. PMID:27141481

  7. Thermal comfort of diving dry suit with the use of the warp-knitted fabric

    NASA Astrophysics Data System (ADS)

    Lenfeldova, I.; Hes, L.; Annayeva, M.

    2016-07-01

    Achievement of a good level of thermal comfort of under-suits for dry suit diving which enable also the required mobility of the diver in water is inevitable not only for the scuba sport and commercial diving people but also for safety and activities of people who make research under water. The aim of this work is to verify whether selected knitted structures (which are not waterproof) can substitute the currently used textile materials (nonwovens). This dry-suit innovation is intended to increase the properties which correspond to the perception of thermal comfort of the diver in water. To achieve this objective, the Alambeta thermal tester was used in the study for experimental determination of thermal resistance of spacer warp knitted fabric at varying contact pressure. The studied textiles were expected to be very suitable for the intended application due to their low compressibility which yields relatively high thickness a hence increased thermal insulation.

  8. Apatite-coated Silk Fibroin Scaffolds to Healing Mandibular Border Defects in Canines

    PubMed Central

    Zhao, Jun; Zhang, Zhiyuan; Wang, Shaoyi; Sun, Xiaojuan; Zhang, Xiuli; Chen, Jake; Kaplan, David L.; Jiang, Xinquan

    2010-01-01

    Tissue engineering has become a new approach for repairing bony defects. Highly porous osteoconductive scaffolds perform the important role for the success of bone regeneration. By biomimetic strategy, apatite-coated porous biomaterial based on silk fibroin scaffolds (SS) might provide an enhanced osteogenic environment for bone-related outcomes. To assess the effects of apatite-coated silk fibroin (mSS) biomaterials for bone healing as a tissue engineered bony scaffold, we explored a tissue engineered bony graft using mSS seeded with osteogenically induced autologous bone marrow stromal cells (bMSCs) to repair inferior mandibular border defects in a canine model. The results were compared with those treated with bMSCs/SS constructs, mSS alone, SS alone, autologous mandibular grafts and untreated blank defects. According to radiographic and histological examination, new bone formation was observed from 4 weeks post-operation, and the defect site was completely repaired after 12 months for the bMSCs/mSS group. In the bMSCs/SS group, new bone formation was observed with more residual silk scaffold remaining at the center of the defect compared with the bMSCs/mSS group. The engineered bone with bMSCs/mSS achieved satisfactory bone mineral densities (BMD) at 12 months post-operation close to those of normal mandible (p>0.05). The quantities of newly formed bone area for the bMSCs/mSS group was higher than the bMSCs/SS group (p<0.01), but no significant differences were found when compared with the autograft group (p>0.05). In contrast, bony defects remained in the center with undegraded silk fibroin scaffold and fibrous connective tissue, and new bone only formed at the periphery in the groups treated with mSS or SS alone. The results suggested apatite-coated silk fibroin scaffolds combined with bMSCs could be successfully used to repair mandibular critical size border defects and the premineralization of these porous silk fibroin protein scaffolds provided an

  9. About the automated pattern creation of 3D jacquard double needle bed warp knitted structures

    NASA Astrophysics Data System (ADS)

    Renkens, W.; Kyosev, Y.

    2016-07-01

    Three dimensional structures can be produced on jacquard warp knitting machines with double needle bed. This work presents theoretical considerations about the modelling and simulation of these structures. After that a method is described, how to obtain production parameters from the simulation data. The analysis demonstrates, that the automated pattern creation of 3D structures is not always possible and not all mathematical solutions of the problem can be knittable.

  10. Indium 111-labeled platelet deposition in woven and knitted Dacron bifurcated aortic grafts with the same patient as a clinical model

    SciTech Connect

    Robicsek, F.; Duncan, G.D.; Anderson, C.E.; Daugherty, H.K.; Cook, J.W.; Selle, J.G.; Hess, P.J.; Easton, E.J.; Burtoft, J.N.

    1987-06-01

    A study was designed to compare platelet deposition between knitted and woven Dacron grafts in the same patient. Twenty patients received aortoiliac or aortofemoral bifurcated Dacron grafts, each composed of one woven and one double-velour knitted limb. External nuclear graft imaging was carried out after injection of autologous platelets labeled with indium 111. The patients were studied postoperatively in time periods ranging from 6 days to 42 months. Platelet accumulation was almost identical in knitted and woven limbs in all patients. This study appears to indicate that there is no difference in thrombogenicity between knitted and woven bifurcated Dacron grafts in the aortoiliac or aortofemoral positions measured by platelet accumulation.

  11. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  12. The properties of weft knitted fabric medical and preventive treatment action using eco-raw materials

    NASA Astrophysics Data System (ADS)

    Halavska, L.; Batrak, O.

    2016-07-01

    A new trend in the world is the clothing production using the new types of ecological raw materials application - milk, pineapple, coconut, hemp, banana, eucalyptus, clams, corn, bamboo, soya, nettle yarn. This makes it possible to create textile materials of new generation with unique antibacterial and antiseptic properties. Such materials have a positive preventive and sometimes therapeutic effect on people, and their health. Eco-raw materials clothing is able to protect the human body from the environment harmful effects: cold, heat, rain, dust, opportunely remove from underclothing layer the steam and gases, sweat; maintain in underclothing layer the necessary microclimate for normal organism functioning. Study of knitwear consumer properties, produced with eco-materials, is an urgent task of the world vector, directed on ecological environmental protection. This paper presents the research results of hygroscopicity and capillarity weft knitted fabrics, what knitted from different types of eco-raw materials: bamboo yarn, yarn containing soybean and nettle yarn. Character of influence of the liquid raising level changes depending on the experiment time and the knitting structure is revealed.

  13. Precise patterning of silk microstructures using photolithography.

    PubMed

    Kurland, Nicholas E; Dey, Tuli; Kundu, Subhas C; Yadavalli, Vamsi K

    2013-11-20

    Photolithography is used in conjunction with a "silk fibroin photoresist" to form precise protein microstructures directly and rapidly on a variety of substrates. High-resolution features in two and three dimensions with line widths down to one micrometer are formed. Photo-crosslinked protein structures guide cell adhesion, providing precise spatial control of cells without requiring adhesive ligands.

  14. Silk Fibroin for Flexible Electronic Devices.

    PubMed

    Zhu, Bowen; Wang, Hong; Leow, Wan Ru; Cai, Yurong; Loh, Xian Jun; Han, Ming-Yong; Chen, Xiaodong

    2016-06-01

    Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces.

  15. Cytocompatibility of a silk fibroin tubular scaffold.

    PubMed

    Wang, Jiannan; Wei, Yali; Yi, Honggen; Liu, Zhiwu; Sun, Dan; Zhao, Huanrong

    2014-01-01

    Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23N and the Young's modulus was 0.2-0.3MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts.

  16. The Ancient Art of Silk Painting

    ERIC Educational Resources Information Center

    Yonker, Kim

    2010-01-01

    In this article, the author describes a silk-painting project with a sea-creature theme for eighth-grade students. Other themes can be used such as geometric quilt designs, tropical rain forest, large flowers, Art Nouveau motifs, portraits and more. (Contains 2 resources.)

  17. Constructing Knowledge with Silk Road Visuals

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner

    2008-01-01

    In this study a group of elementary teachers use illustrations, rather than written text, to introduce their students to the peoples and places of the ancient silk routes. The illustrations are from two picture books; "Marco Polo," written by Gian Paolo Cesaerani and illustrated by Piero Ventura (1977), and "We're Riding on a Caravan: An Adventure…

  18. Antimicrobial functionalized genetically engineered spider silk

    PubMed Central

    Gomes, Sílvia; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.; Kaplan, David L.

    2011-01-01

    Genetically engineered fusion proteins offer potential as multifunctional biomaterials for medical use. Fusion or chimeric proteins can be formed using recombinant DNA technology by combining nucleotide sequences encoding different peptides or proteins that are otherwise not found together in nature. In the present study, three new fusion proteins were designed, cloned and expressed and assessed for function, by combining the consensus sequence of dragline spider silk with three different antimicrobial peptides. The human antimicrobial peptides human neutrophil defensin 2 (HNP-2), human neutrophil defensins 4 (HNP-4) and hepcidin were fused to spider silk through bioengineering. The spider silk domain maintained its self-assembly features, a key aspect of these new polymeric protein biomaterials, allowing the formation of β-sheets to lock in structures via physical interactions without the need for chemical cross-linking. These new functional silk proteins were assessed for antimicrobial activity against Gram - Escherichia coli and Gram + Staphylococcus aureus and microbicidal activity was demonstrated. Dynamic light scattering was used to assess protein aggregation to clarify the antimicrobial patterns observed. Attenuated-total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and circular dichroism (CD) were used to assess the secondary structure of the new recombinant proteins. In vitro cell studies with a human osteosarcoma cell line (SaOs-2) demonstrated the compatibility of these new proteins with mammalian cells. PMID:21458065

  19. Silk-Screening a la Andy.

    ERIC Educational Resources Information Center

    Mathes, Len

    2000-01-01

    Describes a project that was used with advanced 11th and 12th grade art students in which they created silk-screen self-portraits in the style of Andy Warhol. Discusses the process of creating the portraits and the activities that concluded the project. Lists the needed materials. (CMK)

  20. Structural and optical studies on selected web spinning spider silks.

    PubMed

    Karthikeyani, R; Divya, A; Mathavan, T; Asath, R Mohamed; Benial, A Milton Franklin; Muthuchelian, K

    2017-01-01

    This study investigates the structural and optical properties in the cribellate silk of the sheet web spider Stegodyphus sarasinorum Karsch (Eresidae) and the combined dragline, viscid silk of the orb-web spiders Argiope pulchella Thorell (Araneidae) and Nephila pilipes Fabricius (Nephilidae). X-ray diffraction (XRD), Fourier transform infra-red (FTIR), Ultraviolet-visible (UV-Vis) and fluorescence spectroscopic techniques were used to study these three spider silk species. X-ray diffraction data are consistent with the amorphous polymer network which is arising from the interaction of larger side chain amino acid contributions due to the poly-glycine rich sequences known to be present in the proteins of cribellate silk. The same amorphous polymer networks have been determined from the combined dragline and viscid silk of orb-web spiders. From FTIR spectra the results demonstrate that, cribellate silk of Stegodyphus sarasinorum, combined dragline viscid silk of Argiope pulchella and Nephila pilipes spider silks are showing protein peaks in the amide I, II and III regions. Further they proved that the functional groups present in the protein moieties are attributed to α-helical and side chain amino acid contributions. The optical properties of the obtained spider silks such as extinction coefficients, refractive index, real and imaginary dielectric constants and optical conductance were studied extensively from UV-Vis analysis. The important fluorescent amino acid tyrosine is present in the protein folding was investigated by using fluorescence spectroscopy. This research would explore the protein moieties present in the spider silks which were found to be associated with α-helix and side chain amino acid contributions than with β-sheet secondary structure and also the optical relationship between the three different spider silks are investigated. Successful spectroscopic knowledge of the internal protein structure and optical properties of the spider silks could

  1. Structural and optical studies on selected web spinning spider silks.

    PubMed

    Karthikeyani, R; Divya, A; Mathavan, T; Asath, R Mohamed; Benial, A Milton Franklin; Muthuchelian, K

    2017-01-01

    This study investigates the structural and optical properties in the cribellate silk of the sheet web spider Stegodyphus sarasinorum Karsch (Eresidae) and the combined dragline, viscid silk of the orb-web spiders Argiope pulchella Thorell (Araneidae) and Nephila pilipes Fabricius (Nephilidae). X-ray diffraction (XRD), Fourier transform infra-red (FTIR), Ultraviolet-visible (UV-Vis) and fluorescence spectroscopic techniques were used to study these three spider silk species. X-ray diffraction data are consistent with the amorphous polymer network which is arising from the interaction of larger side chain amino acid contributions due to the poly-glycine rich sequences known to be present in the proteins of cribellate silk. The same amorphous polymer networks have been determined from the combined dragline and viscid silk of orb-web spiders. From FTIR spectra the results demonstrate that, cribellate silk of Stegodyphus sarasinorum, combined dragline viscid silk of Argiope pulchella and Nephila pilipes spider silks are showing protein peaks in the amide I, II and III regions. Further they proved that the functional groups present in the protein moieties are attributed to α-helical and side chain amino acid contributions. The optical properties of the obtained spider silks such as extinction coefficients, refractive index, real and imaginary dielectric constants and optical conductance were studied extensively from UV-Vis analysis. The important fluorescent amino acid tyrosine is present in the protein folding was investigated by using fluorescence spectroscopy. This research would explore the protein moieties present in the spider silks which were found to be associated with α-helix and side chain amino acid contributions than with β-sheet secondary structure and also the optical relationship between the three different spider silks are investigated. Successful spectroscopic knowledge of the internal protein structure and optical properties of the spider silks could

  2. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells.

    PubMed

    Yang, Mingying; Shuai, Yajun; Zhang, Can; Chen, Yuyin; Zhu, Liangjun; Mao, Chuanbin; OuYang, Hongwei

    2014-04-14

    Biomacromolecules have been used as templates to grow hydroxyapatite crystals (HAps) by biomineralization to fabricate mineralized materials for potential application in bone tissue engineering. Silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation. Mineralization of the silk sericin from Antheraea pernyi (A. pernyi) silkworm has rarely been reported. Here, for the first time, nucleation of HAps on A. pernyi silk sericin (AS) was attempted through a wet precipitation method and consequently the cell viability and osteogenic differentiation of BMSCs on mineralized AS were investigated. It was found that AS mediated the nucleation of HAps in the form of nanoneedles while self-assembling into β-sheet conformation, leading to the formation of a biomineralized protein based biomaterial. The cell viability assay of BMSCs showed that the mineralization of AS stimulated cell adhesion and proliferation, showing that the resultant AS biomaterial is biocompatible. The differentiation assay confirmed that the mineralized AS significantly promoted the osteogenic differentiation of BMSCs when compared to nonmineralized AS as well as other types of sericin (B. mori sericin), suggesting that the resultant mineralized AS biomaterial has potential in promoting bone formation. This result represented the first work proving the osteogenic differentiation of BMSCs directed by silk sericin. Therefore, the biomineralization of A. pernyi silk sericin coupled with seeding BMSCs on the resultant mineralized biomaterials is a useful strategy to develop the potential application of this unexplored silk sericin in the field of bone tissue engineering. This study lays the foundation for the use of A. pernyi silk sericin as a potential scaffold for tissue engineering.

  3. Biomimetic Nucleation of Hydroxyapatite Crystals Mediated by Antheraea pernyi Silk Sericin Promotes Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stem Cells

    PubMed Central

    2015-01-01

    Biomacromolecules have been used as templates to grow hydroxyapatite crystals (HAps) by biomineralization to fabricate mineralized materials for potential application in bone tissue engineering. Silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation. Mineralization of the silk sericin from Antheraea pernyi (A. pernyi) silkworm has rarely been reported. Here, for the first time, nucleation of HAps on A. pernyi silk sericin (AS) was attempted through a wet precipitation method and consequently the cell viability and osteogenic differentiation of BMSCs on mineralized AS were investigated. It was found that AS mediated the nucleation of HAps in the form of nanoneedles while self-assembling into β-sheet conformation, leading to the formation of a biomineralized protein based biomaterial. The cell viability assay of BMSCs showed that the mineralization of AS stimulated cell adhesion and proliferation, showing that the resultant AS biomaterial is biocompatible. The differentiation assay confirmed that the mineralized AS significantly promoted the osteogenic differentiation of BMSCs when compared to nonmineralized AS as well as other types of sericin (B. mori sericin), suggesting that the resultant mineralized AS biomaterial has potential in promoting bone formation. This result represented the first work proving the osteogenic differentiation of BMSCs directed by silk sericin. Therefore, the biomineralization of A. pernyi silk sericin coupled with seeding BMSCs on the resultant mineralized biomaterials is a useful strategy to develop the potential application of this unexplored silk sericin in the field of bone tissue engineering. This study lays the foundation for the use of A. pernyi silk sericin as a potential scaffold for tissue engineering. PMID:24666022

  4. Electrodeposited silk coatings for functionalized implant applications

    NASA Astrophysics Data System (ADS)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was

  5. The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior

    PubMed Central

    An, Bo; DesRochers, Teresa M.; Qin, Guokui; Xia, Xiaoxia; Thiagarajan, Geetha; Brodsky, Barbara; Kaplan, David

    2012-01-01

    Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in E. coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyrogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications. PMID:23088839

  6. The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior.

    PubMed

    An, Bo; DesRochers, Teresa M; Qin, Guokui; Xia, Xiaoxia; Thiagarajan, Geetha; Brodsky, Barbara; Kaplan, David L

    2013-01-01

    Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in Escherichia coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications.

  7. Uptake of atmospheric carbon dioxide into silk fiber by silkworms.

    PubMed

    Magoshi, Jun; Tanaka, Toshihisa; Sasaki, Haruto; Kobayashi, Masatoshi; Magoshi, Yoshiko; Tsuda, Hidetoshi; Becker, Mary A; Inoue, Shun-ichi; Ishimaru, Ken

    2003-01-01

    The relation between the uptake of atmospheric CO(2) and insect's production of silk fiber has not yet been reported. Here, we provide the first quantitative demonstrations that four species of silkworms (Bombyx mori, Samia cynthia ricini, Antheraea pernyi, and Antheraea yamamai) and a silk-producing spider (Nephila clavata) incorporate atmospheric CO(2) into their silk fibers. The abundance of (13)C incorporated from the environment was determined by mass spectrometry and (13)C NMR measurements. Atmospheric CO(2) was incorporated into the silk fibers in the carbonyl groups of alanine, aspartic acid, serine, and glycine and the C(gamma) of aspartic acid. We show a simple model for the uptake of atmospheric CO(2) by silkworms. These results will demonstrate that silkworm has incorporated atmospheric CO(2) into silk fiber via the TCA cycle; however, the magnitude of uptake into the silk fibers is smaller than that consumed by the photosynthesis in trees and coral reefs.

  8. Bioengineered silk proteins to control cell and tissue functions.

    PubMed

    Preda, Rucsanda C; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L

    2013-01-01

    Silks are defined as protein polymers that are spun into fibers by some lepidoptera larvae such as silkworms, spiders, scorpions, mites, and flies. Silk proteins are usually produced within specialized glands in these animals after biosynthesis in epithelial cells that line the glands, followed by secretion into the lumen of the gland prior to spinning into fibers.The most comprehensively characterized silks are from the domesticated silkworm (Bombyx mori) and from some spiders (Nephila clavipes and Araneus diadematus). Silkworm silk has been used commercially as biomedical sutures for decades and in textile production for centuries. Because of their impressive mechanical properties, silk proteins provide an important set of material options in the fields of controlled drug release, and for biomaterials and scaffolds for tissue engineering. Silkworm silk from B. mori consists primarily of two protein components, fibroin, the structural protein of silk fibers, and sericins, the water-soluble glue-like proteins that bind the fibroin fibers together. Silk fibroin consists of heavy and light chain polypeptides linked by a disulfide bond. Fibroin is the protein of interest for biomedical materials and it has to be purified/extracted from the silkworm cocoon by removal of the sericin. Characteristics of silks, including biodegradability, biocompatibility, controllable degradation rates, and versatility to generate different material formats from gels to fibers and sponges, have attracted interest in the field of biomaterials. Cell culture and tissue formation using silk-based biomaterials have been pursued, where appropriate cell adhesion, proliferation, and differentiation on or in silk biomaterials support the regeneration of tissues. The relative ease with which silk proteins can be processed into a variety of material morphologies, versatile chemical functionalization options, processing in water or solvent, and the related biological features of biocompatibility and

  9. Surface and Wetting Properties of Embiopteran (Webspinner) Nanofiber Silk.

    PubMed

    Osborn Popp, Thomas M; Addison, J Bennett; Jordan, Jacob S; Damle, Viraj G; Rykaczewski, Konrad; Chang, Shery L Y; Stokes, Grace Y; Edgerly, Janice S; Yarger, Jeffery L

    2016-05-10

    Insects of the order Embioptera, known as embiopterans, embiids, or webspinners, weave silk fibers together into sheets to make shelters called galleries. In this study, we show that silk galleries produced by the embiopteran Antipaluria urichi exhibit a highly hydrophobic wetting state with high water adhesion macroscopically equivalent to the rose petal effect. Specifically, the silk sheets have advancing contact angles above 150°, but receding contact angle approaching 0°. The silk sheets consist of layered fiber bundles with single strands spaced by microscale gaps. Scanning and transmission electron microscopy (SEM, TEM) images of silk treated with organic solvent and gas chromatography mass spectrometry (GC-MS) of the organic extract support the presence of a lipid outer layer on the silk fibers. We use cryogenic SEM to demonstrate that water drops reside on only the first layer of the silk fibers. The area fraction of this sparse outer silk layers is 0.1 to 0.3, which according to the Cassie-Baxter equation yields an effective static contact angle of ∼130° even for a mildly hydrophobic lipid coating. Using high magnification optical imaging of the three phase contact line of a water droplet receding from the silk sheet, we show that the high adhesion of the drop stems from water pinning along bundles of multiple silk fibers. The bundles likely form when the drop contact line is pinned on individual fibers and pulls them together as it recedes. The dynamic reorganization of the silk sheets during the droplet movement leads to formation of "super-pinning sites" that give embiopteran silk one of the strongest adhesions to water of any natural hydrophobic surface. PMID:27062909

  10. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber.

    PubMed

    Hinman, M B; Lewis, R V

    1992-09-25

    Spider dragline silk is a unique protein fiber possessing both high tensile strength and high elasticity. A partial cDNA clone for one dragline silk protein (Spidroin 1) was previously isolated. However, the predicted amino acid sequence could not account for the amino acid composition of dragline silk. We have isolated a partial cDNA clone for another dragline silk protein (Spidroin 2), demonstrating that dragline silk is composed of multiple proteins. The amino acid sequence exhibits an entirely different repetitive motif than Spidroin 1. Spidroin 2 is predicted to consist of linked beta-turns in proline-rich regions which alternate with beta-sheet regions composed of polyalanine segments. This structure for Spidroin 2 provides a model for dragline silk structure and function.

  11. Structure-Function-Property-Design Interplay in Biopolymers: Spider Silk

    PubMed Central

    Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L.

    2013-01-01

    Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures, and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. PMID:23962644

  12. Spider silk: a novel optical fibre for biochemical sensing

    NASA Astrophysics Data System (ADS)

    Hey Tow, Kenny; Chow, Desmond M.; Vollrath, Fritz; Dicaire, Isabelle; Gheysens, Tom; Thévenaz, Luc

    2015-09-01

    Whilst being thoroughly used in the textile industry and biomedical sector, silk has not yet been exploited for fibre optics-based sensing although silk fibres directly obtained from spiders can guide light and have shown early promises to being sensitive to some solvents. In this communication, a pioneering optical fibre sensor based on spider silk is reported, demonstrating for the first time the use of spider silk as an optical fibre sensor to detect polar solvents such as water, ammonia and acetic acid.

  13. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  14. Hierarchical biomineralization of calcium carbonate regulated by silk microspheres.

    PubMed

    Zhang, Xiuli; Fan, Zhihai; Lu, Qiang; Huang, Yongli; Kaplan, David L; Zhu, Hesun

    2013-06-01

    As an analog of the main protein contained in nacre regenerated Bombyx mori silk fibroin has a significant influence on the morphology and polymorphic nature of CaCO3 in the biomineralization process. A number of studies have implied that the self-assembling aggregate structure of silk fibroin is a key factor in controlling CaCO3 aggregation. Further insight into this role is necessary with a particular need to prepare silk fibroin aggregates with homogeneous structures to serve as templates for the mineralization process. Here we have prepared homogeneous silk microspheres to serve as templates for CaCO3 mineralization in order to provide an experimental insight into silk-regulated crystallization processes. CaCO3 particles with different nano- and microstructures, and their polymorphs, were successfully formed by controlling the mineralization process. The key function of silk aggregation in controlling the morphology and polymorphic nature of CaCO3 particles was confirmed. A regulating effect of silk on the spatial features was also observed. A two-step process for silk fibroin-regulated biomineralization was found, with different levels of heterogeneous nucleation and aggregation. A full understanding of silk fibroin-regulated biomineralization mechanisms would help in understanding the function of organic polymers in natural biomineralization, and provide a way forward in the design and synthesis of new materials in which organic-inorganic interfaces are the keys to function, biological interfaces and many related material features. PMID:23518477

  15. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels.

    PubMed

    Gogurla, Narendar; Sinha, Arun K; Naskar, Deboki; Kundu, Subhas C; Ray, Samit K

    2016-04-14

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms. PMID:26996157

  16. Silk genes support the single origin of orb webs.

    PubMed

    Garb, Jessica E; Dimauro, Teresa; Vo, Victoria; Hayashi, Cheryl Y

    2006-06-23

    The orb web is a spectacular evolutionary innovation that enables spiders to catch flying prey. This elegant, geometric structure is woven with silk fibers that are renowned for their superior mechanical properties. We used silk gland expression libraries to address a long-standing controversy concerning the evolution of the orb-web architecture. Contrary to the view that the orb-web design evolved multiple times, we found that the distribution and phylogeny of silk proteins support a single, ancient origin of the orb web at least 136 million years ago. Furthermore, we substantially expanded the repository of silk sequences that can be used for the synthesis of high-performance biomaterials.

  17. Cervical Tissue Engineering Using Silk Scaffolds and Human Cervical Cells

    PubMed Central

    Sanchez, Cristina C.; Rice, William L.; Socrate, Simona; Kaplan, David L.

    2010-01-01

    Spontaneous preterm birth is a frequent complication of pregnancy and a common cause of morbidity in childhood. Obstetricians suspect abnormalities of the cervix are implicated in a significant number of preterm births. The cervix is composed of fibrous connective tissue and undergoes significant remodeling in preparation for birth. We hypothesized that a tissue engineering strategy could be used to develop three-dimensional cervical-like tissue constructs that would be suitable for investigating cervical remodeling. Cervical cells were isolated from two premenopausal women undergoing hysterectomy for a benign gynecological condition, and the cells were seeded on porous silk scaffolds in the presence or absence of dynamic culture and with 10% or 20% serum. Morphological, biochemical, and mechanical properties were measured during the 8-week culture period. Cervical cells proliferated in three-dimensions and synthesized an extracellular matrix with biochemical constituents and morphology similar to native tissue. Compared to static culture, dynamic culture was associated with significantly increased collagen deposition (p < 0.05), sulfated glycosaminoglycan synthesis (p < 0.05), and mechanical stiffness (p < 0.05). Serum concentration did not affect measured variables. Relevant human tissue-engineered cervical-like constructs constitute a novel model system for a range of fundamental and applied studies related to cervical remodeling. PMID:20121593

  18. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine

    PubMed Central

    Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.

    2009-01-01

    Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154

  19. Silk Microgels Formed by Proteolytic Enzyme Activity

    PubMed Central

    Samal, Sangram K.; Dash, Mamoni; Chiellini, Federica; Kaplan, David L.; Chiellini, Emo

    2013-01-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMG) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer scaled crystals in native silkworm fibers. SDS-PAGE and zeta potential results demonstrated that α-chymotrypsin utilized only the nonamorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient potential and that the prepared SMGS have useful features for studies related to biomaterials and pharmaceutical needs. This process is also an easy approach to obtain the amorphous peptide chains for further study. PMID:23756227

  20. Silk constructs for delivery of muskuloskeletal therapeutics

    PubMed Central

    Meinel, Lorenz; Kaplan, David L.

    2012-01-01

    Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which render SF so exciting for biomedical applications. his pattern along with the versatility of this biopolymer have been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement. PMID:22522139

  1. Silk microgels formed by proteolytic enzyme activity.

    PubMed

    Samal, Sangram K; Dash, Mamoni; Chiellini, Federica; Kaplan, David L; Chiellini, Emo

    2013-09-01

    The proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMGs) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer-scaled crystals in native silkworm fibers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zeta potential results demonstrated that α-chymotrypsin utilized only the non-amorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs. The SMGs were characterized in terms of size, charge, structure, morphology, crystallinity, swelling kinetics, water content and thermal properties. The results suggest that the present technique of preparing SMGs by α-chymotrypsin is simple and efficient, and that the prepared SMGs have useful features for studies related to biomaterial and pharmaceutical needs. This process is also an easy way to obtain the amorphous peptide chains for further study. PMID:23756227

  2. Recombinant production of spider silk proteins.

    PubMed

    Heidebrecht, Aniela; Scheibel, Thomas

    2013-01-01

    Natural spider silk fibers combine extraordinary properties such as stability and flexibility which results in a toughness superseding that of all other fiber materials. As the spider's aggressive territorial behavior renders their farming not feasible, the biotechnological production of spider silk proteins (spidroins) is essential in order to investigate and employ them for applications. In order to accomplish this task, two approaches have been tested: firstly, the expression of partial cDNAs, and secondly, the expression of synthetic genes in several host organisms, including bacteria, yeast, plants, insect cells, mammalian cells, and transgenic animals. The experienced problems include genetic instability, limitations of the translational and transcriptional machinery, and low solubility of the produced proteins. Here, an overview of attempts to recombinantly produce spidroins will be given, and advantages and disadvantages of the different approaches and host organisms will be discussed. PMID:23415154

  3. Silk fibroin nanostructured materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  4. Controlling silk fibroin particle features for drug delivery

    PubMed Central

    Lammel, Andreas; Hu, Xiao; Park, Sang-Hyug; Kaplan, David L.; Scheibel, Thomas

    2010-01-01

    Silk proteins are a promising material for drug delivery due to their aqueous processability, biocompatibility, and biodegradability. A simple aqueous preparation method for silk fibroin particles with controllable size, secondary structure and zeta potential is reported. The particles were produced by salting out a silk fibroin solution with potassium phosphate. The effect of ionic strength and pH of potassium phosphate solution on the yield and morphology of the particles was determined. Secondary structure and zeta potential of the silk particles could be controlled by pH. Particles produced by salting out with 1.25 M potassium phosphate pH 6 showed a dominating silk II (crystalline) structure whereas particles produced at pH 9 were mainly composed of silk I (less crystalline). The results show that silk I rich particles possess chemical and physical stability and secondary structure which remained unchanged during post treatments even upon exposure to 100% ethanol or methanol. A model is presented to explain the process of particle formation based on intra- and intermolecular interactions of the silk domains, influenced by pH and kosmotrope salts. The reported silk fibroin particles can be loaded with small molecule model drugs, such as alcian blue, rhodamine B, and crystal violet, by simple absorption based on electrostatic interactions. In vitro release of these compounds from the silk particles depends on charge – charge interactions between the compounds and the silk. With crystal violet we demonstrated that the release kinetics are dependent on the secondary structure of the particles. PMID:20219241

  5. Early Events in the Evolution of Spider Silk Genes

    PubMed Central

    Starrett, James; Garb, Jessica E.; Kuelbs, Amanda; Azubuike, Ugochi O.; Hayashi, Cheryl Y.

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae (‘true spiders’). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions

  6. Silk Reconstitution Disrupts Fibroin Self-Assembly.

    PubMed

    Koebley, Sean R; Thorpe, Daniel; Pang, Pei; Chrisochoides, Panos; Greving, Imke; Vollrath, Fritz; Schniepp, Hannes C

    2015-09-14

    Using atomic force microscopy, we present the first molecular-scale comparison of two of the most important silk dopes, native (NSF) and reconstituted (RSF) silkworm fibroin. We found that both systems depended on shear to show self-assembly. Significant differences in the nature of self-assembly between NSF and RSF were shown. In the highest studied concentration of 1000 mg/L, NSF exhibited assembly into 20-30 nm-wide nanofibrils closely resembling the surface structures found in natural silk fibers. RSF, in contrast, showed no self-assembly whatsoever at the same concentration, which suggests that the reconstitution process significantly disrupts silk's inherent self-assembly capability. At lower concentrations, both RSF and NSF formed fibrils under shear, apparently denatured by the substrate. Using image analysis, we quantified the properties of these self-assembled fibrils as a function of concentration and found low-concentration fibrils of NSF to form larger continuous structures than those of RSF, further supporting NSF's superior self-assembly capabilities. PMID:26284914

  7. Osteogenic signaling on silk-based matrices.

    PubMed

    Midha, Swati; Murab, Sumit; Ghosh, Sourabh

    2016-08-01

    Bone tissue engineering has mainly focused on generating 3D grafts to repair bone defects. However, the underlying signaling mechanisms responsible for development of such 3D bone equivalents have largely been ignored. Here we describe the crucial aspects of embryonic osteogenesis and bone development including cell sources and general signaling cascades that guide mesenchymal progenitors towards osteogenic lineage. Drawing from the knowledge of developmental biology, we then review how silk biomaterial can regulate osteogenic signaling by focusing on the expression of cell surface markers, functional genomic information (mRNA) of stem cells cultured on silk matrices. In an attempt to recapitulate exact in vivo microenvironment of osteogenesis, role of scaffold architecture and material chemistry in regulating cellular differentiation is elaborated. The generated knowledge will not only improve our understanding of cell-material interactions but reveal newer strategies beyond a conventional tissue engineering paradigm and open new prospects for developing silk-based therapies against clinically relevant bone disorders. PMID:27163625

  8. Silk film biomaterials for cornea tissue engineering

    PubMed Central

    Lawrence, Brian D.; Marchant, Jeffrey K.; Pindrus, Mariya; Omenetto, Fiorenzo; Kaplan, David L.

    2009-01-01

    Biomaterials for corneal tissue engineering must demonstrate several critical features for potential utility in vivo, including transparency, mechanical integrity, biocompatibility and slow biodegradation. Silk film biomaterials were designed and characterized to meet these functional requirements. Silk protein films were used in a biomimetic approach to replicate corneal stromal tissue architecture. The films were 2 μm thick to emulate corneal collagen lamellae dimensions, and were surface patterned to guide cell alignment. To enhance trans-lamellar diffusion of nutrients and to promote cell-cell interaction, pores with 0.5 to 5.0 μm diameters were introduced into the silk films. Human and rabbit corneal fibroblast proliferation, alignment and corneal extracellular matrix expression on these films in both 2D and 3D cultures was demonstrated. The mechanical properties, optical clarity and surface patterned features of these films, combined with their ability to support corneal cell functions suggest this new biomaterial system offers important potential benefits for corneal tissue regeneration. PMID:19059642

  9. Silk Reconstitution Disrupts Fibroin Self-Assembly.

    PubMed

    Koebley, Sean R; Thorpe, Daniel; Pang, Pei; Chrisochoides, Panos; Greving, Imke; Vollrath, Fritz; Schniepp, Hannes C

    2015-09-14

    Using atomic force microscopy, we present the first molecular-scale comparison of two of the most important silk dopes, native (NSF) and reconstituted (RSF) silkworm fibroin. We found that both systems depended on shear to show self-assembly. Significant differences in the nature of self-assembly between NSF and RSF were shown. In the highest studied concentration of 1000 mg/L, NSF exhibited assembly into 20-30 nm-wide nanofibrils closely resembling the surface structures found in natural silk fibers. RSF, in contrast, showed no self-assembly whatsoever at the same concentration, which suggests that the reconstitution process significantly disrupts silk's inherent self-assembly capability. At lower concentrations, both RSF and NSF formed fibrils under shear, apparently denatured by the substrate. Using image analysis, we quantified the properties of these self-assembled fibrils as a function of concentration and found low-concentration fibrils of NSF to form larger continuous structures than those of RSF, further supporting NSF's superior self-assembly capabilities.

  10. Silk electrogel coatings for titanium dental implants.

    PubMed

    Elia, Roberto; Michelson, Courtney D; Perera, Austin L; Harsono, Masly; Leisk, Gray G; Kugel, Gerard; Kaplan, David L

    2015-04-01

    The aim of this study was to develop biocompatible, biodegradable dental implant coatings capable of withstanding the mechanical stresses imparted during implant placement. Two techniques were developed to deposit uniform silk fibroin protein coatings onto dental implants. Two novel coating techniques were implemented to coat titanium shims, studs, and implants. One technique involved electrodeposition of the silk directly onto the titanium substrates. The second technique consisted of melting electrogels and dispensing the melted gels onto the titanium to form the coatings. Both techniques were tested for coating reproducibility using a stylus profilometer and a dial thickness gauge. The mechanical strength of adhered titanium studs was assessed using a universal mechanical testing machine. Uniform, controllable coatings were obtained from both the electrodeposition and melted electrogel coating techniques, tunable from 35 to 1654 µm thick under the conditions studied, and able to withstand delamination during implantation into implant socket mimics. Mechanical testing revealed that the adhesive strength of electrogel coatings, 0.369 ± 0.09 MPa, rivaled other biologically derived coating systems such as collagen, hydroxyapatite, and chitosan (0.07-4.83 MPa). These novel silk-based techniques offer a unique approach to the deposition of safe, simple, mechanically robust, biocompatible, and degradable implant coatings.

  11. Vibrational spectroscopic study of sulphated silk proteins

    NASA Astrophysics Data System (ADS)

    Monti, P.; Freddi, G.; Arosio, C.; Tsukada, M.; Arai, T.; Taddei, P.

    2007-05-01

    Degummed Bombyx mori ( B. m.) silk fibroin fabric and mutant naked pupa cocoons (Nd-s) consisting of almost pure silk sericin were treated with chlorosulphonic acid in pyridine and investigated by FT-IR and FT-Raman spectroscopies. Untreated silk fibroin and sericin displayed typical spectral features due to characteristic amino acid composition and molecular conformation (prevailing β-sheet with a less ordered structure in sericin). Upon sulphation, the degree of molecular disorder increased in both proteins and new bands appeared. The IR bands at 1049 and 1014 cm -1 were attributed to vibrations of sulphate salts and that at 1385 cm -1 to the νasSO 2 mode of organic covalent sulphates. In the 1300-1180 cm -1 range various contributions of alkyl and aryl sulphate salts, sulphonamides, sulphoamines and organic covalent sulphates, fell. Fibroin covalently bound sulphate groups through the hydroxyl groups of tyrosine and serine, while sericin through the hydroxyl groups of serine, since the δOH vibrations at 1399 cm -1 in IR and at 1408 cm -1 in Raman disappeared almost completely. Finally, the increase of the I850/ I830 intensity ratio of Raman tyrosine doublet in fibroin suggested a change towards a more exposed state of tyrosine residues, in good agreement with the more disordered conformation taken upon sulphation.

  12. Silk-based blood stabilization for diagnostics.

    PubMed

    Kluge, Jonathan A; Li, Adrian B; Kahn, Brooke T; Michaud, Dominique S; Omenetto, Fiorenzo G; Kaplan, David L

    2016-05-24

    Advanced personalized medical diagnostics depend on the availability of high-quality biological samples. These are typically biofluids, such as blood, saliva, or urine; and their collection and storage is critical to obtain reliable results. Without proper temperature regulation, protein biomarkers in particular can degrade rapidly in blood samples, an effect that ultimately compromises the quality and reliability of laboratory tests. Here, we present the use of silk fibroin as a solid matrix to encapsulate blood analytes, protecting them from thermally induced damage that could be encountered during nonrefrigerated transportation or freeze-thaw cycles. Blood samples are recovered by simple dissolution of the silk matrix in water. This process is demonstrated to be compatible with a number of immunoassays and provides enhanced sample preservation in comparison with traditional air-drying paper approaches. Additional processing can remediate interactions with conformational structures of the silk protein to further enhance blood stabilization and recovery. This approach can provide expanded utility for remote collection of blood and other biospecimens empowering new modalities of temperature-independent remote diagnostics. PMID:27162330

  13. Recombinant protein blends: silk beyond natural design.

    PubMed

    Dinjaski, Nina; Kaplan, David L

    2016-06-01

    Recombinant DNA technology and new material concepts are shaping future directions in biomaterial science for the design and production of the next-generation biomaterial platforms. Aside from conventionally used synthetic polymers, numerous natural biopolymers (e.g., silk, elastin, collagen, gelatin, alginate, cellulose, keratin, chitin, polyhydroxyalkanoates) have been investigated for properties and manipulation via bioengineering. Genetic engineering provides a path to increase structural and functional complexity of these biopolymers, and thereby expand the catalog of available biomaterials beyond that which exists in nature. In addition, the integration of experimental approaches with computational modeling to analyze sequence-structure-function relationships is starting to have an impact in the field by establishing predictive frameworks for determining material properties. Herein, we review advances in recombinant DNA-mediated protein production and functionalization approaches, with a focus on hybrids or combinations of proteins; recombinant protein blends or 'recombinamers'. We highlight the potential biomedical applications of fibrous protein recombinamers, such as Silk-Elastin Like Polypeptides (SELPs) and Silk-Bacterial Collagens (SBCs). We also discuss the possibility for the rationale design of fibrous proteins to build smart, stimuli-responsive biomaterials for diverse applications. We underline current limitations with production systems for these proteins and discuss the main trends in systems/synthetic biology that may improve recombinant fibrous protein design and production. PMID:26686863

  14. A two-dimensional analytical model and experimental validation of garter stitch knitted shape memory alloy actuator architecture

    NASA Astrophysics Data System (ADS)

    Abel, Julianna; Luntz, Jonathan; Brei, Diann

    2012-08-01

    Active knits are a unique architectural approach to meeting emerging smart structure needs for distributed high strain actuation with simultaneous force generation. This paper presents an analytical state-based model for predicting the actuation response of a shape memory alloy (SMA) garter knit textile. Garter knits generate significant contraction against moderate to large loads when heated, due to the continuous interlocked network of loops of SMA wire. For this knit architecture, the states of operation are defined on the basis of the thermal and mechanical loading of the textile, the resulting phase change of the SMA, and the load path followed to that state. Transitions between these operational states induce either stick or slip frictional forces depending upon the state and path, which affect the actuation response. A load-extension model of the textile is derived for each operational state using elastica theory and Euler-Bernoulli beam bending for the large deformations within a loop of wire based on the stress-strain behavior of the SMA material. This provides kinematic and kinetic relations which scale to form analytical transcendental expressions for the net actuation motion against an external load. This model was validated experimentally for an SMA garter knit textile over a range of applied forces with good correlation for both the load-extension behavior in each state as well as the net motion produced during the actuation cycle (250% recoverable strain and over 50% actuation). The two-dimensional analytical model of the garter stitch active knit provides the ability to predict the kinetic actuation performance, providing the basis for the design and synthesis of large stroke, large force distributed actuators that employ this novel architecture.

  15. Emergence of Scale-Free Close-Knit Friendship Structure in Online Social Networks

    PubMed Central

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This

  16. Preparation of cotton knitted fabric by gamma radiation: a new approach.

    PubMed

    Bashar, M Mahbubul; Siddiquee, Md Abu Bakar; Khan, Mubarak A

    2015-04-20

    This study attempts to introduce the exploitation of gamma radiation for the processing of cotton knitted fabric. A systematic investigation into the situations suitable for eco-friendly preparation (scouring and bleaching) of cotton fabric was carried out. Fabric used in this experiment includes cotton knitted single jersey structure of 160 gsm. The grey cotton knitted fabric was immersed in different (0 - 30 g/L) amount of hydrogen peroxide solution for 10 min. Subsequently, the samples were irradiated under Co-60 gamma radiation of absorbed dose (5-20 kGy) at a dose rate 5 kGy/h. Water absorbency, whiteness index (WI), weight loss, bursting strength, elongation at burst and dye uptake were taken as the measure of extent of scouring and bleaching performance of the intended fabric. The new technology yielded product with acceptable whiteness and water absorbency which is suitable for pale shade dyeing. The optimum results were achieved for the sample irradiated at a total dose 5 kGy treated with 10 g/L H2O2 solution. The water absorbency and WI value were 2.4s and 39.43, respectively, as well as 82.2% dye exhaustion was obtained having the bursting strength 203.20 kPa for this option. But higher dose of radiation was found responsible for lowering the bursting strength of the fabric. However, the irradiated samples demonstrated the good dye-ability indicating the excellent level dyeing with Bezaktive Red S-3B and Novacron Yellow ST-3R reactive dyes.

  17. Preparation of cotton knitted fabric by gamma radiation: a new approach.

    PubMed

    Bashar, M Mahbubul; Siddiquee, Md Abu Bakar; Khan, Mubarak A

    2015-04-20

    This study attempts to introduce the exploitation of gamma radiation for the processing of cotton knitted fabric. A systematic investigation into the situations suitable for eco-friendly preparation (scouring and bleaching) of cotton fabric was carried out. Fabric used in this experiment includes cotton knitted single jersey structure of 160 gsm. The grey cotton knitted fabric was immersed in different (0 - 30 g/L) amount of hydrogen peroxide solution for 10 min. Subsequently, the samples were irradiated under Co-60 gamma radiation of absorbed dose (5-20 kGy) at a dose rate 5 kGy/h. Water absorbency, whiteness index (WI), weight loss, bursting strength, elongation at burst and dye uptake were taken as the measure of extent of scouring and bleaching performance of the intended fabric. The new technology yielded product with acceptable whiteness and water absorbency which is suitable for pale shade dyeing. The optimum results were achieved for the sample irradiated at a total dose 5 kGy treated with 10 g/L H2O2 solution. The water absorbency and WI value were 2.4s and 39.43, respectively, as well as 82.2% dye exhaustion was obtained having the bursting strength 203.20 kPa for this option. But higher dose of radiation was found responsible for lowering the bursting strength of the fabric. However, the irradiated samples demonstrated the good dye-ability indicating the excellent level dyeing with Bezaktive Red S-3B and Novacron Yellow ST-3R reactive dyes. PMID:25662692

  18. Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses.

    PubMed

    Applegate, Matthew B; Partlow, Benjamin P; Coburn, Jeannine; Marelli, Benedetto; Pirie, Christopher; Pineda, Roberto; Kaplan, David L; Omenetto, Fiorenzo G

    2016-03-23

    A novel method to photocrosslink silk fibroin protein is reported, using riboflavin (vitamin B2) as a photoinitiator and the mechanism of crosslinking is determined. Exposure of riboflavin-doped liquid silk solution to light results in the formation of a transparent, elastic hydrogel. Several applications for this new material are investigated including corneal reshaping to restore visual acuity and photolithography. PMID:26821561

  19. Silk-Based Biomaterials for Sustained Drug Delivery

    PubMed Central

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  20. Visual Literacy with Picture Books: The Silk Road

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner Lee

    2007-01-01

    The ancient Silk Routes connecting China to Europe across the rugged mountains and deserts of central Asia are one of the primary examples of transculturation in world history. Traders on these routes dealt not only in goods such as silk and horses but also made possible the spread of art forms as well as two major religions, Buddhism and Islam. …

  1. Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses.

    PubMed

    Applegate, Matthew B; Partlow, Benjamin P; Coburn, Jeannine; Marelli, Benedetto; Pirie, Christopher; Pineda, Roberto; Kaplan, David L; Omenetto, Fiorenzo G

    2016-03-23

    A novel method to photocrosslink silk fibroin protein is reported, using riboflavin (vitamin B2) as a photoinitiator and the mechanism of crosslinking is determined. Exposure of riboflavin-doped liquid silk solution to light results in the formation of a transparent, elastic hydrogel. Several applications for this new material are investigated including corneal reshaping to restore visual acuity and photolithography.

  2. Clay-Enriched Silk Biomaterials for Bone Formation

    PubMed Central

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  3. Geographic Perspectives with Elementary Students: The Silk Road

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner

    2006-01-01

    The purpose of this study is to investigate elementary students' explanations of how physical features of the land influence the location of humanly defined structures including trade routes, such as the silk routes. The silk routes were a series of caravan trade routes that extended from Turkey to China and were located as far south as India and…

  4. Local tolerance to spider silks and protein polymers in vivo.

    PubMed

    Vollrath, F; Barth, P; Basedow, A; Engström, W; List, H

    2002-01-01

    Spider silks were implanted subcutaneously in pigs for a study of the tolerance against this material. Four types of spider silks of high purity and cleanliness were implanted: (i) major ampullate dragline silk reeled from the golden silk spider Nephila clavipes, (ii) native (unsterilised) silk reeled from a Brachypelma spider, (iii) native silk taken from this spider's web and (iv) its web silk thermally treated at 80 degrees C. For comparison we used fibrous silk analogue protein polymers and four already marketed wound dressings (polyurethane film, collagen dressings, gauze pads). All materials were applied epicutaneously to split skin wounds. The implants were examined macroscopically as well as by light microscopy. Superficially, all sites healed rapidly. There were marked inflammatory reactions in all sites with lympho-plasmacellular infiltrations, evidence of phagocytosis and granuloma formation as indicated by the appearance of giant cells. However there was a marked absence of epitheloid cells indicating that the observed reaction was a foreign body granuloma. Furthermore, the histopathological images recorded after 14 days revealed no marked differences between the dressings. Polyurethane films, however, seemed to be superior with respect to the duration of the wound healing process. PMID:12224131

  5. Self-assembly of silk fibroin under osmotic stress

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  6. Increased molecular mobility in humid silk fibers under tensile stress

    NASA Astrophysics Data System (ADS)

    Seydel, Tilo; Knoll, Wiebke; Greving, Imke; Dicko, Cedric; Koza, Michael M.; Krasnov, Igor; Müller, Martin

    2011-01-01

    Silk fibers are semicrystalline nanocomposite protein fibers with an extraordinary mechanical toughness that changes with humidity. Diffusive or overdamped motion on a molecular level is absent in dry silkworm silk, but present in humid silk at ambient temperature. This microscopic diffusion distinctly depends on the externally applied macroscopic tensile force. Quasielastic and inelastic neutron-scattering data as a function of humidity and of tensile strain on humid silk fibers support the model that both the adsorbed water and parts of the amorphous polymers participate in diffusive motion and are affected by the tensile force. It is notable that the quasielastic linewidth of humid silk at 100% relative humidity increases significantly with the applied force. The effect of the tensile force is discussed in terms of an increasing alignment of the polymer chains in the amorphous fraction with increasing tensile stress which changes the geometrical restrictions of the diffusive motions.

  7. Investigation of Natural Bombyx mori Silk Fibroin Proteins Using INS

    NASA Astrophysics Data System (ADS)

    Crain, Christopher; Strange, Nicholas; Larese, J. Z.

    The mechanical properties of many protein comprised biomaterials are a direct reflection of non-covalent (i.e. weak) interacting ions such as F-actin in muscles, tubulin in the cytoskeleton of cells, viral capsids, and silk. Porter and Vollrath underscored the two main factors that are critical for understanding the high mechanical strength of silks: the nanoscale semi-crystalline folding structure, which gives it exceptional toughness and strength, and the degree of hydration of the disordered fraction, which acts to modify these properties. Understanding and controlling these two principal factors are the key to the functionality of protein elastomers, and render silk an ideal model protein for (bio)material design. We will describe our investigation of electrospun silk of the Bombyx mori (silk worm), using Inelastic Neutron Scattering (INS). These techniques were used to investigate the microscopic dynamics of the dry and hydrated protein.

  8. Silk-based delivery systems of bioactive molecules

    PubMed Central

    Numata, Keiji; Kaplan, David L

    2010-01-01

    Silks are biodegradable, biocompatible, self-assemblying proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes are reviewed. PMID:20298729

  9. The complexity of silk under the spotlight of synthetic biology.

    PubMed

    Vollrath, Fritz

    2016-08-15

    For centuries silkworm filaments have been the focus of R&D innovation centred on textile manufacture with high added value. Most recently, silk research has focused on more fundamental issues concerning bio-polymer structure-property-function relationships. This essay outlines the complexity and fundamentals of silk spinning, and presents arguments for establishing this substance as an interesting and important subject at the interface of systems biology (discovery) and synthetic biology (translation). It is argued that silk is a generic class of materials where each type of silk presents a different embodiment of emergent properties that combine genetically determined (anticipatory) and environmentally responsive components. In spiders' webs the various silks have evolved to form the interactive components of an intricate fabric that provides an extended phenotype to the spider's body morphology.

  10. Optical surface profiling of orb-web spider capture silks.

    PubMed

    Kane, D M; Joyce, A M; Staib, G R; Herberstein, M E

    2010-09-01

    Much spider silk research to date has focused on its mechanical properties. However, the webs of many orb-web spiders have evolved for over 136 million years to evade visual detection by insect prey. It is therefore a photonic device in addition to being a mechanical device. Herein we use optical surface profiling of capture silks from the webs of adult female St Andrews cross spiders (Argiope keyserlingi) to successfully measure the geometry of adhesive silk droplets and to show a bowing in the aqueous layer on the spider capture silk between adhesive droplets. Optical surface profiling shows geometric features of the capture silk that have not been previously measured and contributes to understanding the links between the physical form and biological function. The research also demonstrates non-standard use of an optical surface profiler to measure the maximum width of a transparent micro-sized droplet (microlens).

  11. Dry-Spun Silk Produces Native-Like Fibroin Solutions

    PubMed Central

    2016-01-01

    Silk’s outstanding mechanical properties and energy efficient solidification mechanisms provide inspiration for biomaterial self-assembly as well as offering a diverse platform of materials suitable for many biotechnology applications. Experiments now reveal that the mulberry silkworm Bombyx mori secretes its silk in a practically “unspun” state that retains much of the solvent water and exhibits a surprisingly low degree of molecular order (β-sheet crystallinity) compared to the state found in a fully formed and matured fiber. These new observations challenge the general understanding of silk spinning and in particular the role of the spinning duct for structure development. Building on this discovery we report that silk spun in low humidity appears to arrest a molecular annealing process crucial for β-sheet formation. This, in turn, has significant positive implications, enabling the production of a high fidelity reconstituted silk fibroin with properties akin to the gold standard of unspun native silk. PMID:27526078

  12. The complexity of silk under the spotlight of synthetic biology.

    PubMed

    Vollrath, Fritz

    2016-08-15

    For centuries silkworm filaments have been the focus of R&D innovation centred on textile manufacture with high added value. Most recently, silk research has focused on more fundamental issues concerning bio-polymer structure-property-function relationships. This essay outlines the complexity and fundamentals of silk spinning, and presents arguments for establishing this substance as an interesting and important subject at the interface of systems biology (discovery) and synthetic biology (translation). It is argued that silk is a generic class of materials where each type of silk presents a different embodiment of emergent properties that combine genetically determined (anticipatory) and environmentally responsive components. In spiders' webs the various silks have evolved to form the interactive components of an intricate fabric that provides an extended phenotype to the spider's body morphology. PMID:27528763

  13. Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins

    PubMed Central

    Scheibel, Thomas

    2004-01-01

    Since thousands of years humans have utilized insect silks for their own benefit and comfort. The most famous example is the use of reeled silkworm silk from Bombyx mori to produce textiles. In contrast, despite the more promising properties of their silk, spiders have not been domesticated for large-scale or even industrial applications, since farming the spiders is not commercially viable due to their highly territorial and cannibalistic nature. Before spider silks can be copied or mimicked, not only the sequence of the underlying proteins but also their functions have to be resolved. Several attempts to recombinantly produce spider silks or spider silk mimics in various expression hosts have been reported previously. A new protein engineering approach, which combines synthetic repetitive silk sequences with authentic silk domains, reveals proteins that closely resemble silk proteins and that can be produced at high yields, which provides a basis for cost-efficient large scale production of spider silk-like proteins. PMID:15546497

  14. Characterization of silk gland ribosomes from a bivoltine caddisfly, Stenopsyche marmorata: translational suppression of a silk protein in cold conditions.

    PubMed

    Nomura, Takaomi; Ito, Miho; Kanamori, Mai; Shigeno, Yuta; Uchiumi, Toshio; Arai, Ryoichi; Tsukada, Masuhiro; Hirabayashi, Kimio; Ohkawa, Kousaku

    2016-01-01

    Larval Stenopsyche marmorata constructs food capture nets and fixed retreats underwater using self-produced proteinaceous silk fibers. In the Chikuma River (Nagano Prefecture, Japan) S. marmorata has a bivoltine life cycle; overwintering larvae grow slowly with reduced net spinning activity in winter. We recently reported constant transcript abundance of S. marmorata silk protein 1 (Smsp-1), a core S. marmorata silk fiber component, in all seasons, implying translational suppression in the silk gland during winter. Herein, we prepared and characterized silk gland ribosomes from seasonally collected S. marmorata larvae. Ribosomes from silk glands immediately frozen in liquid nitrogen (LN2) after dissection exhibited comparable translation elongation activity in spring, summer, and autumn. Conversely, silk glands obtained in winter did not contain active ribosomes and Smsp-1. Ribosomes from silk glands immersed in ice-cold physiological saline solution for approximately 4 h were translationally inactive, despite summer collection and Smsp-1 expression. The ribosomal inactivation occurs because of defects in the formation of 80S ribosomes, presumably due to splitting of 60S subunits containing 28S rRNA with central hidden break, in response to cold stress. These results suggest a novel-type ribosome-regulated translation control mechanism. PMID:26646291

  15. Characterization of silk gland ribosomes from a bivoltine caddisfly, Stenopsyche marmorata: translational suppression of a silk protein in cold conditions.

    PubMed

    Nomura, Takaomi; Ito, Miho; Kanamori, Mai; Shigeno, Yuta; Uchiumi, Toshio; Arai, Ryoichi; Tsukada, Masuhiro; Hirabayashi, Kimio; Ohkawa, Kousaku

    2016-01-01

    Larval Stenopsyche marmorata constructs food capture nets and fixed retreats underwater using self-produced proteinaceous silk fibers. In the Chikuma River (Nagano Prefecture, Japan) S. marmorata has a bivoltine life cycle; overwintering larvae grow slowly with reduced net spinning activity in winter. We recently reported constant transcript abundance of S. marmorata silk protein 1 (Smsp-1), a core S. marmorata silk fiber component, in all seasons, implying translational suppression in the silk gland during winter. Herein, we prepared and characterized silk gland ribosomes from seasonally collected S. marmorata larvae. Ribosomes from silk glands immediately frozen in liquid nitrogen (LN2) after dissection exhibited comparable translation elongation activity in spring, summer, and autumn. Conversely, silk glands obtained in winter did not contain active ribosomes and Smsp-1. Ribosomes from silk glands immersed in ice-cold physiological saline solution for approximately 4 h were translationally inactive, despite summer collection and Smsp-1 expression. The ribosomal inactivation occurs because of defects in the formation of 80S ribosomes, presumably due to splitting of 60S subunits containing 28S rRNA with central hidden break, in response to cold stress. These results suggest a novel-type ribosome-regulated translation control mechanism.

  16. Alleged silk spigots on tarantula feet: electron microscopy reveals sensory innervation, no silk.

    PubMed

    Foelix, Rainer; Erb, Bruno; Rast, Bastian

    2013-05-01

    Several studies on tarantulas have claimed that their tarsi could secrete fine silk threads which would provide additional safety lines for maintaining a secure foot-hold on smooth vertical surfaces. This interpretation was seriously questioned by behavioral experiments, and more recently morphological evidence indicated that the alleged spigots ("ribbed hairs") were not secretory but most likely sensory hairs (chemoreceptors). However, since fine structural studies were lacking, the sensory nature was not proven convincingly. By using transmission electron microscopy we here present clear evidence that these "ribbed hairs" contain many dendrites inside the hair lumen - as is the case in the well-known contact chemoreceptors of spiders and insects. For comparison, we also studied the fine structure of regular silk spigots on the spinnerets and found them distinctly different from sensory hairs. Finally, histological studies of a tarantula tarsus did not reveal any silk glands, which, by contrast, are easily found within the spinnerets. In conclusion, the alleged presence of silk spigots on tarantula feet is refuted. PMID:23474440

  17. Solution behavior of synthetic silk peptides and modified recombinant silk proteins

    NASA Astrophysics Data System (ADS)

    Foo, C. Wong Po; Bini, E.; Huang, J.; Lee, S. Y.; Kaplan, D. L.

    2006-02-01

    Spider dragline silk from Nephila clavipes possesses impressive mechanical properties derived in part from repetitive primary sequence containing polyalanine regions that self-assemble into crystalline β-sheets. In the present study, we have sought to understand more details of redox responses related to conformational transitions of modified silk peptides and a recombinant protein containing encoded methionine triggers. Regardless of the position of the methionine trigger relative to the polyalanine domain, chemical oxidation was rapid and slight increases in the α-helical structure and decreases in the β-sheet and random coil content were observed by CD and FTIR in the assembled silk-like peptides and the recombinant protein. CD results indicated that the decrease in β-sheet and random coil conformations, coupled with the increase in helical content during oxidation, occurred during the first 30 min of the reaction. No further conformational changes occurred after this time and the response was independent of methionine trigger location relative to the penta-alanine domain. These results were confirmed with fluorescence studies. The design, processing and utility of these modified redox triggered silk-like peptides and proteins suggest a range of potential utility, from biomaterials to engineered surface coatings with chemically alterable secondary structure and, thus, properties.

  18. The method of purifying bioengineered spider silk determines the silk sphere properties.

    PubMed

    Jastrzebska, Katarzyna; Felcyn, Edyta; Kozak, Maciej; Szybowicz, Miroslaw; Buchwald, Tomasz; Pietralik, Zuzanna; Jesionowski, Teofil; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna

    2016-01-01

    Bioengineered spider silks are a biomaterial with great potential for applications in biomedicine. They are biocompatible,biodegradable and can self-assemble into films, hydrogels, scaffolds, fibers, capsules and spheres. A novel, tag-free, bioengineered spider silk named MS2(9x) was constructed. It is a 9-mer of the consensus motif derived from MaSp2-the spidroin of Nephila clavipes dragline silk. Thermal and acidic extraction methods were used to purify MS2(9x). Both purification protocols gave a similar quantity and quality of soluble silk; however, they differed in the secondary structure and zeta potential value. Spheres made of these purified variants differed with regard to critical features such as particle size, morphology, zeta potential and drug loading. Independent of the purification method, neither variant of the MS2(9x) spheres was cytotoxic, which confirmed that both methods can be used for biomedical applications. However, this study highlights the impact that the applied purification method has on the further biomaterial properties. PMID:27312998

  19. Chimeric spider silk proteins mediated by intein result in artificial hybrid silks.

    PubMed

    Lin, Senzhu; Chen, Gefei; Liu, Xiangqin; Meng, Qing

    2016-07-01

    Hybrid silks hold a great potential as specific biomaterials due to its controlled mechanical properties. To produce fibers with tunable properties, here we firstly made chimeric proteins in vitro, called W2C4CT and W2C8CT, with ligation of MaSp repetitive modules (C) with AcSp modules (W) by intein trans splicing technology from smaller precursors without final yield reduction. Intein mediated chimeric proteins form fibers at a low concentration of 0.4 mg/mL in 50 mM K3 PO4 pH 7.5 just drawn by hand. Hybrid fibers show smoother surface, and also have stronger chemical resistance as compared with fibers from W2CT (W fibers) and mixture of W2CT/C8CT (MHF8 fibers). Fibers from chimeric protein W2C4CT (HFH4) have improved mechanical properties than W fibers; however, with more C modules W2C8CT fibers (HFH8) properties decreased, indicates the length proportion of various modules is very important and should be optimized for fibers with specific properties. Generally, hybrid silks generated via chimeric proteins, which can be simplified by intein trans splicing, has greater potential to produce fibers with tunable properties. Our research shows that intein mediated directional protein ligation is a novel way to make large chimeric spider silk proteins and hybrid silks. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 385-392, 2016. PMID:26948769

  20. The method of purifying bioengineered spider silk determines the silk sphere properties

    PubMed Central

    Jastrzebska, Katarzyna; Felcyn, Edyta; Kozak, Maciej; Szybowicz, Miroslaw; Buchwald, Tomasz; Pietralik, Zuzanna; Jesionowski, Teofil; Mackiewicz, Andrzej; Dams-Kozlowska, Hanna

    2016-01-01

    Bioengineered spider silks are a biomaterial with great potential for applications in biomedicine. They are biocompatible,biodegradable and can self-assemble into films, hydrogels, scaffolds, fibers, capsules and spheres. A novel, tag-free, bioengineered spider silk named MS2(9x) was constructed. It is a 9-mer of the consensus motif derived from MaSp2–the spidroin of Nephila clavipes dragline silk. Thermal and acidic extraction methods were used to purify MS2(9x). Both purification protocols gave a similar quantity and quality of soluble silk; however, they differed in the secondary structure and zeta potential value. Spheres made of these purified variants differed with regard to critical features such as particle size, morphology, zeta potential and drug loading. Independent of the purification method, neither variant of the MS2(9x) spheres was cytotoxic, which confirmed that both methods can be used for biomedical applications. However, this study highlights the impact that the applied purification method has on the further biomaterial properties. PMID:27312998

  1. Evaluation of High Temperature Knitted Spring Tubes for Structural Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Control surface seals are crucial to current and future space vehicles, as they are used to seal the gaps surrounding body flaps, elevons, and other actuated exterior surfaces. During reentry, leakage of high temperature gases through these gaps could damage underlying lower temperature structures such as rudder drive motors and mechanical actuators, resulting in impaired vehicle control. To be effective, control surface seals must shield lower temperature structures from heat transfer by maintaining sufficient resiliency to remain in contact with opposing sealing surfaces through multiple compression cycles. The current seal exhibits significant loss of resiliency after a few compression cycles at elevated temperatures (i.e., 1900 F) and therefore would be inadequate for advanced space vehicles. This seal utilizes a knitted Inconel X-750 spring tube as its primary resilient element. As part of a larger effort to enhance seal resiliency, researchers at the NASA Glenn Research Center performed high temperature compression testing (up to 2000 F) on candidate spring tube designs employing material substitutions and modified geometries. These tests demonstrated significant improvements in spring tube resiliency (5.5x better at 1750 F) through direct substitution of heat treated Rene 41 alloy in the baseline knit design. The impact of geometry modification was minor within the range of parameters tested, however trends did suggest that moderate resiliency improvements could be obtained by optimizing the current spring tube geometry.

  2. [Replacement of the aortic root with woven and knitted Dacron composite graft].

    PubMed

    Mashiko, K; Ishii, S; Naganuma, H; Yoshida, S; Seo, A; Sakamoto, H; Mikawa, H; Okuyama, H

    1997-07-01

    Some of the patients with annuloaortic ectasia or Stanford type A require aortic root replacement. If conventional Bentall procedure is employed in such cases, aortic root will become a cylindrical shape totally lacking sinus of Valsalva because the procedure utilizes a straight tube. The sinuses of Valsalva support an important role in opening and closing the valvar leaflets, and opening of the coronary arteries, together with the interleaflet triangles and the sinutubular junction. In this study, we performed aortic root replacement with composite graft which consisted of two types of graft including 30 mm Knitted Dacron Graft (Gelsoft) with different dilation rates and 30 mm Woven Dacron Graft (Hemashield) as well as bioprosthesis (27 mm Carpentier-Edwards), in order to reconstruct sinus of Valsalva. Post-operative angiography revealed an excellent diastolic coronary flow, as evidenced by proximal Knitted graft of 37 mm in diameter, distal Woven graft of 30.3 mm in diameter and Doppler flow DSVR (Diastolic/Systolic Velocity Ration) of 2.2 measured at the left coronary orifice. Since it is difficult to obtain homograft at present, this procedure would be worth trying during aortic root replacement.

  3. Comprehensive Proteomic Analysis of Spider Dragline Silk from Black Widows: A Recipe to Build Synthetic Silk Fibers.

    PubMed

    Larracas, Camille; Hekman, Ryan; Dyrness, Simmone; Arata, Alisa; Williams, Caroline; Crawford, Taylor; Vierra, Craig A

    2016-01-01

    The outstanding material properties of spider dragline silk fibers have been attributed to two spidroins, major ampullate spidroins 1 and 2 (MaSp1 and MaSp2). Although dragline silk fibers have been treated with different chemical solvents to elucidate the relationship between protein structure and fiber mechanics, there has not been a comprehensive proteomic analysis of the major ampullate (MA) gland, its spinning dope, and dragline silk using a wide range of chaotropic agents, inorganic salts, and fluorinated alcohols to elucidate their complete molecular constituents. In these studies, we perform in-solution tryptic digestions of solubilized MA glands, spinning dope and dragline silk fibers using five different solvents, followed by nano liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis with an Orbitrap Fusion™ Tribrid™. To improve protein identification, we employed three different tryptic peptide fragmentation modes, which included collision-induced dissociation (CID), electron transfer dissociation (ETD), and high energy collision dissociation (HCD) to discover proteins involved in the silk assembly pathway and silk fiber. In addition to MaSp1 and MaSp2, we confirmed the presence of a third spidroin, aciniform spidroin 1 (AcSp1), widely recognized as the major constituent of wrapping silk, as a product of dragline silk. Our findings also reveal that MA glands, spinning dope, and dragline silk contain at least seven common proteins: three members of the Cysteine-Rich Protein Family (CRP1, CRP2 and CRP4), cysteine-rich secretory protein 3 (CRISP3), fasciclin and two uncharacterized proteins. In summary, this study provides a proteomic blueprint to construct synthetic silk fibers that most closely mimic natural fibers. PMID:27649139

  4. Comprehensive Proteomic Analysis of Spider Dragline Silk from Black Widows: A Recipe to Build Synthetic Silk Fibers

    PubMed Central

    Larracas, Camille; Hekman, Ryan; Dyrness, Simmone; Arata, Alisa; Williams, Caroline; Crawford, Taylor; Vierra, Craig A.

    2016-01-01

    The outstanding material properties of spider dragline silk fibers have been attributed to two spidroins, major ampullate spidroins 1 and 2 (MaSp1 and MaSp2). Although dragline silk fibers have been treated with different chemical solvents to elucidate the relationship between protein structure and fiber mechanics, there has not been a comprehensive proteomic analysis of the major ampullate (MA) gland, its spinning dope, and dragline silk using a wide range of chaotropic agents, inorganic salts, and fluorinated alcohols to elucidate their complete molecular constituents. In these studies, we perform in-solution tryptic digestions of solubilized MA glands, spinning dope and dragline silk fibers using five different solvents, followed by nano liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis with an Orbitrap Fusion™ Tribrid™. To improve protein identification, we employed three different tryptic peptide fragmentation modes, which included collision-induced dissociation (CID), electron transfer dissociation (ETD), and high energy collision dissociation (HCD) to discover proteins involved in the silk assembly pathway and silk fiber. In addition to MaSp1 and MaSp2, we confirmed the presence of a third spidroin, aciniform spidroin 1 (AcSp1), widely recognized as the major constituent of wrapping silk, as a product of dragline silk. Our findings also reveal that MA glands, spinning dope, and dragline silk contain at least seven common proteins: three members of the Cysteine-Rich Protein Family (CRP1, CRP2 and CRP4), cysteine-rich secretory protein 3 (CRISP3), fasciclin and two uncharacterized proteins. In summary, this study provides a proteomic blueprint to construct synthetic silk fibers that most closely mimic natural fibers. PMID:27649139

  5. A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles.

    PubMed

    Yeoman, Mark S; Reddy, Daya; Bowles, Hellmut C; Bezuidenhout, Deon; Zilla, Peter; Franz, Thomas

    2010-11-01

    Knitted textiles have been used in medical applications due to their high flexibility and low tendency to fray. Their mechanics have, however, received limited attention. A constitutive model for soft tissue using a strain energy function was extended, by including shear and increasing the number and order of coefficients, to represent the non-linear warp-weft coupled mechanics of coarse textile knits under uniaxial tension. The constitutive relationship was implemented in a commercial finite element package. The model and its implementation were verified and validated for uniaxial tension and simple shear using patch tests and physical test data of uniaxial tensile tests of four very different knitted fabric structures. A genetic algorithm with step-wise increase in resolution and linear reduction in range of the search space was developed for the optimization of the fabric model coefficients. The numerically predicted stress-strain curves exhibited non-linear stiffening characteristic for fabrics. For three fabrics, the predicted mechanics correlated well with physical data, at least in one principal direction (warp or weft), and moderately in the other direction. The model exhibited limitations in approximating the linear elastic behavior of the fourth fabric. With proposals to address this limitation and to incorporate time-dependent changes in the fabric mechanics associated with tissue ingrowth, the constitutive model offers a tool for the design of tissue regenerative knit textile implants. PMID:20688383

  6. Effects of wearing knitted or rubber gloves on the transfer of Escherichia cohi between hands and meat.

    PubMed

    Gill, C O; Jones, T

    2002-06-01

    On eight occasions, five volunteers each handled five pieces of meat with bare hands or while wearing dry or wet knitted gloves or rubber gloves after hands had been inoculated with Escherichia coli or after handling a piece of meat inoculated with E. coli. On each occasion, after all meat was handled, each piece of meat, glove, and hand were sampled to recover E. coli. When hands were inoculated, E. coli was recovered from all meat handled with bare hands, in lesser numbers from some pieces handled with knitted gloves, and from only one piece handled with rubber gloves. When pieces of inoculated meat were handled, the numbers of E. coli transferred to uninoculated meat from bare hands or rubber gloves decreased substantially with each successive piece of uninoculated meat, but decreases were small with knitted gloves. The findings indicate that, compared with bare hands, the use of knitted gloves could reduce the transfer of bacteria from hands to meat but could increase the transfer of bacteria between meat pieces, whereas the use of rubber gloves could largely prevent the first and greatly reduce the second type of bacteria transfer. PMID:12092720

  7. Electricity from the silk cocoon membrane.

    PubMed

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-06-25

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.

  8. Electricity from the Silk Cocoon Membrane

    NASA Astrophysics Data System (ADS)

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-06-01

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.

  9. Spider Silk: Mother Nature's Bio-Superlens

    NASA Astrophysics Data System (ADS)

    Monks, James N.; Yan, Bing; Hawkins, Nicholas; Vollrath, Fritz; Wang, Zengbo

    2016-09-01

    This paper demonstrates a possible new microfiber bio near field lens that uses minor ampullate spider silk,spun from the Nephila edulis spider, to create a real time image of a surface using near field optical techniques. The microfiber bio lens is the world's first natural superlens created by exploring biological materials. The resolution of the surface image overcomes the diffraction limit, with the ability to resolve patterns at 100 nm under a standard white light source in reflection mode. This resolution offers further developments in superlens technology and paves the way for new bio optics.

  10. Evidence for antimicrobial activity associated with common house spider silk

    PubMed Central

    2012-01-01

    Background Spider silk is one of the most versatile materials in nature with great strength and flexibility. Native and synthetically produced silk has been used in a wide range of applications including the construction of artificial tendons and as substrates for human cell growth. In the literature there are anecdotal reports that suggest that native spider silk may also have antimicrobial properties. Findings In this study we compared the growth of a Gram positive and a Gram negative bacterium in the presence and absence of silk produced by the common house spider Tegenaria domestica. We demonstrate that native web silk of Tegenaria domestica can inhibit the growth of the Gram positive bacterium, Bacillus subtilis. No significant inhibition of growth was detected against the Gram negative bacterium, Escherichia coli. The antimicrobial effect against B. subtilis appears to be short lived thus the active agent potentially acts in a bacteriostatic rather than bactericidal manner. Treatment of the silk with Proteinase K appears to reduce the ability to inhibit bacterial growth. This is consistent with the active agent including a protein element that is denatured or cleaved by treatment. Tegenaria silk does not appear to inhibit the growth of mammalian cells in vitro thus there is the potential for therapeutic applications. PMID:22731829

  11. An Unlikely Silk: The Composite Material of Green Lacewing Cocoons

    SciTech Connect

    Weisman, Sarah; Trueman, Holly E.; Mudie, Stephen T.; Church, Jeffrey S.; Sutherland, Tara D.; Haritos, Victoria S.

    2009-01-15

    Spiders routinely produce multiple types of silk; however, common wisdom has held that insect species produce one type of silk each. This work reports that the green lacewing (Mallada signata, Neuroptera) produces two distinct classes of silk. We identified and sequenced the gene that encodes the major protein component of the larval lacewing cocoon silk and demonstrated that it is unrelated to the adult lacewing egg-stalk silk. The cocoon silk protein is 49 kDa in size and is alanine rich (>40%), and it contains an {alpha}-helical secondary structure. The final instar lacewing larvae spin protein fibers of {approx}2 {mu}m diameter to construct a loosely woven cocoon. In a second stage of cocoon construction, the insects lay down an inner wall of lipids that uses the fibers as a scaffold. We propose that the silk protein fibers provide the mechanical strength of the composite lacewing cocoon whereas the lipid layer provides a barrier to water loss during pupation.

  12. Palaeontology: spider-web silk from the Early Cretaceous.

    PubMed

    Zschokke, Samuel

    2003-08-01

    The use of viscid silk in aerial webs as a means to capture prey was a key innovation of araneoid spiders and has contributed largely to their ecological success. Here I describe a single silk thread from a spider's web that bears glue droplets and has been preserved in Lebanese amber from the Early Cretaceous period for about 130 million years. This specimen not only demonstrates the antiquity of viscid silk and of the spider superfamily Araneoidea, but is also some 90 million years older than the oldest viscid spider thread previously reported in Baltic amber from the Eocene epoch.

  13. High-Q silk fibroin whispering gallery microresonator

    NASA Astrophysics Data System (ADS)

    Xu, Linhua; Jiang, Xuefeng; Zhao, Guangming; Ma, Ding; Tao, Hu; Liu, Zhiwen; Omenetto, Fiorenzo G.; Yang, Lan

    2016-09-01

    We have experimentally demonstrated an on-chip all-silk fibroin whispering gallery mode microresonator by using a simple molding and solution-casting technique. The quality factors of the fabricated silk protein microresonators are up to 10^5. A high-sensitivity thermal sensor was realized in this silk fibroin microtoroid with sensitivity of 1.17 nm/K, 8 times higher than previous WGM resonator based thermal sensors. This opens the way to fabricate biodegradable and biocompatible protein based microresonators on a flexible chip for biophotonics applications.

  14. High-Q silk fibroin whispering gallery microresonator.

    PubMed

    Xu, Linhua; Jiang, Xuefeng; Zhao, Guangming; Ma, Ding; Tao, Hu; Liu, Zhiwen; Omenetto, Fiorenzo G; Yang, Lan

    2016-09-01

    We have experimentally demonstrated an on-chip all-silk fibroin whispering gallery mode microresonator by using a simple molding and solution-casting technique. The quality factors of the fabricated silk protein microresonators are on the order of 105. A high-sensitivity thermal sensor was realized in this silk fibroin microtoroid with a sensitivity of -1.17 nm/K, that is 8 times higher than previous WGM resonator-based thermal sensors. This opens the way to fabricate biodegradable and biocompatible protein based microresonators on a flexible chip for biophotonics applications. PMID:27607686

  15. Injectable silk foams for soft tissue regeneration.

    PubMed

    Bellas, Evangelia; Lo, Tim J; Fournier, Eric P; Brown, Joseph E; Abbott, Rosalyn D; Gil, Eun S; Marra, Kacey G; Rubin, J Peter; Leisk, Gary G; Kaplan, David L

    2015-02-18

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow the implant and/or grafted tissue to be placed closer to existing vasculature. Here, the feasibility of an injectable silk foam for soft tissue regeneration is demonstrated. Adipose-derived stem cells survive and migrate through the foam over a 10-d period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3-month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure is applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate.

  16. Ex vivo rheology of spider silk.

    PubMed

    Kojić, N; Bico, J; Clasen, C; McKinley, G H

    2006-11-01

    We investigate the rheological properties of microliter quantities of the spinning material extracted ex vivo from the major ampullate gland of a Nephila clavipes spider using two new micro-rheometric devices. A sliding plate micro-rheometer is employed to measure the steady-state shear viscosity of approximately 1 microl samples of silk dope from individual biological specimens. The steady shear viscosity of the spinning solution is found to be highly shear-thinning, with a power-law index consistent with values expected for liquid crystalline solutions. Calculations show that the viscosity of the fluid decreases 10-fold as it flows through the narrow spinning canals of the spider. By contrast, measurements in a microcapillary extensional rheometer show that the transient extensional viscosity (i.e. the viscoelastic resistance to stretching) of the spinning fluid increases more than 100-fold during the spinning process. Quantifying the properties of native spinning solutions provides new guidance for adjusting the spinning processes of synthetic or genetically engineered silks to match those of the spider. PMID:17050850

  17. Injectable Silk Foams for Soft Tissue Regeneration

    PubMed Central

    Bellas, E.; Lo, T.J.; Fournier, E.P.; Brown, J.E.; Abbott, R.D.; Gil, E.S.; Marra, K.G.; Rubin, J.P.; Leisk, G.G.; Kaplan, D.L.

    2015-01-01

    Soft tissue fillers are needed for restoration of a defect or augmentation of existing tissues. Autografts and lipotransfer have been under study for soft tissue reconstruction but yield inconsistent results, often with considerable resorption of the grafted tissue. A minimally invasive procedure would reduce scarring and recovery time as well as allow for the implant and/or grafted tissue to be placed closer to existing vasculature. Here, we demonstrate the feasibility of an injectable silk foam for soft tissue regeneration. Adipose derived stem cells survive and migrate through the foam over a 10 day period in vitro. The silk foams are also successfully injected into the subcutaneous space in a rat and over a 3 month period integrating with the surrounding native tissue. The injected foams are palpable and soft to the touch through the skin and returning to their original dimensions after pressure was applied and then released. The foams readily absorb lipoaspirate making the foams useful as a scaffold or template for existing soft tissue filler technologies, useful either as a biomaterial alone or in combination with the lipoaspirate. PMID:25323438

  18. Effects of Microwave Radiation on Selected Mechanical Properties of Silk

    NASA Astrophysics Data System (ADS)

    Reed, Emily Jane

    Impressive mechanical properties have served to peak interest in silk as an engineering material. In addition, the ease with which silk can be altered through processing has led to its use in various biomaterial applications. As the uses of silk branch into new territory, it is imperative (and inevitable) to discover the boundary conditions beyond which silk no longer performs as expected. These boundary conditions include factors as familiar as temperature and humidity, but may also include other less familiar contributions, such as exposure to different types of radiation. The inherent variations in mechanical properties of silk, as well as its sensitivity to moisture, suggest that in an engineering context silk is best suited for use in composite materials; that way, silk can be shielded from ambient moisture fluctuations, and the surrounding matrix allows efficient load transfer from weaker fibers to stronger ones. One such application is to use silk as a reinforcing fiber in epoxy composites. When used in this way, there are several instances in which exposure to microwave radiation is likely (for example, as a means of speeding epoxy cure rates), the effects of which remain mostly unstudied. It will be the purpose of this dissertation to determine whether selected mechanical properties of B. mori cocoon silk are affected by exposure to microwave radiation, under specified temperature and humidity conditions. Results of our analyses are directly applicable wherever exposure of silk to microwave radiation is possible, including in fiber reinforced epoxy composites (the entire composite may be microwaved to speed epoxy cure time), or when silk is used as a component in the material used to construct the radome of an aircraft (RADAR units use frequencies in the microwave range of the electromagnetic spectrum), or when microwave energy is used to sterilize biomaterials (such as cell scaffolds) made of silk. In general, we find that microwave exposure does not

  19. Plasticity in Major Ampullate Silk Production in Relation to Spider Phylogeny and Ecology

    PubMed Central

    Boutry, Cecilia; Řezáč, Milan; Blackledge, Todd Alan

    2011-01-01

    Spider major ampullate silk is a high-performance biomaterial that has received much attention. However, most studies ignore plasticity in silk properties. A better understanding of silk plasticity could clarify the relative importance of chemical composition versus processing of silk dope for silk properties. It could also provide insight into how control of silk properties relates to spider ecology and silk uses. We compared silk plasticity (defined as variation in the properties of silk spun by a spider under different conditions) between three spider clades in relation to their anatomy and silk biochemistry. We found that silk plasticity exists in RTA clade and orbicularian spiders, two clades that differ in their silk biochemistry. Orbiculariae seem less dependent on external spinning conditions. They probably use a valve in their spinning duct to control friction forces and speed during spinning. Our results suggest that plasticity results from different processing of the silk dope in the spinning duct. Orbicularian spiders seem to display better control of silk properties, perhaps in relation to their more complex spinning duct valve. PMID:21818328

  20. Enhanced cell adhesion on silk fibroin via lectin surface modification.

    PubMed

    Teuschl, Andreas H; Neutsch, Lukas; Monforte, Xavier; Rünzler, Dominik; van Griensven, Martijn; Gabor, Franz; Redl, Heinz

    2014-06-01

    Various tissue engineering (TE) approaches are based on silk fibroin (SF) as scaffold material because of its superior mechanical and biological properties compared to other materials. The translation of one-step TE approaches to clinical application has generally failed so far due to the requirement of a prolonged cell seeding step before implantation. Here, we propose that the plant lectin WGA (wheat germ agglutinin), covalently bound to SF, will mediate cell adhesion in a time frame acceptable to be part of a one-step surgical intervention. After the establishment of a modification protocol utilizing carbodiimide chemistry, we examined the attachment of cells, with a special focus on adipose-derived stromal cells (ASC), on WGA-SF compared to pure native SF. After a limited time frame of 20min the attachment of ASCs to WGA-SF showed an increase of about 17-fold, as compared to pure native SF. The lectin-mediated cell adhesion further showed an enhanced resistance to trypsin (as a protease model) and to applied fluid shear stress (mechanical stability). Moreover, we could demonstrate that the adhesion of ASCs on the WGA-SF does not negatively influence proliferation or differentiation potential into the osteogenic lineage. To test for in vitro immune response, the proliferation of peripheral blood mononuclear cells in contact with the WGA-SF was determined, showing no alterations compared to plain SF. All these findings suggest that the WGA modification of SF offers important benefits for translation of SF scaffolds into clinical applications. PMID:24530561

  1. Supramolecular Spangling, Crocheting, and Knitting of Functionalized Pyrene Molecules on a Silver Surface.

    PubMed

    Kaposi, Tobias; Joshi, Sushobhan; Hoh, Tobias; Wiengarten, Alissa; Seufert, Knud; Paszkiewicz, Matheusz; Klappenberger, Florian; Ecija, David; Đorđević, Luka; Marangoni, Tomas; Bonifazi, Davide; Barth, Johannes V; Auwärter, Willi

    2016-08-23

    Pyrenes, as photoactive polycyclic aromatic hydrocarbons (PAHs), represent promising modules for the bottom-up assembly of functional nanostructures. Here, we introduce the synthesis of a family of pyrene derivatives peripherally functionalized with pyridin-4-ylethynyl termini and comprehensively characterize their self-assembly abilities on a smooth Ag(111) support by scanning tunneling microscopy. By deliberate selection of number and geometric positioning of the pyridyl-terminated substituents, two-dimensional arrays, one-dimensional coordination chains, and chiral, porous kagomé-type networks can be tailored. A comparison to phenyl-functionalized reference pyrenes, not supporting the self-assembly of ordered structures at low coverage, highlights the role of the pyridyl moieties for supramolecular crocheting and knitting. Furthermore, we demonstrate the selective spangling of pores in the two-dimensional pyrene assemblies by a distinct number of iodine atoms as guests by atomically resolved imaging and complementary X-ray photoelectron spectroscopy. PMID:27505260

  2. Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties.

    PubMed

    Atalay, Ozgur; Kennon, William Richard; Husain, Muhammad Dawood

    2013-08-21

    The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties.

  3. Moisture Management Behaviour of Knitted Fabric from Structurally Modified Ring and Vortex Spun Yarn

    NASA Astrophysics Data System (ADS)

    Sharma, Navendu; Kumar, Pawan; Bhatia, Dinesh; Sinha, Sujit Kumar

    2015-11-01

    The acceptability of a new product is decided by its performance, level of improvement in quality and economy of production. The basic aim of generating micro pores in a textile structure is to provide better thermo-physiological comfort by enhancing the breathability and hence improving moisture management behaviour. In the present study, an attempt has been made to create a relatively more open structure through removal of a component. A comparative assessment with a homogeneous and parent yarn was also made. Yarns of two linear densities, each from ring and vortex spinning systems were produced using 100 % polyester and 80:20 polyester/cotton blend. The modified yarn was produced by removing a component, viz; cotton, by treatment with sulphuric acid from the blended yarn. The knitted fabric from modified yarn was found to show significant improvement in air permeability, water vapour permeability and total absorbency while the wicking characteristic was found to decline.

  4. Feminist Framework Plus: Knitting Feminist Theories of Rape Etiology Into a Comprehensive Model.

    PubMed

    McPhail, Beverly A

    2016-07-01

    The radical-liberal feminist perspective on rape posits that the assault is motivated by power and control rather than sexual gratification and is a violent rather than a sexual act. However, rape is a complex act. Relying on only one early strand of feminist thought to explain the etiology of rape limits feminists' understanding of rape and the practice based upon the theory. The history of the adoption of the "power, not sex" theory is presented and the model critiqued. A more integrated model is developed and presented, the Feminist Framework Plus, which knits together five feminist theories into a comprehensive model that better explains the depth and breadth of the etiology of rape. Empirical evidence that supports each theory is detailed as well as the implications of the model on service provision, education, and advocacy. PMID:26018209

  5. Highly Flexible Full Lithium Batteries with Self-Knitted α-MnO2 Fabric Foam.

    PubMed

    Shen, Xiaowei; Qian, Tao; Zhou, Jinqiu; Xu, Na; Yang, Tingzhou; Yan, Chenglin

    2015-11-18

    Flexible/bendable electronic equipment has attracted great interest recently, while the development is hindered by fabricating flexible/bendable power sources due to the lack of reliable materials that combine both electronically superior conductivity and mechanical flexibility. Here, a novel structure of manganese oxide, like fabric foam, was constructed, which was then cocooned with a carbon shell via chemical vapor deposition. Serving as a binder-free anode, the self-knitted MnO2@Carbon Foam (MCF) exhibits high specific capacitance (850-950 mAh/g), excellent cycling stability (1000 cycles), and good rate capability (60 C, 1 C = 1 A/g). Moreover, a flexible full lithium battery was designed based on an MCF anode and a LiCoO2/Al cathode, and the outstanding performance (energy density of 2451 Wh/kg at a power density of 4085 W/kg) demonstrates its promising potential of the practical applications.

  6. Translaminar Fracture Toughness of a Composite Wing Skin Made of Stitched Warp-knit Fabric

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1997-01-01

    A series of tests were conducted to measure the fracture toughness of carbon/epoxy composites. The composites were made from warp-knit carbon fabric and infiltrated with epoxy using a resin-film-infusion process. The fabric, which was designed by McDonnell Douglas for the skin of an all-composite subsonic transport wing, contained fibers in the 0 deg, +/-45 deg, and 90 deg directions. Layers of fabric were stacked and stitched together with Kevlar yarn to form a 3-dimensional preform. Three types of test specimens were evaluated: compact tension, center notch tension, and edge notch tension. The effects of specimen size and crack length on fracture toughness were measured for each specimen type. These data provide information on the effectiveness of the test methods and on general trends in the material response. The scope of the investigation was limited by the material that was available.

  7. Feminist Framework Plus: Knitting Feminist Theories of Rape Etiology Into a Comprehensive Model.

    PubMed

    McPhail, Beverly A

    2016-07-01

    The radical-liberal feminist perspective on rape posits that the assault is motivated by power and control rather than sexual gratification and is a violent rather than a sexual act. However, rape is a complex act. Relying on only one early strand of feminist thought to explain the etiology of rape limits feminists' understanding of rape and the practice based upon the theory. The history of the adoption of the "power, not sex" theory is presented and the model critiqued. A more integrated model is developed and presented, the Feminist Framework Plus, which knits together five feminist theories into a comprehensive model that better explains the depth and breadth of the etiology of rape. Empirical evidence that supports each theory is detailed as well as the implications of the model on service provision, education, and advocacy.

  8. Alternative method for determining the original drop volume of bloodstains on knit fabrics.

    PubMed

    Li, Jingyao; Li, Xingyu; Michielsen, Stephen

    2016-06-01

    Bloodstains are often observed at violent crime scenes and on the skin and clothing of persons involved. The diameters of the blood drops that created these stains are related to the force or energy that caused these drops to become airborne. This has resulted in several attempts to determine the diameter of the original drops, beginning with the methods reported in the pioneering work of Henry Lee [6]. However, his methods destroyed the bloodstain during the measurement. Other methods described in the literature cannot be applied to bloodstains on textiles. A new, rapid, reliable, non-destructive method for determining the diameter of the original drop of blood that results in a stain has been developed for bloodstains on cotton single jersey knit (tee-shirt) fabrics, which is one of the most common fabrics analyzed for BPA both at crime scenes and in forensic laboratories. In this method, a drop of known volume of an appropriate artificial blood substitute is applied to a region similar to the stained region but in an area away from any stains/areas of interest. The areas of the original stain and the artificial blood substitute stain are determined, from which the original drop diameter can be calculated. Errors in the drop diameters, the Reynolds numbers and the Weber numbers resulting from this procedure are less than approximately 6%. This procedure has only been verified on cotton single jersey knit fabrics with 30μL≤drop volume≤80μL. It should not be applied to other materials. PMID:27131219

  9. Studies on Application of Aroma Finish on Silk Fabric

    NASA Astrophysics Data System (ADS)

    Hipparagi, Sanganna Aminappa; Srinivasa, Thirumalappa; Das, Brojeswari; Naik, Subhas Venkatappa; Purushotham, Serampur Parappa

    2016-06-01

    Aromatic treatments on textiles have gained importance in the recent years. In the present article work has been done on fragrance finish application on silk material. Silk is an expensive natural fibre used for apparel purpose and known for its feel and appeal. Incorporation of fragrance material in silk product, will add more value to it. Present work focuses to impart durable aroma finish for silk products to be home washed or subjected to dry cleaning. Microencapsulated aroma chemical has been used for the treatment. Impregnation method, Exhaust method, Dip-Pad-Dry method and Spray method have been used to see the influence of application method on the uptake and performance. Evaluation of the aroma treated material has been done through subjective evaluation as per Odor Intensity Reference Scaling (OIRS). Effect of the aroma finishing on the physical properties of the fabric has also been studied. No adverse effect has been observed on the stiffness of the fabric after the aroma treatment.

  10. Hierarchical Chain Model of Spider Capture Silk Elasticity

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun; Zhang, Yang

    2005-01-01

    Spider capture silk is a biomaterial with both high strength and high elasticity, but the structural design principle underlying these remarkable properties is still unknown. It was revealed recently by atomic force microscopy that an exponential force-extension relationship holds both for capture silk mesostructures and for intact capture silk fibers [N. Becker et al.,

    Nat. Mater. 2, 278 (2003)1476-1122
    ]. In this Letter a simple hierarchical chain model was proposed to understand and reproduce this striking observation. In the hierarchical chain model, a polymer is composed of many structural motifs which organize into structural modules and supramodules in a hierarchical manner. Each module in this hierarchy has its own characteristic force. The repetitive patterns in the amino-acid sequence of the major flagelliform protein of spider capture silk is in support of this model.

  11. Mechanical behaviour and formation process of silkworm silk gut.

    PubMed

    Cenis, José L; Madurga, Rodrigo; Aznar-Cervantes, Salvador D; Lozano-Pérez, A Abel; Marí-Buyé, Núria; Meseguer-Olmo, Luis; Plaza, Gustavo R; Guinea, Gustavo V; Elices, Manuel; Del Pozo, Francisco; Pérez-Rigueiro, José

    2015-12-14

    High performance silk fibers were produced directly from the silk glands of silkworms (Bombyx mori) following an alternative route to natural spinning. This route is based on a traditional procedure that consists of soaking the silk glands in a vinegar solution and stretching them by hand leading to the so called silkworm guts. Here we present, to the authors' best knowledge, the first comprehensive study on the formation, properties and microstructure of silkworm gut fibers. Comparison of the tensile properties and microstructural organization of the silkworm guts with those of naturally spun fibers allows gain of a deeper insight into the mechanisms that lead to the formation of the fiber, as well as the relationship between the microstructure and properties of these materials. In this regard, it is proved that an acidic environment and subsequent application of tensile stress in the range of 1000 kPa are sufficient conditions for the formation of a silk fiber.

  12. Silk genes support the single origin of orb webs.

    PubMed

    Garb, Jessica E; Dimauro, Teresa; Vo, Victoria; Hayashi, Cheryl Y

    2006-06-23

    The orb web is a spectacular evolutionary innovation that enables spiders to catch flying prey. This elegant, geometric structure is woven with silk fibers that are renowned for their superior mechanical properties. We used silk gland expression libraries to address a long-standing controversy concerning the evolution of the orb-web architecture. Contrary to the view that the orb-web design evolved multiple times, we found that the distribution and phylogeny of silk proteins support a single, ancient origin of the orb web at least 136 million years ago. Furthermore, we substantially expanded the repository of silk sequences that can be used for the synthesis of high-performance biomaterials. PMID:16794073

  13. Biopatterning of Silk Proteins for Soft Micro-optics.

    PubMed

    Pal, Ramendra K; Kurland, Nicholas E; Wang, Congzhou; Kundu, Subhas C; Yadavalli, Vamsi K

    2015-04-29

    Silk proteins from spiders and silkworms have been proposed as outstanding candidates for soft micro-optic and photonic applications because of their optical transparency, unique biological properties, and mechanical robustness. Here, we present a method to form microstructures of the two constituent silk proteins, fibroin and sericin for use as an optical biomaterial. Using photolithography, chemically modified silk protein photoresists are patterned in 2D arrays of periodic patterns and Fresnel zone plates. Angle-dependent iridescent colors are produced in these periodic micropatterns because of the Bragg diffraction. Silk protein photolithography can used to form patterns on different substrates including flexible sheets with features of any shape with high fidelity and resolution over large areas. Finally, we show that these mechanically stable and transparent iridescent architectures are also completely biodegradable. This versatile and scalable technique can therefore be used to develop biocompatible, soft micro-optic devices that can be degraded in a controlled manner.

  14. Silk fibroin and polyethylene glycol-based biocompatible tissue adhesives

    PubMed Central

    Serban, Monica A.; Panilaitis, Bruce; Kaplan, David L.

    2012-01-01

    Tissue sealants have emerged in recent years as strong candidates for hemostasis. A variety of formulations are currently commercially available and though they satisfy many of the markets’ needs there are still key aspects of each that need improvement. Here we present a new class of blends, based on silk fibroin and chemically active polyethylene glycols (PEGs) with strong adhesive properties. These materials are cytocompatible, crosslink within seconds via chemical reaction between thiols and maleimides present on the constituent PEGs and have the potential to further stabilize through β-sheet formation by silk. Based on the silk concentration in the final formulation, the adhesive properties of these materials are comparable or better than the current leading PEG-based sealant. In addition, the silk-PEG based materials show decreased swelling and longer degradation times. Such properties would make them suitable for applications for which the current sealants are contraindicated. PMID:21681949

  15. Recent advances in production of recombinant spider silk proteins.

    PubMed

    Chung, Hannah; Kim, Tae Yong; Lee, Sang Yup

    2012-12-01

    Spider silk has been drawing much attention as a great biomaterial having many applications in biotechnology and biomedicine owing to its several desired material characteristics such as outstanding strength, toughness, and elasticity as well as biodegradability and biocompatibility. With various applications foreseeable in industry, there has been much effort to produce recombinant spider silk protein in large amounts. However, owing to the difficulties in its production using spiders, alternative host systems and engineering methods have been investigated to develop suitable production systems that can efficiently produce spider silk protein. Here, we review recent advances in production of spider silk proteins in various heterologous host systems with focus given on the development of metabolic and cellular engineering strategies. PMID:22521455

  16. Unravelling the biodiversity of nanoscale signatures of spider silk fibres.

    PubMed

    Silva, Luciano P; Rech, Elibio L

    2013-01-01

    Living organisms are masters at designing outstanding self-assembled nanostructures through a hierarchical organization of modular proteins. Protein-based biopolymers improved and selected by the driving forces of molecular evolution are among the most impressive archetypes of nanomaterials. One of these biomacromolecules is the myriad of compound fibroins of spider silks, which combine surprisingly high tensile strength with great elasticity. However, no consensus on the nano-organization of spider silk fibres has been reached. Here we explore the biodiversity of spider silk fibres, focusing on nanoscale characterization with high-resolution atomic force microscopy. Our results reveal an evolution of the nanoroughness, nanostiffness, nanoviscoelastic, nanotribological and nanoelectric organization of microfibres, even when they share similar sizes and shapes. These features are related to unique aspects of their molecular structures. The results show that combined nanoscale analyses of spider silks may enable the screening of appropriate motifs for bioengineering synthetic fibres from recombinant proteins. PMID:24345771

  17. Unravelling the biodiversity of nanoscale signatures of spider silk fibres

    NASA Astrophysics Data System (ADS)

    Silva, Luciano P.; Rech, Elibio L.

    2013-12-01

    Living organisms are masters at designing outstanding self-assembled nanostructures through a hierarchical organization of modular proteins. Protein-based biopolymers improved and selected by the driving forces of molecular evolution are among the most impressive archetypes of nanomaterials. One of these biomacromolecules is the myriad of compound fibroins of spider silks, which combine surprisingly high tensile strength with great elasticity. However, no consensus on the nano-organization of spider silk fibres has been reached. Here we explore the biodiversity of spider silk fibres, focusing on nanoscale characterization with high-resolution atomic force microscopy. Our results reveal an evolution of the nanoroughness, nanostiffness, nanoviscoelastic, nanotribological and nanoelectric organization of microfibres, even when they share similar sizes and shapes. These features are related to unique aspects of their molecular structures. The results show that combined nanoscale analyses of spider silks may enable the screening of appropriate motifs for bioengineering synthetic fibres from recombinant proteins.

  18. Synthetic Adhesive Attachment Discs based on Spider Pyriform Silk Architecture

    NASA Astrophysics Data System (ADS)

    Jain, Dharamdeep; Sahni, Vasav; Dhinojwala, Ali

    2014-03-01

    Among the variety of silks produced by spiders, pyriform silk is used in conjunction with the dragline silk to attach webs to different surfaces. Cob weaver spiders employ different architectural patterns to utilize the pyriform silk and form attachment joints with each pattern having a characteristic adhesive performance. The staple pin architecture is a one of the strongest attachment designs employed by spiders to attach their webs. Here we use a synthetic approach to create the a similar patterned architecture attachment discs on aluminum substrate using thermoplastic polyurethane. Measurable pull off forces are generated when the synthetic discs are peeled off a surface. This innovative adhesive strategy can be a source of design in various biomedical applications. Financial Support from National Science Foundation.

  19. Native Silk Feedstock as a Model Biopolymer: A Rheological Perspective.

    PubMed

    Laity, Peter R; Holland, Chris

    2016-08-01

    Variability in silk's rheology is often regarded as an impediment to understanding or successfully copying the natural spinning process. We have previously reported such variability in unspun native silk extracted straight from the gland of the domesticated silkworm Bombyx mori and discounted classical explanations such as differences in molecular weight and concentration. We now report that variability in oscillatory measurements can be reduced onto a simple master-curve through normalizing with respect to the crossover. This remarkable result suggests that differences between silk feedstocks are rheologically simple and not as complex as originally thought. By comparison, solutions of poly(ethylene-oxide) and hydroxypropyl-methyl-cellulose showed similar normalization behavior; however, the resulting curves were broader than for silk, suggesting greater polydispersity in the (semi)synthetic materials. Thus, we conclude Nature may in fact produce polymer feedstocks that are more consistent than typical man-made counterparts as a model for future rheological investigations. PMID:27315508

  20. Silkomics: Insight into the Silk Spinning Process of Spiders.

    PubMed

    Dos Santos-Pinto, José Roberto Aparecido; Garcia, Ana Maria Caviquioli; Arcuri, Helen Andrade; Esteves, Franciele Grego; Salles, Heliana Clara; Lubec, Gert; Palma, Mario Sergio

    2016-04-01

    The proteins from the silk-producing glands were identified using both a bottom-up gel-based proteomic approach as well as from a shotgun proteomic approach. Additionally, the relationship between the functions of identified proteins and the spinning process was studied. A total of 125 proteins were identified in the major ampullate, 101 in the flagelliform, 77 in the aggregate, 75 in the tubuliform, 68 in the minor ampullate, and 23 in aciniform glands. On the basis of the functional classification using Gene Ontology, these proteins were organized into seven different groups according to their general function: (i) web silk proteins-spidroins, (ii) proteins related to the folding/conformation of spidroins, (iii) proteins that protect silk proteins from oxidative stress, (iv) proteins involved in fibrillar preservation of silks in the web, (v) proteins related to ion transport into and out of the glands during silk fiber spinning, (vi) proteins involved in prey capture and pre-digestion, and (vii) housekeeping proteins from all of the glands. Thus, a general mechanism of action for the identified proteins in the silk-producing glands from the Nephila clavipes spider was proposed; the current results also indicate that the webs play an active role in prey capture.

  1. Electrospinning Bombyx mori silk with poly(ethylene oxide).

    PubMed

    Jin, Hyoung-Joon; Fridrikh, Sergey V; Rutledge, Gregory C; Kaplan, David L

    2002-01-01

    Electrospinning for the formation of nanoscale diameter fibers has been explored for high-performance filters and biomaterial scaffolds for vascular grafts or wound dressings. Fibers with nanoscale diameters provide benefits due to high surface area. In the present study we explore electrospinning for protein-based biomaterials to fabricate scaffolds and membranes from regenerated silkworm silk, Bombyx mori, solutions. To improve processability of the protein solution, poly(ethylene oxide) (PEO) with molecular weight of 900,000 was blended with the silk fibroin. A variety of compositions of the silk/PEO aqueous blends were successfully electrospun. The morphology of the fibers was characterized using high-resolution scanning electron microscopy. Fiber diameters were uniform and less than 800 nm. The composition was estimated by X-ray photoelectron spectroscopy to characterize silk/PEO surface content. Aqueous-based electrospining of silk and silk/PEO blends provides potentially useful options for the fabrication of biomaterial scaffolds based on this unique fibrous protein.

  2. Compliant threads maximize spider silk connection strength and toughness.

    PubMed

    Meyer, Avery; Pugno, Nicola M; Cranford, Steven W

    2014-09-01

    Millions of years of evolution have adapted spider webs to achieve a range of functionalities, including the well-known capture of prey, with efficient use of material. One feature that has escaped extensive investigation is the silk-on-silk connection joints within spider webs, particularly from a structural mechanics perspective. We report a joint theoretical and computational analysis of an idealized silk-on-silk fibre junction. By modifying the theory of multiple peeling, we quantitatively compare the performance of the system while systematically increasing the rigidity of the anchor thread, by both scaling the stress-strain response and the introduction of an applied pre-strain. The results of our study indicate that compliance is a virtue-the more extensible the anchorage, the tougher and stronger the connection becomes. In consideration of the theoretical model, in comparison with rigid substrates, a compliant anchorage enormously increases the effective adhesion strength (work required to detach), independent of the adhered thread itself, attributed to a nonlinear alignment between thread and anchor (contact peeling angle). The results can direct novel engineering design principles to achieve possible load transfer from compliant fibre-to-fibre anchorages, be they silk-on-silk or another, as-yet undeveloped, system.

  3. Bioengineered Silk Protein-Based Gene Delivery Systems

    PubMed Central

    Numata, Keiji; Subramanian, Balajikarthick; Currie, Heather A.; Kaplan, David L.

    2009-01-01

    Silk proteins self-assemble into mechanically robust material structures that are also biodegradable and non-cytotoxic, suggesting utility for gene delivery. Since silk proteins can also be tailored in terms of chemistry, molecular weight and other design features via genetic engineering, further control of this system for gene delivery can be considered. In the present study, silk-based block copolymers were bioengineered with poly(l-lysine) domains for gene delivery. Ionic complexes of these silk-polylysine based block copolymers with plasmid DNA (pDNA) were prepared for gene delivery to human embryonic kidney (HEK) cells. The material systems were characterized by agarose gel electrophoresis, atomic force microscopy, and dynamic light scattering. The polymers self-assembled in solution and complexed plasmid DNA through ionic interactions. The pDNA complexes with 30-lysine residues prepared at a polymer/nucleotide ratio of 10 and with a solution diameter of 380 nm, showed the highest efficiency for transfection. The pDNA complexes were also immobilized on silk films and demonstrated direct cell transfection from these surfaces. The results demonstrate the potential of bioengineered silk proteins as a new family of highly tailored gene delivery systems. PMID:19577803

  4. Piriform Spider Silk Sequences Reveal Unique Repetitive Elements

    PubMed Central

    Perry, David J.; Bittencourt, Daniela; Siltberg-Liberles, Jessica; Rech, Elibio L.; Lewis, Randolph V.

    2010-01-01

    Orb-weaving spider silk fibers are assembled from very large, highly repetitive proteins. The repeated segments contain, in turn, short, simple repetitive amino acid motifs that account for the physical and mechanical properties of the assembled fiber. Of the six orb-weaver silk fibroins, the piriform silk that makes the attachment discs, which lashes the joints of the web and attaches dragline silk to surfaces has not been previously characterized. Piriform silk protein cDNAs were isolated from phage libraries of three species, A. trifasciata, N. clavipes, and N. cruentata. The deduced amino acid sequences from these genes revealed two new repetitive motifs: an alternating proline motif where every other amino acid is proline, and a glutamine-rich motif of 6 to 8 amino acids. Similar to other spider silk proteins, the repeated segments are large (>200 amino acids) and highly homogenized within a species. There is also substantial sequence similarity across the genes from the three species with particular conservation of the repetitive motifs. Northern blot analysis revealed that the messenger RNA is larger than 11kb and is expressed exclusively in the piriform glands of the spider. Phylogenetic analysis of the C-terminal regions of the new proteins with published spidroins robustly shows that the pirifom sequences form an ortholog group. PMID:20954740

  5. Transdermal Delivery Devices: Fabrication, Mechanics and Drug Release from Silk**

    PubMed Central

    Raja, Waseem K.; MacCorkle, Scott; Diwan, Izzuddin M.; Abdurrob, Abdurrahman; Lu, Jessica; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Microneedles are a relatively simple, minimally invasive and painless approach to deliver drugs across the skin. However, there remain limitations with this approach because of the materials most commonly utilized for such systems. Silk protein, with tunable and biocompatibility properties, is a useful biomaterial to overcome the current limitations with microneedles. Silk devices preserve drug activity, offer superior mechanical properties and biocompatibility, can be tuned for biodegradability, and can be processed under aqueous, benign conditions. In the present work, we report the fabrication of dense microneedle arrays from silk with different drug release kinetics. The mechanical properties of the microneedle patches are tuned by post-fabrication treatments or by loading the needles with silk microparticles to increase capacity and mechanical strength. Drug release is further enhanced by the encapsulation of the drugs in the silk matrix and coating with a thin dissolvable drug layer. The microneedles are used on human cadaver skin and drugs were delivered successfully. The various attributes demonstrated suggest that silk-based microneedle devices can provide significant benefit as a platform material for transdermal drug delivery. PMID:23653252

  6. Amorphous Silk Fibroin Membranes for Separation of CO2

    NASA Technical Reports Server (NTRS)

    Aberg, Christopher M.; Patel, Anand K.; Gil, Eun Seok; Spontak, Richard J.; Hagg, May-Britt

    2009-01-01

    Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.

  7. Silk Fibroin as Edible Coating for Perishable Food Preservation

    NASA Astrophysics Data System (ADS)

    Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.

    2016-05-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.

  8. Silk Fibroin as Edible Coating for Perishable Food Preservation.

    PubMed

    Marelli, B; Brenckle, M A; Kaplan, D L; Omenetto, F G

    2016-05-06

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits' shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material.

  9. Silk Fibroin as Edible Coating for Perishable Food Preservation

    PubMed Central

    Marelli, B.; Brenckle, M. A.; Kaplan, D. L.; Omenetto, F. G.

    2016-01-01

    The regeneration of structural biopolymers into micelles or nanoparticles suspended in water has enabled the design of new materials with unique and compelling properties that can serve at the interface between the biotic and the abiotic worlds. In this study, we leveraged silk fibroin quintessential properties (i.e. polymorphism, conformability and hydrophobicity) to design a water-based protein suspension that self-assembles on the surface of food upon dip coating. The water-based post-processing control of the protein polymorphism enables the modulation of the diffusion of gases through the silk fibroin thin membranes (e.g. O2 and CO2 diffusion, water vapour permeability), which is a key parameter to manage food freshness. In particular, an increased beta-sheet content corresponds to a reduction in oxygen diffusion through silk fibroin thin films. By using the dip coating of strawberries and bananas as proof of principle, we have shown that the formation of micrometre-thin silk fibroin membranes around the fruits helps the management of postharvest physiology of the fruits. Thus, silk fibroin coatings enhance fruits’ shelf life at room conditions by reducing cell respiration rate and water evaporation. The water-based processing and edible nature of silk fibroin makes this approach a promising alternative for food preservation with a naturally derived material. PMID:27151492

  10. Injectable silk foams for the treatment of cervical insufficiency

    NASA Astrophysics Data System (ADS)

    Fournier, Eric P.

    Preterm birth is the leading cause of neonatal mortality, resulting in over 4,000 deaths each year. A significant risk factor for preterm birth is cervical insufficiency, the weakening and subsequent deformation of cervical tissue. Cervical insufficiency is both detectable and treatable but current treatments are lacking. The most common approach requires multiple invasive procedures. This work investigates the injection of silk foams, a minimally-invasive method for supporting cervical tissue. Silk offers many advantages for use as a biomaterial including strength, versatility, and biocompatibility. Injectable silk foams will minimize patient discomfort while also providing more targeted and personalized treatment. A battery of mechanical testing was undertaken to determine silk foam response under physiologically relevant loading and environmental conditions. Mechanical testing was paired with analysis of foam morphology and structure that illustrated the effects of injection on pore geometry and size. Biological response to silk foams was evaluated using an in vitro degradation study and subcutaneous in vivo implantation in a mouse model. Results showed that foams exceeded the mechanical requirements for stiffening cervical tissue, although the current injection process limits foam size. Injection was shown to cause measurable but localized foam deformation. This work indicates that silk foams are a feasible treatment option for cervical insufficiency but challenges remain with foam delivery.

  11. Inkjet printing of silk nest arrays for cell hosting.

    PubMed

    Suntivich, Rattanon; Drachuk, Irina; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2014-04-14

    An inkjet printing approach is presented for the facile fabrication of microscopic arrays of biocompatible silk "nests" capable of hosting live cells for prospective biosensors. The patterning of silk fibroin nests were constructed by the layer-by-layer (LbL) assembly of silk polyelectrolytes chemically modified with poly-(l-lysine) and poly-(l-glutamic acid) side chains. The inkjet-printed silk circular regions with a characteristic "nest" shape had diameters of 70-100 μm and a thickness several hundred nanometers were stabilized by ionic pairing and by the formation of the silk II crystalline secondary structure. These "locked-in" silk nests remained anchored to the substrate during incubation in cell growth media to provide a biotemplated platform for printing-in, immobilization, encapsulation and growth of cells. The process of inkjet-assisted printing is versatile and can be applied on any type of substrate, including rigid and flexible, with scalability and facile formation. PMID:24605757

  12. Piriform spider silk sequences reveal unique repetitive elements.

    PubMed

    Perry, David J; Bittencourt, Daniela; Siltberg-Liberles, Jessica; Rech, Elibio L; Lewis, Randolph V

    2010-11-01

    Orb-weaving spider silk fibers are assembled from very large, highly repetitive proteins. The repeated segments contain, in turn, short, simple, and repetitive amino acid motifs that account for the physical and mechanical properties of the assembled fiber. Of the six orb-weaver silk fibroins, the piriform silk that makes the attachment discs, which lashes the joints of the web and attaches dragline silk to surfaces, has not been previously characterized. Piriform silk protein cDNAs were isolated from phage libraries of three species: A. trifasciata , N. clavipes , and N. cruentata . The deduced amino acid sequences from these genes revealed two new repetitive motifs: an alternating proline motif, where every other amino acid is proline, and a glutamine-rich motif of 6-8 amino acids. Similar to other spider silk proteins, the repeated segments are large (>200 amino acids) and highly homogenized within a species. There is also substantial sequence similarity across the genes from the three species, with particular conservation of the repetitive motifs. Northern blot analysis revealed that the mRNA is larger than 11 kb and is expressed exclusively in the piriform glands of the spider. Phylogenetic analysis of the C-terminal regions of the new proteins with published spidroins robustly shows that the piriform sequences form an ortholog group.

  13. Effects of degumming conditions on electro-spinning rate of regenerated silk.

    PubMed

    Yoon, Kyunghwan; Lee, Ha Ni; Ki, Chang Seok; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin; Um, In Chul

    2013-10-01

    Electro-spun silk webs are potentially good candidates as tissue engineering scaffolds owing to their good bio- and cyto-compatibility. However, the low fabrication rate of electro-spun silk mats has been one of the obstacles in the mass production of such nanofibrous silk mats in applications to the biomedical field. In this study, the effects of degumming ratio and silk concentration on the electro-spinning process were investigated by using regenerated silk with different residual sericin contents and different silk concentrations in terms of the morphology and structure of the electro-spun silk web. The rate of production of electro-spun silk mats could be increased by approximately 5 fold at a degumming ratio of 19.5%. The electro-spinning rate of silk was affected by two main factors: (1) dope solution viscosity and (2) degumming ratio of silk. The conductivity of the silk dope solution, however, had little effects on the electro-spinning of regenerated silk. A constant spun fiber morphology was observed within the electro-spinning rate range (0.3-1.4 ml/h). Fourier transform infrared spectroscopy showed that partial β-sheet crystallization occurred during electro-spinning. The molecular conformation was relatively unaffected by the electro-spinning rate of silk.

  14. Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein.

    PubMed

    Tian, Maozhen; Lewis, Randolph V

    2005-06-01

    As a result of hundreds of millions of years of evolution, orb-web-weaving spiders have developed the use of seven different silks produced by different abdominal glands for various functions. Tubuliform silk (eggcase silk) is unique among these spider silks due to its high serine and very low glycine content. In addition, tubuliform silk is the only silk produced just during a short period of time, the reproductive season, in the spider's life. To understand the molecular characteristics of the proteins composing this silk, we constructed tubuliform-gland-specific cDNA libraries from three different spider families, Nephila clavipes, Argiope aurantia, and Araneus gemmoides. Sequencing of tubuliform silk cDNAs reveals the repetitive architecture of its coding sequence and novel amino acid motifs. The inferred protein, tubuliform spidroin 1 (TuSp1), contains highly homogenized repeats in all three spiders. Amino acid composition comparison of the predicted tubuliform silk protein sequence to tubuliform silk indicates that TuSp1 is the major component of tubuliform silk. Repeat unit alignment of TuSp1 among three spider species shows high sequence conservation among tubuliform silk protein orthologue groups. Sequence comparison among TuSp1 repetitive units within species suggests intragenic concerted evolution, presumably through gene conversion and unequal crossover events. Comparative analysis demonstrates that TuSp1 represents a new orthologue in the spider silk gene family.

  15. Spider Silk: Mother Nature's Bio-Superlens.

    PubMed

    Monks, James N; Yan, Bing; Hawkins, Nicholas; Vollrath, Fritz; Wang, Zengbo

    2016-09-14

    It was recently discovered that transparent microspheres and cylinders can function as a super-resolution lens (i.e., superlens) to focus light beyond the diffraction limit. A number of high-resolution applications based on these lenses have been successfully demonstrated and span nanoscopy, imaging, and spectroscopy. Fabrication of these superlenses, however, is often complex and requires sophisticated engineering processes. Clearly an easier model candidate, such as a naturally occurring superlens, is highly desirable. Here, we report for the first time a biological superlens provided by nature: the minor ampullate spider silk spun from the Nephila spider. This natural biosuperlens can distinctly resolve 100 nm features under a conventional white-light microscope with peak wavelength at 600 nm, attaining a resolution of λ/6 that is well beyond the classical limit. Thus, our work opens a new door to develop biology-based optical systems that may provide a new solution to integrating optics in biological systems. PMID:27531579

  16. Electricity from the Silk Cocoon Membrane

    PubMed Central

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-01-01

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management. PMID:24961354

  17. Silk Fibroin Scaffolds for Urologic Tissue Engineering.

    PubMed

    Sack, Bryan S; Mauney, Joshua R; Estrada, Carlos R

    2016-02-01

    Urologic tissue engineering efforts have been largely focused on bladder and urethral defect repair. The current surgical gold standard for treatment of poorly compliant pathological bladders and severe urethral stricture disease is enterocystoplasty and onlay urethroplasty with autologous tissue, respectively. The complications associated with autologous tissue use and harvesting have led to efforts to develop tissue-engineered alternatives. Natural and synthetic materials have been used with varying degrees of success, but none has proved consistently reliable for urologic tissue defect repair in humans. Silk fibroin (SF) scaffolds have been tested in bladder and urethral repair because of their favorable biomechanical properties including structural strength, elasticity, biodegradability, and biocompatibility. SF scaffolds have been used in multiple animal models and have demonstrated robust regeneration of smooth muscle and urothelium. The pre-clinical data involving SF scaffolds in urologic defect repair are encouraging and suggest that they hold potential for future clinical use.

  18. Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine.

    PubMed

    Aznar-Cervantes, Salvador; Martínez, Jose G; Bernabeu-Esclapez, Antonia; Lozano-Pérez, A Abel; Meseguer-Olmo, Luis; Otero, Toribio F; Cenis, Jose L

    2016-04-01

    Silk fibroin and graphene are both promising biomaterials described in the bibliography. Hybrid scaffolds combining their properties could be attractive for tissue engineering applications. In this work, a new methodology to produce electrospun fibroin scaffolds coated with graphene materials is provided. The mechanical, electrical and electrochemical properties of the materials attained were characterised. The fibre diameters were measured (from 3.9 to 5.2 μm). The samples coated with reduced grapheme were electronic conductors and electroactive in liquid electrolytes, showing maximum oxidation and reduction (around−0.4 V peak). The chronoamperometric responses showed a reduction shoulder, pointing to the entrance of balancing cations from the solution by nucleation–relaxation: the reaction induced structural changes in the graphene. In order to check the biocompatibility of the materials, they were seeded with L929 fibroblasts. The excellent biocompatibility of silk fibroin meshes was maintained after coating with graphene, being the proliferation results equal in all the treatments 7 days after the seeding (Tukey, p N 0.05).The conductive and electroactive properties of meshes coated with reduced graphene allow the potential application of local electric fields or local ionic currents to cell cultures, biological interfaces or animal models without host response.

  19. Multifunctional Silk Nerve Guides for Axon Outgrowth

    NASA Astrophysics Data System (ADS)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  20. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Brooks, Amanda

    2015-11-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug’s local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  1. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery.

    PubMed

    Brooks, Amanda E

    2015-01-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery. PMID:26636069

  2. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery

    PubMed Central

    Brooks, Amanda E.

    2015-01-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery. PMID:26636069

  3. Cranioplasty of an extremely large cranial defect caused by transitional meningioma with a knitted polypropylen-polyester prothesis "Codubix".

    PubMed

    Kotwica, Z; Zawirski, M; Andrzejak, S; Papierz, W; Chmielowski, M

    1991-01-01

    The authors report a case of transitional cell meningioma of the convexity which destroyed a large portion of the calvarium and invaded subcutaneous tissue. The tumour was totally removed and a large cranial defect/430 cm2 in size/was filled with a polypropylenopolyester knitted prothesis "Codubix" with an excellent result. The problems of chronioplastic closure of such an unusually large skull defect and the advantages of the use of the material "Codubix" are discussed. PMID:1776518

  4. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds.

    PubMed

    Li, Shi-Long; Liu, Yi; Hui, Ling

    2015-12-01

    We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose.

  5. Tough silk fibers prepared in air using a biomimetic microfluidic chip.

    PubMed

    Luo, Jie; Zhang, Lele; Peng, Qingfa; Sun, Mengjie; Zhang, Yaopeng; Shao, Huili; Hu, Xuechao

    2014-05-01

    Microfluidic chips with single channel were built to mimic the shear and elongation conditions in the spinning apparatus of spider and silkworm. Silk fibers dry-spun from regenerated silk fibroin (RSF) aqueous solution using the chip could be tougher than degummed natural silk. The artificial silk exhibited a breaking strength up to 614 MPa, a breaking elongation up to 27% and a breaking energy of 101 kJ/kg.

  6. Evaluation of knit glove fabrics as barriers to dermal absorption of organophosphorus insecticides using an in vitro test system.

    PubMed

    Keeble, V B; Correll, L; Ehrich, M

    1993-08-27

    Cotton and synthetic knit glove fabrics in combination with an in vitro skin model were used to examine the capability of fabric to decrease the dermal absorption of the organophosphorus insecticides azinphos-methyl, paraoxon, and malathion. Capability for inhibition of acetylcholinesterase was determined in samples of media taken from under the skin barrier after the skin model, with or without fabric protection, had been exposed to the test compounds for 4 h. Acetylcholinesterase inhibitions caused by the direct addition of organophosphorus insecticide to the media were also included in the comparison. Results indicated that the skin model system alone had some capability to serve as a barrier to the transfer of organophosphates. Fabric covering used on the test model increased the barrier between insecticide application and resultant acetylcholinesterase inhibition. The all-cotton, 7-cut knit was especially effective in preventing the absorption of azinphos-methyl, as this organophosphorus insecticide had no capability to cause acetylcholinesterase inhibition when this fabric was used to protect the skin model. Knit glove materials of 100% cotton were demonstrated to be effective in preventing the absorption of paraoxon and malathion. These studies indicate that an in vitro model system can be used in combination with fabrics to study the relationship between clothing and skin as barriers to the absorption of organophosphorus insecticides.

  7. Reversible Assembly of β-Sheet Nanocrystals within Caddisfly Silk

    PubMed Central

    Addison, J. Bennett; Weber, Warner S.; Mou, Qiushi; Ashton, Nicholas N.; Stewart, Russell J.; Holland, Gregory P.; yarger, Jeffery L.

    2014-01-01

    Nuclear magnetic resonance (NMR) and X-ray diffraction (XRD) experiments reveal the structural importance of divalent cation–phosphate complexes in the formation of β-sheet nanocrystals from phosphorylated serine-rich regions within aquatic silk from caddisfly larvae of the species Hesperophyla consimilis. Wide angle XRD data on native caddisfly silk show that the silk contains a significant crystalline component with a repetitive orthorhombic unit cell aligned along the fiber axis with dimensions of 5.9 Å × 23.2 Å × 17.3 Å. These nanocrystalline domains depend on multivalent cations, which can be removed through chelation with ethylenediaminetetraacetic acid (EDTA). A comparison of wide angle X-ray diffraction data before and after EDTA treatment reveals that the integrated peak area of reflections corresponding to the nanocrystalline regions decreases by 15–25% while that of the amorphous background reflections increases by 20%, indicating a partial loss of crystallinity. 31P solid-state NMR data on native caddisfly silk also show that the phosphorylated serine-rich motifs transform from a rigid environment to one that is highly mobile and water-solvated after treatment with EDTA. The removal of divalent cations through exchange and chelation has therefore caused a collapse of the β-sheet structure. However, NMR results show that the rigid phosphorus environment is mostly recovered after the silk is re-treated with calcium. The 31P spin–lattice (T1) relaxation times were measured at 7.6 ± 3.1 and 1 ± 0.5 s for this calcium-recovered sample and the native silk sample, respectively. The shorter 31P T1 relaxation times measured for the native silk sample are attributed to the presence of paramagnetic iron that is stripped away during EDTA chelation treatment and replaced with diamagnetic calcium. PMID:24576204

  8. Reversible assembly of β-sheet nanocrystals within caddisfly silk.

    PubMed

    Addison, J Bennett; Weber, Warner S; Mou, Qiushi; Ashton, Nicholas N; Stewart, Russell J; Holland, Gregory P; Yarger, Jeffery L

    2014-04-14

    Nuclear magnetic resonance (NMR) and X-ray diffraction (XRD) experiments reveal the structural importance of divalent cation-phosphate complexes in the formation of β-sheet nanocrystals from phosphorylated serine-rich regions within aquatic silk from caddisfly larvae of the species Hesperophyla consimilis. Wide angle XRD data on native caddisfly silk show that the silk contains a significant crystalline component with a repetitive orthorhombic unit cell aligned along the fiber axis with dimensions of 5.9 Å × 23.2 Å × 17.3 Å. These nanocrystalline domains depend on multivalent cations, which can be removed through chelation with ethylenediaminetetraacetic acid (EDTA). A comparison of wide angle X-ray diffraction data before and after EDTA treatment reveals that the integrated peak area of reflections corresponding to the nanocrystalline regions decreases by 15-25% while that of the amorphous background reflections increases by 20%, indicating a partial loss of crystallinity. (31)P solid-state NMR data on native caddisfly silk also show that the phosphorylated serine-rich motifs transform from a rigid environment to one that is highly mobile and water-solvated after treatment with EDTA. The removal of divalent cations through exchange and chelation has therefore caused a collapse of the β-sheet structure. However, NMR results show that the rigid phosphorus environment is mostly recovered after the silk is re-treated with calcium. The (31)P spin-lattice (T1) relaxation times were measured at 7.6 ± 3.1 and 1 ± 0.5 s for this calcium-recovered sample and the native silk sample, respectively. The shorter (31)P T1 relaxation times measured for the native silk sample are attributed to the presence of paramagnetic iron that is stripped away during EDTA chelation treatment and replaced with diamagnetic calcium. PMID:24576204

  9. Prey type, vibrations and handling interactively influence spider silk expression.

    PubMed

    Blamires, S J; Chao, I-C; Tso, I-M

    2010-11-15

    The chemical and mechanical properties of spider major ampullate (MA) silks vary in response to different prey, mostly via differential expression of two genes - MaSp1 and MaSp2 - although the spinning process exerts additional influence over the mechanical properties of silk. The prey cues that initiate differential gene expression are unknown. Prey nutrients, vibratory stimuli and handling have been suggested to be influential. We performed experiments to decouple the vibratory stimuli and handling associated with high and low kinetic energy prey (crickets vs flies) from their prey nutrients to test the relative influence of each as inducers of silk protein expression in the orb web spider Nephila pilipes. We found that the MA silks from spiders feeding on live crickets had greater percentages of glutamine, serine, alanine and glycine than those from spiders feeding on live flies. Proline composition of the silks was unaffected by feeding treatment. Increases in alanine and glycine in the MA silks of the live-cricket-feeding spiders indicate a probable increase in MaSp1 gene expression. The amino acid compositions of N. pilipes feeding on crickets with fly stimuli and N. pilipes feeding on flies with cricket stimuli did not differ from each other or from pre-treatment responses, so these feeding treatments did not induce differential MaSp expression. Our results indicate that cricket vibratory stimuli and handling interact with nutrients to induce N. pilipes to adjust their gene expression to produce webs with mechanical properties appropriate for the retention of this prey. This shows that spiders can genetically alter their silk chemical compositions and, presumably, mechanical properties upon exposure to different prey types. The lack of any change in proline composition with feeding treatment in N. pilipes suggests that the MaSp model determined for Nephila clavipes is not universally applicable to all Nephila.

  10. Nonlinear material behaviour of spider silk yields robust webs.

    PubMed

    Cranford, Steven W; Tarakanova, Anna; Pugno, Nicola M; Buehler, Markus J

    2012-02-01

    Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider's many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress--involving softening at a yield point and substantial stiffening at large strain until failure--as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web's structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.

  11. Synthetic spider silk production on a laboratory scale.

    PubMed

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  12. Increasing silk fibre strength through heterogeneity of bundled fibrils.

    PubMed

    Cranford, Steven W

    2013-05-01

    Can naturally arising disorder in biological materials be beneficial? Materials scientists are continuously attempting to replicate the exemplary performance of materials such as spider silk, with detailed techniques and assembly procedures. At the same time, a spider does not precisely machine silk-imaging indicates that its fibrils are heterogeneous and irregular in cross section. While past investigations either focused on the building material (e.g. the molecular scale protein sequence and behaviour) or on the ultimate structural component (e.g. silk threads and spider webs), the bundled structure of fibrils that compose spider threads has been frequently overlooked. Herein, I exploit a molecular dynamics-based coarse-grain model to construct a fully three-dimensional fibril bundle, with a length on the order of micrometres. I probe the mechanical behaviour of bundled silk fibrils with variable density of heterogenic protrusions or globules, ranging from ideally homogeneous to a saturated distribution. Subject to stretching, the model indicates that cooperativity is enhanced by contact through low-force deformation and shear 'locking' between globules, increasing shear stress transfer by up to 200 per cent. In effect, introduction of a random and disordered structure can serve to improve mechanical performance. Moreover, addition of globules allows a tuning of free volume, and thus the wettability of silk (with implications for supercontraction). These findings support the ability of silk to maintain near-molecular-level strength at the scale of silk threads, and the mechanism could be easily adopted as a strategy for synthetic fibres. PMID:23486175

  13. Molecular mechanics of silk nanostructures under varied mechanical loading.

    PubMed

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. PMID:22020792

  14. Protein families, natural history and biotechnological aspects of spider silk.

    PubMed

    Bittencourt, D; Oliveira, P F; Prosdocimi, F; Rech, E L

    2012-01-01

    Spiders are exceptionally diverse and abundant organisms in terrestrial ecosystems and their evolutionary success is certainly related to their capacity to produce different types of silks during their life cycle, making a specialized use on each of them. Presenting particularly tandemly arranged amino acid repeats, silk proteins (spidroins) have mechanical properties superior to most synthetic or natural high-performance fibers, which makes them very promising for biotechnology industry, with putative applications in the production of new biomaterials. During the evolution of spider species, complex behaviors of web production and usage have been coupled with anatomical specialization of spinning glands. Spiders retaining ancestral characters, such as the ones belonging to the Mygalomorph group, present simpler sorts of webs used mainly to build burrows and egg sacs, and their silks are produced by globular undifferentiated spinning glands. In contrast, Araneomorphae spiders have a complex spinning apparatus, presenting up to seven morphologically distinct glands, capable to produce a more complex set of silk polymers with different degrees of rigidness and elasticity associated with distinct behaviors. Aiming to provide a discussion involving a number of spider silks' biological aspects, in this review we present descriptions of members from each family of spidroin identified from five spider species of the Brazilian biodiversity, and an evolutionary study of them in correlation with the anatomical specialization of glands and spider's spinning behaviors. Due to the biotechnological importance of spider silks for the production of new biomaterials, we also discuss about the new possible technical and biomedical applications of spider silks and the current status of it. PMID:22911606

  15. Molecular mechanics of silk nanostructures under varied mechanical loading.

    PubMed

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications.

  16. Protein families, natural history and biotechnological aspects of spider silk.

    PubMed

    Bittencourt, D; Oliveira, P F; Prosdocimi, F; Rech, E L

    2012-01-01

    Spiders are exceptionally diverse and abundant organisms in terrestrial ecosystems and their evolutionary success is certainly related to their capacity to produce different types of silks during their life cycle, making a specialized use on each of them. Presenting particularly tandemly arranged amino acid repeats, silk proteins (spidroins) have mechanical properties superior to most synthetic or natural high-performance fibers, which makes them very promising for biotechnology industry, with putative applications in the production of new biomaterials. During the evolution of spider species, complex behaviors of web production and usage have been coupled with anatomical specialization of spinning glands. Spiders retaining ancestral characters, such as the ones belonging to the Mygalomorph group, present simpler sorts of webs used mainly to build burrows and egg sacs, and their silks are produced by globular undifferentiated spinning glands. In contrast, Araneomorphae spiders have a complex spinning apparatus, presenting up to seven morphologically distinct glands, capable to produce a more complex set of silk polymers with different degrees of rigidness and elasticity associated with distinct behaviors. Aiming to provide a discussion involving a number of spider silks' biological aspects, in this review we present descriptions of members from each family of spidroin identified from five spider species of the Brazilian biodiversity, and an evolutionary study of them in correlation with the anatomical specialization of glands and spider's spinning behaviors. Due to the biotechnological importance of spider silks for the production of new biomaterials, we also discuss about the new possible technical and biomedical applications of spider silks and the current status of it.

  17. Nonlinear material behaviour of spider silk yields robust webs.

    PubMed

    Cranford, Steven W; Tarakanova, Anna; Pugno, Nicola M; Buehler, Markus J

    2012-02-01

    Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider's many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress--involving softening at a yield point and substantial stiffening at large strain until failure--as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web's structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web. PMID:22297972

  18. Role of pH and charge on silk protein assembly in insects and spiders

    NASA Astrophysics Data System (ADS)

    Foo, C. Wong Po; Bini, E.; Hensman, J.; Knight, D. P.; Lewis, R. V.; Kaplan, D. L.

    2006-02-01

    Silk fibers possess impressive mechanical properties, dependant, in part, on the crystalline β-sheets silk II conformation. The transition to silk II from soluble silk I-like conformation in silk glands, is thought to originate in the spinning ducts immediately before the silk is drawn down into a fiber. However the assembly process of these silk molecules into fibers, whether in silkworms or spiders, is not well understood. Extensional flow, protein concentration, pH and metal ion concentrations are thought to be most important in in vivo silk processing and in affecting structural conformations. We look at how parameters such as pH, [Ca2+], [K+], and [Cu2+], and water content, interact with the domain structure of silk proteins towards the successful storage and processing of these concentrated hydrophobic silk proteins. Our recent domain mapping studies of all known silk proteins, and 2D Raman spectroscopy, NMR, and DLS studies performed on sections of silkworm gland, suggest that low pH and gradual water removal promote intermolecular over intramolecular hydrogen bonding. This discussion helps to provide the necessary ground rules towards the design of silk protein analogues with specific hydrophobicity and charge profiles to optimize expression, solubility and assembly with implications in structural biology and material science.

  19. Advanced silk material spun by a transgenic silkworm promotes cell proliferation for biomedical application.

    PubMed

    Wang, Feng; Xu, Hanfu; Wang, Yuancheng; Wang, Riyuan; Yuan, Lin; Ding, Huan; Song, Chunnuan; Ma, Sanyuan; Peng, Zhixin; Peng, Zhangchuan; Zhao, Ping; Xia, Qingyou

    2014-12-01

    Natural silk fiber spun by the silkworm Bombyx mori is widely used not only for textile materials, but also for biofunctional materials. In the present study, we genetically engineered an advanced silk material, named hSFSV, using a transgenic silkworm, in which the recombinant human acidic fibroblast growth factor (hFGF1) protein was specifically synthesized in the middle silk gland and secreted into the sericin layer to surround the silk fiber using our previously optimized sericin1 expression system. The content of the recombinant hFGF1 in the hSFSV silk was estimated to be approximate 0.07% of the cocoon shell weight. The mechanical properties of hSFSV raw silk fiber were enhanced slightly compared to those of the wild-type raw silk fiber, probably due to the presence of the recombinant of hFGF1 in the sericin layer. Remarkably, the hSFSV raw silk significantly stimulated the cell growth and proliferation of NIH/3T3 mouse embryonic fibroblast cells, suggesting that the mitogenic activity of recombinant hFGF1 was well maintained and functioned in the sericin layer of hSFSV raw silk. These results show that the genetically engineered raw silk hSFSV could be used directly as a fine biomedical material for mass application. In addition, the strategy whereby functional recombinant proteins are expressed in the sericin layer of silk might be used to create more genetically engineered silks with various biofunctions and applications.

  20. The speed of sound in silk: linking material performance to biological function.

    PubMed

    Mortimer, Beth; Gordon, Shira D; Holland, Chris; Siviour, Clive R; Vollrath, Fritz; Windmill, James F C

    2014-08-13

    Sonic properties of spider silks are measured independent of the web using laser vibrometry and ballistic impact providing insights into Nature's design of functionalized high-performance materials. Through comparison to cocoon silk and other industrial fibers, we find that major ampullate silk has the largest wavespeed range of any known material.

  1. [Engineered spider silk: the intelligent biomaterial of the future. Part I].

    PubMed

    Florczak, Anna; Piekoś, Konrad; Kaźmierska, Katarzyna; Mackiewicz, Andrzej; Dams-Kozłowska, Hanna

    2011-01-01

    The unique properties of spider silk such as strength, extensibility, toughness, biocompatibility and biodegradability are the reasons for the recent development in silk biomaterial technology. For a long time scientific progress was impeded by limited access to spider silk. However, the development of the molecular biology strategy was a breaking point in synthetic spider silk protein design. The sequences of engineered spider silk are based on the consensus motives of the corresponding natural equivalents. Moreover, the engineered silk proteins may be modified in order to gain a new function. The strategy of the hybrid proteins constructed on the DNA level combines the sequence of engineered silk, which is responsible for the biomaterial structure, with the sequence of polypeptide which allows functionalization of the silk biomaterial. The functional domains may comprise receptor binding sites, enzymes, metal or sugar binding sites and others. Currently, advanced research is being conducted, which on the one hand focuses on establishing the particular silk structure and understanding the process of silk thread formation in nature. On the other hand, there are attempts to improve methods of engineered spider silk protein production. Due to acquired knowledge and recent progress in synthetic protein technology, the engineered silk will turn into intelligent biomaterial of the future, while its industrial production scale will trigger a biotechnological revolution. PMID:21734322

  2. Physical characterization of functionalized spider silk: electronic and sensing properties

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Park, Jin Gyu; Paravastu, Anant; Branco Lopes, Elsa; Brooks, James S.; Englander, Ongi; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G.

    2011-10-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of

  3. Non-mulberry Silk Fibroin Biomaterial for Corneal Regeneration

    PubMed Central

    Hazra, Sarbani; Nandi, Sudip; Naskar, Deboki; Guha, Rajdeep; Chowdhury, Sushovan; Pradhan, Nirparaj; Kundu, Subhas C.; Konar, Aditya

    2016-01-01

    Purpose: Successful repair of a damaged corneal surface is a great challenge and may require the use of a scaffold that supports cell growth and differentiation. Amniotic membrane is currently used for this purpose, in spite of its limitations. A thin transparent silk fibroin film from non-mulberry Antheraea mylitta (Am) has been developed which offers to be a promising alternative. The silk scaffolds provide sufficient rigidity for easy handling, the scaffolds support the sprouting, migration, attachment and growth of epithelial cells and keratocytes from rat corneal explants; the cells form a cell sheet, preserve their phenotypes, express cytokeratin3 and vimentin respectively. The films also support growth of limbal stem cell evidenced by expression of ABCG2. The cell growth on the silk film and the amniotic membrane is comparable. The implanted film within the rabbit cornea remains transparent, stable. The clinical examination as well as histology shows absence of any inflammatory response or neovascularization. The corneal surface integrity is maintained; tear formation, intraocular pressure and electroretinography of implanted eyes show no adverse changes. The silk fibroin film from non-mulberry silk worms may be a worthy candidate for use as a corneal scaffold. PMID:26908015

  4. Silk/nano-material hybrid: properties and functions

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Lebedev, Victor; Laukhina, Elena; Laukhin, Vladimir; Alamo, Rufina G.; Rovira, Concepcio; Veciana, Jaume; Brooks, James S.

    2014-03-01

    Silk continues to emerge as a material of interest in electronics. In this work, the interaction between silk and conducting nano-materials are investigated. Simple fabrication methods, physical, electronic, thermal, and actuation properties are reported for spider silk / carbon nanotube (CNT-SS) and Bombyx mori / (BEDT-TTF)-based organic molecular conductor hybrids (ET-S). The CNT-SS fibers are produced via water and shear assisted method, resulting in fibers that are tough, custom-shapeable, flexible, and electrically conducting. For ET-S bilayer films, a layer transfer technique is developed to deposit linked crystallites of (BEDT-TTF)2I3 molecular conductor onto silk films, generating highly piezoresistive semi-transparent films. In both cases, the hybridization allows us to gain additional functions by harnessing the water-dependent properties of silk materials, for example, as humidity sensor and electrical current- or water-driven actuators. SEM, TEM, FT-IR, and resistance measurements under varying temperature, strain, and relative humidity reveal the synergistic interactions between the bio- and nano-materials. E.S. is supported by NSF-DMR 1005293.

  5. Biomaterials derived from silk-tropoelastin protein systems.

    PubMed

    Hu, Xiao; Wang, Xiuli; Rnjak, Jelena; Weiss, Anthony S; Kaplan, David L

    2010-11-01

    A structural protein blend system based on silkworm silk fibroin and recombinant human tropoelastin is described. Silk fibroin, a semicrystalline fibrous protein with beta-sheet crystals provides mechanical strength and controllable biodegradation, while tropoelastin, a noncrystallizable elastic protein provides elasticity. Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) indicated that silk becomes miscible with tropoelastin at different blend ratios, without macrophase separation. Fourier transform infrared spectroscopy (FTIR) revealed secondary structural changes of the blend system (beta-sheet content) before and after methanol treatment. Atomic Force Microscopy (AFM) nano-indentation demonstrated that blending silk and tropoelastin at different ratios resulted in modification of mechanical features, with resilience from approximately 68%- approximately 97%, and elastic modulus between 2 and 9 Mpa, depending on the ratio of the two polymers. Some of these values are close to those of native aortic elastin or elastin-like polypeptides. Significantly, during blending and drying silk-tropoelastin form micro- and nano-scale porous morphologies which promote human mesenchymal stem cell attachment and proliferation. These blends offer a new protein biomaterial system for cell support and tailored biomaterial properties to match mechanical needs.

  6. Sericin Composition in the Silk of Antheraea yamamai.

    PubMed

    Zurovec, Michal; Yonemura, Naoyuki; Kludkiewicz, Barbara; Sehnal, František; Kodrik, Dalibor; Vieira, Ligia Cota; Kucerova, Lucie; Strnad, Hynek; Konik, Peter; Sehadova, Hana

    2016-05-01

    The silks produced by caterpillars consist of fibroin proteins that form two core filaments, and sericin proteins that seal filaments into a fiber and conglutinate fibers in the cocoon. Sericin genes are well-known in Bombyx mori (Bombycidae) but have received little attention in other insects. This paper shows that Antheraea yamamai (Saturniidae) contains five sericin genes very different from the three sericin genes of B. mori. In spite of differences, all known sericins are characterized by short exons 1 and 2 (out of 3-12 exons), expression in the middle silk gland section, presence of repeats with high contents of Ser and charged amino acid residues, and secretion as a sticky silk component soluble in hot water. The B. mori sericins represent tentative phylogenetic lineages (I) BmSer1 and orthologs in Saturniidae, (II) BmSer2, and (III) BmSer3 and related sericins of Saturniidae and of the pyralid Galleria mellonella. The lineage (IV) seems to be limited to Saturniidae. Concerted evolution of the sericin genes was apparently associated with gene amplifications as well as gene loses. Differences in the silk fiber morphology indicate that the cocktail of sericins linking the filaments and coating the fiber is modified during spinning. Silks are composite biomaterials of conserved function in spite of great diversity of their composition. PMID:27049111

  7. Reproducing Natural Spider Silks’ Copolymer Behavior in Synthetic Silk Mimics

    PubMed Central

    An, Bo; Jenkins, Janelle E.; Sampath, Sujatha; Holland, Gregory P.; Hinman, Mike; Yarger, Jeffery L.; Lewis, Randolph

    2012-01-01

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure. PMID:23110450

  8. Sporicidal/bactericidal textiles via the chlorination of silk.

    PubMed

    Dickerson, Matthew B; Lyon, Wanda; Gruner, William E; Mirau, Peter A; Slocik, Joseph M; Naik, Rajesh R

    2012-03-01

    Bacterial spores, such as those of the Bacillus genus, are extremely resilient, being able to germinate into metabolically active cells after withstanding harsh environmental conditions or aggressive chemical treatments. The toughness of the bacterial spore in combination with the use of spores, such as those of Bacillus anthracis, as a biological warfare agent necessitates the development of new antimicrobial textiles. In this work, a route to the production of fabrics that kill bacterial spores and cells within minutes of exposure is described. Utilizing this facile process, unmodified silk cloth is reacted with a diluted bleach solution, rinsed with water, and dried. The chlorination of silk was explored under basic (pH 11) and slightly acidic (pH 5) conditions. Chloramine-silk textiles prepared in acidified bleach solutions were found to have superior breaking strength and higher oxidative Cl contents than those prepared under caustic conditions. Silk cloth chlorinated for ≥1 h at pH 5 was determined to induce >99.99996% reduction in the colony forming units of Escherichia coli, as well as Bacillus thuringiensis Al Hakam (B. anthracis simulant) spores and cells within 10 min of contact. The processing conditions presented for silk fabric in this study are highly expeditionary, allowing for the on-site production of protein-based antimicrobial materials from a variety of agriculturally produced feed-stocks.

  9. Spider web and silk performance landscapes across nutrient space

    PubMed Central

    Blamires, Sean J.; Tseng, Yi-Hsuan; Wu, Chung-Lin; Toft, Søren; Raubenheimer, David; Tso, I.-Min

    2016-01-01

    Predators have been shown to alter their foraging as a regulatory response to recent feeding history, but it remains unknown whether trap building predators modulate their traps similarly as a regulatory strategy. Here we fed the orb web spider Nephila pilipes either live crickets, dead crickets with webs stimulated by flies, or dead crickets without web stimulation, over 21 days to enforce spiders to differentially extract nutrients from a single prey source. In addition to the nutrients extracted we measured web architectures, silk tensile properties, silk amino acid compositions, and web tension after each feeding round. We then plotted web and silk “performance landscapes” across nutrient space. The landscapes had multiple peaks and troughs for each web and silk performance parameter. The findings suggest that N. pilipes plastically adjusts the chemical and physical properties of their web and silk in accordance with its nutritional history. Our study expands the application of the geometric framework foraging model to include a type of predatory trap. Whether it can be applied to other predatory traps requires further testing. PMID:27216252

  10. NMR Studies of Molecular Orientation and Dynamics in Spider silk

    NASA Astrophysics Data System (ADS)

    Michal, Carl; Eles, Philip

    2004-05-01

    Spider dragline silk has a unique combination of strength and extensibility that has been difficult to achieve in synthetic polymer fibres and has inspired industrial efforts to produce genetically engineered analogues. In light of these efforts elsewhere, we describe solid-state NMR experiments that elucidate the molecular structure and dynamics of this remarkable material. These experiments include the use of a 2-D exchange NMR experiment known as DECODER in which the sample is reoriented through a discrete angle during the mixing time. This experiment allows a reconstruction of the orientation distribution of the protein backbone. Our data is well described by a two-component distribution where the protein backbones of both components are preferentially aligned along the silk fibre. This experiment is also sensitive to molecular motion on a wide range of time-scales, and is employed to study changes in the silk as a function of fibre extension and hydration. Hydrated silk undergoes a remarkable phenomena known as supercontraction where fibres shrink by up to 50% in length while swelling in diameter. DECODER NMR of fully and partially supercontracted silk reveals that supercontraction occurs through a process of local phase transitions where water disrupts inter- and intra-chain hydrogen bonds.

  11. A novel property of spider silk: chemical defence against ants.

    PubMed

    Zhang, Shichang; Koh, Teck Hui; Seah, Wee Khee; Lai, Yee Hing; Elgar, Mark A; Li, Daiqin

    2012-05-01

    Spider webs are made of silk, the properties of which ensure remarkable efficiency at capturing prey. However, remaining on, or near, the web exposes the resident spiders to many potential predators, such as ants. Surprisingly, ants are rarely reported foraging on the webs of orb-weaving spiders, despite the formidable capacity of ants to subdue prey and repel enemies, the diversity and abundance of orb-web spiders, and the nutritional value of the web and resident spider. We explain this paradox by reporting a novel property of the silk produced by the orb-web spider Nephila antipodiana (Walckenaer). These spiders deposit on the silk a pyrrolidine alkaloid (2-pyrrolidinone) that provides protection from ant invasion. Furthermore, the ontogenetic change in the production of 2-pyrrolidinone suggests that this compound represents an adaptive response to the threat of natural enemies, rather than a simple by-product of silk synthesis: while 2-pyrrolidinone occurs on the silk threads produced by adult and large juvenile spiders, it is absent on threads produced by small juvenile spiders, whose threads are sufficiently thin to be inaccessible to ants.

  12. Osteoinductive silk-silica composite biomaterials for bone regeneration

    PubMed Central

    Mieszawska, Aneta J.; Fourligas, Nikolaos; Georgakoudi, Irene; Ouhib, Nadia; Belton, David J.; Perry, Carole C.; Kaplan, David L.

    2010-01-01

    Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining silk fibroin with silica particles. The influence of these composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on silk/silica films. The addition of the silica to the silk films influenced gene expression leading to upregulation of bone sialoprotein (BSP) and collagen type 1 (Col 1) osteogenic markers. Evidence for early bone formation in the form of collagen fibers and apatite nodules was obtained on the silk/silica films. Collagen fibers were closely associated with apatite deposits and overall collagen content was higher for the silica containing samples. Also, smaller sized silica particles (24 nm – 2 μm) with large surface area facilitated silica biodegradation in vitro through particle dissolution, leading to ~5 fold decrease in silica content over 10 weeks. These results indicate suitability of silk/silica composite system towards bone regeneration, where degradation/remodeling rates of the organic and inorganic components can be controlled. PMID:20817293

  13. Functionalized silk-based biomaterials for bone formation.

    PubMed

    Sofia, S; McCarthy, M B; Gronowicz, G; Kaplan, D L

    2001-01-01

    Silks are being reassessed as biomaterial scaffolds due to their unique mechanical properties, opportunities for genetic tailoring of structure and thus function, and recent studies clarifying biocompatibility. We report on the covalent decoration of silk films with integrin recognition sequences (RGD) as well as parathyroid hormone (PTH, 1-34 amino acids) and a modified PTH 1-34 (mPTH) involved in the induction of bone formation. Osteoblast-like cell (Saos-2) responses to the decorated silk films indicate that the proteins serve as suitable bone-inducing matrices. Osteoblast-like cell adhesion was significantly increased on RGD and PTH compared to plastic, mPTH, and the control peptide RAD. At 2 weeks of culture, message levels of alkaline phosphatase were similar on all substrates, but by 4 weeks, alkaline phosphatase mRNA was greatest on RGD. At 2 weeks of culture, alpha 1(I) procollagen mRNA was elevated on silk, RGD, RAD, and PTH, and hardly detectable on mPTH and plastic. However, by 4 weeks RGD demonstrated the highest level compared to the other substrates. Osteocalcin message levels detected by RT-PCR were greatest on RGD at both time points. Calcification was also significantly elevated on RGD compared to the other substrates with an increase in number and size of the mineralized nodules in culture. Thus, RGD covalently decorated silk appears to stimulate osteoblast-based mineralization in vitro.

  14. Nanocomposite of silk fibroin nanofiber and montmorillonite: fabrication and morphology.

    PubMed

    Kishimoto, Yuki; Ito, Fuyu; Usami, Hisanao; Togawa, Eiji; Tsukada, Masuhiro; Morikawa, Hideaki; Yamanaka, Shigeru

    2013-06-01

    The purpose of our research is creating a new nanocomposite material. Generally silk fibroin (SF) is regarded as a promising base material for biomedical uses. The incorporation of montmorillonite (MMT) into SF fibers would improve physical properties of the SF fibers. We investigated a new method of combining electospun SF with MMT. Specifically, electrospun silk nanofibers were treated with methanol and dipped in a MMT suspension. We could obtain a nanosheet composite of silk nanofibers and MMT. Their ultrastructures were successfully visualized by high resolution transmission electron microscopy. This compound was comprised of individual silk nanofibers surrounded by thin layers of MMT, each with a thickness of about 1.2 nm. This structure was confirmed by elemental analysis. We also performed IR, NMR and X-ray diffraction analyses in conjunction with morphological data. Conclusively we obtained a new composite of silk nanofiber and MMT, which has never been reported. Using this unique nanocomposite biological tests of its application for a scaffold for tissue engineering are under way. PMID:23500446

  15. Peroxidase-catalysed interfacial adhesion of aquatic caddisworm silk.

    PubMed

    Wang, Ching-Shuen; Pan, Huaizhong; Weerasekare, G Mahika; Stewart, Russell J

    2015-11-01

    Casemaker caddisfly (Hesperophylax occidentalis) larvae use adhesive silk fibres to construct protective shelters under water. The silk comprises a distinct peripheral coating on a viscoelastic fibre core. Caddisworm silk peroxinectin (csPxt), a haem-peroxidase, was shown to be glycosylated by lectin affinity chromatography and tandem mass spectrometry. Using high-resolution H2O2 and peroxidase-dependent silver ion reduction and nanoparticle deposition, imaged by electron microscopy, csPxt activity was shown to be localized in the peripheral layer of drawn silk fibres. CsPxt catalyses dityrosine cross-linking within the adhesive peripheral layer post-draw, initiated perhaps by H2O2 generated by a silk gland-specific superoxide dismutase 3 (csSOD3) from environmental reactive oxygen species present in natural water. CsSOD3 was also shown to be a glycoprotein and is likely localized in the peripheral layer. Using a synthetic fluorescent phenolic copolymer and confocal microscopy, it was shown that csPxt catalyses oxidative cross-linking to external polyphenolic compounds capable of diffusive interpenetration into the fuzzy peripheral coating, including humic acid, a natural surface-active polyphenol. The results provide evidence of enzyme-mediated covalent cross-linking of a natural bioadhesive to polyphenol conditioned interfaces as a mechanism of permanent adhesion underwater. PMID:26490632

  16. Spider web and silk performance landscapes across nutrient space.

    PubMed

    Blamires, Sean J; Tseng, Yi-Hsuan; Wu, Chung-Lin; Toft, Søren; Raubenheimer, David; Tso, I-Min

    2016-05-24

    Predators have been shown to alter their foraging as a regulatory response to recent feeding history, but it remains unknown whether trap building predators modulate their traps similarly as a regulatory strategy. Here we fed the orb web spider Nephila pilipes either live crickets, dead crickets with webs stimulated by flies, or dead crickets without web stimulation, over 21 days to enforce spiders to differentially extract nutrients from a single prey source. In addition to the nutrients extracted we measured web architectures, silk tensile properties, silk amino acid compositions, and web tension after each feeding round. We then plotted web and silk "performance landscapes" across nutrient space. The landscapes had multiple peaks and troughs for each web and silk performance parameter. The findings suggest that N. pilipes plastically adjusts the chemical and physical properties of their web and silk in accordance with its nutritional history. Our study expands the application of the geometric framework foraging model to include a type of predatory trap. Whether it can be applied to other predatory traps requires further testing.

  17. Sporicidal/bactericidal textiles via the chlorination of silk.

    PubMed

    Dickerson, Matthew B; Lyon, Wanda; Gruner, William E; Mirau, Peter A; Slocik, Joseph M; Naik, Rajesh R

    2012-03-01

    Bacterial spores, such as those of the Bacillus genus, are extremely resilient, being able to germinate into metabolically active cells after withstanding harsh environmental conditions or aggressive chemical treatments. The toughness of the bacterial spore in combination with the use of spores, such as those of Bacillus anthracis, as a biological warfare agent necessitates the development of new antimicrobial textiles. In this work, a route to the production of fabrics that kill bacterial spores and cells within minutes of exposure is described. Utilizing this facile process, unmodified silk cloth is reacted with a diluted bleach solution, rinsed with water, and dried. The chlorination of silk was explored under basic (pH 11) and slightly acidic (pH 5) conditions. Chloramine-silk textiles prepared in acidified bleach solutions were found to have superior breaking strength and higher oxidative Cl contents than those prepared under caustic conditions. Silk cloth chlorinated for ≥1 h at pH 5 was determined to induce >99.99996% reduction in the colony forming units of Escherichia coli, as well as Bacillus thuringiensis Al Hakam (B. anthracis simulant) spores and cells within 10 min of contact. The processing conditions presented for silk fabric in this study are highly expeditionary, allowing for the on-site production of protein-based antimicrobial materials from a variety of agriculturally produced feed-stocks. PMID:22352921

  18. How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk.

    PubMed

    Blackledge, Todd A; Boutry, Cecilia; Wong, Shing-Chung; Baji, Avinash; Dhinojwala, Ali; Sahni, Vasav; Agnarsson, Ingi

    2009-07-01

    Spider dragline silk has enormous potential for the development of biomimetic fibers that combine strength and elasticity in low density polymers. These applications necessitate understanding how silk reacts to different environmental conditions. For instance, spider dragline silk ;supercontracts' in high humidity. During supercontraction, unrestrained dragline silk contracts up to 50% of its original length and restrained fibers generate substantial stress. Here we characterize the response of dragline silk to changes in humidity before, during and after supercontraction. Our findings demonstrate that dragline silk exhibits two qualitatively different responses to humidity. First, silk undergoes a previously unknown cyclic relaxation-contraction response to wetting and drying. The direction and magnitude of this cyclic response is identical both before and after supercontraction. By contrast, supercontraction is a ;permanent' tensioning of restrained silk in response to high humidity. Here, water induces stress, rather than relaxation and the uptake of water molecules results in a permanent change in molecular composition of the silk, as demonstrated by thermogravimetric analysis (TGA). Even after drying, silk mass increased by approximately 1% after supercontraction. By contrast, the cyclic response to humidity involves a reversible uptake of water. Dried, post-supercontraction silk also differs mechanically from virgin silk. Post-supercontraction silk exhibits reduced stiffness and stress at yield, as well as changes in dynamic energy storage and dissipation. In addition to advancing understanding supercontraction, our findings open up new applications for synthetic silk analogs. For example, dragline silk emerges as a model for a biomimetic muscle, the contraction of which is precisely controlled by humidity alone. PMID:19525422

  19. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks.

    PubMed

    Hayashi, C Y; Lewis, R V

    1998-02-01

    Orb-web weaving spiders rely on their aerial nets to entrap flying prey. A key mechanical feature of orb-web design is the high elasticity of the capture spiral. We report the cloning of substantial cDNA for flagelliform gland silk protein, which forms the core fiber of the catching spiral. Like all silks, the flagelliform protein is composed largely of iterated sequences. The dominant repeat of this protein is Gly-Pro-Gly-Gly-X, which can appear up to 63 times in tandem arrays. This motif likely forms Pro2-Gly3 type II beta-turns and the resulting series of concatenated beta-turns are thought to form a beta-spiral. We propose that this spring-like helix is the basis for the elasticity of silk. The variable fifth position of the motif (X) is occupied by a small subset of residues (Ala, Ser, Tyr, Val). Moreover, these X amino acids occur in specific patterns throughout the repeats. This ordered variation strongly suggests that with hydration, the beta-spirals form hydrogen-bonded networks that increase the elasticity of flagelliform silk. The self-assembly of flagelliform protein monomers into silk fibers may be promoted by beta-spiral/beta-spiral interactions. Additionally, the other two motifs in the flagelliform protein, Gly-Gly-X and a spacer that disrupts the glycine-rich regions, may contribute to the alignment of monomers into fibers. The flagelliform protein cDNA was compared to the other members of the spider silk gene family. We show that all spider silk proteins can be characterized as sets of shared structural modules. The occurrence of these modules among the proteins is inconsistent with the phylogenetic relationships inferred from the C-terminal regions. This observation, along with the high level of variation among individual flagelliform protein repeats, but striking lack of such variation in the other silk proteins, suggests that unusual homogenization processes are involved in silk protein evolution. PMID:9480768

  20. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks.

    PubMed

    Hayashi, C Y; Lewis, R V

    1998-02-01

    Orb-web weaving spiders rely on their aerial nets to entrap flying prey. A key mechanical feature of orb-web design is the high elasticity of the capture spiral. We report the cloning of substantial cDNA for flagelliform gland silk protein, which forms the core fiber of the catching spiral. Like all silks, the flagelliform protein is composed largely of iterated sequences. The dominant repeat of this protein is Gly-Pro-Gly-Gly-X, which can appear up to 63 times in tandem arrays. This motif likely forms Pro2-Gly3 type II beta-turns and the resulting series of concatenated beta-turns are thought to form a beta-spiral. We propose that this spring-like helix is the basis for the elasticity of silk. The variable fifth position of the motif (X) is occupied by a small subset of residues (Ala, Ser, Tyr, Val). Moreover, these X amino acids occur in specific patterns throughout the repeats. This ordered variation strongly suggests that with hydration, the beta-spirals form hydrogen-bonded networks that increase the elasticity of flagelliform silk. The self-assembly of flagelliform protein monomers into silk fibers may be promoted by beta-spiral/beta-spiral interactions. Additionally, the other two motifs in the flagelliform protein, Gly-Gly-X and a spacer that disrupts the glycine-rich regions, may contribute to the alignment of monomers into fibers. The flagelliform protein cDNA was compared to the other members of the spider silk gene family. We show that all spider silk proteins can be characterized as sets of shared structural modules. The occurrence of these modules among the proteins is inconsistent with the phylogenetic relationships inferred from the C-terminal regions. This observation, along with the high level of variation among individual flagelliform protein repeats, but striking lack of such variation in the other silk proteins, suggests that unusual homogenization processes are involved in silk protein evolution.

  1. A knitted garment using intarsia technique for Heart Rate Variability biofeedback: Evaluation of initial prototype.

    PubMed

    Abtahi, F; Ji, G; Lu, K; Rödby, K; Seoane, F

    2015-01-01

    Heart rate variability (HRV) biofeedback is a method based on paced breathing at specific rate called resonance frequency by giving online feedbacks from user respiration and its effect on HRV. Since the HRV is also influence by different factors like stress and emotions, stress related to an unfamiliar measurement device, cables and skin electrodes may cover the underling effect of such kind of intervention. Wearable systems are usually considered as intuitive solutions which are more familiar to the end-user and can help to improve usability and hence reducing the stress. In this work, a prototype of a knitted garment using intarsia technique is developed and evaluated. Results show the satisfactory level of quality for Electrocardiogram and thoracic electrical bioimpedance i.e. for respiration monitoring as a part of HRV biofeedback system. Using intarsia technique and conductive yarn for making the connection instead of cables will reduce the complexity of fabrication in textile production and hence reduce the final costs in a final commercial product. Further development of garment and Android application is ongoing and usability and efficiency of final prototype will be evaluated in detail.

  2. Further Investigations of High Temperature Knitted Spring Tubes for Advanced Control Surface Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2006-01-01

    Knitted metallic spring tubes are the structural backbones that provide resiliency in control surface seals for use on current and future reusable space launch vehicles. Control surface seals fill the space between movable control surfaces such as body flaps, rudders and elevons, and the static body structures to which they are attached. These seals must remain in continuous contact with opposing surfaces to prevent the ingestion of damaging hot gases encountered during atmospheric re-entry. The Inconel X-750 (Special Metals Corporation) spring tube utilized in the baseline control surface seal shows significant resiliency loss when compressed at temperatures as low as 1200 F. High temperature compression testing and microstructural analysis show that creep is the dominant deformation mechanism leading to permanent set and resiliency loss in tested spring tube samples. Additional evaluation using a structured design of experiments approach shows that spring tube performance, primarily high temperature resiliency, can be enhanced through material substitution of Rene 41 (Allvac) alloy (for the baseline Inconel X-750 material) when coupled with specialized thermal processing.

  3. 3D printed auxetic forms on knitted fabrics for adjustable permeability and mechanical properties

    NASA Astrophysics Data System (ADS)

    Grimmelsmann, N.; Meissner, H.; Ehrmann, A.

    2016-07-01

    The 3D printing technology can be applied into manufacturing primary shaping diverse products, from models dealing as examples for future products that will be produced with another technique, to useful objects. Since 3D printing is nowadays significantly slower than other possibilities to manufacture items, such as die casting, it is often used for small parts that are produced in small numbers or for products that cannot be created in another way. Combinations of 3D printing with other objects, adding novel functionalities to them, are thus favourable to a complete primary shaping process. Textile fabrics belong to the objects whose mechanical and other properties can notably be modified by adding 3D printed forms. This article mainly reports on a new possibility to change the permeability of textile fabrics by 3D printing auxetic forms, e.g. for utilising them in textile filters. In addition, auxetic forms 3D printed on knitted fabrics can bring about mechanical properties that are conducive to tensile constructions.

  4. The mechanical performance of weft-knitted/electrospun bilayer small diameter vascular prostheses.

    PubMed

    Xie, Yu; Guan, Ying; Kim, Soo-Hyun; King, Martin W

    2016-08-01

    Cardiovascular disease (CVD) accounts for a significant mortality rate worldwide. Autologous vessels, such as the saphenous vein and the internal mammary artery, are currently the gold standard materials for by-pass surgery. However, they may not always be available due to aging, previous harvesting or the pre-existing arterial disease. Synthetic commercial ePTFE and polyester (PET) are not suitable for small diameter vascular grafts (<6mm), mainly due to their poor circumferential compliance, rapid thrombus formation and low endothelialization. In order to reduce thrombogenicity and improve cell proliferation, we developed a collagen/elastin knitted/electrospun bilayer graft made of biodegradable and biocompatible poly(lactic acid) (PLA) and poly(lactide-co-caprolactone) (PLCL) polymers to mimic the multilayer structure of native arteries. We also designed the prostheses to provide some of the required mechanical properties. While the bilayer structure had excellent circumferential tensile strength, bursting strength and suture retention resistance, the radial compliance did not show any observable improvement.

  5. The mechanical performance of weft-knitted/electrospun bilayer small diameter vascular prostheses.

    PubMed

    Xie, Yu; Guan, Ying; Kim, Soo-Hyun; King, Martin W

    2016-08-01

    Cardiovascular disease (CVD) accounts for a significant mortality rate worldwide. Autologous vessels, such as the saphenous vein and the internal mammary artery, are currently the gold standard materials for by-pass surgery. However, they may not always be available due to aging, previous harvesting or the pre-existing arterial disease. Synthetic commercial ePTFE and polyester (PET) are not suitable for small diameter vascular grafts (<6mm), mainly due to their poor circumferential compliance, rapid thrombus formation and low endothelialization. In order to reduce thrombogenicity and improve cell proliferation, we developed a collagen/elastin knitted/electrospun bilayer graft made of biodegradable and biocompatible poly(lactic acid) (PLA) and poly(lactide-co-caprolactone) (PLCL) polymers to mimic the multilayer structure of native arteries. We also designed the prostheses to provide some of the required mechanical properties. While the bilayer structure had excellent circumferential tensile strength, bursting strength and suture retention resistance, the radial compliance did not show any observable improvement. PMID:27111627

  6. Knitting aromatic polymers for efficient solid-phase microextraction of trace organic pollutants.

    PubMed

    Liu, Shuqin; Hu, Qingkun; Zheng, Juan; Xie, Lijun; Wei, Songbo; Jiang, Ruifen; Zhu, Fang; Liu, Yuan; Ouyang, Gangfeng

    2016-06-10

    A series of knitting aromatic polymers (KAPs) were successfully synthesized using a simple one-step Friedel-Crafts alkylation of aromatic monomers and were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Then, as-synthesized KAPs with large surface areas, unique pore structures and high thermal stability were prepared as solid-phase microextraction (SPME) coatings that exhibited good extraction abilities for a series of benzene compounds (i.e., benzene, toluene, ethylbenzene and m-xylene, which are referred to as BTEX) and polycyclic aromatic hydrocarbons (PAHs). Under the optimized conditions, the methodologies established for the determination of BTEX and PAHs using the KAPs-triPB and KAPs-B coatings, respectively, possessed wide linear ranges, low limits of detection (LODs, 0.10-1.13ngL(-1) for BTEX and 0.05-0.49ngL(-1) for PAHs) and good reproducibility. Finally, the proposed methods were successfully applied to the determination of BTEX and PAHs in environmental water samples, and satisfactory recoveries (93.6-124.2% for BTEX and 77.2-113.3% for PAHs) were achieved. This study provides a benchmark for exploiting novel microporous organic polymers (MOPs) for SPME applications. PMID:27155913

  7. Knitting aromatic polymers for efficient solid-phase microextraction of trace organic pollutants.

    PubMed

    Liu, Shuqin; Hu, Qingkun; Zheng, Juan; Xie, Lijun; Wei, Songbo; Jiang, Ruifen; Zhu, Fang; Liu, Yuan; Ouyang, Gangfeng

    2016-06-10

    A series of knitting aromatic polymers (KAPs) were successfully synthesized using a simple one-step Friedel-Crafts alkylation of aromatic monomers and were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Then, as-synthesized KAPs with large surface areas, unique pore structures and high thermal stability were prepared as solid-phase microextraction (SPME) coatings that exhibited good extraction abilities for a series of benzene compounds (i.e., benzene, toluene, ethylbenzene and m-xylene, which are referred to as BTEX) and polycyclic aromatic hydrocarbons (PAHs). Under the optimized conditions, the methodologies established for the determination of BTEX and PAHs using the KAPs-triPB and KAPs-B coatings, respectively, possessed wide linear ranges, low limits of detection (LODs, 0.10-1.13ngL(-1) for BTEX and 0.05-0.49ngL(-1) for PAHs) and good reproducibility. Finally, the proposed methods were successfully applied to the determination of BTEX and PAHs in environmental water samples, and satisfactory recoveries (93.6-124.2% for BTEX and 77.2-113.3% for PAHs) were achieved. This study provides a benchmark for exploiting novel microporous organic polymers (MOPs) for SPME applications.

  8. Carbonic anhydrase generates a pH gradient in Bombyx mori silk glands.

    PubMed

    Domigan, L J; Andersson, M; Alberti, K A; Chesler, M; Xu, Q; Johansson, J; Rising, A; Kaplan, D L

    2015-10-01

    Silk is a protein of interest to both biological and industrial sciences. The silkworm, Bombyx mori, forms this protein into strong threads starting from soluble silk proteins using a number of biochemical and physical cues to allow the transition from liquid to fibrous silk. A pH gradient has been measured along the gland, but the methodology employed was not able to precisely determine the pH at specific regions of interest in the silk gland. Furthermore, the physiological mechanisms responsible for the generation of this pH gradient are unknown. In this study, concentric ion selective microelectrodes were used to determine the luminal pH of B. mori silk glands. A gradient from pH 8.2 to 7.2 was measured in the posterior silk gland, with a pH 7 throughout the middle silk gland, and a gradient from pH 6.8 to 6.2 in the beginning of the anterior silk gland where silk processing into fibers occurs. The small diameter of the most anterior region of the anterior silk gland prevented microelectrode access in this region. Using a histochemical method, the presence of active carbonic anhydrase was identified in the funnel and anterior silk gland of fifth instar larvae. The observed pH gradient collapsed upon addition of the carbonic anhydrase inhibitor methazolamide, confirming an essential role for this enzyme in pH regulation in the B. mori silk gland. Plastic embedding of whole silk glands allowed clear visualization of the morphology, including the identification of four distinct epithelial cell types in the gland and allowed correlations between silk gland morphology and silk stages of assembly related to the pH gradient. B. mori silk glands have four different epithelial cell types, one of which produces carbonic anhydrase. Carbonic anhydrase is necessary for the mechanism that generates an intraluminal pH gradient, which likely regulates the assembly of silk proteins and then the formation of fibers from soluble silk proteins. These new insights into native silk

  9. Development of new smart materials and spinning systems inspired by natural silks and their applications

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Lee, Sang-Hoon

    2015-12-01

    Silks produced by spiders and silkworms are charming natural biological materials with highly optimized hierarchical structures and outstanding physicomechanical properties. The superior performance of silks relies on the integration of a unique protein sequence, a distinctive spinning process, and complex hierarchical structures. Silks have been prepared to form a variety of morphologies and are widely used in diverse applications, for example, in the textile industry, as drug delivery vehicles, and as tissue engineering scaffolds. This review presents an overview of the organization of natural silks, in which chemical and physical functions are optimized, as well as a range of new materials inspired by the desire to mimic natural silk structure and synthesis.

  10. Impact and dynamic mechanical thermal properties of textile silk reinforced epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Yang, K.; Guan, J.

    2016-07-01

    Silk fabric reinforced epoxy resin composites (SFRPs) were prepared using simple techniques of hand lay-up, hot-press and vacuum treatment, and a series of volume fractions of silk reinforcements were achieved. The impact properties and dynamic mechanical properties of SFRPs were investigated using a pendulum impact testing method and dynamic mechanical thermal analysis (DMTA). The results suggest that silk reinforcement could greatly enhance the mechanical performances of SFRPs. The impact strength reached a maximum of 71 kJ/m2 for 60%-silk SFRP, which demonstrated a potential of silk composites for defence and impact- resistant materials.

  11. Different Types of Peptide Detected by Mass Spectrometry among Fresh Silk and Archaeological Silk Remains for Distinguishing Modern Contamination

    PubMed Central

    Li, Li; Gong, Yuxuan; Yin, Hao; Gong, Decai

    2015-01-01

    Archaeological silk provides abundant information for studying ancient technologies and cultures. However, due to the spontaneous degradation and the damages from burial conditions, most ancient silk fibers which suffered the damages for thousands of years were turned into invisible molecular residues. For the obtained rare samples, extra care needs to be taken to accurately identify the genuine archaeological silk remains from modern contaminations. Although mass spectrometry (MS) is a powerful tool for identifying and analyzing the ancient protein residues, the traditional approach could not directly determine the dating and contamination of each sample. In this paper, a series of samples with a broad range of ages were tested by MS to find an effective and innovative approach to determine whether modern contamination exists, in order to verify the authenticity and reliability of the ancient samples. The new findings highlighted that the detected peptide types of the fibroin light chain can indicate the degradation levels of silk samples and help to distinguish contamination from ancient silk remains. PMID:26186676

  12. Comparison Of Flat-Knitted Structures Made Of Poly(P-Phenylene-2,6-Benzobisoxazole) And Para-Aramid Referring To Their Stab Resistance

    NASA Astrophysics Data System (ADS)

    Obermann, M.; Aumann, S.; Heimlich, F.; Weber, M. O.; Schwarz-Pfeiffer, A.

    2016-07-01

    In the field of protective gear, developers always aim for lighter and more flexible material in order to increase the wearing comfort. Suppliers now work on knitted garments in the sports-sector as well as in workwear and protective gear for policemen or security-agents. In a recent project different knitted structures made of a poly(p-phenylene-2,6-benzobisoxazole) (PBO)-multifilament were compared to their counterparts made of para-aramid. In focus of the comparison stood the stab-resistance linked to either the mass per unit area or the stitch density. The tested fabrics were produced on hand flat knitting machines as well as on electronical flat knitting machines of the type Stoll CMS 330TC4, in order to analyse fabrics with different tightness factor and machine gauges. The stab resistance of the different knitted fabrics was examined according to the standard of the Association of Test Laboratories for Bullet, Stab or Pike Resistant Materials and Construction Standards. The presentation includes the depiction of the results of the test series and their interpretation. Furthermore it will give an outlook on most suitable combinations of materials and structures to be used in protective gear.

  13. Production of spider silk proteins in tobacco and potato.

    PubMed

    Scheller, J; Gührs, K H; Grosse, F; Conrad, U

    2001-06-01

    Spider dragline silk is a proteinaceous fiber with remarkable mechanical properties that make it attractive for technical applications. Unfortunately, the material cannot be obtained in large quantities from spiders. We have therefore generated transgenic tobacco and potato plants that express remarkable amounts of recombinant Nephila clavipes dragline proteins. Using a gene synthesis approach, the recombinant proteins exhibit homologies of >90% compared to their native models. Here, we demonstrate the accumulation of recombinant silk proteins, which are encoded by synthetic genes of 420-3,600 base pairs, up to a level of at least 2% of total soluble protein in the endoplasmic reticulum (ER) of tobacco and potato leaves and potato tubers, respectively. Using the present expression system, spider silk proteins up to 100 kDa could be detected in plant tissues. When produced in plants, the recombinant spidroins exhibit extreme heat stability-a property that is used to purify the spidroins by a simple and efficient procedure.

  14. A simple model of multiphoton micromachining in silk hydrogels

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.; Alonzo, Carlo; Georgakoudi, Irene; Kaplan, David L.; Omenetto, Fiorenzo G.

    2016-06-01

    High resolution three-dimensional voids can be directly written into transparent silk fibroin hydrogels using ultrashort pulses of near-infrared (NIR) light. Here, we propose a simple finite-element model that can be used to predict the size and shape of individual features under various exposure conditions. We compare predicted and measured feature volumes for a wide range of parameters and use the model to determine optimum conditions for maximum material removal. The simplicity of the model implies that the mechanism of multiphoton induced void creation in silk is due to direct absorption of light energy rather than diffusion of heat or other photoproducts, and confirms that multiphoton absorption of NIR light in silk is purely a 3-photon process.

  15. Nonlinear control of high-frequency phonons in spider silk.

    PubMed

    Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L; Fytas, George

    2016-10-01

    Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk's dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.

  16. The use of silk-based devices for fracture fixation

    NASA Astrophysics Data System (ADS)

    Perrone, Gabriel S.; Leisk, Gary G.; Lo, Tim J.; Moreau, Jodie E.; Haas, Dylan S.; Papenburg, Bernke J.; Golden, Ethan B.; Partlow, Benjamin P.; Fox, Sharon E.; Ibrahim, Ahmed M. S.; Lin, Samuel J.; Kaplan, David L.

    2014-03-01

    Metallic fixation systems are currently the gold standard for fracture fixation but have problems including stress shielding, palpability and temperature sensitivity. Recently, resorbable systems have gained interest because they avoid removal and may improve bone remodelling due to the lack of stress shielding. However, their use is limited to paediatric craniofacial procedures mainly due to the laborious implantation requirements. Here we prepare and characterize a new family of resorbable screws prepared from silk fibroin for craniofacial fracture repair. In vivo assessment in rat femurs shows the screws to be self-tapping, remain fixed in the bone for 4 and 8 weeks, exhibit biocompatibility and promote bone remodelling. The silk-based devices compare favourably with current poly-lactic-co-glycolic acid fixation systems, however, silk-based devices offer numerous advantages including ease of implantation, conformal fit to the repair site, sterilization by autoclaving and minimal inflammatory response.

  17. Nanomaterial building blocks based on spider silk-oligonucleotide conjugates.

    PubMed

    Humenik, Martin; Scheibel, Thomas

    2014-02-25

    Self-assembling protein nanofibrils are promising structures for the "bottom-up" fabrication of bionanomaterials. Here, the recombinant protein eADF4(C16), a variant of Araneus diadematus dragline silk ADF4, which self-assembles into nanofibrils, and short oligonucleotides were modified for site-specific azide-alkyne coupling. Corresponding oligonuleotide-eADF4(C16) "click" conjugates were hybridized in linear or branched fashion according to the designed complementarities of the DNA moieties. Self-assembly properties of higher ordered structures of the spider silk-DNA conjugates were dominated by the silk component. Assembled β-sheet rich conjugate fibrils were similar in appearance to fibrils of unmodified eADF4(C16) but enabled the specific attachment of neutravidin-modified gold nanoparticles on their surface directed by complementary biotin-oligonucleotides, providing the basis for functionalization of such conjugates.

  18. Soft magnetic memory of silk cocoon membrane.

    PubMed

    Roy, Manas; Dubey, Amarish; Singh, Sushil Kumar; Bhargava, Kalpana; Sethy, Niroj Kumar; Philip, Deepu; Sarkar, Sabyasachi; Bajpai, Alok; Das, Mainak

    2016-01-01

    Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: 'is it only electricity?', or 'it also posses some kind of magnetic memory?' This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets. PMID:27374752

  19. Soft magnetic memory of silk cocoon membrane

    PubMed Central

    Roy, Manas; Dubey, Amarish; Singh, Sushil Kumar; Bhargava, Kalpana; Sethy, Niroj Kumar; Philip, Deepu; Sarkar, Sabyasachi; Bajpai, Alok; Das, Mainak

    2016-01-01

    Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: ‘is it only electricity?’, or ‘it also posses some kind of magnetic memory?’ This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets. PMID:27374752

  20. Novel silk fibroin/elastin wound dressings.

    PubMed

    Vasconcelos, Andreia; Gomes, Andreia C; Cavaco-Paulo, Artur

    2012-08-01

    Silk fibroin (SF) and elastin (EL) scaffolds were successfully produced for the first time for the treatment of burn wounds. The self-assembly properties of SF, together with the excellent chemical and mechanical stability and biocompatibility, were combined with elastin protein to produce scaffolds with the ability to mimic the extracellular matrix (ECM). Porous scaffolds were obtained by lyophilization and were further crosslinked with genipin (GE). Genipin crosslinking induces the conformational transition from random coil to β-sheet of SF chains, yielding scaffolds with smaller pore size and reduced swelling ratios, degradation and release rates. All results indicated that the composition of the scaffolds had a significant effect on their physical properties, and that can easily be tuned to obtain scaffolds suitable for biological applications. Wound healing was assessed through the use of human full-thickness skin equivalents (EpidermFT). Standardized burn wounds were induced by a cautery and the best re-epithelialization and the fastest wound closure was obtained in wounds treated with 50SF scaffolds; these contain the highest amount of elastin after 6 days of healing in comparison with other dressings and controls. The cytocompatibility demonstrated with human skin fibroblasts together with the healing improvement make these SF/EL scaffolds suitable for wound dressing applications.

  1. Soft magnetic memory of silk cocoon membrane

    NASA Astrophysics Data System (ADS)

    Roy, Manas; Dubey, Amarish; Singh, Sushil Kumar; Bhargava, Kalpana; Sethy, Niroj Kumar; Philip, Deepu; Sarkar, Sabyasachi; Bajpai, Alok; Das, Mainak

    2016-07-01

    Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: ‘is it only electricity?’, or ‘it also posses some kind of magnetic memory?’ This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets.

  2. Peroxinectin catalyzed dityrosine crosslinking in the adhesive underwater silk of a casemaker caddisfly larvae, Hysperophylax occidentalis.

    PubMed

    Wang, Ching-Shuen; Ashton, Nicholas N; Weiss, Robert B; Stewart, Russell J

    2014-11-01

    Aquatic caddisfly larvae use sticky silk fibers as an adhesive tape to construct protective composite structures under water. Three new silk fiber components were identified by transcriptome and proteome analysis of the silk gland: a heme-peroxidase in the peroxinectin (Pxt) sub-family, a superoxide dismutase 3 (SOD3) that generates the H2O2 substrate of the silk fiber Pxt from environmental reactive oxygen species (eROS), and a novel structural component with sequence similarity to the elastic PEVK region of the muscle protein, titin. All three proteins are co-drawn with fibroins to form silk fibers. The Pxt and SOD3 enzymes retain activity in drawn fibers. In native fibers, Pxt activity and dityrosine crosslinks are co-localized at the boundary of a peripheral layer and the silk fiber core. To our knowledge, dityrosine crosslinks, heme peroxidase, and SOD3 activities have not been previously reported in an insect silk. The PEVK-like protein is homogeneously distributed throughout the fiber core. The results are consolidated into a model in which caddisfly silk Pxt-catalyzed dityrosine crosslinking occurs post-draw using H2O2 generated within the silk fibers by SOD3. The ROS substrate of caddisfly silk SOD3 occurs naturally in aquatic environments, from biotic and abiotic sources. The radially inhomogeneous dityrosine crosslinking and a potential titin-like PEVK protein network have important implications for the mechanical properties of caddifly silk fibers. PMID:25220661

  3. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution.

    PubMed

    Tao, Wei; Li, Mingzhong; Zhao, Chunxia

    2007-04-10

    Antheraea pernyi silk fibroin fibers were dissolved by aqueous lithium thiocyanate to obtain regenerated A. pernyi silk fibroin solution. By means of circular dichroism, (13)C NMR and Raman spectroscopy, the molecular conformation of regenerated A. pernyi silk fibroin in aqueous solution was investigated. The relationship of environmental factors and sol-gel transformation behavior of regenerated A. pernyi silk fibroin was also studied. The molecular conformations of regenerated A. pernyi silk fibroin mainly were alpha-helix and random coil in solution. There also existed a little beta-sheet conformation. It was obviously different with Bombyx mori silk fibroin, whose molecular conformation in solution was only random coil but no alpha-helix existence. With the increase of temperature and solution concentration and with the decrease of solution pH value, the gelation velocity of regenerated A. pernyi silk fibroin solution increased. Especially, it showed that A. pernyi silk fibroin was more sensitive to temperature than B. mori silk fibroin during the sol-gel transformation. The velocity increased obviously when the temperature was above 30 degrees C. During the sol-gel transformation, the molecular conformation of regenerated A. pernyi silk fibroin changed from random coil to beta-sheet structure. The results of these studies provided important insight into the preparation of new biomaterials by silk fibroin protein.

  4. An experimental confirmation of thermal transitions in native and regenerated spider silks.

    PubMed

    Torres, Fernando G; Troncoso, Omar P; Torres, Carlos; Cabrejos, Wilson

    2013-04-01

    Biological structures such as spider silks are formed by proteins. The physical properties of such proteins are determined by environmental conditions such as temperature and humidity. In this paper, we confirm the thermal transitions that take place in spider silks using differential scanning calorimetry and study how the interaction of spider silk proteins with water affects the onset temperatures for these thermal processes. Native fibres and regenerated films of dragline silk and egg sac silk from Argiope argentata spiders were used to study thermal transitions of protein based structures. For the first time, differential scanning calorimetry (DSC) tests were carried out with spider silk samples of relatively large mass (10mg). Previous attempts of DSC tests applied to spider silk samples failed to detect thermal transitions in a conclusive way. The tests reported here, however, show thermal transitions on both natural and regenerated samples that are in agreement with results from dynamic mechanical analysis (DMA) tests reported in the literature. The water content on spider silks seems to lower the temperatures at which such thermal transitions take place. The results also confirm that the amorphous regions of native and regenerated spider silk and silk worm silk give rise to similar thermal transitions. PMID:23827592

  5. Use of extension-deformation-based crystallisation of silk fibres to differentiate their functions in nature.

    PubMed

    Numata, Keiji; Masunaga, Hiroyasu; Hikima, Takaaki; Sasaki, Sono; Sekiyama, Kazuhide; Takata, Masaki

    2015-08-21

    β-Sheet crystals play an important role in determining the stiffness, strength, and optical properties of silk and in the exhibition of silk-type-specific functions. It is important to elucidate the structural changes that occur during the stretching of silk fibres to understand the functions of different types of fibres. Herein, we elucidate the initial crystallisation behaviour of silk molecules during the stretching of three types of silk fibres using synchrotron radiation X-ray analysis. When spider dragline silk was stretched, it underwent crystallisation and the alignment of the β-sheet crystals became disordered initially but was later recovered. On the other hand, silkworm cocoon silk did not exhibit further crystallisation, whereas capture spiral silk was predominantly amorphous. Structural analyses showed that the crystallisation of silks following extension deformation has a critical effect on their mechanical and optical properties. These findings should aid the production of artificial silk fibres and facilitate the development of silk-inspired functional materials. PMID:26166211

  6. An experimental confirmation of thermal transitions in native and regenerated spider silks.

    PubMed

    Torres, Fernando G; Troncoso, Omar P; Torres, Carlos; Cabrejos, Wilson

    2013-04-01

    Biological structures such as spider silks are formed by proteins. The physical properties of such proteins are determined by environmental conditions such as temperature and humidity. In this paper, we confirm the thermal transitions that take place in spider silks using differential scanning calorimetry and study how the interaction of spider silk proteins with water affects the onset temperatures for these thermal processes. Native fibres and regenerated films of dragline silk and egg sac silk from Argiope argentata spiders were used to study thermal transitions of protein based structures. For the first time, differential scanning calorimetry (DSC) tests were carried out with spider silk samples of relatively large mass (10mg). Previous attempts of DSC tests applied to spider silk samples failed to detect thermal transitions in a conclusive way. The tests reported here, however, show thermal transitions on both natural and regenerated samples that are in agreement with results from dynamic mechanical analysis (DMA) tests reported in the literature. The water content on spider silks seems to lower the temperatures at which such thermal transitions take place. The results also confirm that the amorphous regions of native and regenerated spider silk and silk worm silk give rise to similar thermal transitions.

  7. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin

    PubMed Central

    Shen, Gaotian; Hu, Xingyou; Guan, Guoping; Wang, Lu

    2015-01-01

    Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8) and a positively charged regenerated silk fibroin solution (pH = 2). Finally, the negatively charged regenerated silk fibroin solution (pH = 8) was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting endothelial cell

  8. The Osteogenic Potential of Mesoporous Bioglasses/Silk and Non-Mesoporous Bioglasses/Silk Scaffolds in Ovariectomized Rats: In vitro and In vivo Evaluation

    PubMed Central

    Zhang, Yufeng; Shi, Bin

    2013-01-01

    Silk-based scaffolds have been introduced to bone tissue regeneration for years, however, their local therapeutic efficency in bone metabolic disease condition has been seldom reported. According to our previous report, mesoporous bioactive glass (MBG)/silk scaffolds exhibits superior in vitro bioactivity and in vivo osteogenic properties compared to non-mesoporous bioactive glass (BG)/silk scaffolds, but no information could be found about their efficiency in osteoporotic (OVX) environment. This study investigated a biomaterial-based approach for improving MSCs behavior in vitro, and accelerating OVX defect healing by using 3D BG/silk and MBG/silk scaffolds, and pure silk scaffolds as control. The results of SEM, CCK-8 assay and quantitative ALP activity showed that MBG/silk scaffolds can improve attachment, proliferation and osteogenic differentiation of both O-MSCs and sham control. In vivo therapeutic efficiency was evaluated by μCT analysis, hematoxylin and eosin staining, safranin O staining and tartrate-resistant acid phosphatase, indicating accelerated bone formation with compatible scaffold degradation and reduced osteoclastic response of defect healing in OVX rats after 2 and 4 weeks treatment, with a rank order of MBG/silk > BG/silk > silk group. Immunohistochemical markers of COL I, OPN, BSP and OCN also revealed that MBG/silk scaffolds can better induce accelerated collagen and non-collagen matrix production. The findings of this study suggest that MBG/silk scaffolds provide a better environment for cell attachment, proliferation and differentiation, and act as potential substitute for treating local osteoporotic defects. PMID:24265840

  9. Polarized protein membrane for high cell seeding efficiency.

    PubMed

    Atthoff, Björn; Aulin, Cecilia; Adelöw, Catharina; Hilborn, Jöns

    2007-11-01

    A new type of scaffold for tissue engineering was developed to give enhanced cell seeding in three dimensions. A gradient of either collagen or fibrin protein was prepared, supported by a knitted poly(ethylene terephtalate) PET fabric. The membranes were, after hydrolysis and acetic acid wash, submerged in a protein solution for adsorption followed by immersion into a gelling agent. The immediate contact between the protein solution held by the fabric and the gelling agent resulted in a dense, fibrous protein network with pore sizes around 0.5 microm at the surface, and larger pores of 10-50 microm size throughout the interior of the fabric as observed by scanning electron microscopy. By separating the fabric double layers holding this network, a gradient porosity membrane was produced. To evaluate the fractions of cells trapped in the matrix upon seeding, i.e. the seeding efficiency, 500 microl 3T3 fibroblasts cell suspension containing one million cells was seeded by filtering through the gradient protein membrane. For both the collagen and fibrin membranes, the seeding efficiency was approximately 93%, which was significantly higher than that of 28% from the corresponding PET fabric without protein immobilization. Attempt to seed cells from the dense side of the protein networks resulted in no cell penetration into the scaffold. Histology on subsequent culture of the cells in the scaffold demonstrated viability and proliferation in three dimensions throughout the scaffold. This new and simple way of producing scaffolds play an important role when the cells are precious or scarce and cell seeding in three dimensions is important. PMID:17443668

  10. Design and Optimization of Resorbable Silk Internal Fixation Devices

    NASA Astrophysics Data System (ADS)

    Haas, Dylan S.

    Limitations of current material options for internal fracture fixation devices have resulted in a large gap between user needs and hardware function. Metal systems offer robust mechanical strength and ease of implantation but require secondary surgery for removal and/or result in long-term complications (infection, palpability, sensitivity, etc.). Current resorbable devices eliminate the need for second surgery and long-term complications but are still associated with negative host response as well as limited functionality and more difficult implantation. There is a definitive need for orthopedic hardware that is mechanically capable of immediate fracture stabilization and fracture fixation during healing, can safely biodegrade while allowing complete bone remodeling, can be resterilized for reuse, and is easily implantable (self-tapping). Previous work investigated the use of silk protein to produce resorbable orthopedic hardware for non- load bearing fracture fixation. In this study, silk orthopedic hardware was further investigated and optimized in order to better understand the ability of silk as a fracture fixation system and more closely meet the unfulfilled market needs. Solvent-based and aqueous-based silk processing formulations were cross-linked with methanol to induce beta sheet structure, dried, autoclaved and then machined to the desired device/geometry. Silk hardware was evaluated for dry, hydrated and fatigued (cyclic) mechanical properties, in vitro degradation, resterilization, functionalization with osteoinductive molecules and implantation technique for fracture fixation. Mechanical strength showed minor improvements from previous results, but remains comparable to current resorbable fixation systems with the advantages of self-tapping ability for ease of implantation, full degradation in 10 months, ability to be resterilized and reused, and ability to release molecules for osteoinudction. In vivo assessment confirmed biocompatibility, showed

  11. Increasing silk fibre strength through heterogeneity of bundled fibrils

    PubMed Central

    Cranford, Steven W.

    2013-01-01

    Can naturally arising disorder in biological materials be beneficial? Materials scientists are continuously attempting to replicate the exemplary performance of materials such as spider silk, with detailed techniques and assembly procedures. At the same time, a spider does not precisely machine silk—imaging indicates that its fibrils are heterogeneous and irregular in cross section. While past investigations either focused on the building material (e.g. the molecular scale protein sequence and behaviour) or on the ultimate structural component (e.g. silk threads and spider webs), the bundled structure of fibrils that compose spider threads has been frequently overlooked. Herein, I exploit a molecular dynamics-based coarse-grain model to construct a fully three-dimensional fibril bundle, with a length on the order of micrometres. I probe the mechanical behaviour of bundled silk fibrils with variable density of heterogenic protrusions or globules, ranging from ideally homogeneous to a saturated distribution. Subject to stretching, the model indicates that cooperativity is enhanced by contact through low-force deformation and shear ‘locking’ between globules, increasing shear stress transfer by up to 200 per cent. In effect, introduction of a random and disordered structure can serve to improve mechanical performance. Moreover, addition of globules allows a tuning of free volume, and thus the wettability of silk (with implications for supercontraction). These findings support the ability of silk to maintain near-molecular-level strength at the scale of silk threads, and the mechanism could be easily adopted as a strategy for synthetic fibres. PMID:23486175

  12. Differential Scanning Fluorimetry provides high throughput data on silk protein transitions.

    PubMed

    Vollrath, Fritz; Hawkins, Nick; Porter, David; Holland, Chris; Boulet-Audet, Maxime

    2014-01-01

    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted 'silk' fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers.

  13. Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering

    PubMed Central

    2015-01-01

    We present a silk biomaterial platform with highly tunable mechanical and degradation properties for engineering and regeneration of soft tissues such as, skin, adipose, and neural tissue, with elasticity properties in the kilopascal range. Lyophilized silk sponges were prepared under different process conditions and the effect of silk molecular weight, concentration and crystallinity on 3D scaffold formation, structural integrity, morphology, mechanical and degradation properties, and cell interactions in vitro and in vivo were studied. Tuning the molecular weight distribution (via degumming time) of silk allowed the formation of stable, highly porous, 3D scaffolds that held form with silk concentrations as low as 0.5% wt/v. Mechanical properties were a function of silk concentration and scaffold degradation was driven by beta-sheet content. Lyophilized silk sponges supported the adhesion of mesenchymal stem cells throughout 3D scaffolds, cell proliferation in vitro, and cell infiltration and scaffold remodeling when implanted subcutaneously in vivo. PMID:25984573

  14. Differential Scanning Fluorimetry provides high throughput data on silk protein transitions.

    PubMed Central

    Vollrath, Fritz; Hawkins, Nick; Porter, David; Holland, Chris; Boulet-Audet, Maxime

    2014-01-01

    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted ‘silk' fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers. PMID:25004800

  15. Sequential origin in the high performance properties of orb spider dragline silk

    PubMed Central

    Blackledge, Todd A.; Pérez-Rigueiro, José; Plaza, Gustavo R.; Perea, Belén; Navarro, Andrés; Guinea, Gustavo V.; Elices, Manuel

    2012-01-01

    Major ampullate (MA) dragline silk supports spider orb webs, combining strength and extensibility in the toughest biomaterial. MA silk evolved ~376 MYA and identifying how evolutionary changes in proteins influenced silk mechanics is crucial for biomimetics, but is hindered by high spinning plasticity. We use supercontraction to remove that variation and characterize MA silk across the spider phylogeny. We show that mechanical performance is conserved within, but divergent among, major lineages, evolving in correlation with discrete changes in proteins. Early MA silk tensile strength improved rapidly with the origin of GGX amino acid motifs and increased repetitiveness. Tensile strength then maximized in basal entelegyne spiders, ~230 MYA. Toughness subsequently improved through increased extensibility within orb spiders, coupled with the origin of a novel protein (MaSp2). Key changes in MA silk proteins therefore correlate with the sequential evolution high performance orb spider silk and could aid design of biomimetic fibers. PMID:23110251

  16. Differential Scanning Fluorimetry provides high throughput data on silk protein transitions.

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Hawkins, Nick; Porter, David; Holland, Chris; Boulet-Audet, Maxime

    2014-07-01

    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted `silk' fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers.

  17. The advances and perspectives of recombinant protein production in the silk gland of silkworm Bombyx mori.

    PubMed

    Xu, Hanfu

    2014-10-01

    The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It's a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed.

  18. Composition and Humidity Response of the Black Widow Spider's Gumfoot Silk and its Implications on Adhesion

    NASA Astrophysics Data System (ADS)

    Jain, Dharamdeep; Zhang, Ci; Cool, Lydia Rose; Blackledge, Todd. A.; Wesdemiotis, Chrys; Miyoshi, Toshikazu; Dhinojwala, Ali

    Humidity plays an important part in the performance of biomaterials such as pollen, gecko toe, wheat awns, bird feathers and dragline silk. Capture silk produced by web building spiders form an interesting class of humidity responsive biological glues. The adhesive properties of the widely studied `viscid silk' produced by orbweb-weaving spiders is highly humidity sensitive. On the other hand, relatively less is known about the dependence of composition and humidity response towards adhesion for `gumfoot' silk produced by cobweb-weaving spiders. In the present study, we investigate the gumfoot silk produced by Black Widow using adhesion mechanics, microscopy and spectroscopic methods. The results show the presence of hygroscopic salts, glycoproteins and previously known spider coating peptides in silk and their importance in the humidity response and adhesion. The current study elucidates the role of constituents of capture silk in its adhesion mechanism and offers insights to novel ways for fabricating bio-inspired adhesives.

  19. Differential scanning fluorimetry illuminates silk feedstock stability and processability.

    PubMed

    Dicko, C; Kasoju, N; Hawkins, N; Vollrath, F

    2016-01-01

    The ability to design and implement silk feedstock formulations for tailored spinning has so far eluded the bioengineers. Recently, the high throughput screening technique of differential scanning fluorimetry (DSF) demonstrated the link between the instability transition temperature (Ti) and the processability of the silk feedstock. Using DSF we screened a large set of chemicals known to affect solvent quality. A multivariate analysis of the results shows that, regardless of the diversity of chemicals, three groupings are significantly distinguishable: G1 = similar to native silk; G2 = largely dominated by electrostatic interactions; and G3 = dominated by chelating interactions. We propose a thermodynamic analysis based on a pre- and post-transition fit to estimate the van't Hoff enthalpies (ΔHv) and the instability temperature (Ti). Our analysis shows that the ΔTi and ΔHv values were distinct: G1 (ΔTi = 0.23 ± 0.2; ΔHv = -159.1 ± 5.6 kcal mol(-1)), G2 (ΔTi = -7.3 ± 0.7; ΔHv = -191.4 ± 5.5 kcal mol(-1)), and G3 (ΔTi = -19.9 ± 3.3; ΔHv = -68.8 ± 6.0 kcal mol(-1)). Our analysis further combined the ΔTi value and the ΔHv value using stability ΔΔG to find that G1 only marginally stabilizes native silks (ΔΔG = -0.15 ± 0.04 kcal mol(-1)), whereas G2 and G3 destabilize native silk (ΔΔG = 3.8 ± 0.11 and ΔΔG = 3.8 ± 0.3 kcal mol(-1), respectively). Here our analysis shows that native silk has a complex multistep transition that is possibly non-cooperative. However, all three groupings also show a direct and cooperative transition with varied stabilization effects. This analysis suggests that native silks are able to sample multiple substates prior to undergoing (or to delay) the final transition. We conclude by hypothesizing that the observed energetic plasticity may be mediated by a fragile packaging of the silk tertiary structure that is readily lost when the solvent quality changes. PMID:26457973

  20. Gingival response to silk, cotton, and nylon suture materials.

    PubMed

    Castelli, W A; Nasjleti, C E; Caffesse, R E; Diaz-Perez, R

    1978-02-01

    Silk, cotton, and nylon suture materials were implanted in the tunica propria of the gingiva in seven adult rhesus monkeys. The histologie study of twenty-four biopsy specimens indicated that there was neither an increase in the vascular permeability nor a leukocytic margination and migration into the tissues adjacent to the suture materials. However, there was a variable histiocytic reaction, with multinucleated cell formation. This reaction was quite intense with cotton, less intense with silk, and practically absent with nylon. The greater cellular response to cotton was probably due to its more active capacity for modifying the internal biologic medium of the gingvia.

  1. Untangling spider silk evolution with spidroin terminal domains

    PubMed Central

    2010-01-01

    Background Spidroins are a unique family of large, structural proteins that make up the bulk of spider silk fibers. Due to the highly variable nature of their repetitive sequences, spidroin evolutionary relationships have principally been determined from their non-repetitive carboxy (C)-terminal domains, though they offer limited character data. The few known spidroin amino (N)-terminal domains have been difficult to obtain, but potentially contain critical phylogenetic information for reconstructing the diversification of spider silks. Here we used silk gland expression data (ESTs) from highly divergent species to evaluate the functional significance and phylogenetic utility of spidroin N-terminal domains. Results We report 11 additional spidroin N-termini found by sequencing ~1,900 silk gland cDNAs from nine spider species that shared a common ancestor > 240 million years ago. In contrast to their hyper-variable repetitive regions, spidroin N-terminal domains have retained striking similarities in sequence identity, predicted secondary structure, and hydrophobicity. Through separate and combined phylogenetic analyses of N-terminal domains and their corresponding C-termini, we find that combined analysis produces the most resolved trees and that N-termini contribute more support and less conflict than the C-termini. These analyses show that paralogs largely group by silk gland type, except for the major ampullate spidroins. Moreover, spidroin structural motifs associated with superior tensile strength arose early in the history of this gene family, whereas a motif conferring greater extensibility convergently evolved in two distantly related paralogs. Conclusions A non-repetitive N-terminal domain appears to be a universal attribute of spidroin proteins, likely retained from the origin of spider silk production. Since this time, spidroin N-termini have maintained several features, consistent with this domain playing a key role in silk assembly. Phylogenetic

  2. Silk materials--a road to sustainable high technology.

    PubMed

    Tao, Hu; Kaplan, David L; Omenetto, Fiorenzo G

    2012-06-01

    This review addresses the use of silk protein as a sustainable material in optics and photonics, electronics and optoelectronic applications. These options represent additional developments for this technology platform that compound the broad utility and impact of this material for medical needs that have been recently described in the literature. The favorable properties of the material certainly make a favorable case for the use of silk, yet serve as a broad inspiration to further develop biological foundries for both the synthesis and processing of Nature's materials for technological applications.

  3. Differential scanning fluorimetry illuminates silk feedstock stability and processability.

    PubMed

    Dicko, C; Kasoju, N; Hawkins, N; Vollrath, F

    2016-01-01

    The ability to design and implement silk feedstock formulations for tailored spinning has so far eluded the bioengineers. Recently, the high throughput screening technique of differential scanning fluorimetry (DSF) demonstrated the link between the instability transition temperature (Ti) and the processability of the silk feedstock. Using DSF we screened a large set of chemicals known to affect solvent quality. A multivariate analysis of the results shows that, regardless of the diversity of chemicals, three groupings are significantly distinguishable: G1 = similar to native silk; G2 = largely dominated by electrostatic interactions; and G3 = dominated by chelating interactions. We propose a thermodynamic analysis based on a pre- and post-transition fit to estimate the van't Hoff enthalpies (ΔHv) and the instability temperature (Ti). Our analysis shows that the ΔTi and ΔHv values were distinct: G1 (ΔTi = 0.23 ± 0.2; ΔHv = -159.1 ± 5.6 kcal mol(-1)), G2 (ΔTi = -7.3 ± 0.7; ΔHv = -191.4 ± 5.5 kcal mol(-1)), and G3 (ΔTi = -19.9 ± 3.3; ΔHv = -68.8 ± 6.0 kcal mol(-1)). Our analysis further combined the ΔTi value and the ΔHv value using stability ΔΔG to find that G1 only marginally stabilizes native silks (ΔΔG = -0.15 ± 0.04 kcal mol(-1)), whereas G2 and G3 destabilize native silk (ΔΔG = 3.8 ± 0.11 and ΔΔG = 3.8 ± 0.3 kcal mol(-1), respectively). Here our analysis shows that native silk has a complex multistep transition that is possibly non-cooperative. However, all three groupings also show a direct and cooperative transition with varied stabilization effects. This analysis suggests that native silks are able to sample multiple substates prior to undergoing (or to delay) the final transition. We conclude by hypothesizing that the observed energetic plasticity may be mediated by a fragile packaging of the silk tertiary structure that is readily lost when the solvent quality changes.

  4. Structure and Properties of Nephila Clavipes Dragline Silk Polymer

    NASA Astrophysics Data System (ADS)

    Mahoney, David Vincent

    Silk, spun from an aqueous state at room temperature by a variety of organisms, is the most commonly spun extracellular fibrous protein. It comprises polypeptide chains with regions which can crystallize and regions which are predominantly amorphous. The polymer chains in the crystalline regions form anti-parallel pleated sheet structures with an orthorhombic unit cell. Dragline silk is a structural material produced by a variety of spiders. It has been genetically tailored to meet a specific purpose. Dragline silk exhibits high extensibility and tensile strength approaching that of high-strength synthetic fibers. The specific energy to break it can exceed some steels and synthetic fibers. Samples of Nephila clavipes (golden orb-weaver) dragline silk were extracted from live specimens and examined with a series of experimental techniques including optical, scanning electron, and atomic force microscopy, wide and small angle X-ray diffraction and birefringence compensation. Computer modeling of the mechanical properties of the crystallite was also performed. An assortment of features at a variety of length scales was observed by microscopy. These occur on both the as-spun and abraded silk surfaces. The silk was observed to undergo large deformations without evidence of failure, suggesting the absence of a microfibrillar structure. There was no conclusive evidence for either a microfibrillar or a skin core structure. Meridional and equatorial SAXD peaks were observed at Bragg spacings of 79 AA and 250 AA, respectively. Analysis of the WAXD patterns indicated that the silk belongs in Warwicker's category 3b and that the minimum dimensions of the crystals are approximately 38 AA in the molecular direction and 16 x 23 AA in the transverse directions. The crystal modulus was determined with WAXD to be 16.7 GPa, applying the assumption of uniform stress. This is lower than the 200 GPa modulus calculated with molecular modeling. These results and other factors indicate the

  5. Structural characterization of nanofiber silk produced by embiopterans (webspinners)†

    PubMed Central

    Addison, J. Bennett; Popp, Thomas M. Osborn; Weber, Warner S.; Edgerly, Janice S.; Holland, Gregory P.; Yarger, Jeffery L.

    2014-01-01

    Embiopterans produce silken galleries and sheets using exceptionally fine silk fibers in which they live and breed. In this study, we use electron microscopy (EM), Fourier-transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction (WAXD) and solid-state nuclear magnetic resonance (ssNMR) techniques to elucidate the molecular level protein structure of webspinner (embiid) silks. Silks from two species Antipaluria urichi and Aposthonia ceylonica are studied in this work. Electron microscopy images show that the fibers are about 90–100 nm in diameter, making webspinner silks among the finest of all known animal silks. Structural studies reveal that the silk protein core is dominated by β-sheet structures, and that the protein core is coated with a hydrophobic alkane-rich surface coating. FTIR spectra of native embiid silk shows characteristic alkane CH2 stretchings near 2800–2900 cm−1, which decrease approximately 50% after washing the silk with 2 : 1 CHCl3 : MeOH. Furthermore, 13C ssNMR data shows a significant CH2 resonance that is strongly affected by the presence of water, supporting the idea that the silk fibers are coated with a hydrocarbon-rich layer. Such a layer is likely used to protect the colonies from rain. FTIR data also suggests that embiid silks are dominated by β-sheet secondary structures similar to spider and silkworm silk fibers. NMR data confirms the presence of β-sheet nanostructures dominated by serine-rich repetitive regions. A deconvolution of the serine Cβ NMR resonance reveals that approximately 70% of all seryl residues exist in a β-sheet structure. This is consistent with WAXD results that suggest webspinner silks are 70% crystalline, which is the highest crystalline fraction reported for any animal silks. The work presented here provides a molecular level structural picture of silk fibers produced by webspinners. PMID:25383190

  6. More than one way to spin a crystallite: multiple trajectories through liquid crystallinity to solid silk

    PubMed Central

    Walker, Andrew A.; Holland, Chris; Sutherland, Tara D.

    2015-01-01

    Arthropods face several key challenges in processing concentrated feedstocks of proteins (silk dope) into solid, semi-crystalline silk fibres. Strikingly, independently evolved lineages of silk-producing organisms have converged on the use of liquid crystal intermediates (mesophases) to reduce the viscosity of silk dope and assist the formation of supramolecular structure. However, the exact nature of the liquid-crystal-forming-units (mesogens) in silk dope, and the relationship between liquid crystallinity, protein structure and silk processing is yet to be fully elucidated. In this review, we focus on emerging differences in this area between the canonical silks containing extended-β-sheets made by silkworms and spiders, and ‘non-canonical’ silks made by other insect taxa in which the final crystallites are coiled-coils, collagen helices or cross-β-sheets. We compared the amino acid sequences and processing of natural, regenerated and recombinant silk proteins, finding that canonical and non-canonical silk proteins show marked differences in length, architecture, amino acid content and protein folding. Canonical silk proteins are long, flexible in solution and amphipathic; these features allow them both to form large, micelle-like mesogens in solution, and to transition to a crystallite-containing form due to mechanical deformation near the liquid–solid transition. By contrast, non-canonical silk proteins are short and have rod or lath-like structures that are well suited to act both as mesogens and as crystallites without a major intervening phase transition. Given many non-canonical silk proteins can be produced at high yield in E. coli, and that mesophase formation is a versatile way to direct numerous kinds of supramolecular structure, further elucidation of the natural processing of non-canonical silk proteins may to lead to new developments in the production of advanced protein materials. PMID:26041350

  7. More than one way to spin a crystallite: multiple trajectories through liquid crystallinity to solid silk.

    PubMed

    Walker, Andrew A; Holland, Chris; Sutherland, Tara D

    2015-06-22

    Arthropods face several key challenges in processing concentrated feedstocks of proteins (silk dope) into solid, semi-crystalline silk fibres. Strikingly, independently evolved lineages of silk-producing organisms have converged on the use of liquid crystal intermediates (mesophases) to reduce the viscosity of silk dope and assist the formation of supramolecular structure. However, the exact nature of the liquid-crystal-forming-units (mesogens) in silk dope, and the relationship between liquid crystallinity, protein structure and silk processing is yet to be fully elucidated. In this review, we focus on emerging differences in this area between the canonical silks containing extended-β-sheets made by silkworms and spiders, and 'non-canonical' silks made by other insect taxa in which the final crystallites are coiled-coils, collagen helices or cross-β-sheets. We compared the amino acid sequences and processing of natural, regenerated and recombinant silk proteins, finding that canonical and non-canonical silk proteins show marked differences in length, architecture, amino acid content and protein folding. Canonical silk proteins are long, flexible in solution and amphipathic; these features allow them both to form large, micelle-like mesogens in solution, and to transition to a crystallite-containing form due to mechanical deformation near the liquid-solid transition. By contrast, non-canonical silk proteins are short and have rod or lath-like structures that are well suited to act both as mesogens and as crystallites without a major intervening phase transition. Given many non-canonical silk proteins can be produced at high yield in E. coli, and that mesophase formation is a versatile way to direct numerous kinds of supramolecular structure, further elucidation of the natural processing of non-canonical silk proteins may to lead to new developments in the production of advanced protein materials. PMID:26041350

  8. Folding behavior of four silks of giant honey bee reflects the evolutionary conservation of aculeate silk proteins.

    PubMed

    Maitip, Jakkrawut; Trueman, Holly E; Kaehler, Benjamin D; Huttley, Gavin A; Chantawannakul, Panuwan; Sutherland, Tara D

    2015-04-01

    Multiple gene duplication events in the precursor of the Aculeata (bees, ants, hornets) gave rise to four silk genes. Whilst these homologs encode proteins with similar amino acid composition and coiled coil structure, the retention of all four homologs implies they each are important. In this study we identified, produced and characterized the four silk proteins from Apis dorsata, the giant Asian honeybee. The proteins were readily purified, allowing us to investigate the folding behavior of solutions of individual proteins in comparison to mixtures of all four proteins at concentrations where they assemble into their native coiled coil structure. In contrast to solutions of any one protein type, solutions of a mixture of the four proteins formed coiled coils that were stable against dilution and detergent denaturation. The results are consistent with the formation of a heteromeric coiled coil protein complex. The mechanism of silk protein coiled coil formation and evolution is discussed in light of these results. PMID:25712559

  9. Folding behavior of four silks of giant honey bee reflects the evolutionary conservation of aculeate silk proteins.

    PubMed

    Maitip, Jakkrawut; Trueman, Holly E; Kaehler, Benjamin D; Huttley, Gavin A; Chantawannakul, Panuwan; Sutherland, Tara D

    2015-04-01

    Multiple gene duplication events in the precursor of the Aculeata (bees, ants, hornets) gave rise to four silk genes. Whilst these homologs encode proteins with similar amino acid composition and coiled coil structure, the retention of all four homologs implies they each are important. In this study we identified, produced and characterized the four silk proteins from Apis dorsata, the giant Asian honeybee. The proteins were readily purified, allowing us to investigate the folding behavior of solutions of individual proteins in comparison to mixtures of all four proteins at concentrations where they assemble into their native coiled coil structure. In contrast to solutions of any one protein type, solutions of a mixture of the four proteins formed coiled coils that were stable against dilution and detergent denaturation. The results are consistent with the formation of a heteromeric coiled coil protein complex. The mechanism of silk protein coiled coil formation and evolution is discussed in light of these results.

  10. Structure to function: Spider silk and human collagen

    NASA Astrophysics Data System (ADS)

    Rabotyagova, Olena S.

    Nature has the ability to assemble a variety of simple molecules into complex functional structures with diverse properties. Collagens, silks and muscles fibers are some examples of fibrous proteins with self-assembling properties. One of the great challenges facing Science is to mimic these designs in Nature to find a way to construct molecules that are capable of organizing into functional supra-structures by self-assembly. In order to do so, a construction kit consisting of molecular building blocks along with a complete understanding on how to form functional materials is required. In this current research, the focus is on spider silk and collagen as fibrous protein-based biopolymers that can shed light on how to generate nanostructures through the complex process of self-assembly. Spider silk in fiber form offers a unique combination of high elasticity, toughness, and mechanical strength, along with biological compatibility and biodegrability. Spider silk is an example of a natural block copolymer, in which hydrophobic and hydrophilic blocks are linked together generating polymers that organize into functional materials with extraordinary properties. Since silks resemble synthetic block copolymer systems, we adopted the principles of block copolymer design from the synthetic polymer literature to build block copolymers based on spider silk sequences. Moreover, we consider spider silk to be an important model with which to study the relationships between structure and properties in our system. Thus, the first part of this work was dedicated to a novel family of spider silk block copolymers, where we generated a new family of functional spider silk-like block copolymers through recombinant DNA technology. To provide fundamental insight into relationships between peptide primary sequence, block composition, and block length and observed morphological and structural features, we used these bioengineered spider silk block copolymers to study secondary structure

  11. A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer.

    PubMed

    Li, Gang; Chen, Yufeng; Hu, Jun; Wu, Xiaojian; Hu, Junyan; He, Xiaowen; Li, Jiashen; Zhao, Zheng; Chen, Zexian; Li, Yuling; Hu, Hong; Li, Yi; Lan, Ping

    2013-12-01

    In-stents restenosis caused by tumour ingrowth is a major problem for patients undergoing stent displacement because the conventional stents often lack a sustained anti-tumour capability. The aim of this paper was to develop a weft-knitted polydioxanone stent which can slow release 5-fluorouracil (5-FU). In order to determine the most suitable drug concentration, the 5-FU safe concentration in vivo and appropriate loading percentage in the membranes were investigated, and then 5-FU-loaded poly-l-lactide membranes at concentration of 3.2%, 6.4% and 12.8% were coated onto the stent using electro-spinning method, respectively. The morphology, chemical structure and in vitro drug release property of the coating membranes were subsequently examined. Their anti-tumour activity and mechanism were assessed in vitro and in vivo using a human colorectal cancer cell line HCT-116 and tumour-bearing BALB/c nude mice. The half maximal inhibitory concentration (IC50) and the median lethal dose (LD50) demonstrated that the 6.4% and 12.8% membranes had better anti-tumour effects than pure 5-FU due to the sustainable drug releasing property of the coated membranes on the stent. The membranes possessing appropriate drug loading doses, such as 6.4% or 12.8% also provided better anti-in-stents restenosis effects than other groups tested. Therefore, it is concluded that the drug-loaded stents have great potential for the use in the treatment of intestinal cancers in the future.

  12. Comparison of cellular responses of mesenchymal stem cells derived from bone marrow and synovium on combined silk scaffolds.

    PubMed

    Liu, Haifeng; Wei, Xing; Ding, Xili; Li, Xiaoming; Zhou, Gang; Li, Ping; Fan, Yubo

    2015-01-01

    As a brand new member in mesenchymal stem cells (MSCs) families, synovium-derived mesenchymal stem cells (SMSCs) have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration. However, there are few reports mentioning ligamentogenesis of SMSCs and especially null for their engineering use towards ligament regeneration. The aim of this study was to investigate and compare the cellular responses of MSCs derived from bone marrow and synovium on combined silk scaffolds that can be used to determine the cell source most appropriate for tissue-engineered ligament. Rabbit SMSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro for two weeks after seeding on the combined silk scaffolds. Samples were studied and compared for their cellular morphology, proliferation, collagen production, gene, and protein expression of ligament-related extracellular matrix (ECM) markers. In addition, the two cell types were transfected with green fluorescent protein to evaluate their fate after implantation in an intraarticular environment of the knee joint. After 14 days of culturing, SMSCs showed a significant increase in proliferation as compared with BMSCs. The transcript and protein expression levels of ligament-related ECM markers in SMSCs were significantly higher than those in BMSCs. Moreover, 6 weeks postoperatively, more viable cells were presented in SMSC-loaded constructs than in BMSC-loaded constructs. Therefore, based on the cellular response in vitro and in vivo, SMSCs may represent a more suitable cell source than BMSCs for further study and development of tissue-engineered ligament.

  13. Impact of silk fibroin-based scaffold structures on human osteoblast MG63 cell attachment and proliferation

    PubMed Central

    Varkey, Aneesia; Venugopal, Elakkiya; Sugumaran, Ponjanani; Janarthanan, Gopinathan; Pillai, Mamatha M; Rajendran, Selvakumar; Bhattacharyya, Amitava

    2015-01-01

    The present study was carried out to investigate the impact of various types of silk fibroin (SF) scaffolds on human osteoblast-like cell (MG63) attachment and proliferation. SF was isolated from Bombyx mori silk worm cocoons after degumming. Protein concentration in the degummed SF solution was estimated using Bradford method. Aqueous SF solution was used to fabricate three different types of scaffolds, viz, electrospun nanofiber mat, sponge, and porous film. The structures of the prepared scaffolds were characterized using optical microscopy and field emission scanning electron microscopy. The changes in the secondary structure of the proteins and the thermal behavior of the scaffolds were determined by Fourier transform infrared spectroscopy and thermo-gravimetric analysis, respectively. The biodegradation rate of scaffolds was determined by incubating the scaffolds in simulated body fluid for 4 weeks. MG63 cells were seeded on the scaffolds and their attachment and proliferation onto the scaffolds were studied. The MTT assay was carried out to deduce the toxicity of the developed scaffolds. All the scaffolds were found to be biocompatible. The amount of collagen produced by the osteoblast-like cells growing on different scaffolds was estimated. PMID:26491306

  14. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) - Insight into the Mechanism of Silk Formation and Spinning.

    PubMed

    Chang, Huaipu; Cheng, Tingcai; Wu, Yuqian; Hu, Wenbo; Long, Renwen; Liu, Chun; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Silk proteins are synthesized in the middle and posterior silk glands of silkworms, then transit into the anterior of the silk gland, where the silk fibers are produced, stored and processed. The mechanism of formation and spinning of the silk fibers has not been fully elucidated, and transcriptome analyses specific to the anterior silk gland have not been reported. In the present study, we explored gene expression profiles in five regions of silk gland samples using the RNA-Seq method. As a result, there were 959,979,570 raw reads obtained, of which 583,068,172 reads were mapped to the silkworm genome. A total of 7419 genes were found to be expressed in terms of reads per kilobase of exon model per million mapped reads ≥ 5 in at least one sample. The gene numbers and expression levels of the expressed genes differed between these regions. The differentially expressed genes were analyzed, and 282 genes were detected as up-regulated in the anterior silk gland, compared with the other parts. Functions of these genes were addressed using the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases, and seven key pathways were enriched. It suggested that the ion transportation, energy metabolism, protease inhibitors and cuticle proteins played essential roles in the process of silk formation and spinning in the anterior silk gland. In addition, 210 genes were found differently expressed between males and females, which should help to elucidate the mechanism of the quality difference in silk fibers from male and female silkworms.

  15. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) – Insight into the Mechanism of Silk Formation and Spinning

    PubMed Central

    Chang, Huaipu; Cheng, Tingcai; Wu, Yuqian; Hu, Wenbo; Long, Renwen; Liu, Chun; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Silk proteins are synthesized in the middle and posterior silk glands of silkworms, then transit into the anterior of the silk gland, where the silk fibers are produced, stored and processed. The mechanism of formation and spinning of the silk fibers has not been fully elucidated, and transcriptome analyses specific to the anterior silk gland have not been reported. In the present study, we explored gene expression profiles in five regions of silk gland samples using the RNA-Seq method. As a result, there were 959,979,570 raw reads obtained, of which 583,068,172 reads were mapped to the silkworm genome. A total of 7419 genes were found to be expressed in terms of reads per kilobase of exon model per million mapped reads ≥ 5 in at least one sample. The gene numbers and expression levels of the expressed genes differed between these regions. The differentially expressed genes were analyzed, and 282 genes were detected as up-regulated in the anterior silk gland, compared with the other parts. Functions of these genes were addressed using the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases, and seven key pathways were enriched. It suggested that the ion transportation, energy metabolism, protease inhibitors and cuticle proteins played essential roles in the process of silk formation and spinning in the anterior silk gland. In addition, 210 genes were found differently expressed between males and females, which should help to elucidate the mechanism of the quality difference in silk fibers from male and female silkworms. PMID:26418001

  16. Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider

    PubMed Central

    Agnarsson, Ingi; Kuntner, Matjaž; Blackledge, Todd A.

    2010-01-01

    Background Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41.000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200.000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila) or simply from researchers' backyards. Are we limited to ‘blindly fishing’ in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? Methodology We examined the biomechanical properties of silk produced by the remarkable Malagasy ‘Darwin's bark spider’ (Caerostris darwini), which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m2) suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m3, with some samples reaching 520 MJ/m3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. Conclusions Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web into the river

  17. Another Way of Knowing: Visualizing the Ancient Silk Routes

    ERIC Educational Resources Information Center

    Bisland, Beverly Milner

    2010-01-01

    One way that people learn, remember and communicate is visually. We combine past experiences with new visual information to construct meaning. In this study, elementary teachers introduced their students to the peoples and places of the ancient silk routes using illustrations from two children's picture books, "Marco Polo," written by Gian Paolo…

  18. Thermally induced changes in dynamic mechanical properties of native silks.

    PubMed

    Guan, Juan; Porter, David; Vollrath, Fritz

    2013-03-11

    Dynamic mechanical thermal analysis (DMTA) on individual native silk fibers demonstrates changes in the dynamic mechanical properties of storage modulus and loss tangent as a function of temperature and temperature history ranging from -100 to 250 °C. These property changes are linked quantitatively to two main types of change in the silk structure. First, the evaporation of water with increasing temperature up to 100 °C increases the storage modulus and removes two characteristic loss tangent peaks at -60 and +60 °C. Second, various discrete loss tangent peaks in the range 150-220 °C are associated with specific disordered silk structures that are removed or converted to a limiting high-temperature relaxed structure by the combination of increasing temperature and static load in the DMTA tests. The results identify important origins of silk filament quality based on the analysis of measurements that can be traced back to differences in production and processing history. PMID:23405856

  19. Transmission X-ray microscopy of spider dragline silk.

    PubMed

    Glisović, Anja; Thieme, Jürgen; Guttmann, Peter; Salditt, Tim

    2007-01-30

    We have investigated the structure of spider silk fibers from two different Nephila species and three different Araneus species by transmission X-ray microscopy (TXM). Single fibers and double fibers have been imaged. All images are in agreement with a homogenous density on length scales between the fiber diameter and the resolution of the instrument, which is about 25 nm. PMID:16889826

  20. Relationships between physical properties and sequence in silkworm silks

    NASA Astrophysics Data System (ADS)

    Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji

    2016-06-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase.

  1. Redoable tie-over dressing using multiple loop silk threads.

    PubMed

    Jo, Hyeon Jong; Kim, Jun Sik; Kim, Nam Gyun; Lee, Kyung Suk; Choi, Jae Hoon

    2013-05-01

    After skin grafting, to prevent hematoma or seroma collection at the graft site, a tie-over dressing has been commonly used. However, although the conventional tie-over dressing by suture is a useful method for securing a graft site, refixation is difficult when repeated tie-over dressing is needed. Therefore, we recommend a redoable tie-over dressing technique with multiple loops threads and connecting silk threads. After the raw surface of each of our cases was covered with a skin graft, multiple loop silk thread attached with nylon at the skin graft margin. We applied the ointment gauze and wet cotton/fluffy gauze over the skin graft, then fixed the dressing by connecting cross-counter multiple loop thread with connecting silk threads. When we opened the tie-over dressing by cutting the connecting silk threads, we repeated the tie-over dressing with the same method. The skin graft was taken successfully without hematoma or seroma collection or any other complications. In conclusion, we report a novel tie-over dressing enabling simple fixation of the dressing to maintain proper tension for wounds that require repetitive fixation. Further, with this reliable method, the skin grafts were well taken.

  2. Visual responses of corn silk flies (Diptera: Ulidiidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn silk flies are major pests impacting fresh market sweet corn production in Florida and Georgia. Control depends solely on well-times applications of insecticides to protect corn ear development. Surveillance depends on visual inspection of ears with no effective trapping methods currently ava...

  3. Containment of extended length polymorphisms in silk proteins.

    PubMed

    Chinali, Alberto; Vater, Wolfram; Rudakoff, Baerbel; Sponner, Alexander; Unger, Eberhard; Grosse, Frank; Guehrs, Karl-Heinz; Weisshart, Klaus

    2010-04-01

    The spider silk gene family to the current date has been developed by gene duplication and homogenization events as well as conservation of crucial sequence parts. These evolutionary processes have created an amazing diversity of silk types each associated with specific properties and functions. In addition, they have led to allelic and gene variants within a species as exemplified by the major ampullate spidroin 1 gene of Nephila clavipes. Due to limited numbers of individuals screened to date little is known about the extent of these heterogeneities and how they are finally manifested in the proteins. Using expanded sample sizes, we show that sequence variations expressed as deletions or insertions of tri-nucleotides lead to different sized and structured repetitive units throughout a silk protein. Moreover, major ampullate spidroins 1 can quite dramatically differ in their overall lengths; however, extreme variants do not spread widely in a spider population. This suggests that a certain size range stabilized by purifying selection is important for spidroin 1 gene integrity and protein function. More than one locus for spidroin 1 genes possibly exist within one individual genome, which are homogenized in size, are differentially expressed and give a spider a certain degree of adaptation on silk's composition and properties. Such mechanisms are shared to a lesser extent by the second major ampullate spidroin gene.

  4. Teaching the Silk Road: A Journey of Pedagogical Discovery.

    ERIC Educational Resources Information Center

    Andrea, A. J.; Mierse, William

    2002-01-01

    Describes a course for first-year college students that focuses on the Silk Road. Discusses the problems that occurs in such a course, types of resources used, basic strategies and tactics taken, and the focus on mapmaking in the beginning of the course. Includes an annotated bibliography. (CMK)

  5. Identification and classification of silks using infrared spectroscopy.

    PubMed

    Boulet-Audet, Maxime; Vollrath, Fritz; Holland, Chris

    2015-10-01

    Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks.

  6. Relationships between physical properties and sequence in silkworm silks

    PubMed Central

    Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji

    2016-01-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149

  7. Thin film assembly of spider silk-like block copolymers.

    PubMed

    Krishnaji, Sreevidhya T; Huang, Wenwen; Rabotyagova, Olena; Kharlampieva, Eugenia; Choi, Ikjun; Tsukruk, Vladimir V; Naik, Rajesh; Cebe, Peggy; Kaplan, David L

    2011-02-01

    We report the self-assembly of monolayers of spider silk-like block copolymers. Langmuir isotherms were obtained for a series of bioengineered variants of the spider silks, and stable monolayers were generated. Langmuir-Blodgett films were prepared by transferring the monolayers onto silica substrates and were subsequently analyzed by atomic force microscopy (AFM). Static contact angle measurements were performed to characterize interactions across the interface (thin film, water, air), and molecular modeling was used to predict 3D conformation of spider silk-like block copolymers. The influence of molecular architecture and volume fraction of the proteins on the self-assembly process was assessed. At high surface pressure, spider silk-like block copolymers with minimal hydrophobic block (f(A) = 12%) formed oblate structures, whereas block copolymer with a 6-fold larger hydrophobic domain (f(A) = 46%) formed prolate structures. The varied morphologies obtained with increased hydrophobicity offer new options for biomaterials for coatings and related options. The design and use of bioengineered protein block copolymers assembled at air-water interfaces provides a promising approach to compare 2D microstructures and molecular architectures of these amphiphiles, leading to more rationale designs for a range of nanoengineered biomaterial needs as well as providing a basis of comparison to more traditional synthetic block copolymer systems. PMID:21207952

  8. Identification and classification of silks using infrared spectroscopy

    PubMed Central

    Boulet-Audet, Maxime; Vollrath, Fritz; Holland, Chris

    2015-01-01

    ABSTRACT Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35 species allowed us to group silks into distinct hierarchies and a classification that agrees well with current phylogenetic data and taxonomies. This approach also provides information on the relative content of sericin, calcium oxalate, phenolic compounds, poly-alanine and poly(alanine-glycine) β-sheets. It emerged that the domesticated mulberry silkmoth Bombyx mori represents an outlier compared with other silkmoth taxa in terms of spectral properties. Interestingly, Epiphora bauhiniae was found to contain the highest amount of β-sheets reported to date for any wild silkmoth. We conclude that our approach provides a new route to determine cocoon chemical composition and in turn a novel, biological as well as material, classification of silks. PMID:26347557

  9. 21 CFR 878.5030 - Natural nonabsorbable silk surgical suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Natural nonabsorbable silk surgical suture. 878.5030 Section 878.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  10. 21 CFR 878.5030 - Natural nonabsorbable silk surgical suture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Natural nonabsorbable silk surgical suture. 878.5030 Section 878.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  11. 21 CFR 878.5030 - Natural nonabsorbable silk surgical suture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Natural nonabsorbable silk surgical suture. 878.5030 Section 878.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  12. 21 CFR 878.5030 - Natural nonabsorbable silk surgical suture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Natural nonabsorbable silk surgical suture. 878.5030 Section 878.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  13. 21 CFR 878.5030 - Natural nonabsorbable silk surgical suture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Natural nonabsorbable silk surgical suture. 878.5030 Section 878.5030 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices §...

  14. Viscous friction between crystalline and amorphous phase of dragline silk.

    PubMed

    Patil, Sandeep P; Xiao, Senbo; Gkagkas, Konstantinos; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 10(2) Ns/m(2) by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading. PMID:25119288

  15. Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk

    PubMed Central

    Patil, Sandeep P.; Xiao, Senbo; Gkagkas, Konstantinos; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 102 Ns/m2 by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading. PMID:25119288

  16. Relationships between physical properties and sequence in silkworm silks.

    PubMed

    Malay, Ali D; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B; Damrongsakkul, Siriporn; Numata, Keiji

    2016-01-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149

  17. Electroantennography of silk flies, a crucial step for semiochemical investigations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract Electroantennography of silk flies, a crucial step for semiochemical investigations D. Owens1, G. Nuessly1, P. E. Kendra2, D. Seal3, T. Colquhoun4, and D. Hahn4 1University of Florida, Belle Glade, FL 2USDA-ARS, Miami, FL 3University of Florida, Homestead, FL 4University of Florida, Gaines...

  18. Silk fly electroantennography, a crucial step for semiochemical investigations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silk flies (Euxesta and Chaetopsis spp., Diptera: Ulidiidae) are severe pests of sweet corn in Florida, Central, and South America. Identification of attractive semiochemicals may facilitate development of improved monitoring and management strategies for these pests. To this end, an electroantennog...

  19. Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk.

    PubMed

    Chung, Da Eun; Kim, Hyung Hwan; Kim, Moo Kon; Lee, Ki Hoon; Park, Young Hwan; Um, In Chul

    2015-08-01

    Silk has attracted the attention of biomedical researchers because of its good biocompatibility. Although various characteristics of silk are needed for its successful application in biomedical fields, the performance of silk material is limited. Although there are many varieties of Bombyx mori silkworm, the effect of different silkworm varieties on regenerated silk has not been considered in detail. That is, the use of a diverse variety of silkworms has not been considered in non-textile applications resulting in limited performance of silk materials. In this study, the effects of different silkworm varieties on the structural characteristics and properties of silk cocoon and regenerated silk fibroin (SF) were examined. Structural characteristics of silk cocoon including color, fiber diameter, and porosity, differed depending on the silkworm variety. Furthermore, molecular weight, solution viscosity, and mechanical properties of regenerated SF were influenced by the variety of silkworm, while the amino acid composition, β-sheet crystallization by formic acid, and cyto-compatibility of regenerated SF did not differ between the samples from different varieties of silkworm. These results imply that diverse performance of silk can be obtained by controlling the silkworm variety, and that the use of different varieties of silkworm might be a good way to strengthen the performance of silk in biomedical fields.

  20. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori.

    PubMed

    Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou

    2016-01-01

    The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography-tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study. PMID:27102218

  1. Blueprint for a High-Performance Biomaterial: Full-Length Spider Dragline Silk Genes

    PubMed Central

    Ayoub, Nadia A.; Garb, Jessica E.; Tinghitella, Robin M.; Collin, Matthew A.; Hayashi, Cheryl Y.

    2007-01-01

    Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers. PMID:17565367

  2. An Australian webspinner species makes the finest known insect silk fibers

    SciTech Connect

    Okada, Shoko; Weisman, Sarah; Trueman, Holly E.; Mudie, Stephen T.; Haritos, Victoria S.; Sutherland, Tara D.

    2009-01-15

    Aposthonia gurneyi, an Australian webspinner species, is a primitive insect that constructs and lives in a silken tunnel which screens it from the attentions of predators. The insect spins silk threads from many tiny spines on its forelegs to weave a filmy sheet. We found that the webspinner silk fibers have a mean diameter of only 65 nm, an order of magnitude smaller than any previously reported insect silk. The purpose of such fine silk may be to reduce the metabolic cost of building the extensive tunnels. At the molecular level, the A. gurneyi silk has a predominantly beta-sheet protein structure. The most abundant clone in a cDNA library produced from the webspinner silk glands encoded a protein with extensive glycine-serine repeat regions. The GSGSGS repeat motif of the A. gurneyi silk protein is similar to the well-known GAGAGS repeat motif found in the heavy fibroin of silkworm silk, which also has beta-sheet structure. As the webspinner silk gene is unrelated to the silk gene of the phylogenetically distant silkworm, this is a striking example of convergent evolution.

  3. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori.

    PubMed

    Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou

    2016-01-01

    The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography-tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study.

  4. Analysis of proteome dynamics inside the silk gland lumen of Bombyx mori

    PubMed Central

    Dong, Zhaoming; Zhao, Ping; Zhang, Yan; Song, Qianru; Zhang, Xiaolu; Guo, Pengchao; Wang, Dandan; Xia, Qingyou

    2016-01-01

    The silk gland is the only organ where silk proteins are synthesized and secreted in the silkworm, Bombyx mori. Silk proteins are stored in the lumen of the silk gland for around eight days during the fifth instar. Determining their dynamic changes is helpful for clarifying the secretion mechanism of silk proteins. Here, we identified the proteome in the silk gland lumen using liquid chromatography–tandem mass spectrometry, and demonstrated its changes during two key stages. From day 5 of the fifth instar to day 1 of wandering, the abundances of fibroins, sericins, seroins, and proteins of unknown functions increased significantly in different compartments of the silk gland lumen. As a result, these accumulated proteins constituted the major cocoon components. In contrast, the abundances of enzymes and extracellular matrix proteins decreased in the silk gland lumen, suggesting that they were not the structural constituents of silk. Twenty-five enzymes may be involved in the regulation of hormone metabolism for proper silk gland function. In addition, the metabolism of other non-proteinous components such as chitin and pigment were also discussed in this study. PMID:27102218

  5. Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration.

    PubMed

    Mieszawska, Aneta J; Nadkarni, Lauren D; Perry, Carole C; Kaplan, David L

    2010-10-26

    The biomimetic design of silk/silica fusion proteins was carried out, combining the self assembling domains of spider dragline silk (Nephila clavipes) and silaffin derived R5 peptide of Cylindrotheca fusiformis that is responsible for silica mineralization. Genetic engineering was used to generate the protein-based biomaterials incorporating the physical properties of both components. With genetic control over the nanodomain sizes and chemistry, as well as modification of synthetic conditions for silica formation, controlled mineralized silk films with different silica morphologies and distributions were successfully generated; generating 3D porous networks, clustered silica nanoparticles (SNPs), or single SNPs. Silk serves as the organic scaffolding to control the material stability and multiprocessing makes silk/silica biomaterials suitable for different tissue regenerative applications. The influence of these new silk-silica composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on the silk/silica films. The presence of the silica in the silk films influenced osteogenic gene expression, with the upregulation of alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col 1) markers. Evidence for early bone formation as calcium deposits was observed on silk films with silica. These results indicate the potential utility of these new silk/silica systems towards bone regeneration. PMID:20976116

  6. Co-effect of silk and amniotic membrane for tendon repair.

    PubMed

    Seo, Young-Kwon; Kim, Jun-Hyung; Eo, Su-Rak

    2016-08-01

    The objective of the present study was to determine the feasibility and biocompatibility of a silk scaffold and a composite silk scaffold in terms of new tendon generation using a rabbit Achilles tendon model. The silk scaffold was constructed using a weaving machine, then soaked in a 1% collagen-hyaluronan (HA) solution and air-dried, whereas the composite silk scaffold was composed of a silk scaffold containing a lyophilized collagen-HA substrate. Tenocytes were cultured in vitro to compare cell populations in the two groups. The cellular densities on composite silk scaffolds were 40% higher on average than those on silk scaffolds in 30-day tenocyte cultures. The tendon scaffolds had implanted into Achilles tendon defects in 16 white New Zealand rabbits. Rabbits were randomly divided into the following three groups: group I, silk scaffold alone; group II, composite silk scaffold; and group III, composite silk scaffold wrapped by an amniotic membrane. Implants were harvested 2, 8, and 12 weeks post-implantation. Histological examinations were conducted using hematoxylin-eosin (H&E), Masson's trichrome, and by performing immunohistochemical staining for CD34. After 12 weeks, the three groups were distinguishable based on gross examination. The histological examination revealed more organized collagen fibrils in groups III, which showed a dense, parallel, linear organization of collagen bundles. CD34 staining revealed neoangiogenesis in groups III. The results of this research showed that collagen-HA substrates with amniotic membrane accelerate cellular migration and angiogenesis in neotendons.

  7. Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk.

    PubMed

    Chung, Da Eun; Kim, Hyung Hwan; Kim, Moo Kon; Lee, Ki Hoon; Park, Young Hwan; Um, In Chul

    2015-08-01

    Silk has attracted the attention of biomedical researchers because of its good biocompatibility. Although various characteristics of silk are needed for its successful application in biomedical fields, the performance of silk material is limited. Although there are many varieties of Bombyx mori silkworm, the effect of different silkworm varieties on regenerated silk has not been considered in detail. That is, the use of a diverse variety of silkworms has not been considered in non-textile applications resulting in limited performance of silk materials. In this study, the effects of different silkworm varieties on the structural characteristics and properties of silk cocoon and regenerated silk fibroin (SF) were examined. Structural characteristics of silk cocoon including color, fiber diameter, and porosity, differed depending on the silkworm variety. Furthermore, molecular weight, solution viscosity, and mechanical properties of regenerated SF were influenced by the variety of silkworm, while the amino acid composition, β-sheet crystallization by formic acid, and cyto-compatibility of regenerated SF did not differ between the samples from different varieties of silkworm. These results imply that diverse performance of silk can be obtained by controlling the silkworm variety, and that the use of different varieties of silkworm might be a good way to strengthen the performance of silk in biomedical fields. PMID:26072984

  8. The role of capture spiral silk properties in the diversification of orb webs.

    PubMed

    Tarakanova, Anna; Buehler, Markus J

    2012-12-01

    Among a myriad of spider web geometries, the orb web presents a fascinating, exquisite example in architecture and evolution. Orb webs can be divided into two categories according to the capture silk used in construction: cribellate orb webs (composed of pseudoflagelliform silk) coated with dry cribellate threads and ecribellate orb webs (composed of flagelliform silk fibres) coated by adhesive glue droplets. Cribellate capture silk is generally stronger but less-extensible than viscid capture silk, and a body of phylogenic evidence suggests that cribellate capture silk is more closely related to the ancestral form of capture spiral silk. Here, we use a coarse-grained web model to investigate how the mechanical properties of spiral capture silk affect the behaviour of the whole web, illustrating that more elastic capture spiral silk yields a decrease in web system energy absorption, suggesting that the function of the capture spiral shifted from prey capture to other structural roles. Additionally, we observe that in webs with more extensible capture silk, the effect of thread strength on web performance is reduced, indicating that thread elasticity is a dominant driving factor in web diversification.

  9. Thermal Performance Testing of Cryogenic Multilayer Insulation with Silk Net Spacers

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Frank, D. J.; Nast, T. C.; Fesmire, J. E.

    2015-12-01

    Early comprehensive testing of cryogenic multilayer insulation focused on the use of silk netting as a spacer material. Silk netting was used for multiple test campaigns that were designed to provide baseline thermal performance estimates for cryogenic insulation systems. As more focus was put on larger systems, the cost of silk netting became a deterrent and most aerospace insulation firms were using Dacron (or polyester) netting spacers by the early 1970s. In the midst of the switch away from silk netting there was no attempt to understand the difference between silk and polyester netting, though it was widely believed that the silk netting provided slightly better performance. Without any better reference for thermal performance data, the silk netting performance correlations continued to be used. In order to attempt to quantify the difference between the silk netting and polyester netting, a brief test program was developed. The silk netting material was obtained from Lockheed Martin and was tested on the Cryostat-100 instrument in three different configurations, 20 layers with both single and double netting and 10 layers with single netting only. The data show agreement within 15 - 30% with the historical silk netting based correlations and show a substantial performance improvement when compared to previous testing performed using polyester netting and aluminum foil/fiberglass paper multilayer insulation. Additionally, the data further reinforce a recently observed trend that the heat flux is not directly proportional to the number of layers installed on a system.

  10. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.

    PubMed

    Boutry, Cecilia; Blackledge, Todd Alan

    2010-10-15

    Spider silk is a promising biomaterial with impressive performance. However, some spider silks also 'supercontract' when exposed to water, shrinking by up to ∼50% in length. Supercontraction may provide a critical mechanism to tailor silk properties, both for future synthetic silk production and by the spiders themselves. Several hypotheses are proposed for the mechanism and function of supercontraction, but they remain largely untested. In particular, supercontraction may result from a rearrangement of the GPGXX motif within the silk proteins, where G represents glycine, P proline and X is one of a small subset of amino acids. Supercontraction may prevent sagging in wet orb-webs or allow spiders to tailor silk properties for different ecological functions. Because both the molecular structures of silk proteins and how dragline is used in webs differ among species, we can test these hypotheses by comparing supercontraction of silk across diverse spider taxa. In this study we measured supercontraction in 28 spider taxa, ranging from tarantulas to orb-weaving spiders. We found that silk from all species supercontracted, except that of most tarantulas. This suggests that supercontraction evolved at least with the origin of the Araneomorphae, over 200 million years ago. We found differences in the pattern of evolution for two components of supercontraction. Stress generated during supercontraction of a restrained fiber is not associated with changes in silk structure and web architecture. By contrast, the shrink of unrestrained supercontracting fibers is higher for Orbiculariae spiders, whose silk contains high ratios of GPGXX motifs. These results support the hypothesis that supercontraction is caused by a rearrangement of GPGXX motifs in silk, and that it functions to tailor silk material properties.

  11. A study on occupational asthma among workers of silk filatures in South India

    PubMed Central

    Gowda, Giriyanna; Vijayeendra, Anagha Manakari; Sarkar, Nivedita; Shivalingaiah, Anwith Huluvadi; Shah, Ankita; Ashwathnarayana, Abhiram Gopal; Narayanaswamy, Huliraj; Nagaraj, Chitra

    2014-01-01

    Background: The production of silk is a multidimensional and multistep process involving exposure of workers to allergens at work place. The silk allergen has been implicated in the development of bronchial asthma. Objectives: To identify the prevalence of occupational asthma (OA) and to identify sensitization to silk allergen and among workers in silk filature units. Materials and Methods: A community-based cross-sectional study was conducted in silk filature units of Ramanagara (Silk City) in Karnataka, South India, for a period of 6 months. One hundred and twenty workers of silk filature units who met the inclusion and exclusion criteria were recruited into the study group. For comparison, a control group comprising of 120 individuals not working in silk filature units was constituted. All the subjects were interviewed using the standardized International Union against Tuberculosis and Lung Diseases (IUATLD) Questionnaire and subjected to the skin prick test, which used the extracts of silk allergen. Results: The study group comprised of 35 males and 85 females, whereas the control group comprised of 58 males and 62 females. The prevalence of occupational asthma among workers in silk filatures was 20.83%. It was observed that 35.83% of those in the study group and 20.83% of those in the control group were found to be sensitive to silk allergen. This difference was statistically significant (χ2= 6.64; P < 0.05). Conclusion: There is a high burden of sensitization to silk allergen and occupational asthma among silk filature workers in South India. PMID:25568600

  12. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers.

    PubMed

    Boutry, Cecilia; Blackledge, Todd Alan

    2010-10-15

    Spider silk is a promising biomaterial with impressive performance. However, some spider silks also 'supercontract' when exposed to water, shrinking by up to ∼50% in length. Supercontraction may provide a critical mechanism to tailor silk properties, both for future synthetic silk production and by the spiders themselves. Several hypotheses are proposed for the mechanism and function of supercontraction, but they remain largely untested. In particular, supercontraction may result from a rearrangement of the GPGXX motif within the silk proteins, where G represents glycine, P proline and X is one of a small subset of amino acids. Supercontraction may prevent sagging in wet orb-webs or allow spiders to tailor silk properties for different ecological functions. Because both the molecular structures of silk proteins and how dragline is used in webs differ among species, we can test these hypotheses by comparing supercontraction of silk across diverse spider taxa. In this study we measured supercontraction in 28 spider taxa, ranging from tarantulas to orb-weaving spiders. We found that silk from all species supercontracted, except that of most tarantulas. This suggests that supercontraction evolved at least with the origin of the Araneomorphae, over 200 million years ago. We found differences in the pattern of evolution for two components of supercontraction. Stress generated during supercontraction of a restrained fiber is not associated with changes in silk structure and web architecture. By contrast, the shrink of unrestrained supercontracting fibers is higher for Orbiculariae spiders, whose silk contains high ratios of GPGXX motifs. These results support the hypothesis that supercontraction is caused by a rearrangement of GPGXX motifs in silk, and that it functions to tailor silk material properties. PMID:20889831

  13. Conductive polymer combined silk fiber bundle for bioelectrical signal recording.

    PubMed

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions.An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 µm thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm). The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm). The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP) signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects. PMID:22493670

  14. Conductive Polymer Combined Silk Fiber Bundle for Bioelectrical Signal Recording

    PubMed Central

    Tsukada, Shingo; Nakashima, Hiroshi; Torimitsu, Keiichi

    2012-01-01

    Electrode materials for recording biomedical signals, such as electrocardiography (ECG), electroencephalography (EEG) and evoked potentials data, are expected to be soft, hydrophilic and electroconductive to minimize the stress imposed on living tissue, especially during long-term monitoring. We have developed and characterized string-shaped electrodes made from conductive polymer with silk fiber bundles (thread), which offer a new biocompatible stress free interface with living tissue in both wet and dry conditions. An electroconductive polyelectrolyte, poly(3,4-ethylenedioxythiophene) -poly(styrenesulfonate) (PEDOT-PSS) was electrochemically combined with silk thread made from natural Bombyx mori. The polymer composite 280 µm thread exhibited a conductivity of 0.00117 S/cm (which corresponds to a DC resistance of 2.62 Mohm/cm). The addition of glycerol to the PEDOT-PSS silk thread improved the conductivity to 0.102 S/cm (20.6 kohm/cm). The wettability of PEDOT-PSS was controlled with glycerol, which improved its durability in water and washing cycles. The glycerol treated PEDOT-PSS silk thread showed a tensile strength of 1000 cN in both wet and dry states. Without using any electrolytes, pastes or solutions, the thread directly collects electrical signals from living tissue and transmits them through metal cables. ECG, EEG, and sensory evoked potential (SEP) signals were recorded from experimental animals by using this thread placed on the skin. PEDOT-PSS silk glycerol composite thread offers a new class of biocompatible electrodes in the field of biomedical and health promotion that does not induce stress in the subjects. PMID:22493670

  15. Explosion-proof properties and hydraulic resistance of fire-barrier elements based on knitted metallic screens

    NASA Astrophysics Data System (ADS)

    Elnatanov, A. I.; Strizhevskiy, I. I.; Rutkovskiy, A. Y.; Geyntse, N. S.; Zorin, V. A.; Andreyeva, N. V.; Ivanchuk, A. A.; Karpinos, D. M.

    1984-07-01

    Porous knitted metallic screens with relatively even pore distribution and insignificant hydraulic resistance were found useful in explosion and fire barrier applications. The use of such materials in analyzers of burning gas mixtures is discussed. Critical pressure tests were made in a 100-mm vessel divided into chambers of 0.1 and 3.51, the latter serving as the receiver in case of ignition in the smaller, and for controlled burn of the mixture. Induction receivers indicated that little transfer of combustion products occurred. Test screens with steel wire of 50 to 90 mcm diameter, with strands of 6-20 fibers of 50 mcm diameter and a combination of these, and 4 to 8 mm thickness, were covered with knitted stainless steel material of 0.4 diameters; pores were 0.5 x 0.5 mm. Results indicated that samples of 400 to 300 mcm porosity underwent significant deformation, yet still served as flame barriers. Fine wire strands were more effective than thicker ones, and rust from oxidation increased hydraulic resistance.

  16. Spider genomes provide insight into composition and evolution of venom and silk.

    PubMed

    Sanggaard, Kristian W; Bechsgaard, Jesper S; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J; Schauser, Leif; Andersen, Stig U; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-05-06

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk.

  17. Solid-State NMR Comparison of Various Spiders’ Dragline Silk Fiber

    PubMed Central

    Creager, Melinda S.; Jenkins, Janelle E; Thagard-Yeaman, Leigh A.; Brooks, Amanda E.; Jones, Justin A.; Lewis, Randolph V.; Holland, Gregory P.; Yarger, Jeffery L.

    2010-01-01

    Major ampullate (dragline) spider silk is a coveted biopolymer due to its combination of strength and extensibility. The dragline silk of different spiders have distinct mechanical properties that can be qualitatively correlated to the protein sequence. This study uses amino acid analysis and carbon-13 solid-state NMR to compare the molecular composition, structure and dynamics of major ampullate dragline silk of four orb-web spider species (Nephila clavipes, Araneus gemmoides, Argiope aurantia and Argiope argentata) and one cobweb species (Latrodectus hesperus). The mobility of the protein backbone and amino acid side chains in water exposed silk fibers is shown to correlate to the proline content. This implies that regions of major ampullate spidroin 2 protein, which is the only dragline silk protein with any significant proline content, become significantly hydrated in dragline spider silk. PMID:20593757

  18. Spider genomes provide insight into composition and evolution of venom and silk

    PubMed Central

    Sanggaard, Kristian W.; Bechsgaard, Jesper S.; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F.; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B.; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J.; Schauser, Leif; Andersen, Stig U.; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-01-01

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

  19. Spider genomes provide insight into composition and evolution of venom and silk.

    PubMed

    Sanggaard, Kristian W; Bechsgaard, Jesper S; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J; Schauser, Leif; Andersen, Stig U; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-01-01

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

  20. Scrutinizing the datasets obtained from nanoscale features of spider silk fibres

    PubMed Central

    Silva, Luciano P; Rech, Elibio L

    2014-01-01

    Spider silk fibres share unprecedented structural and mechanical properties which span from the macroscale to nanoscale and beyond. This is possible due to the molecular features of modular proteins termed spidroins. Thus, the investigation of the organizational scaffolds observed for spidroins in spider silk fibres is of paramount importance for reverse bioengineering. This dataset consists in describing a rational screening procedure to identify the nanoscale features of spider silk fibres. Using atomic force microscopy operated in multiple acquisition modes, we evaluated silk fibres from nine spider species. Here we present the complete results of the analyses and decrypted a number of novel features that could even rank the silk fibres according to desired mechanostructural features. This dataset will allow other researchers to select the most appropriate models for synthetic biology and also lead to better understanding of spider silk fibres extraordinary performance that is comparable to the best manmade materials. PMID:25977795

  1. Scrutinizing the datasets obtained from nanoscale features of spider silk fibres.

    PubMed

    Silva, Luciano P; Rech, Elibio L

    2014-01-01

    Spider silk fibres share unprecedented structural and mechanical properties which span from the macroscale to nanoscale and beyond. This is possible due to the molecular features of modular proteins termed spidroins. Thus, the investigation of the organizational scaffolds observed for spidroins in spider silk fibres is of paramount importance for reverse bioengineering. This dataset consists in describing a rational screening procedure to identify the nanoscale features of spider silk fibres. Using atomic force microscopy operated in multiple acquisition modes, we evaluated silk fibres from nine spider species. Here we present the complete results of the analyses and decrypted a number of novel features that could even rank the silk fibres according to desired mechanostructural features. This dataset will allow other researchers to select the most appropriate models for synthetic biology and also lead to better understanding of spider silk fibres extraordinary performance that is comparable to the best manmade materials. PMID:25977795

  2. Invited review current progress and limitations of spider silk for biomedical applications.

    PubMed

    Widhe, Mona; Johansson, Jan; Hedhammar, My; Rising, Anna

    2012-06-01

    Spider silk is a fascinating material combining remarkable mechanical properties with low density and biodegradability. Because of these properties and historical descriptions of medical applications, spider silk has been proposed to be the ideal biomaterial. However, overcoming the obstacles to produce spider silk in sufficient quantities and in a manner that meets regulatory demands has proven to be a difficult task. Also, there are relatively few studies of spider silk in biomedical applications available, and the methods and materials used vary a lot. Herein we summarize cell culture- and in vivo implantation studies of natural and synthetic spider silk, and also review the current status and future challenges in the quest for a large scale production of spider silk for medical applications. PMID:21898363

  3. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit.

    PubMed

    Allmeling, Christina; Jokuszies, Andreas; Reimers, Kerstin; Kall, Susanne; Vogt, Peter M

    2006-01-01

    Defects of peripheral nerves still represent a challenge for surgical nerve reconstruction. Recent studies concentrated on replacement by artificial nerve conduits from different synthetic or biological materials. In our study, we describe for the first time the use of spider silk fibres as a new material in nerve tissue engineering. Schwann cells (SC) were cultivated on spider silk fibres. Cells adhered quickly on the fibres compared to polydioxanone monofilaments (PDS). SC survival and proliferation was normal in Live/Dead assays. The silk fibres were ensheathed completely with cells. We developed composite nerve grafts of acellularized veins, spider silk fibres and SC diluted in matrigel. These artificial nerve grafts could be cultivated in vitro for one week. Histological analysis showed that the cells were vital and formed distinct columns along the silk fibres. In conclusion, our results show that artificial nerve grafts can be constructed successfully from spider silk, acellularized veins and SC mixed with matrigel. PMID:16989736

  4. Spider silk: understanding the structure-function relationship of a natural fiber.

    PubMed

    Humenik, Martin; Scheibel, Thomas; Smith, Andrew

    2011-01-01

    Spider silk is of great interest because of its extraordinary physical properties, such as strength and toughness. Here we discuss how these physical properties relate to the way in which spiders have utilized this material in prey capture, forcing its evolution to a high-performance fiber. Female spiders can produce up to seven different types of silk, and all these have different physical properties, which relate to their various functions. The variation in properties are due to underlying differences in the proteins making up these silks. As our understanding of spider silk has increased in the recent years, it has been possible to produce recombinant versions of the respective proteins. Recombinant proteins open up the potential to produce synthetic silk fibers with properties similar to those of the natural spider silk threads. PMID:21999996

  5. Effect of residual sericin on the structural characteristics and properties of regenerated silk films.

    PubMed

    Lee, Ji Hye; Song, Dae Woong; Park, Young Hwan; Um, In Chul

    2016-08-01

    Regenerated silk film has been increasingly attracting the research community's attention for biomedical applications due to its good biocompatibility and excellent cyto-compatibility. However, some limitations regarding its mechanical properties, such as brittleness, have restricted the use of silk films for industrial biomedical applications. In this study, regenerated silk films with different residual sericin content were prepared applying controlled degumming conditions to evaluate the effect of sericin content on the structure and properties of the films generated. When the residual sericin content increased to 0.6%, crystallinity index and breaking strength of silk films were increased. Above this value, these parameters then decreased. A 1.5 fold increase of silk film elongation properties was obtained when incorporating 16% sericin. Regardless of sericin content, all regenerated silk films showed excellent cyto-compatibility, comparable to the one obtained with tissue culture plates.

  6. Innovative multifunctional silk fibroin and hydrotalcite nanocomposites: a synergic effect of the components.

    PubMed

    Posati, Tamara; Benfenati, Valentina; Sagnella, Anna; Pistone, Assunta; Nocchetti, Morena; Donnadio, Anna; Ruani, Giampiero; Zamboni, Roberto; Muccini, Michele

    2014-01-13

    Novel hybrid functional materials are formed by combining hydrotalcite-like compounds and silk fibroin (SF-HTlc) via an environmental friendly aqueous process. The nanocomposites can be prepared with different weight ratio of the constituting components and preserve the conformational properties of the silk protein and the lamellar structure of hydrotalcites. Optical microscopy, scanning electron microscopy, and atomic force microscopy analyses show a good dispersion degree of the inorganic nanoparticles into the organic silk matrix. A mutual benefit on the stability of both organic and inorganic components was observed in the nanocomposites. SF-HTlc displayed limited dissolution of hydrotalcite in acidic medium, enhanced mechanical properties, and higher protease resistance of silk protein. The transparency, flexibility, and acidic environment resistance of silk fibroin combined to the protective and reinforcing properties of hydrotalcites generate a hybrid material, which is very attractive for applications in recently reported silk based opto-electronic and photonics technologies. PMID:24313841

  7. Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution.

    PubMed

    Hayashi, C Y; Lewis, R V

    2001-08-01

    Spiders spin multiple types of silks that are renowned for their superb mechanical properties. Flagelliform silk, used in the capture spiral of an orb-web, is one of the few silks characterized by both cDNA and genomic DNA data. This fibroin is composed of repeating ensembles of three types of amino acid sequence motifs. The predominant subrepeat, GPGGX, likely forms a beta-turn, and tandem arrays of these turns are thought to create beta-spirals. These spring-like helices may be critical for the exceptional ability of capture silk to stretch and recoil. Each ensemble of motifs was found to correspond to a different exon within the flagelliform gene. The pattern of sequence similarity among exons indicates intragenic concerted evolution. Surprisingly, the introns between the iterated exons are also homogenized with each other. This unusual molecular architecture in the flagelliform silk gene has implications for the evolution and maintenance of spider silk proteins.

  8. Effect of Sequence Features on Assembly of Spider Silk Block Copolymers

    PubMed Central

    Tokareva, Olena S.; Lin, Shangchao; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel; Li, David; Simon, Marc; Staii, Cristian; Cebe, Peggy; Wong, Joyce Y.; Buehler, Markus J.; Kaplan, David L.

    2014-01-01

    Bioengineered spider silk block copolymers were studied to understand the effect of protein chain length and sequence chemistry on the formation of secondary structure and materials assembly. Using a combination of in vitro protein design and assembly studies, we demonstrate that silk block copolymers possessing multiple repetitive units self-assemble into lamellar microstructures. Additionally, the study provides insights into the assembly behavior of spider silk block copolymers in concentrated salt solutions. PMID:24613991

  9. Spider silk aging: initial improvement in a high performance material followed by slow degradation.

    PubMed

    Agnarsson, Ingi; Boutry, Cecilia; Blackledge, Todd A

    2008-10-01

    Spider silk possesses a unique combination of high tensile strength and elasticity resulting in extraordinarily tough fibers, compared with the best synthetic materials. However, the potential application of spider silk and biomimetic fibers depends upon retention of their high performance under a variety of conditions. Here, we report on changes in the mechanical properties of dragline and capture silk fibers from several spider species over periods up to 4 years of benign aging. We find an improvement in mechanical performance of silk fibers during the first year of aging. Fibers rapidly decrease in diameter, suggesting an increase in structural alignment and organization of molecules. One-year old silk also is stiffer and has higher stress at yield than fresh silk, whereas breaking force, elasticity, and toughness either improve or are unaffected by early aging. However, 4-year old silk shows signs of degradation as the breaking load, elasticity, and toughness are all lower than in fresh silk. Aging, however, does not reduce the tensile strength of silk. These data suggest initially rapid reorganization and tighter packaging of molecules within the fiber, followed by longer-term decomposition. We hypothesize that possibly the breakdown of amino acids via emission of ammonia gas, as is seen in long-term aging of museum silkworm fabrics, may contribute. Degradation of spider silk under benign conditions may be a concern for efforts to construct and utilize biomimetic silk analogs. However, our findings suggest an initial improvement in mechanical performance and that even old spider silk still retains impressive mechanical performance. PMID:18626974

  10. Cross-linking in the silks of bees, ants and hornets.

    PubMed

    Campbell, Peter M; Trueman, Holly E; Zhang, Qiang; Kojima, Katsura; Kameda, Tsunenori; Sutherland, Tara D

    2014-05-01

    Silk production is integral to the construction of nests or cocoons for many Aculeata, stinging Hymenopterans such as ants, bees and wasps. Here we report the sequences of new aculeate silk proteins and compare cross-linking among nine native silks from three bee species (Apis mellifera, Bombus terrestris and Megachile rotundata), three ant species (Myrmecia forficata, Oecophylla smaragdina and Harpegnathos saltator) and three hornets (Vespa analis, Vespa simillima and Vespa mandarinia). The well studied silks of spiders and silkworms are comprised of large proteins that are cross-linked and stabilized predominantly by intra and intermolecular beta sheet structure. In contrast, the aculeate silks are comprised of relatively small proteins that contain central coiled coil domains and comparatively reduced amounts of beta sheet structure. The hornet silks, which have the most beta sheet structure and the greatest amount of amino acid sequence outside the coiled-coil domains, dissolve in concentrated LiBr solution and appear to be stabilized predominantly by beta sheet structure like the classic silks. In contrast, the ant and bee silks, which have less beta sheet and less sequence outside the coiled-coil domains, could not be dissolved in LiBr and appear to be predominantly stabilized by covalent cross-linking. The iso-peptide cross-linker, ε-(γ-glutamyl)-lysine that is produced by transglutaminase enzymes, was demonstrated to be present in all silks by mass spectrometry, but at greater levels in silks of ants and bees. The bee silks and ant cocoons, but not the Oecophylla nest silks, appeared to be further stabilized by tanning reactions. PMID:24607851

  11. Strength of bed nets as function of denier, knitting pattern, texturizing and polymer

    PubMed Central

    2011-01-01

    Background Bursting strength is a standard method for evaluating mosquito net strength. This article suggests that tension strength with one grab and one hook better represent how holes are generated in bed nets in real life. Methods Measurements of bursting strength and tension strengths in the two directions are analysed for eight model nets created for the study. The nets were made in the most commonly used denier (75 and 100 D) and mesh (156 holes/inch2) for multifilament polyester yarns, texturized or not, and with 4 or 6 sided holes. All were made from one polyester quality. Data was arranged in a randomized, complete block design and analysed for significant variables and their interactions. Data was then subjected to regression analyses using net square metre weight as a weighting factor with stepwise removal of variables. This revealed how the four textile variables interacted and allowed for making predictions for the strength of commercial nets in polyester or polyethylene. Results For the model nets, higher denier provided higher bursting strength and tension strengths, texturizing weakened nets and four-sided holes were stronger than six-sided holes. Even when compensating for square metre weight, 100 D nets are stronger than 75 D nets. Results for the commercial polyester net nets are less clear, probably because of different qualities of polyester. Tensile strength: a 75 denier net knitted tightly to provide the same square metre weight as a standard 100 denier net therefore does not obtain the same strength. Polyethylene nets are made of mono-fibre yarns and, therefore, have higher tension strength in both directions than multifilament polyester nets. For bursting strength results overlap for 100 denier yarns of both yarn types. As a class, commercial polyethylene nets are stronger than commercial polyester net whatever method is used for evaluation. Conclusion Tension strength measured in the length and width directions of the net using one hook

  12. TRANSCRIPTION FACTOR Bmsage PLAYS A CRUCIAL ROLE IN SILK GLAND GENERATION IN SILKWORM, Bombyx mori.

    PubMed

    Xin, Hu-hu; Zhang, Deng-pan; Chen, Rui-ting; Cai, Zi-zheng; Lu, Yan; Liang, Shuang; Miao, Yun-gen

    2015-10-01

    Salivary gland secretion is altered in Drosophila embryos with loss of function of the sage gene. Saliva has a reduced volume and an increased electron density according to transmission electron microscopy, resulting in regions of tube dilation and constriction with intermittent tube closure. However, the precise functions of Bmsage in silkworm (Bombyx mori) are unknown, although its sequence had been deposited in SilkDB. From this, Bmsage is inferred to be a transcription factor that regulates the synthesis of silk fibroin and interacts with another silk gland-specific transcription factor, namely, silk gland factor-1. In this study, we introduced a germline mutation of Bmsage using the Cas9/sgRNA system, a genome-editing technology, resulting in deletion of Bmsage from the genome of B. mori. Of the 15 tested samples, seven displayed alterations at the target site. The mutagenesis efficiency was about 46.7% and there were no obvious off-target effects. In the screened homozygous mutants, silk glands developed poorly and the middle and posterior silk glands (MSG and PSG) were absent, which was significantly different from the wild type. The offspring of G0 mosaic silkworms had indel mutations causing 2- or 9-bp deletions at the target site, but exhibited the same abnormal silk gland structure. Mutant larvae containing different open-reading frames of Bmsage had the same silk gland phenotype. This illustrated that the mutant phenotype was due to Bmsage knockout. We conclude that Bmsage participates in embryonic development of the silk gland.

  13. Molecular Architecture and Evolution of a Modular Spider Silk Protein Gene

    NASA Astrophysics Data System (ADS)

    Hayashi, Cheryl Y.; Lewis, Randolph V.

    2000-02-01

    Spider flagelliform silk is one of the most elastic natural materials known. Extensive sequencing of spider silk genes has shown that the exons and introns of the flagelliform gene underwent intragenic concerted evolution. The intron sequences are more homogenized within a species than are the exons. This pattern can be explained by extreme mutation and recombination pressures on the internally repetitive exons. The iterated sequences within exons encode protein structures that are critical to the function of silks. Therefore, attributes that make silks exceptional biomaterials may also hinder the fixation of optimally adapted protein sequences.

  14. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method.

    PubMed

    Ming, Jinfa; Liu, Zhi; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2014-04-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6±20.4nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications.

  15. Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy.

    PubMed

    Oroudjev, E; Soares, J; Arcdiacono, S; Thompson, J B; Fossey, S A; Hansma, H G

    2002-04-30

    Despite its remarkable materials properties, the structure of spider dragline silk has remained unsolved. Results from two probe microscopy techniques provide new insights into the structure of spider dragline silk. A soluble synthetic protein from dragline silk spontaneously forms nanofibers, as observed by atomic force microscopy. These nanofibers have a segmented substructure. The segment length and amino acid sequence are consistent with a slab-like shape for individual silk protein molecules. The height and width of nanofiber segments suggest a stacking pattern of slab-like molecules in each nanofiber segment. This stacking pattern produces nano-crystals in an amorphous matrix, as observed previously by NMR and x-ray diffraction of spider dragline silk. The possible importance of nanofiber formation to native silk production is discussed. Force spectra for single molecules of the silk protein demonstrate that this protein unfolds through a number of rupture events, indicating a modular substructure within single silk protein molecules. A minimal unfolding module size is estimated to be around 14 nm, which corresponds to the extended length of a single repeated module, 38 amino acids long. The structure of this spider silk protein is distinctly different from the structures of other proteins that have been analyzed by single-molecule force spectroscopy, and the force spectra show correspondingly novel features.

  16. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists

    NASA Astrophysics Data System (ADS)

    Sun, Yun-Lu; Li, Qi; Sun, Si-Ming; Huang, Jing-Chun; Zheng, Bo-Yuan; Chen, Qi-Dai; Shao, Zheng-Zhong; Sun, Hong-Bo

    2015-10-01

    Silk and silk fibroin, the biomaterial from nature, nowadays are being widely utilized in many cutting-edge micro/nanodevices/systems via advanced micro/nanofabrication techniques. Herein, for the first time to our knowledge, we report aqueous multiphoton lithography of diversiform-regenerated-silk-fibroin-centric inks using noncontact and maskless femtosecond laser direct writing (FsLDW). Initially, silk fibroin was FsLDW-crosslinked into arbitrary two/three-dimensional micro/nanostructures with good elastic properties merely using proper photosensitizers. More interestingly, silk/metal composite micro/nanodevices with multidimension-controllable metal content can be FsLDW-customized through laser-induced simultaneous fibroin oxidation/crosslinking and metal photoreduction using the simplest silk/Ag+ or silk/[AuCl4]- aqueous resists. Noticeably, during FsLDW, fibroin functions as biological reductant and matrix, while metal ions act as the oxidant. A FsLDW-fabricated prototyping silk/Ag microelectrode exhibited 104-Ω-1 m-1-scale adjustable electric conductivity. This work not only provides a powerful development to silk micro/nanoprocessing techniques but also creates a novel way to fabricate multifunctional metal/biomacromolecule complex micro/nanodevices for applications such as micro/nanoscale mechanical and electrical bioengineering and biosystems.

  17. Silk-pectin hydrogel with superior mechanical properties, biodegradability, and biocompatibility.

    PubMed

    Numata, Keiji; Yamazaki, Shoya; Katashima, Takuya; Chuah, Jo-Ann; Naga, Naofumi; Sakai, Takamasa

    2014-06-01

    A new method is developed to prepare silk hydrogels and silk-pectin hydrogels via dialysis against methanol to obtain hydrogels with high concentrations of silk fibroin. The relationship between the mechanical and biological properties and the structure of the silk-pectin hydrogels is subsequently evaluated. The present results suggest that pectin associates with silk molecules when the silk concentration exceeds 15 wt%, suggesting that a silk concentration of over 15 wt% is critical to construct interacting silk-pectin networks. The silk-pectin hydrogel reported here is composed of a heterogeneous network, which is different from fiber-reinforced, interpenetrated networks and double-network hydrogels, as well as high-stiffness hydrogels (elastic modulus of 4.7 ± 0.9 MPa, elastic stress limit of 3.9 ± 0.1 MPa, and elastic strain limit of 48.4 ± 0.5%) with regard to biocompatibility and biodegradability.

  18. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins.

    PubMed

    Hayashi, C Y; Shipley, N H; Lewis, R V

    1999-01-01

    Several types of silks and silk protein coding genes have been characterized from orb-web weaving spiders. When the protein sequences of major ampullate, minor ampullate, and flagelliform silks from Nephila clavipes are compared, they can be summarized as sets of shared amino acid motifs. Four of these motifs and their likely secondary structures are described. Each structural element, termed a module, is then associated with its impact on the mechanical properties of a silk fiber. In particular, correlations are drawn between an alanine-rich 'crystalline module' and tensile strength and between a proline-containing 'elasticity module' and extensibility.

  19. Bimorph Silk Microsheets with Programmable Actuating Behavior: Experimental Analysis and Computer Simulations.

    PubMed

    Ye, Chunhong; Nikolov, Svetoslav V; Geryak, Ren D; Calabrese, Rossella; Ankner, John F; Alexeev, Alexander; Kaplan, David L; Tsukruk, Vladimir V

    2016-07-13

    Microscaled self-rolling construct sheets from silk protein material have been fabricated, containing a silk bimorph composed of silk ionomers as an active layer and cross-linked silk β-sheet as the passive layer. The programmable morphology was experimentally explored along with a computational simulation to understand the mechanism of shape reconfiguration. The neutron reflectivity shows that the active silk ionomers layer undergoes remarkable swelling (eight times increase in thickness) after deprotonation while the passive silk β-sheet retains constant volume under the same conditions and supports the bimorph construct. This selective swelling within the silk-on-silk bimorph microsheets generates strong interfacial stress between layers and out-of-plane forces, which trigger autonomous self-rolling into various 3D constructs such as cylindrical and helical tubules. The experimental observations and computational modeling confirmed the role of interfacial stresses and allow programming the morphology of the 3D constructs with particular design. We demonstrated that the biaxial stress distribution over the 2D planar films depends upon the lateral dimensions, thickness and the aspect ratio of the microsheets. The results allow the fine-tuning of autonomous shape transformations for the further design of complex micro-origami constructs and the silk based rolling/unrolling structures provide a promising platform for polymer-based biomimetic devices for implant applications. PMID:27308946

  20. Vibrational infrared conformational studies of model peptides representing the semicrystalline domains of Bombyx mori silk fibroin.

    PubMed

    Taddei, Paola; Monti, Patrizia

    2005-08-01

    The structural organization of Bombyx mori silk fibroin was investigated by infrared (IR) spectroscopy. To this aim, (AG)15 and other model peptides of varying chain length, containing tyrosine (Y), valine (V), and serine (S) in the basic (AG)n sequence were synthesized by the solid phase method and their spectroscopic properties were determined. Both the position and the relative content of Y, V, and S residues in the (AG)n model system appeared critical in determining the preferred conformation, i.e., silk I, silk II, and unordered structures. Curve fitting analysis in the amide I range showed that the model peptides with prevailing silk II structure displayed different beta-sheet content, which was dependent on the degree of interruption of the (AG)n sequence. In this regard, the bands at about 1000 and 980 cm(-1), specifically assigned to the AG sequence of the B. mori silk fibroin chain, were identified as marker of the degree of interruption of the (AG)n sequence.A stable silk I structure was observed only when the Y residue was located near the chain terminus, while a silk I --> silk II conformational transition occurred when it was positioned in the central region of the peptide. Analysis of the second-derivative spectra in the amide I range allowed us to identify a band at 1639 cm(-1) (4 --> 1 hydrogen-bonded type II beta-turns), which is characteristic of the silk I conformation.