Science.gov

Sample records for seedlings lactuca sativa

  1. Blue and green light-induced phototropism in Arabidopsis thaliana and Lactuca sativa L. seedlings

    SciTech Connect

    Steinitz, B.; Ren, Z.; Poff, K.L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wavelengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. The authors advise care in the use of green safelights for studies of phototropism.

  2. Blue and Green Light-Induced Phototropism in Arabidopsis thaliana and Lactuca sativa L. Seedlings 1

    PubMed Central

    Steinitz, Benjamin; Ren, Zhangling; Poff, Kenneth L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wave-lengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. We advise care in the use of green `safelights' for studies of phototropism. PMID:16664021

  3. Effects of kaurane diterpene derivatives on germination and growth of Lactuca sativa seedlings.

    PubMed

    Vieira, Henriete S; Takahashi, Jacqueline A; Pimenta, Lúcia P S; Boaventura, Maria Amélia D

    2005-01-01

    Kaurenoic and grandiflorenic acid, isolated from Wedelia paludosa (Asteraceae), some derivatives from these acids (alcohols, esters, amides, lactones, oximes) and other naturally occurring kaurane diterpenes were tested for their action on the growth of radical and shoot of Lactuca sativa. Gibberellic acid, GA3, a commercially available phytohormone, belonging to the same class of diterpenes, was also tested. Some of the tested substances showed a remarkable activity either in the inhibition or in stimulation of L. sativa growth. The activity, in some cases, was even higher than that of GA3.

  4. Volatiles emitted by Bacillus sp. BCT9 act as growth modulating agents on Lactuca sativa seedlings.

    PubMed

    Fincheira, Paola; Parra, Leonardo; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2017-10-01

    Chemical products are applied during horticulture to increase food production, but the environmental problems resulting from these applications have led to a search for more sustainable products. Volatile organic compounds (VOCs) demonstrating plant growth promoter (PGP) activity released by bacterial species have emerged as alternatives, but their effects on Lactuca sativa growth are unknown. In this study, VOCs released by Bacillus sp. BCT9 cultures grown in different media (Methyl Red & Voges Proskauer, Murashige & Skoog and nutrient media) at concentrations of 0.1, 0.2, 0.5 and 0.7 (measured as the absorbance, λ=600nm) were tested to evaluate their activity as growth inducers of L. sativa after 10days of exposure. Lower concentrations of BCT9 increased root length, and higher concentrations induced shoot length and lateral root length. The dry weight and number of lateral roots increased similarly, independent of concentration, for VOCs produced in all culture media. BCT9 cultures grown in Methyl Red & Voges Proskauer medium as bioactive compounds with or without lanolin. These VOCs increased shoot length, root length and dry weight at low concentrations, independent of the presence of lanolin. Lateral root length increased with the application of 2-nonanone (50ppm) and 2-undecanone (0.05ppm). Based on these results, the use of bioactive volatiles as growth inducers of horticultural species represents an alternative or complementary strategy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Antioxidant potential of Lactuca sativa

    PubMed Central

    Garg, Munish; Garg, Chanchal; Mukherjee, Pulok K.; Suresh, B.

    2004-01-01

    The present study is based on the evaluation of antioxidant potential of a well known plant Lactuca sativa. Methanolic leaf extract was investigated for in vitro inhibition of oxidative damage induced by UV-radiations to the salmonella typhi bacteria and in vivo effect on the production of body enzymes i.e. catalase and superoxide dismutase. The lipid peroxidation masurement was also done in terms of thiobarbituric acid reactive substances (TBARS) in blood and brain of male albino wistar rats. The plant extract has shown significant antioxidant potential both in vitro and in vivo. PMID:22557144

  6. Regulation of cell division and growth in roots of Lactuca sativa L. seedlings by the Ent-Kaurene diterpenoid rabdosin B.

    PubMed

    Ding, Lan; Jing, Hongwei; Qin, Bo; Qi, Linlin; Li, Jing; Wang, Tao; Liu, Guoan

    2010-05-01

    Rabdosin B, an ent-kaurene diterpenoid purified from the air-dried aerial parts of Isodon japonica (Burm.f) Hara var. galaucocalyx (maxin) Hara, showed a biphasic, dose-dependent effect on root growth and a strong inhibitory effect on root hair development in lettuce seedlings (Lactuca sativa L.). Lower concentrations of rabdosin B (20-80 microM) significantly promoted root growth, but its higher levels at 120-200 microM, by contrast, had inhibitory effects. Additionally, all tested concentrations (10-40 microM) inhibited root hair development of seedlings in a dose-dependent manner. Further investigations on the underlying mechanism revealed that the promotion effect of rabdosin B at the lower concentrations resulted from increasing the cell length in the mature region and enhancing the mitotic activity of meristematic cells in seedlings' root tips. In contrast, rabdosin B at higher concentrations inhibited root growth by affecting both cell length in the mature region and division of meristematic cells. Comet assay and cell cycle analysis demonstrated that the decrease of mitotic activity of root meristematic cells was due to DNA damage induced cell cycle retardation of the G(2) phase and S phase at different times.

  7. Phytotoxic effects of leukamenin E (an ent-kaurene diterpenoid) on root growth and root hair development in Lactuca sativa L. seedlings.

    PubMed

    Ding, Lan; Qi, Linlin; Jing, Hongwei; Li, Juan; Wang, Wei; Wang, Tao

    2008-11-01

    Leukamenin E, an ent-kaurene diterpenoid isolated from Isodon racemosa (Hemsl) Hara, showed phytotoxic effects on root growth and root hair development of lettuce seedlings (Lactuca sativa L.). Lower concentrations (10 microM) of leukamenin E did not affect root growth, but at concentrations higher than 50 microM, the rate was inhibited. The influence of leukamenin E on root growth rate was closely correlated with alterations in the mitotic index. A low incidence of aberrant mitosis image was observed when lettuce roots were treated with higher concentrations (100 and 200 microM) of leukamenin E. This suggests that inhibition of root growth may be due to inhibition of cell division. All tested concentrations of the diterpenoid (10 microM or more) inhibited root hair development in a dose-dependent manner. At a concentration of 80 microM, leukamenin E completely blocked root hair initiation. Application of Ag(+)-an ethylene action inhibitor-to lettuce seedlings inhibited root hair elongation similar to the diterpenoid. Enhanced root hair length was stimulated by exogenous ethephon-an ethylene-releasing agent-and could be reversed by addition of leukamenin E. This suggests that leukamenin E may act as a potential ethylene action antagonist in the inhibition of lettuce root hair development. We conclude that leukamenin E may curb root hair development by interfering with ethylene action at concentrations above 10 microM and inhibits root growth via inhibition of cell division at concentrations above 50 microM.

  8. Humic substances can modulate the allelopathic potential of caffeic, ferulic, and salicylic acids for seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.).

    PubMed

    Loffredo, Elisabetta; Monaci, Linda; Senesi, Nicola

    2005-11-30

    The capacity of a leonardite humic acid (LHA), a soil humic acid (SHA), and a soil fulvic acid (SFA) in modulating the allelopathic potential of caffeic acid (CA), ferulic acid (FA), and salicylic acid (SA) on seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) was investigated. Lettuce showed a sensitivity greater than that of tomato to CA, FA, and SA phytotoxicity, which was significantly reduced or even suppressed in the presence of SHA or SFA, especially at the highest dose, but not LHA. In general, SFA was slightly more active than SHA, and the efficiency of the action depended on their concentration, the plant species and the organ examined, and the allelochemical. The daily measured residual concentration of CA and FA decreased drastically and that of SA slightly in the presence of germinating seeds of lettuce, which were thus able to absorb and/or enhance the degradation of CA and FA. The adsorption capacity of SHA for the three allelochemicals was small and decreased in the order FA > CA > SA, thus suggesting that adsorption could be a relevant mechanism, but not the only one, involved in the "antiallelopathic" action.

  9. Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Esringu, Aslıhan; Aksakal, Ozkan; Tabay, Dilruba; Kara, Ayse Aydan

    2016-01-01

    Ultraviolet-B (UV-B) radiation is one of the most important abiotic stress factors that could influence plant growth, development, and productivity. Nitric oxide (NO) is an important plant growth regulator involved in a wide variety of physiological processes. In the present study, the possibility of enhancing UV-B stress tolerance of lettuce seedlings by the exogenous application of sodium nitroprusside (SNP) was investigated. UV-B radiation increased the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and total phenolic concentrations, antioxidant capacity, and expression of phenylalanine ammonia lyase (PAL) gene in seedlings, but the combination of SNP pretreatment and UV-B enhanced antioxidant enzyme activities, total phenolic concentrations, antioxidant capacity, and PAL gene expression even more. Moreover, UV-B radiation significantly inhibited chlorophylls, carotenoid, gibberellic acid (GA), and indole-3-acetic acid (IAA) contents and increased the contents of abscisic acid (ABA), salicylic acid (SA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radical (O2•(-)) in lettuce seedlings. When SNP pretreatment was combined with the UV-B radiation, we observed alleviated chlorophylls, carotenoid, GA, and IAA inhibition and decreased content of ABA, SA, MDA, H2O2, and O2•(-) in comparison to non-pretreated stressed seedlings.

  10. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting.

    PubMed

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock.

  11. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting

    PubMed Central

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock. PMID:27242805

  12. Pb low doses induced genotoxicity in Lactuca sativa plants.

    PubMed

    Silva, S; Silva, P; Oliveira, H; Gaivão, I; Matos, M; Pinto-Carnide, O; Santos, C

    2017-03-01

    Soil and water contamination by lead (Pb) remains a topic of great concern, particularly regarding crop production. The admissible Pb values in irrigation water in several countries range from ≈0.1 to ≈5 mg L(-1). In order to evaluate putative effects of Pb within legal doses on crops growth, we exposed Lactuca sativa seeds and seedlings to increasing doses of Pb(NO3)2 up to 20 mg L(-1). The OECD parameter seed germination and seedling/plant growth were not affected by any of the Pb-concentrations used. However, for doses higher than 5 mg L(-1) significant DNA damage was detected: Comet assay detected DNA fragmentation at ≥ 5 mg L(-1) and presence of micronuclei (MN) were detected for 20 mg L(-1). Also, cell cycle impairment was observed for doses as low as 0.05 mg L(-1) and 0.5 mg L(-1) (mostly G2 arrest). Our data show that for the low doses of Pb used, the OECD endpoints were not able to detect toxicity, while more sensitive endpoints (related with DNA damage and mitotic/interphase disorders) identified genotoxic and cytostatic effects. Furthermore, the nature of the genotoxic effect was dependent on the concentration. Finally, we recommend that MN test and the comet assay should be included as sensitive endpoints in (eco)toxicological assays.

  13. Inhibitory effect of marine green algal extracts on germination of Lactuca sativa seeds.

    PubMed

    Choi, Jae-Suk; Choi, In Soon

    2016-03-01

    The allelopathic potential of nine green seaweed species was examined based on germination and seedling growth of lettuce (Lactuca sativa L.). Out of nine methanol extracts, Capsosiphon fulvescens and Monostroma nitidum extracts completely inhibited germination of L. sativa at 4 mg/filter paper after 24 hr of treatment. Water extracts of these seaweeds generally showed low anti-germination activities than methanol extracts. Of the nine water extracts, Enteromorpha linza extract completely inhibited L. sativa germination at 16 mg/filter paper after 24 hrs. To identify the primary active compounds, C. fulvescens. powder was successively fractionated according to polarity, and the main active agents against L. sativa were determined to be lipids (0.0% germination at 0.5 mg of lipids/paper disc). According to these results, extracts of C. fulvescens can be used to develop natural herbicidal agents and manage terrestrial weeds.

  14. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  15. Initiation and elongation of lateral roots in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  16. Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa.

    PubMed

    Tigre, R C; Silva, N H; Santos, M G; Honda, N K; Falcão, E P S; Pereira, E C

    2012-10-01

    Responses to germination and initial growth of Lactuca sativa (lettuce) submitted to organic extracts and purified compounds of Cladonia verticillaris ("salambaia") were analyzed in this work. The experiments were conducted in laboratory conditions using extracts and pure compounds at different concentrations. None of the assays showed any influence on the germination of L. sativa seeds using C. verticillaris extracts; however, modifications in leaf area and seedling hypocotyl and root development occurred. In the growth experiments, seedlings exposed to ether or acetone extract showed diminished hypocotyl growth in detriment to the root stimulus, compared to controls. Increases in extract concentrations led to the formation of abnormal seedlings. To determine the allelochemicals of C. verticillaris, its principal components, fumarprotocetraric and protocetraric acids, were isolated and then analyzed by high performance liquid chromatography (HPLC). When the seedlings were exposed to the two acids separately, presented increased leaf area at all concentrations. In contrast, hypocotyl and root stimulus was observed only in the presence of protocetraric acid at different concentrations. Fumarprotocetraric as well as protocetraric acids, isolated and purified from C. verticillaris and Parmotrema dilatatum respectively, influenced the development of L. sativa seedlings at high concentrations, indicating a possible bioherbicide potential of these acids.

  17. Localisation and metabolism of reactive oxygen species during Bremia lactucae pathogenesis in Lactuca sativa and wild Lactuca spp.

    PubMed

    Sedlárová, Michaela; Luhová, Lenka; Petrivalský, Marek; Lebeda, Ales

    2007-08-01

    A plant's physiology is modified simultaneously with Oomycete pathogen penetration, starting with release and accumulation of reactive oxygen species (ROS). Localisation of superoxide, hydrogen peroxide, peroxidase and variation in their activity, and the isoenzyme profile of antioxidant enzymes peroxidase (1.11.1.7), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) were studied in six genotypes of four Lactuca spp. (L. sativa, L. serriola, L. saligna and L. virosa) challenged with Bremia lactucae (race NL16). These factors were related to the differential expression of resistance during the course of 96h after inoculation (hai). Accumulation of hydrogen peroxide in infected cells together with enhanced activity of H(2)O(2)-scavenging enzymes in leaf extracts characterised resistant Lactuca spp. genotypes 6-12hai, and peaked at 48-96hai with expression of a hypersensitive reaction. Substantial changes of guaiacol peroxidase activity were detected only in the cytosolic enzyme; activities of the membrane-bound and the ion-bound enzymes were insignificant in the interactions of host genotypes and pathogen isolate examined. The most significant modifications of ROS metabolism were found in resistant L. virosa (NVRS 10.001 602), a genotype responding to pathogen ingress by a rapid and extensive hypersensitive reaction. Formation of the superoxide anion was not detected in either susceptible or resistant plants, and there was also no increase of superoxide dismutase activity or changes in its isozyme profile. The significance of precise balancing the intracellular level of hydrogen peroxide for variability of phenotypic expression of responses to B. lactucae infection in Lactuca spp. is discussed.

  18. Yield response of head lettuce (Lactuca sativa l. ) to ozone

    SciTech Connect

    Temple, P.J.; Taylor, O.C.; Benoit, L.F.

    1986-01-01

    Head lettuce (Lactuca sativa L. cv Empire) was grown in the field and exposed in open-top chambers to proportional increments of ozone (O/sub 3/) from full charcoal filtration (CF) to twice ambient O/sub 3/ concentrations(NF x 2.0). Severe foliar injury developed on young plants exposed to O/sub 3/ concentrations 1.7 and 2.0 times greater than ambient (seasonal 7 hr means of 0.104 and 0.128 ppm, respectively). These exposure levels also reduced total head weight 13 and 35%, respectively, compared with CF plants. Marketable-sized head weight was reduced 21 and 80%, respectively.

  19. Genetic mapping of turnip mosaic virus resistance in Lactuca sativa.

    PubMed

    Robbins, M A; Witsenboer, H; Michelmore, R W; Laliberte, J F; Fortin, M G

    1994-11-01

    Presence of the dominant Tu gene in Lactuca sativa is sufficient to confer resistance to infection by turnip mosaic virus (TuMV). In order to obtain an immunological assay for the presence of TuMV in inoculated plants, the TuMV coat protein (CP) gene was cloned by amplification of a cDNA corresponding to the viral genome using degenerate primers designed from conserved potyvirus CP sequences. The TuMV CP was overexpressed in Escherichia coli, and polyclonal antibodies were produced. To locate Tu on the L. sativa genetic map, F3 families from a cross between cvs "Cobbham Green" (resistant to TuMV) and "Calmar" (susceptible) were genotyped for Tu. Families known to be recombinant in the region containing Tu were infected with TuMV and tested by the indirect enzyme-linked immunosorbent assay (ELISA) using the anti-CP serum. This assay placed Tu between two random amplified polymorphic DNA (RAPD) markers and 3.2 cM from Dm5/8 (which confers resistance to Bremia lactucae). Also, bulked segregant analysis was used to screen for additional RAPD markers tightly linked to the Tu locus. Five new markers linked to Tu were identified in this region, and their location on the genetic map was determined using informative recombinants in the region. Six markers were identified as being linked within 2.5 cM of Tu.

  20. [Analysis of essential oil extracted from Lactuca sativa seeds growing in Xinjiang by GC-MS].

    PubMed

    Xu, Fang; Wang, Qiang; Haji, Akber Aisa

    2011-12-01

    To analyze the components of essential oil from Lactuca sativa seeds growing in Xinjiang. The components of essential oil from Lactuca sativa seeds were analyzed by gas chromatography-mass spectrometry (GC-MS). 62 components were identified from 71 separated peaks,amounting to total mass fraction 95.07%. The dominant compounds were n-Hexanol (36.31%), n-Hexanal (13.71%), trans-2-Octen-l-ol (8.09%) and 2-n-Pentylfuran (4.41%). The research provides a theoretical basis for the exploitation and use of Lactuca sativa seeds resource.

  1. Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species.

    PubMed

    Fincheira, Paola; Venthur, Herbert; Mutis, Ana; Parada, Maribel; Quiroz, Andrés

    2016-12-01

    Agrochemicals are currently used in horticulture to increase crop production. Nevertheless, their indiscriminate use is a relevant issue for environmental and legal aspects. Alternative tools for reducing fertilizers and synthetic phytohormones are being investigated, such as the use of volatile organic compounds (VOCs) as growth inducers. Some soil bacteria, such as Pseudomonas and Bacillus, stimulate Arabidopsis and tobacco growth by releasing VOCs, but their effects on vegetables have not been investigated. Lactuca sativa was used as model vegetable to investigate bacterial VOCs as growth inducers. We selected 10 bacteria strains, belonging to Bacillus, Staphylococcus and Serratia genera that are able to produce 3-hydroxy-2-butanone (acetoin), a compound with proven growth promoting activity. Two-day old-seedlings of L. sativa were exposed to VOCs emitted by the selected bacteria grown in different media cultures for 7 days. The results showed that the VOCs released from the bacteria elicited an increase in the number of lateral roots, dry weight, root growth and shoot length, depending on the media used. Three Bacillus strains, BCT53, BCT9 and BCT4, were selected according to its their growth inducing capacity. The BCT9 strain elicited the greatest increases in dry weight and primary root length when L. sativa seedlings were subjected to a 10-day experiment. Finally, because acetoin only stimulated root growth, we suggest that other volatiles could be responsible for the growth promotion of L. sativa. In conclusion, our results strongly suggest that bacteria volatiles can be used as growth-inducers as alternative or complementary strategies for application in horticulture species. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L.).

    PubMed

    Bennett, Mark H; Mansfield, John W; Lewis, Mervyn J; Beale, Michael H

    2002-06-01

    Sesquiterpenoid lactones (SLs) from lettuce (Lactuca sativa L.) include constitutive components of latex such as lactucin and the induced phytoalexin, lettucenin A. A redundant primer strategy was used to recover two full length cDNA clones (LTC1 and LTC2) encoding sesquiterpene synthases from a cDNA library derived from seedlings with the red spot disorder, which accumulate phytoalexins. Recombinant enzymes produced from LTC1 and LTC2 in Escherichia coli catalysed the cyclisation of farnesyl diphosphate to germacrene A, potentially an early step in the biosynthesis of SLs. RT-PCR analysis showed LTC1 and LTC2 were expressed constitutively in roots, hypocotyls and true leaves but not in cotyledons. Expression in cotyledons was induced by challenge with the downy mildew pathogen Bremia lactucae in the disease resistant cultivar Diana. Southern hybridisation experiments showed that LTC1 and LTC2 were not part of a multigene family. The germacrene A synthases provide targets for modified expression to generate beneficial modifications to the SL profile in lettuce.

  3. Mutants of downy mildew resistance in Lactuca sativa (lettuce).

    PubMed

    Okubara, P A; Anderson, P A; Ochoa, O E; Michelmore, R W

    1994-07-01

    As part of our investigation of disease resistance in lettuce, we generated mutants that have lost resistance to Bremia lactucae, the casual fungus of downy mildew. Using a rapid and reliable screen, we identified 16 distinct mutants of Latuca sativa that have lost activity of one of four different downy mildew resistance genes (Dm). In all mutants, only a single Dm specificity was affected. Genetic analysis indicated that the lesions segregated as single, recessive mutations at the Dm loci. Dm3 was inactivated in nine of the mutants. One of five Dm 1 mutants was selected from a population of untreated seeds and therefore carried a spontaneous mutation. All other Dm1, Dm3, Dm5/8 and Dm7 mutants were derived from gamma- or fast neutron-irradiated seed. In two separate Dm 1 mutants and in each of the eight Dm3 mutants analyzed, at least one closely linked molecular marker was absent. Also, high molecular weight genomic DNA fragments that hybridized to a tightly linked molecular marker in wild type were either missing entirely or were truncated in two of the Dm3 mutants, providing additional evidence that deletions had occurred in these mutants. Absence of mutations at loci epistatic to the Dm genes suggested that such loci were either members of multigene families, were critical for plant survival, or encoded components of duplicated pathways for resistance; alternatively, the genes determining downy mildew resistance might be limited to the Dm loci.

  4. Mutants of Downy Mildew Resistance in Lactuca Sativa (Lettuce)

    PubMed Central

    Okubara, P. A.; Anderson, P. A.; Ochoa, O. E.; Michelmore, R. W.

    1994-01-01

    As part of our investigation of disease resistance in lettuce, we generated mutants that have lost resistance to Bremia lactucae, the casual fungus of downy mildew. Using a rapid and reliable screen, we identified 16 distinct mutants of Latuca sativa that have lost activity of one of four different downy mildew resistance genes (Dm). In all mutants, only a single Dm specificity was affected. Genetic analysis indicated that the lesions segregated as single, recessive mutations at the Dm loci. Dm3 was inactivated in nine of the mutants. One of five Dm1 mutants was selected from a population of untreated seeds and therefore carried a spontaneous mutation. All other Dm1, Dm3, Dm5/8 and Dm7 mutants were derived from γ- or fast neutron-irradiated seed. In two separate Dm1 mutants and in each of the eight Dm3 mutants analyzed, at least one closely linked molecular marker was absent. Also, high molecular weight genomic DNA fragments that hybridized to a tightly linked molecular marker in wild type were either missing entirely or were truncated in two of the Dm3 mutants, providing additional evidence that deletions had occurred in these mutants. Absence of mutations at loci epistatic to the Dm genes suggested that such loci were either members of multigene families, were critical for plant survival, or encoded components of duplicated pathways for resistance; alternatively, the genes determining downy mildew resistance might be limited to the Dm loci. PMID:8088530

  5. Potentiating Effects of Lactuca sativa on Pentobarbital-Induced Sleep.

    PubMed

    Ghorbani, Ahmad; Rakhshandeh, Hassan; Sadeghnia, Hamid Reza

    2013-01-01

    Traditionally, Lactuca sativa (lettuce) has been recommended for its hypnotic property. The present study was planned to investigate sleep-prolonging effect of this plant. The hydro-alcoholic extract (HAE) of lettuce and its water fraction (WF), ethyl acetate fraction (EAF), and n-butanol fraction (NBF) were administrated (IP) to mice 30 min before the pentobarbital injection. Moreover, both in-vivo and in-vitro toxicity of the extracts were determined. The quality of HAE and NBF was also evaluated using HPLC fingerprint. The HAE prolonged the pentobarbital-induced sleep duration at dose of 400 mg/Kg. The NBF was the only fraction which could increase the sleep duration and decrease sleep latency. The effects of NBF were comparable to those of induced by diazepam. The LD50-value for HAE was found to be 4.8 g/Kg. No neurotoxic effect was observed either by HAE or by its fractions in cultured PC12 neuron-like cells. The results suggest that lettuce potentiates pentobarbital hypnosis without major toxic effect. The main component(s) responsible for this effect is most likely to be non-polar agent(s) which found in NBF of this plant.

  6. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  7. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  8. Potentiating Effects of Lactuca sativa on Pentobarbital-Induced Sleep

    PubMed Central

    Ghorbani, Ahmad; Rakhshandeh, Hassan; Sadeghnia, Hamid Reza

    2013-01-01

    Traditionally, Lactuca sativa (lettuce) has been recommended for its hypnotic property. The present study was planned to investigate sleep-prolonging effect of this plant. The hydro-alcoholic extract (HAE) of lettuce and its water fraction (WF), ethyl acetate fraction (EAF), and n-butanol fraction (NBF) were administrated (IP) to mice 30 min before the pentobarbital injection. Moreover, both in-vivo and in-vitro toxicity of the extracts were determined. The quality of HAE and NBF was also evaluated using HPLC fingerprint. The HAE prolonged the pentobarbital-induced sleep duration at dose of 400 mg/Kg. The NBF was the only fraction which could increase the sleep duration and decrease sleep latency. The effects of NBF were comparable to those of induced by diazepam. The LD50-value for HAE was found to be 4.8 g/Kg. No neurotoxic effect was observed either by HAE or by its fractions in cultured PC12 neuron-like cells. The results suggest that lettuce potentiates pentobarbital hypnosis without major toxic effect. The main component(s) responsible for this effect is most likely to be non-polar agent(s) which found in NBF of this plant. PMID:24250615

  9. Phytotoxicity studies with Lactuca sativa in soil and nutrient solution

    SciTech Connect

    Hulzebos, E.M.; Dirven-van Breemen, E.M.; Dis, W.A. van; Herbold, H.A.; Hoekstra, J.A.; Baerselman, R.; Gestel, C.A.M van ); Adema, D.M.M.; Henzen, L. )

    1993-06-01

    The toxicity of 76 priority pollutants to lettuce (Lactuca sativa) was determined in soil and in nutrient solution. In the first case a static and in the latter a semistatic exposure was established. Volatile and easily degradable compounds had high EC50 values in soil. In nutrient solution, however, several of these compounds were rather toxic. Quantitative structure activity relationships (QSARs) relating EC50 values to log K[sub ow] could be described for the toxicity in nutrient solution. Generally, the toxicity of the compounds increased with increasing lipophilicity. Deviations were caused by reactivity (N-containing compounds, double bonds in compounds), low lipophilicity, and EC50 values close to solubility. To relate toxicity in soil and nutrient solution, soil EC50 values were recalculated to values in the soil pore water using calculated adsorption coefficients. Estimated pore-water EC50 values showed a good correlation with values determined in nutrient solution but were not equal to these values. The differences can be attributed to differences in exposure.

  10. Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice.

    PubMed

    Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan

    2013-01-01

    Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the "open-arm" were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity.

  11. Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice

    PubMed Central

    Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan

    2013-01-01

    Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the “open-arm” were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity. PMID:23554792

  12. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  13. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  14. Evidence for a race-specific resistance factor in some lettuce (Lactuca sativa L.) cultivars previously considered to be universally susceptible to Bremia lactucae regel.

    PubMed

    Crute, I R; Lebeda, A

    1981-05-01

    Previously undetected race-specific resistance to Bremia lactucae (downy mildew) was located in many lettuce cultivars hitherto considered to be universally susceptible to this disease. This resistance factor(s) may also be widely distributed in other cultivars known to carry combinations of already recognised factors R1 to R11. Specific virulence to match this resistance is almost invariably present in pathogen collections. This situation may be either a relic of the evolutionary history of the B. lactucae - L. sativa asssociation or may reflect a rare mutation in B. lactucae for avirulence on all but a few specialised L. sativa genotypes.

  15. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes

    USDA-ARS?s Scientific Manuscript database

    Background: Lettuce (Lactuca sativa L.) is the major vegetable from the group of leafy vegetables. Several types of molecular markers were developed that are effictively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly avai...

  16. Semi-high throughput screening for potential drought-tolerance in lettuce (Lactuca sativa) germplasm collections

    USDA-ARS?s Scientific Manuscript database

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of th...

  17. SSH reveals a linkage between a senescence-associated protease and Verticillium wilt symptom development in lettuce (Lactuca sativa)

    USDA-ARS?s Scientific Manuscript database

    Suppression subtractive hybridization (SSH) was employed to identify lettuce (Lactuca sativa) genes that are differentially expressed in symptomatic leaves infected with Verticillium dahliae. Genes expressed only in symptomatic leaves included those with homology to pathogenesis-related (PR) protei...

  18. Reduced allelopathic inhibition of lettuce (Lactuca sativa) growth caused by velvet bean (Mucuna pruriens) under 3D-clinorotation.

    PubMed

    Tomita-Yokotani, Kaori; Fujii, Yoshiharu; Hashimoto, Hirofumi; Yamashita, Masamichi

    2003-06-01

    Allelopathy between Mucuna pruriens (velvet bean) and Lactuca sativa (lettuce) was studied under 3D-clinorotation. Growth of both roots and shoots of lettuce seedlings was suppressed by the presence of velvet bean. The degree of suppression was less on the clinostat compared to the normal static earth gravity. L-DOPA (L-3, 4-dihydroxyphenylalanine) is known to be a major substance in allelopathy of velvet bean. Amount of L-DOPA diffused out from a sintered filter paper into agar medium was compared between clinorotation and control group, and found no significant difference. It was concluded that some factors related to release, transport, and sensing phenomena of allelopathic substances may be responsible to the new findings in this study.

  19. [Analysis of the mineral elements of Lactuca sativa under the condition of different spectral components].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Wang, Li-Chun; Li, Liang; Chen, Fei

    2013-08-01

    Mineral elements absorption and content of Lactuca sativa under different spectral component conditions were studied by ICP-AES technology. The results showed that: (1) For Lactuca sativa, the average proportion for Ca : Mg : K : Na : P was 5.5 : 2.5 : 2.3 : 1.5 : 1.0, the average proportion for Fe : Mn : Zn : Cu : B was 25.9 : 5.9 : 2.8 : 1.1 : 1.0; (2) The absorptions for K, P, Ca, Mg and B are the largest under the LED treatment R/B = 1 : 2.75, red light from fluorescent lamps and LED can both promote the absorptions of Fe and Cu; (3)The LED treatments exhibiting relatively higher content of mineral elements are R/B = 1 : 2.75 and R/W = 1 : 1 while higher dry matter accumulations are R/B = 1 : 2.75 and B/W = 1 : 1.

  20. [Effect of outer space factors on lettuce seeds (Lactuca sativa) flown on "Kosmos" biosatellites].

    PubMed

    Nevzgodina, L V; Maksimova, E N; Akatov, Iu A; Kaminskaia, E V; Marennyĭ, A M

    1990-01-01

    The effect of cosmic radiation on air-dry lettuce (Lactuca sativa) seeds was investigated. It was attempted to discriminate the effects of cosmic ionizing radiation per se and its combination with solar light radiation. It was found that the number of aberrant cells in the seeds exposed to solar light was smaller than that of cells chielded with 0.0008 to 0.0035 g/cm2 foil which could be attributed to photoreactivity.

  1. Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery.

    PubMed

    Ruhlman, Tracey A

    2014-01-01

    The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa L.). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide an ideal platform for the production of biopharmaceuticals.

  2. In vivo Tracking of Copper-64 Radiolabeled Nanoparticles in Lactuca sativa.

    PubMed

    Davis, Ryan Andrew; Rippner, Devin; Hausner, Sven H; Parikh, Sanjai J; McElrone, Andrew J; Sutcliffe, Julie L

    2017-09-27

    Engineered nanoparticles (NPs) are increasingly used in commercial products including automotive lubricants, clothing, deodorants, sunscreens, and cosmetics and can potentially accumulate in our food supply. Given their size it is difficult to detect and visualize the presence of NPs in environmental samples, including crop plants. New analytical tools are needed to fill the void for detection and visualization of NPs in complex biological and environmental matrices. We aimed to determine whether radiolabeled NPs could be used as a noninvasive, highly sensitive analytical tool to quantitatively track and visualize NP transport and accumulation in vivo in lettuce (Lactuca sativa) and to investigate the effect of NP size on transport and distribution over time using a combination of autoradiography, positron emission tomography (PET)/computed tomography (CT), scanning electron microscopy (SEM), and transition electron microscopy (TEM). Azide functionalized NPs were radiolabeled via a "click" reaction with copper-64 (64Cu)-1,4,7-triazacyclononane triacetic acid (NOTA) azadibenzocyclooctyne (ADIBO) conjugate ([64Cu]-ADIBO-NOTA) via copper-free Huisgen-1,3-dipolar cycloaddition reaction. This yielded radiolabeled [64Cu]-NPs of uniform shape and size with a high radiochemical purity (>99%), specific activity of 83 MBq/mg of NP, and high stability (i.e., no detectable dissolution) over 24 h across a pH range of 5-9. Both PET/CT and autoradiography showed that [64Cu]-NPs entered the lettuce seedling roots and were rapidly transported to the cotyledons with the majority of the accumulation inside the roots. Uptake and transport of intact NPs was size dependent, and in combination with the accumulation within the roots suggests a filtering effect of the plant cell walls at various points along the water transport pathway.

  3. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa.

  4. Light-induced root hair formation in lettuce (Lactuca sativa L. cv. Grand Rapids) roots at low pH is brought by chlorogenic acid synthesis and sugar.

    PubMed

    Narukawa, Megumi; Watanabe, Keiji; Inoue, Yasunori

    2010-11-01

    Previously, we reported that chlorogenic acid (CGA) facilitated root hair formation at pH 4.0 in lettuce (Lactuca sativa L. cv. Grand Rapids). Light was essential for this process. In the present study, we determined relationships between CGA, light, and sugar during root hair formation in lettuce seedlings. The amount of CGA increased with white light in intact seedlings. Exogenously applied CGA restored root hair formation in dark-grown intact seedlings at pH 4.0. However, no root hair formation was induced in decapitated seedlings regardless of light exposure and CGA application. Application of sucrose or glucose induced both root hair formation and CGA synthesis in light-grown decapitated seedlings at pH 4.0. Blue light was the most effective for both root hair formation and CGA synthesis when supplied with sucrose to decapitated seedlings. Addition of sucrose and CGA together induced root hair formation at pH 4.0 in dark-grown decapitated seedlings. Results suggest that light induced CGA synthesis from sugar in the roots. Sugar was also required for root hair formation other than starting material of CGA synthesis. In addition, an unknown low pH-induced factor was essential for lettuce root hair formation.

  5. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.

    PubMed

    Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin

    2016-04-01

    Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of

  6. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa).

    PubMed

    Rooney, Alejandro P; Dunlap, Christopher A; Flor-Weiler, Lina B

    2016-09-01

    Strain NRRL B-41902T and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, Gram-stain-negative rods that formed cocci in late stationary phase. 16S rRNA gene sequence analysis showed that strain NRRL B-41902T was most closely related to species within the genera Acinetobacter, and that a grouping of it and the three other closely related strains was most closely related to the type strain of Acinetobacter pittii, which was also confirmed through a phylogenomic analysis. Moreover, in silico DNA-DNA hybridization analysis revealed a substantial amount of genomic divergence (39.1 %) between strain NRRL B-41902T and the type strain of A. pittii, which is expected if the strains represent distinct species. Further phenotypic analysis revealed that strain NRRL B-41902T was able to utilize a combination of l-serine, citraconic acid and citramalic acid, which differentiated it from other, closely related Acinetobacter species. Therefore, strain NRRL B-41902T (=CCUG 68785T) is proposed as the type strain of a novel species, Acinetobacter lactucae sp. nov.

  7. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes

    PubMed Central

    2013-01-01

    Background Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Results Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. Conclusions The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes. PMID:23339733

  8. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.

    PubMed

    Rauscher, Gilda; Simko, Ivan

    2013-01-22

    Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes.

  9. Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.).

    PubMed

    Hamdi, Helmi; De La Torre-Roche, Roberto; Hawthorne, Joseph; White, Jason C

    2015-03-01

    The effect of non-functionalized and amino-functionalized multiwall carbon nanotube (CNT) exposure, as well as the impact of CNT presence on coexistent pesticide accumulation, was investigated in lettuce (Lactuca sativa L.). Lettuce seeds were sown directly into CNT-amended vermiculite (1000 mg L(-1)) to monitor phytotoxicity during germination and growth. During growth, lettuce seedlings were subsequently exposed to chlordane (cis-chlordane [CS], trans-chlordane [TC] and trans-nonachlor [TN]) and p,p'-DDE (all at 100 ng/L) in the irrigation solution for a 19-d growth period. CNT exposure did not significantly influence seed germination (82-96%) or plant growth. Similarly, pesticide exposure had no impact on plant growth, total pigment production or tissue lipid peroxidation. After 19 d, the root content of total chlordane and p,p'-DDE was 390 and 73.8 µg g(-1), respectively; in plants not exposed to CNTs, the shoot levels were 1.58 and 0.40 µg g(-1), respectively. The presence and type of CNT significantly influenced pesticide availability to lettuce seedlings. Non-functionalized CNT decreased the root and shoot pesticide content by 88% and 78%, respectively, but amino-functionalized CNT effects were significantly more modest, with decreases of 57% in the roots and 23% in the shoots, respectively. The presence of humic acid completely reversed the reduced accumulation of pesticides induced by amino-functionalized CNT, likely due to strong competition over adsorption sites on the nanomaterial (NM). These findings have implications for food safety and for the use of engineered NMs in agriculture, especially with leafy vegetables.

  10. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L.

    PubMed

    Silveira, Graciele Lurdes; Lima, Maria Gabriela Franco; Reis, Gabriela Barreto Dos; Palmieri, Marcel José; Andrade-Vieria, Larissa Fonseca

    2017-03-21

    Studies that help understand the mechanisms of action of environmental pollutants are extremely important in environmental toxicology. In this context, assays using plants as models stand out for their simplicity and low performance cost. Among the plants used for this purpose, Allium cepa L. is the model most commonly applied for cytogenotoxic tests, while Lactuca sativa L., already widely used in phytotoxic investigations, has been gaining prominence in cytotoxic analyses. The present study aimed to compare the responses of A. cepa and L. sativa via macroscopic (root growth) and microscopic analyses (cell cycle and DNA fragmentation via TdT-mediated deoxy-uracil nick and labeling (TUNEL) and comet assays) after exposure of their roots to environmental pollutants with known cytogenotoxic mechanisms. Both species presented sensitive and efficient response to the applied tests after exposure to the DNA-alkylating agent Methyl Methanesulfonate (MMS), the heavy metal Cadmium, the aluminum industry waste Spent Potliner (SPL) and the herbicide Atrazine. However, they differed regarding the responses to the evaluated endpoints. Overall, A. cepa was more efficient in detecting clastogenic changes, arising from DNA breakage, while L. sativa rather detected aneugenic alterations, related to chromosome segregation in mitosis. In the tests applied to verify DNA fragmentation (comet and TUNEL assays), A. cepa presented higher sensitivity. In conclusion, both models are efficient to evaluate toxicological risks of environmental pollutants.

  11. Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency.

    PubMed

    Navarro-León, Eloy; Albacete, Alfonso; Torre-González, Alejandro de la; Ruiz, Juan M; Blasco, Begoña

    2016-10-01

    Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants.

  12. Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.).

    PubMed

    Simko, Ivan

    2009-01-01

    A set of 61 simple sequence repeat (SSR) markers was developed from the 19,523 Lactuca sativa and Lactuca serriola unigenes. Approximately 4.5% of the unigenes contained a perfect SSR at least 20 bp long, corresponding to roughly 1 perfect SSR per 14.7 kb. Marker polymorphism was tested on a set comprising 96 accessions representing all major horticultural types and 3 wild species (L. serriola, Lactuca saligna, and Lactuca virosa). Both the average marker heterozygosity (UHe = 0.32) and the number of different alleles per locus (Na = 3.56) were significantly reduced in expressed sequence tag (EST)-SSRs as compared with anonymous SSRs (UHe = 0.59, Na = 5.53). Marker transfer rate to the wild species corresponded to the decreasing sexual compatibility with L. sativa and was higher for EST-SSRs (100% L. serriola, 87% L. saligna, and 75% L. virosa) than for anonymous SSRs (93%, 66%, and 42%, respectively). Assessment of population structure among 90 L. sativa cultivars with SSRs was in good agreement with classification into the horticultural types. The average marker heterozygosity was smallest in iceberg (0.097), Latin (0.140), and romaine-type (0.151) cultivars while highest in leaf (green leaf 0.208 and red leaf 0.240) lettuces. The level of marker heterozygosity is in accord with morphological variability observed in different horticultural types.

  13. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa).

    PubMed

    Hong, Jie; Rico, Cyren M; Zhao, Lijuan; Adeleye, Adeyemi S; Keller, Arturo A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 days-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg L(-1). At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species.

  14. Toxic Effects of Copper-based Nanoparticles or Compounds to Lettuce (Lactuca sativa) and Alfalfa (Medicago sativa)

    PubMed Central

    Hong, Jie; Rico, Cyren; Zhao, Lijuan; Adeleye, Adeyemi S.; Keller, Arturo A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2014-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 day-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg/L. At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species. PMID:25474419

  15. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    NASA Technical Reports Server (NTRS)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  16. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    NASA Technical Reports Server (NTRS)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  17. Plastid transformation in lettuce (Lactuca sativa L.) by polyethylene glycol treatment of protoplasts.

    PubMed

    Lelivelt, Cilia L C; van Dun, Kees M P; de Snoo, C Bastiaan; McCabe, Matthew S; Hogg, Bridget V; Nugent, Jacqueline M

    2014-01-01

    A detailed protocol for PEG-mediated plastid transformation of Lactuca sativa cv. Flora, using leaf protoplasts, is described. Successful plastid transformation using protoplasts requires a large number of viable cells, high plating densities, and an efficient regeneration system. Transformation was achieved using a vector that targets genes to the trnI/trnA intergenic region of the lettuce plastid genome. The aadA gene, encoding an adenylyltransferase enzyme that confers spectinomycin resistance, was used as a selectable marker. With the current method, the expected transformation frequency is 1-2 spectinomycin-resistant cell lines per 10(6) viable protoplasts. Fertile, diploid, homoplasmic, plastid-transformed lines were obtained. Transmission of the plastid-encoded transgene to the T1 generation was demonstrated.

  18. Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa.

    PubMed

    Young, Brian Jonathan; Riera, Nicolás Iván; Beily, María Eugenia; Bres, Patricia Alina; Crespo, Diana Cristina; Ronco, Alicia Estela

    2012-02-01

    Effluents generated during the process of anaerobic digestion should be treated before their disposal into the environment. The aim of this study was evaluating the effectiveness of the effluent treatment system from an anaerobic bioreactor, assessing the toxicity reduction with the Lactuca sativa seed germination and root elongation inhibition test. Three sampling points were selected along the effluent treatment system: inflow into the first treatment pond, outflow from the third pond and recirculated flow to the bioreactor. Effluent dilutions tested for each sampling point were 25% and 50% (v/v), undiluted sample and controls. The pH, conductivity, temperature, dissolved oxygen, BOD₅ and COD were measured. The decrease in the organic and inorganic loads was correlated with a reduction in the phytotoxicity. The use of the seed toxicity test allows evaluating the quality and effectiveness of the studied effluent treatment system.

  19. Transfer and expression of the rabbit defensin NP-1 gene in lettuce (Lactuca sativa).

    PubMed

    Song, D; Xiong, X; Tu, W F; Yao, W; Liang, H W; Chen, F J; He, Z Q

    2017-01-23

    Lettuce (Lactuca sativa L.) is an annual plant of the daisy family, Asteraceae, with high food and medicinal value. However, the crop is susceptible to several viruses that are transmitted by aphids and is highly vulnerable to post-harvest diseases, as well as insect and mammal pests and fungal and bacterial diseases. Here, the rabbit defensin gene NP-1 was transferred into lettuce by Agrobacterium-mediated transformation to obtain a broad-spectrum disease-resistant lettuce. Transgenic lettuce plants were selected and regenerated on selective media. The presence of the NP-1 gene in these plants was confirmed by western blot analyses. Resistance tests revealed native defensin NP-1 expression conferred partial resistance to Bacillus subtilis and Pseudomonas aeruginosa, which suggests new possibilities for lettuce disease resistance.

  20. RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea.

    PubMed

    De Cremer, Kaat; Mathys, Janick; Vos, Christine; Froenicke, Lutz; Michelmore, Richard W; Cammue, Bruno P A; De Coninck, Barbara

    2013-11-01

    The fungal pathogen Botrytis cinerea establishes a necrotrophic interaction with its host plants, including lettuce (Lactuca sativa), causing it to wilt, collapse and eventually dry up and die, which results in serious economic losses. Global expression profiling using RNAseq and the newly sequenced lettuce genome identified a complex network of genes involved in the lettuce-B. cinerea interaction. The observed high number of differentially expressed genes allowed us to classify them according to the biological pathways in which they are implicated, generating a holistic picture. Most pronounced were the induction of the phenylpropanoid pathway and terpenoid biosynthesis, whereas photosynthesis was globally down-regulated at 48 h post-inoculation. Large-scale comparison with data available on the interaction of B. cinerea with the model plant Arabidopsis thaliana revealed both general and species-specific responses to infection with this pathogen. Surprisingly, expression analysis of selected genes could not detect significant systemic transcriptional alterations in lettuce leaves distant from the inoculation site. Additionally, we assessed the response of these lettuce genes to a biotrophic pathogen, Bremia lactucae, revealing that similar pathways are induced during compatible interactions of lettuce with necrotrophic and biotrophic pathogens. © 2013 John Wiley & Sons Ltd.

  1. An assessment of the role of ethylene in mediating lettuce (Lactuca sativa) root growth at high temperatures.

    PubMed

    Qin, L; He, J; Lee, S K; Dodd, I C

    2007-01-01

    Growth of temperate lettuce (Lactuca sativa) plants aeroponically in tropical greenhouses under ambient root-zone temperatures (A-RZTs) exposes roots to temperatures of up to 40 degrees C during the middle of the day, and severely limits root and shoot growth. The role of ethylene in inhibiting growth was investigated with just-germinated (24-h-old) seedlings in vitro, and 10-d-old plants grown aeroponically. Compared with seedlings maintained at 20 degrees C, root elongation in vitro was inhibited by 39% and root diameter increased by 25% under a temperature regime (38 degrees C/24 degrees C for 7 h/17 h) that simulated A-RZT in the greenhouse. The effects on root elongation were partially alleviated by supplying the ethylene biosynthesis inhibitors aminooxyacetic acid (100-500 microM) or aminoisobutyric acid (5-100 microM) to the seedlings. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to seedlings grown at 20 degrees C mimicked the high temperature effects on root elongation (1 microM) and root diameter (1 mM). Compared with plants grown at a constant 20 degrees C root-zone temperature, A-RZT plants showed decreased stomatal conductance, leaf relative water content, photosynthetic CO(2) assimilation, shoot and root biomass, total root length, the number of root tips, and root surface area, but increased average root diameter. Addition of 10 microM ACC to the nutrient solution of plants grown at a constant 20 degrees C root-zone temperature mimicked the effects of A-RZT on these parameters but did not influence relative water content. Addition of 30 microM aminoisobutyric acid or 100 microM aminooxyacetic acid to the nutrient solution of A-RZT plants increased stomatal conductance and relative water content and decreased average root diameter, but had no effect on other root parameters or root and shoot biomass or photosynthetic CO(2) assimilation. Although ethylene is important in regulating root morphology and elongation at A

  2. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa).

    PubMed

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham Jj; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  3. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa)

    PubMed Central

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham JJ; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  4. Role of Ulva lactuca Extract in Alleviation of Salinity Stress on Wheat Seedlings

    PubMed Central

    Ibrahim, Wael M.; Ali, Refaat M.; Hemida, Khaulood A.; Sayed, Makram A.

    2014-01-01

    Seaweeds are potentially excellent sources of highly bioactive materials that could represent useful leads in the alleviation of salinity stress. The effects of presoaking wheat grains in water extract of Ulva lactuca on growth, some enzymatic activities, and protein pattern of salinized plants were investigated in this study. Algal presoaking of grains demonstrated a highly significant enhancement in the percentage of seed germination and growth parameters. The activity of superoxide dismutase (SOD) and catalase (CAT) increased with increasing the algal extract concentration while activity of ascorbate peroxidase (APX) and glutathione reductase (GR) was decreased with increasing concentration of algal extract more than 1% (w/v). The protein pattern of wheat seedling showed 12 newly formed bands as result of algal extract treatments compared with control. The bioactive components in U. lactuca extract such as ascorbic acid, betaine, glutathione, and proline could potentially participate in the alleviation of salinity stress. Therefore, algal presoaking is proved to be an effective technique to improve the growth of wheat seedlings under salt stress conditions. PMID:25436231

  5. Acclimation to UV-B radiation and visible light in Lactuca sativa involves up-regulation of photosynthetic performance and orchestration of metabolome-wide responses.

    PubMed

    Wargent, J J; Nelson, B C W; McGhie, T K; Barnes, P W

    2015-05-01

    UV-B radiation is often viewed as a source of stress for higher plants. In particular, photosynthetic function has been described as a common target for UV-B impairment; yet as our understanding of UV-B photomorphogenesis increases, there are opportunities to expand the emerging paradigm of regulatory UV response. Lactuca sativa is an important dietary crop species and is often subjected to rapid sunlight exposure at field transfer. Acclimation to UV-B and visible light conditions in L. sativa was dissected using gas exchange and chlorophyll fluorescence measurements, in addition to non-destructive assessments of UV epidermal shielding (SUV ). After UV-B treatment, seedlings were subjected to wide-range metabolomic analysis using liquid chromatography hybrid quadrupole time-of-flight high-resolution mass spectrometry (LC-QTOF-HRMS). During the acclimation period, net photosynthetic rate increased in UV-treated plants, epidermal UV shielding increased in both subsets of plants transferred to the acclimatory conditions (UV+/UV- plants) and Fv /Fm declined slightly in UV+/UV- plants. Metabolomic analysis revealed that a key group of secondary compounds was up-regulated by higher light conditions, yet several of these compounds were elevated further by UV-B radiation. In conclusion, acclimation to UV-B radiation involves co-protection from the effects of visible light, and responses to UV-B radiation at a photosynthetic level may not be consistently viewed as damaging to plant development.

  6. Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics.

    PubMed

    Bito, Tomohiro; Ohishi, Noriharu; Hatanaka, Yuka; Takenaka, Shigeo; Nishihara, Eiji; Yabuta, Yukinori; Watanabe, Fumio

    2013-04-24

    When lettuces (Lactuca sativa L.) grown for 30 days in hydroponic culture were treated with various concentrations of cyanocobalamin for 24 h, its content in their leaves increased significantly from nondetectable to 164.6 ± 74.7 ng/g fresh weight. This finding indicated that consumption of only two or three of these fresh leaves is sufficient to meet the Recommended Dietary Allowance for adults of 2.4 μg/day. Analyses using a cobalamin-dependent Escherichia coli 215 bioautogram and LC/ESI-MS/MS demonstrated that the cyanocobalamin absorbed from the nutrient solutions by the leaves did not alter any other compounds such as coenzymes and inactive corrinoids. Gel filtration indicated that most (86%) of the cyanocobalamin in the leaves was recovered in the free cyanocobalamin fractions. These results indicated that cyanocobalamin-enriched lettuce leaves would be an excellent source of free cyanocobalamin, particularly for strict vegetarians or elderly people with food-bound cobalamin malabsorption.

  7. Combination of minimal processing and irradiation to improve the microbiological safety of lettuce ( Lactuca sativa, L.)

    NASA Astrophysics Data System (ADS)

    Goularte, L.; Martins, C. G.; Morales-Aizpurúa, I. C.; Destro, M. T.; Franco, B. D. G. M.; Vizeu, D. M.; Hutzler, B. W.; Landgraf, M.

    2004-09-01

    The feasibility of gamma radiation in combination with minimal processing (MP) to reduce the number of Salmonella spp. and Escherichia coli O157:H7 in iceberg lettuce ( Lactuca sativa, L.) (shredded) was studied in order to increase the safety of the product. The reduction of the microbial population during the processing, the D10-values for Salmonella spp. and E. coli O157:H7 inoculated on shredded iceberg lettuce as well as the sensory evaluation of the irradiated product were evaluated. The immersion in chlorine (200 ppm) reduced coliform and aerobic mesophilic microorganisms by 0.9 and 2.7 log, respectively. D-values varied from 0.16 to 0.23 kGy for Salmonella spp. and from 0.11 to 0.12 kGy for E. coli O157:H7. Minimally processed iceberg lettuce exposed to 0.9 kGy does not show any change in sensory attributes. However, the texture of the vegetable was affected during the exposition to 1.1 kGy. The exposition of MP iceberg lettuce to 0.7 kGy reduced the population of Salmonella spp. by 4.0 log and E. coli by 6.8 log without impairing the sensory attributes. The combination of minimal process and gamma radiation to improve the safety of iceberg lettuce is feasible if good hygiene practices begins at farm stage.

  8. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections.

    PubMed

    Knepper, Caleb; Mou, Beiquan

    2015-04-17

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits.

  9. Ecotoxicological impact of two soil remediation treatments in Lactuca sativa seeds.

    PubMed

    Rede, Diana; Santos, Lúcia H M L M; Ramos, Sandra; Oliva-Teles, Filipe; Antão, Cristina; Sousa, Susana R; Delerue-Matos, Cristina

    2016-09-01

    Pharmaceuticals have been identified as environmental emerging pollutants and are present in different compartments, including soils. Chemical remediation showed to be a good and suitable approach for soil remediation, though the knowledge in their impact for terrestrial organisms is still limited. Therefore, in this work, two different chemical remediation treatments (Fenton oxidation and nanoremediation) were applied to a soil contaminated with an environmental representative concentration of ibuprofen (3 ng g(-1)). The phytotoxic impact of a traditional soil remediation treatment (Fenton oxidation) and of a new and more sustainable approach for soil remediation (nanoremediation using green nano-scale zero-valent iron nanoparticles (nZVIs)) was evaluated in Lactuca sativa seeds. Percentage of seed germination, root elongation, shoot length and leaf length were considered as endpoints to assess the possible acute phytotoxicity of the soil remediation treatments as well as of the ibuprofen contaminated soil. Both chemical remediation treatments showed to have a negative impact in the germination and development of lettuce seeds, exhibiting a reduction up to 45% in the percentage of seed germination and a decrease around 80% in root elongation comparatively to the contaminated soil. These results indicate that chemical soil remediation treatments could be more prejudicial for terrestrial organisms than contaminated soils.

  10. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays.

    PubMed

    Andrade-Vieira, Larissa F; Botelho, Carolina M; Laviola, Bruno G; Palmieri, Marcel J; Praça-Fontes, Milene M

    2014-03-01

    Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.

  11. Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water.

    PubMed

    Caporale, Antonio G; Sommella, Alessia; Lorito, Matteo; Lombardi, Nadia; Azam, Shah M G G; Pigna, Massimo; Ruocco, Michelina

    2014-09-15

    The influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.) irrigated with As-contaminated water, and their effect on the uptake and accumulation of the contaminant in the plant roots and leaves, were studied. Accumulation of this non-essential element occurred mainly into the root system and reduced both biomass development and net photosynthesis rate (while altering the plant P status). Plant growth-promoting fungi (PGPF) of both Trichoderma species alleviated, at least in part, the phytotoxicity of As, essentially by decreasing its accumulation in the tissues and enhancing plant growth, P status and net photosynthesis rate. Our results indicate that inoculation of lettuce with selected Trichoderma strains may be helpful, beside the classical biocontrol application, in alleviating abiotic stresses such as that caused by irrigation with As-contaminated water, and in reducing the concentration of this metalloid in the edible part of the plant.

  12. Phytotoxicity of 15 common pharmaceuticals on the germination of Lactuca sativa and photosynthesis of Chlamydomonas reinhardtii.

    PubMed

    Pino, Ma Rosa; Muñiz, Selene; Val, Jonatan; Navarro, Enrique

    2016-11-01

    Pharmaceuticals reach terrestrial environments through the application of treated wastewaters and biosolids to agricultural soils. We have investigated the toxicity of 15 common pharmaceuticals, classified as nonsteroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents, β-blockers and antibiotics, in two photosynthetic organisms. Twelve pharmaceuticals caused inhibitory effects on the radicle and hypocotyl elongation of Lactuca sativa seeds. The EC50 values obtained were in the range of 170-5656 mg L(-1) in the case of the radicle and 188-4558 mg L(-1) for the hypocotyl. Propranolol was the most toxic drug for both root and hypocotyl elongation, followed by the NSAIDs, then gemfibrozil and tetracycline. Other effects, such as root necrosis, inhibition of root growth and curly hairs, were detected. However, even at the highest concentrations tested (3000 mg L(-1)), seed germination was not affected. NSAIDs decreased the photosynthetic yield of Chlamydomonas reinhardtii, but only salicylic acid showed EC50 values below 1000 mg L(-1). The first effects detected at low concentrations, together with the concentrations found in environmental samples, indicate that the use of biosolids and wastewaters containing pharmaceuticals should be regulated and their compositions assessed in order to prevent medium- and long-term impacts on agricultural soils and crops.

  13. [The dynamic of calcium distribution during megasporegenesis of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi-Lan; Liu, Ru-Shi; Xie, Chao-Tian; Yang, Yan-Hong; Ge, Li-Li; Tian, Hui-Qiao

    2005-08-01

    Potassium antimonite was used to deposit calcium in the young ovule of lettuce (Lactuca sativa L.) at megasporogenesis stage to study the relationship between calcium and megaspore degeneration. At the megaspore mother cell stage, few calcium granules were formed in the cell (Plate I-1, 2). After meiosis of megaspore mother cell and forming an arrayed tetrad in a line (Plate I-3), three megaspores degenerated one by one from the micropyle end. In the process of degeneration, the numbers of calcium granules decreased in the three megaspores. After the first megaspore degenerated, the number of calcium granules decreased in the second megaspore, which began to degenerate (Plate II-7, 8). The third megaspore also had its number of calcium granules diminishing before it degenerated (Plate III-13, 14). The fourth megaspore always accumulated many calcium granules in the cytoplasm during its development (Plate IV-17, 18) and finally becomes functional one that will develop into an embryo sac (Plate IV-20). Megaspore degeneration is a process of programmed cell death which may be closely related with change in calcium content: when a megaspore of tetrad decreases calcium content the cell begins to degenerate, and when calcium increases in the cell, it will continue to develop into a functional megaspore. This is the first report about calcium distribution in megaspores of a tetrad during megasporogenesis in higher plants and will open a door to study the physiological function of calcium in megasporogenesis.

  14. A rapid and efficient in vitro regeneration system for lettuce (Lactuca sativa L.).

    PubMed

    Armas, Isabel; Pogrebnyak, Natalia; Raskin, Ilya

    2017-01-01

    Successful biotechnological improvement of crop plants requires a reliable and efficient in vitro regeneration system. Lettuce (Lactuca sativa L.), one the most important vegetable crops worldwide, is strongly genotype-dependent in terms of regeneration capacity, limiting the potential for biotechnological improvement of cultivars which show recalcitrance under currently available protocols. The effect of different nutrient sources, plant hormone combinations and activated charcoal supplementation on shoot induction efficiency was evaluated on the cultivar 'RSL NFR', which had previously shown poor regeneration efficiency. Multiple shoot organogenesis from cotyledon explants was recorded at the highest frequency and speed on Murashige and Skoog regeneration medium supplemented with 200 mg/l of activated charcoal, 3% sucrose, 10 mg/l benzylaminopurine and 0.5 mg/l naphthaleneacetic acid, which induced shoots through direct regeneration in 90.8 ± 7.9% of explants. High shoot induction efficiency was also observed, albeit not quantified, when using this medium on some other cultivars. This activated charcoal-containing regeneration medium might offer a rapid and efficient option for direct shoot induction in some lettuce genotypes that do not respond well to common lettuce regeneration protocols. This is also the first report of the effect of activated charcoal in lettuce tissue culture.

  15. Zn-biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable Lactuca sativa L.

    PubMed

    Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña

    2017-04-01

    Excessive rates of nitrogen (N) fertilizers may result in elevated concentrations of nitrate (NO3(-) ) in plants. Considering that many programs of biofortification with trace elements are being performed, it has become important to study how the application of these elements affects plant physiology and, particularly, N utilization in leaf crops. The main objective of the present study was to determine whether the NO3(-) accumulation and the nitrogen use efficiency was affected by the application of different doses of Zn in Lactuca sativa plants. Zn doses in the range 80-100 µmol L(-1) produced an increase in Zn concentration provoking a decrease of NO3(-) concentration and increase of the nitrate reductase, glutamine synthetase and aspartate aminotransferase activities, as well as the photorespiration processes. As result, we observed an increase in reduced N, total N concentration and N utilization efficiency. Consequently, at a dose of 80 µmol L(-1) of Zn, the amino acid concentration increased significantly. Adequate Zn fertilization is an important critical player in lettuce, especially at a dose of 80 µmol L(-1) of Zn, because it could result in an increase in the Zn concentration, a reduction of NO3(-) levels and an increase the concentration of essential amino acids, with all of them having beneficial properties for the human diet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Semi-High Throughput Screening for Potential Drought-tolerance in Lettuce (Lactuca sativa) Germplasm Collections

    PubMed Central

    Knepper, Caleb; Mou, Beiquan

    2015-01-01

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits. PMID:25938876

  17. Human Norovirus and Its Surrogates Induce Plant Immune Response in Arabidopsis thaliana and Lactuca sativa.

    PubMed

    Markland, Sarah M; Bais, Harsh; Kniel, Kalmia E

    2017-08-01

    Human norovirus is the leading cause of foodborne illness worldwide with the majority of outbreaks linked to fresh produce and leafy greens. It is essential that we thoroughly understand the type of relationship and interactions that take place between plants and human norovirus to better utilize control strategies to reduce transmission of norovirus in the field onto plants harvested for human consumption. In this study the expression of gene markers for the salicylic acid (SA) and jasmonic acid (JA) plant defense pathways was measured and compared in romaine lettuce (Lactuca sativa) and Arabidopsis thaliana Col-0 plants that were inoculated with Murine Norovirus-1, Tulane Virus, human norovirus GII.4, or Hank's Balanced Salt Solution (control). Genes involving both the SA and JA pathways were expressed in both romaine lettuce and A. thaliana for all three viruses, as well as controls. Studies, including gene expression of SA- and JA-deficient A. thaliana mutant lines, suggest that the JA pathway is more likely involved in the plant immune response to human norovirus. This research provides the first pieces of information regarding how foodborne viruses interact with plants in the preharvest environment.

  18. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.

    PubMed

    Kanamoto, Hirosuke; Yamashita, Atsushi; Asao, Hiroshi; Okumura, Satoru; Takase, Hisabumi; Hattori, Masahira; Yokota, Akiho; Tomizawa, Ken-Ichi

    2006-04-01

    Transgenic plastids offer unique advantages in plant biotechnology, including high-level foreign protein expression. However, broad application of plastid genome engineering in biotechnology has been largely hampered by the lack of plastid transformation systems for major crops. Here we describe the development of a plastid transformation system for lettuce, Lactuca sativa L. cv. Cisco. The transforming DNA carries a spectinomycin-resistance gene (aadA) under the control of lettuce chloroplast regulatory expression elements, flanked by two adjacent lettuce plastid genome sequences allowing its targeted insertion between the rbcL and accD genes. On average, we obtained 1 transplastomic lettuce plant per bombardment. We show that lettuce leaf chloroplasts can express transgene-encoded GFP to approximately 36% of the total soluble protein. All transplastomic T0 plants were fertile and the T1 progeny uniformly showed stability of the transgene in the chloroplast genome. This system will open up new possibilities for the efficient production of edible vaccines, pharmaceuticals, and antibodies in plants.

  19. Cell-Wall Autohydrolysis in Isolated Endosperms of Lettuce (Lactuca sativa L.).

    PubMed Central

    Dutta, S.; Bradford, K. J.; Nevins, D. J.

    1994-01-01

    Cell walls prepared from the endosperm tissue of hydrated lettuce (Lactuca sativa L.) seeds undergo autohydrolysis. Release of carbohydrates is most rapid (0.4-0.6 [mu]g per endosperm) within the 1st h of incubation in buffer, but substantial autolysis is sustained for at least 10 h. Autolysis is temperature sensitive, and the optimum rate occurs at pH 5. The rate of autolysis increases markedly in the period just prior to radicle emergence. The cell-wall polysaccharide composition in micropylar and lateral endosperm regions differs significantly; the micropylar walls are rich in arabinose and glucose with substantially lower amounts of mannose. Although walls prepared from both micropylar and lateral regions undergo autolysis, micropylar walls release carbohydrates at a higher rate than lateral walls. Autolysis products elute as large polymers when subjected to size-exclusion chromatography, suggesting that endo-enzyme activity is responsible for release of fragments containing arabinose, galactose, mannose, and uronic acids. Arabinose, galactose, mannose, and glucose are also released as monomers. As a function of time, the ratio of polymers to monomers decreases, indicating that exo-enzyme activity is also present. Thermoinhibition or treatment with abscisic acid suppresses germination and reduces the rates of autolysis of walls isolated from the endosperm by about 25%. Treatments that alleviate thermoinhibition (kinetin and gibberellic acid) increase the rates of autolysis by 20 to 30% when compared to thermoinhibited controls. PMID:12232113

  20. Role of Ethylene in Lactuca sativa cv `Grand Rapids' Seed Germination

    PubMed Central

    Abeles, Fred B.

    1986-01-01

    Promotion of thermoinhibited (30°C) lettuce (Lactuca sativa cv `Grand Rapids') seed germination by ethylene is similar to the action of the gas in other hormonal systems. Ethylene was more active than propylene and ethane was inactive. An inhibitor of ethylene production, aminoethoxy-vinylglycine, reduced ethylene evolution and germination. Inhibitors of ethylene action such as, 5-methyl-7-chloro-4-ethoxycarbonylmethoxy-2,1,3-benzothiadiazole, 2,5-norbornadiene, and silver thiosulfate inhibited germination and the effect was reversed by the addition of ethylene to the gas phase. The action of ethylene appears to be due to the promotion of radial cell expansion in the embryonic hypocotyl. The action of N6-benzyladenine and fusiccocin, which also overcome thermoinhibition, appears to be due to a promotion of hypocotyl elongation. None of the germination promoters studied appeared to function by lowering the mechanical resistance of the endosperm to embryonic growth. Data presented here are consistent with the view that ethylene plays a role in lettuce seed germination under thermoinhibited and normal conditions. PMID:16664902

  1. Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.).

    PubMed

    Kim, Hyun-Jin; Fonseca, Jorge M; Choi, Ju-Hee; Kubota, Chieri

    2007-12-12

    The effect of exogenous methyl jasmonate (MeJA) on antioxidative compounds of romaine lettuce ( Lactuca sativa L.) was investigated. Lettuces were treated with various MeJA solutions (0, 0.05, 0.1, 0.25, and 0.5 mM) before harvest. Total phenolic compounds content and antioxidant capacity of romaine lettuce significantly increased after MeJA treatments (0.1, 0.25, and 0.5 mM). The total content of phenolic compounds of the romaine lettuce treated with 0.5 mM MeJA (31.6 microg of gallic acid equivalents/mg of dry weight) was 35% higher than that of the control. The increase in phenolic compound content was attributed to a caffeic acid derivative and an unknown phenolic compound, which also contributed to increased antioxidant capacity. The induction of phenylalanine ammonia-lyase (PAL) activity by the MeJA treatment indicated that phenolic compounds were altered due to the activation of the phenylpropandoid pathway. Total content of carotenoids, including lutein and beta-carotene, of the MeJA-treated lettuce did not change after 8 days of treatment, whereas the content of the control without MeJA decreased after 8 days. This research indicated that preharvest application of MeJA could increase the nutritional value of romaine lettuce under determined conditions discussed in this work.

  2. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.).

    PubMed

    Kim, Hyun-Jin; Fonseca, Jorge M; Choi, Ju-Hee; Kubota, Chieri; Kwon, Dae Young

    2008-05-28

    The influence of salinity stress on the growth, appearance, and nutritional compounds, especially phenolic compounds and carotenoids, of romaine lettuce (Lactuca sativa L.), a low salt tolerant plant, was studied. The dry weight, height, and color of the lettuce plants were significantly changed by long-term irrigation (15 days) with higher NaCl concentration (i.e., >100 mM). However, no significant differences were observed in the growth and appearance among the control, all short-term treatments (2 days; 50, 100, 500, and 1000 mM), and long-term irrigation with low salt concentration. Moreover, in romaine lettuce treated with long-term irrigation with 5 mM NaCl, the total carotenoid content increased without color change, and the contents of major carotenoids in romaine lettuce, lutein and beta-carotene, increased 37 and 80%, respectively. No differences were observed in lutein and beta-carotene contents in short-term-treated lettuce. The phenolic content of the romaine lettuce declined with short-term salt irrigation, whereas there were no significant differences among treatments exposed to long-term irrigation. This research indicates that long-term irrigation with relatively low salt concentration, rather than short-term irrigation with high salt concentration, can increase carotenoid content in romaine lettuce without causing a tradeoff in yield or visual quality.

  3. An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa)

    PubMed Central

    Muñoz-Huerta, Rafael F.; de J. Ortiz-Melendez, Antonio; Guevara-Gonzalez, Ramon G.; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M.; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V.

    2014-01-01

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status. PMID:25057134

  4. An analysis of electrical impedance measurements applied for plant N status estimation in lettuce (Lactuca sativa).

    PubMed

    Muñoz-Huerta, Rafael F; Ortiz-Melendez, Antonio de J; Guevara-Gonzalez, Ramon G; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V

    2014-06-27

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status.

  5. The nitrogen and nitrate economy of butterhead lettuce (Lactuca sativa var capitata L).

    PubMed

    Broadley, Martin R; Seginer, Ido; Burns, Amanda; Escobar-Gutiérrez, Abraham J; Burns, Ian G; White, Philip J

    2003-09-01

    Quantifying and simulating the relationships between crop growth, total-nitrogen (total-N) and nitrate-N (NO3--N) concentration can improve crop nutritional husbandry. In this study, the relationship between shoot relative growth rate (RGR) and shoot total-N, organic-N and NO3--N concentration of hydroponically-grown lettuce (Lactuca sativa var. capitata L. cv. Kennedy) was described and simulated. Plants were grown hydroponically for up to 74 d. Nitrogen was supplied throughout (control; T1), or removed at 35 d (T2) and 54 d (T3), respectively, after sowing. The organic-N and NO3--N concentration declined in the shoots of control plants with growth, until commercial maturity approached when organic-N and NO3--N concentration increased. There were sub-linear relationships between both total-N and organic-N concentration, and shoot RGR, in the N-limited treatments, i.e. shoot RGR approached an asymptote at high shoot N concentration. The proportional effects of total-N and organic-N concentration on shoot RGR were independent of plant age. A dynamic simulation model ('Nicolet'), derived previously under different conditions, was used to simulate the growth, dry matter content, organic-N, and NO3--N concentration of lettuce grown under the extreme N-stress conditions experienced by the plants. In view of the largely successful fitting of the model to experimental data, the model was used to interpret the results. Suggestions for model improvement are made.

  6. Use of polishing pond effluents to cultivate lettuce (Lactuca sativa) in a hydroponic system.

    PubMed

    Keller, R; Perin, K; Souza, W G; Cruz, L S; Zandonade, E; Cassini, S T A; Goncalves, R F

    2008-01-01

    The sanitary quality and productivity of hydroponic lettuce (Lactuca sativa L.) plants cultivated under greenhouse conditions and treated with effluent from anaerobic reactor + polishing pond followed by physical-chemical treatment was evaluated. Two hydroponic cultivations were performed at summer and winter time at Vitoria-ES, Brazil. The treatments for both cultivations were: T1) conventional nutrient solution, T2) effluent from physical-chemical treatment, T3) effluent from polishing pond, and T4) effluent from polishing pond with 50% dilution. The plants were evaluated for microbial contamination, productivity and nutrient content. In all cases, no significant microbial contamination of lettuce was detected and the levels of macronutrients in the shoot system were similar to those in published reports. In the experiments from summer season, the treatments T1 and T2 resulted in higher production than the T3 and T4 treatments. Plants from T3 and T4 had a less developed root system as a result of reduced oxygenation from competition with the higher algae biomass content from the polishing pond effluent. In the winter season, the effect of the algal biomass was pronounced only in the T3 treatment (undiluted effluent from polishing pond). In conclusion, hydroponic cultivation of lettuce with pond effluent is suitable as a complement to water and nutrients for plants.

  7. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    PubMed

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  8. Occupational dermatitis from Lactuca sativa (lettuce) and Cichorium (endive). Simultaneous occurrence of immediate and delayed allergy as a cause of contact dermatitis.

    PubMed

    Krook, G

    1977-02-01

    Four patients with occupational contact dermatitis to Lactuca sativa had cross-sensitivity to Cichorium endivia. One of the patients also had contact urticaria to Lactuca and Cichorium, and another reacted positively to scratch tests with these plants as a sign of immediate allergy. In two cases such immediate allergy was considered the cause of a vesicular, intense itching eruption within a few minutes of contact with fresh leaves of Lactuca on previously eczematous skin. The severe chronic dermatitis of the hands of these patients is ascribed to combined delayed and immediate allergy.

  9. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum).

    PubMed

    Bamgbose, Ifeoluwa; Anderson, Todd A

    2015-12-01

    The wide use of plant-based oils and their derivatives, in particular biodiesel, have increased extensively over the past decade to help alleviate demand for petroleum products and improve the greenhouse gas emissions profile of the transportation sector. Biodiesel is regarded as a clean burning alternative fuel produced from livestock feeds and various vegetable oils. Although in theory these animal and/or plant derived fuels should have less environmental impact in soil based on their simplified composition relative to Diesel, they pose an environmental risk like Diesel at high concentrations when disposed. The aim of the present study was to ascertain the phytotoxicity of three different plant-derived biodiesels relative to conventional Diesel. For phytotoxicological analysis, we used seeds of four crop plants, Medicago sativa, Lactuca sativa, Raphanus sativus, and Triticum aestivum to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with two different soil textures: sandy loam soil and silt loam soil. The studied plant-based biodiesels were safflower methyl-ester, castor methyl ester, and castor ethyl-ester. Biodiesel toxicity was more evident at high concentrations, affecting the germination and survival of small-seeded plants to a greater extent. Tolerance of plants to the biodiesels varied between plant species and soil textures. With the exception of R. sativus, all plant species were affected and exhibited some sensitivity to the fuels, such as delayed seedling emergence and slow germination (average=10 days) at high soil concentrations (0.85% for Diesel and 1.76% for the biodiesels). Tolerance of plants to soil contamination had a species-specific nature, and on average, decreased in the following order: Raphanus sativus (0-20%)>Triticum aestivum (10-40%) ≥ Medicago sativa> Lactuca sativa (80-100%). Thus, we conclude that there is some phytotoxicity associated with plant-based biodiesels. Further

  10. 4',4‴,7,7″-tetra-O-methylcupressuflavone inhibits seed germination of Lactuca sativa.

    PubMed

    DeForest, Jacob C; Du, Lin; Joyner, P Matthew

    2014-04-25

    Biflavonoids have been isolated from a wide variety of plant species, but little is known about their native biological functions. Here we report a possible ecological role for biflavonoids by describing the isolation of the biflavonoid 4',4‴,7,7″-tetra-O-methylcupressuflavone (1) from Araucaria columnaris and its inhibitory effect on seed germination. Compound 1 was isolated from needles of a single A. columnaris specimen and inhibited germination of Lactuca sativa seeds in a culture-dish assay; it was also detected in soil samples under the canopy where reduced germination was observed, but not in a location away from the canopy where germination was uninhibited.

  11. Internalization of Murine Norovirus 1 by Lactuca sativa during Irrigation ▿

    PubMed Central

    Wei, Jie; Jin, Yan; Sims, Tom; Kniel, Kalmia E.

    2011-01-01

    Romaine lettuce (Lactuca sativa) was grown hydroponically or in soil and challenged with murine norovirus 1 (MNV) under two conditions: one mimicking a severe one-time contamination event and another mimicking a lower level of contamination occurring over time. In each condition, lettuce was challenged with MNV delivered at the roots. In the first case, contamination occurred on day one with 5 × 108 reverse transcriptase quantitative PCR (RT-qPCR) U/ml MNV in nutrient buffer, and irrigation water was replaced with virus-free buffer every day for another 4 days. In the second case, contamination with 5 × 105 RT-qPCR U/ml MNV (freshly prepared) occurred every day for 5 days. Virus had a tendency to adsorb to soil particles, with a small portion suspended in nutrient buffer; e.g., ∼8 log RT-qPCR U/g MNV was detected in soil during 5 days of challenge with virus inoculums of 5 × 108 RT-qPCR U/ml at day one, but <6 log was found in nutrient buffer on days 3 and 5. For hydroponically grown lettuce, ∼3.4 log RT-qPCR U of viral RNA/50 mg of plant tissue was detected in some lettuce leaf samples after 5 days at high MNV inoculums, significantly higher than the internalized virus concentration (∼2.6 log) at low inoculums (P < 0.05). For lettuce grown in soil, approximately 2 log RT-qPCR U of viral RNA/50 mg of plant tissue was detected in lettuce with both high and low inoculums, showing no significant difference. For viral infectivity, infectious MNV was found in lettuce samples challenged with high virus inoculums grown hydroponically and in soil but not in lettuce grown with low virus inoculums. Lettuce grown hydroponically was further incubated in 99% and 70% relative humidities (RH) to evaluate plant transpiration relative to virus uptake. More lettuce samples were found positive for MNV at a significantly higher transpiration rate at 70% RH, indicating that transpiration might play an important role in virus internalization into L. sativa. PMID:21296944

  12. [The character of calcium distribution in developing anther of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Xie, Chao Tian; Yang, Yan Hong; Xu, Qing; Tian, Hui Qiao

    2005-10-01

    Potassium antimonite was used to locate calcium in the anther of lettuce (Lactuca sativa L) during its development. At the early stage of anther development there were few calcium granules in microspore mother cells and the cells of anther wall. After meiosis of microspore mother cells, calcium granules first appeared in the tapetal cells in which some small secretive vacuoles containing many calcium granules were formed and secreted into locule. Then, the tapetal cells began to degenerate. At the late stage of microspore, tapetal cells completely degenerated and its protoplast masses moved into anther locule with many calcium granules. Few calcium granules were precipitated in the microspores just being released from tetrad, but some on the surface of exine. Then calcium granules appeared in the nucleus and cytoplasm of early microspores, as wall as in the exine. When microspores formed some small vacuoles containing some calcium granules, and then the small vacuoles fused to form a large vacuole, the calcium granules in the nucleus and cytoplasm evidently decreased, microspore developed to the late stage. The result suggested that calcium is related to the formation of large vacuole in microspores. The wall of microspore also is a main location of calcium granules during its developing. At early microspore some calcium granules began to accumulate in exine, which suggested calcium related with exine formation. At late stage of microspore, most of calcium granules were mainly deposited on the surface of exine. After the first mitosis of microspores, the large vacuole of bicellular pollen disappeared and calcium granules in the large vacuole went back to cytoplasm again. When bicellular pollen synthesized starches some calcium granules appeared on the surface of starches, which suggested calcium may regulate starch synthesis. With amount of starches increasing, calcium granules disappeared from pollen cytoplasm and only some of them located on the surface of pollen.

  13. [Calcium distribution in the egg cell, zygote and proembryo of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Wei, Dong Mei; Tian, Hui Qiao

    2006-02-01

    Potassium antimonite precipitation was used to located calcium in the egg cells (before and after anthesis), zygotes and proembryos of lettuce (Lactuca sativa L.). A few calcium precipitates (ppts) were located in the small vacuoles of cytoplasm of egg cell at 3 d before anthesis, when egg cells just formed. Then the small vacuoles fused to form some bigger vacuoles in egg cell at 2d before anthesis. Calcium ppts increased evidently in the cytoplasm and nucleus of egg cells at this time. At 1d before anthesis, a biggest vacuole located at the micropyle end of the cell and its nucleus was pushed toward the chalazal end of the cell, which made an evident cellular polarity. The number of calcium ppts in the egg cell markedly decreased, suggesting that change of calcium distribution may be related to the development of egg cell. After anthesis and before fertilization, calcium ppts were still few in the egg cells, and most of them were accumulated in the nucleus, especially in the vacuoles of nucleolus. At 4h after anthesis, egg cell was fertilized and the wall at the chalazal end of egg cell was formed completely. Calcium ppts evidently increased again in egg cell, and some big ppts appeared in the karyoplasm of nucleus and abundant small ppts in the large vacuole. At 9h after anthesis, zygote completed its first division. Calcium ppts in the nucleus and cytoplasm of two-celled proembryo began to decrease, and only some ones accumulated in the vacuoles of nucleolus. At 18h after anthesis, zygote divided several times and became a multi-celled proembryo. Calcium ppts in the cells of proembryo ulteriorly diminished but there were many ppts on the surface of proembryo. The result indicates that calcium in egg cell, zygote and the cells of proembryo orderly changes its temporal and spatial position, which suggests that calcium may play a role during the development of egg cell and zygote.

  14. [Calcium distribution in the central cell of lettuce (Lactuca sativa L.) before and after pollination].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Ye, Lv; Tian, Hui

    2008-02-01

    Potassium antimonite precipitation was used to locate calcium in the central cell of lettuce (Lactuca sativa L.) before and after pollination. At 3d before anthesis, two polar nuclei of central cell separately located at two polarity of the cell, and few calcium precipitates (ppts) appeared in the polar nuclei and cytoplasm, but some ppts in its small vacuoles. At 2d before anthesis, two polar nuclei moved toward the middle of the cell and fused to form a secondary nucleus, and the ppts evidently increased in the nucleus and cytoplasm. At 1d before anthesis, secondary nucleus again moved toward micropylar end and located near the egg to prepare for fertilization. Calcium precipitates were mainly accumulated in the secondary nucleus. After pollination and before fertilization, the distribution of calcium ppts was similar to that before pollination. At 4h after pollination, the central cell was fertilized, and calcium ppts evidently increased in the cell and numerous were accumulated in its nucleus and cytoplasm. At 6h after pollination, the primary endosperm nucleus completed its first division and formed two dissociate endosperm nuclei, and still many calcium precipitates appeared in the nucleus and cytoplasm. With endosperm development, calcium ppts decreased in the endosperm cell. At 1d after emasculated and without pollination, the secondary nucleus of the cell still bordered on the egg and some calcium ppts appeared in the secondary nucleus. The results indicated that the temporal and spatial changes of calcium in the central cell may play an important physiological role during the development of the central cell and endosperm.

  15. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  16. Effect of acaricidal components isolated from lettuce (Lactuca sativa) on carmine spider mite (Tetranychus cinnabarinus Boisd.).

    PubMed

    Li, M; Zhang, Y; Ding, W; Luo, J; Li, S; Zhang, Q

    2017-08-14

    This study aimed to evaluate the acaricidal activity of lettuce (Lactuca sativa) extracts against carmine spider mites (Tetranychus cinnabarinus Boisd.) and isolate the acaricidal components. Acaricidal activities of lettuce extracts isolated from different parts (the leaf, root and seed) using various solvents (petroleum ether, acetone and methanol) were evaluated with slide-dip bioassay and relatively high median lethal concentration (LC50) values were detected. Acetone extracts of lettuce leaves harvested in July and September were fractionated and isolated with silica gel and thin-layer chromatography. Consequently, acetone extracts of lettuce leaves harvested in July exhibited higher acaricidal activity than those harvested in September, with an LC50 value of 0.268 mg ml-1 at 72 h post-treatment. A total of 27 fractions were obtained from the acetone extract of lettuce leaves harvested in July, and mite mortalities with the 11th and 12th fractions were higher than those with the other 25 fractions (LC50: 0.751 and 1.258 mg ml-1 at 48 h post-treatment, respectively). Subsequently, active acaricidal components of the 11th fraction were identified by infrared, nuclear magnetic resonance and liquid chromatography/mass spectrometry. Five components were isolated from the 11th fraction, with components 11-a and 11-b showing relatively high acaricidal activities (LC50: 0.288 and 0.114 mg ml-1 at 48 h post-treatment, respectively). Component 11-a was identified as β-sitosterol. In conclusion, acetone extracts of lettuce leaves harvested in July might be used as a novel phytogenic acaricide to control mites.

  17. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  18. [Enteroparasite determination in Lactuca sativa from farms dedicated to its production in Pasto, Colombia].

    PubMed

    Polo, Giovanni Andrés; Benavides, Carmenza Janneth; Astaiza, Juan Manuel; Vallejo, Dario Antonio; Betancourt, Patricia

    2016-12-01

    Currently, vegetables like lettuce are widely recommended as part of the daily diet given their high nutritional value; however, while consumers feel attracted to the benefits provided by the vegetable, they may also be exposed to parasitic intestinal infections. To determine the presence or absence of enteroparasites in lettuce (Lactuca sativa) grown in the rural area in the municipality of Pasto, and to analyze associated factors based on the characterization of the lands. We conducted a descriptive double blind cross-sectional study. We took a total of 105 samples from 21 properties from June to December, 2013, and we processed them by sedimentation and flotation tests. Additionally, the owners were surveyed in order to obtain information about the possible variables influencing the occurrence of enteroparasites. We detected contamination in 100% of the lettuce samples and we found parasite eggs and larvae as follows: 95.25% with Entamoeba spp. cysts; 71.43% with Isospora spp. oocysts; 61.90% with Strongyloides stercoralis larvae (L3); 28.57% with Toxocara spp. eggs, and 4.76% with Eimeria spp. oocysts. Using the chi-square test we found association between Entamoeba spp. and ditches (p=0.008), dogs (p=0.008) and septic tanks (p=0.029); between Isospora spp. and compost (p=0.0001), dogs (p=0.0001) and slugs (p=0.002); between S. stercoralis and handling (p=0.003), and between Toxocara spp. and no use of biodigesters (p= 0.002). We found contamination with enteroparasites in lettuce samples from growing areas in the municipality of Pasto with animal and human sources as their main reservoirs, although others were present in the environment.

  19. Tipburn in salt-affected lettuce (Lactuca sativa L.) plants results from local oxidative stress.

    PubMed

    Carassay, Luciano R; Bustos, Dolores A; Golberg, Alberto D; Taleisnik, Edith

    2012-02-15

    Tipburn in lettuce is a physiological disorder expressed as a necrosis in the margins of young developing leaves and is commonly observed under saline conditions. Tipburn is usually attributed to Ca(2+) deficiencies, and there has very limited research on other mechanisms that may contribute to tipburn development. This work examines whether symptoms are mediated by increased reactive oxygen species (ROS) production. Two butter lettuce (Lactuca sativa L.) varieties, Sunstar (Su) and Pontina (Po), with contrasting tipburn susceptibility were grown in hydroponics with low Ca(2+) (0.5 mM), and with or without 50 mM NaCl. Tipburn symptoms were observed only in Su, and only in the saline treatment. Tipburn incidence in response to topical treatments with Ca(2+) scavengers, Ca(2+) transport inhibitors, and antioxidants was assessed. All treatments were applied before symptom expression, and evaluated later, when symptoms were expected to occur. Superoxide presence in tissues was determined with nitro blue tetrazolium (NBT) and oxidative damage as malondialdehyde (MDA) content. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were assayed. Under control and saline conditions, tipburn could be induced in both varieties by topical treatments with a Ca(2+) scavenger (EGTA) and Ca(2+) transport inhibitors (verapamil, LaCl(3)) and reduced by supplying Ca(2+) along with a ionophore (A 23187). Tipburn symptoms were associated with locally produced ROS. O(2)(·-) and oxidative damage significantly increased in leaf margins before symptom expression, while topical antioxidant applications (Tiron, DPI) reduced symptoms in treated leaves, but not in the rest of the plant. Antioxidant enzyme activity was higher in Po, and increased more in response to EGTA treatments, and may contribute to mitigating oxidative damage and tipburn expression in this variety.

  20. Toxicity assessment of a complex industrial wastewater using aquatic and terrestrial bioassays Daphnia pulex and Lactuca sativa.

    PubMed

    Sánchez-Meza, Juan Carlos; Pacheco-Salazar, Víctor Francisco; Pavón-Silva, Thelma Beatriz; Guiérrez-García, Víctor Guadalupe; Avila-González, Clemente De Jesús; Guerrero-García, Patricia

    2007-08-01

    Aquatic and terrestrial bioassays were used to assess toxicity at several stages in an industrial wastewater treatment plant that processes 400 L/s from a complex influent formed by wastewater from 135 industries. Daphnia pulex and Lactuca sativa were used to assess and compare toxicity between the influent wastewater and effluent wastewater from an activated sludge process, and compare their relationship with physicochemical parameters of Biological Oxygen Demand (BOD); Chemical Oxygen Demand (COD); Total Suspended Solids (TSS); total Nitrogen (N (N-total)), and ammonia Nitrogen (N (N - NH3)). Samples from the primary clarifiers (PC), mix liquor stage (ML) and secondary clarifiers (SC) were processed using physicochemical and bioassay test. Toxicity results with Daphnia pulex showed decreased mean values of acute Toxic Units (a.T.U.) between PC (2.1 a.T.U.) and SC (1,25 a.T.U.). Lactuca sativa showed high values of toxicity between PC and SC (3.37 and 3.32 a.T.U. respectively). Some samples exhibited higher toxicity values at the effluent stage (SC) than the influent stage (PC). The highest correlations of physicochemical properties with toxicity were obtained with COD and nitrogen compounds in effluent samples (SC), but not with influent samples (PC).

  1. Complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from lettuce (Lactuca sativa) originating from a conventional field in Norway.

    PubMed

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2016-12-01

    Here, we present the 3,795,952 bp complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017580.

  2. LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting

    USDA-ARS?s Scientific Manuscript database

    We assessed the genetic diversity and population structure among 148 cultivated lettuce (Lactuca sativa L.) accessions using the high-throughput GoldenGate assay and 384 EST (Expressed Sequence Tag)-derived SNP (single nucleotide polymorphism) markers. A custom OPA (Oligo Pool All), LSGermOPA was fo...

  3. Differential Scanning Calorimetry as a Tool for Nondestructive Measurements of Seed Deterioration in Lettuce (Lactuca sativa, CV “Black Seeded Simpson”)

    USDA-ARS?s Scientific Manuscript database

    This study was undertaken to determine if changes in lipid phase behavior could be used to detect lost viability in lettuce (Lactuca sativa) seeds. We used seeds from the cultivar ‘Black Seeded Simpson’ that were purchased every 2-3 years since 1989 and stored in resealable plastic bags at constan...

  4. Increased exposure to UV-B radiation during early development leads to enhanced photoprotection and improved long-term performance in Lactuca sativa.

    PubMed

    Wargent, Jason J; Elfadly, Eslam M; Moore, Jason P; Paul, Nigel D

    2011-08-01

    Plant responses to solar UV radiation are numerous and have often been considered from a perspective of negative outcomes for plant productivity. In this study, we used two experimental approaches consisting of: (1) field-based spectrally modifying filters in addition to (2) controlled indoor exposure to UV-B, to examine the effects of UV radiation on growth and photosynthetic performance of lettuce (Lactuca sativa L.) seedlings. Various aspects of growth were affected in plants grown under a UV-inclusive environment compared to a UV-depleted environment, including reductions in leaf expansion, increases in leaf thickness and the rate of net photosynthesis. After transplantation to a uniform field environment, lettuce plants initially propagated under the UV-inclusive environment exhibited higher harvestable yields than those from a UV-depleted environment. In controlled conditions, photosynthetic rates were higher in plants grown in the presence of UV-B radiation, and relative growth of plants pre-acclimatized to UV-B was also increased, in addition to higher maximum photochemical efficiency of photosystem II (PSII) (F(v) /F(m) ) following subsequent exposure to high photosynthetically active radiation (PAR) and temperature stress. Our findings are discussed within the context of sustainability in agriculture and the paradigm shift in photobiology which such beneficial responses to UV radiation could represent. © 2011 Blackwell Publishing Ltd.

  5. [Studies on the calcium distribution in developing synergids of lettuce (Lactuca sativa L.)].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Tian, Hui Qiao

    2007-08-01

    Potassium antimonite was used to locate calcium in the synergids of lettuce (Lactuca sativa L) during their development. The two synergids on 3d before anthesis formed evident polarity with most cytoplasm located in the micropylar end and nucleus in the middle and a big vacuole in the chalazal end. At this time, calcium precipitates were a few in both cells. Calcium precipitates in the two synergids began to increase on 2d before anthesis. Synergid wall in the micropylar end thickened on 1d before anthesis, in which many calcium precipitates located. Near anthesis, synergids formed filiform apparatus in which abundant calcium precipitates accumulated to prepare for attracting pollen tubes entering. At anthesis, the distribution of calcium precipitates between two synergids was the same. At 1h after pollination, calcium precipitates evidently increased in one synergid that seemed to degenerate, the other one was persistent and the distribution of calcium granules did not change. Two synergids kept intact at 1d after emasculated, and the distribution of calcium precipitates did not display difference, suggesting that the degeneration of one synergid was caused by approaching pollen tubes which might give some signal to induce calcium increase of the synergid. Before fusion of sperm cell with egg cell, the cytoplasm of degenerated synergid embraced the egg and formed a thin layer between the egg and the central cell. Calcium precipitates in the different parts of degenerated synergid were closely connected with the fertilization: calcium precipitates accumulated in the near chalazal end of degenerated synergid at 1h after pollination. At 2.5h after pollination, the calcium precipitates increased at the chalazal end, especially abundant in the thin layer between the egg and the central cell. However, at 4h after pollination, the fertilization had finished at this time, the distribution of calcium precipitates in degenerated synergid changed again: the precipitates

  6. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water.

    PubMed

    Blaine, Andrea C; Rich, Courtney D; Sedlacko, Erin M; Hyland, Katherine C; Stushnoff, Cecil; Dickenson, Eric R V; Higgins, Christopher P

    2014-12-16

    Using reclaimed water to irrigate food crops presents an exposure pathway for persistent organic contaminants such as perfluoroalkyl acids (PFAAs) to enter the human food chain. This greenhouse study used reclaimed water augmented with varying concentrations (0.2-40 μg/L) of PFAAs, including perfluorocarboxylates (C3F7COO(-) to C8F17COO(-)) and perfluorosulfonates (C4F9SO2O(-), C6F13SO2O(-), C8F17SO2O(-)), to investigate potential uptake and concentration-response trends in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa). In addition, studies were conducted to evaluate the role of soil organic carbon concentrations on plant uptake of PFAAs. PFAA concentrations in lettuce leaves and strawberry fruit were measured for each aqueous PFAA concentration applied. PFAA plant concentrations increased linearly with the aqueous concentration for all PFAAs, with PFCAs bioaccumulating to a greater degree than PFSAs in the edible portions of the tested plants. Chain-length-dependency trends were evident in both lettuce shoot and strawberry fruit, with decreasing concentrations associated with increasing chain length. Perfluorobutanoate (PFBA) and perfluoropentanoate (PFPeA), both short-chain PFAAs (<8 carbon chain length), accumulated the most compared with other PFAAs tested in the edible parts of both lettuce and strawberry. PFAA concentrations in strawberry root and shoot were also measured at selected PFAA aqueous concentrations (0.4, 4, and 40 μg/L). Short-chain perfluorocarboxylates were the dominant fraction in the strawberry fruit and shoot compartments, whereas a more even distribution of all PFAAs appeared in the root compartment. Lettuce grown in soils with varying organic carbon contents (0.4%, 2%, 6%) was used to assess the impact of organic carbon sorption on PFAA bioaccumulation. The lettuce grown in soil with the 6% organic carbon content had the lowest bioaccumulation of PFAAs. Bioaccumulation factors for lettuce were correlated to carbon chain

  7. Protective effects of Lactuca sativa ethanolic extract on carbon tetrachloride induced oxidative damage in rats

    PubMed Central

    Hefnawy, Hefnawy Taha M.; Ramadan, Mohamed Fawzy

    2013-01-01

    Objective To study the protective effects of the ethanolic extract of lettuce (Lactuca sativa L. var. longifolia) leaves against the toxicity caused by carbon tetrachloride (CCl4) in reproductive system of rats. Methods Lettuce leaves were dried and extracted with ethanol (plant: solvent, 1:10, w/v). The extract was filtered and evaporated to yield dried lettuce extract. Animals were divided into seven groups and treated with CCl4 and different concentrations of lettuce extract. At the end of the experimental period, the animals were sacrificed and blood was collected and centrifuged for serum separation. Body weights, testis size, histopathology of testis and liver, catalase (CAT) activity, superoxide dismutase (SOD) activity, peroxidase (POD) activity, reduced glutathione (GSH), glutathione peroxidase activity (GSH-Px), thiobarbituric acid reactive substances (TBARS), nitrite level, and serum hormones were determined. Results Oxidative stress induced by CCl4 (2 mL/kg body weight) in rat decreases the increase in body weight and relative testis weight. It also markedly increases the level of TBARS and nitrites along with corresponding decrease in reduced glutathione and various antioxidant enzymes in testis (i.e., CAT, POD, SOD and GSH-Px). Serum level of testosterone, luteinizing hormone and follicle stimulating hormone was decreased while estradiol and prolactin were increased during CCl4 treatment. Histopathology of CCl4-treated rats indicated the partial degeneration of germ and leydig cells along with deformities in spermatogenesis. Supplementation of lettuce extract (100, 150, 200 mg/kg body weight orally) once a week for 10 weeks results in decrease of TBARS and nitrite, while increase in antioxidant enzymes; CAT, POD, SOD, GSH-Px and GSH contents. Serum level of testosterone, luteinizing hormone, follicle stimulating hormone, estradiol, prolactin, histology, body weight and relative testis weight was also concomitantly restored to near normal level by

  8. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil.

    PubMed

    França, Fernanda C S S; Albuuerque, Adriana M A; Almeida, Amanda C; Silveira, Patrícia B; Filho, Crescêncio A; Hazin, Clovis A; Honorato, Eliane V

    2017-01-15

    Currently one of the main sources of atmospheric pollution identified in urban centers is derived from both industrial and motor vehicle emissions. These pollutants can be adsorbed to particulate matter which is present in the air or deposited in the soil and plants, eventually reaching the human food chain. In this context, the present study aimed to determine the concentration of metals such as Cu, Pb, Cd, Ni and Zn in two subspecies of Lactuca sativa L. and in the soil from were lettuce samples were collected. The results for the soil samples analyzed show a possible contamination by Pb with concentration values as high as 140mg.kg(-1), which are above the Brazilian standards defined by Resolution CONAMA 420/2009 (Brazilian Environmental Council). However, the values found in the lettuce itself reveal that it is still suitable for consumption.

  9. Allelopathic Activity of Extracts from Different Brazilian Peanut (Arachis hypogaea L.) Cultivars on Lettuce (Lactuca sativa) and Weed Plants

    PubMed Central

    Garcia, R.; Simas, N. K.

    2017-01-01

    Peanut (Arachis hypogaea L.) is the fourth most consumed oleaginous plant in the world, producing seeds with high contents of lipids, proteins, vitamins, and carbohydrates. Biological activities of different extracts of this species have already been evaluated by many researchers, including antioxidant, antitumoral, and antibacterial. In this work, the allelopathic activity of extracts from different Brazilian peanut cultivars against lettuce (Lactuca sativa) and two weed plants (Commelina benghalensis and Ipomoea nil) was studied. Aerial parts, roots, seeds, and seed coats were used for the preparation of crude extracts. Seed extract partitioning was performed with n-hexane, dichloromethane, ethyl acetate, n-butanol, and aqueous residue. Germination and growth of hypocotyls and rootlets were evaluated after one and five days of incubation with plant extracts, respectively. Crude seed extract and its dichloromethanic partition displayed highest allelopathic activity. These results contribute for the study of new potential natural herbicides. PMID:28396881

  10. Allelopathic Activity of Extracts from Different Brazilian Peanut (Arachis hypogaea L.) Cultivars on Lettuce (Lactuca sativa) and Weed Plants.

    PubMed

    Casimiro, G S; Mansur, E; Pacheco, G; Garcia, R; Leal, I C R; Simas, N K

    2017-01-01

    Peanut (Arachis hypogaea L.) is the fourth most consumed oleaginous plant in the world, producing seeds with high contents of lipids, proteins, vitamins, and carbohydrates. Biological activities of different extracts of this species have already been evaluated by many researchers, including antioxidant, antitumoral, and antibacterial. In this work, the allelopathic activity of extracts from different Brazilian peanut cultivars against lettuce (Lactuca sativa) and two weed plants (Commelina benghalensis and Ipomoea nil) was studied. Aerial parts, roots, seeds, and seed coats were used for the preparation of crude extracts. Seed extract partitioning was performed with n-hexane, dichloromethane, ethyl acetate, n-butanol, and aqueous residue. Germination and growth of hypocotyls and rootlets were evaluated after one and five days of incubation with plant extracts, respectively. Crude seed extract and its dichloromethanic partition displayed highest allelopathic activity. These results contribute for the study of new potential natural herbicides.

  11. Analysis of bacteria, parasites, and heavy metals in lettuce (Lactuca sativa) and rocket salad (Eruca sativa L.) irrigated with treated effluent from a biological wastewater treatment plant.

    PubMed

    Nikaido, Meire; Tonani, Karina A A; Julião, Fabiana C; Trevilato, Tânia M B; Takayanagui, Angela M M; Sanches, Sérgio M; Domingo, José L; Segura-Muñoz, Susana I

    2010-06-01

    This study aimed to evaluate the viability of using treated residuary water from the Biological Wastewater Treatment Plant of Ribeirão Preto to grow vegetables, through the characterization and quantification of parasites, coliforms, and heavy metals. Three equal cultivation areas were prepared. The first was irrigated with treated/chlorinated (0.2 mg L(-1)) wastewater, the second one with treated wastewater without chlorination, and the third site with potable water, which was the control group. The presence of Hymenolepis nana, Enterobius vermicularis, nematode larvae, and Entamoeba coli was verified in lettuce (Lactuca sativa) samples. Although nematode larvae were observed in rocket salad (Eruca sativa L.), no significant differences were found between the number of parasites and type of irrigation water used. No significant differences were found between the number of fecal coliforms in vegetables and the different types of irrigation. However, the vegetables irrigated with treated effluent without chlorination showed higher levels of fecal coliforms. The risk of pathogens is reduced with bleach addition to the treated effluent at 0.2 mg/L. Concentration of heavy metals in vegetables does not mean significant risks to human health, according with the parameters recommended by the World Health Organization.

  12. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce).

    PubMed

    Suzuki, Wakako; Sugawara, Masayuki; Miwa, Kyoko; Morikawa, Masaaki

    2014-07-01

    Acinetobacter calcoaceticus P23 is a plant growth-promoting bacterium that was isolated from the surface of duckweed (Lemna aoukikusa). The bacterium was observed to colonize on the plant surfaces and increase the chlorophyll content of not only the monocotyledon Lemna minor but also the dicotyledon Lactuca sativa in a hydroponic culture. This effect on the Lactuca sativa was significant in nutrient-poor (×1/100 dilution of H2 medium) and not nutrient-rich (×1 or ×1/10 dilutions of H2 medium) conditions. Strain P23 has the potential to play a part in the future development of fertilizers and energy-saving hydroponic agricultural technologies.

  13. Comparison of sensitivity of grasses (Lolium perenne L. and Festuca rubra L.) and lettuce (Lactuca sativa L.) exposed to water contaminated with microcystins.

    PubMed

    Pereira, Silvia; Saker, Martin L; Vale, Micaela; Vasconcelos, Vitor M

    2009-07-01

    The effects of aqueous extracts from Microcysts aeruginosa strains (both microcystin-producers and non-microcystin producers) on germination and root growth were investigated for three economically important plant species: Festuca rubra L., Lolium perenne L., and Lactuca sativa L. There was a clear inhibition of root growth for L. sativa exposed to strains containing microcystins (5.9-56.4 microg L(-1)). The strain that produced the most pronounced effects contained the lowest concentration of microcystin suggesting that other cellular compounds may also affect growth.

  14. Complete genome sequence of the biofilm-forming Microbacterium sp. strain BH-3-3-3, isolated from conventional field-grown lettuce (Lactuca sativa) in Norway.

    PubMed

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2017-03-01

    The genus Microbacterium contains bacteria that are ubiquitously distributed in various environments and includes plant-associated bacteria that are able to colonize tissue of agricultural crop plants. Here, we report the 3,508,491 bp complete genome sequence of Microbacterium sp. strain BH-3-3-3, isolated from conventionally grown lettuce (Lactuca sativa) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017674.

  15. Impacts of major cations (K(+), Na (+), Ca (2+), Mg (2+)) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models.

    PubMed

    Liu, Yang; Vijver, Martina G; Peijnenburg, Willie J G M

    2014-04-01

    Biotic ligand models (BLM) explicitly accounting for hypothetical interactions with biotic ligands and bioavailability as dictated by water chemistry have been developed for various metals and different organisms. It is only recently that BLMs for plants have received increasing attention. Lettuce is one of the most important vegetable crops in the world. This study investigated the impacts of Ca(2+), Mg(2+), K(+), Na(+) and pH, on acute toxicity of Ni and Cd to butter-head lettuce seedlings (Lactuca sativa L.). 4-day assays with the root elongation inhibition (REI) as the endpoint were performed in hydroponic solutions. Magnesium was found to be the sole cation significantly enhancing the median inhibition concentration (IC50) of Ni(2+) with increasing concentration. By incorporating the competitive effects of Mg(2+), the Ni-toxicity prediction was improved significantly as compared to the total metal model (TMM) and the free ion activity model (FIAM). The conditional stability constants derived from the Ni-BLM were log K MgBL = 2.86, log K NiBL = 5.1, and f NiBL (50%)  = 0.57. A slight downtrend was observed in the 4-d IC50 of Cd(2+) at increasing H(+) concentrations, but this tendency was not consistent and statistically significant (p = 0.07) over the whole range. The overall variations of Cd-toxicity within the tested Na(+), K(+), Ca(2+) and Mg(2+) concentration ranges were relatively small and not statistically significant. 80 % of lettuce REI by Cd could be explained using both TMM and FIAM instead of BLM in the present study. Thus, the mechanistically underpinned models for soil quality guidelines should be developed on a metal-specific basis across different exposure conditions.

  16. Effects of simulated acidic rain on yields of Raphanus sativus, Lactuca sativa, Triticum aestivum and Medicago sativa

    SciTech Connect

    Evans, L.S.; Gmur, N.F.; Mancini, D.

    1982-01-01

    Experiments were performed to determine effects of simulated acidic rain on radishes (Raphanus sativus), wheat(Triticum aestivum) and alfalfa (Medicago sativa) grown under greenhouse conditions. Experimental designs allowed the detection of statistically significant differences among means that differed by less than 10%. These results suggest that the efficiency of radish foliage in increasing; root mass decreases with increased rainfall acidity since only foliage was exposed to the treatments.

  17. Effect of salicylhydroxamic acid on endosperm strength and embryo growth of Lactuca sativa L. cv Waldmann's Green seeds

    NASA Technical Reports Server (NTRS)

    Brooks, C. A.; Mitchell, C. A.

    1988-01-01

    Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm of SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.

  18. The effects of cover crop on weed control in collard (Brassica olerecea var acephala) and lettuce (Lactuca sativa L.).

    PubMed

    Mennan, H; Ngouajio, M; Isik, D; Kose, B; Kaya, E

    2006-01-01

    Leafy vegetables are not very competitive and weed interference can cause considerable yield losses in collard (Brassica olerecea var acephala) and lettuce (Lactuca sativa L.). Currently there are no pre or post emergence herbicides registered for weed control in these vegetables in Turkey. For this reason, alternative weed control strategies need to be developed. Cover crop residue could represent an alternative method of weed management in these crops. Field studies were conducted in 2004 at the Black Sea Agricultural Research Institute experimental field in Samsun, Turkey. The cover crop treatments consisted of Sorghum bicolor (L.) Moench, Sorghum vulgare Pers., Vicia villosa L., Amaranthus cruentus L., Pisum sativum L. and the bare ground with no cover crop. All cover crops were seeded by hand and incorporated into the soil on 11 May, 2004. Each plot was 10 m2 (2 x 5 m) and arranged in a randomized complete block design with four replications. All cover crops were incorporated into the soil by discing on 1 September 2004 at flowering stage of the cover crops. Broadleaved weed species were dominant in the experimental area. Most cover crops established well and S. bicolor biomass was the highest. The number of weed species emerging in all treatments was different at 14 DAD (days after desiccation). Similar results were observed at 28 and 56 DAD. Treatments with Vicia villosa residues had fewer weed species and lower total weed densities than other treatments.

  19. [The dynamics of calcium distribution in stigma and style of lettuce (Lactuca sativa L.) before and after pollination].

    PubMed

    Qiu, Yi Lan; Liu, Ru Shi; Xie, Chao Tian; Yang, Yan Hong; Gu, Li; Tian, Hui Qiao

    2005-08-01

    Potassium antimonite was used to deposit calcium in the stigma and style of lettuce (Lactuca sativa L.) before and after pollination. The stigma of lettuce is two splits. Abundant calcium granules are displayed in the wall of papillae on the receptive surface of stigma before and after pollination, which may facilitate pollen germination. However, a few calcium granules in the wall of epidermis cell on no-receptive surface. Calcium distribution in style presents a gradient in transmitting tissue and parenchyma cells from the top to the base of the style before pollination. After pollination, calcium in transmitting tissue distinctly increased and its gradient distribution became more evident. Pollen tubes grow in the intercellular gaps of transmitting tissue. When pollen tubes grew into transmitting tissue, calcium granules in parenchyma around transmitting tissue decreased, suggesting a calcium movement was controlled by pollen tubes. The calcium gradient distribution also appeared in the trachea of vascular bundle of style. In general, calcium in style displays a feature of time-special distribution: transmitting tissue doesn't need much more calcium that is only stored in the parenchyma before pollination. However, calcium in parenchyma cells may be transported to transmitting tissue and make the latter contain more calcium to form an evident calcium gradient and meet the requirement of pollen tubes directionally growing after pollination. This is the second sample of calcium gradient existing in style, which was found by using potassium antimonite method.

  20. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation.

    PubMed

    Larue, Camille; Castillo-Michel, Hiram; Sobanska, Sophie; Cécillon, Lauric; Bureau, Sarah; Barthès, Véronique; Ouerdane, Laurent; Carrière, Marie; Sarret, Géraldine

    2014-01-15

    The impact of engineered nanomaterials on plants, which act as a major point of entry of contaminants into trophic chains, is little documented. The foliar pathway is even less known than the soil-root pathway. However, significant inputs of nanoparticles (NPs) on plant foliage may be expected due to deposition of atmospheric particles or application of NP-containing pesticides. The uptake of Ag-NPs in the crop species Lactuca sativa after foliar exposure and their possible biotransformation and phytotoxic effects were studied. In addition to chemical analyses and ecotoxicological tests, micro X-ray fluorescence, micro X-ray absorption spectroscopy, time of flight secondary ion mass spectrometry and electron microscopy were used to localize and determine the speciation of Ag at sub-micrometer resolution. Although no sign of phytotoxicity was observed, Ag was effectively trapped on lettuce leaves and a thorough washing did not decrease Ag content significantly. We provide first evidence for the entrapment of Ag-NPs by the cuticle and penetration in the leaf tissue through stomata, for the diffusion of Ag in leaf tissues, and oxidation of Ag-NPs and complexation of Ag(+) by thiol-containing molecules. Such type of information is crucial for better assessing the risk associated to Ag-NP containing products.

  1. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability.

  2. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    PubMed

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h(-1)) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch(-1)) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches -20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  3. Evaluation of the toxic potential of coffee wastewater on seeds, roots and meristematic cells of Lactuca sativa L.

    PubMed

    Aguiar, Luara Louzada; Andrade-Vieira, Larissa Fonseca; de Oliveira David, José Augusto

    2016-11-01

    Coffee wastewater (CWW) is an effluent produced through wet processing of coffee containing high concentration of organic matter, nutrients, salts and also agrochemicals. It is released directly into the argillaceous soil or into decantation tanks for later disposal into soils, by fertigation, subsurface infiltration or superficial draining. However, this practice is not followed by the monitoring the toxicity potential of this effluent. In this sense, the present work aimed to evaluate the phytotoxic, cytogenotoxic and mutagenic potential of CWW on seed germination, root elongation and cell cycle alterations in the plant model Lactuca sativa L. The effluent (CWW) collected was diluted in distilled water into six concentrations solutions (1.25%, 1.66%, 2.5%, 5.0%, 10%, 20%). A solution of raw CWW (100%) was also applied. Distilled water was used as negative control), and the DNA alkylating agent, metilmetano sulfonate (4×10(-4)M) as positive control. Physico-chemical parameters of the CWW was accessed and it was found that the effluent contained total phenols and inorganic matter in amounts within the limits established by the National Environment Council (CONAMA). Nevertheless, the biologicals assays performed demonstrated the phytotoxicity and cytogenotoxicty of CWW. Seed germination was totally inhibited after exposure of raw CWW. In addition, a decrease in seed germination speed as well as in root growth dose-dependently manner was noticed. Moreover, nuclear and chromosomal alterations were observed in the cell cycle, mostly arising from aneugenic action.

  4. Effect of salicylhydroxamic acid on endosperm strength and embryo growth of Lactuca sativa L. cv Waldmann's Green seeds

    NASA Technical Reports Server (NTRS)

    Brooks, C. A.; Mitchell, C. A.

    1988-01-01

    Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm of SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.

  5. Nitrate content of lettuce (Lactuca sativa L.) after fertilization with sewage sludge and irrigation with treated wastewater.

    PubMed

    Castro, E; Mañas, M P; De Las Heras, J

    2009-02-01

    A romaine-type lettuce (Lactuca sativa L.) was cultivated over three crop seasons (spring 2005, spring 2006 and autumn-winter 2006) in six 36 m(2) plots in Alcázar de San Juan, Spain. A drip irrigation system was used to water all plots: five plots with drinking water and one plot with wastewater from the activated sludge system of a wastewater treatment plant (WWTP). One drinking water-irrigated plot was not fertilized (control). Five different treatments were applied to the soil: three organic mixtures (sewage sludge, sewage sludge mixed with pine bark and municipal solid waste with composted sludge) and a conventional fertilizer were applied to the four plots irrigated with drinking water. The last plot was irrigated with treated wastewater. The treatments were tested for their effect on plant growth and nitrate concentration in vegetable tissue. An increase in fresh weight in the lettuce was linked to the dosage of sewage sludge. The highest nitrate level was observed in the sewage sludge treatment in all crops and seasons, although, in general, all values were below the maximum limits established by the European Commission for nitrate content in fresh romaine lettuce. In the third crop season, a significant increase in nitrate content was observed in lettuce from organic treatments. Nitrate concentration in lettuce from irrigated treated wastewater was higher than control, although significant differences were not found.

  6. Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids.

    PubMed

    Harada, Hisashi; Maoka, Takashi; Osawa, Ayako; Hattan, Jun-Ichiro; Kanamoto, Hirosuke; Shindo, Kazutoshi; Otomatsu, Toshihiko; Misawa, Norihiko

    2014-04-01

    The plastid genome of lettuce (Lactuca sativa L.) cv. Berkeley was site-specifically modified with the addition of three transgenes, which encoded β,β-carotenoid 3,3'-hydroxylase (CrtZ) and β,β-carotenoid 4,4'-ketolase (4,4'-oxygenase; CrtW) from a marine bacterium Brevundimonas sp. strain SD212, and isopentenyl diphosphate isomerase from a marine bacterium Paracoccus sp. strain N81106. Constructed transplastomic lettuce plants were able to grow on soil at a growth rate similar to that of non-transformed lettuce cv. Berkeley and generate flowers and seeds. The germination ratio of the lettuce transformants (T0) (98.8%) was higher than that of non-transformed lettuce (93.1 %). The transplastomic lettuce (T1) leaves produced the astaxanthin fatty acid (myristate or palmitate) diester (49.2% of total carotenoids), astaxanthin monoester (18.2%), and the free forms of astaxanthin (10.0%) and the other ketocarotenoids (17.5%), which indicated that artificial ketocarotenoids corresponded to 94.9% of total carotenoids (230 μg/g fresh weight). Native carotenoids were there lactucaxanthin (3.8%) and lutein (1.3 %) only. This is the first report to structurally identify the astaxanthin esters biosynthesized in transgenic or transplastomic plants producing astaxanthin. The singlet oxygen-quenching activity of the total carotenoids extracted from the transplastomic leaves was similar to that of astaxanthin (mostly esterified) from the green algae Haematococcus pluvialis.

  7. Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.).

    PubMed

    Valerio, Marlon Escoto; García, Juan Fernández; Peinado, Francisco Martín

    2007-05-25

    In this work the different concentrations of soluble elements in soils from natural (peridotitic soils) and anthropogenic (soils affected by a pyrite-mine spill) origin, are used to determine the phytotoxicity in lettuce (Lactuca sativa L.). The solutions are obtained from soil:water extracts (1:1), having neutral pH and high concentrations of As, Pb, Zn, Mn, Co and Ni, with values exceeding the toxic level for soil solution [Bohn HL, McNeal BL, O'Connor GA. Soil Chemistry, Wiley Interscience. Wiley & Sons, New York, 1985]. The variables evaluated are: Seed Germination (SG), Root Elongation (RE), Germination Rate (GR) and Root Necrosis (RN). The most sensitive variables in the bioassay with these solutions are GR and RN, in these cases the solution causes a reduction of 44% and 67%, respectively, in relation to control (distilled water). The test using soil-water solutions is sensitive and reproducible to determine phytotoxicity in lettuce caused by potentially pollutant elements in soils.

  8. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds

    PubMed Central

    Jaganathan, Ganesh K.; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-01-01

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h−1) suffered significantly higher membrane damage at temperature between −20 °C and −10 °C than slow cooled (3 °Ch−1) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches −20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to −20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes. PMID:28287125

  9. L-Lactate dehydrogenase from leaves of higher plants. Kinetics and regulation of the enzyme from lettuce (Lactuca sativa L).

    PubMed Central

    Betsche, T

    1981-01-01

    1. L-Lactate dehydrogenase from lettuce (Lactuca sativa) leaves was purified to electrophoretic homogeneity by affinity chromatography. 2. In addition to its NAD(H)-dependent activity with L-lactate and pyruvate, the enzyme also catalyses the reduction of hydroxypyruvate and glyoxylate. The latter activities are not due to a contamination of the enzyme preparations with hydroxypyruvate reductase. 3. The enzyme shows allosteric properties that are markedly by the pH. 4. ATP is a potent inhibitor of the enzyme. The kinetic data suggest that the inhibition by ATP is competitive with respect to NADH at pH 7.0 and 6.2. The existence of regulatory binding sites for ATP and NADH is discussed. 5. Bivalent metal cations and fructose 6-phosphate relieve the ATP inhibition of the enzyme. 6. A function of leaf L-lactate dehydrogenase is proposed as a component of the systems regulating the cellular pH and/or controlling the concentration of reducing equivalents in the cytoplasm of leaf cells. PMID:7316976

  10. Stabilization of adenine nucleotide ratios at various values by an oxygen limitation of respiration in germinating lettuce (Lactuca sativa) seeds.

    PubMed Central

    Raymond, P; Pradet, A

    1980-01-01

    The concentrations of adenine nucleotides were determined in germinating lettuce (Lactuca sativa) seeds after transitions from air to hypoxic or anoxic atmospheres. The ratio ATP/ADP and the energy charge were rapidly lowered after the transitions and remained stable at low values for hours. The energy charge in anoxia stabilized at a value close to 0.3. After 24 h in anoxia the energy charge rose rapidly to high values (0.9) when N2 was replaced by air. The metabolic properties of lettuce seeds had then been conversed for hours at low energy charge. In hypoxia the O2 uptake was decreased and the energy charge was stabilized at values intermediate between that in air and that in anoxia. When the O2 partial pressures (pO2) were 5 and 2kPa, the values of O2 uptake were one-third and one-sixth of that in air, and the energy charges were 0.7 and 0.5. These results show that the energy charge is regulated over a wide range of values. The ratio ATP/ADP and the energy charge are indicators of the limitation of metabolic activity by hypoxia. PMID:7447934

  11. Velvetbean (Mucuna pruriens) extracts: impact on Meloidogyne incognita survival and on Lycopersicon esculentum and Lactuca sativa germination and growth.

    PubMed

    Zasada, Inga A; Klassen, Waldemar; Meyer, Susan L F; Codallo, Maharanie; Abdul-Baki, Aref A

    2006-11-01

    Velvetbean (Mucuna spp.) is a summer annual that has been used as a cover crop to reduce erosion, fix nitrogen and suppress weeds and plant-parasitic nematodes. Crude aqueous extracts (1:15 dry weight plant/volume water) were made from velvetbean plant parts, and various concentrations of the extracts were evaluated in vitro for toxicities to different stages of Meloidogyne incognita (Kofoid and White) Chitwood and for suppression of hypocotyl and root growth and inhibition of germination of tomato (Lycopersicon esculentum L.) and lettuce (Lactuca sativa L.). Germination was only affected by the full-strength extract from leaf blades. Lettuce root growth was the most sensitive indicator of allelopathic activity of the plant part extracts. Lettuce and tomato root growth was more sensitive to the extract from main roots than to extracts of other plant parts, with lethal concentration (LC50) values of 1.2 and 1.1% respectively. Meloidogyne incognita egg hatch was less sensitive to extracts from velvetbean than the juvenile (J2) stage. There was no difference among LC50 values of the extracts from different plant parts against the egg stage. Based on LC50 values, the extract from fine roots was the least toxic to J2 (LC50 39.9%), and the extract from vines the most toxic (LC50 7.8%). The effects of the extracts were nematicidal because LC50 values did not change when the extracts were removed and replaced with water. Copyright (c) 2006 Society of Chemical Industry.

  12. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator.

    PubMed

    Charles, Jérémie; Sancey, Bertrand; Morin-Crini, Nadia; Badot, Pierre-Marie; Degiorgi, François; Trunfio, Giuseppe; Crini, Grégorio

    2011-10-01

    Industrial wastewater containing heavy metals is generally decontaminated by physicochemical treatment consisting in insolublizing the contaminants and separating the two phases, water and sludge, by a physical process (filtration, settling or flotation). However, chemical precipitation does not usually remove the whole pollution load and the effluent discharged into the environment can be toxic even if it comes up to regulatory standards. To assess the impact of industrial effluent from 4 different surface treatment companies, we performed standardized bioassays using seeds of the lettuce Lactuca sativa. We measured the rate of germination, and the length and mass of the lettuce plantlet. The results were used to compare the overall toxicity of the different effluents: effluents containing copper and nickel had a much higher impact than those containing zinc or aluminum. In addition, germination tests conducted using synthetic solutions confirmed that mixtures of metals have higher toxicity than the sum of their separate constituents. These biological tests are cheap, easy to implement, reproducible and highlight the effects caused by effluent treated with the methods commonly applied in industry today. They could be routinely used to check the impact of industrial discharges, even when they meet regulatory requirements for the individual metals. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Anti-inflammatory and antioxidant activity of polyphenolic extracts from Lactuca sativa (var. Maravilla de Verano) under different farming methods.

    PubMed

    Adesso, Simona; Pepe, Giacomo; Sommella, Eduardo; Manfra, Michele; Scopa, Antonio; Sofo, Adriano; Tenore, Gian Carlo; Russo, Mariateresa; Di Gaudio, Francesca; Autore, Giuseppina; Campiglia, Pietro; Marzocco, Stefania

    2016-09-01

    Besides their nutritional value, vegetables are a source of health-promoting compounds, such as polyphenols, and their content can be influenced by the particular farming method. In this study polyphenolic extracts from Lactuca sativa (var. Maravilla de verano) plants cultivated with different farming methods were chemically characterised and tested in vitro and ex vivo inflammation models. The tested extacts (250-2.5 µg mL(-1) ) were able to reduce both the inflammatory and oxidative stress in LPS-stimulated J774A.1 murine monocyte macrophage cells, by lowering the release of nitric oxide (NO) and reactive oxygen species (ROS) and promoting nuclear translocation of nuclear factor (erythroid-derived 2)-like 2; (Nrf2) and nuclear factor-κB (NF-κB). In this regard, quantitative profiles revealed different amounts of polyphenols, in particular quercetin levels were higher in plants under mineral fertilised treatment. Those extract showed an enhanced anti-inflammatory and antioxidant activity. Our data showed the anti-inflammatory and antioxidant potential of Maravilla de Verano polyphenolic extracts. The effect of farming methods on polyphenolic levels was highlighted. The higher reduction of inflammatory mediators release in extracts from plants cultivated under mineral fertilisation treatment was correlated to the higher amount of quercetin. These results can be useful for both nutraceutical or agronomic purposes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Dissection of Two Complex Clusters of Resistance Genes in Lettuce (Lactuca sativa).

    PubMed

    Christopoulou, Marilena; McHale, Leah K; Kozik, Alex; Reyes-Chin Wo, Sebastian; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-07-01

    Of the over 50 phenotypic resistance genes mapped in lettuce, 25 colocalize to three major resistance clusters (MRC) on chromosomes 1, 2, and 4. Similarly, the majority of candidate resistance genes encoding nucleotide binding-leucine rich repeat (NLR) proteins genetically colocalize with phenotypic resistance loci. MRC1 and MRC4 span over 66 and 63 Mb containing 84 and 21 NLR-encoding genes, respectively, as well as 765 and 627 genes that are not related to NLR genes. Forward and reverse genetic approaches were applied to dissect MRC1 and MRC4. Transgenic lines exhibiting silencing were selected using silencing of β-glucuronidase as a reporter. Silencing of two of five NLR-encoding gene families resulted in abrogation of nine of 14 tested resistance phenotypes mapping to these two regions. At MRC1, members of the coiled coil-NLR-encoding RGC1 gene family were implicated in host and nonhost resistance through requirement for Dm5/8- and Dm45-mediated resistance to downy mildew caused by Bremia lactucae as well as the hypersensitive response to effectors AvrB, AvrRpm1, and AvrRpt2 of the nonpathogen Pseudomonas syringae. At MRC4, RGC12 family members, which encode toll interleukin receptor-NLR proteins, were implicated in Dm4-, Dm7-, Dm11-, and Dm44-mediated resistance to B. lactucae. Lesions were identified in the sequence of a candidate gene within dm7 loss-of-resistance mutant lines, confirming that RGC12G confers Dm7.

  15. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Zharare, Godfrey Elijah

    2015-09-01

    Phytotoxic effect of diesel contaminated soil was investigated on growth and dry matter partitioning in Lactuca sativa and Ipomoea batatas in greenhouse pot experiment at two concentration range (0-30 ml and 0-6 ml diesel kg(-1) soil) for 14 weeks. The results indicated thatwhole plant biomass, stem length, root length, number of leaves and leaf chlorophyll in two plants were negatively correlated with increasing diesel concentrations. The critical concentration of diesel associated with 10% decrease in plant growth was 0.33 ml for lettuce and 1.50 ml for sweet potato. Thus, growth of lettuce in diesel contaminated soil was more sensitive than sweet potato. The pattern of dry matter partitioning between root and shoot in both plants were similar. In 0-6 ml diesel contamination range, allocation of dry matter to shoot system was favoured resulting in high shoot: root ratio of 4.54 and 12.91 for lettuce and sweet potato respectively. However, in 0-30 ml diesel contamination range, allocation of dry matter to root was favoured, which may have been an adaptive mechanism in which the root system was used for storage in addition to increasing the capacity for foraging for mineral nutrients and water. Although lettuce accumulated more metals in its tissue than sweet potato, the tissue mineral nutrients in both species did not vary to great extent. The critical diesel concentration for toxicity suggested that the cause of mortality and poor growth of sweet potato and lettuce grown in diesel contaminated soil was due to presence of hydrocarbons in diesel.

  16. Delineating ion-ion interactions by electrostatic modeling for predicting rhizotoxicity of metal mixtures to lettuce Lactuca sativa.

    PubMed

    Le, T T Yen; Wang, Peng; Vijver, Martina G; Kinraide, Thomas B; Hendriks, A Jan; Peijnenburg, Willie J G M

    2014-09-01

    Effects of ion-ion interactions on metal toxicity to lettuce Lactuca sativa were studied based on the electrical potential at the plasma membrane surface (ψ0 ). Surface interactions at the proximate outside of the membrane influenced ion activities at the plasma membrane surface ({M(n+)}0). At a given free Cu(2+) activity in the bulk medium ({Cu(2+)}b), additions of Na(+), K(+), Ca(2+), and Mg(2+) resulted in substantial decreases in {Cu(2+)}0. Additions of Zn(2+) led to declines in {Cu(2+)}0, but Cu(2+) and Ag(+) at the exposure levels tested had negligible effects on the plasma membrane surface activity of each other. Metal toxicity was expressed by the {M(n+)}0 -based strength coefficient, indicating a decrease of toxicity in the order: Ag(+)  > Cu(2+)  > Zn(2+). Adsorbed Na(+), K(+), Ca(2+), and Mg(2+) had significant and dose-dependent effects on Cu(2+) toxicity in terms of osmolarity. Internal interactions between Cu(2+) and Zn(2+) and between Cu(2+) and Ag(+) were modeled by expanding the strength coefficients in concentration addition and response multiplication models. These extended models consistently indicated that Zn(2+) significantly alleviated Cu(2+) toxicity. According to the extended concentration addition model, Ag(+) significantly enhanced Cu(2+) toxicity whereas Cu(2+) reduced Ag(+) toxicity. By contrast, the response multiplication model predicted insignificant effects of adsorbed Cu(2+) and Ag(+) on the toxicity of each other. These interactions were interpreted using ψ0, demonstrating its influence on metal toxicity.

  17. Experimental determinations of soil copper toxicity to lettuce (Lactuca sativa) growth in highly different copper spiked and aged soils.

    PubMed

    Christiansen, Karen S; Borggaard, Ole K; Holm, Peter E; Vijver, Martina G; Hauschild, Michael Z; Peijnenburg, Willie J G M

    2015-04-01

    Accurate knowledge about factors and conditions determining copper (Cu) toxicity in soil is needed for predicting plant growth in various Cu-contaminated soils. Therefore, effects of Cu on growth (biomass production) of lettuce (Lactuca sativa) were tested on seven selected, very different soils spiked with Cu and aged for 2 months at 35 °C. Cu toxicity was expressed as pEC50(Cu(2+)), i.e., the negative logarithm of the EC50(Cu(2+)) activity to plant growth. The determined pEC50(Cu(2+)) was significantly and positively correlated with both the analytically readily available soil pH and concentration of dissolved organic carbon [DOC] which together could explain 87% of the pEC50(Cu(2+)) variation according to the simple equation: pEC50(Cu(2+)) = 0.98 × pH + 345 × [DOC] - 0.27. Other soil characteristics, including the base cation concentrations (Na(+), K(+), Ca(2+), Mg(2+)), the cation exchange capacity at soil pH (ECEC), and at pH 7 (CEC7), soil organic carbon, clay content, and electric conductivity as well as the distribution coefficient (Kd) calculated as the ratio between total soil Cu and water-extractable Cu did not correlate significantly with pEC50(Cu(2+)). Consequently, Cu toxicity, expressed as the negative log of the Cu(2+) activity, to plant growth increases at increasing pH and DOC, which needs to be considered in future management of plant growth on Cu-contaminated soils. The developed regression equation allows identification of soil types in which the phytotoxicity potential of Cu is highest.

  18. Use of hairy roots extracts for 2,4-DCP removal and toxicity evaluation by Lactuca sativa test.

    PubMed

    Angelini, Vanina A; Agostini, Elizabeth; Medina, María I; González, Paola S

    2014-02-01

    2,4-Dichlorophenol (2,4-DCP) is widely distributed in wastewaters discharged from several industries, and it is considered as a priority pollutant due to its high toxicity. In this study, the use of different peroxidase extracts for 2,4-DCP removal from aqueous solutions was investigated. Tobacco hairy roots (HRs), wild-type (WT), and double-transgenic (DT) for tomato basic peroxidases (TPX1 and TPX2) were used to obtain different peroxidase extracts: total peroxidases (TPx), soluble peroxidases (SPx), and peroxidases ionically bound to the cell wall (IBPx). All extracts derived from DT HRs exhibited higher peroxidase activity than those obtained from WT HRs. TPx and IBPx DT extracts showed the highest catalytic efficiency values. The optimal conditions for 2,4-DCP oxidation were pH 6.5, H2O2 0.5 mM, and 200 U mL(-1) of enzyme, for all extracts analyzed. Although both TPx extracts were able to oxidize different 2,4-DCP concentrations, the removal efficiency was higher for TPx DT. Polyethylene glycol addition slightly improved 2,4-DCP removal efficiency, and it showed some protective effect on TPx WT after 2,4-DCP oxidation. In addition, using Lactuca sativa test, a reduction of the toxicity of post removal solutions was observed, for both TPx extracts. The results demonstrate that TPx extracts from both tobacco HRs appear to be promising candidate for future applications in removing 2,4-DCP from wastewaters. This is particularly true considering that these peroxidase sources are associated with low costs and are readily available. However, TPx DT has increased peroxidase activity, catalytic efficiency, and higher removal efficiency than TPx WT, probably due to the expression of TPX1 and TPX2 isoenzymes.

  19. Postharvest changes in water status and chlorophyll content of lettuce (Lactuca sativa L.) and their relationship with overall visual quality.

    PubMed

    Agüero, M V; Barg, M V; Yommi, A; Camelo, A; Roura, S I

    2008-01-01

    The purpose of this study was to evaluate water status, chlorophyll content (C), and overall visual quality (OVQ) of fresh butter lettuce (Lactuca sativa var. Lores) as well as these indexes' evolution during storage and their relationships, if any. Whole lettuce plants were stored at optimal postharvest conditions (0 to 2 degrees C and 97% to 99% relative humidity). Measured parameters during each sampling day were relative water content (RWC), water content (WC), free water (FW), bound water (BW), free water to total water ratio (FW/TW), C, and OVQ. All parameters were evaluated in the external, middle, and internal zones of lettuce heads. The external zone had higher initial values of RWC, WC, and FW than the internal zone. The external zone yielded the highest FW/TW ratio (85%), indicating that external leaves had more water available to be used in degradation reactions and were more perishable, with the lowest shelf life if compared with the other lettuce zones. During storage, water status index evolution differed from zone to zone. An increase in BW and a decrease in FW were detected in all lettuce zones. RWC turned out to be a more sensitive measurement than WC. Yet RWC showed no significant correlation with any index. The OVQ parameter correlates with FW directly, or indirectly through FW/TW in all lettuce zones; therefore, FW is an objective and quantitative measurement, which impacts on the visual quality of butter lettuce. The decrease in chlorophyll content observed in the external leaves strongly correlated with the decrease in OVQ.

  20. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa).

    PubMed

    Chakrabarty, Romit; Qu, Yang; Ro, Dae-Kyun

    2015-05-01

    Natural rubber, cis-1,4-polyisoprene, is an important raw material in chemical industries, but its biosynthetic mechanism remains elusive. Natural rubber is known to be synthesized in rubber particles suspended in laticifer cells in the Brazilian rubber tree (Hevea brasiliensis). In the rubber tree, rubber elongation factor (REF) and its homolog, small rubber particle protein (SRPP), were found to be the most abundant proteins in rubber particles, and they have been implicated in natural rubber biosynthesis. As lettuce (Lactuca sativa) can synthesize natural rubber, we utilized this annual, transformable plant to examine in planta roles of the lettuce REF/SRPP homologs by RNA interference. Among eight lettuce REF/SRPP homologs identified, transcripts of two genes (LsSRPP4 and LsSRPP8) accounted for more than 90% of total transcripts of REF/SRPP homologs in lettuce latex. LsSRPP4 displays a typical primary protein sequence as other REF/SRPP, while LsSRPP8 is twice as long as LsSRPP4. These two major LsSRPP transcripts were individually and simultaneously silenced by RNA interference, and relative abundance, polymer molecular weight, and polydispersity of natural rubber were analyzed from the LsSRPP4- and LsSRPP8-silenced transgenic lettuce. Despite previous data suggesting the implications of REF/SRPP in natural rubber biosynthesis, qualitative and quantitative alterations of natural rubber could not be observed in transgenic lettuce lines. It is concluded that lettuce REF/SRPP homologs are not critically important proteins in natural rubber biosynthesis in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    PubMed Central

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  2. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    PubMed

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  3. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Exposure studies of core-shell Fe/Fe(3)O(4) and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard?

    PubMed

    Trujillo-Reyes, J; Majumdar, S; Botez, C E; Peralta-Videa, J R; Gardea-Torresdey, J L

    2014-02-28

    Iron and copper nanomaterials are widely used in environmental remediation and agriculture. However, their effects on physiological parameters and nutritional quality of terrestrial plants such as lettuce (Lactuca sativa) are still unknown. In this research, 18-day-old hydroponically grown lettuce seedlings were treated for 15 days with core-shell nanoscale materials (Fe/Fe(3)O(4), Cu/CuO) at 10 and 20mg/L, and FeSO(4)·7H(2)O and CuSO(4)·5H(2)O at 10mg/L. At harvest, Fe, Cu, micro and macronutrients were determined by ICP-OES. Also, we evaluated chlorophyll content, plant growth, and catalase (CAT) and ascorbate peroxidase (APX) activities. Our results showed that iron ions/NPs did not affect the physiological parameters with respect to water control. Conversely, Cu ions/NPs reduced water content, root length, and dry biomass of the lettuce plants. ICP-OES results showed that nano-Cu/CuO treatments produced significant accumulation of Cu in roots compared to the CuSO(4)·5H(2)O treatment. In roots, all Cu treatments increased CAT activity but decreased APX activity. In addition, relative to the control, nano-Cu/CuO altered the nutritional quality of lettuce, since the treated plants had significantly more Cu, Al and S but less Mn, P, Ca, and Mg.

  5. Health risks resulting from contaminants transfers in soil-plants systems: case study of Atrazine in Lactuca sativa.

    NASA Astrophysics Data System (ADS)

    Mathieu, Camoin

    2015-04-01

    Food safety is presently at the center of great part of scientific and political debates. This represents a field of study in its own right of health risks, including ingestion by humans of hazardous biological, physical, chemical or radiological substances, from contaminated foods during different stages of production. Plant cultivation step is often one of the main sources of contamination, whether of voluntary (pesticide application) or accidental (nuclear, industrial waste, etc.) origin. As a result, the plants growth in an contaminated environment may increase the risk of transfer within the plant, and finally the exposure of humans. Furthermore, pesticides are among the main contaminants investigated in the frame of human health risks resulting from food intakes. However, most of these scientific works focus mainly on their occurrence and persistence in water bodies, and few of them are interested in soil/plants transfer. In this context, the understanding of the processes governing transfers of pesticides in plants is become a necessity, in particular to prevent human risks linked the ingestion of food produced in contaminated environments. This objective can be reached by studying the pollutants behavior in soils/plants transfers, and using various substances/plants couples. In our study, we selected a salad/pesticide couple as our experimental model. Atrazine was chosen as model contaminant because of its problematic presence in a large amount of environmental compartments, its physico-chemical properties and because of its long-term toxicity. Lactuca sativa has been selected as model plant because of its importance in French agriculture, and specifically in Languedoc-Roussillon. Salad has been cultivated in peats and irrigated with an atrazine spiked water solution (concentrations from 10 to 100 μg/L). Plant growth in such conditions has been compared to a growth in clean condition (irrigation with non spiked water). Measurements of atrazine contents in

  6. Remote sensing of nutrient deficiency in Lactuca sativa using neural networks for terrestrial and advanced life support applications

    NASA Astrophysics Data System (ADS)

    Sears, Edie Seldon

    2000-12-01

    A remote sensing study using reflectance and fluorescence spectra of hydroponically grown Lactuca sativa (lettuce) canopies was conducted. An optical receiver was designed and constructed to interface with a commercial fiber optic spectrometer for data acquisition. Optical parameters were varied to determine effects of field of view and distance to target on vegetation stress assessment over the test plant growth cycle. Feedforward backpropagation neural networks (NN) were implemented to predict the presence of canopy stress. Effects of spatial and spectral resolutions on stress predictions of the neural network were also examined. Visual inspection and fresh mass values failed to differentiate among controls, plants cultivated with 25% of the recommended concentration of phosphorous (P), and those cultivated with 25% nitrogen (N) based on fresh mass and visual inspection. The NN's were trained on input vectors created using reflectance and test day, fluorescence and test day, and reflectance, fluorescence, and test day. Four networks were created representing four levels of spectral resolution: 100-nm NN, 10-nm NN, 1-nm NN, and 0.1-nm NN. The 10-nm resolution was found to be sufficient for classifying extreme nitrogen deficiency in freestanding hydroponic lettuce. As a result of leaf angle and canopy structure broadband scattering intensity in the 700-nm to 1000-nm range was found to be the most useful portion of the spectrum in this study. More subtle effects of "greenness" and fluorescence emission were believed to be obscured by canopy structure and leaf orientation. As field of view was not as found to be as significant as originally believed, systems implementing higher repetitions over more uniformly oriented, i.e. smaller, flatter, target areas would provide for more discernible neural network input vectors. It is believed that this technique holds considerable promise for early detection of extreme nitrogen deficiency. Further research is recommended using

  7. Effect of ozonated water treatment on microbial control and on browning of iceberg lettuce (Lactuca sativa L.).

    PubMed

    Koseki, Shigenobu; Isobe, Seiichiro

    2006-01-01

    We examined the effect of ozonated water treatment on microbial control and quality of cut iceberg lettuce (Lactuca sativa L.). Fresh-cut lettuce was washed in ozonated water (3, 5, and 10 ppm) for 5 min at ambient temperature. The native bacterial population on the lettuce declined in response to a rise in ozone concentration. However, there was no further bacterial reduction (1.4 log CFU/g) above 5 ppm ozone. Although ozonated water treatment increased the phenylalanine ammonia lyase (PAL) activity of the lettuce stored at 10 degrees C compared with the water wash treatment after 1 day of storage, the concentration of ozone did not affect PAL activity. The a* value of the residue of the lettuce methanol extracts, which reflects the extent of browning, increased dramatically in lettuce treated with 10 ppm ozonated water compared with other treatments. Treatment with 3 or 5 ppm ozonated water resulted in more rapid changes in the a* value than after the water treatment. The combined treatment of hot water (50 degrees C, 2.5 min) followed by ozonated water (5 ppm, 2.5 min) had the same bactericidal effect as treatment with ozonated water (5 ppm, 5 min) or sodium hypochlorite (NaOCl, 200 ppm, 5 min), giving a reduction in bacteria numbers of 1.2 to 1.4 log CFU/g. The ascorbic acid content of the lettuce was not affected by these treatments. The combined treatment of hot water followed by ozonated water greatly inhibited PAL activity for up to 3 days of storage at 10 degrees C. Treatment with this combination greatly suppressed increases in the a* value, thus retarding the progress of browning compared with other treatments throughout the 6-day storage. NaOCl treatment also inhibited browning for up to 3 days of storage. Bacterial populations on the lettuce treated with sanitizers were initially reduced but then showed rapid growth compared with that of the water wash treatment, which did not reduce bacterial counts initially.

  8. Dose-dependent effects of gamma radiation on lettuce (Lactuca sativa var. capitata) seedlings.

    PubMed

    Marcu, Delia; Cristea, Victoria; Daraban, Liviu

    2013-03-01

    Abstract Purpose: The objectives of this study were to determine the effects of gamma radiation on lettuce growth and development, as well as on the content of photosynthetic pigments in 28 days lettuce leaf. Lettuce dry seeds were exposed to a (60)Co [Cobalt-60] gamma source at doses ranging from 2-70 Gray (Gy). The photosynthetic pigment content was determined spectrophotometrically. Our results showed that an irradiation dose between of 2-30 Gy enhanced the growth parameters (final germination percentage, germination index, root and hypocotyl length) as compared to untreated plants. Seed germination test revealed that 30 Gy irradiation dose induced the highest increase of growth parameters, while at 70 Gy a significant decrease of plant vegetative growth was recorded. The results indicated that exposing the seeds at doses ranging from 2-30 Gy enhanced the photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids) content, while at higher doses (70 Gy)) the decrease of the assimilatory pigments was noticed. The present results suggested that seed treatment with gamma radiations (0-30 Gy) was effective in stimulating plant growth and development, as well as the content of assimilatory pigments. At a higher dose of 70 Gy, there was a drastic reduction in the length of shoots and roots and also in the total chlorophyll content. These observations confirm that ionizing radiation stimulates physiological parameters up to certain low doses, and then it inhibits these parameters at higher doses.

  9. Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure.

    PubMed

    Schreck, Eva; Laplanche, Christophe; Le Guédard, Marina; Bessoule, Jean-Jacques; Austruy, Annabelle; Xiong, Tiantian; Foucault, Yann; Dumat, Camille

    2013-08-01

    We investigate the effect of both foliar and root uptake of a mixture of metal(loid)s on the fatty acid composition of plant leaves. Our objectives are to determine whether both contamination pathways have a similar effect and whether they interact. Lactuca sativa L. were exposed to fine process particles enriched with metal(loid)s in an industrial area. Data from a first experiment were used to conduct an exploratory statistical analysis which findings were successfully cross-validated by using the data from a second one. Both foliar and root pathways impact plant leaf fatty acid composition and do not interact. Z index (dimensionless quantity), weighted product of fatty acid concentration ratios was built up from the statistical analyses. It provides new insights on the mechanisms involved in metal uptake and phytotoxicity. Plant leaf fatty acid composition is a robust and fruitful approach to detect and understand the effects of metal(loid) contamination on plants.

  10. Performance and feeding behaviour of two biotypes of the black currant-lettuce aphid, Nasonovia ribisnigri, on resistant and susceptible Lactuca sativa near-isogenic lines.

    PubMed

    ten Broeke, Cindy J M; Dicke, Marcel; van Loon, Joop J A

    2013-10-01

    The black currant-lettuce aphid, Nasonovia ribisnigri, is an important pest of cultivated lettuce, Lactuca sativa. Since 1982, the control of this aphid on lettuce is largely based on host plant resistance, conferred by the Nr gene, introgressed from Lactuca virosa. The resistance mechanism remains to be identified. N. ribisnigri populations virulent on the Nr-based resistance in lettuce have emerged in several locations in Europe since 2007. The objective of this study was to investigate the resistance mechanism mediated by the Nr gene in lettuce by detailed studies of aphid feeding behaviour and performance. Both avirulent (Nr:0) and virulent (Nr:1)biotypes of N. ribisnigri were studied on five resistant and two susceptible near isogenic lines (NILs). In addition, survival and colony development were quantified.Nr:0 aphids showed a strong decrease in sieve element ingestion and took longer to accept a sieve element on resistant NILs compared with susceptible NILs, and no aphids survived on the resistant NIL. Nr:1 aphids fed and performed equally well on the resistant and susceptible NILs. The resistance mechanism against Nr:0 aphids encoded by the Nr gene seems to be located in the phloem, although we also observed differences in feeding behaviour during the pathway phase to the phloem. Nr:1 aphids were highly virulent to the resistance conferred by the Nr gene. The consequences of the appearance of Nr:1 aphids for control of N. ribisnigri are discussed.

  11. Benzoxazolin-2(3H)-one (BOA) induced changes in leaf water relations, photosynthesis and carbon isotope discrimination in Lactuca sativa.

    PubMed

    Hussain, M Iftikhar; González, L; Chiapusio, G; Reigosa, M J

    2011-08-01

    The effects are reported here of Benzoxazolin-2(3H)-one (BOA), an allelopathic compound, on plant water relations, growth, components of chlorophyll fluorescence, and carbon isotope discrimination in lettuce (Lactuca sativa L.). Lettuce seedlings were grown in 1:1 Hoagland solution in perlite culture medium in environmentally controlled glasshouse. After 30 days, BOA was applied at concentration of 0.1, 0.5, 1.0 and 1.5 mM and distilled water (control). BOA, in the range (0.1-1.5 mM), decreased the shoot length, root length, leaf and root fresh weight. Within this concentration range, BOA significantly reduced relative water content while leaf osmotic potential remained unaltered. Stress response of lettuce was evaluated on the basis of six days of treatment with 1.5 mM BOA by analyzing several chlorophyll fluorescence parameters determined under dark-adapted and steady state conditions. There was no change in initial fluorescence (F₀) in response to BOA treatment while maximum chlorophyll fluorescence (F(m)) was significantly reduced. BOA treatment significantly reduced variable fluorescence (F(v)) on first, second, third, fourth, fifth and sixth day. Quantum efficiency of open PSII reaction centers (F(v)/F(m)) in the dark-adapted state was significantly reduced in response to BOA treatment. Quantum yield of photosystem II (ΦPSII) electron transport was significantly reduced because of decrease in the efficiency of excitation energy trapping of PSII reaction centers. Maximum fluorescence in light-adapted leaves (F'(m)) was significantly decreased but there was no change in initial fluorescence in light-adapted state (F'₀) in response to 1.5 mM BOA treatment. BOA application significantly reduced photochemical fluorescence quenching (qP) indicating that the balance between excitation rate and electron transfer rate has changed leading to a more reduced state of PSII reaction centers. Non photochemical quenching (NPQ) was also significantly reduced by BOA

  12. Combined effects of dissolved humic acids and tourmaline on the accumulation of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) in Lactuca sativa.

    PubMed

    Wang, Cuiping; Ma, Chuanxin; Jia, Weili; Wang, Dong; Sun, Hongwen; Xing, Baoshan

    2017-08-05

    In order to investigate the effects of dissolved humic acid (DHA) and tourmaline on uptake of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) by Lactuca sativa, different fractions of DHA, including DHA1 and DHA4, as well as different doses of tourmaline were introduced into BDE-153 contaminated solutions for plant growth. The levels of BDE-153 in L. sativa tissues were positively correlated with the Fe levels (R(2) = 0.9264) in seedings of the treatments with different doses of tourmaline. However, when adding DHA1 and DHA4 into the system, the correlation coefficients (R(2)) decreased to 0.6976 and 0.5451 from 0.9264, respectively. In contrast with the Fe contents, the presence of DHAs didn't affect the R(2) between the levels of BDE-153 and the lipid contents in plant tissues. Our results indicated that both DHA1 and DHA4 could severely alter the BDE-153 uptake by L. sativa through reducing the Fe uptake instead of the lipid contents. Additionally, DHA4 exhibited much stronger abilities to alter the BDE-153 accumulation than DHA1. Transmission electron microscopy (TEM) observations indicated that either DHA1 or tourmaline or co-treatment with DHA and tourmaline had no negative impact on L. sativa at the cellular level. The present study provides important information for the impacts of different fractions of DHA extracted from soil on the BDE-153 migration in plant systems. Moreover, we elucidated the importance of the iron in tourmaline for migration of the polybrominated diphenyl ethers (PBDEs) in plant systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L.

    PubMed

    Freitas, Aline Silva; Fontes Cunha, Isabela Martinez; Andrade-Vieira, Larissa Fonseca; Techio, Vânia Helena

    2016-02-01

    Spent Pot Liner (SPL) is a solid waste from the aluminum industry frequently disposed of in industrial landfills; it can be leached and contaminate the soil, sources of drinking water and plantations, and thus may pose a risk to human health and to ecosystems. Its composition is high variable, including cyanide, fluoride and aluminum salts, which are highly toxic and environmental pollutants. This study evaluated the effect of SPL and its main components on root growth and the mitosis of Lactuca sativa, by investigating the mechanisms of cellular and chromosomal alterations with the aid of immunolocalization. To this end, newly emerged roots of L. sativa were exposed to SPL and its main components (solutions of cyanide, fluoride and aluminum) and to calcium chloride (control) for 48h. After this, root length was measured and cell cycle was examined by means of conventional cytogenetics and immunolocalization. Root growth was inhibited in the treatments with SPL and aluminum; chromosomal and nuclear alterations were observed in all treatments. The immunolocalization evidenced normal dividing cells with regular temporal and spatial distribution of histone H3 phosphorylation at serine 10 (H3S10ph). However, SPL and its main components inhibited the phosphorylation of histone H3 at serine 10, inactivated pericentromeric regions and affected the cohesion of sister chromatids, thus affecting the arrangement of chromosomes in the metaphase plate and separation of chromatids in anaphase. In addition, these substances induced breaks in pericentromeric regions, characterized as fragile sites.

  14. [Combination of phosphorus solubilizing and mobilizing fungi with phosphate rocks and volcanic materials to promote plant growth of lettuce (Lactuca sativa L.)].

    PubMed

    Velázquez, María S; Cabello, Marta N; Elíades, Lorena A; Russo, María L; Allegrucci, Natalia; Schalamuk, Santiago

    2017-09-08

    Arbuscular mycorrhizal fungi (AMF) increase the uptake of soluble phosphates, while phosphorus solubilizing fungi (S) promote solubilization of insoluble phosphates complexes, favoring plant nutrition. Another alternative to maintaining crop productivity is to combine minerals and rocks that provide nutrients and other desirable properties. The aim of this work was to combine AMF and S with pyroclastic materials (ashes and pumices) from Puyehue volcano and phosphate rocks (PR) from Rio Chico Group (Chubut) - to formulate a substrate for the production of potted Lactuca sativa. A mixture of Terrafertil®:ashes was used as substrate. Penicillium thomii was the solubilizing fungus and Rhizophagus intraradices spores (AMF) was the P mobilizer (AEGIS® Irriga). The treatments were: 1) Substrate; 2) Substrate+AMF; 3) Substrate+S; 4) Substrate+AMF+S; 5) Substrate: PR; 6) Substrate: PR+AMF; 7) Substrate: PR+S and 8) Substrate: PR+AMF+S. Three replicates were performed per treatment. All parameters evaluated (total and assimilable P content in substrate, P in plant tissue and plant dry biomass) were significantly higher in plants grown in substrate containing PR and inoculas with S and AMF. This work confirms that the combination of S/AMF with Puyehue volcanic ashes, PR from the Río Chico Group and a commercial substrate promote the growth of L. sativa, thus increasing the added value of national geomaterials. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings.

    PubMed

    Nair, Prakash M Gopalakrishnan; Chung, Ill Min

    2014-10-01

    The physiological and molecular level changes of silver nanoparticles (AgNPs) exposure were investigated in rice (Oryza sativa L.) seedlings. The seedlings were exposed to different concentrations of (0, 0.2, 0.5 and 1 mg L(-1)) AgNPs for one week. Significant reduction in root elongation, shoot and root fresh weights, total chlorophyll and carotenoids contents were observed. Exposure to 0.5 and 1 mg L(-1) of AgNPs caused significant increase in hydrogen peroxide formation and lipid peroxidation in shoots and roots, increased foliar proline accumulation and decreased sugar contents. AgNPs exposure resulted in a dose dependant increase in reactive oxygen species generation and also caused cytotoxicity as evidenced by increased dihydroethidium, 3'-(p-hydroxyphenyl) fluorescein and propidium iodide fluorescence. Tetramethylrhodamine methyl ester assay showed decreased mitochondrial membrane potential with increasing concentrations of AgNPs exposure in roots. Real Time PCR analysis showed differential transcription of genes related to oxidative stress tolerance viz. FSD1, MSD1, CSD1, CSD2, CATa, CATb, CATc, APXa and APXb in shoots and roots of rice seedlings. The overall results suggest that exposure to AgNPs caused significant physiological and molecular level changes, oxidative stress and also resulted in the induction oxidative stress tolerance mechanisms in rice seedlings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterization of photosystem I in rice (Oryza sativa L.) seedlings upon exposure to random positioning machine.

    PubMed

    Chen, Boya; Zhang, Aihong; Lu, Qingtao; Kuang, Tingyun; Lu, Congming; Wen, Xiaogang

    2013-09-01

    To gain a better understanding of how photosynthesis is adapted under altered gravity forces, photosynthetic apparatus and its functioning were investigated in rice (Oryza sativa L.) seedlings grown in a random positioning machine (RPM). A decrease in fresh weight and dry weight was observed in rice seedlings grown under RPM condition. No significant changes were found in the chloroplast ultrastructure and total chlorophyll content between the RPM and control samples. Analyses of chlorophyll fluorescence and thermoluminescence demonstrate that PSII activity was unchanged under RPM condition. However, PSI activity decreased significantly under RPM condition. 77 K fluorescence emission spectra show a blue-shift and reduction of PSI fluorescence emission peak in the RPM seedlings. In addition, RPM caused a significant decrease in the amplitude of absorbance changes of P700 at 820 nm (A 820) induced by saturated far-red light. Moreover, the PSI efficiency (Φ I) decreased significantly under RPM condition. Immunoblot and blue native gel analyses further illustrate that accumulation of PSI proteins was greatly decreased in the RPM seedlings. Our results suggest that PSI, but not PSII, is down-regulated under RPM condition.

  17. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid.

    PubMed

    Hussain, M Iftikhar; Reigosa, Manuel J

    2011-11-01

    This study investigated the effects of cinnamic acid (CA) on growth, biochemical and physiological responses of Lactuca sativa L. CA (0.1, 0.5, 1.0 and 1.5 mM) treatments decreased plant height, root length, leaf and root fresh weight, but it did not affect the leaf water status. CA treatment (1.5 mM) significantly reduced F(v), F(m), photochemical efficiency of PSII (F(v)/F(m)) and quantum yield of PSII (ΦPSII) photochemistry in L. sativa. The photochemical fluorescence quenching (qP) and non-photochemical quenching (NPQ) were reduced after treatment with 1.5 mM CA. Fraction of photon energy absorbed by PS II antennae trapped by "open" PS II reaction centers (P) was reduced by CA (1.5 mM) while, portion of absorbed photon energy thermally dissipated (D) and photon energy absorbed by PSII antennae and trapped by "closed" PSII reaction centers (E) was increased. Carbon isotope composition ratios (δ(13)C) was less negative (-27.10) in CA (1.5 mM) treated plants as compared to control (-27.61). Carbon isotope discrimination (Δ(13)C) and ratio of intercellular CO(2) concentration (ci/ca) from leaf to air were also less in CA treated plants. CA (1.5 mM) also decreased the leaf protein contents of L. sativa as compared to control.

  18. Evaluation of analgesic, anti-inflammatory, anti-depressant and anti-coagulant properties of Lactuca sativa (CV. Grand Rapids) plant tissues and cell suspension in rats.

    PubMed

    Ismail, Hammad; Mirza, Bushra

    2015-06-27

    Lactuca sativa (lettuce) has been traditionally used for relieving pain, inflammation, stomach problems including indigestion and lack of appetite. Moreover, the therapeutic significance of L. sativa includes its anticonvulsant, sedative-hypnotic and antioxidant properties. In the present study, the MC (methanol and chloroform; 1:1) and aqueous extracts of seed and leaf along with cell suspension exudate were prepared. These extracts were explored for their analgesic, anti-inflammatory, antidepressant and anticoagulant effects by hot plate analgesic assay; carrageenan induced hind paw edema test, forced swimming test and capillary method for blood clotting respectively in a rat model. The results were analyzed using one-way Analysis of Variance (ANOVA) followed by Turkey multiple comparison test. Interestingly, the extracts and the cell suspension exudate showed dual inhibition by reducing pain and inflammation. The results indicated that the aqueous extracts of leaf exhibited highest analgesic and anti-inflammatory activities followed by leaf MC, cell suspension exudate, seed aqueous and seed MC extracts. The current findings show that aqueous and MC extracts of seed have the least immobility time in the forced swimming test, which could act as an anti-depressant on the central nervous system. The leaf extracts and cell suspension exudate also expressed moderate anti-depressant activities. In anticoagulant assay, the coagulation time of aspirin (positive control) and MC extract of leaf was comparable, suggesting strong anti-coagulant effect. Additionally, no abnormal behavior or lethality was observed in any animal tested. Taken together, L. sativa can potentially act as a strong herbal drug due to its multiple pharmaceutical effects and is therefore of interest in drug discovery and development of formulations.

  19. A Lactuca universal hybridizer, and its use in creation of fertile interspecific somatic hybrids.

    PubMed

    Chupeau, M C; Maisonneuve, B; Bellec, Y; Chupeau, Y

    1994-10-28

    A Lactuca sativa cv. Ardente line heterozygous for a gene encoding resistance to kanamycin, a positive and dominant trait, was crossed with cv. Girelle, which is heterozygous for a recessive albinism marker. The resulting seeds yielded 25% albino seedlings, of which 50% were also resistant to kanamycin. Such plantlets (KR, a) grown in vitro were used for preparation of universal hybridizer protoplasts, since green buds that can develop on kanamycin containing-medium should result from fusion with any wild-type protoplast. To test the practicability of this selection scheme, we fused L. sativa KR, a protoplasts with protoplasts derived from various wild Lactuca as well as various other related species. Protoplast-derived cell colonies were selected for resistance to kanamycin at the regeneration stage. Green buds were regenerated after fusion with protoplasts of L. tatarica and of L. perennis. So far, 9 interspecific hybrid plants have been characterized morphologically. In addition, random amplified polymorphic DNA (RAPD) analysis with selected primers confirmed that these plants are indeed interspecific hybrids. Some plants are female-fertile and production of backcross progenies with L. sativa is in progress. Since many desirable traits such as resistances to viruses, bacteria and fungi (Bremia lactucae) have been characterized in wild Lactuca species, the use of somatic hybridization in breeding programmes now appears a practical possibility.

  20. Role of ascorbic acid in the inhibition of polyphenol oxidase and the prevention of browning in different browning-sensitive Lactuca sativa var. capitata (L.) and Eruca sativa (Mill.) stored as fresh-cut produce.

    PubMed

    Landi, Marco; Degl'Innocenti, Elena; Guglielminetti, Lorenzo; Guidi, Lucia

    2013-06-01

    Polyphenol oxidase (PPO) and, to a minor extent, peroxidase (POD) represent the key enzymes involved in enzymatic browning, a negative process induced by cutting fresh-cut produce such as lettuce (Lactuca sativa) and rocket salad (Eruca sativa). Although ascorbic acid is frequently utilised as an anti-browning agent, its mechanism in the prevention of the browning phenomenon is not clearly understood. The activity of PPO and POD and their isoforms in lettuce (a high-browning and low-ascorbic acid species) and rocket salad (a low-browning and high-ascorbic species) was characterised. The kinetic parameters of PPO and in vitro ascorbic acid-PPO inhibition were also investigated. In rocket salad, PPO activity was much lower than that in lettuce and cutting induced an increase in PPO activity only in lettuce. Exogenous ascorbic acid (5 mmol L(-1)) reduced PPO activity by about 90% in lettuce. POD did not appear to be closely related to browning in lettuce. PPO is the main enzyme involved in the browning phenomenon; POD appears to play a minor role. The concentration of endogenous ascorbic acid in rocket salad was related to its low-browning sensitivity after cutting. In lettuce, the addition of ascorbic acid directly inhibited PPO activity. The results suggest that the high ascorbic acid content found in rocket salad plays an effective role in reducing PPO activity. © 2012 Society of Chemical Industry.

  1. Accumulation of nickel ions in seedlings of Vicia sativa L. and manifestations of oxidative stress.

    PubMed

    Ivanishchev, V V; Abramova, E A

    2015-05-01

    The accumulation of nickel ions in the roots and shoots of vetch seedlings (Vicia sativa L.) at increasing concentrations of nickel chloride in the medium was studied. It was shown that the accumulation of nickel in the shoots was increased when the concentration of nickel chloride in the medium was more than 50 μM. The bioconcentration factor and sustainability index for vetch seedlings were calculated under the experimental conditions. The obtained results were similar to parameters for other plants, grown on a nutrient medium or soil substrate. First, the obtained results allowed estimate the limits of nickel chloride concentrations for four of five zones, which correspond to the theoretical concept of dose-response curves in the studies on the influence of physiologically essential heavy metals on plants (Prasad 2010). Some parameters of oxidative stress caused by the presence of nickel chloride in the medium were shown. It seems that at low nickel concentrations in the medium in vetch seedlings the increase of several biochemical parameters (catalase activity and proline) caused by the high amylase activity in seeds.

  2. [Effects of copper stress on Medicago sativa seedlings leaf antioxidative system].

    PubMed

    Wang, Song-hua; Zhang, Hua; He, Qing-yuan

    2011-09-01

    This paper studied the effects of different concentration (0, 10, 30, 50, and 100 micromol x L(-1)) CuSO4 on the leaf physiological and biochemical characteristics of Medicago sativa seedlings cultured with 1/4-strength Hoagland nutrient solution. In treatments 30, 50, and 100 micromol x L(-1) of CuSO4, the leaf H2O2, OH., and MDA contents and Fe-SOD and EST activities increased, and GSH and AsA contents increased significantly. With increasing concentration Cu, the POD, GR, and APX activities increased gradually, and the CAT and G6PDH activities decreased after an initial increase. In treatments >10 micromol x L(-1) of Cu, the capacity of leaf antioxidative system in reactive oxygen species scavenging increased to prevent the injury from copper-induced oxidative stress.

  3. Transformation of Lactuca sativa L. with rol C gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo.

    PubMed

    Ismail, Hammad; Dilshad, Erum; Waheed, Mohammad Tahir; Sajid, Moniba; Kayani, Waqas Khan; Mirza, Bushra

    2016-12-01

    Lettuce is an important edible crop which possesses various medicinal properties. In this study Lactuca sativa L. (cv Grand Rapids) was transformed by Agrobacterium-mediated transformation with rol C gene. Transgene integration and expression was confirmed through PCR and semiquantitative RT-PCR. The transformed extracts were evaluated for their in vitro antioxidant and in vivo analgesic, anti-inflammatory and antidepressant activities in rats. The transformed plants showed 53-98 % increase in total phenolic and 45-58 % increase in total flavonoid contents compared with untransformed plants. Results of total reducing power and total antioxidant capacity exhibited 90-118 and 61-75 % increase in transformed plants, respectively. In contrast to control, DPPH, lipid peroxidation and DNA protection assay showed up to 37, 20 and 50 % enhancement in transformed plants, respectively. The extracts showed similar but significant enhancement behavior in hot plate analgesic and carrageenan-induced hind paw edema test. The transformed extracts showed 72.1 and 78.5 % increase for analgesic and anti-inflammatory activities, respectively. The transformants of rol C gene exhibited prominent antidepressant activity with 64-73 % increase compared with untransformed plants. In conclusion, the present work suggests that transformation with rol C gene can be used to generate lettuce with enhanced medicinally important properties, such as antioxidant, analgesic, anti-inflammatory and antidepressant potential.

  4. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season.

    PubMed

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (G s) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved P N of lettuce plants in a high-temperature season by both improvement of G s to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation.

  5. Evaluation of anti-inflammatory activity and fast UHPLC-DAD-IT-TOF profiling of polyphenolic compounds extracted from green lettuce (Lactuca sativa L.; var. Maravilla de Verano).

    PubMed

    Pepe, Giacomo; Sommella, Eduardo; Manfra, Michele; De Nisco, Mauro; Tenore, Gian Carlo; Scopa, Antonio; Sofo, Adriano; Marzocco, Stefania; Adesso, Simona; Novellino, Tiziana; Campiglia, Pietro

    2015-01-15

    Fresh cut vegetables represent a widely consumed food worldwide. Among these, lettuce (Lactuca sativa L.) is one of the most popular on the market. The growing interest for this "healthy" food is related to the content of bioactive compounds, especially polyphenols, that show many beneficial effects. In this study, we report the anti-inflammatory and antioxidant potential of polyphenols extracted from lettuce (var. Maravilla de Verano), in J774A.1 macrophages stimulated with Escherichia coli lipopolysaccharide (LPS). Lettuce extract significantly decreased reactive oxygen species, nitric oxide release, inducible nitric oxide synthase and cycloxygenase-2 expression. A detailed quali/quantitative profiling of the polyphenolic content was carried out, obtaining fast separation (10 min), good retention time and peak area repeatability, (RSD% 0.80 and 8.68, respectively) as well as linearity (R(2)⩾ 0.999) and mass accuracy (⩽ 5 ppm). Our results show the importance in the diet of this cheap and popular food for his healthy properties.

  6. Metallic Nanoparticle (TiO2 and Fe3O4) Application Modifies Rhizosphere Phosphorus Availability and Uptake by Lactuca sativa.

    PubMed

    Zahra, Zahra; Arshad, Muhammad; Rafique, Rafia; Mahmood, Arshad; Habib, Amir; Qazi, Ishtiaq A; Khan, Saud A

    2015-08-12

    Application of engineered nanoparticles (NPs) with respect to nutrient uptake in plants is not yet well understood. The impacts of TiO2 and Fe3O4 NPs on the availability of naturally soil-bound inorganic phosphorus (Pi) to plants were studied along with relevant parameters. For this purpose, Lactuca sativa (lettuce) was cultivated on the soil amended with TiO2 and Fe3O4 (0, 50, 100, 150, 200, and 250 mg kg(-1)) over a period of 90 days. Different techniques, such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman, and Fourier transform infrared spectroscopy (FTIR) were used to monitor translocation and understand the possible mechanisms for phosphorus (P) uptake. The trends for P accumulation were different for roots (TiO2 > Fe3O4 > control) and shoots (Fe3O4 > TiO2 > control). Cystine and methionine were detected in the rhizosphere in Raman spectra. Affinities of NPs to adsorb phosphate ions, modifications in P speciation, and NP stress in the rhizosphere had possibly contributed to enhanced root exudation and acidification. All of these changes led to improved P availability and uptake by the plants. These promising results can help to develop an innovative strategy for using NPs for improved nutrient management to ensure food security.

  7. Particle trajectories in seeds of Lactuca sativa and chromosome aberrations after exposure to cosmic heavy ions on cosmos biosatellites 8 and 9

    NASA Astrophysics Data System (ADS)

    Facius, R.; Scherer, K.; Reitz, G.; Bücker, H.; Nevzgodina, L. V.; Maximova, E. N.

    1994-10-01

    The potentially specific importance of the heavy ions of the galactic cosmic radiation for radiation protection in manned spaceflight continues to stimulate in situ, i.e., spaceflight experiments to investigate their radiobiological properties. Chromosome aberrations as an expression of a direct assault on the genome are of particular interest in view of cancerogenesis being the primary radiation risk for man in space. In such investigations the establishment of the geometrical correlation between heavy ions' trajectories and the location of radiation sensitive biological substructures is an essential task. The overall qualitative and quantitative precision achieved for the identification of particle trajectories in the order of 2~10 μm as well as the contributing sources of uncertainties are discussed. We describe how this was achieved for seeds of Lactuca sativa as biological test organisms, whose location and orientation had to be derived from contact photographies displaying their outlines and those of the holder plates only. The incidence of chromosome aberrations in cells exposed during the COSMOS 1887 (Biosatellite 8) and the COSMOS 2044 (Biosatellite 9) mission was determined for seeds hit by cosmic heavy ions. In those seeds the incidence of both single and multiple chromosome aberrations was enhanced. The results of the Biosatellite 9 experiment, however, are confounded by spaceflight effects unrelated to the passage of heavy ions.

  8. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves.

    PubMed

    Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2015-01-01

    Recently, the so-called "plant factory with artificial lighting" (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight.

  9. Genotype variations in cadmium and lead accumulations of leafy lettuce (Lactuca sativa L.) and screening for pollution-safe cultivars for food safety.

    PubMed

    Zhang, Kun; Yuan, Jiangang; Kong, Wei; Yang, Zhongyi

    2013-06-01

    Heavy-metals in polluted soils can accumulate in plants and threaten crop safety. To evaluate the risk of heavy-metal pollution in leafy lettuce (Lactuca sativa L.), two pot experiments were conducted to investigate Cd and Pb accumulation and transfer potential in 28 cultivars of lettuce and to screen for low-Cd and low-Pb accumulative cultivars. In the three treatments, 5.2-fold, 4.8-fold and 4.8-fold differences in the shoot Cd concentration were observed between the cultivars with the highest and the lowest Cd concentrations, respectively. This genotype variation was sufficiently large to identify low-Cd accumulative genotypes to reduce Cd contamination in food. Cadmium accumulation in the low-Cd accumulative genotypes was significantly positively correlated with Pb accumulation. At the cultivar level, Cd and Pb accumulation in lettuce was stable and genotype-dependent. High Pb soil levels did not affect shoot Cd accumulation in lettuce. Lettuce was concluded to be at high risk for Cd pollution and low risk for Pb pollution. Among the tested cultivars, cvs. SJGT, YLGC, N518, and KR17 had the lowest Cd and Pb accumulation abilities in shoots and are thus important parental material for breeding pollution-safe cultivars to minimize Cd and Pb accumulation.

  10. Are uranium-contaminated soil and irrigation water a risk for human vegetables consumers? A study case with Solanum tuberosum L., Phaseolus vulgaris L. and Lactuca sativa L.

    PubMed

    Neves, O; Abreu, M M

    2009-11-01

    The knowledge of uranium concentration, in the products entering the human diet is of extreme importance because of their chemical hazard to health. Controlled field experiments with potatoes, beans and lettuce (Solanum tuberosum L., Phaseolus vulgaris L. and Lactuca sativa L.) were carried out in a contaminated soil used by local farmers located near a closed Portuguese uranium mine (Cunha Baixa, Mangualde). The soil with high average uranium levels (64-252 mg/kg) was divided in two plots, and irrigated with non-contaminated and uranium-contaminated water (<20 and >900 microg/L). Uranium maximum average concentration in the edible vegetables parts (mg/kg fresh weight) ranged in the following order: lettuce (234 microg/kg) > green bean (30 microg/kg) > potatoes without peel (4 microg/kg). Although uranium in soil, irrigation water and vegetables was high, the assessment of the health risk based on hazard quotient indicates that consumption of these vegetables does not represent potential adverse (no carcinogenic) effects for a local inhabitant during lifetime.

  11. Linking the morphological and metabolomic response of Lactuca sativa L exposed to emerging contaminants using GC × GC-MS and chemometric tools.

    PubMed

    Hurtado, Carlos; Parastar, Hadi; Matamoros, Víctor; Piña, Benjamín; Tauler, Romà; Bayona, Josep M

    2017-07-26

    The occurrence of contaminants of emerging concern (CECs) in irrigation waters (up to low μg L(-1)) and irrigated crops (ng g(-1) in dry weight) has been reported, but the linkage between plant morphological changes and plant metabolomic response has not yet been addressed. In this study, a non-targeted metabolomic analysis was performed on lettuce (Lactuca sativa L) exposed to 11 CECs (pharmaceuticals, personal care products, anticorrosive agents and surfactants) by irrigation. The plants were watered with different CEC concentrations (0-50 µg L(-1)) for 34 days under controlled conditions and then harvested, extracted, derivatised and analysed by comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). The resulting raw data were analysed using multivariate curve resolution (MCR) and partial least squares (PLS) methods. The metabolic response indicates that exposure to CECs at environmentally relevant concentrations (0.05 µg L(-1)) can cause significant metabolic alterations in plants (carbohydrate metabolism, the citric acid cycle, pentose phosphate pathway and glutathione pathway) linked to changes in morphological parameters (leaf height, stem width) and chlorophyll content.

  12. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves

    PubMed Central

    Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2015-01-01

    Recently, the so-called “plant factory with artificial lighting” (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight. PMID:26697055

  13. Production characteristics of lettuce Lactuca sativa L. in the frame of the first crop tests in the Higher Plant Chamber integrated into the MELiSSA Pilot Plant

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Lawson, Jamie; Stasiak, Michael; Dixon, Mike; Paille, Christel; Peiro, Enrique; Fossen, Arnaud; Godia, Francesc

    Micro-Ecological Life Support System Alternative (MELiSSA) is an artificial closed ecosystem that is considered a tool for the development of a bioregenerative life support system for manned space missions. One of the five compartments of MELiSSA loop -Higher Plant Chamber was recently integrated into the MELiSSA Pilot Plant facility at Universitat Aut`noma deo Barcelona. The main contributions expected by integration of this photosynthetic compartment are oxygen, water, vegetable food production and CO2 consumption. Production characteristics of Lactuca sativa L., as a MELiSSA candidate crop, were investigated in this work in the first crop experiments in the MELiSSA Pilot Plant facility. The plants were grown in batch culture and totaled 100 plants with a growing area 5 m long and 1 m wide in a sealed controlled environment. Several replicates of the experiments were carried out with varying duration. It was shown that after 46 days of lettuce cultivation dry edible biomass averaged 27, 2 g per plant. However accumulation of oxygen in the chamber, which required purging of the chamber, and decrease in the food value of the plants was observed. Reducing the duration of the tests allowed uninterrupted test without opening the system and also allowed estimation of the crop's carbon balance. Results of productivity, tissue composition, nutrient uptake and canopy photosynthesis of lettuce regardless of test duration are discussed in the paper.

  14. Abscisic Acid Is an Endogenous Inhibitor in the Regulation of Mannanase Production by Isolated Lettuce (Lactuca sativa cv Grand Rapids) Endosperms 1

    PubMed Central

    Dulson, Jacqueline; Bewley, J. Derek; Johnston, R. N.

    1988-01-01

    The production of mannanase, a cell-wall-degrading carbohydrase, can be manipulated in isolated lettuce (Lactuca sativa cv Grand Rapids) endosperms by changes in the volume of buffer in which they are incubated. The enzyme is produced when endosperms are incubated in a large volume, but not when incubated in a small volume, which is suggestive that an endogenous, diffusible inhibitor of mannanase production is being lost from the endosperms in a large volume (JD Bewley, P Halmer 1980/1981 Israel J Bot 29: 118-132). We have investigated the possibility that the phytohormone abscisic acid (ABA) is involved in this regulation of mannanase production in isolated lettuce endosperms. We find several correlations between the presence of the endogenous inhibitor and of ABA, i.e. (a) a `leachate' prepared from isolated lettuce endosperms induces synthesis of ABA-specific proteins in barley aleurone layers, indicating that incubation of endosperms in a large volume results in the diffusion of ABA therefrom into the surrounding medium; (b) fractionation of the components of a leachate by either polyvinylpyrrolidone-chromatography of C18 reversed-phase high performance liquid chromatography fails to separate the endogenous inhibitor from authentic ABA; and (c) changes in the incubation volume of endosperms result in changes in the amount of extractable ABA in the endosperms, as detected by ELISA. These results are consistent with a role for endogenous ABA in the regulation of mannanase production in isolated lettuce endosperms. Images Fig. 1 PMID:16666203

  15. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp.

    PubMed

    Lee, Min-Jeong; Son, Jung Eek; Oh, Myung-Min

    2014-01-30

    The production of high-quality crops based on phytochemicals is a strategy for accelerating the practical use of plant factories. Previous studies have demonstrated that ultraviolet (UV) light is effective in improving phytochemical production. This study aimed to determine the effect of various UV wavelengths on growth and phenolic compound accumulation in lettuce (Lactuca sativa L.) grown in a closed-type plant production system. Seven days, 1 day and 0.25 day were determined as the upper limit of the irradiation periods for UV-A, -B, and -C, respectively, in the lettuce based on physiological disorders and the fluorescence parameter F(v)/F(m). Continuous UV-A treatment significantly induced the accumulation of phenolic compounds and antioxidants until 4 days of treatment without growth inhibition, consistent with an increase in phenylalanine ammonia lyase (PAL) gene expression and PAL activity. Repeated or gradual UV-B exposure yielded approximately 1.4-3.6 times more total phenolics and antioxidants, respectively, than the controls did 2 days after the treatments, although both treatments inhibited lettuce growth. Repeated UV-C exposure increased phenolics but severely inhibited the growth of lettuce plants. Our data suggest that UV irradiation can improve the accumulation of phenolic compounds with antioxidant properties in lettuce cultivated in plant factories. © 2013 Society of Chemical Industry.

  16. Investigating the ability of Pseudomonas fluorescens UW4 to reduce cadmium stress in Lactuca sativa via an intervention in the ethylene biosynthetic pathway.

    PubMed

    Albano, Lucas J; Macfie, Sheila M

    2016-12-01

    A typical plant response to any biotic or abiotic stress, including cadmium (Cd), involves increased ethylene synthesis, which causes senescence of the affected plant part. Stressed plants can experience reduced ethylene and improved growth if they are inoculated with bacteria that have the enzyme ACC deaminase, which metabolizes the ethylene precursor ACC (1-aminocyclopropane-1-carboxylate). We investigated whether one such bacterium, Pseudomonas fluorescens UW4, reduces the production of ethylene and improves the growth of lettuce (Lactuca sativa) sown in Cd-contaminated potting material (PRO-MIX® BX). Plants were inoculated with the wild-type P. fluorescens UW4 or a mutant strain that cannot produce ACC deaminase. Cadmium-treated plants contained up to 50 times more Cd than did control plants. In noninoculated plants, Cd induced a 5-fold increase in ethylene concentration. The wild-type bacterium prevented Cd-induced reductions in root biomass but there was no relationship between Cd treatment and ethylene production in inoculated plants. In contrast, when the concentration of ethylene was plotted against the extent of bacterial colonization of the roots, increased colonization with wild-type P. fluorescens UW4 was associated with 20% less ethylene production. Ours is the first study to show that the protective effect of this bacterium is proportional to the quantity of bacteria on the root surface.

  17. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High-temperature Season

    PubMed Central

    Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong

    2016-01-01

    Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (Gs) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved PN of lettuce plants in a high-temperature season by both improvement of Gs to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation. PMID:27047532

  18. Proximate nutrient analyses of four species of submerged aquatic vegetation consumed by Florida manatee (Trichechus manatus latirostris) compared to romaine lettuce (Lactuca sativa var. longifolia).

    PubMed

    Siegal-Willott, Jessica L; Harr, Kendal; Hayek, Lee-Ann C; Scott, Karen C; Gerlach, Trevor; Sirois, Paul; Reuter, Mike; Crewz, David W; Hill, Richard C

    2010-12-01

    Free-ranging Florida manatees (Trichechus manatus latirostris) consume a variety of sea grasses and algae. This study compared the dry matter (DM) content, proximate nutrients (crude protein [CP], ether-extracted crude fat [EE], nonfiber carbohydrate [NFC], and ash), and the calculated digestible energy (DE) of sea grasses (Thalassia testudinum, Halodule wrightii, and Syringodium filiforme) collected in spring, summer, and winter, and an alga (Chara sp.) with those of romaine lettuce (Lactuca sativa var. longifolia). Neutral-detergent fiber (NDF), acid-detergent fiber (ADF), and lignin (L) measured after ash-extraction were also compared. Results of statistical tests (C = 0.01) revealed DM content was higher in aquatic vegetation than in lettuce (P = 0.0001), but NDF and ADF were up to threefold greater, EE (P = 0.00001) and CP (P = 0.00001) were 2-9 times less, and NFC (P = 0.0001) was 2-6 times lower in sea grass than in lettuce, on a DM basis. Chara was lower in NDF, ADF, L, EE, CP, and NFC relative to lettuce on a DM basis. Ash content (DM basis) was higher (P = 0.0001), and DE was 2-6 times lower in aquatic vegetation than in lettuce. Sea grass rhizomes had lower L and higher ash contents (DM basis) than sea grass leaves. Based on the nutrient analyses, romaine lettuce and sea grasses are not equivalent forages, which suggests that the current diet of captive Florida manatees should be reassessed.

  19. Elongation growth of the leaf sheath base of Avena sativa seedlings: regulation by hormones and sucrose

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Kaufman, P. B.

    1991-01-01

    The leaf sheath base of the seedling of Avena sativa was characterized for growth response to hormones and sucrose. Six day old plants, raised under a 10:14 hr light:dark cycle, were excised at the coleoptilar node and 1 cm above the node for treatment. The growth of the leaf sheath base was promoted by gibberellic acid (GA3) and this response was dose dependent. The lag to response initiation was approximately 4 hr. Growth with or without GA3 (10 micromoles) was transient, diminishing appreciably after 48 hr. The addition of 10 mM sucrose greatly prolonged growth; the effect of GA3 and sucrose was additive. Neither indole-3-acetic acid (IAA) nor the cytokinin N6-benzyladenine (BA), alone or in combination, promoted the growth of leaf sheath bases. However, both significantly inhibited the action of GA3. The inhibitory effect of IAA was dose dependent and was not affected by the addition of BA or sucrose. These results indicate that the growth of leaf sheath bases of Avena sativa is promoted specifically by gibberellin, that this action depends on the availability of carbohydrates from outside of the leaf sheath base, and that the promotional effect of GA3 can be modified by either auxins or cytokinins.

  20. Elongation growth of the leaf sheath base of Avena sativa seedlings: regulation by hormones and sucrose

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Kaufman, P. B.

    1991-01-01

    The leaf sheath base of the seedling of Avena sativa was characterized for growth response to hormones and sucrose. Six day old plants, raised under a 10:14 hr light:dark cycle, were excised at the coleoptilar node and 1 cm above the node for treatment. The growth of the leaf sheath base was promoted by gibberellic acid (GA3) and this response was dose dependent. The lag to response initiation was approximately 4 hr. Growth with or without GA3 (10 micromoles) was transient, diminishing appreciably after 48 hr. The addition of 10 mM sucrose greatly prolonged growth; the effect of GA3 and sucrose was additive. Neither indole-3-acetic acid (IAA) nor the cytokinin N6-benzyladenine (BA), alone or in combination, promoted the growth of leaf sheath bases. However, both significantly inhibited the action of GA3. The inhibitory effect of IAA was dose dependent and was not affected by the addition of BA or sucrose. These results indicate that the growth of leaf sheath bases of Avena sativa is promoted specifically by gibberellin, that this action depends on the availability of carbohydrates from outside of the leaf sheath base, and that the promotional effect of GA3 can be modified by either auxins or cytokinins.

  1. Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria.

    PubMed

    Bittencourt-Oliveira, M C; Hereman, T C; Macedo-Silva, I; Cordeiro-Araújo, M K; Sasaki, F F C; Dias, C T S

    2015-05-01

    We evaluated the effect of crude extracts of the microcystin-producing (MC+) cyanobacteria Microcystis aeruginosa on seed germination and initial development of lettuce and arugula, at concentrations between 0.5 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent, and compared it to crude extracts of the same species without the toxin (MC-). Crude extracts of the cyanobacteria with MC (+) and without MC (-) caused different effects on seed germination and initial development of the salad green seedlings, lettuce being more sensitive to both extracts when compared to arugula. Crude extracts of M. aeruginosa (MC+) caused more evident effects on seed germination and initial development of both species of salad greens than MC-. Concentrations of 75 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent induced a greater occurrence of abnormal seedlings in lettuce, due to necrosis of the radicle and shortening of this organ in normal seedlings, as well as the reduction in total chlorophyll content and increase in the activity of the antioxidant enzyme peroxidase (POD). The MC- extract caused no harmful effects to seed germination and initial development of seedlings of arugula. However, in lettuce, it caused elevation of POD enzyme activity, decrease in seed germination at concentrations of 75 μg.L(-1) (MC-75) and 100 μg.L(-1) (MC-100), and shortening of the radicle length, suggesting that other compounds present in the cyanobacteria extracts contributed to this result. Crude extracts of M. aeruginosa (MC-) may contain other compounds, besides the cyanotoxins, capable of causing inhibitory or stimulatory effects on seed germination and initial development of salad green seedlings. Arugula was more sensitive to the crude extracts of M. aeruginosa (MC+) and (MC-) and to other possible compounds produced by the cyanobacteria.

  2. Selective toxin effects on faster and slower growing individuals in the formation of hormesis at the population level - A case study with Lactuca sativa and PCIB.

    PubMed

    Belz, Regina G; Sinkkonen, Aki

    2016-10-01

    Natural plant populations have large phenotypic plasticity that enhances acclimation to local stress factors such as toxin exposures. While consequences of high toxin exposures are well addressed, effects of low-dose toxin exposures on plant populations are seldom investigated. In particular, the importance of 'selective low-dose toxicity' and hormesis, i.e. stimulatory effects, has not been studied simultaneously. Since selective toxicity can change the size distribution of populations, we assumed that hormesis alters the size distribution at the population level, and investigated whether and how these two low-dose phenomena coexist. The study was conducted with Lactuca sativa L. exposed to the auxin-inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB) in vitro. In two separate experiments, L. sativa was exposed to 12 PCIB doses in 24 replicates (50 plants/replicate). Shoot/root growth responses at the population level were compared to the fast-growing (≥90% percentile) and the slow-growing subpopulations (≤10% percentile) by Mann-Whitney U testing and dose-response modelling. In the formation of pronounced PCIB hormesis at the population level, low-dose effects proved selective, but widely stimulatory which seems to counteract low-dose selective toxicity. The selectivity of hormesis was dose- and growth rate-dependent. Stimulation occurred at lower concentrations and stimulation percentage was higher among slow-growing individuals, but partly or entirely masked at the population level by moderate or negligible stimulation among the faster growing individuals. We conclude that the hormetic effect up to the maximum stimulation may be primarily facilitated by an increase in size of the most slow-growing individuals, while thereafter it seems that mainly the fast-growing individuals contributed to the observed hormesis at the population level. As size distribution within a population is related to survival, our study hints that selective effects on slow

  3. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light

    PubMed Central

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m−2⋅s−1 irradiance for a 16 h⋅d−1 photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (Amax) and photosynthetic rate (Pn) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. Pn and Amax under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between Pn and shoot dry weight accumulation. PMID:27014285

  4. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    PubMed

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

  5. Uptake of arsenic species by turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) treated with roxarsone and its metabolites in chicken manure.

    PubMed

    Huang, Lian Xi; Yao, Li Xian; He, Zhao Huan; Zhou, Chang Min; Li, Guo Liang; Yang, Bao Mei; Li, Ying Fen

    2013-01-01

    Roxarsone is an organoarsenic feed additive that can be metabolised to other higher toxic arsenic (As) species in animal manure such as arsenate, arsenite, monomethylarsonic acid, dimethylarsinic acid, 3-amino-4-hydroxyphenylarsonic acid and other unknown As species. The accumulation, transport and distribution of As species in turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) amended with roxarsone and its metabolites in chicken manure were investigated. Results showed arsenite was the predominant As form, followed by arsenate in turnip and lettuce plants, and a low content of dimethylarsinic acid was detected only in lettuce roots. Compared with the control plants treated with chicken manure without roxarsone and its metabolites, the treatments containing roxarsone and its metabolites increased arsenite content by 2.0-3.2% in turnip shoots, by 6.6-6.7% in lettuce shoots, by 11-44% in turnip tubers and by 18-20% in lettuce roots at two growth stages. The enhanced proportion of arsenate content in turnip shoots, turnip tubers and lettuce roots was 4.3-14%, 20-35% and 70%, respectively, while dimethylarsinic acid content in lettuce roots increased 2.4 times. Results showed that the occurrence of dimethylarsinic acid in lettuce roots might be converted from the inorganic As species and the uptake of both inorganic and organic As compounds in turnip and lettuce plants would be enhanced by roxarsone and its metabolites in chicken manure. The pathway of roxarsone metabolites introduced into the human body via roxarsone → animal → manure → soil → crop was indicated.

  6. The use of nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Wahyuningsih, Sri; Wardiatno, Yusli

    2016-05-01

    In the recirculation aquaponic system (RAS), fish farming waste was utilized as a nutrient for plant, minimizing the water need, reducing the waste disposal into the environment, and producing the fish and plant as well. The study aimed to examine the growth of romaine lettuce (Lactuca sativa L. var. Longifolia) in aquaponic system without the addition of artificial nutrient. The nutrient relies solely on wastewater of nile tilapia (Oreochromis niloticus) cultivation circulated continuously on the aquaponic system. The results showed that tilapia weight reached 48.49 ± 3.92 g of T3 (tilapia, romaine lettuce, and inoculated bacteria), followed by T2 (tilapia and romaine lettuce) and T1 (tilapia) of 47.80 ± 1.97 and 45.89 ± 1.10 g after 35 days of experiment. Tilapia best performance in terms of growth and production occurred at T3 of 3.96 ± 0.44 g/day, 12.10 ± 0.63 %/day, 96.11 ± 1.44 % and 1.60 ± 0.07 for GR, SGR, SR, and FCR, respectively. It is also indicated by better water quality characteristic in this treatment. Romaine lettuce harvests of T2 and T3 showed no significant difference, with the final weight of 61.87 ± 5.59 and 57.74 ± 4.35 g. Overall, the integration of tilapia fish farming and romaine lettuce is potentially a promising aquaponic system for sustainable fish and horticulture plant production.

  7. A lettuce (Lactuca sativa) homolog of human Nogo-B receptor interacts with cis-prenyltransferase and is necessary for natural rubber biosynthesis.

    PubMed

    Qu, Yang; Chakrabarty, Romit; Tran, Hue T; Kwon, Eun-Joo G; Kwon, Moonhyuk; Nguyen, Trinh-Don; Ro, Dae-Kyun

    2015-01-23

    Natural rubber (cis-1,4-polyisoprene) is an indispensable biopolymer used to manufacture diverse consumer products. Although a major source of natural rubber is the rubber tree (Hevea brasiliensis), lettuce (Lactuca sativa) is also known to synthesize natural rubber. Here, we report that an unusual cis-prenyltransferase-like 2 (CPTL2) that lacks the conserved motifs of conventional cis-prenyltransferase is required for natural rubber biosynthesis in lettuce. CPTL2, identified from the lettuce rubber particle proteome, displays homology to a human NogoB receptor and is predominantly expressed in latex. Multiple transgenic lettuces expressing CPTL2-RNAi constructs showed that a decrease of CPTL2 transcripts (3-15% CPTL2 expression relative to controls) coincided with the reduction of natural rubber as low as 5%. We also identified a conventional cis-prenyltransferase 3 (CPT3), exclusively expressed in latex. In subcellular localization studies using fluorescent proteins, cytosolic CPT3 was relocalized to endoplasmic reticulum by co-occurrence of CPTL2 in tobacco and yeast at the log phase. Furthermore, yeast two-hybrid data showed that CPTL2 and CPT3 interact. Yeast microsomes containing CPTL2/CPT3 showed enhanced synthesis of short cis-polyisoprenes, but natural rubber could not be synthesized in vitro. Intriguingly, a homologous pair CPTL1/CPT1, which displays ubiquitous expressions in lettuce, showed a potent dolichol biosynthetic activity in vitro. Taken together, our data suggest that CPTL2 is a scaffolding protein that tethers CPT3 on endoplasmic reticulum and is necessary for natural rubber biosynthesis in planta, but yeast-expressed CPTL2 and CPT3 alone could not synthesize high molecular weight natural rubber in vitro.

  8. Standardized extract of Lactuca sativa Linn. and its fractions abrogates scopolamine-induced amnesia in mice: A possible cholinergic and antioxidant mechanism.

    PubMed

    Malik, Jai; Kaur, Jagpreet; Choudhary, Sunayna

    2017-02-28

    The present study was designed to evaluate the efficacy of Lactuca sativa (LS) Linn. (Asteraceae) against scopolamine- induced amnesia and to validate its traditional claim as memory enhancer. Ethanol extract of fresh LS leaves (LSEE), standardized on the basis of quercetin content, was successively partitioned using various solvents viz., hexane, ethyl acetate, and n-butanol in increasing order of polarity. LSEE (50, 100, and 200 mg/kg) and its various fractions (at a dose equivalent to dose of LSEE exhibiting maximum activity), administered orally for 14 days, were evaluated for their memory enhancing effect against scopolamine-induced (1 mg/kg, i.p.) amnesia in 3-4 months old male Laca mice (n = 6 in each group). The memory enhancing effect was evaluated using behavioural (elevated plus maze, novel object recognition and Morris water maze tests) and biochemical parameters (acetylcholinesterase activity, malonaldehyde, superoxide dismutase, nitrite, catalase, and reduced gultathione content). The results of the test substances were compared with both scopolamine and donepezil that was used as a standard memory enhancer and acetylcholinesterase inhibitor. Scopolamine elicit marked deterioration of memory and alteration in biochemical parameters in comparison to the control group. LSEE and its n-butanol and aqueous fractions significantly (P < 0.05) attenuated the scopolamine- induced amnesia that was evident in all the behavioural and biochemical test parameters. LSEE (200 mg/kg) and n-butanol fraction (15 mg/kg) exhibited maximum anti-amnesic effect among various tested dose levels. The results exhibited that LS prophylaxis attenuated scopolamine- induced memory impairment through its acetylcholinesterase inhibitory and antioxidant activity validating its traditional claim.

  9. Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.).

    PubMed

    Freitas, Marisa; Azevedo, Joana; Pinto, Edgar; Neves, Joana; Campos, Alexandre; Vasconcelos, Vitor

    2015-06-01

    Toxic cyanobacterial blooms are documented worldwide as an emerging environmental concern. Recent studies support the hypothesis that microcystin-LR (MC-LR) and cylindrospermopsin (CYN) produce toxic effects in crop plants. Lettuce (Lactuca sativa L.) is an important commercial leafy vegetable that supplies essential elements for human nutrition; thus, the study of its sensitivity to MC-LR, CYN and a MC-LR/CYN mixture is of major relevance. This study aimed to assess the effects of environmentally relevant concentrations (1, 10 and 100 µg/L) of MC-LR, CYN and a MC-LR/CYN mixture on growth, antioxidant defense system and mineral content in lettuce plants. In almost all treatments, an increase in root fresh weight was obtained; however, the fresh weight of leaves was significantly decreased in plants exposed to 100 µg/L concentrations of each toxin and the toxin mixture. Overall, GST activity was significantly increased in roots, contrary to GPx activity, which decreased in roots and leaves. The mineral content in lettuce leaves changed due to its exposure to cyanotoxins; in general, the mineral content decreased with MC-LR and increased with CYN, and apparently these effects are time and concentration-dependent. The effects of the MC-LR/CYN mixture were almost always similar to the single cyanotoxins, although MC-LR seems to be more toxic than CYN. Our results suggest that lettuce plants in non-early stages of development are able to cope with lower concentrations of MC-LR, CYN and the MC-LR/CYN mixture; however, higher concentrations (100 µg/L) can affect both lettuce yield and nutritional quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. A Lettuce (Lactuca sativa) Homolog of Human Nogo-B Receptor Interacts with cis-Prenyltransferase and Is Necessary for Natural Rubber Biosynthesis*

    PubMed Central

    Qu, Yang; Chakrabarty, Romit; Tran, Hue T.; Kwon, Eun-Joo G.; Kwon, Moonhyuk; Nguyen, Trinh-Don; Ro, Dae-Kyun

    2015-01-01

    Natural rubber (cis-1,4-polyisoprene) is an indispensable biopolymer used to manufacture diverse consumer products. Although a major source of natural rubber is the rubber tree (Hevea brasiliensis), lettuce (Lactuca sativa) is also known to synthesize natural rubber. Here, we report that an unusual cis-prenyltransferase-like 2 (CPTL2) that lacks the conserved motifs of conventional cis-prenyltransferase is required for natural rubber biosynthesis in lettuce. CPTL2, identified from the lettuce rubber particle proteome, displays homology to a human NogoB receptor and is predominantly expressed in latex. Multiple transgenic lettuces expressing CPTL2-RNAi constructs showed that a decrease of CPTL2 transcripts (3–15% CPTL2 expression relative to controls) coincided with the reduction of natural rubber as low as 5%. We also identified a conventional cis-prenyltransferase 3 (CPT3), exclusively expressed in latex. In subcellular localization studies using fluorescent proteins, cytosolic CPT3 was relocalized to endoplasmic reticulum by co-occurrence of CPTL2 in tobacco and yeast at the log phase. Furthermore, yeast two-hybrid data showed that CPTL2 and CPT3 interact. Yeast microsomes containing CPTL2/CPT3 showed enhanced synthesis of short cis-polyisoprenes, but natural rubber could not be synthesized in vitro. Intriguingly, a homologous pair CPTL1/CPT1, which displays ubiquitous expressions in lettuce, showed a potent dolichol biosynthetic activity in vitro. Taken together, our data suggest that CPTL2 is a scaffolding protein that tethers CPT3 on endoplasmic reticulum and is necessary for natural rubber biosynthesis in planta, but yeast-expressed CPTL2 and CPT3 alone could not synthesize high molecular weight natural rubber in vitro. PMID:25477521

  11. Mapping QTL, epistasis and genotype × environment interaction of antioxidant activity, chlorophyll content and head formation in domesticated lettuce (Lactuca sativa).

    PubMed

    Hayashi, Eiji; You, Youngsook; Lewis, Rosemary; Calderon, Mirna C; Wan, Grace; Still, David W

    2012-05-01

    Fruits and vegetables are rich sources of antioxidants in human diets and their intake is associated with chronic disease prevention. Lettuce (Lactuca sativa L.) is a common vegetable in diets worldwide, but its nutritional content is relatively low. To elucidate the genetic basis of antioxidant content in lettuce, we measured the oxygen radical absorbance capacity (ORAC) and chlorophyll (Chl) content as a proxy of β-carotene in an F(8) recombinant inbred line (RIL) in multiple production cycles at two different production sites. Plants were phenotyped at the open-leaf stage to measure genetic potential (GP) or at market maturity (MM) to measure the influence of head architecture ('head' or 'open'). Main effect quantitative trait loci (QTL) were identified at MM (three Chl and one ORAC QTL) and GP (two ORAC QTL). No main effect QTL for Chl was detected at GP, but epistatic interaction was identified in one pair of marker intervals for each trait at GP. Interactions with environment were also detected for both main and epistatic effects (two for main effect, and one for epistatic effect). Main effect QTL for plant architecture and nutritional traits at MM colocated to a single genomic region. Chlorophyll contents and ORAC values at MM were significantly higher and Chl a to Chl b ratios were lower in 'open' types compared to 'head' types. The nutritional traits assessed for GP showed a significant association with plant architecture suggesting pleiotropic effects or closely linked genes. Taken together, the antioxidant and chlorophyll content of lettuce is controlled by complex mechanisms and participating alleles change depending on growth stage and production environment.

  12. Effect of acute ingestion of fresh and stored lettuce (Lactuca sativa) on plasma total antioxidant capacity and antioxidant levels in human subjects.

    PubMed

    Serafini, Mauro; Bugianesi, Rossana; Salucci, Monica; Azzini, Elena; Raguzzini, Anna; Maiani, Giuseppe

    2002-12-01

    The present study investigated whether storage under modified-atmosphere packaging (MAP) affected the antioxidant properties of fresh lettuce (Lactuca sativa). Eleven healthy volunteers (six men, five women) consumed 250 g fresh lettuce, and blood was sampled before (0 h) and 2, 3 and 6 h after consumption. The protocol was repeated 3 d later with the same lettuce stored at 5 degrees C under MAP conditions (O2-N2 (5:95, v/v)). Results showed that after ingestion of fresh lettuce, plasma total radical-trapping antioxidant potential (TRAP), measured as area under the curve, was significantly higher (1.3 (sem 0.3) mmol/l per 6 h; P<0.05) than the value obtained with MAP-stored lettuce (0.1 (sem 0.2) mmol/l per 6 h). Plasma TRAP, quercetin and p-coumaric acid were significantly different from baseline values (P

  13. Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa)

    PubMed Central

    Park, Jong-Sug; Kim, Jung-Bong; Cho, Kang-Jin; Cheon, Choong-Ill; Sung, Mi-Kyung; Choung, Myoung-Gun

    2008-01-01

    The MYB transcription factors play important roles in the regulation of many secondary metabolites at the transcriptional level. We evaluated the possible roles of the Arabidopsis R2R3-MYB transcription factors in flavonoid biosynthesis because they are induced by UV-B irradiation but their associated phenotypes are largely unexplored. We isolated their genes by RACE-PCR, and performed transgenic approach and metabolite analyses in lettuce (Lactuca sativa). We found that one member of this protein family, AtMYB60, inhibits anthocyanin biosynthesis in the lettuce plant. Wild-type lettuce normally accumulates anthocyanin, predominantly cyanidin and traces of delphinidin, and develops a red pigmentation. However, the production and accumulation of anthocyanin pigments in AtMYB60-overexpressing lettuce was inhibited. Using RT-PCR analysis, we also identified the complete absence or reduction of dihydroflavonol 4-reductase (DFR) transcripts in AtMYB60- overexpressing lettuce (AtMYB60-117 and AtMYB60-112 lines). The correlation between the overexpression of AtMYB60 and the inhibition of anthocyanin accumulation suggests that the transcription factorAtMYB60 controls anthocyanin biosynthesis in the lettuce leaf. Clarification of the roles of the AtMYB60 transcription factor will facilitate further studies and provide genetic tools to better understand the regulation in plants of the genes controlled by the MYB-type transcription factors. Furthermore, the characterization of AtMYB60 has implications for the development of new varieties of lettuce and other commercially important plants with metabolic engineering approaches. PMID:18317777

  14. Toxicity of methyl tert butyl ether to soil invertebrates (springtails: Folsomia candida, Proisotoma minuta, and Onychiurus folsomi) and lettuce (Lactuca sativa).

    PubMed

    Dodd, Matthew; Addison, Janet A

    2010-02-01

    Experiments were conducted to assess the toxicity of methyl tert butyl ether (MTBE) to three species of Collembola (Proisotoma minuta, Folsomia candida, and Onychiurus folsomi) and lettuce (Lactuca sativa L.) using an artificial Organization for Economic Cooperation and Development (OECD) soil and field-collected sandy loam and silt loam soil samples. Soil invertebrate tests were carried out in airtight vials to prevent volatilization of MTBE out of the test units and to allow for direct head-space sampling and gas chromatography-mass spectrometry (GC-MS) analysis for residual MTBE. The use of the airtight vial protocol proved to be very successful, in that the measured MTBE concentrations at the beginning of the experiments were within 95% of nominal concentrations. The test methods used in this study could be used to test the toxicity of other volatile organic compounds to Collembola. The soil invertebrates tested had inhibitory concentration (ICx) and lethal concentration (LCx) values that ranged from 242 to 844 mg MTBE/kg dry soil. When the three test species of Collembola were tested under identical conditions in the artificial OECD soil, O. folsomi was the most sensitive collembolan, with a median inhibitory concentration (IC50; reproduction) of 296 mg MTBE/kg dry soil. The most sensitive endpoint for lettuce was an IC50 for root length of 81 mg MTBE/kg dry soil after 5 d of germination in OECD soil. Data on the loss of MTBE from the three test soils over time indicated that MTBE was retained in the silt loam soil longer than in either the sandy loam or the artificial OECD soil.

  15. A transgenic mutant of Lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance.

    PubMed

    Okubara, P A; Arroyo-Garcia, R; Shen, K A; Mazier, M; Meyers, B C; Ochoa, O E; Kim, S; Yang, C H; Michelmore, R W

    1997-11-01

    One hundred and ninety-two independent primary transformants of lettuce cv. Diana were obtained by co-cultivation with Agrobacterium tumefaciens carrying constructs containing maize Ac transposase and Ds. R2 families were screened for mutations at four genes (Dm) for resistance to downy mildew. One family, designated dm3t524, had lost resistance to an isolate of Bremia lactucae expressing the avirulence gene Avr3. Loss of resistance segregated as a single recessive allele of Dm3. The mutation was not due to a large deletion as all molecular markers flanking Dm3 were present. Loss of Dm3 activity co-segregated with a T-DNA from which Ds had excised. Genomic DNA flanking the right border of this T-DNA was isolated by inverse polymerase chain reaction. This genomic sequence was present in four to five copies in wild-type cv. Diana. One copy was missing in all eight deletion mutants of Dm3 and altered in dm3t524, indicating tight physical linkage to Dm3. Three open reading frames (ORFs) occurred in a 6.6-kb region flanking the insertion site; however, expression of these ORFs was not detected. No similarities were detected between these ORFs and resistance genes cloned from other species. Transgenic complementation with 11-to 27-kb genomic fragments of Diana spanning the insertion site failed to restore Dm3 function to two ethyl methanesulfonate (EMS)-induced mutants of Dm3 or to cv. Cobham Green, which naturally lacks Dm3 activity. Therefore, either the T-DNA inserted extremely close to, but not within, Dm3 and the mutation may have been caused by secondary movement of Ds, or Dm3 activity is encoded by a gene extending beyond the fragments used for complementation.

  16. Effect of proline on biochemical and molecular mechanisms in lettuce (Lactuca sativa L.) exposed to UV-B radiation.

    PubMed

    Aksakal, Ozkan; Tabay, Dilruba; Esringu, Aslıhan; Icoglu Aksakal, Feyza; Esim, Nevzat

    2017-02-15

    The purpose of the present study was to evaluate the role of proline (Pro) in relieving UV-B radiation-induced oxidative stress in lettuce. Lettuce seedlings were exposed to 3.3 W m(-2) UV-B radiation for 12 h after pre-treatment sprayed with 20 mM Pro. The data for malondialdehyde (MDA), hydrogen peroxide (H2O2), endogenous Pro level, the activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD)], total phenolic concentration, antioxidant capacity, expression of phenylalanine ammonia lyase (PAL), γ-tocopherol methyltransferase (γ-TMT) and proline dehydrogenase (ProDH) genes, phytohormone levels such as abscisic acid (ABA), gibberellic acid (GA), indole acetic acid (IAA) and salicylic acid (SA), soluble sugars and organic acids were recorded. It was found that Pro alleviated the oxidative damage in the seedlings of lettuce as demonstrated by lower lipid peroxidation and H2O2 content, increasing the endogenous Pro level, the activity of antioxidant enzymes, total phenolic concentration and the antioxidant capacity. Additionally, it was revealed that exogenous application of Pro enhanced the levels of GA, IAA, the concentrations of soluble sugars and organic acids and expressions of PAL, γ-TMT and ProDH genes as compared to the control. The results obtained in this study suggest that pre-treatment with exogenous Pro provides important contributions to the increase in the UV-B tolerance of lettuce by regulating the biochemical mechanisms of UV-B response.

  17. Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses.

    PubMed

    Wang, Yuwen; Jiang, Xiaohan; Li, Kang; Wu, Min; Zhang, Rufeng; Zhang, Lu; Chen, Guoxiang

    2014-04-01

    In the present study, photosynthetic responses induced by cadmium stress in chlorophyll biosynthesis, photochemical activities, the stability of thylakoid membranes chlorophyll-protein complexes and the chloroplast ultrastructure of the cereal crop Oryza sativa L. were characterized. Cadmium inhibited the biosynthesis of chlorophyll by interfering with activity of δ-aminolevulinic acid dehydratase in the rice seedlings. For the photochemical activities analyses, the extent of the decrease in photosystem II activity was much greater than that in the PS I activity. The variations in the chlorophyll a fluorescence parameters also indicated that cadmium toxicity drastically affected the photochemistry of PS II. Biochemical analyses by BN-PAGE and protein immunoblot showed that cadmium toxicity considerably affected the stability of PS II-core, cytb 6 /f, RuBisCO, PSI + LHCI and LHCII (Trimeric). We observed the rate of the thylakoid membranes protein degradation, was mainly at the level of RbcL, PsaA, Lhca1 and D1. In addition, the damages to chloroplast structure and thylakoid stacking analyzed by transmission electron microscopy were indicative of general disarray in the photosynthetic functions exerted by cadmium toxicity. These results are valuable for understanding the biological consequences of heavy metals contamination particularly in soils devoted to organic agriculture.

  18. Assessment of the impact of Aluminum on germination, early growth and free proline content in Lactuca sativa L.

    PubMed

    Silva, Patrícia; Matos, Manuela

    2016-09-01

    Aluminum (Al) toxicity is a major problem in crop production on acid soils. The use of industrial or municipal wastewaters, which may be contaminated with metals, for irrigation in agriculture is common over the world. This action can increase the concentration of these agents in the soil and decrease crops yields. In order to evaluate the toxicological effects of recommended Al levels in irrigation water, under acidic conditions, on lettuce, seeds of two cultivars ("cv Reine de Mai" and "cv White Boston") were exposed to five different Al concentrations (0, 0.05, 0.5, 5 and 20mg/L) and germination percentage, root and shoot lengths were measured. Also, the germination rate and the vigor index were calculated, and the proline content was estimated for all concentrations. Results showed that seed germination was not negatively affected by Al, but the germination rate decreased in both cultivars. For the other factors analyzed, with the exception of 20mg/L concentration for "cv White Boston", Al induced, in general, negative effects including the content of proline that increased in the seeds that were exposed to this metal. The "cv Reine de Mai" was more sensitive for the analyzed concentrations than the other cultivar.. The results indicated that even recommended Al concentrations for irrigation, under acidic conditions, can interfere negatively in seed germination and seedling establishment and possibly with crop production.

  19. Effect of aqueous and hydro-alcoholic extracts of lettuce (Lactuca sativa) seed on testosterone level and spermatogenesis in NMRI mice

    PubMed Central

    Ahangarpour, Akram; Oroojan, Ali Akbar; Radan, Maryam

    2014-01-01

    Background: One of the considerable uses of lettuce (Lactuca sativa) seed in traditional medicine has been to reduce semen, sperm and sexuality. Objective: The aim of this study was to investigate the effects of aqueous and hydro-alcoholic extracts of lettuce seed on testosterone level and spermatogenesis. Materials and Methods: In this experimental study 24 adult male NMRI mice weighing 20-25gr were purchased. Animals were randomly divided into 4 groups: controls, hydro-alcoholic (200 mg/kg) and aqueous extracts (50, 100mg/kg). The extracts were injected intraperitoneally once a day for 10 consecutive days. 2 weeks after the last injection, the mice were anaesthetized by ether and after laparatomy blood was collected from the heart to determine testosterone by ELISA assay kit. Then testis and cauda epididymis of all animals were removed for analyzing testis morphology and sperm count and viability. Results: Testis weight in hydro-alcoholic and aqueous extracts 100 mg/kg (p=0.001) and aqueous extract 50 mg/kg (p=0.008) groups was increased. Sperm viability in hydro-alcoholic (p=0.001) and aqueous extracts 50 (p=0.026), 100 mg/kg (p=0.045) groups was decreased, Also the results showed a significant decrease in sperm count in hydro-alcoholic (p=0.035) and aqueous extracts 50 mg/kg (p=0.006) groups in comparison with control group. Also there was a significant increase in serum level of testosterone in aqueous extract 50 mg/kg group in comparison with control (p=0.002) hydro-alcoholic (p=0.001) and aqueous extracts 100 mg/kg (p=0.003) groups. Conclusion: Present results demonstrated that hydro-alcoholic and aqueous 50 mg/kg extracts of lettuce seed have antispermatogenic effects, also aqueous extract 50 mg/kg increased serum level of testosterone in mice. Therefore we can suggest that lettuce seed could be a potential contraceptive agent. This article extracted from M.Sc. student research project. (Ali Akbar Oroojan) PMID:24799863

  20. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa.

    PubMed

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. "Batavia" (green) and cv. "Lollo Rossa" (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m(-2) s(-1) for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m(-2) s(-1) from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m(-2) s(-1) from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m(-2) s(-1) from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m(-2) s(-1) from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent.

  1. Influence of season growth, soils and irrigation water composition on the concentration of uranium in two lettuce (Lactuca sativa L.) varieties. Field experiments

    NASA Astrophysics Data System (ADS)

    Abreu, M. M.; Neves, O.; Marcelino, M.

    2012-04-01

    Former uranium mines areas are frequently the sources of environmental radionuclides problems even many years after the closure of mining operations. A concern for inhabitants from mining areas is the use of contaminated land or irrigation water for agriculture, and the potential transfer of metals from soils to vegetables, and to humans through the food chain. The main aim of this study was to compare the uranium concentration in lettuce (Lactuca sativa L. varieties Marady and Romana) grown in different seasons (autumn and summer) and exposed to high and low uranium concentrations both in irrigation water and agricultural soil. The content of uranium in irrigation water, soil (total and available fraction) and in lettuce leaf samples was analyzed in a certified laboratory. In the field experiments, two agricultural soils were divided into two plots (four replicates each); one of them was irrigated with uranium contaminated water (0.94 to 1.14 mg/L) and the other with uncontaminated water (< 0.02 mg/L). Irrigation with contaminated water together with highest soil uranium available concentration (10 to 13 mg/kg) had negative effects on both studied lettuce varieties, namely yield reduction (up to 53% and 87% in autumn and summer experiments, respectively) and increase of uranium leaf concentration (up to 1.4 and 7 fold in autumn and summer, respectively). Effect on lettuce yield was mainly due to the high soil salinity (1.01 to 6.31 mS/cm) as a consequence of high irrigation water electrical conductivity (up to 1.82 mS/cm) and low lettuce soil salinity tolerance (1 to 3 mS/cm). The highest lettuce uranium concentration (dry weight) observed was 2.13 and 5.37 mg/kg for Marady and Romana variety, respectively. The highest uranium lettuce concentration in Romana variety was also the effect of its growing in summer season when it was subject to greatest frequency and amount of water irrigation. The consumption by an adult of the lettuce that concentrate more uranium

  2. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa

    PubMed Central

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. “Batavia” (green) and cv. “Lollo Rossa” (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m−2 s−1 for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m−2 s−1 from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m−2 s−1 from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m−2 s−1 from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m−2 s−1 from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent. PMID:25767473

  3. Effect of aqueous and hydro-alcoholic extracts of lettuce (Lactuca sativa) seed on testosterone level and spermatogenesis in NMRI mice.

    PubMed

    Ahangarpour, Akram; Oroojan, Ali Akbar; Radan, Maryam

    2014-01-01

    One of the considerable uses of lettuce (Lactuca sativa) seed in traditional medicine has been to reduce semen, sperm and sexuality. The aim of this study was to investigate the effects of aqueous and hydro-alcoholic extracts of lettuce seed on testosterone level and spermatogenesis. In this experimental study 24 adult male NMRI mice weighing 20-25gr were purchased. Animals were randomly divided into 4 groups: controls, hydro-alcoholic (200 mg/kg) and aqueous extracts (50, 100mg/kg). The extracts were injected intraperitoneally once a day for 10 consecutive days. 2 weeks after the last injection, the mice were anaesthetized by ether and after laparatomy blood was collected from the heart to determine testosterone by ELISA assay kit. Then testis and cauda epididymis of all animals were removed for analyzing testis morphology and sperm count and viability. Testis weight in hydro-alcoholic and aqueous extracts 100 mg/kg (p=0.001) and aqueous extract 50 mg/kg (p=0.008) groups was increased. Sperm viability in hydro-alcoholic (p=0.001) and aqueous extracts 50 (p=0.026), 100 mg/kg (p=0.045) groups was decreased, Also the results showed a significant decrease in sperm count in hydro-alcoholic (p=0.035) and aqueous extracts 50 mg/kg (p=0.006) groups in comparison with control group. Also there was a significant increase in serum level of testosterone in aqueous extract 50 mg/kg group in comparison with control (p=0.002) hydro-alcoholic (p=0.001) and aqueous extracts 100 mg/kg (p=0.003) groups. Present results demonstrated that hydro-alcoholic and aqueous 50 mg/kg extracts of lettuce seed have antispermatogenic effects, also aqueous extract 50 mg/kg increased serum level of testosterone in mice. Therefore we can suggest that lettuce seed could be a potential contraceptive agent. This article extracted from M.Sc. student research project. (Ali Akbar Oroojan).

  4. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.)

    PubMed Central

    Verwaaijen, Bart; Wibberg, Daniel; Kröber, Magdalena; Winkler, Anika; Zrenner, Rita; Bednarz, Hanna; Niehaus, Karsten; Grosch, Rita; Pühler, Alfred

    2017-01-01

    The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1—symptomless, Zone 2—light brown discoloration, and Zone 3—dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited

  5. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.).

    PubMed

    Verwaaijen, Bart; Wibberg, Daniel; Kröber, Magdalena; Winkler, Anika; Zrenner, Rita; Bednarz, Hanna; Niehaus, Karsten; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2017-01-01

    The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1-symptomless, Zone 2-light brown discoloration, and Zone 3-dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited

  6. Lactucaxanthin - a potential anti-diabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats.

    PubMed

    Gopal, Sowmya Shree; Lakshmi, Magisetty Jhansi; Sharavana, Gurunathan; Sathaiah, Gunaseelan; Sreerama, Yadahally N; Baskaran, Vallikannan

    2017-03-22

    Intestinal and pancreatic α-amylase and α-glucosidase inhibitors offer an approach to lower the levels of post-prandial hyperglycemia through the control of dietary starch breakdown in digestion. This study hypothesized that lactucaxanthin (Lxn) in lettuce (Lactuca sativa) inhibits the activity of α-amylase and α-glucosidase. In this study, the interaction of Lxn with α-amylase and α-glucosidase in silico and its inhibitory effect on these enzymes were studied using in vitro and STZ-induced diabetic rat models. Lxn was isolated from lettuce with 96% purity confirmed by HPLC and LCMS. The in silico analysis showed that Lxn has a lower binding energy (-6.05 and -6.34 kcal mol(-1)) with α-amylase and α-glucosidase compared to their synthetic inhibitors, acarbose (-0.21 kcal mol(-1)) and miglitol (-2.78 kcal mol(-1)), respectively. In vitro α-amylase and α-glucosidase inhibition assays revealed that Lxn had IC50 values of 435.5 μg mL(-1) and 1.84 mg mL(-1), but acarbose has values of 2.5 and 16.19 μg mL(-1). The in vivo results showed an increased activity for α-amylase and α-glucosidase in the intestine (4.7 and 1.30 fold, p < 0.05) and pancreas (1.3 and 1.48 fold, p < 0.05) of STZ induced diabetic rats compared to normal rats. Whereas the activity decreased (p < 0.05) in the Lxn fed diabetic rats, except for the intestinal α-glucosidase activity (1.69 ± 0.12 PNP per min per mg protein). This was confirmed by the low blood glucose level (239.4 ± 18.2 mg dL(-1)) in diabetic rats fed Lxn compared to the diabetic group (572.2 ± 30.5 mg dL(-1), p < 0.05). Lxn significantly inhibited (p < 0.05) the activity of α-amylase and α-glucosidase and could be of medical and nutritional relevance in the treatment of diabetes.

  7. Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress.

    PubMed

    Ju, Shuming; Yin, Ningning; Wang, Liping; Zhang, Cuiying; Wang, Yukun

    2017-01-01

    Silicon (Si) has an important function in reducing the damage of environmental stress on plants. Acid rain is a serious abiotic stress factor, and Si can alleviate the stress induced by acid rain on plants. Based on these assumptions, we investigated the effects of silicon on the growth, root phenotype, mineral element contents, hydrogen peroxide (H2O2) and antioxidative enzymes of rice (Oryza sativa L.) seedling roots under simulated acid rain (SAR) stress. The results showed that the combined or single effects of Si and/or SAR on rice roots depend on the concentration of Si and the pH of the SAR. The combined or single effects of a low or moderate concentration of Si (1.0 or 2.0 mM) and light SAR (pH 4.0) enhanced the growth of rice roots, and the combined effects were stronger than those of the single treatment. A high concentration of Si (4.0 mM) or severe SAR (pH 2.0) exerted deleterious effects. The incorporation of Si (1.0, 2.0 or 4.0 mM) into SAR with pH 3.0 or 2.0 promoted the rice root growth, decreased the H2O2 content, increased the Si concentration and the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) activities, maintained the balance of mineral element (K, Ca, Mg, Fe, Zn, and Cu) concentrations in the roots of rice seedlings compared with SAR alone. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with a low or high concentration of Si (1.0 or 4.0 mM). The observed effects were due to disruptions in the absorption and utilization of mineral nutrients and impacts on the activity of antioxidant enzymes in roots, and this conclusion suggests that the degree of rice root damage caused by acid rain might be attributed to not only acid rain but also the level of Si in the soil.

  8. Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress

    PubMed Central

    Wang, Liping; Zhang, Cuiying; Wang, Yukun

    2017-01-01

    Silicon (Si) has an important function in reducing the damage of environmental stress on plants. Acid rain is a serious abiotic stress factor, and Si can alleviate the stress induced by acid rain on plants. Based on these assumptions, we investigated the effects of silicon on the growth, root phenotype, mineral element contents, hydrogen peroxide (H2O2) and antioxidative enzymes of rice (Oryza sativa L.) seedling roots under simulated acid rain (SAR) stress. The results showed that the combined or single effects of Si and/or SAR on rice roots depend on the concentration of Si and the pH of the SAR. The combined or single effects of a low or moderate concentration of Si (1.0 or 2.0 mM) and light SAR (pH 4.0) enhanced the growth of rice roots, and the combined effects were stronger than those of the single treatment. A high concentration of Si (4.0 mM) or severe SAR (pH 2.0) exerted deleterious effects. The incorporation of Si (1.0, 2.0 or 4.0 mM) into SAR with pH 3.0 or 2.0 promoted the rice root growth, decreased the H2O2 content, increased the Si concentration and the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) activities, maintained the balance of mineral element (K, Ca, Mg, Fe, Zn, and Cu) concentrations in the roots of rice seedlings compared with SAR alone. The alleviatory effects observed with a moderate concentration of Si (2.0 mM) were better than the effects obtained with a low or high concentration of Si (1.0 or 4.0 mM). The observed effects were due to disruptions in the absorption and utilization of mineral nutrients and impacts on the activity of antioxidant enzymes in roots, and this conclusion suggests that the degree of rice root damage caused by acid rain might be attributed to not only acid rain but also the level of Si in the soil. PMID:28291806

  9. Effector identification in the lettuce downy mildew Bremia lactucae by massively parallel transcriptome sequencing.

    PubMed

    Stassen, Joost H M; Seidl, Michael F; Vergeer, Pim W J; Nijman, Isaäc J; Snel, Berend; Cuppen, Edwin; Van den Ackerveken, Guido

    2012-09-01

    Lettuce downy mildew (Bremia lactucae) is a rapidly adapting oomycete pathogen affecting commercial lettuce cultivation. Oomycetes are known to use a diverse arsenal of secreted proteins (effectors) to manipulate their hosts. Two classes of effector are known to be translocated by the host: the RXLRs and Crinklers. To gain insight into the repertoire of effectors used by B. lactucae to manipulate its host, we performed massively parallel sequencing of cDNA derived from B. lactucae spores and infected lettuce (Lactuca sativa) seedlings. From over 2.3 million 454 GS FLX reads, 59 618 contigs were assembled representing both plant and pathogen transcripts. Of these, 19 663 contigs were determined to be of B. lactucae origin as they matched pathogen genome sequences (SOLiD) that were obtained from >270 million reads of spore-derived genomic DNA. After correction of cDNA sequencing errors with SOLiD data, translation into protein models and filtering, 16 372 protein models remained, 1023 of which were predicted to be secreted. This secretome included elicitins, necrosis and ethylene-inducing peptide 1-like proteins, glucanase inhibitors and lectins, and was enriched in cysteine-rich proteins. Candidate host-translocated effectors included 78 protein models with RXLR effector features. In addition, we found indications for an unknown number of Crinkler-like sequences. Similarity clustering of secreted proteins revealed additional effector candidates. We provide a first look at the transcriptome of B. lactucae and its encoded effector arsenal. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  10. Effect of treated and untreated domestic wastewater on seed germination, seedling growth and amylase and lipase activities in Avena sativa L.

    PubMed

    Fendri, Imen; Ben Saad, Rania; Khemakhem, Bassem; Ben Halima, Nihed; Gdoura, Radhouane; Abdelkafi, Slim

    2013-05-01

    Oats (Avena sativa L.) are a potential economically viable source of lipids and starch for use in foods. The aim of this study was to determine the effect of treated and untreated urban wastewater on seed germination, growth parameters and lipase and amylase activities in A. sativa. Untreated wastewater was highly toxic in nature and had an inhibitory effect on seed germination and seedling growth. However, after bacterial treatment, its toxicity was significantly reduced and it showed improved seed germination. It was observed that treated wastewater had no inhibitory effect on seedling growth parameters. However, A. sativa seeds treated with untreated effluent showed reduced lipase and amylase activities. Treated wastewater could be used for irrigation purposes provided that it satisfies other conditions fixed by legislation. © 2012 Society of Chemical Industry.

  11. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth.

    PubMed

    Thuesombat, Pakvirun; Hannongbua, Supot; Akasit, Sanong; Chadchawan, Supachitra

    2014-06-01

    With the advances in nanotechnology, silver nanoparticles (AgNPs) have been applied in many industries, increasing their potential exposure level in the environment, yet their environmental safety remains poorly evaluated. The possible effects of different sized AgNPs (20, 30-60, 70-120 and 150nm diameter) on jasmine rice, Oryza sativa L. cv. KDML 105, were investigated at different concentrations (0.1, 1, 10, 100 and 1000mg/L) upon seed germination and seedling growth. The results revealed that the level of seed germination and subsequent growth of those seedlings that germinated were both decreased with increasing sizes and concentrations of AgNPs. Based on the analysis of AgNPs accumulation in plant tissues, it implied that the higher uptake was found when the seeds were treated with the smaller AgNPs, 20nm diameter AgNPs, but it was trapped in the roots rather than transported to the leaves. These resulted in the less negative effects on seedling growth, when compared to the seed soaking with the larger AgNPs with 150nm diameter. The negative effects of AgNPs were supported by leaf cell deformation when rice seeds were treated with 150-nm-diameter AgNP at the concentration of 10 or 100mg/L during seed germination. These results further strengthen our understanding of environmental safety information with respect to nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. γ-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings.

    PubMed

    Ma, Xiaoling; Zhu, Changhua; Yang, Na; Gan, Lijun; Xia, Kai

    2016-12-01

    Excessive use of nitrogen (N) fertilizer has increased ammonium (NH4(+) ) accumulation in many paddy soils to levels that reduce rice vegetative biomass and yield. Based on studies of NH4(+) toxicity in rice (Oryza sativa, Nanjing 44) seedlings cultured in agar medium, we found that NH4(+) concentrations above 0.75 mM inhibited the growth of rice and caused NH4(+) accumulation in both shoots and roots. Use of excessive NH4(+) also induced rhizosphere acidification and inhibited the absorption of K, Ca, Mg, Fe and Zn in rice seedlings. Under excessive NH4(+) conditions, exogenous γ-aminobutyric acid (GABA) treatment limited NH4(+) accumulation in rice seedlings, reduced NH4(+) toxicity symptoms and promoted plant growth. GABA addition also reduced rhizosphere acidification and alleviated the inhibition of Ca, Mg, Fe and Zn absorption caused by excessive NH4(+) . Furthermore, we found that the activity of glutamine synthetase/NADH-glutamate synthase (GS; EC 6.3.1.2/NADH-GOGAT; EC1.4.1.14) in root increased gradually as the NH4(+) concentration increased. However, when the concentration of NH4(+) is more than 3 mM, GABA treatment inhibited NH4(+) -induced increases in GS/NADH-GOGAT activity. The inhibition of ammonium assimilation may restore the elongation of seminal rice roots repressed by high NH4(+) . These results suggest that mitigation of ammonium accumulation and assimilation is essential for GABA-dependent alleviation of ammonium toxicity in rice seedlings. © 2016 Scandinavian Plant Physiology Society.

  13. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman

    PubMed Central

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-01-01

    Objective To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). Methods The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. Results About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. Conclusions The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases. PMID:23646297

  14. Chemical composition of essential oils and in vitro antioxidant activity of fresh and dry leaves crude extracts of medicinal plant of Lactuca Sativa L. native to Sultanate of Oman.

    PubMed

    Al Nomaani, Rahma Said Salim; Hossain, Mohammad Amzad; Weli, Afaf Mohammed; Al-Riyami, Qasim; Al-Sabahi, Jamal Nasser

    2013-05-01

    To isolate and analyse the chemical composition in the essential oils and free radical scavenging activity of different crude extracts from the fresh and dry leaves of vegetable plants of Lactuca sativa L. (L. sativa). The essential oils and volatile chemical constituents were isolated from the fresh and dry leaves of L. sativa (lettuce) grown in Sultanate of Oman by hydro distillation method. The antioxidant activity of the crude extracts was carried out by well established free radical scavenging activity (DPPH) method. About 20 chemical compounds of different concentration representing 83.07% and 79.88% respectively were isolated and identified by gas chromatography-mass spectroscopy in the essential oils isolated from the fresh and dry leaves as α-pinene (5.11% and 4.05%), γ-cymene (2.07% and 1.92%), thymol (11.55% and 10.73%), durenol (52.00% and 49.79%), α-terpinene (1.66% and 1.34%), thymol acetate (0.99% and 0.67%), caryophyllene (2.11% and 1.98%), spathulenol (3.09% and 2.98%), camphene (4.11% and 3.65%), limonene (1.28% and 1.11%) representing these major chemical compounds. However, some other minor chemical constituents were also isolated and identified from the essential oil of lettuce including β-pinene, α-terpinolene, linalool, 4-terpineol, α-terpineol, o-methylthymol, L-alloaromadendrene and viridiflorene. The chemical constituents in the essential oils from the locally grown lettuce were identified in the following classes or groups of chemical compounds such as monoterpenes, sesquiterpenes volatile organic compounds and their oxygenated hydrocarbons. Therefore, the essential oils and the crude extracts from Omani vegetable species of lettuce are active candidates which would be used as antioxidant, antifungal or antimicrobial agents in new drugs preparation for therapy of infectious diseases.

  15. Effect of Three Insecticides and Two Herbicides on Rice (Oryza sativa) Seedling Germination and Growth

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) is one of the most important food crops worldwide. However, it is also a valuable tool in assessing toxicity of organic and inorganic compounds. For more than twenty years, it has been an approved species for standardized phytotoxicity experiments. The objective of this stu...

  16. Effect of caffeine on the expression pattern of water-soluble proteins in rice (Oryza sativa) seedlings.

    PubMed

    Deng, Wei-Wei; Sasamoto, Hamako; Ashihara, Hiroshi

    2015-05-01

    It has been suggested that caffeine acts as an allelochemical which influences the germination and growth of plants. The effect of caffeine on the expression profiles of proteins was investigated in shoot-root axes of rice (Oryza sativa) seedlings. Two-dimensional difference gel electrophoresis combined with Matrix-Assisted Laser Desorption/Ionization Time of Flight/Time of Flight Mass Spectrometry was employed for the separation and identification of proteins. The results indicated that amounts of 51 protein spots were reduced and 14 were increased by treatment with 1 mM caffeine. Twelve rice seedling proteins were identified. Down-regulated proteins were β-tubulin, sucrose synthase, glyceraldehyde-3-phosphate dehydrogenase, reversibly glycosylated polypeptide/α-1,4-glucan protein synthase and cytoplasmic malate dehydrogenase. In contrast, up-regulated proteins were alanyl-aminopeptidase, acetyl-CoA carboxylase, adenine phosphoribosyltransferase, NAD-malate dehydrogenase, ornithine carbamoyltransferase, glucose-6-phosphate isomerase and nuclear RNA binding protein. Possible alternation of metabolism caused by caffeine is discussed with the protein expression data.

  17. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Compartmental analysis of roots in intact rapidly-growing Spergularia marina and Lactuca sativa: partial characterization of the symplasms functional in the radial transport of Na/sup +/ and K/sup +/

    SciTech Connect

    Lazof, D.B.

    1987-01-01

    Techniques of compartmental analysis were adapted to the study of intact roots of rapidly-growing Spergularia marine and Lactuca sativa. Using large numbers of plants short time-courses of uptake and chase, /sup 42/K/sup +/ and /sup 22/Na/sup +/ transport could be resolved, even during a chase following a brief 10 minute labeling period. The use of intact plant systems allowed distinction of that portion of the isotope flux into the root, associated with the ion-conducting symplasms. A small compartment, which rapidly (t/sub .5/ < 1 min) exchanges with the external medium was implicated in the radial transport of N/sup +/, accounting for the observed obtention of linear translocation rates within minutes of transferring to labeled solution. The ion contents of this compartment varied in proportion to the external ion concentration. When K/sup +/ was at a high external concentration, labeled K/sup +/ exchanged into this same symplasm, but chasing a short pulse indicated that K/sup +/ transport to the xylem was not through a rapidly-exchanging compartment. At physiological concentrations of K/sup +/ the evidence indicated that transport of K/sup +/ across the root proceeded through a compartment which was not exchanging rapidly with the external medium. The rise to a linear rate of isotope translocation was gradual and translocation during a chase, following a brief pulse,was prolonged, indicating that this compartment retained its specific activity for a considerable period.

  19. Kinetics and Strain Specificity of Rhizosphere and Endophytic Colonization by Enteric Bacteria on Seedlings of Medicago sativa and Medicago truncatula

    PubMed Central

    Dong, Yuemei; Iniguez, A. Leonardo; Ahmer, Brian M. M.; Triplett, Eric W.

    2003-01-01

    The presence of human-pathogenic, enteric bacteria on the surface and in the interior of raw produce is a significant health concern. Several aspects of the biology of the interaction between these bacteria and alfalfa (Medicago sativa) seedlings are addressed here. A collection of enteric bacteria associated with alfalfa sprout contaminations, along with Escherichia coli K-12, Salmonella enterica serotype Typhimurium strain ATCC 14028, and an endophyte of maize, Klebsiella pneumoniae 342, were labeled with green fluorescent protein, and their abilities to colonize the rhizosphere and the interior of the plant were compared. These strains differed widely in their endophytic colonization abilities, with K. pneumoniae 342 and E. coli K-12 being the best and worst colonizers, respectively. The abilities of the pathogens were between those of K. pneumoniae 342 and E. coli K-12. All Salmonella bacteria colonized the interiors of the seedlings in high numbers with an inoculum of 102 CFU, although infection characteristics were different for each strain. For most strains, a strong correlation between endophytic colonization and rhizosphere colonization was observed. These results show significant strain specificity for plant entry by these strains. Significant colonization of lateral root cracks was observed, suggesting that this may be the site of entry into the plant for these bacteria. At low inoculum levels, a symbiosis mutant of Medicago truncatula, dmi1, was colonized in higher numbers on the rhizosphere and in the interior by a Salmonella endophyte than was the wild-type host. Endophytic entry of M. truncatula appears to occur by a mechanism independent of the symbiotic infections by Sinorhizobium meliloti or mycorrhizal fungi. PMID:12620870

  20. Silicon alleviates simulated acid rain stress of Oryza sativa L. seedlings by adjusting physiology activity and mineral nutrients.

    PubMed

    Ju, Shuming; Wang, Liping; Yin, Ningning; Li, Dan; Wang, Yukun; Zhang, Cuiying

    2017-03-16

    Silicon (Si) has been a modulator in plants under abiotic stresses, such as acid rain. To understand how silicon made an effect on rice (Oryza sativa L.) exposed to simulated acid rain (SAR) stress, the growth, physiologic activity, and mineral nutrient content in leaves of rice were investigated. The results showed that combined treatments with Si (1.0, 2.0, or 4.0 mM) and SAR (pH 4.0, 3.0, or 2.0) obviously improved the rice growth compared with the single treatment with SAR. Incorporation of Si into SAR treatment decreased malondialdehyde (MDA) content; increased soluble protein and proline contents; promoted CAT, POD, SOD, and APX activity; and maintained the K, Ca, Mg, Fe, Zn, Cu content balance in leaves of rice seedlings under SAR stress. The moderate concentration of Si (2.0 mM) was better than the low and high concentration of Si (1.0 and 4.0 mM). Therefore, application of Si could be a better strategy for maintaining the crop productivity in acid rain regions.

  1. Interactive effects of different inorganic As and Se species on their uptake and translocation by rice (Oryza sativa L.) seedlings.

    PubMed

    Hu, Ying; Duan, Gui-Lan; Huang, Yi-Zong; Liu, Yun-Xia; Sun, Guo-Xin

    2014-03-01

    There is a lack of information on the interactive relationship of absorption and transformation between two inorganic arsenic (As) species and two inorganic selenium (Se) species in rice grown under hydroponic condition. Interactive effects of inorganic As (As(III)) and (As(V)) and Se (Se(IV)and Se(VI)) species on their uptake, accumulation, and translocation in rice (Oryza sativa L.) seedlings were investigated in hydroponic culture. The results clearly showed the interactive effects of inorganic As and Se on their uptake by rice. The presence of Se reduced the sum of As species in the rice shoots regardless of Se speciation. If Se is present as Se(IV), then is it is accompanied by a corresponding increase of the sum of As species, but if Se is present as Se(VI), then there is no change in the sum of As species in rice roots. These effects are observed regardless of initial As speciation. When the rice plants are exposed to Se(IV), the presence of As increases the sum of Se species in the roots, and decreases the sum of Se species in the corresponding shoots. This effect is more pronounced for As(III) than for As(V). There is no effect on Se during exposure to Se(VI). Co-existence of As also increased SeMet in rice roots.

  2. Thymol Ameliorates Cadmium-Induced Phytotoxicity in the Root of Rice (Oryza sativa) Seedling by Decreasing Endogenous Nitric Oxide Generation.

    PubMed

    Wang, Ting-Ting; Shi, Zhi Qi; Hu, Liang-Bin; Xu, Xiao-Feng; Han, Fengxiang X; Zhou, Li-Gang; Chen, Jian

    2017-08-30

    Thymol has been developed as medicine and food preservative due to its immune-regulatory effect and antimicrobial activity, respectively. However, little is currently known about the role of thymol in the modulation of plant physiology. In the present study, we applied biochemical and histochemical approaches to investigate thymol-induced tolerance in rice (Oryza sativa) seedlings against Cd (cadmium) stress. Thymol at 20 μM recovered root growth completely upon CdCl2 exposure. Thymol pronouncedly decreased Cd-induced ROS accumulation, oxidative injury, cell death, and Cd(2+) accumulation in roots. Pharmaceutical experiments suggested that endogenous NO mediated Cd-induced phytotoxicity. Thymol decreased Cd-induced NO accumulation by suppressing the activity of NOS (nitric oxide synthase) and NR (nitrate reductase) in root. The application of NO donor (SNP, sodium nitroprusside) resulted in the increase in endogenous NO level, which in turn compromised the alleviating effects of thymol on Cd toxicity. Such findings may helpful to illustrate the novel role of thymol in the modulation of plant physiology, which may be applicable to improve crop stress tolerance.

  3. Effect of three insecticides and two herbicides on rice (Oryza sativa) seedling germination and growth.

    PubMed

    Moore, M T; Kröger, R

    2010-11-01

    Rice (Oryza sativa L.) is one of the most important food crops worldwide. However, it is also a valuable tool in assessing toxicity of organic and inorganic compounds. For more than 20 years, it has been an approved species for standardized phytotoxicity experiments. The objective of this study is to determine germination and radicle (root) and coleoptile (shoot) growth of rice seeds exposed to three insecticides and two herbicides, commonly used in the agricultural production landscape. Although no germination effects of pesticide exposure were observed, significant growth effects were noted between pesticide treatments. Coleoptile growth was significantly (p ≤ 0.05) lowered in metolachlor/atrazine mixture, diazinon, and lambda-cyhalothrin exposures when compared with controls. Radicles of fipronil-exposed seeds were significantly larger (p ≤ 0.05) when compared with controls. This research contributes to the phytotoxicity assessment database, in addition to laying the foundation for the use of rice as a phytoremediation tool for agricultural pesticide runoff.

  4. Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.).

    PubMed

    Mega, Ryosuke; Meguro-Maoka, Ayano; Endo, Akira; Shimosaka, Etsuo; Murayama, Seiji; Nambara, Eiji; Seo, Mitsunori; Kanno, Yuri; Abrams, Suzanne R; Sato, Yutaka

    2015-09-09

    Stress-induced abscisic acid (ABA) is mainly catabolized by ABA 8'-hydroxylase (ABA8ox), which also strictly regulates endogenous ABA levels. Although three members of the ABA8ox gene family are conserved in rice, it is not clear which stressors induce expression of these genes. Here, we found that OsABA8ox1 was induced by cold stress within 24 h and that OsABA8ox2 and OsABA8ox3 were not. In contrast, OsABA8ox2 and OsABA8ox3 were ABA-inducible, but OsABA8ox1 was not. OsABA8ox1, OsABA8ox2, and OsABA8ox3 restored germination of a cyp707a1/a2/a3 triple mutant of Arabidopsis to rates comparable to those of the wild type, indicating that OsABA8ox1, OsABA8ox2, and OsABA8ox3 function as ABA-catabolic genes in vivo. Transgenic rice lines overexpressing OsABA8ox1 showed decreased levels of ABA and increased seedling vigor at 15 °C. These results indicate that sustained low levels of ABA lead to increased seedling vigor during cold stress. On the other hand, excessively low endogenous ABA levels caused reduced drought and cold tolerance, although some of the transgenic rice lines expressing OsABA8ox1 at moderate levels did not show these harmful effects. Adequate regulation of endogenous ABA levels is thought to be crucial for maintaining seedling vigor under cold stress and for cold and drought tolerance in rice.

  5. Genetic characterization of quantitative resistance to Bremia lactucae, the causal organism of lettuce downy mildew

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the United States. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carryi...

  6. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application.

    PubMed

    Abu-Reidah, I M; Contreras, M M; Arráez-Román, D; Segura-Carretero, A; Fernández-Gutiérrez, A

    2013-10-25

    Lettuce (Lactuca sativa), a leafy vegetal widely consumed worldwide, fresh cut or minimally processed, constitutes a major dietary source of natural antioxidants and bioactive compounds. In this study, reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry (ESI-QTOF-MS) was applied for the comprehensive profiling of polar and semi-polar metabolites from three lettuce cultivars (baby, romaine, and iceberg). The UHPLC systems allowed the use of a small-particle-size C18 column (1.8 μm), with very fine resolution for the separation of up to seven isomers, and the QTOF mass analyzer enabled sensitive detection with high mass resolution and accuracy in full scan. Thus, a total of 171 compounds were tentatively identified by matching their accurate mass signals and suggested molecular formula with those previously reported in family Asteraceae. Afterwards, their structures were also corroborated by the MS/MS data provided by the QTOF analyzer. Well-known amino acids, organic acids, sesquiterpene lactones, phenolic acids and flavonoids were characterized, e.g. lactucin, lactucopicrin, caftaric acid, chlorogenic acid, caffeoylmalic acid, chicoric acid, isochlorogenic acid A, luteolin, and quercetin glycosides. For this plant species, this is the first available report of several isomeric forms of the latter polyphenols and other types of components such as nucleosides, peptides, and tryptophan-derived alkaloids. Remarkably, 10 novel structures formed by the conjugation of known amino acids and sesquiterpene lactones were also proposed. Thus, the methodology applied is a useful option to develop an exhaustive metabolic profiling of plants that helps to explain their potential biological activities and folk uses.

  7. Effects of dietary supplementation with red-pigmented leafy lettuce (Lactuca sativa) on lipid profiles and antioxidant status in C57BL/6J mice fed a high-fat high-cholesterol diet.

    PubMed

    Lee, Jeung Hee; Felipe, Penelope; Yang, Yoon Hyung; Kim, Mi Yeon; Kwon, Oh Yoon; Sok, Dai-Eun; Kim, Hyoung Chin; Kim, Mee Ree

    2009-04-01

    The present study was undertaken to assess the beneficial effects of a daily consumption of 8 % freeze-dried red-pigmented leafy lettuce (Lactuca sativa) on CVD. C57BL/6J mice were fed a high-fat high-cholesterol diet supplemented with or without red-pigmented leafy lettuce for 4 weeks. The present results showed that the red-pigmented leafy lettuce-supplemented diet significantly decreased the level of total and LDL-cholesterol and TAG in the plasma of the mice. The atherosclerotic index was calculated to be 46 % lower in the mice fed with the lettuce diet compared with the control diet. Lipid peroxidation measured by 2-thiobarbituric acid-reactive substances was markedly reduced in the plasma, liver, heart and kidney of the mice fed the lettuce diet. The content of antioxidants (total glutathione and beta-carotene) was significantly increased by lettuce supplementation. The antioxidant defence system by antioxidant enzymes including glutathione S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase and paraoxanase in blood or liver tissues was also increased, and showed the improved oxidative stress in the mice fed the lettuce diet. The measurement of tail DNA (%), tail extent moment and olive tail moment indicated that the lettuce diet increased the resistance of hepatocyte and lymphocyte DNA to oxidative damage. The present study showed that the supplementation of a high-cholesterol high-fat diet with 8 % red-pigmented leafy lettuce resulted in an improvement of plasma cholesterol and lipid levels, prevention of lipid peroxidation and an increase of the antioxidant defence system and, therefore, could contribute to reduce the risk factors of CVD.

  8. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    PubMed

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  9. Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings.

    PubMed

    Cai, Fei; Ren, Jinghua; Tao, Shu; Wang, Xilong

    2016-02-01

    Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10-26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress.

    PubMed

    Kabir, A H

    2016-07-01

    Chromium (Cr) is very toxic to both humans and plants. This investigation aimed to understand the physiological and molecular responses of rice seedlings to Cr stress. Cr toxicity did not significantly affect morphological features and Cr accumulation in roots and shoots in Pokkali but not in BRRI 51, although there was a reduction in chlorophyll concentration in leaves of both genotypes. These results imply that Pokkali has mechanisms to cope with Cr supplementation. We therefore performed quantitative real-time PCR on the expression pattern of two chelator genes, OsPCS1 and OsMT1, but there were no significant changes in expression in roots and shoots of Pokkali and BRRI 51 following Cr stress. This suggests that there was no metal sequestration following heavy metal stress in roots of these genotypes. Moreover, no expression of two heavy metal transporter genes, OsHMA3 and OsNRAMP1, was induced after Cr stress in roots and shoots, suggesting that these transporter genes are not induced by Cr stress or might not be involved in Cr uptake in rice. We also performed a targeted study on the effect of Cr on Fe uptake mechanisms. Our studies showed a consistent reduction in Fe uptake, Fe reductase activity and expression of Fe-related genes (OsFRO1 and OsIRT1) under Cr stress in both roots and leaves of Pokkali. In contrast, these parameters and genes were significantly increased in Cr-sensitive BRRI 51 under Cr stress. The results confirm that limiting Fe uptake through the down-regulation of Fe reductase and Fe transporter genes is the main strategy of Cr-tolerant Pokkali to cope with Cr stress. Finally, increased CAT, POD and GR activity and elevated glutathione and proline synthesis might provide strong antioxidant defence against Cr stress in Pokkali. Taken together, our findings reveal that Cr stress tolerance in rice (Pokkali) is not related to metal sequestration but is associated with reduced Fe transport and increased antioxidant defence.

  11. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.

    1992-01-01

    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  12. Importance of 'blue' photon levels for lettuce seedlings grown under red-light-emitting diodes

    NASA Technical Reports Server (NTRS)

    Hoenecke, M. E.; Bula, R. J.; Tibbitts, T. W.

    1992-01-01

    Light-emitting diodes (LEDs) with high-intensity output are being studied as a photosynthetic light source for plants. High-output LEDs have peak emission at approximately 660 nm concentrated in a waveband of +/- 30 nm. Lettuce (Lactuca sativa Grand Rapids') seedlings developed extended hypocotyls and elongated cotyledons when grown under these LEDs as a sole source of irradiance. This extension and elongation was prevented when the red LED radiation was supplemented with more than 15 micromoles m-2 s-1 of 400- to 500-nm photons from blue fluorescent lamps. Blue radiation effects were independent of the photon level of the red radiation.

  13. Transgenic lettuce seedlings carrying hepatitis B virus antigen HBsAg.

    PubMed

    Marcondes, Jackson; Hansen, Ekkehard

    2008-12-01

    The obtainment of transgenic edible plants carrying recombinant antigens is a desired issue in search for economic alternatives viewing vaccine production. Here we report a strategy for genetic transformation of lettuce plants (Lactuca sativa L.) using the surface antigen HBsAg of hepatitis B virus. Transgenic lettuce seedlings were obtained through the application of a regulated balance of plant growth regulators. Genetic transformation process was acquired by cocultivation of cotyledons with Agrobacterium tumefaciens harboring the recombinant plasmid. It is the first description of a lettuce Brazilian variety 'Vitória de Verão' genetically modified.

  14. Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa.

    PubMed

    Zaka, Mehreen; Abbasi, Bilal Haider; Rahman, Latif-Ur; Shah, Afzal; Zia, Muhammad

    2016-06-01

    The synthesis, characterisation and application of metal nanoparticles have become an important and attractive branch of nanotechnology. In current study, metallic nanoparticles of silver, copper, and gold were synthesised using environment friendly method (polyols process), and applied on medicinally important plant: Eruca sativa. Effects of application of these nanoparticles were evaluated on seed germination frequency and biochemical parameters of plant tissues. Seeds of E. sativa were germinated on Murashige and Skoog (MS) medium incorporated with various combinations of nanoparticles suspension (30 µg/ml). Phytotoxicity study showed that nanoparticles could induce stress in plants by manipulating the endogenous mechanisms. In response to these stresses, plants release various defensive compounds; known as antioxidant secondary metabolites. These plants derived secondary metabolites having a great potential in treating the common human ailments. In the authors study, small-sized nanoparticles showed higher toxicity levels and enhanced secondary metabolites production, total protein content, total flavonoids content and total phenolics content.

  15. Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress.

    PubMed

    He, Junyu; Ren, Yanfang; Chen, Xiulan; Chen, Hui

    2014-10-01

    Nitric oxide (NO) is a bioactive molecule in plants which mediates a variety of physiological processes and responses to biotic and abiotic stresses including heavy metals. In the present study, the effects of exogenous NO donor sodium nitroprusside (SNP) on rice seed germination and seedlings growth were investigated under Cd stress and a possible mechanism was postulated. The results indicated that 100μM Cd significantly decreased rice seed germination index, vigor index, root and shoot lengths as well as fresh weight compared to control. Exogenous SNP dose-dependently attenuated the inhibition of rice seed germination and thereafter seedling growth caused by Cd. The promoting effect was most pronounced at 30μM SNP. Cd exposure caused oxidative stress by elevating hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents in root and shoot of rice seedlings. 30μM SNP counteracted partly Cd toxicity by reducing the H2O2 and MDA contents of Cd-exposed seedlings. Meanwhile, application of SNP markedly stimulated the activities of superoxide dismutases (SOD), ascorbate peroxidases (APX), guaiacol peroxidase (POD) and catalases (CAT) compared with Cd treatment alone, thereby indicating the enhancement of the antioxidative capacity in the root and shoot under Cd stress. In addition, addition of 30μM SNP increased accumulation of proline in both root and shoot. The Cd accumulation in seedlings was significant reduced by SNP, implicating that the protective role of SNP was responsible for preventing Cd accumulation. However, the effects of SNP were reverted by addition of cPTIO, a NO scavenger, suggesting the protective roles of SNP might be related to the induction of NO. Furthermore, K3Fe(CN)6 and [Formula: see text] / [Formula: see text] had no similar roles as SNP. Based on these results, it can be concluded that SNP exerted an advantageous effect on alleviating the inhibitory effect of Cd on rice seed germination and seedling growth, which might interact with

  16. Underlying mechanisms and effects of hydrated lime and selenium application on cadmium uptake by rice (Oryza sativa L.) seedlings.

    PubMed

    Huang, Gaoxiang; Ding, Changfeng; Guo, Fuyu; Li, Xiaogang; Zhang, Taolin; Wang, Xingxiang

    2017-06-27

    A pot experiment was conducted to investigate the effects of selenium (Se) and hydrated lime (Lime), applied alone or simultaneously (Se+Lime), on growth and cadmium (Cd) uptake and translocation in rice seedlings grown in an acid soil with three levels of Cd (slight, mild, and moderate contamination). In the soil with 0.41 mg kg(-1) Cd (slight Cd contamination), Se addition alone significantly decreased Cd accumulation in the root and shoot by 35.3 and 40.1%, respectively, but this tendency weakened when Cd level in the soil increased. However, Se+Lime treatment effectively reduced Cd accumulation in rice seedlings in the soil with higher Cd levels. The results also showed that Se application alone strongly increased Cd concentration in the iron plaque under slight Cd contamination, which was suggested as the main reason underlying the inhibition of Cd accumulation in rice seedlings. Se+Lime treatment also increased the ability of the iron plaques to restrict Cd uptake by rice seedlings across all Cd levels and dramatically decreased the available Cd concentration in the soil. These results suggest that Se application alone would be useful in the soil with low levels of Cd, and the effect would be enhanced when Se application is combined with hydrated lime at higher Cd levels.

  17. Photosynthesis mediated decrease in cadmium translocation protect shoot growth of Oryza sativa seedlings up on ammonium phosphate-sulfur fertilization.

    PubMed

    Sebastian, Abin; Prasad, M N V

    2014-01-01

    Cadmium (Cd) stress responses in seedlings of two Indian rice cultivars, MTU 7029 and MO 16 were investigated under ammonium-based fertilizer amendment. Cd translocation was reduced by fertilizer treatment. An increase in the production of organic acids as well as nitrogenous compounds and maintenance of nutrient status were implicated for decrease in Cd translocation which in turn promoted shoot growth. Fertilizer treatment increased photosynthetic pigments and activity of antioxidant enzymes that ensured steady photosynthetic rate during Cd stress. MO 16 showed Cd exclusion characteristics when compared with MTU 7029. Photosynthesis performance of MO 16 was not affected by Cd treatments. These findings suggest that photosynthesis influenced decrease in Cd translocation enhanced shoot growth of seedlings during ammonium phosphate-sulfur fertilizer supplementation.

  18. Regulation of sugar metabolism in rice (Oryza sativa L.) seedlings under arsenate toxicity and its improvement by phosphate.

    PubMed

    Choudhury, Bhaskar; Mitra, Souvik; Biswas, Asok K

    2010-01-01

    The effect of arsenate with or without phosphate on the growth and sugar metabolism in rice seedlings cv. MTU 1010 was studied. Arsenate was found to be more toxic for root growth than shoot growth and water content of the seedlings gradually decreased with increasing concentrations. Arsenate exposure at 20 μM and 100 μM resulted in an increase in reducing sugar content and decrease in non-reducing sugar content. There was a small increase in starch content, the activity of starch phosphorylase was increased but α-amylase activity was found to be decreased. Arsenate toxicity also affected the activities of different carbohydrate metabolizing enzymes. The activities of sucrose degrading enzymes viz., acid invertase and sucrose synthase were increased whereas, the activity of sucrose synthesizing enzyme, viz. sucrose phosphate synthase declined. The combined application of arsenate with phosphate exhibited significant alterations of all the parameters tested under the purview of arsenate treatment alone which was congenial to better growth and efficient sugar metabolism in rice seedlings. Thus, the use of phosphorus enriched fertilizers may serve to ensure the production of healthy rice plants in arsenic contaminated soils.

  19. Differential deposition of H2A.Z in combination with histone modifications within related genes in Oryza sativa callus and seedling.

    PubMed

    Zhang, Kang; Xu, Wenying; Wang, Chunchao; Yi, Xin; Zhang, Wenli; Su, Zhen

    2017-01-01

    As a histone variant, H2A.Z is highly conserved among species and plays a significant role in diverse cellular processes. Here, we generated genome-wide maps of H2A.Z in Oryza sativa (rice) callus and seedling by combining chromatin immunoprecipitation using H2A.Z antibody and high-throughput sequencing. We found a significantly high peak and a small peak of H2A.Z distributed at the 5' and 3' ends of highly expressed genes, respectively. H2A.Z was also associated with inactive genes in both tissues. H3 lysine 4 trimethylation was associated with H2A.Z deposition at the 5' end of expressed genes, and H3 lysine 27 trimethylation peaks were partially associated with H2A.Z. In summary, our study provides global analysis data for the distribution of H2A.Z in the rice genome. Our results demonstrate that the differential deposition of H2A.Z might play important roles in gene transcription during rice development. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  20. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings.

    PubMed

    Zheng, Rui-Lun; Cai, Chao; Liang, Jian-Hong; Huang, Qing; Chen, Zheng; Huang, Yi-Zong; Arp, Hans Peter H; Sun, Guo-Xin

    2012-10-01

    A historically multi-metal contaminated soil was amended with biochars produced from different parts of rice plants (straw, husk and bran) to investigate how biochar can influence the mobility of Cd, Zn, Pb and As in rice seedlings (Oryza sativa L.). Rice shoot concentrations of Cd, Zn and Pb decreased by up to 98%, 83% and 72%, respectively, due to biochar amendment, though that of As increased by up to 327%. Biochar amendments significantly decreased pore water concentrations (C(pw)) of Cd and Zn and increased that of As. For Pb it depended on the amendment. Porewater pH, dissolved organic carbon, dissolved phosphorus, silicon in pore water and iron plaque formation on root surfaces all increased significantly after the amendments. The proportions of Cd and Pb in iron plaque increased by factors 1.8-5.7 and 1.4-2.8, respectively; no increase was observed for As and Zn. Straw-char application significantly and noticeably decreased the plant transfer coefficients of Cd and Pb. This study, the first to investigate changes in metal mobility and iron plaque formation in rice plants due to amending a historically contaminated soil with biochar, indicates that biochar has a potential to decrease Cd, Zn and Pb accumulations in rice shoot but increase that of As. The main cause is likely biochar decreasing the C(pw) of Cd and Zn, increasing the C(pw) of As, and increasing the iron plaque blocking capacity for Cd and Pb.

  1. Antioxidant enzymes and DPPH-radical scavenging activity in chilled and heat-shocked rice (Oryza sativa L.) seedlings radicles.

    PubMed

    Kang, Ho-Min; Saltveit, Mikal E

    2002-01-30

    Chilling whole rice seedlings at 5 degrees C significantly increased the time needed to recover linear growth and reduced the subsequent linear rate of radicle growth. Subjecting nonchilled seedlings to a 45 degrees C heat shock for up to 20 min did not alter subsequent growth, whereas a 3 min heat shock was optimal in reducing growth inhibition caused by 2 days of chilling. The activity of five antioxidant enzymes [superoxide dismutase (EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), glutathione reductase (GR; EC 1.6.4.2), and guaiacol peroxidase (GPX; EC 1.11.1.7)] and DPPH (1,1-diphenyl-2-picrylhydrazyl)-radical scavenging activity were measured in heat-shocked and/or chilled radicles. Heat shock slightly increased the activity of CAT, APX, and GR and suppressed the increase of GR and GPX activity during recovery from chilling. Increased CAT, APX, GR, and DPPH-radical scavenging activity and protection of CAT activity during chilling appear to be correlated with heat shock-induced chilling tolerance.

  2. Short-term effect of caffeine on purine, pyrimidine and pyridine metabolism in rice (Oryza sativa) seedlings.

    PubMed

    Deng, Wei-Wei; Katahira, Riko; Ashihara, Hiroshi

    2015-05-01

    As part of our studies on the physiological and ecological function of caffeine, we investigated the effect of exogenously supplied caffeine on purine, pyrimidine and pyridine metabolism in rice seedlings. We examined the effect of 1 mM caffeine on the in situ metabolism of 14C-labelled adenine, guanine, inosine, uridine, uracil, nicotinamide and nicotinic acid. The segments of 4-day-old dark-grown seedlings were incubated with these labelled compounds for 6 h. For purines, the incorporation of radioactivity from [8-(14)C]adenine and [8-(14)C]guanine into nucleotides was enhanced by caffeine; in contrast, incorporation into CO2 were reduced. The radioactivity in ureides (allantoin and allantoic acid) from [8-(14)C]guanine and [8-(14)C]inosine was increased by caffeine. For pyrimidines, caffeine enhanced the incorporation of radioactivity from [2-(14)C]uridine into nucleotides, which was accompanied by a decrease in pyrimidine catabolism. Such difference was not found in the metabolism of [2-(14)C]uracil. Caffeine did not influence the pyridine metabolism of [carbonyl-14C]- nicotinamide and [2-(14)C]nicotinic acid. The possible control steps of caffeine on nucleotide metabolism in rice are discussed.

  3. Evaluation of post-germinative lipid peroxidation and enzymatic antioxidant potential in lead absorbing oat (Avena sativa) seedlings.

    PubMed

    Bhushan, Bharat; Pal, Ajay; Kumar, Satish; Rajesh; Singh, Archana

    2015-01-01

    The objective of the present research was to study the impact of lead (Pb) on growth, metal uptake and antioxidative potential of oat seeds under metal stress. To achieve these objectives, few experiments were conducted to assess the effect of this particular metal on various anti-oxidative enzymes, during initial metabolism after germination, in presence of lead. Pb is not an oxido-reducing metal, the oxidative stress induced by Pb in growing oat seedlings appears to be an indirect effect of Pb toxicity, leading to production of ROS with simultaneous decrease in tissue levels of superoxide dismutase and catalase. Content of free radical like superoxide anion and metabolite such as H2O2 were found to be more in plumule as compared to radical and endosperm of oat seedling. In response to various concentrations of lead ranging from 25-400 ppm, activities of peroxidase, glutathione peroxidase and ascorbate peroxidase were induced in plumule, radical and cotyledon on the 3rd, 6th and 9th days after germination. Growth parameters like length, fresh weight and dry weight were substantially affected in addition to reduced germination upto 49% only. The results indicated that even at the lowest concentration tested, a low inhibition of growth was obtained.

  4. Effects of Seselin and Coumarin on Growth, Indoleacetic Acid Oxidase, and Peroxidase, with Special Reference to Cucumber (Cucumis sativa L.) Radicles

    PubMed Central

    Goren, Raphael; Tomer, Eliahu

    1971-01-01

    Seselin, a natural coumarin derivative isolated from citrus roots, inhibited radicle growth in seedlings of cucumber (Cucumis sativa), lettuce (Lactuca sativum), radish (Raphanus sativus), and wheat (Triticum aestivum) grown in the dark. Coumarin similarly inhibited radicle growth of cucumber seedlings. Growth retardation of the cucumber radicles was accompanied by an increased activity of peroxidase and indole-3-acetic acid oxidase. Both compounds antagonized indole-3-acetic acid-induced growth of wheat coleoptiles, whereas coumarin was much less effective than seselin in antagonizing gibberellic acid-induced release of reducing sugars from barley endosperm. It is suggested that seselin plays an important role in the regulation of root growth, and that it is the indole-3-acetic acid oxidase cofactor previously detected in citrus roots. Images PMID:16657614

  5. Extreme size and sequence variation in the ITS rDNA of Bremia lactucae.

    PubMed

    Choi, Young-Joon; Hong, Seung-Boem; Shin, Hyeon-Dong

    2007-02-01

    Bremia lactucae Regel (Chromista, Peronosporaceae) is an economically destructive pathogen, which causes downy mildew disease on lettuce (Lactuca sativa L.) worldwide. The ribosomal internal transcribed spacer (ITS) of Bremia lactucae isolates was analyzed for the first time. The ITS region of lettuce downy mildew was observed to have a size of 2458 bp; thereby, having one of the longest ITS sizes recorded to date. The majority of the extremely large sized ITS2 length of 2086 was attributed to the additional presences of nine repetitive elements with lengths of 179-194 bp, which between them shared the low homology of 48-69%. Comparison of the ITS2 sequences with the B. lactucae isolates from other host plants showed that isolates present on Lactuca sativa were distinct from those on L. indica var. laciniata, as well as Hemistepta and Youngia. We suggest the high degree of sequence heterogeneity exhibited in the ITS2 region of B. lactucae may warrant the specific detection and diagnosis of this destructive pathogen or its division into several distinct species.

  6. Mapping QTLs for traits related to salinity tolerance at seedling stage of rice (Oryza sativa L.): an agrigenomics study of an Iranian rice population.

    PubMed

    Ghomi, Khadijeh; Rabiei, Babak; Sabouri, Hossein; Sabouri, Atefeh

    2013-05-01

    Rice (Oryza sativa L.) is one of the most important food crops in the world, especially in Asian countries, and salinity is a major constraint to the sustainability and expansion of rice cultivation. Genetically improving salt tolerance of rice is a highly important objective of rice breeding programs. Traits such as salt tolerance are quantitatively inherited. Hence, mapping quantitative trait loci (QTL) with molecular markers can be very helpful to plant breeders in the field of agricultural genomics (AgriGenomics). In this investigation, QTL analysis of physiological traits related to salt tolerance was carried out using F2:4 population of rice derived from a cross between a salt-tolerant variety, Gharib (indica), and a salt-sensitive variety, Sepidroud (indica). A linkage map based on 148 F2 individuals was constructed with 131 SSR markers and 105 AFLP markers, covering 2475.7 cM of rice genome with an average distance of 10.48 cM between flanking markers. A total of 41 QTLs for twelve physiological traits under salinity stress were detected distributed on all rice chromosomes, some of them being reported for the first time. Also, overlapping of QTLs related to salt tolerance were observed in this study. Some of the identified QTLs on specific chromosomal regions explaining high phenotypic variance could be used for marker-assisted selection (MAS) programs. New QTLs retrieved in this study play an important role in growth of rice at seedling stage in an Iranian local population under high salinity conditions.

  7. Low pH-Induced Changes of Antioxidant Enzyme and ATPase Activities in the Roots of Rice (Oryza sativa L.) Seedlings

    PubMed Central

    Zhang, Yi-Kai; Zhu, De-Feng; Zhang, Yu-Ping; Chen, Hui-Zhe; Xiang, Jing; Lin, Xian-Qing

    2015-01-01

    Soil acidification is the main problem in the current rice production. Here, the effects of low pH on the root growth, reactive oxygen species metabolism, plasma membrane functions, and the transcript levels of the related genes were investigated in rice seedlings (Oryza sativa L.) in a hydroponic system at pH 3.5, 4.5, and 5.5. There were two hybrid rice cultivars in this trial, including Yongyou 12 (YY12, a japonica hybrid) and Zhongzheyou 1 (ZZY1, an indica hybrid). Higher H+ activity markedly decreased root length, the proportion of fine roots, and dry matter production, but induced a significant accumulation of hydrogen peroxide (H2O2), and led to serious lipid peroxidation in the roots of the two varieties. The transcript levels of copper/zinc superoxide dismutase 1 (Cu/Zn SOD1), copper/zinc superoxide dismutase 2 (Cu/Zn SOD2), catalase A (CATA) and catalase B (CATB) genes in YY12 and ZZY1 roots were significantly down-regulated after low pH exposure for two weeks. Meanwhile, a significant decrease was observed in the expression of the P-type Ca2+-ATPases in roots at pH 3.5. The activities of antioxidant enzymes (SOD, CAT) and plasma membrane (PM) Ca2+-ATPase in the two varieties were dramatically inhibited by strong rhizosphere acidification. However, the expression levels of ascorbate peroxidase 1 (APX1) and PM H+-ATPase isoform 7 were up-regulated under H+ stress compared with the control. Significantly higher activities of APX and PM H+-ATPase could contribute to the adaptation of rice roots to low pH. PMID:25719552

  8. Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedlings.

    PubMed

    Zhang, Yi-Kai; Zhu, De-Feng; Zhang, Yu-Ping; Chen, Hui-Zhe; Xiang, Jing; Lin, Xian-Qing

    2015-01-01

    Soil acidification is the main problem in the current rice production. Here, the effects of low pH on the root growth, reactive oxygen species metabolism, plasma membrane functions, and the transcript levels of the related genes were investigated in rice seedlings (Oryza sativa L.) in a hydroponic system at pH 3.5, 4.5, and 5.5. There were two hybrid rice cultivars in this trial, including Yongyou 12 (YY12, a japonica hybrid) and Zhongzheyou 1 (ZZY1, an indica hybrid). Higher H+ activity markedly decreased root length, the proportion of fine roots, and dry matter production, but induced a significant accumulation of hydrogen peroxide (H2O2), and led to serious lipid peroxidation in the roots of the two varieties. The transcript levels of copper/zinc superoxide dismutase 1 (Cu/Zn SOD1), copper/zinc superoxide dismutase 2 (Cu/Zn SOD2), catalase A (CATA) and catalase B (CATB) genes in YY12 and ZZY1 roots were significantly down-regulated after low pH exposure for two weeks. Meanwhile, a significant decrease was observed in the expression of the P-type Ca2+-ATPases in roots at pH 3.5. The activities of antioxidant enzymes (SOD, CAT) and plasma membrane (PM) Ca2+-ATPase in the two varieties were dramatically inhibited by strong rhizosphere acidification. However, the expression levels of ascorbate peroxidase 1 (APX1) and PM H+-ATPase isoform 7 were up-regulated under H+ stress compared with the control. Significantly higher activities of APX and PM H+-ATPase could contribute to the adaptation of rice roots to low pH.

  9. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    PubMed Central

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  10. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  11. Gibberellins regulate iron deficiency-response by influencing iron transport and translocation in rice seedlings (Oryza sativa).

    PubMed

    Wang, Baolan; Wei, Haifang; Xue, Zhen; Zhang, Wen-Hao

    2017-04-01

    Gibberellins (GAs) are a class of plant hormones with diverse functions. However, there has been little information on the role of GAs in response to plant nutrient deficiency. To evaluate the roles of GAs in regulation of Fe homeostasis, the effects of GA on Fe accumulation and Fe translocation in rice seedlings were investigated using wild-type, a rice mutant ( eui1 ) displaying enhnaced endogenous GA concentrations due to a defect in GA deactivation, and transgenic rice plants overexpressing OsEUI . Exposure to Fe-deficient medium significantly reduced biomass of rice plants. Both exogenous application of GA and an endogenous increase of bioactive GA enhanced Fe-deficiency response by exaggerating foliar chlorosis and reducing growth. Iron deficiency significantly suppressed production of GA 1 and GA 4 , the biologically active GAs in rice. Exogenous application of GA significantly decreased leaf Fe concentration regardless of Fe supply. Iron concentration in shoot of eui1 mutants was lower than that of WT plants under both Fe-sufficient and Fe-deficient conditions. Paclobutrazol, an inhibitor of GA biosynthesis, alleviated Fe-deficiency responses, and overexpression of EUI significantly increased Fe concentration in shoots and roots. Furthermore, both exogenous application of GA and endogenous increase in GA resulting from EUI mutation inhibited Fe translocation within shoots by suppressing OsYSL2 expression, which is involved in Fe transport and translocation. The novel findings provide compelling evidence to support the involvement of GA in mediation of Fe homeostasis in strategy II rice plants by negatively regulating Fe transport and translocation.

  12. Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit.

    PubMed

    Pyngrope, Samantha; Bhoomika, Kumari; Dubey, R S

    2013-04-01

    Water deficit for rice is a worldwide concern, and to produce drought-tolerant varieties, it is essential to elucidate molecular mechanisms associated with water deficit tolerance. In the present study, we investigated the differential responses of nonenzymatic antioxidants ascorbate (AsA), glutathione (GSH), and their redox pool as well as activity levels of enzymes of ascorbate-glutathione cycle in seedlings of drought-sensitive rice (Oryza sativa L.) cv. Malviya-36 and drought-tolerant cv. Brown Gora subjected to water deficit treatment of -1.0 and -2.1 MPa for 24-72 h using PEG-6000 in sand cultures. Water deficit caused increased production of reactive oxygen species such as O2[Symbol: see text](-), H2O2, and HO[Symbol: see text] in the tissues, and the level of production was higher in the sensitive than the tolerant cultivar. Water deficit caused reduction in AsA and GSH and decline in their redox ratios (AsA/DHA and GSH/GSSG) with lesser decline in tolerant than the sensitive seedlings. With progressive level of water deficit, the activities of monodehydroascorbate reductase, dehydroascorbate reductase, ascorbate peroxidase (APX), and glutathione transferase increased in the seedlings of both rice cultivars, but the increased activity levels were higher in the seedlings of drought-tolerant cv. Brown Gora compared to the sensitive cv. Malviya-36. Greater accumulation of proline was observed in stressed seedlings of tolerant than the sensitive cultivar. In-gel activity staining of APX revealed varying numbers of their isoforms and their differential expression in sensitive and tolerant seedlings under water deficit. Results suggest that an enhanced oxidative stress tolerance by a well-coordinated cellular redox state of ascorbate and glutathione in reduced forms and induction of antioxidant defense system by elevated activity levels of enzymes of ascorbate-glutathione cycle is associated with water deficit tolerance in rice.

  13. Introduction of Xylem Differentiation in Lactuca by Ethylene

    PubMed Central

    Miller, A. Raymond; Pengelly, William L.; Roberts, Lorin W.

    1984-01-01

    Evidence was obtained to support the hypothesis that ethylene is involved in xylem differentiation in primary pith explants of Lactuca sativa L. cv Romaine cultured in vitro. Xylem elements differentiated when explants were supplied indole-3-acetic acid (IAA) in combination with either the ethylene biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene-releasing agent 2-chloroethylphosphonic acid (CEPA), or kinetin. In contrast, no xylem elements differentiated in the presence of IAA, kinetin, ACC, or CEPA alone, or when kinetin was supplied together with ACC or CEPA. These results show that ethylene will substitute qualitatively for cytokinin during auxin-induced xylogenesis, and suggest that both ethylene and auxin are required for xylem differentiation in Lactuca. PMID:16663752

  14. Three combined quantitative trait loci from nonhost Lactuca saligna are sufficient to provide complete resistance of lettuce against Bremia lactucae.

    PubMed

    Zhang, Ningwen W; Pelgrom, Koen; Niks, Rients E; Visser, Richard G F; Jeuken, Marieke J W

    2009-09-01

    The nonhost resistance of wild lettuce (Lactuca saligna) to downy mildew (Bremia lactucae) is based on at least 15 quantitative trait loci (QTL), each effective at one or more plant developmental stages. We used QTL pyramiding (stacking) to determine how many of these QTL from L. saligna are sufficient to impart complete resistance towards B. lactucae to cultivated lettuce, L. sativa. The alleles of four of the most promising QTL, rbq4, rbq5, rbq6+11, and rbq7 are effective at both the young and adult plant stages. Lines with these four QTL in all possible combinations were generated by crossing the respective backcross inbred lines (BIL). Using the 11 resulting lines (combiBIL), we determined that combinations of three QTL, rbq4, rbq5, and rbq6+11, led to increased levels of resistance; however, one QTL, rbq7, did not add to the resistance level when combined with the other QTL. One line, tripleBIL268, which contains the three QTL rbq4, rbq5, and rbq6+11, was completely resistant to B. lactucae at the young plant stage. This suggests that these three QTL are sufficient to confer the complete resistance of the nonhost L. saligna and any additional QTL in L. saligna are redundant. Histological analysis of B. lactucae infection in L. saligna, the BIL, and the combiBIL 48 h after inoculation revealed different microscopical phenotypes of resistance. The QTL differed with respect to the stage of the infection process with which they interfered.

  15. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed

    PubMed Central

    2011-01-01

    Background High Salinity is a major environmental stress influencing growth and development of rice. Comparative proteomic analysis of hybrid rice shoot proteins from Shanyou 10 seedlings, a salt-tolerant hybrid variety, and Liangyoupeijiu seedlings, a salt-sensitive hybrid variety, was performed to identify new components involved in salt-stress signaling. Results Phenotypic analysis of one protein that was upregulated during salt-induced stress, cyclophilin 2 (OsCYP2), indicated that OsCYP2 transgenic rice seedlings had better tolerance to salt stress than did wild-type seedlings. Interestingly, wild-type seedlings exhibited a marked reduction in maximal photochemical efficiency under salt stress, whereas no such change was observed for OsCYP2-transgenic seedlings. OsCYP2-transgenic seedlings had lower levels of lipid peroxidation products and higher activities of antioxidant enzymes than wild-type seedlings. Spatiotemporal expression analysis of OsCYP2 showed that it could be induced by salt stress in both Shanyou 10 and Liangyoupeijiu seedlings, but Shanyou 10 seedlings showed higher OsCYP2 expression levels. Moreover, circadian rhythm expression of OsCYP2 in Shanyou 10 seedlings occurred earlier than in Liangyoupeijiu seedlings. Treatment with PEG, heat, or ABA induced OsCYP2 expression in Shanyou 10 seedlings but inhibited its expression in Liangyoupeijiu seedlings. Cold stress inhibited OsCYP2 expression in Shanyou 10 and Liangyoupeijiu seedlings. In addition, OsCYP2 was strongly expressed in shoots but rarely in roots in two rice hybrid varieties. Conclusions Together, these data suggest that OsCYP2 may act as a key regulator that controls ROS level by modulating activities of antioxidant enzymes at translation level. OsCYP2 expression is not only induced by salt stress, but also regulated by circadian rhythm. Moreover, OsCYP2 is also likely to act as a key component that is involved in signal pathways of other types of stresses-PEG, heat, cold, or ABA

  16. Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species.

    PubMed

    Giesbers, Anne K J; Pelgrom, Alexandra J E; Visser, Richard G F; Niks, Rients E; Van den Ackerveken, Guido; Jeuken, Marieke J W

    2017-08-21

    Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high-throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its cross-compatibility with the host species L. sativa enables the study of inheritance of nonhost resistance (NHR). We performed transient expression of candidate RXLR effector genes from B. lactucae in a diverse Lactuca germplasm set. Responses to two candidate effectors (BLR31 and BLN08) were genetically mapped and tested for co-segregation with disease resistance. BLN08 induced a hypersensitive response (HR) in 55% of the L. saligna accessions, but responsiveness did not co-segregate with resistance to Bl:24. BLR31 triggered an HR in 5% of the L. saligna accessions, and revealed a novel R gene providing complete B. lactucae race Bl:24 resistance. Resistant hybrid plants that were BLR31 nonresponsive indicated other unlinked R genes and/or nonhost QTLs. We have identified a candidate avirulence effector of B. lactucae (BLR31) and its cognate R gene in L. saligna. Concurrently, our results suggest that R genes are not required for NHR of L. saligna. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Phytotoxic activity of Ocimum tenuiflorum extracts on germination and seedling growth of different plant species.

    PubMed

    Islam, A K M Mominul; Kato-Noguchi, Hisashi

    2014-01-01

    Phytotoxic activity of Ocimum tenuiflorum (Lamiaceae) plant extracts was investigated against the germination and seedling growth of cress (Lepidium sativum), lettuce (Lactuca sativa), alfalfa (Medicago sativa), Italian ryegrass (Lolium multiflorum), barnyard grass (Echinochloa crus-galli), and timothy (Phleum pratense) at four different concentrations. The plant extracts at concentrations greater than 30 mg dry weight equivalent extract mL(-1) reduced significantly the total germination percent (GP), germination index (GI), germination energy (GE), speed of emergence (SE), seedling vigour index (SVI), and coefficient of the rate of germination (CRG) of all test species except barnyard grass and GP of lettuce. In contrast, time required for 50% germination (T 50) and mean germination time (MGT) were increased at the same or higher than this concentration. The increasing trend of T 50 and MGT and the decreasing trend of other indices indicated a significant inhibition or delay of germination of the test species by O. tenuiflorum plant extracts and vice versa. In addition, the shoot and root growth of all test species were significantly inhibited by the extracts at concentrations greater than 10 mg dry weight equivalent extract mL(-1). The I 50 values for shoot and root growth were ranged from 26 to 104 mg dry weight equivalent extract mL(-1). Seedling growth was more sensitive to the extracts compared to seed germination. Results of this study suggest that O. tenuiflorum plant extracts have phytotoxic properties and thus contain phytotoxic substances. Isolation and characterization of those substances from this plant may act as a tool for new natural, biodegradable herbicide development to control weeds.

  18. Phytotoxic Activity of Ocimum tenuiflorum Extracts on Germination and Seedling Growth of Different Plant Species

    PubMed Central

    2014-01-01

    Phytotoxic activity of Ocimum tenuiflorum (Lamiaceae) plant extracts was investigated against the germination and seedling growth of cress (Lepidium sativum), lettuce (Lactuca sativa), alfalfa (Medicago sativa), Italian ryegrass (Lolium multiflorum), barnyard grass (Echinochloa crus-galli), and timothy (Phleum pratense) at four different concentrations. The plant extracts at concentrations greater than 30 mg dry weight equivalent extract mL−1 reduced significantly the total germination percent (GP), germination index (GI), germination energy (GE), speed of emergence (SE), seedling vigour index (SVI), and coefficient of the rate of germination (CRG) of all test species except barnyard grass and GP of lettuce. In contrast, time required for 50% germination (T 50) and mean germination time (MGT) were increased at the same or higher than this concentration. The increasing trend of T 50 and MGT and the decreasing trend of other indices indicated a significant inhibition or delay of germination of the test species by O. tenuiflorum plant extracts and vice versa. In addition, the shoot and root growth of all test species were significantly inhibited by the extracts at concentrations greater than 10 mg dry weight equivalent extract mL−1. The I 50 values for shoot and root growth were ranged from 26 to 104 mg dry weight equivalent extract mL−1. Seedling growth was more sensitive to the extracts compared to seed germination. Results of this study suggest that O. tenuiflorum plant extracts have phytotoxic properties and thus contain phytotoxic substances. Isolation and characterization of those substances from this plant may act as a tool for new natural, biodegradable herbicide development to control weeds. PMID:25032234

  19. The Challenge of Peat Substitution in Organic Seedling Production: Optimization of Growing Media Formulation through Mixture Design and Response Surface Analysis

    PubMed Central

    Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio

    2015-01-01

    Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163

  20. The Challenge of Peat Substitution in Organic Seedling Production: Optimization of Growing Media Formulation through Mixture Design and Response Surface Analysis.

    PubMed

    Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio

    2015-01-01

    Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses.

  1. Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L c.v. IET-4094).

    PubMed

    Moulick, Debojyoti; Santra, S C; Ghosh, Dibakar

    2017-11-01

    Interactive aspect of among selenium (Se) and As (As) to mitigate As induced phytotoxicity in rice during germination and seedling growth has been based on mostly to petriplates and hydroponic mode of experiments. In this investigation we explore the consequences of sowing Se primed rice seeds in As spiked soil. Unprimed, hydroprimed and Se primed rice (IET-4094) seeds sown in As spiked soil, with five replications, arranged in complete randomized design for evaluating the impacts of seed priming on germination and seedling growth as well as As uptake and translocation pattern. Se promotes germination, seedling growth by modulating proline content, lipid peroxidation in root and shoot beside enhancing total chlorophyll content significantly in both As free and As spiked soil as compared to their respective unprimed and hydroprimed counterparts grown alike. Findings also indicates that seed priming with Se was able to execute dual roles i.e. a promotive and antagonistic aspect against As by restricting maximum soil As load to the root (with greater bioconcentration factor) and reducing translocation of As from root to shoot in a more practical and farmer friendly way to mitigate As induced toxicity and enhance germination and growth in rice seedlings. Copyright © 2017. Published by Elsevier Inc.

  2. Effects of soil conditioners on emergence and growth of tomato-cotton, and lettuce seedlings. [Lycopersicon esculentum; Gossypium hirsutum; Lactuea sativa

    SciTech Connect

    Wallace, A.; Wallace, G.A.

    1986-05-01

    The purpose of this paper is to demonstrate the extent to which seedling emergence and plant growth can be improved with use of new soil conditioners. The early findings regarding polymeric soil conditioners are still valid today, with the exception that much lower application rates are needed today, and different application methodology is available.

  3. Marker Aided Incorporation of Saltol, a Major QTL Associated with Seedling Stage Salt Tolerance, into Oryza sativa ‘Pusa Basmati 1121’

    PubMed Central

    Babu, N. Naresh; Krishnan, S. Gopala; Vinod, K. K.; Krishnamurthy, S. L.; Singh, Vivek K.; Singh, Madan P.; Singh, Renu; Ellur, Ranjith K.; Rai, Vandna; Bollinedi, Haritha; Bhowmick, Prolay K.; Yadav, Ashutosh K.; Nagarajan, Mariappan; Singh, Nagendra K.; Prabhu, Kumble V.; Singh, Ashok K.

    2017-01-01

    Pusa Basmati 1121 (PB1121), an elite Basmati rice cultivar is vulnerable to salinity at seedling stage. A study was undertaken to impart seedling-stage salt tolerance into PB1121 by transferring a quantitative trait locus (QTL), Saltol, using FL478 as donor, through marker assisted backcrossing. Sequence tagged microsatellite site (STMS) marker RM 3412, tightly linked to Saltol was used for foreground selection. Background recovery was estimated using 90 genome-wide STMS markers. Systematic phenotypic selection helped in accelerated recovery of recurrent parent phenome (RPP). A set of 51 BC3F2 lines homozygous for Saltol were advanced to develop four improved near isogenic lines (NILs) of PB1121 with seedling stage salt tolerance. The background genome recovery in the NILs ranged from 93.3 to 99.4%. The improved NILs were either similar or better than the recurrent parent PB1121 for yield, grain and cooking quality and duration. Biochemical analyses revealed significant variation in shoot and root Na+ and K+ concentrations. Correlation between shoot and root Na+ concentration was stronger than that between root and shoot K+ concentration. The effect of QTL integration into the NILs was studied through expression profiling of OsHKT1;5, one of the genes present in the Saltol region. The NILs had significantly higher OsHKT1;5 expression than the recurrent parent PB1121, but lower than FL478 on salt exposure validating the successful introgression of Saltol in the NILs. This was also confirmed under agronomic evaluation, wherein the NILs showed greater salt tolerance at seedling stage. One of the NILs, Pusa1734-8-3-3 (NIL3) showed comparable yield and cooking quality to the recurrent parent PB1121, with high field level seedling stage salinity tolerance and shorter duration. This is the first report of successful introgression of Saltol into a Basmati rice cultivar. PMID:28184228

  4. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings.

    PubMed

    Iqbal, Amjad; Fry, Stephen C

    2012-04-01

    Many plants exude allelochemicals--compounds that affect the growth of neighbouring plants. This study reports further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls and shorter, thicker roots--effects previously attributed to lepidimoide. The active principle was more abundant in cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical. Crude seed exudate affected hypocotyl and root growth at ~25 and ~450 μg ml(-1) respectively. The exudate slightly (28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants.

  5. Inhibition of root growth by narciclasine is caused by DNA damage-induced cell cycle arrest in lettuce seedlings.

    PubMed

    Hu, Yanfeng; Li, Jiaolong; Yang, Lijing; Nan, Wenbin; Cao, Xiaoping; Bi, Yurong

    2014-09-01

    Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. Its phytotoxic effects on plant growth were examined in lettuce (Lactuca sativa L.) seedlings. Results showed that high concentrations (0.5-5 μM) of NCS restricted the growth of lettuce roots in a dose-dependent manner. In NCS-treated lettuce seedlings, the following changes were detected: reduction of mitotic cells and cell elongation in the mature region, inhibition of proliferation of meristematic cells, and cell cycle. Moreover, comet assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay indicated that higher levels NCS (0.5-5 μM) induced DNA damage in root cells of lettuce. The decrease in meristematic cells and increase in DNA damage signals in lettuce roots in responses to NCS are in a dose-dependent manner. NCS-induced reactive oxygen species accumulation may explain an increase in DNA damage in lettuce roots. Thus, the restraint of root growth is due to cell cycle arrest which is caused by NCS-induced DNA damage. In addition, it was also found that NCS (0.5-5 μM) inhibited the root hair development of lettuce seedlings. Further investigations on the underlying mechanism revealed that both auxin and ethylene signaling pathways are involved in the response of root hairs to NCS.

  6. Specific in planta recognition of two GKLR proteins of the downy mildew Bremia lactucae revealed in a large effector screen in lettuce.

    PubMed

    Stassen, Joost H M; den Boer, Erik; Vergeer, Pim W J; Andel, Annemiek; Ellendorff, Ursula; Pelgrom, Koen; Pel, Mathieu; Schut, Johan; Zonneveld, Olaf; Jeuken, Marieke J W; Van den Ackerveken, Guido

    2013-11-01

    Breeding lettuce (Lactuca sativa) for resistance to the downy mildew pathogen Bremia lactucae is mainly achieved by introgression of dominant downy mildew resistance (Dm) genes. New Bremia races quickly render Dm genes ineffective, possibly by mutation of recognized host-translocated effectors or by suppression of effector-triggered immunity. We have previously identified 34 potential RXLR(-like) effector proteins of B. lactucae that were here tested for specific recognition within a collection of 129 B. lactucae-resistant Lactuca lines. Two effectors triggered a hypersensitive response: BLG01 in 52 lines, predominantly L. saligna, and BLG03 in two L. sativa lines containing Dm2 resistance. The N-terminal sequences of BLG01 and BLG03, containing the signal peptide and GKLR variant of the RXLR translocation motif, are not required for in planta recognition but function in effector delivery. The locus responsible for BLG01 recognition maps to the bottom of lettuce chromosome 9, whereas recognition of BLG03 maps in the RGC2 cluster on chromosome 2. Lactuca lines that recognize the BLG effectors are not resistant to Bremia isolate Bl:24 that expresses both BLG genes, suggesting that Bl:24 can suppress the triggered immune responses. In contrast, lettuce segregants displaying Dm2-mediated resistance to Bremia isolate Bl:5 are responsive to BLG03, suggesting that BLG03 is a candidate Avr2 protein.

  7. Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp.

    PubMed

    Sicard, D; Woo, S S; Arroyo-Garcia, R; Ochoa, O; Nguyen, D; Korol, A; Nevo, E; Michelmore, R

    1999-08-01

    Diversity was analyzed in wild and cultivated Lactuca germplasm using molecular markers derived from resistance genes of the NBS-LRR type. Three molecular markers, one microsatellite marker and two SCAR markers that amplified LRR-encoding regions, were developed from sequences of resistance gene homologs at the main resistance gene cluster in lettuce. Variation for these markers were assessed in germplasm including accessions of cultivated lettuce, Lactuca sativa L. and three wild Lactuca spp., L. serriola L., L. saligna and L. virosa L. Diversity was also studied within and between natural populations of L. serriola from Israel and California; the former is close to the center of diversity for Lactuca spp. while the latter is an area of more recent colonization. Large numbers of haplotypes were detected indicating the presence of numerous resistance genes in wild species. The diversity in haplotypes provided evidence for gene duplication and unequal crossing-over during the evolution of this cluster of resistance genes. However, there was no evidence for duplications and deletions within the LRR-encoding regions studied. The three markers were highly correlated with resistance phenotypes in L. sativa. They were able to discriminate between accessions that had previously been shown to be resistant to all known isolates of Bremia lactucae. Therefore, these markers will be highly informative for the establishment of core collections and marker-aided selection. A hierarchical analysis of the population structure of L. serriola showed that countries, as well as locations, were significantly differentiated. These differences may reflect local founder effects and/or divergent selection.

  8. Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings.

    PubMed

    Mostofa, Mohammad Golam; Seraj, Zeba Islam; Fujita, Masayuki

    2014-11-01

    Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 (•-)) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP + GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 (•-), H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while

  9. Lactuca saligna, a non-host for lettuce downy mildew ( Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance.

    PubMed

    Jeuken, M.; Lindhout, P.

    2002-08-01

    Lactuca sativa (lettuce) is susceptible to Bremia lactucae (downy mildew). In cultivated and wild Lactuca species, Dm genes have been identified that confer race-specific resistance. However, these genes were soon rendered ineffective by adaptation of the pathogen. Lactuca saligna (wild lettuce) is resistant to all downy mildew races and can be considered as a non-host. Therefore, L. saligna might be an alternative source for a more-durable resistance to downy mildew in lettuce. In order to analyze this resistance, we have developed an F(2) population based on a resistant L. saligna x susceptible L. sativa cross. This F(2) population was fingerprinted with AFLP markers and tested for resistance to two Bremia races NL14 and NL16. The F(2) population showed a wide and continuous range of resistance levels from completely resistant to completely susceptible. By comparison of disease tests, we observed a quantitative resistance against both Bremia races as well as a race-specific resistance to Bremia race NL16 and not to NL14. QTL mapping revealed a qualitative gene ( R39) involved in the race-specific resistance and three QTLs ( RBQ1, RBQ2 and RBQ3) involved in the quantitative resistance. The qualitative gene R39 is a dominant gene that gives nearly complete resistance to race NL16 in L. saligna CGN 5271 and therefore it showed features similar to Dm genes. The three QTLs explained 51% of the quantitative resistance against NL14, which indicated that probably only the major QTLs have been detected in this F(2) population. The perspectives for breeding for durable resistance are discussed.

  10. Effect of enhanced UV-B radiation and low-energy N⁺ ion beam radiation on the response of photosynthesis, antioxidant enzymes, and lipid peroxidation in rice (Oryza sativa) seedlings.

    PubMed

    Li, Linyu; Huang, Qunce; Zhang, Shuyin; Zhao, Shuaipeng

    2013-10-01

    To understand the effect of enhanced UV-B radiation and low-energy N(+) ion beam radiation on the response of photosynthesis, antioxidant enzymes, and lipid peroxidation in rice seedlings, Oryza sativa was exposed to three different doses of low-energy N(+) ion beam and enhanced UV-B alone and in combination. Enhanced UV-B caused a marked decline in some photosynthetic parameters (net photosynthetic rate, transpiration rate, and stomatal conductance) and photosynthetic pigments, whereas it induced an increase in hydrogen peroxide (H2O2) accumulation, the rate of superoxide radical production, and the content of malondialdehyde (MDA). Enhanced UV-B also induced an increase in the activity of antioxidant enzymes (superoxide dismutase [SOD], peroxidase (POD), and catalase [CAT]) and some nonenzymatic antioxidants such as proline. Under the combined treatment of enhanced UV-B and low-energy N(+) ion beam at the dose of 3.0 × 10(17) N(+) cm(-2), the activity of antioxidant compounds (SOD, POD, CAT, proline, and glutathione), photosynthetic pigments, and some photosynthetic parameters (net photosynthetic rate, transpiration rate, and stomatal conductance) increased significantly; however, the MDA content, H2O2 accumulation, and rate of superoxide radical production showed a remarkable decrease compared with the enhanced UV-B treatment alone. These results implied that the appropriate dose of low-energy N(+) ion beam treatment may alleviate the damage caused by the enhanced UV-B radiation on rice.

  11. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings.

    PubMed

    Hu, Zheng-Yi; Zhu, Yong-Guan; Li, Min; Zhang, Li-Gan; Cao, Zhi-Hong; Smith, F Andrew

    2007-05-01

    The effects of two sulfur (S) sources (SO(4)(2-), S(0)), and three rates of S application (0, 30, 120 mgS/kg) on the formation of iron plaque in the rhizosphere, and on the root surface of rice, and As (arsenic) uptake into rice (Oryza sativa L.) were studied in a combined soil-sand culture experiment. Significant differences in As uptake into rice between +S and -S treatments were observed in relation to S sources, and rates of S application. Concentrations of As in rice shoots decreased with increasing rates of S application. The mechanism could be ascribed to sulfur, induced the formation of iron plaque, since concentrations of Fe in iron plaque on quartz sands in the rhizosphere, and on the root surface of rice increased with increasing rates of S application. The results suggest that sulfur fertilization may be important for the development approaches to reducing As accumulation in rice.

  12. [Disinfection treatment for lettuces (Lactuca sativa) and strawberries (Fragatia Chiloensis)].

    PubMed

    López, L; Romero, J; Ureta, F

    2001-12-01

    The disinfection of vegetables and fruits is a treatment applied in order to reduce their natural contamination or processes to the product along the different steps of the food chain until its consumption. In the present work the effect of two disinfectants products was studied: grapefruit seed extract (400 ppm) for 10 min and peracetic acid (2000 ppm) for 1 min (action times assayed according to the manufacturer recommendations) and other additional times. The germicidal action was carried out against the natural contaminants of lettuces and strawberries, through the determination of the germicidal efficiency (%). Treated and untreated strawberries were also evaluated for flavor changes through a sensorial difference test, triangular test. None of the assayed products reached the 99.999% destruction of the natural contaminants according to the Chambers test. Peracetic acid was the most effective disinfectant, reaching the highest destruction percentages at a time lower than that for grapefruit seed extract. Sensory analysis showed no significant differences (p = .05) between strawberries with and without disinfection treatments, at the conditions suggested by the manufacturer.

  13. Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).

    PubMed

    Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana

    2015-01-01

    Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.

  14. Selectivity of thiobencarb between two lettuce (Lactuca sativa, L. ) cultivars

    SciTech Connect

    Reiners, S.

    1987-01-01

    Thiobencarb (S-(4-chlorobenzyl)N,N-diethylthiocarbamate) was examined for weed control on muck grown lettuce. Weed control results were erratic though differential lettuce tolerance was observed in the field. This led to the testing of five lettuce cultivars for tolerance to the herbicide. Of the five lettuce cultivars evaluated, two were selected with the widest tolerance differences: Great Lakes 366 (GLA) (tolerant) and Dark Green Boston (BOS) (susceptible). Studies examining the mechanism of thiobencarb tolerance were conducted with these two cultivars. Within four days after the addition of thiobencarb to the nutrient solution, BOS had significant reductions in the foliar dry weight. In addition, growth abnormalities including fused leaves were observed, indicating inhibition early in leaf development. Greater amounts of /sup 14/C-thiobencarb were absorbed from nutrient solution by BOS, likely due to a significantly greater root system at the time of treatment. The greater uptake and accumulation of /sup 14/C-label in the leaves, as well as significantly greater amounts of unmetabolized /sup 14/C-thiobencarb in the foliage of BOS may account for the selectivity observed. A thiobencarb sulfoxide was not identified in these studies. This indicates that the metabolism of thiobencarb in lettuce differs from other members of the thiocarbamate family of herbicides.

  15. Factors Affecting the Survival of Bremia lactucae Sporangia Deposited on Lettuce Leaves.

    PubMed

    Wu, B M; Subbarao, K V; van Bruggen, A H

    2000-08-01

    ABSTRACT Experiments to identify the factors affecting survival of Bremia lactucae sporangia after deposition on lettuce leaves were conducted in growth chambers and outdoors under ambient conditions. Lettuce seedlings at the four-leaf stage were inoculated with B. lactucae sporangia under dry conditions. Sporangia deposited on lettuce seedlings were incubated at different temperature and relative humidity (RH) combinations, exposed to 100, 50, 25, and 0% sunlight in the second experiment, and exposed to different artificial lights in wavelength ranges of UVA (315 to 400 nm), UVB (280 to 315 nm), or fluorescent light in the third experiment. After exposure for 0 to 48 h in the first experiment and 0 to 12 h in the second and third experiments, seedlings in two pots were sampled for each treatment, and sporangia were washed from 15 leaves excised from the sampled seedlings. Germination of sporangia was determined in water after incubation in the dark at 15 degrees C for 24 h. The sampled seedlings with remaining leaves were first transferred to optimal conditions for infection (24 h), for the development of downy mildew, and then assessed for disease after 9 days. Sporangia survived much longer at 23 degrees C (>12 h) than at 31 degrees C (2 to 5 h), regardless of RH (33 to 76%). Germination percentage was significantly reduced after exposure to 50 and 100% sunlight. UVB significantly reduced sporangium viability, while fluorescent light and UVA had no effect relative to incubation in the dark. Infection of seedlings followed a pattern similar to germination of sporangia. Solar radiation is the dominant factor determining survival of B. lactucae sporangia, while temperature and RH have small, insignificant effects in coastal areas of California. This suggests that infections by sporangia that survived a day are probable only on cloudy days or on leaves that are highly shaded.

  16. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K⁺ loss in seedlings of Medicago sativa.

    PubMed

    Lai, Diwen; Mao, Yu; Zhou, Heng; Li, Feng; Wu, Mingzhu; Zhang, Jing; He, Ziyi; Cui, Weiti; Xie, Yanjie

    2014-08-01

    Despite the external application of hydrogen sulfide (H2S) conferring plant tolerance against various environmental cues, the physiological significance of l-cysteine desulfhydrase (L-DES)-associated endogenous H2S production involved in salt-stress signaling was poorly understood. To address this gap, the participation of in planta changes of H2S homeostasis involved in alfalfa salt tolerance was investigated. The increasing concentration of NaCl (from 50 to 300 mM) progressively caused the induction of total l-DES activity and the increase of endogenous H2S production. NaCl-triggered toxicity symptoms (175 mM), including seedling growth inhibition and lipid peroxidation, were alleviated by sodium hydrosulfide (NaHS; 100 μM), a H2S donor, whereas aggravated by an inhibitor of l-DES or a H2S scavenger. A weaker or negative response was observed in lower or higher dose of NaHS. Further results showed that endogenous l-DES-related H2S modulated several genes/activities of antioxidant defence enzymes, and also regulated the contents of antioxidant compounds, thus counterbalancing the NaCl-induced lipid peroxidation. Moreover, H2S maintained K(+)/Na(+) homeostasis by preventing the NaCl-triggered K(+) efflux, which might be result form the impairment of SKOR expression. Together, our findings indicated that endogenous H2S homeostasis enhance salt tolerance by coupling the reestablishment of redox balance and restraining K(+) efflux in alfalfa seedlings.

  17. Linkage analysis of genes for resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa).

    PubMed

    Hulbert, S H; Michelmore, R W

    1985-08-01

    The genetics of specific resistance was studied in F2 populations which segregated for either one or two resistance genes. The resistance factors 1, 11 and 14 which had not previously been characterized genetically segregated as single dominant genes (Dm). Resistance was determined by three linkage groups; R 1/14, 2, 3, and 6 in the first, R 5/8, and 10 in the second and R 4, 7 and 11 in the third. Cultivars of lettuce commonly used in the differential series to detect virulence to R3 and R10, were demonstrated to carry two tightly linked resistance genes. Implications of this linkage arrangement to the manipulation and characterization of these resistance genes are discussed.

  18. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa)

    USDA-ARS?s Scientific Manuscript database

    Strain NRRL B-41902 and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, gram-negative rods that formed cocci in late stationary phase. Subsequent to sequencing the 16S ribosomal RNA gene, it was found that strain NRRL B-41902 was...

  19. Phytotoxicity of arsenate and salinity on early seedling growth of rice (Oryza sativa L.): a threat to sustainable rice cultivation in South and South-East Asia.

    PubMed

    Rahman, M Mamunur; Rahman, M Azizur; Maki, T; Hasegawa, H

    2012-05-01

    Arsenic (As) contamination is an important environmental consequence in some parts of salinity-affected South (S) and South-East (SE) Asia. In this study, we investigated the individual and combined phytotoxicity of arsenic (As) [arsenate; As(V)] and salinity (NaCl) on early seedling growth (ESG) of saline-tolerant and non-tolerant rice varieties. Germination percentage (GP), germination speed (GS) and vigor index (VI) of both saline-tolerant and non-tolerant rice varieties decreased significantly (p > 0.01) with increasing As(V) and NaCl concentrations. The highest GP (91%) was observed for saline non-tolerant BRRI dhan28 and BRRI dhan49, while the lowest (62%) was for saline-tolerant BRRI dhan47. The ESG parameters, such as weights and relative lengths of plumule and radicle, also decreased significantly (p < 0.01) with increasing As(V) and NaCl concentrations. Relative radicle length was more affected than plumule length by As(V) and NaCl. Although VI of saline-tolerant and non-tolerant rice seedlings showed significant variation (p < 0.05), weights and lengths of plumule and radicle of different rice varieties did not show significant variation for As(V) and NaCl treatments. Results reveal that the combined phytotoxicity of As(V) and NaCl on rice seed germination and ESG are greater than their individual toxicities, and some saline-tolerant rice varieties are more resistant to the combined phytotoxicity of As(V) and NaCl than the saline non-tolerant varieties.

  20. Population Structure, Diversity and Trait Association Analysis in Rice (Oryza sativa L.) Germplasm for Early Seedling Vigor (ESV) Using Trait Linked SSR Markers

    PubMed Central

    Anandan, Annamalai; Anumalla, Mahender; Pradhan, Sharat Kumar; Ali, Jauhar

    2016-01-01

    Early seedling vigor (ESV) is the essential trait for direct seeded rice to dominate and smother the weed growth. In this regard, 629 rice genotypes were studied for their morphological and physiological responses in the field under direct seeded aerobic situation on 14th, 28th and 56th days after sowing (DAS). It was determined that the early observations taken on 14th and 28th DAS were reliable estimators to study ESV as compared to56th DAS. Further, 96 were selected from 629 genotypes by principal component (PCA) and discriminate function analyses. The selected genotypes were subjected to decipher the pattern of genetic diversity in terms of both phenotypic and genotypic by using ESV QTL linked simple sequence repeat (SSR) markers. To assess the genetic structure, model and distance based approaches were used. Genotyping of 96 rice lines using 39 polymorphic SSRs produced a total of 128 alleles with the phenotypic information content (PIC) value of 0.24. The model based population structure approach grouped the accession into two distinct populations, whereas unrooted tree grouped the genotypes into three clusters. Both model based and structure based approach had clearly distinguished the early vigor genotypes from non-early vigor genotypes. Association analysis revealed that 16 and 10 SSRs showed significant association with ESV traits by general linear model (GLM) and mixed linear model (MLM) approaches respectively. Marker alleles on chromosome 2 were associated with shoot dry weight on 28 DAS, vigor index on 14 and 28 DAS. Improvement in the rate of seedling growth will be useful for identifying rice genotypes acquiescent to direct seeded conditions through marker-assisted selection. PMID:27031620

  1. Population Structure, Diversity and Trait Association Analysis in Rice (Oryza sativa L.) Germplasm for Early Seedling Vigor (ESV) Using Trait Linked SSR Markers.

    PubMed

    Anandan, Annamalai; Anumalla, Mahender; Pradhan, Sharat Kumar; Ali, Jauhar

    2016-01-01

    Early seedling vigor (ESV) is the essential trait for direct seeded rice to dominate and smother the weed growth. In this regard, 629 rice genotypes were studied for their morphological and physiological responses in the field under direct seeded aerobic situation on 14th, 28th and 56th days after sowing (DAS). It was determined that the early observations taken on 14th and 28th DAS were reliable estimators to study ESV as compared to 56th DAS. Further, 96 were selected from 629 genotypes by principal component (PCA) and discriminate function analyses. The selected genotypes were subjected to decipher the pattern of genetic diversity in terms of both phenotypic and genotypic by using ESV QTL linked simple sequence repeat (SSR) markers. To assess the genetic structure, model and distance based approaches were used. Genotyping of 96 rice lines using 39 polymorphic SSRs produced a total of 128 alleles with the phenotypic information content (PIC) value of 0.24. The model based population structure approach grouped the accession into two distinct populations, whereas unrooted tree grouped the genotypes into three clusters. Both model based and structure based approach had clearly distinguished the early vigor genotypes from non-early vigor genotypes. Association analysis revealed that 16 and 10 SSRs showed significant association with ESV traits by general linear model (GLM) and mixed linear model (MLM) approaches respectively. Marker alleles on chromosome 2 were associated with shoot dry weight on 28 DAS, vigor index on 14 and 28 DAS. Improvement in the rate of seedling growth will be useful for identifying rice genotypes acquiescent to direct seeded conditions through marker-assisted selection.

  2. Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A.

    PubMed

    Kreslavski, Vladimir D; Lyubimov, Valery Yu; Shirshikova, Galina N; Shmarev, Alexander N; Kosobryukhov, Anatoly A; Schmitt, Franz-Josef; Friedrich, Thomas; Allakhverdiev, Suleyman I

    2013-05-05

    Seedlings of 10-day-old lettuce (Lactuca sativa L., cultivar Berlin) were preilluminated by low intensity red light (λmax=660 nm, 10 min, 5 μmol quanta m(-2) s(-1)) and far-red light (λmax=730 nm, 10 min, 5 μmol quanta m(-2) s(-1)) to study the effect of pre-treatment on photosynthesis, photochemical activity of photosystem II (PSII), the contents of photosynthetic and UV-A-absorbing pigments (UAPs) and H2O2, as well as total and ascorbate peroxidase activities in cotyledonary leaves of seedlings exposed to UV-A. UV radiation reduced the photosynthetic rate (Pn), the activity of PSII, and the contents of Chl a and b, carotenoids and UAPs in the leaves, but increased the content of H2O2 and the total peroxidase activity. Preillumination with red light removed these effects of UV. In turn, the illumination with red light, then far-red light removed the effect of the red light. Illumination with red light alone increased the content of UAPs, as well as peroxidase activity. It is suggested that higher resistance of the lettuce photosynthetic apparatus to UV-A radiation is associated with involvement of the active form of phytochrome B, thereby increasing peroxidase activities as well as UAPs and saving preservation of photosynthetic pigment contents due to pre-illumination with red light.

  3. The metabolism and distribution of sup 14 C-8N sup 6 -benzyladenine in lettuce seeds and seedlings

    SciTech Connect

    Seeber, R.G. Jr.

    1989-01-01

    This investigation sought to follow the uptake of the cytokinin, {sup 14}C-8N{sup 6}-benzyladenine (BAP), by lettuce seeds through time, trace the movement of the metabolites through several areas of the seedling, and identify the BAP metabolites. Lettuce seeds (Lactuca sativa L. cv. Grand Rapids) were exposed to a two hour pulse of the radioactive BAP. These seeds were harvested at 4 hour intervals from 2-48 hours. Seedlings incubated from 36-48 hours were cut in two; root, stem, shoot tip and seed coats. Each of these groups were extracted in 70% methanol and their radioactive isolated by high performance liquid chromatography. Radioactive fractions were pooled and reduced for further analysis by thin layer chromatography. The major compound identified throughout the time periods was BAP, exclusively found from 2-20 hours. BAP riboside was found in addition to BAP from 24-32 hours. The 40 and 44 hour extracts contained BAP and its riboside in the shoot and BAP in the seed coat. The 48 hours extract contained BAP and its riboside in both the shoot tip and the seed coat. This study produced information on the following points. A cytokinin exposure of 2 hours or less is needed to break dormancy in these seeds.

  4. Phytochrome chromophore biosynthesis. [Avena sativa

    SciTech Connect

    Elich, T.D.; Lagarias, J.C.

    1987-06-01

    Etiolated Avena sativa L. seedlings grown in the presence of gabaculine (5-amino-1,3-cyclohexadienylcarboxylic acid) contained reduced levels of phytochrome as shown by spectrophotometric and immunochemical assays. Photochromic phytochrome levels in gabaculine-grown plants were estimated to be 20% of control plants, while immunoblot analysis showed that the phytochrome protein moiety was present at approximately 50% of control levels. Gabaculine-grown seedlings administered either 5-aminolevulinic acid or biliverdin exhibited a rapid increase of spectrophotometrically detectable phytochrome. Phytochrome concentrations estimated immunochemically did not similarly increase throughout treatment with either compound. Similar experiments with 5-amino(4-/sup 14/C) levulinic acid showed radiolabeling of phytochrome with kinetics that paralleled the spectrally detected increase. These results are consistent with (a) the intermediacy of both 5-aminolevulinic acid and biliverdin in the biosynthetic pathway of the phytochrome chromophore and (b) the lack of coordinate regulation of chromophore and apoprotein synthesis in Ayena seedlings.

  5. Wild lettuce (Lactuca virosa) toxicity

    PubMed Central

    Besharat, Sima; Besharat, Mahsa; Jabbari, Ali

    2009-01-01

    Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity caused by wild lettuce intake and an accurate history formed the basis of the diagnosis. Conservative treatment, vital sign monitoring, control of patient intake and output, and reducing patient agitation provided the basis for treatment. PMID:21686920

  6. Wild lettuce (Lactuca virosa) toxicity.

    PubMed

    Besharat, Sima; Besharat, Mahsa; Jabbari, Ali

    2009-01-01

    Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity caused by wild lettuce intake and an accurate history formed the basis of the diagnosis. Conservative treatment, vital sign monitoring, control of patient intake and output, and reducing patient agitation provided the basis for treatment.

  7. Pathogenic variation and sexual reproduction in Swedish populations of Bremia lactucae.

    PubMed

    Gustafsson, M; Liljeroth, E; Gustafsson, I

    1985-09-01

    The host-pathogen interaction between lettuce (Lactuca sativa) and downy mildew (Bremia lactucae) is mainly differential and the resistance so far utilized in the host is vertical. As in many other obligate parasites, the introduction of cultivars with new vertical resistance has exerted a strong selection pressure on the pathogen resulting in significant changes in virulence frequencies and in the establishment of races with new combinations of virulence. Genetic diversity in pathogen populations may arise through mutation and gene flow, and new virulence genotypes may then be established through parasexuality and sexual recombination. In Swedish populations of Bremia lactucae, the pattern of variation in the parasite agrees well with that which might be expected in a diploid, outcrossing organism with frequent sexual reproduction. This is supported by: two or more isolates, different in virulence and mating type, may occur together on the same lettuce leaf; zygotes (oospores) are formed in all populations investigated and the frequency varies from 22% to 98%; oospores germinate rather frequently under suitable conditions. To breed for resistance in dynamic host-pathogen systems such as this one is difficult and the program should preferably be based on race-non-specific resistance.

  8. [Lettuce, lactuca sp., as a medicinal plant in polish publications of the 19th century].

    PubMed

    Trojanowska, Anna

    2005-01-01

    Mentions of lettuce Lactuca sp. that have appeared since antiquity contained similar information on its curative properties, but such properties were ascribed to different species or varieties. Apart from the wild and poisonous lettuce, also garden or common lettuce were identified as having curative action, and some publications lacked information enabling the precise identification of the lettuce in question. In the 19th century, attempts were made to put some order into the knowledge of lettuce as a medicinal plant. Information contained in Polish medical studies of the 19th century on lettuce points to the poisonous species, Lactuca virosa, and the common or garden lettuce, Lactuca sativa v. Lactuca hortensis, as being used as a medicinal plant. In that period, lettuce and especially the the desiccated lactescent juice obtained from it, lactucarium, were considered to be an intoxicant, and were used as a sedative and an analgesic. The action of the substance was weaker than that of opium but free of the side-effects, and medical practice showed that in some cases lactucarium produced better curative effects than opium. To corroborate those properties of lettuce and its lactescent juice, studies were undertaken to find the substance responsible for the curative effects of the juice. However, such studies failed to produce the expected results, and the component responsible for the curative properties of letuce was not identified. Medical practice thus had to restrict itself to the uses of the desiccated lactescent juice and extracts obtained from it. The possibility of obtaining lactucarium from plants cultivated in Poland caused Polish pharmacists and physicians to take an interest in the stuff and launch their own research of lettuce and the lactescent juice obtained from it. Results of research on lettuce were published in 19th-century journals by, among others, Jan Fryderyk Wolfgang, Florian Sawiczewski and Józef Orkisz.

  9. Characterization of S-nitrosoglutathione reductase from Brassica and Lactuca spp. and its modulation during plant development.

    PubMed

    Tichá, Tereza; Činčalová, Lucie; Kopečný, David; Sedlářová, Michaela; Kopečná, Martina; Luhová, Lenka; Petřivalský, Marek

    2017-08-01

    Cellular homeostasis of S-nitrosoglutathione (GSNO), a major cache of nitric oxide bioactivity in plants, is controlled by the NADH-dependent S-nitrosoglutathione reductase (GSNOR) belonging to the family of class III alcohol dehydrogenases (EC 1.1.1.1). GSNOR is a key regulator of S-nitrosothiol metabolism and is involved in plant responses to abiotic and biotic stresses. This study was focused on GSNOR from two important crop plants, cauliflower (Brassica oleracea var. botrytis, BoGSNOR) and lettuce (Lactuca sativa, LsGSNOR). Both purified recombinant GSNORs were characterized in vitro and found to exists as dimers, exhibit high thermal stability and substrate preference towards GSNO, although both enzymes have dehydrogenase activity with a broad range of long-chain alcohols and ω-hydroxy fatty acids in presence of NAD(+). Data on enzyme affinities to their cofactors NADH and NAD(+) obtained by isothermal titration calorimetry suggest the high affinity to NADH might underline the GSNOR capacity to function in the intracellular environment. GSNOR activity and gene expression peak during early developmental stages of lettuce and cauliflower at 20 and 30 days after germination, respectively. GSNOR activity was also measured in four other Lactuca spp. genotypes with different degree of resistance to biotrophic pathogen Bremia lactucae. Higher GSNOR activities were found in non-infected plants of susceptible genotypes L. sativa UCDM2 and L. serriola as compared to resistant genotypes. GSNOR and GSNO were localized by confocal laser scanning microscopy in vascular bundles and in epidermal and parenchymal cells of leaf cross-sections. The presented results bring new insight in the role of GSNOR in the regulation of S-nitrosothiol levels in plant growth and development. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis

    USDA-ARS?s Scientific Manuscript database

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...

  11. Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots.

    PubMed

    Babula, Petr; Vaverkova, Veronika; Poborilova, Zuzana; Ballova, Ludmila; Masarik, Michal; Provaznik, Ivo

    2014-11-01

    Juglone, 5-hydroxy-1,4-naphthoquinone, is the plant secondary metabolite with allelopathic properties, which was isolated especially from the plant species belonging to family Juglandaceae A. Rich. ex Kunth (walnut family). The mechanism of phytotoxic action of juglone was investigated on lettuce seedlings Lactuca sativa L. var. capitata L. cv. Merkurion by determining its effect at different levels. We have found that juglone inhibits mitosis (mitotic index 8.5 ± 0.6% for control versus 2.2 ± 0.9% for 250 μM juglone), changes mitotic phase index with accumulation of the cells in prophase (56.5 ± 2.6% for control versus 85.3 ± 5.0% for 250 μM juglone), and decreases meristematic activity in lettuce root tips (51.07 ± 3.62% for control versus 5.27 ± 2.29% for 250 μM juglone). In addition, juglone induced creation of reactive oxygen species and changed levels of reactive nitrogen species. Amount of malondialdehyde, a product of lipid peroxidation, increased from 24.0 ± 4.0 ng g(-1) FW for control to 55.5 ± 5.4 ng g(-1) FW for 250 μM juglone. We observed also changes in cellular structure, especially changes in the morphology of endoplasmic reticulum. Reactive oxygen species induced damage of plasma membrane. All these changes resulted in the disruption of the mitochondrial membrane potential, increase in free intracellular calcium ions, and DNA fragmentation and programmed cell death that was revealed by two methods, TUNEL test and DNA electrophoresis. The portion of TUNEL-positive cells increase from 0.96 ± 0.5% for control to 7.66 ± 1.5% for 250 μM juglone. Results of the study indicate complex mechanism of phytotoxic effect of juglone in lettuce root tips and may indicate mechanism of allelopathic activity of this compound.

  12. Evaluation of seedling cold tolerance in rice cultivars: a comparison of visual ratings and quantitative indicators of physiological changes

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) is sensitive to prolonged exposure to low temperature, which at the seedling stage can result in significant chilling injury and mortality. The objective of this study was to quantify physiological and biochemical changes in rice seedlings undergoing chilling stress and compar...

  13. Human Granulocyte Colony-Stimulating Factor (hG-CSF) Expression in Plastids of Lactuca sativa

    PubMed Central

    Sharifi Tabar, Mehdi; Habashi, Ali Akbar; Rajabi Memari, Hamid

    2013-01-01

    Background: Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other advantages. Methods: hG-CSF gene was cloned into pCL vector between prrn16S promoter and TpsbA terminator. The recombinant vector was coated on nanogold particles and transformed to lettuce chloroplasts through biolistic method. Callogenesis and regeneration of cotyledonary explants were obtained by Murashige and Skoog media containing 6-benzylaminopurine and 1-naphthaleneacetic acid hormones. The presence of hG-CSF gene in plastome was studied with four specific PCR primers and expression by Western immunoblotting. Results: hG-CSF gene cloning was confirmed by digestion and sequencing. Transplastomic lettuce lines were regenerated and subjected to molecular analysis. The presence of hG-CSF in plastome was confirmed by PCR using specific primers designed from the plastid genome. Western immunoblotting of extracted protein from transplastomic plants showed a 20-kDa band, which verified the expression of recombinant protein in lettuce chloroplasts. Conclusions: This study is the first report that successfully express hG-CSF gene in lettuce chloroplast. The lettuce plastome can provide a cheap and safe expression platform for producing valuable biopharmaceuticals for research and treatment. PMID:23748895

  14. Irrigation with treated wastewater: effects on soil, lettuce (Lactuca sativa L.) crop and dynamics of microorganisms.

    PubMed

    Mañas, Pilar; Castro, Elena; de Las Heras, Jorge

    2009-10-01

    The aim of this study was to evaluate the applicability of treated wastewater for horticultural crops, assess the effects of continuous use of treated water on soil and crops, and analyse the physical, chemical and biological effects of irrigation with recycled water. Two lettuce plots watered with drinking water and treated wastewater were monitored over a three year period. Nutrients, heavy metal and the dynamics of pathogen and indicator microorganism content in soil and foliar tissues were analysed. Wastewater irrigation had a high influence on soil parameters: organic matter, N, P, Ca, Al, Fe, Pb and Zn. Indicator and pathogenic microorganisms were detected in soil and plants grown in the wastewater-irrigated plot, and persisted in the soil for 27 days during the study under humid conditions. N, P, Pb and Al content were significantly higher in plant tissues of wastewater-irrigated plots than in the control after 3 years of irrigation. Harvest was significantly higher in the wastewater-irrigated plot. Wastewater can be a resource for agricultural irrigation. In any case, the possible heavy metal accumulation in soils and presence of pathogenic organisms require careful management of this alternative resource: use of a drip irrigation system, previous wastewater disinfection and a limited irrigation period are recommended.

  15. Development of molecular markers for marker-assisted selection in lettuce (Lactuca sativa).

    USDA-ARS?s Scientific Manuscript database

    Lettuce dieback disease is widespread in commercially grown romaine and leaf-type lettuces, but not in iceberg-type cultivars. The cause of disease are two closely related tombusviruses -- Tomato bushy stunt virus (TBSV) and Lettuce necrotic stunt virus (LNSV). A single dominant gene on chromosome 2...

  16. Development of molecular markers for marker-assisted selection in lettuce (Lactuca sativa).

    USDA-ARS?s Scientific Manuscript database

    Lettuce dieback disease is widespread in commercially grown romaine and leaf-type lettuces, but not in iceberg-type cultivars. The disease is caused by two closely related Tombusviruses: Tomato bushy stunt virus (TBSV) and Lettuce necrotic stunt virus (LNSV). A single dominant gene (Tvr1) on chromos...

  17. Characterization of volatile production during storage of lettuce (Lactuca sativa) seed

    USDA-ARS?s Scientific Manuscript database

    The duration that seeds stay vigorous during storage is difficult to predict but critical to seed industry and conservation communities. Production of volatile compounds from lettuce seeds during storage was investigated as a non-invasive and early detection method of seed aging rates. Over thirty...

  18. Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.).

    PubMed

    Kerbiriou, Pauline J; Maliepaard, Chris A; Stomph, Tjeerd Jan; Koper, Martin; Froissart, Dorothee; Roobeek, Ilja; Lammerts Van Bueren, Edith T; Struik, Paul C

    2016-01-01

    Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth.

  19. MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.).

    PubMed

    Han, Yingyan; Chen, Zijing; Lv, Shanshan; Ning, Kang; Ji, Xueliang; Liu, Xueying; Wang, Qian; Liu, Renyi; Fan, Shuangxi; Zhang, Xiaolan

    2016-01-01

    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs. S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines.

  20. Improving Water Use Efficiency of Lettuce (Lactuca sativa L.) Using Phosphorous Fertilizers.

    PubMed

    Alkhader, Asad M F; Abu Rayyan, Azmi M

    2013-01-01

    A greenhouse pot experiment was conducted to evaluate the effect of phosphorous (P) fertilizers application to an alkaline calcareous soil on the water use efficiency (WUE) of lettuce cultivar "robinson" of iceberg type. Head fresh and dry weights, total water applied and WUE were affected significantly by the P fertilizer type and rate. P fertilizers addition induced a significant enhancement in the WUE and fresh and dry weights of the crop. A local phosphate rock (PR) applied directly was found to be inferior to the other types of P fertilizers (Mono ammonium phosphate (MAP), Single superphosphate (SSP), and Di ammonium phosphate ((DAP)). MAP fertilizer at 375 and 500 kg P2O5/ha application rates recorded the highest significant values of head fresh weight and WUE, respectively.

  1. MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.)

    PubMed Central

    Han, Yingyan; Chen, Zijing; Lv, Shanshan; Ning, Kang; Ji, Xueliang; Liu, Xueying; Wang, Qian; Liu, Renyi; Fan, Shuangxi; Zhang, Xiaolan

    2016-01-01

    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs. S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines. PMID:28018414

  2. Phytochemical relationship of Euphorbia helioscopia and Euphorbia pulcherrima with Lactuca sativa.

    PubMed

    Rehman, Hafiza Ayesha; Yousaf, Zubaida; Rashid, Madiha; Younas, Afifa; Arif, Ayesha; Afzal, Ismah; Akram, Waheed

    2014-01-01

    Allelopathy is an important phenomenon that modifies the ecosystem. A plant can enhance or reduce the growth of other plant due to the presence of a number of allelochemicals in its different parts. Euphorbia helioscopia and Euphorbia pulcherrima are medicinal plant species. Both these species are collected from wild resources for various purposes. To reduce the pressure on wild population, it is important to bring them into cultivation. Therefore, the allelopathic effects of E. helioscopia and E. pulcherrima on the growth of lettuce seeds were studied. Three different concentrations (2%, 4% and 6%) of five different solvents (methanol, acetone, ethyl acetate, n-hexane and distilled water) were used to estimate the allelopathic potential of the above-mentioned Euphorbia species. Results indicated a non-significant growth inhibitory effect of both plants on lettuce seeds. Different extracts reduced the growth of test plant to some extent but this inhibition was not significant. From the observed results, it was concluded that the studied Euphorbia species, being medicinally important crops, can be introduced as intercrop with other cash crops.

  3. Anxiolytic property of Lactuca sativa, effect on anxiety behaviour induced by novel food and height.

    PubMed

    Harsha, S N; Anilakumar, K R

    2013-07-01

    To study anxiolytic property of hydro alchohol extract and to estimate polyphenols present in the extract by HPLC. To evaluate anxiolytic property two animal models were used viz. Elevated T maze and hyponeophagia. Diazepam (1 mg/kg body wt.) served as the standard anxiolytic agent for all the tests. The dried extract of the plant leaf in doses of 100, 200 and 400 mg/kg body weight was administered orally to mice for duration of 15 or 30 days and locomotor and anxiolytic activities were performed. Polyphenols was estimated using HPLC. The HPLC analysis of the polyphenols revealed the presence chlorogenic acid, vanillin, epicatechin, caffeic acid, rutin hydrate, sinapic acid, quercetin-3-rhamnoside, p-coumeric acid and quercitin. Time spent and number of entries into the open arm was improved in 30 days treated animals than that of 15 days treated groups, 200 and 400 mg/kg body weight treated group showed significant results when comparing with the control group. The hydro alcohol extract rich in Polyphenols and other secondary metabolites is a potent anxiolytic agent. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  4. Changes in the content of free and conjugated polyamines during Lettuce (Lactuca sativa) growth.

    PubMed

    Pinto, Edgar; Ferreira, Isabel M P L V O

    2015-01-21

    Polyamines (PAs) in plant foods are relevant due to the association of these bioactive nutrients with health and disease. The scope of the present study was to monitor the content of free, conjugated, and total (free + conjugated) putrescine (Put), spermidine (Spd), and spermine (Spm) at five stages of lettuce growth in three different greenhouses. The daily intake of PAs from lettuce consumption was estimated since its consumption represents about 7.2% of vegetables intake. Results showed that the content of free Put, Spd, and Spm decreased during plant growth, while the content of conjugated Put, Spd, and Spm increased. Nevertheless, the total PA content remained fairly constant. Significant differences were observed in the PAs content in lettuces grown in different greenhouses. The conjugated fraction of PAs in mature lettuces has an important contribution to the total PAs and will certainly influence the bioavailability and/or bioactivity of dietary polyamines.

  5. RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa).

    PubMed

    Ibrahim, Abdulrazak B; Monteiro, Tatiane R; Cabral, Glaucia B; Aragão, Francisco J L

    2017-07-15

    RNA interference (RNAi)-based transgenic technologies have evolved as potent biochemical tools for silencing specific genes of plant pathogens and pests. The approach has been demonstrated to be useful in silencing genes in insect species. Here, we report on the successful construction of RNAi-based plasmid containing an interfering cassette designed to generate dsRNAs that target a novel v-ATPase transcript in whitefly (Bemisia tabaci), an important agricultural pest in tropical and sub-tropical regions. The presence of the transgene was confirmed in T0 and T1 generations of transgenic lettuce lines, segregating in a Mendelian fashion. Seven lines were infested with whiteflies and monitored over a period of 32 days. Analysis of mortality showed that within five days of feeding, insects on transgenic plants showed a mortality rate of 83.8-98.1%. In addition, a reduced number of eggs (95 fold less) was observed in flies feeding on transgenic lettuce plants than insects on control lines. Quantitative reverse transcription PCR showed decreased expression level of endogenous v-ATPase gene in whiteflies feeding on transgenic plants. This technology is a foundation for the production of whitefly-resistant commercial crops, improving agricultural sustainability and food security, reducing the use of more environmentally aggressive methods of pest control.

  6. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.)

    PubMed Central

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-01-01

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha−1) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha−1) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate. PMID:24758896

  7. Physiological and Molecular Responses of Lactuca sativa to Colonization by Salmonella enterica Serovar Dublin▿

    PubMed Central

    Klerks, M. M.; van Gent-Pelzer, M.; Franz, E.; Zijlstra, C.; van Bruggen, A. H. C.

    2007-01-01

    This paper describes the physiological and molecular interactions between the human-pathogenic organism Salmonella enterica serovar Dublin and the commercially available mini Roman lettuce cv. Tamburo. The association of S. enterica serovar Dublin with lettuce plants was first determined, which indicated the presence of significant populations outside and inside the plants. The latter was evidenced from significant residual concentrations after highly efficient surface disinfection (99.81%) and fluorescence microscopy of S. enterica serovar Dublin in cross sections of lettuce at the root-shoot transition region. The plant biomass was reduced significantly compared to that of noncolonized plants upon colonization with S. enterica serovar Dublin. In addition to the physiological response, transcriptome analysis by cDNA amplified fragment length polymorphism analysis also provided clear differential gene expression profiles between noncolonized and colonized lettuce plants. From these, generally and differentially expressed genes were selected and identified by sequence analysis, followed by reverse transcription-PCR displaying the specific gene expression profiles in time. Functional grouping of the expressed genes indicated a correlation between colonization of the plants and an increase in expressed pathogenicity-related genes. This study indicates that lettuce plants respond to the presence of S. enterica serovar Dublin at physiological and molecular levels, as shown by the reduction in growth and the concurrent expression of pathogenicity-related genes. In addition, it was confirmed that Salmonella spp. can colonize the interior of lettuce plants, thus potentially imposing a human health risk when processed and consumed. PMID:17513585

  8. Photoprotection vs. Photoinhibition of Photosystem II in Transplastomic Lettuce (Lactuca sativa) Dominantly Accumulating Astaxanthin.

    PubMed

    Fujii, Ritsuko; Yamano, Nami; Hashimoto, Hideki; Misawa, Norihiko; Ifuku, Kentaro

    2016-07-01

    Transplastomic (chloroplast genome-modified; CGM) lettuce that dominantly accumulates astaxanthin grows similarly to a non-transgenic control with almost no accumulation of naturally occurring photosynthetic carotenoids. In this study, we evaluated the activity and assembly of PSII in CGM lettuce. The maximum quantum yield of PSII in CGM lettuce was <0.6; however, the quantum yield of PSII was comparable with that in control leaves under higher light intensity. CGM lettuce showed a lower ability to induce non-photochemical quenching (NPQ) than the control under various light intensities. The fraction of slowly recovering NPQ in CGM lettuce, which is considered to be photoinhibitory quenching (qI), was less than half that of the control. In fact, (1)O2 generation was lower in CGM than in control leaves under high light intensity. CGM lettuce contained less PSII, accumulated mostly as a monomer in thylakoid membranes. The PSII monomers purified from the CGM thylakoids bound echinenone and canthaxanthin in addition to β-carotene, suggesting that a shortage of β-carotene and/or the binding of carbonyl carotenoids would interfere with the photophysical function as well as normal assembly of PSII. In contrast, high accumulation of astaxanthin and other carbonyl carotenoids was found within the thylakoid membranes. This finding would be associated with the suppression of photo-oxidative stress in the thylakoid membranes. Our observation suggests the importance of a specific balance between photoprotection and photoinhibition that can support normal photosynthesis in CGM lettuce producing astaxanthin. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Ultrastructural and developmental evidence of phytotoxicity on cos lettuce (Lactuca sativa) associated with nonylphenol exposure.

    PubMed

    de Bruin, Willeke; van der Merwe, Chris; Kritzinger, Quenton; Bornman, Riana; Korsten, Lise

    2017-02-01

    It has long been understood that the presence of endocrine disrupter chemicals (EDCs) in water can affect the reproductive, behavioural and regulatory systems of different types of mammals. Thus far, only a handful of studies have examined its impact on plant systems. Present research is limited to the potential uptake of these chemicals by plants and the general phytotoxic effects it can elicit. The aim of this study was to determine what effect an EDC has on developing plant and cell organelles and how it affects it. In this study, cos lettuce plants were exposed to different concentrations of nonylphenol (NP), an EDC, in a static hydroponic system. Changes in plant morphology, mass and length, chlorophyll content, as well as electrolyte leakage were examined. Furthermore an in-depth investigation of the plant cell ultrastructure was carried out with transmission electron microscopy. Results indicated that cos lettuce growth was severely restricted, chlorophyll content was reduced, leakage of electrolytes increased and roots were stunted especially after ≥3200 μg/l NP exposures. The structure of the rough endoplasmic reticulum, vacuole and chloroplast were also changed. This study emphasizes the importance of water quality management, since the presence of an EDC, like NP, can negatively impact the yield and internal structure of one of the world's most significant salad crops, namely lettuce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Alkylperoxyl radical scavenging activity of red leaf lettuce (Lactuca sativa L.) phenolics.

    PubMed

    Caldwell, Charles R

    2003-07-30

    Although lettuce may provide relatively low levels of antioxidative phytochemicals which may contribute to human health, lettuce leaf extracts in fact contained compounds with high specific peroxyl radical scavenging activities. After determining the extraction conditions that minimized phenolic oxidation and produced the highest oxygen radical absorbance capacity (ORAC) values, the phenolic compounds from red leaf lettuce were separated by reverse-phase high-performance liquid chromatography (HPLC). The primary phenolic compounds in the leaf tissue extracts were mono- and dicaffeoyltartaric acid (CTA and DCTA), mono- and dicaffeoylquinic acid (CQA and DCQA), quercetin 3-malonylglucoside (QMG), quercetin 3-glucoside (QG), cyanidin 3-malonylglucoside (CMG), and an unknown phenolic ester (UPE). Significant levels of DCQA were only found after wounding. Using the new fluorescein-based ORAC assay procedures, fractions from the HPLC analyses were assayed for peroxyl radical absorbance capacity. Using absorbance to estimate concentration, the decreasing order of contribution to the total ORAC value of an extract from wounded tissue was QMG > DCQA > CMG > DCTA > UPE > QG > CTA. The decreasing order of the specific peroxyl radical scavenging activities was CMG > QG > DCTA > DCQA > QMG > UPE > CQA > CTA. Since the concentrations of plant flavonoid and phenolic acid esters are sensitive to environmental factors, this information may be used to develop pre- and postharvest conditions which increase the dietary benefits of leaf lettuce.

  11. Oxidative Phosphorylation in Germinating Lettuce Seeds (Lactuca sativa) during the First Hours of Imbibition

    PubMed Central

    Hourmant, Annick; Pradet, Alain

    1981-01-01

    Experiments with lettuce seeds during the first hours of imbibition showed that oxygen is necessary to sustain high adenine nucleotide ratios and consequently, energy charge values are higher than 0.8 as is usually the case in normally metabolizing tissues. The energy charge value (0.2) of dry seeds soaked in aerated water increased to normal values (0.8) within 30 minutes. The energy charge value of seeds imbibed under cyanide or nitrogen stayed at low values, about 0.3 for 30 minutes. Nitrogen and cyanide treatment of seeds imbibed in aerated water produced a decrease of energy charge to low values within 3 minutes. During the first minutes of imbibition, the oxygen uptake is cyanide-sensitive. The effect of the uncoupler carbonyl cyanide p-trifluoromethoxyphenyl hydrazone was not as clear-cut. However, results were obtained which agree with the occurrence of oxidative phosphorylation during the first hours of imbibition. These results indicate that a normal cytochromic pathway synthesizes ATP during the first minutes and hours following the imbibition of lettuce seeds. PMID:16661970

  12. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.).

    PubMed

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-04-22

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha⁻¹) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha⁻¹) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate.

  13. Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.)

    PubMed Central

    Kerbiriou, Pauline J.; Maliepaard, Chris A.; Stomph, Tjeerd Jan; Koper, Martin; Froissart, Dorothee; Roobeek, Ilja; Lammerts Van Bueren, Edith T.; Struik, Paul C.

    2016-01-01

    Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth. PMID:27064203

  14. Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Lettuce is one of the most popularly consumed vegetables worldwide but its nutritional value has been underestimated. Lettuce is low in calories and fat but high in fiber. Moreover, lettuce is high in potassium but low in sodium. Lettuce is also a good source of health-beneficial bioactive compounds...

  15. Earthworm bioassays and seedling emergence for monitoring toxicity, aging and bioaccumulation of anthropogenic waste indicator compounds in biosolids-amended soil

    USGS Publications Warehouse

    Kinney, Chad A.; Campbell, Bryan R.; Thompson, Regina; Furlong, Edward T.; Kolpin, Dana W.; Burkhardt, Mark R.; Zaugg, Steven D.; Werner, Stephen L.; Hay, Anthony G.

    2012-01-01

    Land application of biosolids (treated sewage sludge) can be an important route for introducing xenobiotic compounds into terrestrial environments. There is a paucity of available information on the effects of biosolids amendment on terrestrial organisms. In this study, the influence of biosolids and biosolids aging on earthworm (Eisenia fetida) reproduction and survival and lettuce (Lactuca sativa) seedling emergence was investigated. Earthworms were exposed to soils amended with varying quantities of biosolids (0, 1, 2, 3, or 4% dry mass). To investigate the influence of biosolids aging, the biosolids used in the study were aged for differing lengths of time (2 or 8 weeks) prior to exposure. All of the adult earthworms survived in the biosolids–amended soils at all concentrations that were aged for 2 weeks; however, only 20% of the adults survived in the soil amended with the highest concentration of biosolids and aged for 8 weeks. Reproduction as measured by mean number of juveniles and unhatched cocoons produced per treatment correlated inversely with biosolids concentration, although the effects were generally more pronounced in the 8-week aged biosolids–soil samples. Latent seedling emergence and reduced seedling fitness correlated inversely with biosolids concentration, but these effects were tempered in the 8-week aged versus the 2-week aged soil–biosolids mixtures. Anthropogenic waste indicator compounds (AWIs) were measured in the biosolids, biosolids–soil mixtures, and earthworm samples. Where possible, bioaccumulation factors (BAFs) were calculated or estimated. A wide variety of AWIs were detected in the biosolids (51 AWIs) and earthworm samples (≤ 19 AWI). The earthworms exposed to the 8-week aged biosolids–soil mixtures tended to accumulate greater quantities of AWIs compared to the 2-week aged mixture, suggesting that the bioavailability of some AWIs was enhanced with aging. The BAFs for a given AWI varied with treatment. Notably large

  16. Flavonolignans from Avena sativa.

    PubMed

    Wenzig, Eva; Kunert, Olaf; Ferreira, Daneel; Schmid, Martin; Schühly, Wolfgang; Bauer, Rudolf; Hiermann, Alois

    2005-02-01

    Three flavonolignans derived from the flavone tricin were isolated from Avena sativa herb. This is the first report of the presence of flavonolignans in A. sativa. In the known compounds 1a and 1b, a coniferyl alcohol moiety is linked to the flavone by an ether bond; in the new natural product 2, it is linked by C-C bonds. Structure elucidation of compound 2 was performed by 1D and 2D NMR experiments, and the absolute configuration was determined from circular dichroic data.

  17. Species-specific toxicity of ceria nanoparticles to Lactuca plants.

    PubMed

    Zhang, Peng; Ma, Yuhui; Zhang, Zhiyong; He, Xiao; Li, Yuanyuan; Zhang, Jing; Zheng, Lirong; Zhao, Yuliang

    2015-02-01

    Species-specific differences in the toxicity of manufactured nanoparticles (MNPs) have been reported, but the underlying mechanisms are unknown. We previously found that CeO2 NPs inhibited root elongation of head lettuce, whereas no toxic effect was observed on other plants (such as wheat, cucumber and radish). In this study, interactions between Lactuca plants and three types of CeO2 NPs (lab-synthesized 7 and 25 nm CeO2 NPs, and a commercial CeO2 NPs) were investigated. It was found that CeO2 NPs were toxic to three kinds of Lactuca genus plants and different CeO2 NPs showed different degrees of toxicity. The results of X-ray absorption near edge fine structure indicate that small parts of CeO2 NPs were transformed from Ce(IV) to Ce(III) in roots of the plants that were treated with CeO2 NPs during the seed germination stage. But the high sensitivity of Lactuca plants to the released Ce(3+) ions caused the species-specific phytotoxicity of CeO2 NPs. Differences in sizes and zeta potentials among three types of CeO2 NPs resulted in their different degrees of biotransformation which accounted for the discrepancy in the toxicity to Lactuca plants. This study is among the few, and may indeed the first, that addresses the relation between the physicochemical properties of nanoparticles and its species-specific phytotoxicity.

  18. Occupational contact dermatitis from Cichorium (chicory, endive) and Lactuca (lettuce).

    PubMed

    Friis, B; Hjorth, N; Vail, J T; Mitchell, J C

    1975-10-01

    In two cases, occupational contact dermatitis was found to be due to chicory (Cichorium) used as a salad plant. In one of the two cases, contact sensitivity to letuce (Lactuca) was also observed. The sesquiterpene lactones of the plant may be the allergens.

  19. Concentration and release level of momilactone B in the seedlings of eight rice cultivars.

    PubMed

    Kato-Noguchi, Hisashi; Ino, Takeshi

    2005-09-01

    The release levels of a growth inhibitor, momilactone B, from rice (Oryza sativa L.) seedlings of eight cultivars were compared with the endogenous concentrations of momilactone B in their seedlings. All rice cultivars contained momilactone B in the seedlings, and their concentrations differed between the cultivars. Momilactone B was also found in all culture solutions in which these rice seedlings were grown, and the concentrations differed between the cultivars. The momilactone B concentrations in the culture solutions were reflected in the momilactone B concentrations in the seedlings. These results suggest that all rice cultivars may produce momilactone B and release momilactone B into the culture solutions. In addition, the release level of momilactone B may depend on the production level of momilactone B in the seedlings, which may affect allelopathic potential of these rice cultivars because as a growth inhibitor, momilactone B is able to act as an allelochemical.

  20. Impact of Diurnal Periodicity, Temperature, and Light on Sporulation of Bremia lactucae.

    PubMed

    Nordskog, Berit; Gadoury, David M; Seem, Robert C; Hermansen, Arne

    2007-08-01

    ABSTRACT We evaluated direct and interactive effects of light quality and intensity, temperature and light, diurnal rhythms, and timing of high relative humidity during long day lengths on sporulation of Bremia lactucae, the causal agent of lettuce downy mildew, using inoculated lettuce seedlings and detached cotyledons. Suppression of sporulation by light was strongly dependent upon temperature and there was little suppression at

  1. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings

    NASA Technical Reports Server (NTRS)

    Johnson, C. F.; Brown, C. S.; Wheeler, R. M.; Sager, J. C.; Chapman, D. K.; Deitzer, G. F.

    1996-01-01

    Oat (Avena sativa cv Seger) seedlings were irradiated with IR light-emitting diode (LED) radiation passed through a visible-light-blocking filter. Infrared LED irradiated seedlings exhibited differences in growth and gravitropic response when compared to seedlings grown in darkness at the same temperature. Thus, the oat seedlings in this study were able to detect IR LED radiation. These findings call into question the use of IR LED as a safe-light for some photosensitive plant response experiments. These findings also expand the defined range of wavelengths involved in radiation-gravity (light-gravity) interactions to include wavelengths in the IR region of the spectrum.

  2. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings

    NASA Technical Reports Server (NTRS)

    Johnson, C. F.; Brown, C. S.; Wheeler, R. M.; Sager, J. C.; Chapman, D. K.; Deitzer, G. F.

    1996-01-01

    Oat (Avena sativa cv Seger) seedlings were irradiated with IR light-emitting diode (LED) radiation passed through a visible-light-blocking filter. Infrared LED irradiated seedlings exhibited differences in growth and gravitropic response when compared to seedlings grown in darkness at the same temperature. Thus, the oat seedlings in this study were able to detect IR LED radiation. These findings call into question the use of IR LED as a safe-light for some photosensitive plant response experiments. These findings also expand the defined range of wavelengths involved in radiation-gravity (light-gravity) interactions to include wavelengths in the IR region of the spectrum.

  3. N-glycan transition of the early developmental stage in Oryza sativa.

    PubMed

    Horiuchi, Risa; Hirotsu, Naoki; Miyanishi, Nobumitsu

    2016-08-26

    N-Glycosylation is one of the post-translational modifications. In animals, N-glycans linked to proteins function in cell-cell recognition, sorting, transport, and other biological phenomena. However, in plants, N-glycan-mediated biological functions remain obscure. In a previous study, we showed that the main type of N-glycan transition is from the paucimannosidic to complex type before and after germination in Oryza sativa, suggesting that transitions of N-glycan, including those of glycoproteins and glycosyltransferases, are closely associated with plant growth. To further elucidate the relationship between N-glycan structure and plant growth, we analyzed the structures of N-glycans expressed in O. sativa seedlings grown under light conditions and performed comparative analyses of the structures in the shoot and root. The analyses show that fundamental N-glycan structures are common to the shoot and root, whereas paucimannosidic-type N-glycans dramatically decreased in the root grown under light conditions. Further, to investigate the effects of light on N-glycan structures in O. sativa seedlings, we analyzed N-glycan structures in O. sativa seedlings grown in the dark. Understandably, N-glycan expression in the root was almost unaffected by light. However, despite a marked difference in phenotype, N-glycan expression in the shoot was also unaffected by light. This result suggests that the shoot and root of O. sativa have different glycoproteins and distinct N-glycan synthetic systems. Thus, we propose that the N-glycan synthetic system of the O. sativa shoot is almost unaffected by light conditions and that many photosynthesis-related proteins are not modified by N-glycans.

  4. Using GWAS to identify SNPs associated with rice seedling cold tolerance

    USDA-ARS?s Scientific Manuscript database

    Cold tolerance at the seedling stage is important for stand establishment when rice (Oryza sativa L.) is planted in cold water or under the cool temperatures that occur early in the growing season in temperate regions or at high elevations in the tropics. The Rice Diversity Panel 1 (RDP1) represent...

  5. Seedling root targets

    Treesearch

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  6. Longleaf Seedling Trends

    Treesearch

    Mark J. Hainds

    2002-01-01

    Demand for longleaf pine (Pinus palustris Mill.) seedlings continues to increase throughout the Southeast. Overall production of longleaf pine seedlings has increased annually for at least the last 3 years (51 percent increase over the past 3 years), while demand for seedlings has continued to exceed the supply. There are several reasons for the...

  7. RESPONSE OF OXIDATIVE STRESS DEFENSE SYSTEMS IN RICE (ORYZA SATIVA) LEAVES WITH SUPPLEMENTAL UV-B RADIATION

    EPA Science Inventory

    The impact of elevated ultraviolet-B radiation (UV-B, 280-320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings ...

  8. RESPONSE OF OXIDATIVE STRESS DEFENSE SYSTEMS IN RICE (ORYZA SATIVA) LEAVES WITH SUPPLEMENTAL UV-B RADIATION

    EPA Science Inventory

    The impact of elevated ultraviolet-B radiation (UV-B, 280-320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings ...

  9. Alcohol dehydrogenase and an inactivator from rice seedlings

    SciTech Connect

    Shimomura, S.; Beevers, H.

    1983-01-01

    Alcohol dehydrogenase (ADH) was measured in the various organs of rice seedlings (Oryza sativa) growing in air. In extracts from ungerminated seeds, the ADH is stable, but in extracts from seedlings more than 2 days old the enzyme initially present loses activity in a time- and temperature-dependent fashion, due to the presence of an inactivating component which increases with age in roots and shoots. The inactivation can be prevented completely by dithiothreitol, and when this is included in the extraction medium the apparent loss of total ADH in roots and shoots with age is not observed. In seedlings grown in N/sub 2/, ADA levels in coleoptile extracts are higher than those in air, the enzyme is stable, and no inactivator can be detected. When seedlings grown for 5 days in air were transferred to N/sub 2/ for 3 days, ADA levels increased and there was a decline in inactivator activity. Transfer back to air after 1 day in N/sub 2/ led to loss of the accumulated ADH and increase in inactivator. These reciprocal changes and the fact that the inactivator is absent from coleoptiles of seedlings grown in N/sub 2/ appear to suggest a regulator role for the inactivator in vivo. However, it is clear that high levels of inactivator and ADH can exist in cells of seedlings grown in air for long periods without loss of enzyme activity, and it is argued that they must normally be separately compartmented.

  10. Alfalfa (Medicago sativa L.).

    PubMed

    Fu, Chunxiang; Hernandez, Timothy; Zhou, Chuanen; Wang, Zeng-Yu

    2015-01-01

    Alfalfa (Medicago sativa L.) is a high-quality forage crop widely grown throughout the world. This chapter describes an efficient protocol that allows for the generation of large number of transgenic alfalfa plants by sonication-assisted Agrobacterium-mediated transformation. Binary vectors carrying different selectable marker genes that confer resistance to phosphinothricin (bar), kanamycin (npt II), or hygromycin (hph) were used to generate transgenic alfalfa plants. Intact trifoliates collected from clonally propagated plants in the greenhouse were sterilized with bleach and then inoculated with Agrobacterium strain EHA105. More than 80 % of infected leaf pieces could produce rooted transgenic plants in 4-5 months after Agrobacterium-mediated transformation.

  11. Mitochondrial genomes of Bremia lactucae and development of haplotype markers for population and genetic studies

    USDA-ARS?s Scientific Manuscript database

    Bremia lactucae, the causative agent of lettuce downy mildew, is the most important pathogen of lettuce in the US and worldwide. In order to identify cytoplasmic markers for use in population and genetic studies the reference mitochondrial genome of B. lactucae isolate SF5 was assembled from Illumi...

  12. Comparative study of Zn deficiency in L. sativa and B. oleracea plants: NH4(+) assimilation and nitrogen derived protective compounds.

    PubMed

    Navarro-León, Eloy; Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña

    2016-07-01

    Zinc (Zn) deficiency is a major problem in agricultural crops of many world regions. N metabolism plays an essential role in plants and changes in their availability and their metabolism could seriously affect crop productivity. The main objective of the present work was to perform a comparative analysis of different strategies against Zn deficiency between two plant species of great agronomic interest such as Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. For this, both species were grown in hydroponic culture with different Zn doses: 10μM Zn as control and 0.01μM Zn as deficiency treatment. Zn deficiency treatment decreased foliar Zn concentration, although in greater extent in B. oleracea plants, and caused similar biomass reduction in both species. Zn deficiency negatively affected NO3(-) reduction and NH4(+) assimilation and enhanced photorespiration in both species. Pro and GB concentrations were reduced in L. sativa but they were increased in B. oleracea. Finally, the AAs profile changed in both species, highlighting a great increase in glycine (Gly) concentration in L. sativa plants. We conclude that L. sativa would be more suitable than B. oleracea for growing in soils with low availability of Zn since it is able to accumulate a higher Zn concentration in leaves with similar biomass reduction. However, B. oleracea is able to accumulate N derived protective compounds to cope with Zn deficiency stress.

  13. Effect of competitive interactions between ectomycorrhizal and saprotrophic fungi on Castanea sativa performance.

    PubMed

    Pereira, Eric; Coelho, Valentim; Tavares, Rui Manuel; Lino-Neto, Teresa; Baptista, Paula

    2012-01-01

    In Northeast of Portugal, the macrofungal community associated to chestnut tree (Castanea sativa Mill.) is rich and diversified. Among fungal species, the ectomycorrhizal Pisolithus tinctorius and the saprotroph Hypholoma fasciculare are common in this habitat. The aim of the present work was to assess the effect of the interaction between both fungi on growth, nutritional status, and physiology of C. sativa seedlings. In pot experiments, C. sativa seedlings were inoculated with P. tinctorius and H. fasciculare individually or in combination. Inoculation with P. tinctorius stimulated the plant growth and resulted in increased foliar-N, foliar-P, and photosynthetic pigment contents. These effects were suppressed when H. fasciculare was simultaneously applied with P. tinctorius. This result could be related to the inhibition of ectomycorrhizal fungus root colonization as a result of antagonism or to the competition for nutrient sources. If chestnut seedlings have been previously inoculated with P. tinctorius, the subsequent inoculation of H. fasciculare 30 days later did not affect root colonization, and mycorrhization benefits were observed. This work confirms an antagonistic interaction between ectomycorrhizal and saprotrophic fungi with consequences on the ectomycorrhizal host physiology. Although P. tinctorius is effective in promoting growth of host trees by establishing mycorrhizae, in the presence of other fungi, it may not always be able to interact with host roots due to an inability to compete with certain fungi.

  14. Isolation of a polysaccharide with antiviral effect from Ulva lactuca.

    PubMed

    Ivanova, V; Rouseva, R; Kolarova, M; Serkedjieva, J; Rachev, R; Manolova, N

    1994-05-01

    A polysaccharide from the green marine algae Ulva lactuca has been isolated. The substance has been investigated after acid hydrolysis by thin-layer and gas chromatography. The following carbohydrate components have been found: arabinose-xylose-rhamnose-galactose-mannose-glucose in ratio 1:1:9:5:2.5:16 respectively. One unidentified sugar has been demonstrated too. The polysaccharide has been studied for antiviral activity in vitro against a number of human and avian influenza viruses. A considerable inhibition of the viral reproduction was found. The effect was dose-dependent, strain-specific and selective.

  15. Hemp (Cannabis sativa L.).

    PubMed

    Feeney, Mistianne; Punja, Zamir K

    2015-01-01

    Hemp (Cannabis sativa L.) suspension culture cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary plasmid pNOV3635. The plasmid contains a phosphomannose isomerase (PMI) selectable marker gene. Cells transformed with PMI are capable of metabolizing the selective agent mannose, whereas cells not expressing the gene are incapable of using the carbon source and will stop growing. Callus masses proliferating on selection medium were screened for PMI expression using a chlorophenol red assay. Genomic DNA was extracted from putatively transformed callus lines, and the presence of the PMI gene was confirmed using PCR and Southern hybridization. Using this method, an average transformation frequency of 31.23% ± 0.14 was obtained for all transformation experiments, with a range of 15.1-55.3%.

  16. Hemp (Cannabis sativa L.).

    PubMed

    Feeney, Mistianne; Punja, Zamir K

    2006-01-01

    Hemp (Cannabis sativa L.) suspension culture cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary plasmid pNOV3635. The plasmid contains a phosphomannose isomerase (PMI) selectable marker gene. Cells transformed with PMI are capable of metabolizing the selective agent, mannose, whereas cells not expressing the gene are incapable of using the carbon source and will stop growing. Callus masses proliferating on selection were screened for PMI expression using a chlorophenol red assay. Genomic DNA was extracted from putatively transformed callus lines and the presence of the PMI gene was confirmed using polymerase chain reaction and Southern hybridization. Using this method, an average transformation frequency of 31.23% +/- 0.14 was obtained for all transformation experiments, with a range of 15.1 to 55.3%.

  17. Chestnut, European (Castanea sativa).

    PubMed

    Corredoira, Elena; Valladares, Silvia; Vieitez, Ana M; Ballester, Antonio

    2015-01-01

    Development of a system for direct transfer of antifungal candidate genes into European chestnut (Castanea sativa) would provide an alternative approach to conventional breeding for production of chestnut trees that are tolerant to ink disease caused by Phytophthora spp. Overexpression of genes encoding PR proteins (such as thaumatin-like proteins), which display antifungal activity, may represent an important advance in control of the disease. We have used a chestnut thaumatin-like protein gene (CsTL1) isolated from European chestnut cotyledons and have achieved overexpression of the gene in chestnut somatic embryogenic lines used as target material. We have also acclimatized the transgenic plants and grown them on in the greenhouse. Here, we describe the various steps of the process, from the induction of somatic embryogenesis to the production of transgenic plants.

  18. Effect of low temperature on ethanolic fermentation in rice seedlings.

    PubMed

    Kato-Noguchi, Hisashi; Yasuda, Yukihiro

    2007-08-01

    Rice seedlings (Oryza sativa L.) were incubated at 5-30 degrees C for 48 h and the effect of temperature on ethanolic fermentation in the seedlings was investigated in terms of low-temperature adaptation. Activities of alcohol dehydrogenase (ADH, EC 1.1.1.1) and pyruvate decarboxylase (PDC, EC 4.1.1.1) in roots and shoots of the seedlings were low at temperatures of 20-30 degrees C, whereas temperatures of 5, 7.5 and 10 degrees C significantly increased ADH and PDC activities in the roots and shoots. Temperatures of 5-10 degrees C also increased ethanol concentrations in the roots and shoots. The ethanol concentrations in the roots and shoots at 7.5 degrees C were 16- and 12-times greater than those in the roots and shoots at 25 degrees C, respectively. These results indicate that low temperatures (5-10 degrees C) induced ethanolic fermentation in the roots and shoots of the seedlings. Ethanol is known to prevent lipid degradation in plant membrane, and increased membrane-lipid fluidization. In addition, an ADH inhibitor, 4-methylpyrazole, decreased low-temperature tolerance in roots and shoots of rice seedlings and this reduction in the tolerance was recovered by exogenous applied ethanol. Therefore, production of ethanol by ethanolic fermentation may lead to low-temperature adaptation in rice plants by altering the physical properties of membrane lipids.

  19. The secrets of cold tolerance at the seedling stage and heading in rice as revealed by association mapping

    USDA-ARS?s Scientific Manuscript database

    Cold stress at the seedling stage limits rice (Oryza sativa L.) production in temperate regions or at high elevations in the tropics due to poor plant stand establishment and delayed maturity. At the heading stage, cold temperature causes sterility, thus decreasing grain yield. To explore the mechan...

  20. Genetic architecture of cold tolerance in rice at the seedling stage and heading determined through genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    Cold stress at the seedling stage limits rice (Oryza sativa L.) production in temperate regions or at high elevations in the tropics due to poor plant stand establishment and delayed maturity. At the heading stage, cold temperature causes sterility, thus decreasing grain yield. Initially, the Rice D...

  1. Seedling disease in Michigan

    USDA-ARS?s Scientific Manuscript database

    Sugar beet seedlings (24 entries of a larger genetic population constructed to dissect Rhizoctonia disease reaction in sugar beet) were screened for their response to a highly virulent isolate of Rhizoctonia solani AG 2-2. Seedlings were grown to the two-leaf stage in the greenhouse, thinned to 15 p...

  2. Hardwood Seedling Nutrition

    Treesearch

    C. B. Davey

    2005-01-01

    Hardwood seedling production presents several challenges that differ considerably from pine seedling production. Because of a nearly double water requirement, hardwoods need to be planted where they can be irrigated separately from pines. Nutrient requirements are generally higher for hardwoods, including especially nitrogen (N), phosphorus (P), calcium (Ca), and...

  3. Container hardwood seedling production

    Treesearch

    John McRae

    2005-01-01

    Container production of hardwood seedlings requires larger cavities, more space, and the ability to easily sort seedlings (as compared to conifers) very early during the germination phase of production. This presentation demonstrates the most productive system, based upon past experience, to commercially produce container hardwoods. The container system of choice is...

  4. Lifting Pine Seedlings

    Treesearch

    C. B. Briscoe

    1960-01-01

    One of the factors preventing more widespread planting of the true pines (Pinus spp.) in the tropics is the present necessity of using potted stock instead of barerooted seedlings, such as are used throughout the temperate regions. Potted seedlings require more space, more equipment, more labor, and more money, both to produce in the nursery and to plant in the field...

  5. On the biomechanics of seedling anchorage

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Edmaier, Katharina; Perona, Paolo

    2014-05-01

    We propose a minimal model for the response of vegetation to pullout constraints at early development stage. We try to capture both the average mechanical properties of the root system and the stochastic component of the uprooting process of seedlings. We identify a minimal set of relevant physical components in the purpose of quantifying the uprooting process: length of the root fibres, elastic response of the fibres and adhesion between the roots and the soil matrix. We present for validation a dataset extracted from Edmaier et al. (under revision), accounting for 98 uprooting experiments using Avena sativa L. seedlings (common oat), growing in non-cohesive sediment under controlled conditions. The corresponding root system has a very simple architecture, with three root fibres of different lengths. The response of the system to the constraint is however complex: the stress-strain signal presents sudden jumps followed by partial elastic recoveries. The analysis of the jumps and partial recoveries gives an insight into the resilience of the system. The anchorage of less mature seedlings rapidly collapses after the peak force has been reached, while more mature seedlings usually recover from partial failures. We explore this crossover with our validation dataset. The type of seedlings we study has been used in flume experiments investigating the feedbacks between the vegetation and the river morphodynamics (see for example Perona et al. (2012)). An understanding of the characteristics of the uprooting curve (maximal uprooting force and total uprooting work) of such vegetation reveals the ability of seedlings to withstand environmental constraints in terms of duration or intensity (see Edmaier et al., under revision), and is therefore helpful for planning future experiments. REFERENCES - P. Perona, P. Molnar, B. Crouzy, E. Perucca, Z. Jiang, S. McLelland, D. Wüthrich, K. Edmaier, R. Francis, C. Camporeale, et al., Biomass selection by floods and related timescales

  6. Spectrophotometric phytochrome measurements in light-grown Avena sativa L.

    PubMed

    Jabben, M; Deitzer, G F

    1978-01-01

    Phytochrome was studied spectrophotometrically in Avena sativa L. seedlings that had been grown for 6 d in continous white fluorescent light from lamps. Greening was prevented through the use of the herbicide San 9789. When placed in the light, phytochrome (Ptot) decreased with first order kinetics (τ1/2 ≈ 2 h) but reached a stable low level (≈2.5% of the dark level) after 36 h. This concentration of phytochrome remained constant in the light and during the initial hours of a subsequent dark period, but increased significantly after a prolonged dark period. Evidence suggests that the constant pool of phytochrome in the light is achieved through an equilibrium between synthesis of the red absorbing (Pr) and destruction of the far-red absorbing form (Pfr) of phytochrome. It is concluded that the phytochrome system in light-grown oat seedlings is qualitatively the same as that known from etiolated monocotyledonous seedlings, but different than that described for cauliflower florets.

  7. Rocket seedling production on the international space station: Growth and nutritional properties

    NASA Astrophysics Data System (ADS)

    Colla, Giuseppe; Battistelli, Alberto; Proietti, Simona; Moscatello, Stefano; Rouphael, Youssef; Cardarelli, Mariateresa; Casucci, Marco

    2007-09-01

    Producing sprouts directly during space missions may represent an interesting opportunity to offer high-quality fresh ready to eat food to the astronauts. The goal of this work was to compare, in terms of growth and nutritional quality, rocket (Eruca sativa Mill.) seedlings grown in the International Space Station during the ENEIDE mission with those grown in a ground-based experiment (in presence and absence of clinorotation). The rocket seedlings obtained from the space-experiment were thinner and more elongated than those obtained in the ground-based experiment. Cotyledons were often closed in the seedlings grown in the space experiment. Quantitative (germination, fresh and dry weight) and qualitative (glucose, fructose, sucrose and starch) traits of rocket seedling were negatively affected by micrograv-ity, especially those recorded on seedlings grown under real microgravity conditions The total chlorophyll, and carotenoids of seedlings obtained in the space experiment were strongly reduced in comparison to those obtained in the ground-based experiment (presence and absence of clinorotation). The results showed that it is possible to produce rocket seedlings in the ISS; however, further studies are needed to define the optimal environmental conditions for producing rocket seedlings with high nutritional value

  8. Sativa by falcata alfalfa hybrid variety trials

    USDA-ARS?s Scientific Manuscript database

    Previous research has demonstrated that alfalfa (Medicago sativa L.) subsp. sativa by subsp. falcata hybrids showed heterosis. Limited work has been done examining these hybrids in a sward situation. The objective of this study was to produce sativa by falcata hybrids using Dairyland Seed Company’...

  9. The influence of sulfathiazole on the macroalgae Ulva lactuca.

    PubMed

    Leston, Sara; Nunes, Margarida; Viegas, Ivan; Nebot, Carolina; Cepeda, Alberto; Pardal, Miguel Ângelo; Ramos, Fernando

    2014-04-01

    Sulfonamides (SA) are a class of antibiotics routinely found in environmental matrices and therefore their role as contaminants should be investigated in non-target organisms. With this purpose the present experimental work has evaluated the exposure of the chlorophycean Ulva lactuca L. to sulfathiazole (STZ), a SA drug commonly used in aquaculture, at two concentrations representing prophylactic (25 μg mL(-1)) and therapeutic (50 μg mL(-1)) administrations. Results showed that STZ exhibits high stability in seawater with only 18% degradation over the 5d assay at both dosages tested. Also, macroalgae demonstrated an efficient uptake capacity with constant internal concentrations after 24h regardless of the external solutions and thus should be considered as a bioindicator species in risk assessment. Both STZ concentrations induced a slight inhibition of the macroalgae growth after 96 h.

  10. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC

    PubMed Central

    Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K.; Bhojaraju, P.

    2014-01-01

    Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance. PMID:24497744

  11. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC.

    PubMed

    Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K; Bhojaraju, P

    2014-01-01

    The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance.

  12. Cyazofamide: a fungicide against Bremia lactucae on lettuce.

    PubMed

    Fanigliulo, Angela; Filì, Vittorio; Crescenzi, Aniello

    2009-01-01

    During 2007 and 2008 summers, experimentation was performed by the Bioagritest test facility, according to EPPO guidelines and Principles of Good Experimental Practice (GEP), aiming at establishing the biological efficacy of Cyazofamide 25SC (formulate MILDICUT, Belchim) and Cyazofamide 400SC + an organosilicone adjuvant containing polyalkyleneoxide modified heptamethyltrisiloxane (Ranman 400 SC, Belchim) on lettuce against Bremia lactucae. The study was performed in Nocera Inferiore (Salerno), southern Italy, in a greenhouse with polyethylene cover. Experimental design consisted in random blocks, in 3 repetitions. Two different dosages of the formulate Mildicut--3.5 lt/ha and 4.5 lt/ha--were compared with the unique dosage 0.350 lt/ha of Ranman and a commercial formulate: 2.4% metalaxyl-M + 40% copper, 4 kg/ha (Ridomil Gold R 46 WP, Syngenta Crop Protection). Four foliage applications were applied every 7 days. The intensity and diffusion of the disease were evaluated on Leaves together with eventual phytotoxic effects. The extreme climatic conditions occurred during the course of study, with rather low temperatures and high humidity in the greenhouse, accompanied by high rainfall outside, allowed for extremely serious attacks by Bremia Lactucae, as to make the 3 replications of the checks strongly compromised. Experimental results show the excellent effectiveness of Cyazofamide: both the two doses of Mildicut and Ranman, such as the standard formulate used in comparison, showed to be effective in the control of the disease, highlighting a strong biological activity against B. Lactuce. No effect of phytotoxicity was noticed on leaves.

  13. [Stress-resistance of weedy rice Luolijing (Oryza sativa)].

    PubMed

    Yu, Liuqing; Mortimer, A Martin; Xuan, Songnan; Lu, Yongliang; Zhou, Yongjun

    2005-04-01

    Weedy rice Luolijing (Oryza sativa) is generated in Dandong, Liaoning Province of Northeast China. Its plant height is taller than normal planted rice varieties, and its caryopsis is medium or long in size, which dropped easily after matured. The color of the caryopsis shell is straw-like or yellow alternated with black-gray. The spikelet is with or without awns, and the length of the awns is 2-12 cm. The 1000 caryopsis weight is 23.5 g, and the hull is nacarat. The seed germination rate at 13-38 degrees C is > 88%. Under 2.5-10 cm water flooding, the plant dry weight reduced 50%-69%. At seedling stage, Luolijing had a stronger resistance capability against barnyardgrass (Echinochloa crusgalli var. mitis) than an alellopathic rice I-kung-pao, which meant that Luolijing had no allelopathic function. The Luolijing had a tolerance to 0.5% saline-alkaline solution.

  14. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa.

    PubMed

    Kamran, Muhammad Aqeel; Syed, Jabir Hussain; Eqani, Syed Ali Musstjab Akber Shah; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed

    2015-06-01

    Microbe-assisted phyto-remediation approach is widely applied and appropriate choice to reduce the environmental risk of heavy metals originated from contaminated soils. The present study was designed to screen out the nested belongings of Eruca sativa plants and Pseudomonas putida (ATCC 39213) at varying cadmium (Cd) levels and their potential to deal with Cd uptake from soils. We carried out pot trial experiment by examining the soil containing E. sativa seedlings either treated with P. putida and/or untreated plants subjected to three different levels (ppm) of Cd (i.e., 150, 250, and 500). In all studied cases, we observed an increase in Cd uptake for E. sativa plants inoculated with P. putida than those of un-inoculated plants. Cd toxicity was assessed by recording different parameters including stunted shoot growth, poor rooting, and Cd residual levels in the plants that were not inoculated with P. putida. Significant difference (p < 0.05) of different growth parameters for inoculated vs non-inoculated plants was observed at all given treatments. However, among the different treatments, E. sativa exhibited increased values for different growth parameters (except proline contents) at lower Cd levels than those of their corresponding higher levels, shoot length (up to 27 %), root length (up to 32 %), whole fresh plant (up to 40 %), dry weight (up to 22 %), and chlorophyll contents (up to 26 %). Despite the hyperaccumulation of Cd in whole plant of E. sativa, P. putida improved the plant growth at varying levels of Cd supply than those of associated non-inoculated plants. Present results indicated that inoculation with P. putida enhanced the Cd uptake potential of E. sativa and favors the healthy growth under Cd stress.

  15. Pharmacology of Marihuana (Cannabis sativa)

    ERIC Educational Resources Information Center

    Maickel, Roger P.

    1973-01-01

    A detailed discussion of marihuana (Cannabis sativa) providing the modes of use, history, chemistry, and physiologic properties of the drug. Cites research results relating to the pharmacologic effects of marihuana. These effects are categorized into five areas: behavioral, cardiovascular-respiratory, central nervous system, toxicity-toxicology,…

  16. Pharmacology of Marihuana (Cannabis sativa)

    ERIC Educational Resources Information Center

    Maickel, Roger P.

    1973-01-01

    A detailed discussion of marihuana (Cannabis sativa) providing the modes of use, history, chemistry, and physiologic properties of the drug. Cites research results relating to the pharmacologic effects of marihuana. These effects are categorized into five areas: behavioral, cardiovascular-respiratory, central nervous system, toxicity-toxicology,…

  17. G-protein from Medicago sativa: functional association to photoreceptors.

    PubMed Central

    Muschietti, J P; Martinetto, H E; Coso, O A; Farber, M D; Torres, H N; Flawia, M M

    1993-01-01

    G-protein subunits were characterized from Medicago sativa (alfalfa) seedlings. Crude membranes and GTP-Sepharose-purified fractions were electrophoresed on SDS/polyacrylamide gels and analysed by Western blotting with 9193 (anti-alpha common) and AS/7 (anti-alpha t, anti-alpha i1 and anti-alpha i2) polyclonal antibodies. These procedures led to the identification of a specific polypeptide band of about 43 kDa. Another polypeptide reacting with the SW/1 (anti-beta) antibody, of about 37 kDa, was also detected. The 43 kDa polypeptide bound specifically [alpha-32P]GTP by a photoaffinity reaction and was ADP-ribosylated by activated cholera toxin, but not by pertussis toxin. Irradiation of etiolated Medicago sativa protoplast preparations at 660 nm for 1 min produced a maximal increase in the guanosine 5'-[gamma-thio]triphosphate (GTP[35S])-binding rate. After this period of irradiation, the binding rate tended to decrease. The effect of a red-light (660 nm) pulse on the binding rate was reversed when it was immediately followed by a period of far-red (> 730 nm) illumination. These results may suggest that activation of GTP[S]-binding rate was a consequence of conversion of phytochrome Pr into the Ptr form. Images Figure 1 Figure 2 Figure 3 PMID:8484719

  18. Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms.

    PubMed

    Zhao, Lijuan; Ortiz, Cruz; Adeleye, Adeyemi S; Hu, Qirui; Zhou, Hongjun; Huang, Yuxiong; Keller, Arturo A

    2016-09-06

    There has been an increasing influx of nanopesticides into agriculture in recent years. Understanding the interaction between nanopesticides and edible plants is crucial in evaluating the potential impact of nanotechnology on the environment and agriculture. Here we exposed lettuce plants to Cu(OH)2 nanopesticides (1050-2100 mg/L) through foliar spray for one month. Inductively coupled plasma-mass spectrometry (ICP-MS) results indicate that 97-99% (1353-2501 mg/kg) of copper was sequestered in the leaves and only a small percentage (1-3%) (17.5-56.9 mg/kg) was translocated to root tissues through phloem loading. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) based metabolomics combined with partial least squares-discriminant analysis (PLS-DA) multivariate analysis revealed that Cu(OH)2 nanopesticides altered metabolite levels of lettuce leaves. Tricarboxylic (TCA) cycle and a number of amino acid-related biological pathways were disturbed. Some antioxidant levels (cis-caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, dehydroascorbic acid) were significantly decreased compared to the control, indicating that oxidative stress and a defense response occurred. Nicotianamine, a copper chelator, increased by 12-27 fold compared to the control, which may represent a detoxification mechanism. The up-regulation of polyamines (spermidine and putrescine) and potassium may mitigate oxidative stress and enhance tolerance. The data presented here provide a molecular-scale perspective on the response of plants to copper nanopesticides.

  19. Treated wastewater phytotoxicity assessment using Lactuca sativa: Focus on germination and root elongation test parameters.

    PubMed

    Priac, Anne; Badot, Pierre-Marie; Crini, Grégorio

    2017-03-01

    Sensitive and simple ecotoxicological bioassays like seed germination and root elongation tests are commonly used to evaluate the phytotoxicity of waste and industrial discharge waters. Although the tests are performed following national and international standards, various parameters such as the number of seeds per dish, the test duration or the type of support used remain variable. To be able to make a correct comparison of results from different studies, it is crucial to know which parameter(s) could affect ecotoxicological diagnosis. We tested four different control waters and three seed densities. No significant differences on either germination rate or root elongation endpoints were shown. Nevertheless, we found that the four lettuce cultivars (Appia, batavia dorée de printemps, grosse blonde paresseuse, and Kinemontepas) showed significantly different responses when watered with the same and different metal-loaded industrial discharge water. From the comparison, it is clear that a differential sensitivity scale occurs among not just species but cultivars.

  20. Effect of supplemental ultraviolet radiation on the concentration of phytonutrients in green and red leaf lettuce (Lactuca sativa) cultivars

    NASA Astrophysics Data System (ADS)

    Britz, Steven; Caldwell, Charles; Mirecki, Roman; Slusser, James; Gao, Wei

    2005-08-01

    Eight cultivars each of red and green leaf lettuce were raised in a greenhouse with supplemental UV radiation, either UV-A (wavelengths greater than ca. 315 nm) or UV-A+UV-B (wavelengths greater than ca. 290 nm; 6.4 kJ m-2 daily biologically effective UV-B), or no supplemental UV (controls). Several phytonutrients were analyzed in leaf flours to identify lines with large differences in composition and response to UV-B. Red leaf lettuce had higher levels of phenolic acid esters, flavonols and anthocyanins than green lines. Both green and red lines exposed to UV-B for 9 days showed 2-3-fold increases in flavonoids compared to controls, but only 45% increases in phenolic acid esters, suggesting these compounds may be regulated by different mechanisms. There were large differences between cultivars in levels of phenolic compounds under control conditions and also large differences in UV-B effects. Among red varieties, cv. Galactic was notable for high levels of phenolics and a large response to UV-B. Among green varieties, cvs. Black-Seeded Simpson and Simpson Elite had large increases in phenolics with UV-B exposure. Photosynthetic pigments were also analyzed. Green leaf lettuce had high levels of pheophytin, a chlorophyll degradation product. Total chlorophylls (including pheophytin) were much lower in green compared to red varieties. Lutein, a carotenoid, was similar for green and red lines. Total chlorophylls and lutein increased 2-fold under supplemental UV-B in green lines but decreased slightly under UV-B in red lines. Lettuce appears to be a valuable crop to use to study phytochemical-environment interactions.

  1. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery

    PubMed Central

    Aroca, Ricardo; Vernieri, Paolo; Ruiz-Lozano, Juan Manuel

    2008-01-01

    The arbuscular mycorrhizal (AM) symbiosis enhances plant tolerance to water deficit through the alteration of plant physiology and the expression of plant genes. These changes have been postulated to be caused (among others) by different contents of abscisic acid (ABA) between AM and non-AM plants. However, there are no studies dealing with the effects of exogenous ABA on the expression of stress-related genes and on the physiology of AM plants. The aim of the present study was to evaluate the influence of AM symbiosis and exogenous ABA application on plant development, physiology, and expression of several stress-related genes after both drought and a recovery period. Results show that the application of exogenous ABA had contrasting effects on AM and non-AM plants. Only AM plants fed with exogenous ABA maintained shoot biomass production unaltered by drought stress. The addition of exogenous ABA enhanced considerably the ABA content in shoots of non-AM plants, concomitantly with the expression of the stress marker genes Lsp5cs and Lslea and the gene Lsnced. By contrast, the addition of exogenous ABA decreased the content of ABA in shoots of AM plants and did not produce any further enhancement of the expression of these three genes. AM plants always exhibited higher values of root hydraulic conductivity and reduced transpiration rate under drought stress. From plants subjected to drought, only the AM plants recovered their root hydraulic conductivity completely after the 3 d recovery period. As a whole, the results indicate that AM plants regulate their ABA levels better and faster than non-AM plants, allowing a more adequate balance between leaf transpiration and root water movement during drought and recovery. PMID:18469324

  2. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.)

    PubMed Central

    Koronowicz, Aneta A.; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław

    2016-01-01

    Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment. PMID:26799209

  3. Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: influence of soil composition.

    PubMed

    Pinto, Edgar; Almeida, Agostinho A; Aguiar, Ana A R M; Ferreira, Isabel M P L V O

    2014-01-01

    Changes in macrominerals, trace elements and photosynthetic pigments were monitored at 5 stages of lettuce growth. Plants were grown in three experimental agriculture greenhouse fields (A1, A2 and A3). Soil composition was also monitored to understand its influence on lettuce composition. In general, the content of macrominerals, trace elements, chlorophylls and carotenoids decreased during lettuce growth and consequently, high nutritional value was observed at younger stages. A2 lettuces showed an increase of Fe, Al, Cr, V and Pb due to the different soil physicochemical parameters. Multiple linear regression analysis with stepwise variable selection, indicated that soil characteristics, namely, pH(CaCl2) for Fe and Cr, silt and fine-sand for Al and V, OM for Al and Pb, coarse-sand and CEC for Cr, had a key role determining element bioavailability and plant mineral content. Thus, lettuce nutritional value was strongly dependent of growth stage and soil characteristics.

  4. DECA: a new model for assessing the foliar uptake of atmospheric lead by vegetation, using Lactuca sativa as an example.

    PubMed

    Schreck, E; Bonnard, R; Laplanche, C; Leveque, T; Foucault, Y; Dumat, C

    2012-12-15

    In the context of peri-urban atmospheric pollution by industrial lead recycling emissions, metal can transfer to plant shoots. Home gardeners consuming their produce can therefore be exposed to metal pollution. The Human Health Risk Assessment Protocol (HHRAP) model from the United States Environmental Protection Agency (US EPA) classically used in risk assessment provides foliar metal uptake predictions for large farms but is not adapted to cultures in kitchen gardens. Thus, this study developed a new model, entitled "DECA", which includes individually measured parameters and the washing of vegetables before human consumption. Results given by DECA and HHRAP models were compared with experimental measurements of lettuce. The data calculated by the DECA model were highly correlated with the measured values; the HHRAP model overestimates foliar lead uptake. Moreover, strong influences of factor of washing and time-dependent variations of loss coefficient were highlighted. Finally, the DECA model provided important risk assessment data regarding consumption of vegetables from kitchen gardens.

  5. Effects of industrial waste water on heavy metal accumulation, growth and biochemical responses of lettuce (Lactuca sativa L.).

    PubMed

    Naaz, Shadma; Pandey, S N

    2010-05-01

    The waste water showed high values of total solid (TS), hardness and chloride with slightly alkaline pH along with high concentrations of Cr (2.03 mg l(-1)), Ni (1.59 mg l(-1)) and Zn (0.46 mg l(-1)). The concentration of Cu (0.21 mg l(-1)) and Zn in industrial waste water was low than Ni and Cr. The diluted (25 and 50%), undiluted (100%) waste water was used to irrigate the lettuce plants grown in alluvial soils. Plants accumulated heavy metals in their shoot (Ni, 13.65; Cr, 19.73; Zn, 21.6 and Cu 14.76 microg g(-1) dry weight) and root (Ni, 41.4; Cr, 31.6; Zn, 30.2 and Cu 15.85 microg g(-1) dry weight) in high concentrations after irrigation with undiluted industrial waste water. Maximum accumulation of heavy metals was found in the root than the shoot (13.65-21.60 microg g(-1) dry weight). Dry matter yield and biomolecules (Chlorophyll a, b and sugar contents) was found to increase with increase in concentration of waste water up to 50%, which declined at the exposure of undiluted waste water. Catalase activity was found to increase with increase in waste water concentrations up to 100%, while carotenoids content increased in plants only up to the 50% waste water irrigation. Use of industrial waste water in such form, on agricultural lands is not found suitable without proper treatment. It could be injurious to plants growth and may be a potential threat to food web.

  6. Rapid Transient Production of a Monoclonal Antibody Neutralizing the Porcine Epidemic Diarrhea Virus (PEDV) in Nicotiana benthamiana and Lactuca sativa.

    PubMed

    Rattanapisit, Kaewta; Srijangwad, Anchalee; Chuanasa, Taksina; Sukrong, Suchada; Tantituvanont, Angkana; Mason, Hugh S; Nilubol, Dachrit; Phoolcharoen, Waranyoo

    2017-06-02

    Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro. These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection. Georg Thieme Verlag KG Stuttgart · New York.

  7. Nitrate content in dandelion (Taraxacum officinale) and lettuce (Lactuca sativa) from organic and conventional origin: intake assessment.

    PubMed

    Gorenjak, Alenka Hmelak; Koležnik, Urška Rizman; Cencič, Avrelija

    2012-01-01

    To estimate the actual intake of nitrate by consumption of different lettuce varieties, 52 samples of lettuce of different origins and dandelion from 15 different areas of northeast Slovenia were analysed. For determination of actual nitrate content, a continuous flow method was used. The lowest nitrate content was detected in dandelion, with a mean value of 195 mg kg(-1) (ranging 47-487 mg kg(-1)). Nitrate content in lettuce of different origins ranged 85-3237 mg kg(-1), with a mean value of 1196 mg kg(-1). The mean nitrate content in organically cultivated lettuce was 890 mg kg(-1), which was considerably lower than the nitrate level in conventionally cultivated lettuce (1298 mg kg(-1)). Consumption of 100 g of dandelion would result in a maximal nitrate intake corresponding to 22% of the acceptable daily intake (ADI), with values up to seven times higher for lettuce.

  8. Genetic Diversity of Lettuce (Lactuca sativa) for Resistance to Bacterial Leaf Spot Caused by Xanthomonas campestris pv. vitians.

    USDA-ARS?s Scientific Manuscript database

    Lettuce plants were artificially inoculated with three isolates of Xanthomonas campestris pv. vitians in field and greenhouse evaluations for genetic variation in resistance to bacterial leaf spot. The cultivar Little Gem had the least amount of disease, whether evaluated for disease severity or dis...

  9. Expression analysis of polyphenol oxidase isozymes by active staining method and tissue browning of head lettuce (Lactuca sativa L.).

    PubMed

    Noda, Takahiro; Iimure, Kazuhiko; Okamoto, Shunsuke; Saito, Akira

    2017-08-01

    Browning of plant tissue is generally considered attributable to enzymatic oxidation by polyphenol oxidase (PPO). Electrophoresis followed by activity staining has been used as an effective procedure to visually detect and isolate isozymes; however, it has not been applied for examination of various PPO isozymes in lettuce. Our study demonstrated that different lettuce PPO isozymes could be detected at different pH in active staining, and multiple isozymes were detected only under alkaline conditions. As a result, we concluded that activity staining with approximately pH 8 enabled to detect various PPO isozymes in lettuce. By expression analysis of the PPO isozymes after wounding, PPO isozymes that correlated with time-course of tissue browning were detected. The wound-induced PPO may play a key role in enzymatic browning.

  10. Filth fly transmission of Escherichia coli O157:H7 and Salmonella enterica to lettuce, Lactuca sativa

    USDA-ARS?s Scientific Manuscript database

    Filth flies have been implicated in the dispersal of human disease pathogens; however, fly transmission parameters of human pathogens to plants are largely undescribed. The capacity of the black blow fly, Phormia regina, to acquire and subsequently release bacteria onto baby lettuce leaves was comp...

  11. Identification of thaumatin-like protein and aspartyl protease as new major allergens in lettuce (Lactuca sativa).

    PubMed

    Muñoz-García, Esther; Luengo-Sánchez, Olga; Haroun-Díaz, Elisa; Maroto, Aroa Sanz; Palacín, Arancha; Díaz-Perales, Araceli; de las Heras Gozalo, Manuel; Labrador-Horrillo, Moisés; Vivanco, Fernando; Cuesta-Herranz, Javier; Pastor-Vargas, Carlos

    2013-12-01

    Today, about 2-8% of the population of Western countries exhibits some type of food allergy whose impact ranges from localized symptoms confined to the oral mucosa to severe anaphylactic reactions. Consumed worldwide, lettuce is a Compositae family vegetable that can elicit allergic reactions. To date, however, only one lipid transfer protein has been described in allergic reaction to lettuce. The aim of this study was to identify potential new allergens involved in lettuce allergy. Sera from 42 Spanish lettuce-allergic patients were obtained from patients recruited at the outpatient clinic. IgE-binding proteins were detected by SDS-PAGE and immunoblotting. Molecular characterization of IgE-binding bands was performed by MS. Thaumatin was purified using the Agilent 3100 OFFGEL system. The IgE-binding bands recognized in the sera of more than 50% of patients were identified as lipid transfer protein (9 kDa), a thaumatin-like protein (26 kDa), and an aspartyl protease (35 and 45 kDa). ELISA inhibition studies were performed to confirm the IgE reactivity of the purified allergen. Two new major lettuce allergens-a thaumatin-like protein and an aspartyl protease-have been identified and characterized. These allergens may be used to improve both diagnosis and treatment of lettuce-allergic patients. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.).

    PubMed

    Koronowicz, Aneta A; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław

    2016-01-01

    Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment.

  13. Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments.

    PubMed

    Coria-Cayupán, Yanina Soledad; Sánchez de Pinto, María Ines; Nazareno, Mónica Azucena

    2009-11-11

    Changes in crop yields and bioactive substance contents were studied in lettuce crop concerning the influence of soil nutritional status as a result of compost and vermicompost additions obtained from different organic substrates. Plant productions and main pigment contents in lettuce were higher in all the fertilized soils than in the untreated soil, with the exception of the one treated with urban solid waste compost. These positive effects correlate with nitrogen level increase in soil. However, the high saline input of this compost prepared from food home wastes interferes in lettuce growth and prevents it from being higher than the control. Marked decreases in lettuce phenolic contents and antiradical activity were found in most of the treatments. Composts and vermicomposts produced through the processing of cattle manures, agro-industrial organic wastes significantly increased lettuce crop yield enriching its pigment contents, although, in some cases, antioxidant value and phenolic levels were reduced.

  14. Metabolic fate of [14C] chlorophenols in radish (Raphanus sativus), lettuce (Lactuca sativa), and spinach (Spinacia oleracea).

    PubMed

    Pascal-Lorber, Sophie; Despoux, Sabrina; Rathahao, Estelle; Canlet, Cécile; Debrauwer, Laurent; Laurent, François

    2008-09-24

    Chlorophenols are potentially harmful pollutants that are found in numerous natural and agricultural systems. Plants are a sink for xenobiotics, which occur either intentionally or not, as they are unable to eliminate them although they generally metabolize them into less toxic compounds. The metabolic fate of [ (14)C] 4-chlorophenol (4-CP), [ (14)C] 2,4-dichlorophenol (2,4-DCP), and [ (14)C] 2,4,5-trichlorophenol (2,4,5-TCP) was investigated in lettuce, spinach, and radish to locate putative toxic metabolites that could become bioavailable to food chains. Radish plants were grown on sand for four weeks before roots were dipped in a solution of radiolabeled chlorophenol. The leaves of six-week old lettuce and spinach were treated. Three weeks after treatments, metabolites from edible plant parts were extracted and analyzed by high performance liquid chromatography (HPLC) and characterized by mass spectrometry (MS), and nuclear magnetic resonance spectroscopy (NMR). Characterization of compounds highlighted the presence of complex glycosides. Upon hydrolysis in the digestive tract of animals or humans, these conjugates could return to the toxic parent compound, and this should be kept in mind for registration studies.

  15. Marketing and Seedling Distribution of Longleaf Pine Seedlings

    Treesearch

    Mark J. Hainds

    2002-01-01

    The Longleaf Alliance, a partnership of people and organizations interested in longleaf pine, started tracking longleaf pine (Pinus palustris Mill.) seedling production in 1996. Total Longleaf seedling production has increased annually from 1996 to 2000. Bareroot seedling production decreased from 1996 to 1997, and decreased again from 1997 to 1998....

  16. Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica.

    PubMed

    Wang, Sheng-Yang; Chang, Hsing-Ning; Lin, Kai-Ti; Lo, Chiu-Ping; Yang, Ning-Sun; Shyur, Lie-Fen

    2003-02-26

    Lactuca indica (Compositae) is an edible wild vegetable, used as a folk medicine in anti-inflammatory, antibacterial, and other medications in Asia. This is the first scientific evaluation of the chemopreventive therapeutic properties of L. indica using five antioxidation assay systems. An extract from L. indica was found to possess significant free radical scavenging activity, effectively protecting phix174 supercoiled DNA against strand cleavage and reducing oxidative stress in human promyelocytic leukemia HL-60 cells. Moreover, extracts of L. indica almost totally inhibited nitric oxide production and the mRNA expression of inducible nitric oxide synthase, at a dosage of 100 microg/mL, in LPS-stimulated macrophage RAW264.7 cells. Bioactivity-guided chromatographic fractionation and metabolite profiling coupled with spectroscopic analyses revealed that the six phenolic compounds, that is, protocatechulic acid (1), methyl p-hydroxybenzoate (2), caffeic acid (3), 3,5-dicaffeoylquinic acid (4), luteolin 7-O-beta-glucopyranoside (5), and quercetin 3-O-beta-glucopyranoside (6), are the major antioxidative constituents in the L. indica extract.

  17. Osmotic adaptation in Ulva lactuca under fluctuating salinity regimes.

    PubMed

    Dickson, D M; Wyn Jones, R G; Davenport, J

    1982-09-01

    A study has been made of the osmotic responses of the green intertidal alga, Ulva lactuca, under two fluctuating salinity regimes; sinusoidal and square-wave fluctuations between 30 and 100% sea water in a 12 h cycle. These regimes closely resemble the tidal fluctuation of salinity encountered by the alga in its natural estuarine habitat. Data on changes in the inorganic ions, potassium, sodium, chloride and sulphate; in the organic solute, dimethylsulphoniopropionate; in the total sugar levels and estimated osmotic and turgor pressures under the two salinity regimes are reported. Significant differences in the solute responses under these different conditions were detected. In general, better control of ion fluxes appeared to be exercised under the sinusoidal conditions which also buffered changes in dimethylsulphoniopropionate levels. Influxes of potassium were highly light-dependent. Chloride levels conspicuously failed to reach the steady-state levels in the 6-h-hyper-osmotic part of either the abrupt or gradual cycle. The possible significance of these data, which may better reflect osmotic changes in the natural environment, and some of the problems encountered, particularly in accounting for charge balance under some conditions, are discussed.

  18. Marine biomass research in Florida. [Gracilaria tikvahiae, Ulva Lactuca

    SciTech Connect

    Ryther, J.H.

    1983-01-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry weight/sq. m/day, greater than the most productive terrestrial plants. This occurs when the plants are grown in suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet weight/sq.m, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two week's growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing of CO/sub 2/ eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can be grown at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce through selective breeding, a high-temperature tolerant strain of Ulva. 21 references.

  19. Metals in Ulva lactuca in Hong Kong intertidal waters

    SciTech Connect

    Ho, Y.B. )

    1990-07-01

    The levels of Mn, Fe, Ni, Cu, Zn, Cd, and Pb in Ulva lactuca collected from 24 intertidal sites around the Island of Hong Kong were determined by flame atomic absorption spectrophotometry. Twelve of the sites are in the rural southern parts of the island where the coastal waters are relatively clean. The remaining 12 sites are located in the north and within Victoria Harbor which receives, apart from industrial effluents, untreated domestic sewage from a population of some 3.5 million. The mean levels of Mn, Fe, Ni, Cu, Zn and Pb in Ulva from the urban sites were respectively 4.0, 4.6, 1.8, 2.3, 2.4, and 4.6 times those from the rural sites. However, somewhat similar levels of Cd were found in the alga among all the sites. Some locations of high levels of metal contamination have been identified in Victoria Harbor. Preliminary findings indicated that Ulva is a good indicator of Mn, Fe, Cu, Zn and Pb contamination due to its cosmopolitan distribution, simple morphology leading to ease of growth assessment, and its graded tolerance and response to pollutants. 11 refs., 3 figs., 3 tabs.

  20. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress.

    PubMed

    Kamran, Muhammad Aqeel; Eqani, Syed Ali Musstjab Akber Shah; Bibi, Sadia; Xu, Ren-Kou; Amna; Monis, Muhammad Farooq Hussain; Katsoyiannis, Athanasios; Bokhari, Habib; Chaudhary, Hassan Javed

    2016-04-01

    Phytoremediation potential of plants can be enhanced in association with microbes. Further, many plant growth-promoting rhizobacteria can improve growth under stress. The present study was conducted to investigate the effect of Pseudomonas putida (P. putida) on nickel (Ni) uptake and on growth of Eruca sativa (E. sativa). Three different levels of Ni (low; 150 ug/g, medium; 250 ug/g and high; 500 ug/g) were applied to the soil containing E. sativa seedlings, with or without P. putida. Ni-toxicity was measured by metamorphic parameters including shoot length, root length, biomass, chlorophyll and proline and Ni contents. Inoculation with P. putida increased 34% and 41% in root and shoot length and 38% and 24% in fresh, dry weight respectively, as compared to non-inoculated plants. Similarly, Ni uptake increased by up to 46% following P. putida inoculation as compared to non-inoculated plants. Indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity in the growing media enhanced growth and Ni uptake in E. sativa. The present results offer insight on Plant Growth Promoting Rhizobacteria (PGPR), such as P. putida, for the potential to enhance the plant growth by inhibiting the adverse effects of Ni in E. sativa. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Calcium Supplementation Improves Na+/K+ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings

    PubMed Central

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2016-01-01

    The present study investigates the regulatory role of exogenous calcium (Ca) in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger) for 3 days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na+ influx and K+ efflux, and decreased other mineral nutrient uptake. Salt stress caused oxidative stress in seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS) production and methylglyoxal (MG) formation. The salt-stressed seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na+ influx and K+ leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system. PMID:27242816

  2. Detection and Quantification of Bremia lactucae by Spore Trapping and Quantitative PCR.

    PubMed

    Kunjeti, Sridhara G; Anchieta, Amy; Martin, Frank N; Choi, Young-Joon; Thines, Marco; Michelmore, Richard W; Koike, Steven T; Tsuchida, Cayla; Mahaffee, Walt; Subbarao, Krishna V; Klosterman, Steven J

    2016-11-01

    Bremia lactucae is an obligate, oomycete pathogen of lettuce that causes leaf chlorosis and necrosis and adversely affects marketability. The disease has been managed with a combination of host resistance and fungicide applications with success over the years. Fungicide applications are routinely made under the assumption that inoculum is always present during favorable environmental conditions. This approach often leads to fungicide resistance in B. lactucae populations. Detection and quantification of airborne B. lactucae near lettuce crops provides an estimation of the inoculum load, enabling more judicious timing of fungicide applications. We developed a quantitative polymerase chain reaction (qPCR)-based assay using a target sequence in mitochondrial DNA for specific detection of B. lactucae. Validation using amplicon sequencing of DNA from 83 geographically diverse isolates, representing 14 Bremia spp., confirmed that the primers developed for the TaqMan assays are species specific and only amplify templates from B. lactucae. DNA from a single sporangium could be detected at a quantification cycle (Cq) value of 32, and Cq values >35 were considered to be nonspecific. The coefficient of determination (R(2)) for regression between sporangial density derived from flow cytometry and Cq values derived from the qPCR was 0.86. The assay was deployed using spore traps in the Salinas Valley, where nearly half of U.S. lettuce is produced. The deployment of this sensitive B. lactucae-specific assay resulted in the detection of the pathogen during the 2-week lettuce-free period as well as during the cropping season. These results demonstrate that this assay will be useful for quantifying inoculum load in and around the lettuce fields for the purpose of timing fungicide applications based on inoculum load.

  3. Older leaves of lettuce (Lactuca spp.) support higher levels of Salmonella enterica ser. Senftenberg attachment and show greater variation between plant accessions than do younger leaves.

    PubMed

    Hunter, Paul J; Shaw, Robert K; Berger, Cedric N; Frankel, Gad; Pink, David; Hand, Paul

    2015-06-01

    Salmonella can bind to the leaves of salad crops including lettuce and survive for commercially relevant periods. Previous studies have shown that younger leaves are more susceptible to colonization than older leaves and that colonization levels are dependent on both the bacterial serovar and the lettuce cultivar. In this study, we investigated the ability of two Lactuca sativa cultivars (Saladin and Iceberg) and an accession of wild lettuce (L. serriola) to support attachment of Salmonella enterica serovar Senftenberg, to the first and fifth to sixth true leaves and the associations between cultivar-dependent variation in plant leaf surface characteristics and bacterial attachment. Attachment levels were higher on older leaves than on the younger ones and these differences were associated with leaf vein and stomatal densities, leaf surface hydrophobicity and leaf surface soluble protein concentrations. Vein density and leaf surface hydrophobicity were also associated with cultivar-specific differences in Salmonella attachment, although the latter was only observed in the older leaves and was also associated with level of epicuticular wax. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development.

  5. Studies on the methods of identification of irradiated food I. Seedling growth test

    NASA Astrophysics Data System (ADS)

    Qiongying, Liu; Yanhua, Kuang; Yuemei, Zheng

    1993-07-01

    A seedling growth test for the identification of gamma irradiated edible vegetable seeds was described. The identification of gamma irradiated grape and the other seeds has been investigated. The purpose of this study was to develop an easy, rapid and practical technique for the identification of irradiated edible vegetable seeds. Seven different irradiated edible vegetable seeds as: rice ( Oryza sativa), peanut ( Arachis hypogaea), maize ( Zeamays), soybean ( Glycine max), red bean ( Phaseolus angularis), mung bean ( Phaseolus aureus) and catjang cowpea ( Vigna cylindrica) were tested by using the method of seedling growth. All of the edible vegetable seeds were exposed to gamma radiation on different doses, O(CK), 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 kGy. After treatment with above 1.0 kGy dose to the seeds, the seedling rate was less than 50% compared with the control. Although the seedling rate of rice seeds can reached 58%, the seedling growth was not normal and the seedling leaves appeared deformed. The results by this method were helpful to identify gamma treatment of the edible vegetable seeds with above 1.0 kGy dose.

  6. Antimicrobial activity of extracts from macroalgae Ulva lactuca against clinically important Staphylococci is impacted by lunar phase of macroalgae harvest.

    PubMed

    Deveau, A M; Miller-Hope, Z; Lloyd, E; Williams, B S; Bolduc, C; Meader, J M; Weiss, F; Burkholder, K M

    2016-05-01

    Staphylococcus aureus is a common human bacterial pathogen that causes skin and soft tissue infections. Methicillin-resistant Staph. aureus (MRSA) are increasingly drug-resistant, and thus there is great need for new therapeutics to treat Staph. aureus infections. Attention has focused on potential utility of natural products, such as extracts of marine macroalgae, as a source of novel antimicrobial compounds. The green macroalgae Ulva lactuca produces compounds inhibitory to human pathogens, although the effectiveness of U. lactuca extracts against clinically relevant strains of Staph. aureus is poorly understood. In addition, macroalgae produce secondary metabolites that may be influenced by exogenous factors including lunar phase, but whether lunar phase affects U. lactuca antimicrobial capacity is unknown. We sought to evaluate the antibacterial properties of U. lactuca extracts against medically important Staphylococci, and to determine the effect of lunar phase on antimicrobial activity. We report that U. lactuca methanolic extracts inhibit a range of Staphylococci, and that lunar phase of macrolagae harvest significantly impacts antimicrobial activity, suggesting that antimicrobial properties can be maximized by manipulating time of algal harvest. These findings provide useful parameters for future studies aimed at isolating and characterizing U. lactuca anti-Staphylococcal agents. The growing prevalence of antibiotic-resistant human pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) has intensified efforts towards discovery and development of novel therapeutics. Marine macroalgae like Ulva lactuca are increasingly recognized as potential sources of antimicrobials, but the efficacy of U. lactuca extracts against common, virulent strains of Staph. aureus is poorly understood. We demonstrate that U. lactuca methanolic extracts inhibit a variety of clinically relevant Staphylococcus strains, and that the antimicrobial activity can

  7. Development of an assay for rapid detection of the lettuce downy mildew pathogen, Bremia lactucae

    USDA-ARS?s Scientific Manuscript database

    Downy mildew of lettuce, caused by Bremia lactucae, causes chlorosis on leaves and adversely affects marketability. Though downy mildew on lettuce can be controlled by fungicide applications, it is costly to routinely apply fungicides to prevent the establishment of downy mildew. Repeated use of the...

  8. Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms.

    PubMed

    Hulbert, S H; Ilott, T W; Legg, E J; Lincoln, S E; Lander, E S; Michelmore, R W

    1988-12-01

    Restriction fragment length polymorphisms (RFLPs) were developed as genetic markers for Bremia lactucae, the biotrophic Oomycete fungus which causes lettuce downy mildew. By using 55 genomic and cDNA probes, a total of 61 RFLP loci were identified among three heterothallic isolates of B. lactucae. Of these 61 RFLP loci, 53 were heterozygous in at least one of the three strains and thus were informative for linkage analysis in at least one of two F1 crosses that were performed. Analysis of the cosegregation of these 53 RFLPs, eight avirulence loci and the mating type locus allowed the construction of a preliminary genetic linkage map consisting of 13 small linkage groups. Based on the extent of linkage detected among probes, the genome of B. lactucae can be estimated to be approximately 2000 cM. Linkage was detected between a RFLP locus and an avirulence gene, providing a potential starting point for chromosome walking to clone an avirulence gene. The high frequency of DNA polymorphism in naturally occurring isolates and the proper Mendelian segregation of loci detected by low copy number probes indicates that it will be possible to construct a detailed genetic map of B. lactucae using RFLPs as markers. The method of analysis employed here should be applicable to many other outbreeding, heterozygous species for which defined inbred lines are not available.

  9. Genetic Analysis of the Fungus, Bremia Lactucae, Using Restriction Fragment Length Polymorphisms

    PubMed Central

    Hulbert, S. H.; Ilott, T. W.; Legg, E. J.; Lincoln, S. E.; Lander, E. S.; Michelmore, R. W.

    1988-01-01

    Restriction fragment length polymorphisms (RFLPs) were developed as genetic markers for Bremia lactucae, the biotrophic Oomycete fungus which causes lettuce downy mildew. By using 55 genomic and cDNA probes, a total of 61 RFLP loci were identified among three heterothallic isolates of B. lactucae. Of these 61 RFLP loci, 53 were heterozygous in at least one of the three strains and thus were informative for linkage analysis in at least one of two F(1) crosses that were performed. Analysis of the cosegregation of these 53 RFLPs, eight avirulence loci and the mating type locus allowed the construction of a preliminary genetic linkage map consisting of 13 small linkage groups. Based on the extent of linkage detected among probes, the genome of B. lactucae can be estimated to be approximately 2000 cM. Linkage was detected between a RFLP locus and an avirulence gene, providing a potential starting point for chromosome walking to clone an avirulence gene. The high frequency of DNA polymorphism in naturally occurring isolates and the proper Mendelian segregation of loci detected by low copy number probes indicates that it will be possible to construct a detailed genetic map of B. lactucae using RFLPs as markers. The method of analysis employed here should be applicable to many other outbreeding, heterozygous species for which defined inbred lines are not available. PMID:2906309

  10. Evaluation of Nutritional Composition of The Dried Seaweed Ulva lactuca from Pameungpeuk Waters, Indonesia

    PubMed Central

    Rasyid, Abdullah

    2017-01-01

    The nutritional composition of the dried seaweed Ulva lactuca from Pameungpeuk waters, including proximate, vitamins, minerals, dietary fibre and heavy metal has been carried out. The objective of this present study is to know the nutritional composition of the dried seaweed U. lactuca for utilisation in human nutrition in the future. Results show that carbohydrate was the major component in the proximate analysis of U. lactuca in the present study. The carbohydrate content was 58.1%. Moisture, ash, protein and fat content were 16.9%, 11.2%, 13.6% and 0.19% respectively, while dietary fibre was 28.4%. The vitamin A content was examined in this study less than 0.5 IU/100 mg while vitamin B1 (thiamine) and vitamin B2 (riboflavin) were 4.87 mg/kg and 0.86 mg/kg respectively. The calcium content was 1828 mg/100 g higher than other minerals. The heavy metal content examined in this study were lower than the limit of the quality criteria applied to edible seaweeds sold in Indonesia. Based on the results of this study show that U. lactuca has potential to be developed as an alternative source of a healthy food for human in the future. PMID:28890765

  11. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  12. Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR

    USDA-ARS?s Scientific Manuscript database

    Bremia lactucae causes the characteristic vein-delimited lesions, leaf chlorosis and necrosis and adversely affects marketability of lettuce. The disease has been managed with a combination of host resistance and fungicide applications with mixed success over the years. Fungicide applications are ro...

  13. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    EPA Science Inventory

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  14. Investigation on the effects of guava (Psidium guajava L.) infusions on germination, root tips and meristematic cells of Latuca sativa.

    PubMed

    Luber, Jaquelini; Palmieri, Marcel J; Botelho, Carolina M; Rinaldo, Daniel; Andrade-Vieira, Larissa F

    2015-01-01

    Guava (Psidium guajava L.) is a plant often employed in popular medicine. Recently several studies have alerted about the toxicity of substances present in medicinal plants, which can pose risks to the human health. In this sense, the present work aimed to investigate the phytotoxic, cytotoxic and genotoxic action of three guava varieties - Paluma, Pedro Sato and Roxa ("purple") - on the plant test system Lactuca sativa L. Thus, macro- and microscopic evaluations were carried out for five infusion concentrations (2.5, 5.0, 10.0, 20.0 and 40.0 g.L(-1)) prepared from each variety. Distilled water was used as negative control. Chromatographic and spectroscopic analysis by HPLC-PAD indicated that the chemical composition of the infusion of Roxa is different than that of the infusions of the varieties Paluma and Pedro Sato. It was observed that seed germination and root growth in L. sativa exposed to infusions decreased with increasing infusion concentration, regardless of the tested cultivar. For the mitotic index, no statistical differences were observed. On the other hand, a significant increase in the frequency of cell cycle alterations was verified, especially for the highest concentrations tested. The cytogenotoxic effect was significant. Therefore, guava should not be used indiscriminately in popular medicine.

  15. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels.

    PubMed

    Bikker, Paul; van Krimpen, Marinus M; van Wikselaar, Piet; Houweling-Tan, Bwee; Scaccia, Nazareno; van Hal, Jaap W; Huijgen, Wouter J J; Cone, John W; López-Contreras, Ana M

    2016-01-01

    The growing world population demands an increase in animal protein production. Seaweed may be a valuable source of protein for animal feed. However, a biorefinery approach aimed at cascading valorisation of both protein and non-protein seaweed constituents is required to realise an economically feasible value chain. In this study, such a biorefinery approach is presented for the green seaweed Ulva lactuca containing 225 g protein (N × 4.6) kg(-1) dry matter (DM). The sugars in the biomass were solubilised by hot water treatment followed by enzymatic hydrolysis and centrifugation resulting in a sugar-rich hydrolysate (38.8 g L(-1) sugars) containing glucose, rhamnose and xylose, and a protein-enriched (343 g kg(-1) in DM) extracted fraction. This extracted fraction was characterised for use in animal feed, as compared to U. lactuca biomass. Based on the content of essential amino acids and the in vitro N (85 %) and organic matter (90 %) digestibility, the extracted fraction seems a promising protein source in diets for monogastric animals with improved characteristics as compared to the intact U. lactuca. The gas production test indicated a moderate rumen fermentation of U. lactuca and the extracted fraction, about similar to that of alfalfa. Reduction of the high content of minerals and trace elements may be required to allow a high inclusion level of U. lactuca products in animal diets. The hydrolysate was used successfully for the production of acetone, butanol, ethanol and 1,2-propanediol by clostridial fermentation, and the rhamnose fermentation pattern was studied.

  16. Glucosinolate biosynthesis in Eruca sativa.

    PubMed

    Katsarou, Dimitra; Omirou, Michalis; Liadaki, Kalliopi; Tsikou, Daniela; Delis, Costas; Garagounis, Constantine; Krokida, Afrodite; Zambounis, Antonis; Papadopoulou, Kalliope K

    2016-12-01

    Glucosinolates (GSLs) are a highly important group of secondary metabolites in the Caparalles order, both due to their significance in plant-biome interactions and to their chemoprotective properties. This study identified genes involved in all steps of aliphatic and indolic GSL biosynthesis in Eruca sativa, a cultivated plant closely related to Arabidopsis thaliana with agronomic and nutritional value. The impact of nitrogen (N) and sulfur (S) availability on GSL biosynthetic pathways at a transcriptional level, and on the final GSL content of plant leaf and root tissues, was investigated. N and S supply had a significant and interactive effect on the GSL content of leaves, in a structure-specific and tissue-dependent manner; the metabolites levels were significantly correlated with the relative expression of the genes involved in their biosynthesis. A more complex effect was observed in roots, where aliphatic and indolic GSLs and related biosynthetic genes responded differently to the various nutritional treatments suggesting that nitrogen and sulfur availability are important factors that control plant GSL content at a transcriptional level. The biological activity of extracts derived from these plants grown under the specific nutritional schemes was examined. N and S availability were found to significantly affect the cytotoxicity of E. sativa extracts on human cancer cells, supporting the notion that carefully designed nutritional schemes can promote the accumulation of chemoprotective substances in edible plants.

  17. Allelopatic effects of cyanobacteria extracts containing microcystins on Medicago sativa-Rhizobia symbiosis.

    PubMed

    El Khalloufi, Fatima; Oufdou, Khalid; Lahrouni, Majida; El Ghazali, Issam; Saqrane, Sanaa; Vasconcelos, Vitor; Oudra, Brahim

    2011-03-01

    The eutrophication of water leads to massive blooms of cyanobacteria potentially producers of highly toxic substances: cyanotoxins, especially microcystins (MC). The contamination of water used for irrigation by these toxins, can cause several adverse effects on plants and microorganisms. In this work, we report the phytotoxic effects of microcystins on the development of symbiosis between the leguminous plant Medicago sativa (Alfalfa) and rhizobia strains. The exposure of rhizobial strains to three different concentrations 0.01, 0.05 and 0.1 μg MC ml(-1) led to decrease on the bacteria growth. The strains of rhizobia Rh L1, Rh L2, Rh L3 and Rh L4 reduced their growth to, respectively, 20.85%, 20.80%, 33.19% and 25.65%. The chronic exposure of alfalfa seeds and seedlings to different MC concentrations affects the whole stages of plant development. The germination process has also been disrupted with an inhibition, which reaches 68.34% for a 22.24 μg MC ml(-1). Further, seedlings growth and photosynthetic process were also disrupted. The toxins reduced significantly the roots length and nodule formation and leads to an oxidative stress. Thus, the MCs contained in lake water and used for irrigation affect the development of symbiosis between M. sativa and Rhizobia.

  18. Chemical characterization of new oxylipins from Cestrum parqui, and their effects on seed germination and early seedling growth.

    PubMed

    Fiorentino, Antonio; D'Abrosca, Brigida; Dellagreca, Marina; Izzo, Angelina; Natale, Angela; Pascarella, Maria Teresa; Pacifico, Severina; Zarrelli, Armando; Monaco, Pietro

    2008-09-01

    Isolation, chemical characterization, and phytotoxicity of five new oxylipins, together with seven already known related compounds, from Cestrum parqui L' Hérl. is reported. All the structures were elucidated on the basis of their spectral data, especially 1D-(1H- and 13C-NMR, DEPT) and 2D-NMR (COSY, TOCSY, HSQC, HMBC, and NOESY). The configurations of the stereogenic C-atoms were determined by the Mosher's method. The compounds have been assayed for their phytotoxicity on Lactuca sativa at concentrations ranging between 10(-4) and 10(-8) M. The results of the phytotoxicity tests on the germination and growth of the test species, obtained by a cluster analysis, showed interesting relationship between the chemical structures of the compounds and their biological effects.

  19. Bioactive spirans and other constituents from the leaves of Cannabis sativa f. sativa.

    PubMed

    Guo, Tian-Tian; Zhang, Jian-Chun; Zhang, Hai; Liu, Qing-Chao; Zhao, Yong; Hou, Yu-Fei; Bai, Lu; Zhang, Li; Liu, Xue-Qiang; Liu, Xue-Ying; Zhang, Sheng-Yong; Bai, Nai-Sheng

    2016-11-16

    In this paper, 17 compounds (1-17) were isolated from the leaves of Hemp (Cannabis sativa f. sativa). Among the isolates, two were determined to be new spirans: cannabispirketal (1), and α-cannabispiranol 4'-O-β-D-glucopyranose (2) by 1D and 2D NMR spectroscopy, LC-MS, and HRESIMS. The known compounds 7, 8, 10, 13, 15, and 16 were isolated from Hemp (C. sativa f. sativa) for the first time. Furthermore, compounds 8 and 13 were isolated from the nature for the first time. All isolated compounds were evaluated for cytotoxicity on different tissue-derived passage cancer cell lines through cell viability and apoptosis assay. Among these compounds, compounds 5, 9 and 16 exhibited a broad-spectrum antitumor effect via inhibiting cell proliferation and promoting apoptosis. These results obtained have provided valuable clues to the understanding of the cytotoxic profile for these isolated compounds from Hemp (C. sativa f. sativa).

  20. Growing Different Lactuca Genotypes Aeroponically within a Tropical Greenhouse—Cool Rootzone Temperatures Decreased Rootzone Ethylene Concentrations and Increased Shoot Growth

    PubMed Central

    Choong, Tsui-Wei; He, Jie; Lee, Sing K.; Dodd, Ian C.

    2016-01-01

    Temperate crops cannot grow well in the tropics without rootzone cooling. As cooling increased production costs, this experiment aimed to study the growth of various Lactuca genotypes and propose possible ways of reducing these costs, without compromising productivity. A recombinant inbred line (RIL) of lettuce and its parental lines (L. serriola and L. sativa “Salinas”) were grown aeroponically in a tropical greenhouse under 24°C cool (C) or warm fluctuating 30–36°C ambient (A) rootzone temperature (RZT). Their roots were misted with Netherlands standard nutrient solution for 1 min, at intervals of either 5 min (A5, C5) or 10 min (A10, C10) in attempting to reduce electricity consumption and production costs. Lower mortality and higher productivity were observed in all genotypes when grown in C-RZT. Higher shoot fresh weight was observed under C5 than C10, for the RIL and L. serriola. Since “Salinas” had similar shoot fresh weight at both C-RZ treatments, this may indicate it is more sensitive to RZT than water availability. Under A-RZ treatments, higher carotenoid content, with correspondingly higher nonphotochemical quenching, was observed in A10 for the RIL and “Salinas.” Further, total chlorophyll content was also highest at this RZ treatment for the RIL though photochemical quenching was contrastingly the lowest. Cumulatively, productivity was compromised at A10 as the RIL seemed to prioritize photoprotection over efficiency in photosynthesis, under conditions of higher RZT and lower water availability. Generally, higher RZ ethylene concentrations accumulated in A10 and C10 than A5 and C5, respectively—probably due to spray frequency exerting a greater effect on RZ ethylene accumulation than RZT. In the C5 RZ treatment, lowest RZ ethylene concentration corresponded with highest shoot fresh weight. As such, further research on ethylene (in)sensitivity and water use efficiency could be conducted to identify Lactuca cultivars that are better

  1. Reducing Seed and Seedlings Pathogens Improves Longleaf Pine Seedlings Production

    Treesearch

    James P. Barnett; John M. McGilvray

    2002-01-01

    The demand for container longleaf pine (Pinus palustris Mill.) planting stock is increasing across the Lower Gulf Coastal Plain. Poor-quality seeds and seedling losses during nursery culture further constrain a limited seed supply. Improved seed efficiency will be necessary to meet the need for increased seedling production. We evaluated seed...

  2. Metabolic responses in root nodules of Phaseolus vulgaris and Vicia sativa exposed to the imazamox herbicide.

    PubMed

    García-Garijo, A; Tejera, N A; Lluch, C; Palma, F

    2014-05-01

    Alterations on growth, amino acids metabolism and some antioxidant enzyme activities as result of imazamox treatment were examined in determinate and indeterminate nodules, formed by Phaseolus vulgaris and Vicia sativa, respectively. Young seedlings of both legumes were inoculated with their respective microsymbionts and grown under controlled conditions. At vegetative growth, plants were treated with imazamox (250μM) in the nutrient solution and harvested 7days after. Imazamox was mainly accumulated in V. sativa where concentrations were more than six fold higher than those detected in P. vulgaris. Nodule dry weight and total nitrogen content were reduced by the herbicide treatment: the highest decrease of nodule biomass (50%) and nitrogen content (40%) were registered in V. sativa and P. vulgaris, respectively. The concentration of branched-chain amino acids (BCAA) did not change in neither determinate nor indeterminate nodules even though the acetohydroxyacid synthase activity decreased in root and nodules of both symbioses with the herbicide application. Based on this last result and taking into account that total free amino acids increased in roots but not in nodules of common vetch, a possible BCAA translocation from root to nodule could occur. Our results suggest that the maintenance of BCAA balance in nodule become a priority for the plant in such conditions. The involvement of activities glutathione-S-transferase, guaiacol peroxidase and superoxide dismutase in the response of the symbioses to imazamox are also discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Biogenic nanoparticle-mediated augmentation of seed germination, growth, and antioxidant level of Eruca sativa mill. varieties.

    PubMed

    Ushahra, Jyoti; Bhati-Kushwaha, Himakshi; Malik, C P

    2014-09-01

    A study was undertaken to examine the influence of biogenic nanoparticles synthesized from Tridax procumbens on different parameters of seed germination, seedling growth, and various biochemical parameters in four Eruca sativa varieties having low percentage of germination. Seeds were treated with different concentrations (30 and 40 ppm) of biogenic nanoparticles, of which 30 ppm was found to be the most effective and was therefore used for subsequent studies. Initially, the effect of biogenic nanoparticles on germination percentage, speed of germination, coefficient of germination, mean germination time, shoot and root length, fresh and dry matter, and vigor index was studied. From the experiments performed and the results obtained, it was evident that the treatment with biogenic nanoparticles decreased the electrolyte leakage and level of malondialdehyde as compared to control. The treatment with biogenic nanoparticles enhanced the levels of proline and ascorbic acid and stimulated the antioxidant enzyme activities resulting in the reduced level of reactive oxygen species. These activities were found to be variety-dependent. The possible involvement of biogenic nanoparticles in the production of new pores in seed coat during their penetration, resulting in the influx of the nutrients inside the seed, is suggested. This accelerated seed germination is followed by rapid seedling growth. The present findings indicated that biogenic nanoparticles promote seed germination in E. sativa by overcoming the detrimental effects of reactive oxygen species (ROS) and improving the antioxidative defense system which finally result in increased seedling growth.

  4. Forest seedling production in Israel

    Treesearch

    Nir Atzmon; David Brand

    2002-01-01

    Afforestation and reforestation in Israel are done on marginal lands, which consist of poor and shallow soils, with precipitation ranging from 650 mm in the north down to 200 mm in the south. Therefore, seedling quality is of great concern. All forest seedlings planted in Israel are produced by three forest nurseries which belong to the Forest Authority of Israel....

  5. Neuropharmacological effects of Nigella sativa

    PubMed Central

    Beheshti, Farimah; Khazaei, Majid; Hosseini, Mahmoud

    2016-01-01

    Nigella sativa (NS) (Ranunculaceae family) is generally utilized as a therapeutic plant all over the world. The seeds of the plant have a long history of use in different frameworks of medicines and food. In Islamic literature, it is considered as one of the greatest forms of therapeutics. It has been widely used to treat nervous system diseases such as memory impairment, epilepsy, neurotoxicity, pain, etc. Additionally, this is uncovered that the majority of therapeutic properties of this plant are due to the presence of thymoquinone (TQ) which is a major bioactive component of the essential oil. Pharmacological studies have been done to evaluate the effects of NS on the central nervous system (CNS). The present review is an effort to provide a detailed scientific literature survey about pharmacological activities of the plant on nervous system. Our literature review showed that NS and its components can be considered as promising agents in the treatment of nervous system disorders. PMID:27247928

  6. [Therapeutic potential of Cannabis sativa].

    PubMed

    Avello L, Marcia; Pastene N, Edgar; Fernández R, Pola; Córdova M, Pia

    2017-03-01

    Cannabis sativa (marihuana) is considered an illicit drug due to its psychoactive properties. Recently, the Chilean government opened to the use cannabis in the symptomatic treatment of some patients. The biological effects of cannabis render it useful for the complementary treatment of specific clinical situations such as chronic pain. We retrieved scientific information about the analgesic properties of cannabis, using it as a safe drug. The drug may block or inhibit the transmission of nervous impulses at different levels, an effect associated with pain control. Within this context and using adequate doses, forms and administration pathways, it can be used for chronic pain management, considering its effectiveness and low cost. It could also be considered as an alternative in patients receiving prolonged analgesic therapies with multiple adverse effects.

  7. ANTI-CANCER ACTIVITY OF NIGELLA SATIVA

    PubMed Central

    Salomi, M.J.; Panikkar, K.R.; Kesavan, M.; Donata, K.; Rajagopalan, K.

    1989-01-01

    An extract of Smilax china, Hemidesmus indicus and Nigella Sativa on the ratio 3:2:1, prepared by boiling in water and concentrated could completely cure cases of oral canger diagnosed by modern methods. Cytotoxic studies with the three components showed activity in Nigella sativa at a concentration of 25 microgram equivalent of the dry powder against Dalton's lymphoma ascites cells. Animal experiments indicated the retarded growth of ascites as compared to the controls with a longivity of 90%. PMID:22557660

  8. Basal Transcription Factor 3 Plays an Important Role in Seed Germination and Seedling Growth of Rice

    PubMed Central

    Wang, Wenyi; Xu, Mengyun; Wang, Ya

    2014-01-01

    BTF3 has been recognized to be involved in plant growth and development. But its function remains mostly unknown during seed germination and seedling stage. Here, we have analyzed OsBTF3-related sequences in Oryza sativa L. subspecies, japonica, which resembles with the conserved domain of a nascent polypeptide associated complex (NAC) with different homologs of OsBTF3 and human BTF3. Inhibition of Osj10gBTF3 has led to considerable morphological changes during seed germination and seedling growth. Germination percentage was not influenced by the application of GA3, ABA, and NaCl but all concentrations caused wild-type (WT) seeds to germinate more rapidly than the RNAi (Osj10gBTF3Ri) transgenic lines. Seedling inhibition was more severe in the Osj10gBTF3Ri seedlings compared with their WT especially when treated with 100 or 200 μM GA3; 50% reduction in shoots was observed in Osj10gBTF3Ri seedlings. The expression of Osj3g1BTF3, Osj3g2BTF3 and Osj10gBTF3 was primarily constitutive and generally modulated by NaCl, ABA, and GA3 stresses in both Osj10gBTF3Ri lines and WT at the early seedling stage, suggesting that Osj3g1BTF3 and Osj10gBTF3 are much similar but different from Osj3g2BTF3 in biological function. These results show that OsBTF3 plays an important role in seed germination and seedling growth gives a new perception demonstrating that more multifaceted regulatory functions are linked with BTF3 in plants. PMID:24971328

  9. Morphological and physiological evaluations of seedling quality

    Treesearch

    Diane L. Haase

    2007-01-01

    Seedling quality and subsequent field performance can be influenced by various stress factors. Measuring seedling quality can help to identify possible crop problems in order to make informed decisions for culturing, lifting, storing, and planting. In addition, seedling quality data can help seedling growers and users to better understand annual patterns among species...

  10. Subsequent influences of feeding intact green seaweed Ulva lactuca to growing lambs on the seminal and testicular characteristics in rams.

    PubMed

    Samara, E M; Okab, A B; Abdoun, K A; El-Waziry, A M; Al-Haidary, A A

    2013-12-01

    The present experiment was designed to investigate the subsequent influences of supplementing different levels of intact green seaweed Ulva lactuca (0%, 3%, and 5% DM) to growing sexually immature lambs during the growth period (74 d) on the seminal and testicular characteristics of sexually mature rams. Ulva lactuca was manually collected, adequately prepared, and then incorporated into lambs' diets. Eighteen male 3-mo-old lambs of the Awassi breed with a mean BW of 22.57 kg (SD = 1.08) were randomly assigned into treatments. The obtained results indicate that offering Ulva lactuca at the level of 3% or 5% DM to lambs during the growth period had no subsequent impacts (P > 0.05) on liver and kidney functions as well as blood water balance in rams, thereby suggesting that Ulva lactuca can be safely supplemented to lambs during growing. However, our findings point out that feeding a lamb diet supplemented with intact Ulva lactuca failed to demonstrate any subsequent benefit (P > 0.05) on the growth performance, thermoregulatory responses, and plasma oxidative status in rams. Above all, it was clearly evident that supplementing intact Ulva lactuca to lambs had demonstrated subsequent negative influences (P < 0.05) on seminal and testicular characteristics of rams, more noticeably observed at the 5% DM inclusion rate than at 3%. These results were manifested by the inferior (P < 0.05) seminal quality, reduced (P < 0.05) testicular morphometry, changes (P < 0.05) in testicular histopathology, defective (P < 0.05) endocrine signaling, and increased (P < 0.05) seminal oxidative stress in rams fed diets supplemented with Ulva lactuca during the growth period compared to control rams. The deleterious impacts of feeding intact Ulva lactuca on spermatogenesis and germ cell loss were proven to be attributed to the dysfunction of Sertoli cells. Collectively, these results provide novel insights on the subsequent influences of dietary supplementation of intact Ulva lactuca to

  11. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    PubMed

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L).

  12. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca.

    PubMed

    Turner, Andrew; Pollock, Heather; Brown, Murray T

    2009-01-01

    The marine macroalga, Ulva lactuca, has been exposed to different concentrations of antifouling paint particles (4-200 mg L(-1)) in the presence of a fixed quantity of clean estuarine sediment and its photosynthetic response and accumulation of Cu and Zn monitored over a period of 2 days. An immediate (<2 h) toxic effect was elicited under all experimental conditions that was quantitatively related to the concentration of contaminated particles present. Likewise, the rate of leaching of both Cu and Zn was correlated with the concentration of paint particles added. Copper accumulation by the alga increased linearly with aqueous Cu concentration, largely through adsorption to the cell surface, but significant accumulation of Zn was not observed. Thus, in coastal environments where boat maintenance is practiced, discarded antifouling paint particles are an important source of Cu, but not Zn, to U. lactuca.

  13. Production of recombinant protein in Escherichia coli cultured in extract from waste product alga, Ulva lactuca.

    PubMed

    Rechtin, Tammy M; Hurst, Matthew; Potts, Tom; Hestekin, Jamie; Beitle, Robert; McLaughlin, John; May, Peter

    2014-01-01

    This study examined the potential for waste product alga, Ulva lactuca, to serve as a media component for recombinant protein production in Escherichia coli. To facilitate this investigation, U. lactuca harvested from Jamaica Bay was dried, and nutrients acid extracted for use as a growth media. The E. coli cell line BL21(DE3) was used to assess the effects on growth and production of recombinant green fluorescent protein (GFP). This study showed that media composed of acid extracts without further nutrient addition maintained E. coli growth and recombinant protein production. Extracts made from dried algae lots less than six-months-old were able to produce two-fold more GFP protein than traditional Lysogeny Broth media. © 2014 American Institute of Chemical Engineers.

  14. In vitro exposure of Ulva lactuca Linnaeus (Chlorophyta) to gasoline - Biochemical and morphological alterations.

    PubMed

    Pilatti, Fernanda Kokowicz; Ramlov, Fernanda; Schmidt, Eder Carlos; Kreusch, Marianne; Pereira, Débora Tomazi; Costa, Christopher; de Oliveira, Eva Regina; Bauer, Cláudia M; Rocha, Miguel; Bouzon, Zenilda Laurita; Maraschin, Marcelo

    2016-08-01

    Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives.

  15. Identification of Bremia lactucae and Oidium neolycopersici proteins extracted for intact spore MALDI mass spectrometric biotyping.

    PubMed

    Beinhauer, Jana; Lenobel, René; Loginov, Dmitry; Chamrád, Ivo; Řehulka, Pavel; Sedlářová, Michaela; Marchetti-Deschmann, Martina; Allmaier, Günter; Šebela, Marek

    2016-11-01

    Several proteomic approaches were applied to identify protein markers providing typical signals during intact cell/spore (IC/IS) MALDI-TOF MS of two plant pathogens, namely Bremia lactucae (a downy mildew) and Oidium neolycopersici (a powdery mildew). First, proteins were extracted from intact spores of the microorganisms under conditions simulating their treatment prior to the mass spectrometric analysis. After a separation by electrophoresis and tryptic digestion, 198 and 140 proteins were identified in the B. lactucae and O. neolycopersici extracts, respectively. A large portion of them were found to be involved in the process of protein biosynthesis. For the first time, some proteins were assigned to characteristic signals in MS profiles of the investigated pathogens based on an agreement in the molecular mass. There were 9 and 10 proteins recognized, respectively, which could contribute significantly to the spectral patterns. These proteins were assigned tentatively to the following peaks in the MS profiles: (i) m/z 7828; 8593; 10 456; 11 312; 12 450; 12 763; 14 756 and 16 854 for B. lactucae; (ii) m/z 7709; 8895; 9504; 9952; 11 317; 14 082 and 14 839 for O. neolycopersici. We demonstrated the presence of ribosomal proteins and histones, which could be employed as markers in biotyping analyses for pathogen identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings.

    PubMed

    Toyomasu, Tomonobu; Kagahara, Takuma; Okada, Kazunori; Koga, Jinichiro; Hasegawa, Morifumi; Mitsuhashi, Wataru; Sassa, Takeshi; Yamane, Hisakazu

    2008-02-01

    Rice (Oryza sativa L.) produces a variety of diterpene phytoalexins, such as momilactones, phytocassanes, and oryzalexins. Momilactone B was previously identified as an allelopathic substance exuded from the roots of rice. We identified in this present study momilactone A and phytocassanes A-E in extracts of, and exudates from, the roots of rice seedlings. The concentration of each compound was of the same order of magnitude as that of momilactone B. Expression analyses of the diterpene cyclase genes responsible for the biosynthesis of momilactones and phytocassanes suggest that these phytoalexins found in roots are primarily biosynthesized in those roots. None of phytocassanes B-E exhibited allelopathic activity against dicot seedling growth, whereas momilactone A showed much weaker allelopathic activity than momilactone B. The exudation of diterpene phytoalexins from the roots might be part of a system for defense against root-infecting pathogens.

  17. Allelopathic interference of alfalfa (Medicago sativa L.) genotypes to annual ryegrass (Lolium rigidum).

    PubMed

    Zubair, Hasan Muhammad; Pratley, James E; Sandral, G A; Humphries, A

    2017-07-01

    Alfalfa (Medicago sativa L.) genotypes at varying densities were investigated for allelopathic impact using annual ryegrass (Lolium rigidum) as the target species in a laboratory bioassay. Three densities (15, 30, and 50 seedlings/beaker) and 40 alfalfa genotypes were evaluated by the equal compartment agar method (ECAM). Alfalfa genotypes displayed a range of allelopathic interference in ryegrass seedlings, reducing root length from 5 to 65%. The growth of ryegrass decreased in response to increasing density of alfalfa seedlings. At the lowest density, Q75 and Titan9 were the least allelopathic genotypes. An overall inhibition index was calculated to rank each alfalfa genotype. Reduction in seed germination of annual ryegrass occurred in the presence of several alfalfa genotypes including Force 10, Haymaster7 and SARDI Five. A comprehensive metabolomic analysis using Quadruple Time of Flight (Q-TOF), was conducted to compare six alfalfa genotypes. Variation in chemical compounds was found between alfalfa root extracts and exudates and also between genotypes. Further individual compound assessments and quantitative study at greater chemical concentrations are needed to clarify the allelopathic activity. Considerable genetic variation exists among alfalfa genotypes for allelopathic activity creating the opportunity for its use in weed suppression through selection.

  18. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.)

    PubMed Central

    Argyris, Jason; Truco, María José; Ochoa, Oswaldo; McHale, Leah; Dahal, Peetambar; Van Deynze, Allen; Michelmore, Richard W.

    2010-01-01

    Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC3S2 near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2–3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1425-3) contains supplementary material, which is available to authorized users. PMID:20703871

  19. Two new mountainous species of Lactuca (Cichorieae, Asteraceae) from Iran, one presenting a new, possibly myrmecochorous achene variant

    PubMed Central

    Kilian, Norbert; Djavadi, Seyyedeh Bahereh; Eskandari, Majid

    2012-01-01

    Abstract It is shown that the concept of the Iranian endemic Lactuca polyclada in the sense of both its original author Boissier and its current use actually admixes two entirely different species, as was first noted by Beauverd a hundred years ago but has been neglected by later workers. One is a putative relative of Lactuca rosularis, the other was recognised by Beauverd as a member of the genus Cicerbita. The name Lactuca polyclada Boiss. is lectotypified here, maintaining its use as established by Beauverd for the Cicerbita species. Both species are morphologically delimited and mature achenes of Cicerbita polyclada are illustrated for the first time. The putative relative of Lactuca rosularis, a rare local endemic of the summit area of Kuh e-Dena, which has remained without a valid name by now, is described as a new species, Lactuca denaensis N. Kilian & Djavadi, and illustrated. A third member of the Lactuca rosularis group, Lactuca hazaranensis Djavadi & N. Kilian, discovered among a recent collection and apparently being a rare chasmophyte of the Hazaran mountain massif in the province of Kerman, Iran, is described as a species new to science, illustrated and delimited from the other two species. This new species has peculiar achenes representing a hitherto unknown variant: the body of the beaked achenes is divided into two segments by a transversal constriction in the distal third. The proximal segment contains the embryo, the distal segment is solid with a lipid-containing yellow tissue. The easily detachable pappus and the equally easily detachable beak potentially obstruct dispersal by wind. Since detachment of the beak also exposes the lipid-containing tissue of the distal segment, its potential as an elaiosome and myrmecochory as a possible mode of dispersal are discussed. PMID:22577334

  20. Two new mountainous species of Lactuca (Cichorieae, Asteraceae) from Iran, one presenting a new, possibly myrmecochorous achene variant.

    PubMed

    Kilian, Norbert; Djavadi, Seyyedeh Bahereh; Eskandari, Majid

    2012-01-01

    It is shown that the concept of the Iranian endemic Lactuca polyclada in the sense of both its original author Boissier and its current use actually admixes two entirely different species, as was first noted by Beauverd a hundred years ago but has been neglected by later workers. One is a putative relative of Lactuca rosularis, the other was recognised by Beauverd as a member of the genus Cicerbita. The name Lactuca polyclada Boiss. is lectotypified here, maintaining its use as established by Beauverd for the Cicerbita species. Both species are morphologically delimited and mature achenes of Cicerbita polyclada are illustrated for the first time. The putative relative of Lactuca rosularis, a rare local endemic of the summit area of Kuh e-Dena, which has remained without a valid name by now, is described as a new species, Lactuca denaensis N. Kilian & Djavadi, and illustrated. A third member of the Lactuca rosularis group, Lactuca hazaranensis Djavadi & N. Kilian, discovered among a recent collection and apparently being a rare chasmophyte of the Hazaran mountain massif in the province of Kerman, Iran, is described as a species new to science, illustrated and delimited from the other two species. This new species has peculiar achenes representing a hitherto unknown variant: the body of the beaked achenes is divided into two segments by a transversal constriction in the distal third. The proximal segment contains the embryo, the distal segment is solid with a lipid-containing yellow tissue. The easily detachable pappus and the equally easily detachable beak potentially obstruct dispersal by wind. Since detachment of the beak also exposes the lipid-containing tissue of the distal segment, its potential as an elaiosome and myrmecochory as a possible mode of dispersal are discussed.

  1. Space Station Live: Seedling Growth

    NASA Image and Video Library

    Public Affairs Officer Lori Meggs talks with Carol Jacobs, payload operations director at the Marshall Space Flight Center's POIC, about the Seedling Growth experiment talking place aboard the Inte...

  2. Seedling quality tests: chlorophyll fluoresence

    Treesearch

    Gary Ritchie; Thomas D. Landis

    2005-01-01

    So far in this series we have discussed the most commonly -used seedling quality tests: root growth potential, cold hardiness, and stress resistance. In this issue, we're going to talk about one of the newest test-chlorophyll fluorescence (CF). The technology for measuring CF has been in place for over 50 years but has been applied to tr?e seedling physiology only...

  3. Cardiovascular benefits of black cumin (Nigella sativa).

    PubMed

    Shabana, Adel; El-Menyar, Ayman; Asim, Mohammad; Al-Azzeh, Hiba; Al Thani, Hassan

    2013-03-01

    Black Cumin (Nigella sativa), which belongs to the botanical family of Ranunculaceae, commonly grows in Eastern Europe, the Middle East, and Western Asia. Its ripe fruit contains tiny black seeds, known as "Al-Habba Al-Sauda" and "Al-Habba Al-Barakah" in Arabic and black seed or black cumin in English. Seeds of Nigella sativa are frequently used in folk medicine in the Middle East and some Asian countries for the promotion of good health and the treatment of many ailments. However, data for the cardiovascular benefits of black cumin are not well-established. We reviewed the literature from 1960 to March 2012 by using the following key words: "Nigella sativa," "black seeds," and "thymoquinone." Herein, we discussed the most relevant articles to find out the role of Nigella sativa in the cardiovascular diseases spectrum especially when there is a paucity of information and need of further studies in human to establish the utility of Nigella sativa in cardiovascular system protection.

  4. Terpene synthases from Cannabis sativa

    PubMed Central

    Booth, Judith K.; Page, Jonathan E.

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties. PMID:28355238

  5. Phytochemistry of Cannabis sativa L.

    PubMed

    ElSohly, Mahmoud A; Radwan, Mohamed M; Gul, Waseem; Chandra, Suman; Galal, Ahmed

    Cannabis (Cannabis sativa, or hemp) and its constituents-in particular the cannabinoids-have been the focus of extensive chemical and biological research for almost half a century since the discovery of the chemical structure of its major active constituent, Δ(9)-tetrahydrocannabinol (Δ(9)-THC). The plant's behavioral and psychotropic effects are attributed to its content of this class of compounds, the cannabinoids, primarily Δ(9)-THC, which is produced mainly in the leaves and flower buds of the plant. Besides Δ(9)-THC, there are also non-psychoactive cannabinoids with several medicinal functions, such as cannabidiol (CBD), cannabichromene (CBC), and cannabigerol (CBG), along with other non-cannabinoid constituents belonging to diverse classes of natural products. Today, more than 560 constituents have been identified in cannabis. The recent discoveries of the medicinal properties of cannabis and the cannabinoids in addition to their potential applications in the treatment of a number of serious illnesses, such as glaucoma, depression, neuralgia, multiple sclerosis, Alzheimer's, and alleviation of symptoms of HIV/AIDS and cancer, have given momentum to the quest for further understanding the chemistry, biology, and medicinal properties of this plant.This contribution presents an overview of the botany, cultivation aspects, and the phytochemistry of cannabis and its chemical constituents. Particular emphasis is placed on the newly-identified/isolated compounds. In addition, techniques for isolation of cannabis constituents and analytical methods used for qualitative and quantitative analysis of cannabis and its products are also reviewed.

  6. Terpene synthases from Cannabis sativa.

    PubMed

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  7. Vacuolar H(+)-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice.

    PubMed Central

    Carystinos, G D; MacDonald, H R; Monroy, A F; Dhindsa, R S; Poole, R J

    1995-01-01

    The present study was undertaken to determine whether vacuolar H(+)-pyrophosphatase (V-PPase) might replace vacuolar H(+)-ATPase under energy stress due to anoxia or chilling in anoxia-tolerant species such as rice (Oryza sativa L.) and corn (Zea mays L.). The relative transcript level of V-PPase in rice seedlings, like that of alcohol dehydrogenase 1, increased greatly under anoxia and declined again when the seedlings were returned to air. However, the distribution of transcripts in root, shoot, and seed differed somewhat from that of alcohol dehydrogenase 1. Immunoreactive V-PPase protein and V-PPase enzyme specific activity in a tonoplast fraction from rice seedlings increased progressively with time of anoxia or chilling at 10 degrees C, showing a 75-fold increase after 6 d of anoxia, compared with a 2-fold increase of vacuolar H(+)-ATPase activity. When the seedlings were returned to air, the specific activity returned to its initial level within 2 d. After 6 d of chilling at 10 degrees C, V-PPase specific activity reached a level 20-fold of that at 25 degrees C. In microsomes of corn roots, V-PPase specific activity did not respond to anoxia but was constitutively high. It is proposed that V-PPase can be an important element in the survival strategies of plants under hypoxic or chilling stress. PMID:7610161

  8. Activities of nitrate reductase and glutamine synthetase in rice seedlings during cyanide metabolism.

    PubMed

    Yu, Xiao-Zhang; Zhang, Fu-Zhong

    2012-07-30

    A study was conducted to investigate activities of nitrate reductase (NR) and glutamine synthetase (GS) in plants during cyanide metabolism. Young rice seedlings (Oryza sativa L. cv. XZX 45) were grown in the nutrient solutions containing KNO(3) or NH(4)Cl and treated with free cyanide (KCN). Cyanide in solutions and in plant materials was analyzed to estimate the phyto-assimilation potential. Activities of NR and GS in different parts of rice seedlings were assayed in vivo. Seedlings grown on NH(4)(+) showed significantly higher relative growth rate than those on NO(3)(-) (p<0.05) in the presence of exogenous cyanide. The metabolic rates of cyanide by seedlings were all positively correlated to the concentrations supplied. A negligible difference was observed between the two treatments with nitrate and ammonium (p>0.05). Enzymatic assays showed that cyanide (≥0.97mg CN L(-1)) impaired NR activity significantly in both roots and shoots (p<0.05). The effect of cyanide on GS activity in roots was more evident at 1.93mg CN L(-1), suggesting that NR activity was more susceptible to change from cyanide application than GS activity. The results observed here suggest that the exogenous cyanide, which to a certain level has a beneficial role in plant nutrition.

  9. Comparison of QTLs for rice seedling morphology under different water supply conditions.

    PubMed

    Zheng, Bingsong; Yang, Ling; Mao, Chuanzao; Huang, Youjun; Wu, Ping

    2008-08-01

    The variation of seedling characteristics under different water supply conditions is strongly associated with drought resistance in rice (Oryza sativa L.) and a better elucidation of its genetics is helpful for improving rice drought resistance. Ninetysix doubled-haploid (DH) rice lines of an indica and japonica cross were grown in both flooding and upland conditions and QTLs for morphological traits at seedling stage were examined using 208 restriction fragment length polymorphism (RFLP) and 76 microsatellite (SSR) markers. A total of 32 putative QTLs were associated with the four seedling traits: average of three adventitious root lengths (ARL), shoot height (SH), shoot biomass (SW), and root to shoot dry weight ratio (RSR). Five QTLs detected were the same under control and upland conditions. The ratio between the mean value of the seedling trait under upland and flooding conditions was used for assessing drought tolerance. A total of six QTLs for drought tolerance were detected. Comparative analysis was performed for the QTLs detected in this case and those reported from two other populations with the same upland rice variety Azucena as parent. Several identical QTLs for seedling elongation across the three populations with the positive alleles from the upland rice Azucena were detected, which suggests that the alleles of Azucena might be involved in water stress-accelerated elongation of rice under different genetic backgrounds. Five cell wall-related candidate genes for OsEXP1, OsEXP2, OsEXP4, EXT, and EGase were mapped on the intervals carrying the QTLs for seedling traits.

  10. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.).

    PubMed

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan's Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions ([Formula: see text]) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and

  11. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.)

    PubMed Central

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, ‘Dongdao-4’ (moderately alkaline-tolerant) and ‘Jiudao-51’ (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan’s Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions (O2•-) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and

  12. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress.

    PubMed

    Ma, Jing; Lv, Chunfang; Xu, Minli; Chen, Guoxiang; Lv, Chuangen; Gao, Zhiping

    2016-01-01

    The present study was conducted to examine the effects of increasing concentrations of chromium (Cr(6+)) (0, 25, 50, 100, and 200 μmol) on rice (Oryza sativa L.) morphological traits, photosynthesis performance, and the activities of antioxidative enzymes. In addition, the ultrastructure of chloroplasts in the leaves of hydroponically cultivated rice (O. sativa L.) seedlings was analyzed. Plant fresh and dry weights, height, root length, and photosynthetic pigments were decreased by Cr-induced toxicity (200 μM), and the growth of rice seedlings was starkly inhibited compared with that of the control. In addition, the decreased maximum quantum yield of primary photochemistry (Fv/Fm) might be ascribed to the decreased the number of active photosystem II reaction centers. These results were confirmed by inhibited photophosphorylation, reduced ATP content and its coupling factor Ca(2+)-ATPase, and decreased Mg(2+)-ATPase activities. Furthermore, overtly increased activities of antioxidative enzymes were observed under Cr(6+) toxicity. Malondialdehyde and the generation rates of superoxide (O2̄) also increased with Cr(6+) concentration, while hydrogen peroxide content first increased at a low Cr(6+) concentration of 25 μM and then decreased. Moreover, transmission electron microscopy showed that Cr(6+) exposure resulted in significant chloroplast damage. Taken together, these findings indicate that high Cr(6+)concentrations stimulate the production of toxic reactive oxygen species and promote lipid peroxidation in plants, causing severe damage to cell membranes, degradation of photosynthetic pigments, and inhibition of photosynthesis.

  13. Comparison of the lipid composition of oat root and coleoptile plasma membranes. [Avena sativa L

    SciTech Connect

    Sandstrom, R.P. ); Cleland, R.E. )

    1989-07-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole % phospholipid, 25 mole % glycolipid, and 25 mole % free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole %, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  14. Specific accumulation of CYP94A1 transcripts after exposure to gaseous benzaldehyde: induction of lauric acid ω-hydroxylase activity in Vicia sativa exposed to atmospheric pollutants.

    PubMed

    Kastner, P E; Le Calvé, S; Diss, L; Sauveplane, V; Franke, R; Schreiber, L; Pinot, F

    2011-01-01

    The effects of air pollutants such as aldehydes, ozone, nitrogen dioxide and benzene on fatty acid ω-hydroxylase activity in Vicia sativa microsomes have been investigated. Four days old etiolated V. sativa seedlings were exposed to different concentrations of selected pollutants for varying exposure times. Growing etiolated V. sativa seedlings in air containing the gaseous benzaldehyde (150 nM) led to an 8-fold enhancement of lauric acid ω-hydroxylase activity in microsomes of treated plants compared to controls grown in pure air (96 ± 10 versus 12 ± 2 pmol/min/mg protein, respectively). The induction increased with increasing gas phase concentrations (10-1300 nM) and the maximum of activity was measured after 48 h of exposure. Northern blot analysis revealed that this induction occurred via transcriptional activation of the gene coding for CYP94A1. The absence of CYP94A2 and CYP94A3 transcription activation together with the missing effect on epoxide hydrolases activities indicate the specificity of CYP94A1 induction by benzaldehyde. Exposure to nitrogen dioxide, ozone and formaldehyde also stimulated lauric acid ω-hydroxylases activity while exposure to benzene did not show any effect. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Differential toxic effects of Ulva lactuca (Chlorophyta) on the herbivorous gastropods, Littorina littorea and L. obtusata (Mollusca).

    PubMed

    Peckol, Paulette; Putnam, Alysha B

    2017-04-01

    Members of the genus Ulva are widespread and abundant in intertidal and shallow subtidal areas but there are conflicting data regarding susceptibility to herbivory. While some studies have documented that Ulva spp. were favored by a diversity of marine herbivores, other work has revealed herbivore deterrence. We investigated grazing and growth rates of the littorinid species, Littorina littorea and L. obtusata, when offered Fucus vesiculosus, Ascophyllum nodosum, Ulva lactuca, and Chondrus crispus, highlighting distinctive vulnerabilities to toxic effects of U. lactuca. Ulva lactuca was the preferred food of L. littorea, while L. obtusata showed no grazing on this ephemeral algal species. In contrast, F. vesiculosus was highly preferred by L. obtusata. Although L. littorea demonstrated a grazing preference for U. lactuca, growth rate of this gastropod species was nearly 3× greater when fed F. vesiculosus, suggesting a non-lethal, negative effect of U. lactuca on L. littorea with long-term exposure. Mortality of L. obtusata ranged from 0% to 100% when held in the presence of various Ulva densities for 1 week, and Ulva exudate depressed herbivory of this gastropod. We conclude that the water-soluble, toxic exudate produced by U. lactuca in response to herbivory had allelochemical properties, and may contain a cleavage product (acrylic acid) of dimethylsulfoniopropionate or reactive oxygen species (i.e., H2 O2 ). Observed differences in susceptibility to Ulva toxicity by the littorinid species may be related to generalist versus specialist feeding and habitat strategies. © 2016 Phycological Society of America.

  16. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy.

    PubMed

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management.

  17. A Quantitative Dynamic Simulation of Bremia lactucae Airborne Conidia Concentration above a Lettuce Canopy

    PubMed Central

    Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile

    2016-01-01

    Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691

  18. Purification of glucosinolates from Camelina sativa seeds

    USDA-ARS?s Scientific Manuscript database

    Camelina sativa L. Crantz defatted seed press cake contains a number of phytochemicals, including the flavonoid rutin (quercetin 3-O-rutinoside), an acylated quercetin glycoside, and three glucosinolates: glucoarabin (9-(methylsulfinyl)nonyl-glucosinolate) glucocamelinin (10-(methylsulfinyl)decyl-gl...

  19. Purification of glucosinolates from Camelina sativa

    USDA-ARS?s Scientific Manuscript database

    Camelina sativa (Gold-of-pleasure or false flax) has been cultivated as an oilseed crop for centuries, and has been used as both a fuel oil and an edible oil. Current research efforts centers on its exceptionally high levels of omega-3 fatty acids which is uncommon in vegetable oils, as well as ric...

  20. Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oryza sativa L.).

    PubMed

    Yu, Fangming; Liu, Kehui; Li, Mingshun; Zhou, Zhenming; Deng, Hua; Chen, Bin

    2013-01-01

    The effects of 60-d cadmium (Cd) exposure on enzymatic and non-enzymatic antioxidative system of Oryza sativa L. seedlings at tillering stage were studied using soil culture experiment. Research findings showed that chlorophyll content of Oryza sativa L. declined with the increase in soil metal concentration. Cd pollution induced the antioxidant stress by inducing O2(-1) and H2O2, which increased in plants; at the same time, MDA as the final product of peroxidation of membrane lipids, accumulated in plant. The antioxidant enzyme system was initiated under the Cd exposure, i.e. almost all the activities of superoxide dismutase (SOD), peroxidase, catalase, glutathione peroxidase, and ascorbate peroxidase were elevated both in leaves and roots. The non-protein thiols including phytochelatins and glutathione to scavenge toxic free radicals caused by Cd stress was also studied. The contents of phytochelatins and glutathione were about 3.12-6.65-fold and 3.27-10.73-fold in leaves, against control; and the corresponding values were about 3.53-9.37-fold and 1.41-5.11-fold in roots, accordingly.

  1. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa)

    PubMed Central

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-01-01

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA–mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. PMID:27797952

  2. Expression Variations of miRNAs and mRNAs in Rice (Oryza sativa).

    PubMed

    Wen, Ming; Xie, Munan; He, Lian; Wang, Yushuai; Shi, Suhua; Tang, Tian

    2016-12-31

    Differences in expression levels are an important source of phenotypic variation within and between populations. MicroRNAs (miRNAs) are key players in post-transcriptional gene regulation that are important for plant development and stress responses. We surveyed expression variation of miRNAs and mRNAs of six accessions from two rice subspecies Oryza sativa L. ssp. indica and Oryza sativa L. ssp. japonica using deep sequencing. While more than half (53.7%) of the mature miRNAs exhibit differential expression between grains and seedlings of rice, only 11.0% show expression differences between subspecies, with an additional 2.2% differentiated for the development-by-subspecies interaction. Expression variation is greater for lowly conserved miRNAs than highly conserved miRNAs, whereas the latter show stronger negative correlation with their targets in expression changes between subspecies. Using a permutation test, we identified 51 miRNA-mRNA pairs that correlate negatively or positively in expression level among cultivated rice. Genes involved in various metabolic processes and stress responses are enriched in the differentially expressed genes between rice indica and japonica subspecies. Our results indicate that stabilizing selection is the major force governing miRNA expression in cultivated rice, albeit positive selection may be responsible for much of the between-subspecies expression divergence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Grass seedling demography and sagebrush steppe restoration

    Treesearch

    J. J. James; M. J. Rinella; T. Svejcar

    2012-01-01

    Seeding is a key management tool for arid rangeland. In these systems, however, seeded species often fail to establish. A recent study inWyoming big sagebrush steppe suggested that over 90% of seeded native grass individuals die before seedlings emerged. This current study examines the timing and rate of seed germination, seedling emergence, and seedling death related...

  4. Fertilization Tests With Potted Red Oak Seedlings

    Treesearch

    Robert E. Phares

    1971-01-01

    Soil-pot tests with red oak seedlings indicated that forest soils supplied more N and P and produced better seedling growth than old-field soils. Growth was closely correlated with content of N and P in the foliage. K fertilization did not improve seedling growth on any of the soils studied.

  5. Growing Longleaf Pine Seedlings in Containers

    Treesearch

    James P. Barnett; John M. McGilvray

    2000-01-01

    We provide basic guidelines for nursery production of longleaf pine ( Pinus palustris P. Mill. [Pinaceae]) seedlings in containers. The best seedlings are spring sown, grown outdoors in full sun in cavities with a 100-ml (6 in3) volume, 11-cm (4.5 in) depth, and a density around 535 seedlings per m2 (...

  6. Tolerance of loblolly pine seedlings to glyphosate

    Treesearch

    James D. Haywood; Thomas W. Melder

    1990-01-01

    Broadcasting glyphosate herbicide over loblolly pine (Pinus taeda L.) may provide enough early-season weed control to allow seedlings to establish themselves more rapidly, but glyphosate can, injure young trees. To examine the question of seedling injury, four rates of glyphosate were broadcast evenly over planted loblolly pine seedlings, competing...

  7. Potential Antidepressant Constituents of Nigella sativa Seeds

    PubMed Central

    Elkhayat, Ehab S.; Alorainy, Mohammad S.; El-Ashmawy, Ibrahim M.; Fat’hi, Shawkat

    2016-01-01

    Background: Nigella sativa Linn. is well known seed in the Middle East, Asia, and the Far East as a natural remedy for many ailments and as a flavoring agent proclaimed medicinal usage dating back to the ancient Egyptians, Greeks, and Romans. An authentic saying of the Prophet Muhammad (Peace Be Upon Him) about black seed is also quoted in Al-Bukhari. Objective: This study was carried out to evaluate the antidepressant effect and isolate the potential antidepressant constituents of the polar extract of N. sativa seeds. Materials and Methods: The antidepressant effect was evaluated through the immobility duration in tail suspension and forced swim tests (FSTs). Albino mice were orally treated with N. sativa polar extract and its RP-18 column chromatography fractions (50 and 100 mg/kg,). Results: The polar extract and two of its sub-fractions were significantly able to decrease the immobility time of mice when subjected to both tail suspension and FSTs, the effects are comparable to standard drug (Sertraline, 5 mg/kg). However, these treatments did not affect the number of crossings and rearing in the open field test. Phytochemical investigation of the two active fractions led to the isolation of quercetin-3-O-α-L-rhamnopyranoside 1, quercetin-7-O-β-D-gluco- pyranoside 2, tauroside E 3, and sapindoside B as the potential antidepressant constituents. SUMMARY Phytochemical and biological evaluation the antidepressant constituents in Nigella sativa using the tail suspension and forced swim methods afforded the isolation and identification of quercetin-3-O-α-L rhamnopyranoside, quercetin-7-O-β-D gluco pyranoside, tauroside E, and sapindoside B as the potential antidepressant constituents in the polar extract of N. sativa. The isolated compounds were identified through extensive NMR analysis (1D, 2D, ESI MS). Abbreviations used: TST: Tail suspension test, FST: Forced swim test, OFT: An Open field test PMID:27041854

  8. Growth Reduction of Apple Seedlings by Pratylenchus penetrans as Influenced by Seedling Age at Inoculation

    PubMed Central

    Jaffee, B. A.; Mai, W. F.

    1979-01-01

    Apple seedlings of different ages (1, 3, and 5 weeks) were inoculated with 6,900 Pratylenchus penetrans per seedling in 10-cm-diam pots in a growth chamber. Rate of growth suppression and total growth suppression of seedlings by P. penetrans were inversely proportional to seedling age at time of nematode inoculation. Younger seedlings were found to contain a higher number of nematodes per gram root. PMID:19305551

  9. EPOXIDE HYDROLASE ACTIVITIES IN THE MICROSOMES AND THE SOLUBLE FRACTION FROM VICIA SATIVA SEEDLINGS. (R825433)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Physiological and molecular characterization of lucerne (Medicago sativa L.) germplasm with improved seedling freezing tolerance

    USDA-ARS?s Scientific Manuscript database

    We conducted greenhouse experiments to compare 14 alfalfa germplasms for their survival following freezing. Among these germplasms are collections adapted to the Grand River National Grasslands in South Dakota. Our hypothesis was that these collections developed tolerance to survive the frigid gro...

  11. Growing container seedlings: Three considerations

    Treesearch

    Kas Dumroese; Thomas D. Landis

    2015-01-01

    The science of growing reforestation and conservation plants in containers has continually evolved, and three simple observations may greatly improve seedling quality. First, retaining stock in its original container for more than one growing season should be avoided. Second, strongly taprooted species now being grown as bareroot stock may be good candidates...

  12. Seedling-Size Fumigation Chambers

    Treesearch

    Keith F. Jensen; Frederick W. Bender

    1977-01-01

    The design of fumigation chambers is described. Each chamber has individual temperature, humidity, light, and pollutant control. Temperature is variable from 15 to 35ºC and controlled within ± 1ºC. Humidity is variable from 25 to 95 percent and controlled within ± 3 percent. Seedlings have been successfully grown in these chambers...

  13. Beet Rust and Seedling Rust

    USDA-ARS?s Scientific Manuscript database

    Beet rust, caused by Uromyces betae, can cause pustules on most beet types, and can be a problem in various beet growing areas. Seedling rust, caused by Puccinia subnitens can cause lesions on young beets, primarily on cotyledons, and does not cause economic damage. This chapter describes the dise...

  14. Water deficit and aluminum interactive effects on generation of reactive oxygen species and responses of antioxidative enzymes in the seedlings of two rice cultivars differing in stress tolerance.

    PubMed

    Pandey, Poonam; Srivastava, Rajneesh Kumar; Rajpoot, Ritika; Rani, Anjana; Pandey, Akhilesh Kumar; Dubey, R S

    2016-01-01

    Aluminum (Al) is a major constraint to crop productivity in acid soils, whereas water deficit severely limits crop production in arid and semi-arid regions of the world. The objective of the present study was to examine the effects of both stresses, Al excess and water deficit, individually and in combination on the production of the reactive oxygen species (ROS) superoxide anion (O2˙(-)), hydrogen peroxide (H2O2), hydroxyl radical, and lipid peroxidation and the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (GPX) in the seedlings of two rice (Oryza sativa L.) cvs. Malviya-36 (sensitive to water deficit and Al) and Vandana (tolerant to water deficit and Al). When 15-day grown seedlings were exposed to water deficit (created with 15% polyethylene glycol, PEG-6000) or Al (1 mM AlCl3) treatment or both treatments together for 24-72 h, the lengths and fresh weights of root/shoot declined in the seedlings of the sensitive cultivar, whereas in the tolerant seedlings, either little or insignificant decline in these parameters was observed due to the treatments. Biochemical determinations and histochemical studies revealed that under a similar level of water deficit, Al, or combined treatment, seedlings of sensitive cultivar showed a higher level of production of O2˙(-), H2O2, hydroxyl radical, and lipid peroxides compared to the tolerant seedlings. Seedlings of tolerant cultivars, both in roots and shoots, had constitutively higher activity levels of antioxidative enzymes SOD, CAT, and GPX and showed a greater increase in activity under water deficit or Al treatment alone or in combination compared to the similarly treated seedlings of sensitive cultivar. Our results suggest that a lower constitutive level of ROS and a high antioxidative enzyme capacity are associated with tolerance to both water deficit and Al excess in rice seedlings.

  15. Highly abundant and stage-specific mRNAs in the obligate pathogen Bremia lactucae.

    PubMed

    Judelson, H S; Michelmore, R W

    1990-01-01

    Germinating spores of the obligate pathogen Bremia lactucae (lettuce downy mildew) contain several unusually abundant species of mRNA. Thirty-nine cDNA clones corresponding to prevalent transcripts were isolated from a library synthesized using poly(A)+ RNA from germinating spores; these clones represented only five distinct classes. Each corresponding mRNA accounted for from 0.4 to 9 percent by mass of poly(A)+ RNA from germinating spores and together represented greater than 20 percent of the mRNA. The expression of the corresponding genes, and a gene encoding Hsp70, was analyzed in spores during germination and during growth in planta. The Hsp70 mRNA and mRNA from one abundant cDNA clone (ham34) were expressed constitutively. Two clones (ham9 and ham12) hybridized only to mRNA from spores and germinating spores. Two clones (ham37 and ham27) showed hybridization specific to germinating spores. Quantification of the number of genes homologous to each cDNA clone indicated that four clones corresponded to one or two copies per haploid genome, and one hybridized to an approximately 11-member family of genes. A sequence of the gene corresponding to ham34 was obtained to investigate its function and to identify sequences conferring high levels of gene expression for use in constructing vectors for the transformation of B. lactucae.

  16. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

    PubMed Central

    Elkelish, Amr; Elansary, Hosam O.; Ali, Hayssam M.; Elshikh, Mohamed; Witczak, Jacques; Ahmad, Margaret

    2017-01-01

    Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS) were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones (p < 0.01). Transgenic hairy roots exhibited a 54.8–96.7% increase in the total phenolic content, 38.1–76.2% increase in the total flavonoid content, and 56.7–96.7% increase in the total reducing power when compared with the nontransgenic roots (p < 0.01). DPPH results also revealed that the transgenic hairy roots exhibited a 31.6–50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola. PMID:28835782

  17. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa.

    PubMed

    Suma, A; Sreenivasan, Kalyani; Singh, A K; Radhamani, J

    2013-01-01

    The role of relative humidity (RH) while processing and storing seeds of Brassica spp. and Eruca sativa was investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species of Brassica was also evaluated. The samples were stored at 40 ± 2°C in sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour, B. rapa and B. juncea were better performers than B. napus and Eruca sativa.

  18. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis

    PubMed Central

    Shakiba, Ehsan; Edwards, Jeremy D.; Jodari, Farman; Duke, Sara E.; Baldo, Angela M.; Korniliev, Pavel; McCouch, Susan R.; Eizenga, Georgia C.

    2017-01-01

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yield. The Rice Diversity Panel 1 (RDP1) is a global collection of over 400 O. sativa accessions representing the five major subpopulations from the INDICA and JAPONICA varietal groups, with a genotypic dataset consisting of 700,000 SNP markers. The objectives of this study were to evaluate the RDP1 accessions for the complex, quantitatively inherited cold tolerance traits at the germination and reproductive stages, and to conduct genome-wide association (GWA) mapping to identify SNPs and candidate genes associated with cold stress at these stages. GWA mapping of the germination index (calculated as percent germination in cold divided by warm treatment) revealed 42 quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage, including 18 in the panel as a whole, seven in temperate japonica, six in tropical japonica, 14 in JAPONICA, and nine in INDICA, with five shared across all subpopulations. Twenty-two of these QTLs co-localized with 32 previously reported cold tolerance QTLs. GWA mapping of cold tolerance at the reproductive stage detected 29 QTLs, including seven associated with percent sterility, ten with seed weight per panicle, 14 with seed weight per plant and one region overlapping for two traits. Fifteen co-localized with previously reported QTLs for cold tolerance or yield components. Candidate gene ontology searches revealed these QTLs were associated with significant enrichment for genes related to with lipid metabolism, response to stimuli, response to biotic stimuli (suggesting cross-talk between biotic and abiotic stresses), and oxygen binding. Overall the JAPONICA accessions were more tolerant to cold stress than INDICA

  19. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata....

  20. North American Continent – A new source of wild Lactuca spp. germplasm variability for future lettuce breeding

    USDA-ARS?s Scientific Manuscript database

    In the years 2002-2008, missions were undertaken in the USA and Canada to search for wild and weedy Lactuca species. Altogether, 16 states in the USA (Arizona, California, Colorado, Idaho, Iowa, Minnesota, Montana, Nevada, New York, North Carolina, Oregon, South Dakota, Utah, Washington, Wisconsin a...

  1. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers

    PubMed Central

    Rahman, Anisur; Mostofa, Mohammad Golam; Alam, Md. Mahabub; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2015-01-01

    The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition. PMID:26798635

  2. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers.

    PubMed

    Rahman, Anisur; Mostofa, Mohammad Golam; Alam, Md Mahabub; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2015-01-01

    The effect of exogenous calcium (Ca) on hydroponically grown rice seedlings was studied under arsenic (As) stress by investigating the antioxidant and glyoxalase systems. Fourteen-day-old rice (Oryza sativa L. cv. BRRI dhan29) seedlings were exposed to 0.5 and 1 mM Na2HAsO4 alone and in combination with 10 mM CaCl2 (Ca) for 5 days. Both levels of As caused growth inhibition, chlorosis, reduced leaf RWC, and increased As accumulation in the rice seedlings. Both doses of As in growth medium induced oxidative stress through overproduction of reactive oxygen species (ROS) by disrupting the antioxidant defense and glyoxalase systems. Exogenous application of Ca along with both levels of As significantly decreased As accumulation and restored plant growth and water loss. Calcium supplementation in the As-exposed rice seedlings reduced ROS production, increased ascorbate (AsA) content, and increased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD), and the glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes compared with seedlings exposed to As only. These results suggest that Ca supplementation improves rice seedlings tolerance to As-induced oxidative stress by reducing As uptake, enhancing their antioxidant defense and glyoxalase systems, and also improving growth and physiological condition.

  3. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus.

    PubMed

    Vergara, Daniela; White, Kristin H; Keepers, Kyle G; Kane, Nolan C

    2016-09-01

    Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars.

  4. Mechanism of Safening Action of Dymuron and Its Two Monomethyl Analogues against Bensulfuron-methyl Injury to Rice (Oryza sativa)

    PubMed

    Omokawa; Wu; Hatzios

    1996-05-01

    The comparative efficacy and mechanism of action of the herbicide dymuron and its two optically active monomethyl analogues, (R)-1-(alpha-methylbenzyl)-3-(p-tolylurea) (R-MBTU) and S-MBTU, as safeners of rice against injury from bensulfuron-methyl were investigated. Bioassays using etiolated seedlings of rice (Oryza sativa L., cv. Lemont), grown either in agar or in liquid media containing bensulfuron-methyl, showed that this sulfonylurea herbicide is a potent inhibitor of rice root growth (I50 = 120 nM). Similar studies with the herbicide dymuron and its two optically active monomethyl analogues (R-MTBU and S-MTBU) showed that at 10 μM, dymuron and R-MBTU reduced rice root length by 25 and 17%, respectively, whereas S-MBTU had no effect on root growth of Lemont rice. Combined treatments with bensulfuron-methyl and dymuron or each of its two analogues confirmed that S-MTBU is an excellent safener of rice against bensulfuron-methyl, far more effective than either dymuron or R-MTBU. The protective action of S-MTBU appeared to result mainly from a drastic reduction in the uptake of bensulfuron-methyl by safened rice seedlings. Dymuron and R-MTBU reduced also the uptake of bensulfuron-methyl by rice seedlings, but to a lesser extent than S-MTBU. Quantitative changes in the metabolism of bensulfuron-methyl by safened rice seedlings were also observed, but did not appear to support the involvement of enhanced herbicide metabolism in the safening action of S-MBTU, R-MBTU, and dymuron. The major metabolites of bensulfuron-methyl detected in both safened and unsafened rice seedlings were tentatively identified as methyl-(4-hydroxy-6-methoxypyrimidin-2-yl-carbamoylsulfamoyl)-o-toluate; methyl-(aminosulfonyl)-o-toluate; and 1H-2,3-benzothiazin-4-(3H)-one-2,2-dioxide.

  5. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate.

    PubMed

    Vannini, Candida; Domingo, Guido; Onelli, Elisabetta; Prinsi, Bhakti; Marsoni, Milena; Espen, Luca; Bracale, Marcella

    2013-01-01

    Silver nanoparticles (AgNPs) are widely used in commercial products, and there are growing concerns about their impact on the environment. Information about the molecular interaction of AgNPs with plants is lacking. To increase our understanding of the mechanisms involved in plant responses to AgNPs and to differentiate between particle specific and ionic silver effects we determined the morphological and proteomic changes induced in Eruca sativa (commonly called rocket) in response to AgNPs or AgNO3. Seedlings were treated for 5 days with different concentrations of AgNPs or AgNO3. A similar increase in root elongation was observed when seedlings were exposed to 10 mg Ag L(1) of either PVP-AgNPs or AgNO3. At this concentration we performed electron microscopy investigations and 2-dimensional electrophoresis (2DE) proteomic profiling. The low level of overlap of differentially expressed proteins indicates that AgNPs and AgNO3 cause different plant responses. Both Ag treatments cause changes in proteins involved in the redox regulation and in the sulfur metabolism. These responses could play an important role to maintain cellular homeostasis. Only the AgNP exposure cause the alteration of some proteins related to the endoplasmic reticulum and vacuole indicating these two organelles as targets of the AgNPs action. These data add further evidences that the effects of AgNPs are not simply due to the release of Ag ions.

  6. Morphological and Proteomic Responses of Eruca sativa Exposed to Silver Nanoparticles or Silver Nitrate

    PubMed Central

    Vannini, Candida; Domingo, Guido; Onelli, Elisabetta; Prinsi, Bhakti; Marsoni, Milena; Espen, Luca; Bracale, Marcella

    2013-01-01

    Silver nanoparticles (AgNPs) are widely used in commercial products, and there are growing concerns about their impact on the environment. Information about the molecular interaction of AgNPs with plants is lacking. To increase our understanding of the mechanisms involved in plant responses to AgNPs and to differentiate between particle specific and ionic silver effects we determined the morphological and proteomic changes induced in Eruca sativa (commonly called rocket) in response to AgNPs or AgNO3. Seedlings were treated for 5 days with different concentrations of AgNPs or AgNO3. A similar increase in root elongation was observed when seedlings were exposed to 10 mg Ag L1 of either PVP-AgNPs or AgNO3. At this concentration we performed electron microscopy investigations and 2-dimensional electrophoresis (2DE) proteomic profiling. The low level of overlap of differentially expressed proteins indicates that AgNPs and AgNO3 cause different plant responses. Both Ag treatments cause changes in proteins involved in the redox regulation and in the sulfur metabolism. These responses could play an important role to maintain cellular homeostasis. Only the AgNP exposure cause the alteration of some proteins related to the endoplasmic reticulum and vacuole indicating these two organelles as targets of the AgNPs action. These data add further evidences that the effects of AgNPs are not simply due to the release of Ag ions. PMID:23874747

  7. Morphological and physiological responses of rice seedlings to complete submergence (flash flooding)

    PubMed Central

    Kawano, Naoyoshi; Ito, Osamu; Sakagami, Jun-Ichi

    2009-01-01

    Background and Aims Reducing damage to rice seedlings caused by flash flooding will improve the productivity of rainfed lowland rice in West Africa. Accordingly, the morphological and physiological responses of different forms of rice to complete submergence were examined in field and pot experiments to identify primary causes of damage. Methods To characterize the physiological responses, seedlings from a wide genetic base including Oryza sativa, O. glaberrima and interspecific hybrids were compared using principle component analysis. Key Results Important factors linked to flash-flood tolerance included minimal shoot elongation underwater, increase in dry matter weight during submergence and post-submergence resistance to lodging. In particular, fast shoot elongation during submergence negatively affected plant growth after de-submergence. Also shoot-elongating cultivars showed a strong negative correlation between dry matter weight of the leaves that developed before submergence and leaves developing during submergence. Conclusions Enhancement of shoot elongation during submergence in water that is too deep to permit re-emergence by small seedlings represents a futile escape strategy that takes place at the expense of existing dry matter in circumstances where underwater photosynthetic carbon fixation is negligible. Consequently, it compromises survival or recovery growth once flood water levels recede and plants are re-exposed to the aerial environment. Tolerance is greater in cultivars where acceleration of elongation caused by submergence is minimal. PMID:18940854

  8. Morphological and physiological responses of rice seedlings to complete submergence (flash flooding).

    PubMed

    Kawano, Naoyoshi; Ito, Osamu; Sakagami, Jun-Ichi

    2009-01-01

    Reducing damage to rice seedlings caused by flash flooding will improve the productivity of rainfed lowland rice in West Africa. Accordingly, the morphological and physiological responses of different forms of rice to complete submergence were examined in field and pot experiments to identify primary causes of damage. To characterize the physiological responses, seedlings from a wide genetic base including Oryza sativa, O. glaberrima and interspecific hybrids were compared using principle component analysis. Important factors linked to flash-flood tolerance included minimal shoot elongation underwater, increase in dry matter weight during submergence and post-submergence resistance to lodging. In particular, fast shoot elongation during submergence negatively affected plant growth after de-submergence. Also shoot-elongating cultivars showed a strong negative correlation between dry matter weight of the leaves that developed before submergence and leaves developing during submergence. Enhancement of shoot elongation during submergence in water that is too deep to permit re-emergence by small seedlings represents a futile escape strategy that takes place at the expense of existing dry matter in circumstances where underwater photosynthetic carbon fixation is negligible. Consequently, it compromises survival or recovery growth once flood water levels recede and plants are re-exposed to the aerial environment. Tolerance is greater in cultivars where acceleration of elongation caused by submergence is minimal.

  9. DNA-protein cross-links involved in growth inhibition of rice seedlings exposed to Ga.

    PubMed

    Yu, Xiao-Zhang; Zhang, Xue-Hong

    2015-07-01

    Hydroponic experiments were conducted with rice seedlings (Oryza sativa L. cv. XZX45) exposed to gallium nitrate (Ga(3+)) to investigate the accumulation of Ga in plant tissues and phytotoxic responses. Results showed that phyto-transport of Ga was apparent, and roots were the dominant site for Ga accumulation. The total accumulation rates of Ga responded biphasically to Ga treatments by showing increases at low (1.06-8.52 mg Ga/L) and constants at high (8.52-15.63 mg Ga/L) concentrations, suggesting that accumulation kinetics of Ga followed a typical saturation curve. Higher amount of Ga accumulation in plant tissues led to significant inhibition in relative growth rate and water use efficiency in a dose-dependent manner. DNA-protein cross-links (DPCs) analysis revealed that overaccumulation of Ga in plant tissues positively stimulated formation of DPCs in roots. Likewise, the measure of root cell viability evaluated by Evan blue uptake showed a similar trend. These results suggested that Ga can be absorbed, transported, and accumulated in plant materials of rice seedlings. Overaccumulation of Ga in plant tissues provoked the formation of DPCs in roots, which resulted in cell death and growth inhibition of rice seedlings.

  10. Identification of Differentially Expressed Proteins and Phosphorylated Proteins in Rice Seedlings in Response to Strigolactone Treatment

    PubMed Central

    Chen, Fangyu; Jiang, Liangrong; Zheng, Jingsheng; Huang, Rongyu; Wang, Houcong; Hong, Zonglie; Huang, Yumin

    2014-01-01

    Strigolactones (SLs) are recently identified plant hormones that inhibit shoot branching and control various aspects of plant growth, development and interaction with parasites. Previous studies have shown that plant D10 protein is a carotenoid cleavage dioxygenase that functions in SL biosynthesis. In this work, we used an allelic SL-deficient d10 mutant XJC of rice (Oryza sativa L. spp. indica) to investigate proteins that were responsive to SL treatment. When grown in darkness, d10 mutant seedlings exhibited elongated mesocotyl that could be rescued by exogenous application of SLs. Soluble protein extracts were prepared from d10 mutant seedlings grown in darkness in the presence of GR24, a synthetic SL analog. Soluble proteins were separated on two-dimensional gels and subjected to proteomic analysis. Proteins that were expressed differentially and phosphoproteins whose phosphorylation status changed in response to GR24 treatment were identified. Eight proteins were found to be induced or down-regulated by GR24, and a different set of 8 phosphoproteins were shown to change their phosphorylation intensities in the dark-grown d10 seedlings in response to GR24 treatment. Analysis of these proteins revealed that they are important enzymes of the carbohydrate and amino acid metabolic pathways and key components of the cellular energy generation machinery. These proteins may represent potential targets of the SL signaling pathway. This study provides new insight into the complex and negative regulatory mechanism by which SLs control shoot branching and plant development. PMID:24699514

  11. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings.

    PubMed

    Wang, Shihua; Wang, Fayuan; Gao, Shuangcheng

    2015-02-01

    Nanofertilizers may be more effective than regular fertilizers in improving plant nutrition, enhancing nutrition use efficiency, and protecting plants from environmental stress. A hydroponic pot experiment was conducted to study the role of foliar application with 2.5 mM nano-silicon in alleviating Cd stress in rice seedlings (Oryza sativa L. cv Youyou 128) grown in solution added with or without 20 μM CdCl2. The results showed that Cd treatment decreased the growth and the contents of Mg, Fe, Zn, chlorophyll a, and glutathione (GSH), accompanied by a significant increase in Cd accumulation. However, foliar application with nano-Si improved the growth, Mg, Fe, and Zn nutrition, and the contents of chlorophyll a of the rice seedlings under Cd stress and decreased Cd accumulation and translocation of Cd from root to shoot. Cd treatment produced oxidative stress to rice seedlings indicated by a higher lipid peroxidation level (as malondialdehyde (MDA)) and higher activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a lower GSH content. However, those nano-Si-treated plants had lower MDA but higher GSH content and different antioxidant enzyme activities, indicating a higher Cd tolerance in them. The results suggested that nano-Si application alleviated Cd toxicity in rice by decreasing Cd accumulation, Cd partitioning in shoot and MDA level and by increasing content of some mineral elements (Mg, Fe, and Zn) and antioxidant capacity.

  12. Differential induction of pyruvate decarboxylase subunits and transcripts in anoxic rice seedlings.

    PubMed Central

    Rivoal, J; Thind, S; Pradet, A; Ricard, B

    1997-01-01

    In 2-d-old rice (Oryza sativa L.) seedlings subjected to anoxic stress, pyruvate decarboxylase (PDC) activity increased 9-fold during a 168-h period. A polyclonal PDC antiserum that recognized alpha- and beta-subunits was used to quantify PDC protein by an enzyme-linked immunosorbant assay and showed a 5.6-fold increase, suggesting that the anoxically induced enzyme has a higher specific activity than the PDC isoform present under normoxia. Immunoblot analysis showed that levels of both PDC subunits were induced by anoxia. Immunoprecipitation of proteins labeled in vivo during anoxic treatment demonstrated that the alpha-subunit was preferentially synthesized at the onset of anoxia. Two partial cDNAs, including a novel sequence, were cloned from a cDNA library made from seedlings subjected to anoxia for 6 h. Gene-specific probes used to quantify northern blots showed that two or three PDC mRNAs are differentially induced by anoxia in rice seedlings. Immunoprecipitation of in vitro translation products of mRNAs isolated a different times of anoxic treatment confirmed this findings Our results suggest that anoxic induction of rice PDC involves transcriptional and posttranscriptional regulation of gene expression as well as differences in enzyme characteristics. PMID:9232881

  13. Cultivation of alfalfa (medicago sativa L).

    PubMed

    Rashmi, R; Sarkar, M; Vikramaditya

    1997-10-01

    Madicago sativa Linn, commonly known as 'Alfalfa', is a tonic plant rich in proteins, minerals, enzymes and vitamins, Bulk quantity of the whole plant is required in the pharmaceutical industries especially in homoecopathic pharmacies, Hence, there is a great need to cultivate this plant for sustained supply of the drug. Use of good and adequate phosphatecontaining farm yard manure, timely irrigation and appropriate spacing between plants results in good yield.

  14. Development and application of a 6.5 million feature Affymetrix Genechip® for massively parallel discovery of single position polymorphisms in lettuce (Lactuca spp.)

    PubMed Central

    2012-01-01

    Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types

  15. Polyamines in rice seedlings under oxygen-deficit stress

    SciTech Connect

    Reggiani, R.; Hochkoeppler, A.; Bertani, A. )

    1989-11-01

    Incubation of 3-d-old seedlings of Oryza sativa L. cv Arborio under anaerobic conditions, leads to a large increase in the titer of free putrescine while aerobic incubation causes a slight decrease. After 2 days, the putrescine level is about 2.5 times greater without oxygen than in air. The rice coleoptile also accumulates a large amount of bound putrescine and, to a lesser extent, spermidine and spermine (mainly as acid-soluble conjugates). Accumulation of conjugates in the roots is severely inhibited by the anaerobic treatment. Feeding experiments with labeled amino acids showed that anoxia stimulates the release of {sup 14}CO{sub 2} from tissues fed with ({sup 14}C)arginine and that arginine is the precursor in putrescine biosynthesis. After 2 d of anoxia, the activity of arginine decarboxylase was 42% and 89% greater in coleoptile and root, respectively, than in the aerobic condition. The causes of the differences in polyamine metabolism in anoxic coleoptiles and roots are discussed.

  16. Developmental Stages of Cucumber Seedlings

    PubMed Central

    Moran, Rami; Vernon, Leo P.; Porath, Dan; Arzee, Tova

    1990-01-01

    The changes in morphology during dark germination and subsequent growth of cucumber (Cucumis sativus) seedlings in the light go through three different phases described as latent, active, and steady-state. This pattern is consistently observed for several related developmental processes. The latent period lasts about 2 days following water imbibition after which the following capabilities appear in concert: (a) root and stem elongation, (b) pigment synthesis including protochlorophyll, chlorophyll, carotenoid, and phytochrome, (c) synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase, and (d) enhancement of greening by excision. Following the active phase, which lasts for another 2 to 3 days, these processes slow to a steady-state. Inhibition of chlorphyll accumulation by SO2 was only observed for seedlings in the steady-state phase. PMID:16667373

  17. Influence of the temporal and spatial variation of nitrate reductase, glutamine synthetase and soil composition in the N species content in lettuce (Lactuca sativa).

    PubMed

    Pinto, Edgar; Fidalgo, Fernanda; Teixeira, Jorge; Aguiar, Ana A; Ferreira, Isabel M P L V O

    2014-04-01

    The variation of nitrate reductase (NR), glutamine synthetase (GS) and N content in lettuce was evaluated at 5 stages of lettuce growth. Soil physicochemical properties and its N content were also assessed to elucidate the soil-to-plant transfer of inorganic N and potential leaching to groundwater. A decrease of NR activity and an increase of NO3(-) and N-Kjeldahl content in lettuces were observed during plant growth, whereas GS activity and NH4(+) increased during the first few weeks of lettuce growth and then decreased. Although the temporal variation was similar in lettuces grown in different soils, quantitative differences were observed, indicating that high NO3(-) content in soil caused a higher NO3(-) accumulation in lettuce despite the higher NR activity during the initial stage of plant growth. Higher levels of NO3(-) and NH4(+) were correlated with higher levels of N-Kjeldahl in lettuce suggesting a positive effect of these N species in the biosynthesis of organic forms of N. Soil physicochemical properties influenced the mobility of inorganic N within the groundwater-soil-plant system. Sandy soils with low OM content allowed NO3(-) leaching, which was confirmed by higher NO3(-) levels in groundwater. Therefore, lettuces grown in those soils presented lower N content and the inputs of N to the environment were higher.

  18. A dose-response relationship for marketable yield reduction of two lettuce (Lactuca sativa L.) cultivars exposed to tropospheric ozone in Southern Europe.

    PubMed

    Marzuoli, Riccardo; Finco, Angelo; Chiesa, Maria; Gerosa, Giacomo

    2016-12-27

    The present study investigated the response to ozone (O3) of two cultivars (cv.'Romana' and cv. 'Canasta') of irrigated lettuce grown in an open-top chamber (OTC) experiment in Mediterranean conditions. Two different levels of O3 were applied, ambient O3 in non-filtered OTCs (NF-OTCs) and -40% of ambient O3 in charcoal-filtered OTCs (CF-OTCs), during four consecutive growing cycles. At the end of each growing cycle, the marketable yield (fresh biomass) was assessed while during the growing periods, measurements of the stomatal conductance at leaf level were performed and used to define a stomatal conductance model for calculation of the phytotoxic ozone dose (POD) absorbed by the plants.Results showed that O3 caused statistically significant yield reductions in the first and in the last growing cycle. In general, the marketable yield of the NF-OTC plants was always lower than the CF-OTC plants for both cultivars, with mean reductions of -18.5 and -14.5% for 'Romana' and 'Canasta', respectively. On the contrary, there was no statistically significant difference in marketable yield due to the cultivar factor or to the interaction between O3 and cultivar in any of the growing cycle performed.Dose-response relationships for the marketable relative yield based on the POD values were calculated according to different flux threshold values (Y). The best regression fit was obtained using an instantaneous flux threshold of 6 nmol O3 m(-2) s(-1) (POD6); the same value was obtained also for other crops. According to the generic lettuce dose-response relationship, an O3 critical level of 1 mmol O3 m(-2) of POD6 for a 15% of marketable yield loss was found.

  19. Effects of co-cropping Bidens pilosa (L.) and Tagetes minuta (L.) on bioaccumulation of Pb in Lactuca sativa (L.) growing in polluted agricultural soils.

    PubMed

    Cid, Carolina Vergara; Rodriguez, Judith Hebelen; Salazar, María Julieta; Blanco, Andrés; Pignata, María Luisa

    2016-09-01

    Polluted agricultural soils are a serious problem for food safety, with phytoremediation being the most favorable alternative from the environmental perspective. However, this methodology is generally time-consuming and requires the cessation of agriculture. Therefore, the purpose of this study was to evaluate two potential phytoextractor plants (the native species Bidens pilosa and Tagetes minuta) co-cropped with lettuce growing on agricultural lead-polluted soils. The concentrations of Pb, as well as of other metals, were investigated in the phytoextractors, crop species, and in soils, with the potential risk to the health of consumers being estimated. The soil parameters pH, EC, organic matter percentage and bioavailable lead showed a direct relationship with the accumulation of Pb in roots. In addition, the concentration of Pb in roots of native species was closely related to Fe (B. pilosa, r = 0.81; T. minuta r = 0.75), Cu (T. minuta, r = 0.93), Mn (B. pilosa, r = 0.89) and Zn (B. pilosa, r = 0.91; T. minuta, r = 0.91). Our results indicate that the interaction between rhizospheres increased the phytoextraction of lead, which was accompanied by an increase in the biomass of the phytoextractor species. However, the consumption of lettuce still revealed a toxicological risk from Pb in all treatments.

  20. Selection for resistance to Verticillium wilt caused by race 2 isolates of Verticillium dahliae in accessions of lettuce (Lactuca sativa L.).

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt of lettuce caused by Verticillium dahliae can cause severe economic damage to lettuce producers. The pathogen exists as two races (races 1 and 2) in lettuce, and complete resistance to race 1 is known. Resistance to race 2 isolates has not been reported, and production of race 1 re...

  1. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils.

    PubMed

    Woldetsadik, Desta; Drechsel, Pay; Keraita, Bernard; Marschner, Bernd; Itanna, Fisseha; Gebrekidan, Heluf

    2016-01-01

    To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated. Ammonium nitrate extraction results indicated that faecal matter biochar, cow manure biochar and lime significantly reduced bioavailable Cd by 84-87, 65-68 and 82-91 %, respectively, as compared to the spiked controls. Unpredictably, coffee husk biochar induced significant increment of Cd in NH4NO3 extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue concentrations of lettuce plants were induced by faecal matter and cow manure biochar treatments in both soils. Additionally, the greatest Cd phytoavailability reduction for lettuce was induced by poultry litter and cow manure biochars in the silty loam soil. Our results indicate that faecal matter and animal manure biochars have shown great potential to promote Cd immobilization and lettuce growth response in heavily contaminated agricultural fields.

  2. Association analysis of bacterial leaf spot resistance and SNP markers derived from expressed sequence tags (ESTs) in lettuce (Lactuca sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Bacterial leaf spot of lettuce, caused by Xanthomonas campestris pv. vitians, is a devastating disease of lettuce worldwide. Since there are no chemicals available for effective control of the disease, host-plant resistance is highly desirable to protect lettuce production. A total of 179 lettuce ge...

  3. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.).

    PubMed

    Muneer, Sowbiya; Kim, Eun Jeong; Park, Jeong Suk; Lee, Jeong Hyun

    2014-03-17

    The objective of this study was to investigate the response of light emitting diodes (LEDs) at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m-2 s-1 for blue LEDs) at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm), red (639 nm) and blue (470 nm) LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m-2 s-1) and was lowered with decreased light intensity (70-80 μmol m-2 s-1). The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment.

  4. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.)

    PubMed Central

    Muneer, Sowbiya; Kim, Eun Jeong; Park, Jeong Suk; Lee, Jeong Hyun

    2014-01-01

    The objective of this study was to investigate the response of light emitting diodes (LEDs) at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs) at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm), red (639 nm) and blue (470 nm) LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1) and was lowered with decreased light intensity (70–80 μmol m−2 s−1). The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment. PMID:24642884

  5. Selected biochemical properties of polyphenol oxidase in butter lettuce leaves (Lactuca sativa L. var. capitata) elicited with dl-β-amino-n-butyric acid.

    PubMed

    Złotek, Urszula; Gawlik-Dziki, Urszula

    2015-02-01

    The study concentrated on changes in certain biochemical parameters of polyphenol oxidase (PPO) from lettuce leaves caused by dl-β-amino-n-butyric acid (BABA) elicitation. PPO from control plants demonstrated the highest affinity toward catechol, whereas PPO from BABA-elicited lettuce showed the highest affinity to 4-methylcatechol. The optimum temperature for enzymes from control plants was 35°C, whereas from plants elicited with 1mM BABA this was 25°C. PPO from plants elicited with BABA was also more sensitive to the tested inhibitors than PPO from control plants. l-Cysteine was the most effective inhibitor. Native gel stained for PPO activity in control samples showed two isoforms. However, in BABA-treated lettuce three bands visualising PPO activity were observed. The information obtained in this study will be valuable for the development of treatment technology and storage conditions to control undesirable browning reactions in elicited lettuce.

  6. Assessment of microbiological contamination of fresh, minimally processed, and ready-to-eat lettuces (Lactuca sativa), Rio de Janeiro State, Brazil.

    PubMed

    Brandão, Marcelo L L; Almeida, Davi O; Bispo, Fernanda C P; Bricio, Silvia M L; Marin, Victor A; Miagostovich, Marize P

    2014-05-01

    This study aimed to assess the microbiological contamination of lettuces commercialized in Rio de Janeiro, Brazil, in order to investigate detection of norovirus genogroup II (NoV GII), Salmonella spp., total and fecal coliforms, such as Escherichia coli. For NoV detection samples were processed using the adsorption-elution concentration method associated to real-time quantitative polymerase chain reaction (qPCR). A total of 90 samples of lettuce including 30 whole fresh lettuces, 30 minimally processed (MP) lettuces, and 30 raw ready-to-eat (RTE) lettuce salads were randomly collected from different supermarkets (fresh and MP lettuce samples), food services, and self-service restaurants (RTE lettuce salads), all located in Rio de Janeiro, Brazil, from October 2010 to December 2011. NoV GII was not detected and PP7 bacteriophage used as internal control process (ICP) was recovered in 40.0%, 86.7%, and 76.7% of those samples, respectively. Salmonella spp. was not detected although fecal contamination has been observed by fecal coliform concentrations higher than 10(2) most probable number/g. E. coli was detected in 70.0%, 6.7%, and 30.0% of fresh, MP, and RTE samples, respectively. This study highlights the need to improve hygiene procedures at all stages of vegetable production and to show PP7 bacteriophage as an ICP for recovering RNA viruses' methods from MP and RTE lettuce samples, encouraging the evaluation of new protocols that facilitate the establishment of methodologies for NoV detection in a greater number of food microbiology laboratories. The PP7 bacteriophage can be used as an internal control process in methods for recovering RNA viruses from minimally processed and ready-to-eat lettuce samples. © 2014 Institute of Food Technologists®

  7. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae).

    PubMed

    Rossi, Eliandra M; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H; Tondo, Eduardo C

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves' stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves.

  8. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae)

    PubMed Central

    Rossi, Eliandra M.; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H.; Tondo, Eduardo C.

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves’ stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves. PMID:26834727

  9. Assessing the effect of sodium dichloroisocyanurate concentration on transfer of Salmonella enterica serotype Typhimurium in wash water for production of minimally processed iceberg lettuce (Lactuca sativa L.).

    PubMed

    Maffei, D F; Sant'Ana, A S; Monteiro, G; Schaffner,