Sample records for segment optical coherence

  1. Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation

    PubMed Central

    Yu, Kai; Shi, Fei; Gao, Enting; Zhu, Weifang; Chen, Haoyu; Chen, Xinjian

    2018-01-01

    Optic nerve head (ONH) is a crucial region for glaucoma detection and tracking based on spectral domain optical coherence tomography (SD-OCT) images. In this region, the existence of a “hole” structure makes retinal layer segmentation and analysis very challenging. To improve retinal layer segmentation, we propose a 3D method for ONH centered SD-OCT image segmentation, which is based on a modified graph search algorithm with a shared-hole and locally adaptive constraints. With the proposed method, both the optic disc boundary and nine retinal surfaces can be accurately segmented in SD-OCT images. An overall mean unsigned border positioning error of 7.27 ± 5.40 µm was achieved for layer segmentation, and a mean Dice coefficient of 0.925 ± 0.03 was achieved for optic disc region detection. PMID:29541497

  2. Optical Amplifier for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Cole, Spencer T.; Gamble, Lisa J.; Diffey, William M.; Keys, Andrew S.

    1999-01-01

    We describe an optical amplifier designed to amplify a spatially sampled component of an optical wavefront to kilowatt average power. The goal is means for implementing a strategy of spatially segmenting a large aperture wavefront, amplifying the individual segments, maintaining the phase coherence of the segments by active means, and imaging the resultant amplified coherent field. Applications of interest are the transmission of space solar power over multi-megameter distances, as to distant spacecraft, or to remote sites with no preexisting power grid.

  3. Spectral domain optical coherence tomography findings in tamoxifen retinopathy--a case report.

    PubMed

    Nair, Sandhya Narayanan; Anantharaman, Giridhar; Gopalakrishnan, Mahesh; Vyas, Jyothiprakash

    2013-01-01

    To report spectral domain optical coherence tomography findings in a case of typical tamoxifen retinopathy. In this observational case report, a patient with tamoxifen retinopathy was imaged with spectral domain optical coherence tomography and fundus auto fluorescence. Spectral domain optical coherence tomography showed numerous hyperreflective spots within the retina, mainly in the inner retinal layers in both the eyes. The external limiting membrane, the Inner Segment-Outer Segment junction, and the photoreceptors were not discernable at the fovea in the right eye. In the left eye, there was foveal atrophy with total loss of photoreceptors. The autofluorescent images showed macular hypofluorescence with foveal hyperfluorescence. Spectral domain optical coherence tomography demonstrated abnormalities in the outer retinal layers in tamoxifen retinopathy. There were also characteristic alterations in the autofluorescence pattern at the macula in tamoxifen retinopathy.

  4. Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography

    PubMed Central

    Saxena, Sandeep; Srivastav, Khushboo; Cheung, Chui M; Ng, Joanne YW; Lai, Timothy YY

    2014-01-01

    Spectral domain optical coherence tomography cross-sectional imaging of the macula has conventionally been resolved into four bands. However, some doubts were raised regarding authentication of the existence of these bands. Recently, a number of studies have suggested that the second band appeared to originate from the inner segment ellipsoids of the foveal cone photoreceptors, and therefore the previously called inner segment-outer segment junction is now referred to as inner segment ellipsoidband. Photoreceptor dysfunction may be a significant predictor of visual acuity in a spectrum of surgical and medical retinal diseases. This review aims to provide an overview and summarizes the role of the photoreceptor inner segment ellipsoid band in the management and prognostication of various vitreoretinal diseases. PMID:25525329

  5. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography.

    PubMed

    Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer

    2017-07-01

    A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (<7 days) and 13 patients with chronic non-arteritic anterior ischaemic optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  6. Automatic segmentation of the optic nerve head for deformation measurements in video rate optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hidalgo-Aguirre, Maribel; Gitelman, Julian; Lesk, Mark Richard; Costantino, Santiago

    2015-11-01

    Optical coherence tomography (OCT) imaging has become a standard diagnostic tool in ophthalmology, providing essential information associated with various eye diseases. In order to investigate the dynamics of the ocular fundus, we present a simple and accurate automated algorithm to segment the inner limiting membrane in video-rate optic nerve head spectral domain (SD) OCT images. The method is based on morphological operations including a two-step contrast enhancement technique, proving to be very robust when dealing with low signal-to-noise ratio images and pathological eyes. An analysis algorithm was also developed to measure neuroretinal tissue deformation from the segmented retinal profiles. The performance of the algorithm is demonstrated, and deformation results are presented for healthy and glaucomatous eyes.

  7. Polarization sensitive corneal and anterior segment swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lim, Yiheng; Yamanari, Masahiro; Yasuno, Yoshiaki

    2010-02-01

    We develop a compact polarization sensitive corneal and anterior segment swept-source optical coherence tomography (PS-CAS- OCT) for evaluating the usefulness of PS-OCT, and enabling large scale studies in the tissue properties of normal and diseased eyes using the benefits of the PS-OCT, which provides better tissue discrimination compared to the conventional OCT by visualizing the fibrous tissues in the anterior eye segment. Our polarization-sensitive interferometer is size reduced into a 19 inch box for the portability and the probe is integrated into a position adjustable scanning head for the usability of our system.

  8. Epidermal segmentation in high-definition optical coherence tomography.

    PubMed

    Li, Annan; Cheng, Jun; Yow, Ai Ping; Wall, Carolin; Wong, Damon Wing Kee; Tey, Hong Liang; Liu, Jiang

    2015-01-01

    Epidermis segmentation is a crucial step in many dermatological applications. Recently, high-definition optical coherence tomography (HD-OCT) has been developed and applied to imaging subsurface skin tissues. In this paper, a novel epidermis segmentation method using HD-OCT is proposed in which the epidermis is segmented by 3 steps: the weighted least square-based pre-processing, the graph-based skin surface detection and the local integral projection-based dermal-epidermal junction detection respectively. Using a dataset of five 3D volumes, we found that this method correlates well with the conventional method of manually marking out the epidermis. This method can therefore serve to effectively and rapidly delineate the epidermis for study and clinical management of skin diseases.

  9. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP.

    PubMed

    Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S

    2016-01-01

    To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.

  10. Automated boundary detection of the optic disc and layer segmentation of the peripapillary retina in volumetric structural and angiographic optical coherence tomography.

    PubMed

    Zang, Pengxiao; Gao, Simon S; Hwang, Thomas S; Flaxel, Christina J; Wilson, David J; Morrison, John C; Huang, David; Li, Dengwang; Jia, Yali

    2017-03-01

    To improve optic disc boundary detection and peripapillary retinal layer segmentation, we propose an automated approach for structural and angiographic optical coherence tomography. The algorithm was performed on radial cross-sectional B-scans. The disc boundary was detected by searching for the position of Bruch's membrane opening, and retinal layer boundaries were detected using a dynamic programming-based graph search algorithm on each B-scan without the disc region. A comparison of the disc boundary using our method with that determined by manual delineation showed good accuracy, with an average Dice similarity coefficient ≥0.90 in healthy eyes and eyes with diabetic retinopathy and glaucoma. The layer segmentation accuracy in the same cases was on average less than one pixel (3.13 μm).

  11. Automated boundary detection of the optic disc and layer segmentation of the peripapillary retina in volumetric structural and angiographic optical coherence tomography

    PubMed Central

    Zang, Pengxiao; Gao, Simon S.; Hwang, Thomas S.; Flaxel, Christina J.; Wilson, David J.; Morrison, John C.; Huang, David; Li, Dengwang; Jia, Yali

    2017-01-01

    To improve optic disc boundary detection and peripapillary retinal layer segmentation, we propose an automated approach for structural and angiographic optical coherence tomography. The algorithm was performed on radial cross-sectional B-scans. The disc boundary was detected by searching for the position of Bruch’s membrane opening, and retinal layer boundaries were detected using a dynamic programming-based graph search algorithm on each B-scan without the disc region. A comparison of the disc boundary using our method with that determined by manual delineation showed good accuracy, with an average Dice similarity coefficient ≥0.90 in healthy eyes and eyes with diabetic retinopathy and glaucoma. The layer segmentation accuracy in the same cases was on average less than one pixel (3.13 μm). PMID:28663830

  12. Automated volumetric segmentation of retinal fluid on optical coherence tomography

    PubMed Central

    Wang, Jie; Zhang, Miao; Pechauer, Alex D.; Liu, Liang; Hwang, Thomas S.; Wilson, David J.; Li, Dengwang; Jia, Yali

    2016-01-01

    We propose a novel automated volumetric segmentation method to detect and quantify retinal fluid on optical coherence tomography (OCT). The fuzzy level set method was introduced for identifying the boundaries of fluid filled regions on B-scans (x and y-axes) and C-scans (z-axis). The boundaries identified from three types of scans were combined to generate a comprehensive volumetric segmentation of retinal fluid. Then, artefactual fluid regions were removed using morphological characteristics and by identifying vascular shadowing with OCT angiography obtained from the same scan. The accuracy of retinal fluid detection and quantification was evaluated on 10 eyes with diabetic macular edema. Automated segmentation had good agreement with manual segmentation qualitatively and quantitatively. The fluid map can be integrated with OCT angiogram for intuitive clinical evaluation. PMID:27446676

  13. A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Kermani, Saeed

    2013-01-01

    Optical coherence tomography (OCT) is a recently established imaging technique to describe different information about the internal structures of an object and to image various aspects of biological tissues. OCT image segmentation is mostly introduced on retinal OCT to localize the intra-retinal boundaries. Here, we review some of the important image segmentation methods for processing retinal OCT images. We may classify the OCT segmentation approaches into five distinct groups according to the image domain subjected to the segmentation algorithm. Current researches in OCT segmentation are mostly based on improving the accuracy and precision, and on reducing the required processing time. There is no doubt that current 3-D imaging modalities are now moving the research projects toward volume segmentation along with 3-D rendering and visualization. It is also important to develop robust methods capable of dealing with pathologic cases in OCT imaging. PMID:24083137

  14. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography.

    PubMed

    Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A; Chee, Kok Han; Liew, Yih Miin

    2017-12-01

    Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A.; Chee, Kok Han; Liew, Yih Miin

    2017-12-01

    Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.

  16. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model.

    PubMed

    Spaide, Richard F; Curcio, Christine A

    2011-09-01

    To evaluate the validity of commonly used anatomical designations for the four hyperreflective outer retinal bands seen in current-generation optical coherence tomography, a scale model of outer retinal morphology was created using published information for direct comparison with optical coherence tomography scans. Articles and books concerning histology of the outer retina from 1900 until 2009 were evaluated, and data were used to create a scale model drawing. Boundaries between outer retinal tissue compartments described by the model were compared with intensity variations of representative spectral-domain optical coherence tomography scans using longitudinal reflectance profiles to determine the region of origin of the hyperreflective outer retinal bands. This analysis showed a high likelihood that the spectral-domain optical coherence tomography bands attributed to the external limiting membrane (the first, innermost band) and to the retinal pigment epithelium (the fourth, outermost band) are correctly attributed. Comparative analysis showed that the second band, often attributed to the boundary between inner and outer segments of the photoreceptors, actually aligns with the ellipsoid portion of the inner segments. The third band corresponded to an ensheathment of the cone outer segments by apical processes of the retinal pigment epithelium in a structure known as the contact cylinder. Anatomical attributions and subsequent pathophysiologic assessments pertaining to the second and third outer retinal hyperreflective bands may not be correct. This analysis has identified testable hypotheses for the actual correlates of the second and third bands. Nonretinal pigment epithelium contributions to the fourth band (e.g., Bruch membrane) remain to be determined.

  17. Denoising and segmentation of retinal layers in optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Dash, Puspita; Sigappi, A. N.

    2018-04-01

    Optical Coherence Tomography (OCT) is an imaging technique used to localize the intra-retinal boundaries for the diagnostics of macular diseases. Due to speckle noise, low image contrast and accurate segmentation of individual retinal layers is difficult. Due to this, a method for retinal layer segmentation from OCT images is presented. This paper proposes a pre-processing filtering approach for denoising and segmentation methods for segmenting retinal layers OCT images using graph based segmentation technique. These techniques are used for segmentation of retinal layers for normal as well as patients with Diabetic Macular Edema. The algorithm based on gradient information and shortest path search is applied to optimize the edge selection. In this paper the four main layers of the retina are segmented namely Internal limiting membrane (ILM), Retinal pigment epithelium (RPE), Inner nuclear layer (INL) and Outer nuclear layer (ONL). The proposed method is applied on a database of OCT images of both ten normal and twenty DME affected patients and the results are found to be promising.

  18. Transient spectral domain optical coherence tomography findings in classic MEWDS: a case report.

    PubMed

    Lavigne, Luciana Castro; Isaac, David Leonardo Cruvinel; Duarte Júnior, José Osório; Avila, Marcos Pereira de

    2014-01-01

    The purpose of this study was to describe a patient with multiple evanescent white dot syndrome (MEWDS) who presented with classic retinal findings and transient changes in outer retinal anatomy. A 20-year-old man presented with mild blurred vision in the left eye, reporting flu-like symptoms 1 week before the visual symptoms started. Fundus examination of the left eye revealed foveal granularity and multiple scattered spots deep to the retina in the posterior pole. Fluorescein angiography and indocyanine green angiography showed typical MEWDS findings. Spectral Domain Optical Coherence Tomography has shown transient changes in outer retinal anatomy with disappearance of inner segment-outer segment junction and mild attenuation of external limiting membrane. Six months later, Spectral Domain Optical Coherence Tomography has shown complete resolution with recovery of normal outer retinal aspect.

  19. User-guided segmentation for volumetric retinal optical coherence tomography images

    PubMed Central

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  20. User-guided segmentation for volumetric retinal optical coherence tomography images.

    PubMed

    Yin, Xin; Chao, Jennifer R; Wang, Ruikang K

    2014-08-01

    Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method.

  1. Fast retinal layer segmentation of spectral domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Zhang, Tianqiao; Song, Zhangjun; Wang, Xiaogang; Zheng, Huimin; Jia, Fucang; Wu, Jianhuang; Li, Guanglin; Hu, Qingmao

    2015-09-01

    An approach to segment macular layer thicknesses from spectral domain optical coherence tomography has been proposed. The main contribution is to decrease computational costs while maintaining high accuracy via exploring Kalman filtering, customized active contour, and curve smoothing. Validation on 21 normal volumes shows that 8 layer boundaries could be segmented within 5.8 s with an average layer boundary error <2.35 μm. It has been compared with state-of-the-art methods for both normal and age-related macular degeneration cases to yield similar or significantly better accuracy and is 37 times faster. The proposed method could be a potential tool to clinically quantify the retinal layer boundaries.

  2. A dual-modal retinal imaging system with adaptive optics.

    PubMed

    Meadway, Alexander; Girkin, Christopher A; Zhang, Yuhua

    2013-12-02

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.

  3. Automated classification of optical coherence tomography images of human atrial tissue

    NASA Astrophysics Data System (ADS)

    Gan, Yu; Tsay, David; Amir, Syed B.; Marboe, Charles C.; Hendon, Christine P.

    2016-10-01

    Tissue composition of the atria plays a critical role in the pathology of cardiovascular disease, tissue remodeling, and arrhythmogenic substrates. Optical coherence tomography (OCT) has the ability to capture the tissue composition information of the human atria. In this study, we developed a region-based automated method to classify tissue compositions within human atria samples within OCT images. We segmented regional information without prior information about the tissue architecture and subsequently extracted features within each segmented region. A relevance vector machine model was used to perform automated classification. Segmentation of human atrial ex vivo datasets was correlated with trichrome histology and our classification algorithm had an average accuracy of 80.41% for identifying adipose, myocardium, fibrotic myocardium, and collagen tissue compositions.

  4. [Plaque segmentation of intracoronary optical coherence tomography images based on K-means and improved random walk algorithm].

    PubMed

    Wang, Guanglei; Wang, Pengyu; Han, Yechen; Liu, Xiuling; Li, Yan; Lu, Qian

    2017-06-01

    In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K -means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor's manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.

  5. Fundus autofluorescence and optical coherence tomography findings in thiamine responsive megaloblastic anemia.

    PubMed

    Ach, Thomas; Kardorff, Rüdiger; Rohrschneider, Klaus

    2015-01-01

    To report ophthalmologic fundus autofluorescence and spectral domain optical coherence tomography findings in a patient with thiamine responsive megaloblastic anemia (TRMA). A 13-year-old girl with genetically proven TRMA was ophthalmologically (visual acuity, funduscopy, perimetry, electroretinogram) followed up over >5 years. Fundus imaging also included autofluorescence and spectral domain optical coherence tomography. During a 5-year follow-up, visual acuity and visual field decreased, despite a special TRMA diet. Funduscopy revealed bull's eye appearance, whereas fundus autofluorescence showed central and peripheral hyperfluorescence and perifoveal hypofluorescence. Spectral domain optical coherence tomography revealed affected inner segment ellipsoid band and irregularities in the retinal pigment epithelium and choroidea. Autofluorescence and spectral domain optical coherence tomography findings in a patient with TRMA show retinitis pigmentosa-like retina, retinal pigment epithelium, and choroid alterations. These findings might progress even under special TRMA diet, indispensable to life. Ophthalmologist should consider TRMA in patients with deafness and ophthalmologic disorders.

  6. A sparsity-based simplification method for segmentation of spectral-domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Meiniel, William; Gan, Yu; Olivo-Marin, Jean-Christophe; Angelini, Elsa

    2017-08-01

    Optical coherence tomography (OCT) has emerged as a promising image modality to characterize biological tissues. With axio-lateral resolutions at the micron-level, OCT images provide detailed morphological information and enable applications such as optical biopsy and virtual histology for clinical needs. Image enhancement is typically required for morphological segmentation, to improve boundary localization, rather than enrich detailed tissue information. We propose to formulate image enhancement as an image simplification task such that tissue layers are smoothed while contours are enhanced. For this purpose, we exploit a Total Variation sparsity-based image reconstruction, inspired by the Compressed Sensing (CS) theory, but specialized for images with structures arranged in layers. We demonstrate the potential of our approach on OCT human heart and retinal images for layers segmentation. We also compare our image enhancement capabilities to the state-of-the-art denoising techniques.

  7. Full ocular biometry through dual-depth whole-eye optical coherence tomography

    PubMed Central

    Kim, Hyung-Jin; Kim, Minji; Hyeon, Min Gyu; Choi, Youngwoon; Kim, Beop-Min

    2018-01-01

    We propose a new method of determining the optical axis (OA), pupillary axis (PA), and visual axis (VA) of the human eye by using dual-depth whole-eye optical coherence tomography (OCT). These axes, as well as the angles “α” between the OA and VA and “κ” between PA and VA, are important in many ophthalmologic applications, especially in refractive surgery. Whole-eye images are reconstructed based on simultaneously acquired images of the anterior segment and retina. The light from a light source is split into two orthogonal polarization components for imaging the anterior segment and retina, respectively. The OA and PA are identified based on their geometric definitions by using the anterior segment image only, while the VA is detected through accurate correlation between the two images. The feasibility of our approach was tested using a model eye and human subjects. PMID:29552378

  8. [Application of spectral optical coherent tomography (SOCT) in ophthalmology].

    PubMed

    Bieganowski, Lech; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kałuzny, Jakub J

    2004-01-01

    The article describes spectral optical coherent tomography (SOCT) constructed by Medical Physics Group, Faculty of Physics, Astronomy and Informatics at Nicholas Copernicus University in Toruń (Poland). It presents the physical bases for the functioning of the constructed device and includes pictures of optical sections of various elements of the eyeball: an optic disc and the region of central fovea, a cornea and angle structures (trabecular meshwork). The article also discusses potential application of SOCT in ophthalmic diagnosis of anterior and posterior segments of the eye.

  9. Reading Center Characterization of Central Retinal Vein Occlusion Using Optical Coherence Tomography During the COPERNICUS Trial.

    PubMed

    Decroos, Francis Char; Stinnett, Sandra S; Heydary, Cynthia S; Burns, Russell E; Jaffe, Glenn J

    2013-11-01

    To determine the impact of segmentation error correction and precision of standardized grading of time domain optical coherence tomography (OCT) scans obtained during an interventional study for macular edema secondary to central retinal vein occlusion (CRVO). A reading center team of two readers and a senior reader evaluated 1199 OCT scans. Manual segmentation error correction (SEC) was performed. The frequency of SEC, resulting change in central retinal thickness after SEC, and reproducibility of SEC were quantified. Optical coherence tomography characteristics associated with the need for SECs were determined. Reading center teams graded all scans, and the reproducibility of this evaluation for scan quality at the fovea and cystoid macular edema was determined on 97 scans. Segmentation errors were observed in 360 (30.0%) scans, of which 312 were interpretable. On these 312 scans, the mean machine-generated central subfield thickness (CST) was 507.4 ± 208.5 μm compared to 583.0 ± 266.2 μm after SEC. Segmentation error correction resulted in a mean absolute CST correction of 81.3 ± 162.0 μm from baseline uncorrected CST. Segmentation error correction was highly reproducible (intraclass correlation coefficient [ICC] = 0.99-1.00). Epiretinal membrane (odds ratio [OR] = 2.3, P < 0.0001), subretinal fluid (OR = 2.1, P = 0.0005), and increasing CST (OR = 1.6 per 100-μm increase, P < 0.001) were associated with need for SEC. Reading center teams reproducibly graded scan quality at the fovea (87% agreement, kappa = 0.64, 95% confidence interval [CI] 0.45-0.82) and cystoid macular edema (92% agreement, kappa = 0.84, 95% CI 0.74-0.94). Optical coherence tomography images obtained during an interventional CRVO treatment trial can be reproducibly graded. Segmentation errors can cause clinically meaningful deviation in central retinal thickness measurements; however, these errors can be corrected reproducibly in a reading center setting. Segmentation errors are common on these images, can cause clinically meaningful errors in central retinal thickness measurement, and can be corrected reproducibly in a reading center setting.

  10. High-Speed Ultra-High-Resolution Optical Coherence Tomography Findings in Hydroxychloroquine Retinopathy

    PubMed Central

    Rodriguez-Padilla, Julio A.; Hedges, Thomas R.; Monson, Bryan; Srinivasan, Vivek; Wojtkowski, Maciej; Reichel, Elias; Duker, Jay S.; Schuman, Joel S.; Fujimoto, James G.

    2007-01-01

    Objectives To compare structural changes in the retina seen on high-speed ultra–high-resolution optical coherence tomography (hsUHR-OCT) with multifocal electroretinography (mfERG) and automated visual fields in patients receiving hydroxychloroquine. Methods Fifteen patients receiving hydroxychloroquine were evaluated clinically with hsUHR-OCT, mfERG, and automated visual fields. Six age-matched subjects were imaged with hsUHR-OCT and served as controls. Results Distinctive discontinuity of the perifoveal photoreceptor inner segment/outer segment junction and thinning of the outer nuclear layer were seen with hsUHR-OCT in patients with mild retinal toxic effects. Progression to complete loss of the inner segment/outer segment junction and hyperscattering at the outer segment level were seen in more advanced cases. The mfERG abnormalities correlated with the hsUHR-OCT findings. Asymptomatic patients had normal hsUHR-OCT and mfERG results. Conclusion Distinctive abnormalities in the perifoveal photoreceptor inner segment/outer segment junction were seen on hsUHR-OCT in patients receiving hydroxychloroquine who also were symptomatic and had abnormalities on automated visual fields and mfERG. PMID:17562988

  11. Optimized doppler optical coherence tomography for choroidal capillary vasculature imaging

    NASA Astrophysics Data System (ADS)

    Liu, Gangjun; Qi, Wenjuan; Yu, Lingfeng; Chen, Zhongping

    2011-03-01

    In this paper, we analyzed the retinal and choroidal blood vasculature in the posterior segment of the human eye with optimized color Doppler and Doppler variance optical coherence tomography. Depth-resolved structure, color Doppler and Doppler variance images were compared. Blood vessels down to capillary level were able to be obtained with the optimized optical coherence color Doppler and Doppler variance method. For in-vivo imaging of human eyes, bulkmotion induced bulk phase must be identified and removed before using color Doppler method. It was found that the Doppler variance method is not sensitive to bulk motion and the method can be used without removing the bulk phase. A novel, simple and fast segmentation algorithm to indentify retinal pigment epithelium (RPE) was proposed and used to segment the retinal and choroidal layer. The algorithm was based on the detected OCT signal intensity difference between different layers. A spectrometer-based Fourier domain OCT system with a central wavelength of 890 nm and bandwidth of 150nm was used in this study. The 3-dimensional imaging volume contained 120 sequential two dimensional images with 2048 A-lines per image. The total imaging time was 12 seconds and the imaging area was 5x5 mm2.

  12. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters

    PubMed Central

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei

    2013-01-01

    Abstract. Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response. PMID:23922124

  13. Combined use of high-definition and volumetric optical coherence tomography for the segmentation of neural canal opening in cases of optic nerve edema

    NASA Astrophysics Data System (ADS)

    Wang, Jui-Kai; Kardon, Randy H.; Garvin, Mona K.

    2015-03-01

    In cases of optic-nerve-head edema, the presence of the swelling reduces the visibility of the underlying neural canal opening (NCO) within spectral-domain optical coherence tomography (SD-OCT) volumes. Consequently, traditional SD-OCT-based NCO segmentation methods often overestimate the size of the NCO. The visibility of the NCO can be improved using high-definition 2D raster scans, but such scans do not provide 3D contextual image information. In this work, we present a semi-automated approach for the segmentation of the NCO in cases of optic disc edema by combining image information from volumetric and high-definition raster SD-OCT image sequences. In particular, for each subject, five high-definition OCT B-scans and the OCT volume are first separately segmented, and then the five high-definition B-scans are automatically registered to the OCT volume. Next, six NCO points are placed (manually, in this work) in the central three high-definition OCT B-scans (two points for each central B-scans) and are automatically transferred into the OCT volume. Utilizing a combination of these mapped points and the 3D image information from the volumetric scans, a graph-based approach is used to identify the complete NCO on the OCT en-face image. The segmented NCO points using the new approach were significantly closer to expert-marked points than the segmented NCO points using a traditional approach (root mean square differences in pixels: 5.34 vs. 21.71, p < 0.001).

  14. Local birefringence of the anterior segment of the human eye in a single capture with a full range polarisation-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, Qingyun; Karnowski, Karol; Villiger, Martin; Sampson, David D.

    2017-04-01

    A fibre-based full-range polarisation-sensitive optical coherence tomography system is developed to enable complete capture of the structural and birefringence properties of the anterior segment of the human eye in a single acquisition. The system uses a wavelength swept source centered at 1.3 μm, passively depth-encoded, orthogonal polarisation states in the illumination path and polarisation-diversity detection. Off-pivot galvanometer scanning is used to extend the imaging range and compensate for sensitivity drop-off. A Mueller matrix-based method is used to analyse data. We demonstrate the performance of the system and discuss issues relating to its optimisation.

  15. Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa.

    PubMed

    Tojo, Naoki; Nakamura, Tomoko; Fuchizawa, Chiharu; Oiwake, Toshihiko; Hayashi, Atsushi

    2013-01-01

    The purpose of this study was to examine cone photoreceptors in the macula of patients with retinitis pigmentosa using an adaptive optics fundus camera and to investigate any correlations between cone photoreceptor density and findings on optical coherence tomography and fundus autofluorescence. We examined two patients with typical retinitis pigmentosa who underwent ophthalmological examination, including measurement of visual acuity, and gathering of electroretinographic, optical coherence tomographic, fundus autofluorescent, and adaptive optics fundus images. The cone photoreceptors in the adaptive optics images of the two patients with retinitis pigmentosa and five healthy subjects were analyzed. An abnormal parafoveal ring of high-density fundus autofluorescence was observed in the macula in both patients. The border of the ring corresponded to the border of the external limiting membrane and the inner segment and outer segment line in the optical coherence tomographic images. Cone photoreceptors at the abnormal parafoveal ring were blurred and decreased in the adaptive optics images. The blurred area corresponded to the abnormal parafoveal ring in the fundus autofluorescence images. Cone densities were low at the blurred areas and at the nasal and temporal retina along a line from the fovea compared with those of healthy controls. The results for cone spacing and Voronoi domains in the macula corresponded with those for the cone densities. Cone densities were heavily decreased in the macula, especially at the parafoveal ring on high-density fundus autofluorescence in both patients with retinitis pigmentosa. Adaptive optics images enabled us to observe in vivo changes in the cone photoreceptors of patients with retinitis pigmentosa, which corresponded to changes in the optical coherence tomographic and fundus autofluorescence images.

  16. Optical Coherence Tomography in Glaucoma

    NASA Astrophysics Data System (ADS)

    Berisha, Fatmire; Hoffmann, Esther M.; Pfeiffer, Norbert

    Retinal nerve fiber layer (RNFL) thinning and optic nerve head cupping are key diagnostic features of glaucomatous optic neuropathy. The higher resolution of the recently introduced SD-OCT offers enhanced visualization and improved segmentation of the retinal layers, providing a higher accuracy in identification of subtle changes of the optic disc and RNFL thinning associated with glaucoma.

  17. Imaging Foveal Microvasculature: Optical Coherence Tomography Angiography Versus Adaptive Optics Scanning Light Ophthalmoscope Fluorescein Angiography.

    PubMed

    Mo, Shelley; Krawitz, Brian; Efstathiadis, Eleni; Geyman, Lawrence; Weitz, Rishard; Chui, Toco Y P; Carroll, Joseph; Dubra, Alfredo; Rosen, Richard B

    2016-07-01

    To compare the use of optical coherence tomography angiography (OCTA) and adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA) for characterizing the foveal microvasculature in healthy and vasculopathic eyes. Four healthy controls and 11 vasculopathic patients (4 diabetic retinopathy, 4 retinal vein occlusion, and 3 sickle cell retinopathy) were imaged with OCTA and AOSLO FA. Foveal perfusion maps were semiautomatically skeletonized for quantitative analysis, which included foveal avascular zone (FAZ) metrics (area, perimeter, acircularity index) and vessel density in three concentric annular regions of interest. On each set of OCTA and AOSLO FA images, matching vessel segments were used for lumen diameter measurement. Qualitative image comparisons were performed by visual identification of microaneurysms, vessel loops, leakage, and vessel segments. Adaptive optics scanning light ophthalmoscope FA and OCTA showed no statistically significant differences in FAZ perimeter, acircularity index, and vessel densities. Foveal avascular zone area, however, showed a small but statistically significant difference of 1.8% (P = 0.004). Lumen diameter was significantly larger on OCTA (mean difference 5.7 μm, P < 0.001). Microaneurysms, fine structure of vessel loops, leakage, and some vessel segments were visible on AOSLO FA but not OCTA, while blood vessels obscured by leakage were visible only on OCTA. Optical coherence tomography angiography is comparable to AOSLO FA at imaging the foveal microvasculature except for differences in FAZ area, lumen diameter, and some qualitative features. These results, together with its ease of use, short acquisition time, and avoidance of potentially phototoxic blue light, support OCTA as a tool for monitoring ocular pathology and detecting early disease.

  18. The effect of internal fixation lamp on anterior chamber angle width measured by anterior segment optical coherence tomography.

    PubMed

    Nakamine, Sakari; Sakai, Hiroshi; Arakaki, Yoshikuni; Yonahara, Michiko; Kaiya, Tadayoshi

    2018-01-01

    To study the effect of the internal fixation lamp on anterior chamber width measured by anterior segment optical coherence tomography. In a prospective cross sectional observational study, consecutive 22 right eyes of 22 patients (4 men and 18 women) with suspected primary angle closure underwent swept source domain anterior segment optical coherence tomography (AS-OCT), (CASIA SS-1000, Tomey, Nagoya, Japan). Anterior chamber parameters of angle opening distance (AOD), trabecular-iris angle (TIA), angle recess area (ARA) at 500 or 750 µm from scleral spur and pupil diameter were measured by AS-OCT in a three-dimensional mode in 4 quadrants (superior, inferior, temporal and nasal) in dark room setting both with and without internal fixation lamp. Anterior segment parameters of AOD 500 in superior, inferior and temporal quadrants, AOD 750 at superior and nasal, TIA 500 at superior, and inferior and TIA 750 at superior and nasal, and ARA 500 or 750 at superior and inferior with internal fixation lamp were greater and the pupil diameter was significantly (all P < 0.05, paired t test) smaller than when measured without fixation lamp. Internal fixation lamp of the anterior segment OCT makes the pupil constrict and angle wider. When using AS-OCT with usual setting with internal fixation lamp on with eyes in which the anterior chamber angle is narrow but open, it is recommended that the internal fixation lamp be turned off to ensure a clear indication as to whether the angle is open or closed in the dark.

  19. Optical coherence tomography for the quantitative study of cerebrovascular physiology

    PubMed Central

    Srinivasan, Vivek J; Atochin, Dmitriy N; Radhakrishnan, Harsha; Jiang, James Y; Ruvinskaya, Svetlana; Wu, Weicheng; Barry, Scott; Cable, Alex E; Ayata, Cenk; Huang, Paul L; Boas, David A

    2011-01-01

    Doppler optical coherence tomography (DOCT) and OCT angiography are novel methods to investigate cerebrovascular physiology. In the rodent cortex, DOCT flow displays features characteristic of cerebral blood flow, including conservation along nonbranching vascular segments and at branch points. Moreover, DOCT flow values correlate with hydrogen clearance flow values when both are measured simultaneously. These data validate DOCT as a noninvasive quantitative method to measure tissue perfusion over a physiologic range. PMID:21364599

  20. Variability of manual ciliary muscle segmentation in optical coherence tomography images.

    PubMed

    Chang, Yu-Cherng; Liu, Keke; Cabot, Florence; Yoo, Sonia H; Ruggeri, Marco; Ho, Arthur; Parel, Jean-Marie; Manns, Fabrice

    2018-02-01

    Optical coherence tomography (OCT) offers new options for imaging the ciliary muscle allowing direct in vivo visualization. However, variation in image quality along the length of the muscle prevents accurate delineation and quantification of the muscle. Quantitative analyses of the muscle are accompanied by variability in segmentation between examiners and between sessions for the same examiner. In processes such as accommodation where changes in muscle thickness may be tens of microns- the equivalent of a small number of image pixels, differences in segmentation can influence the magnitude and potentially the direction of thickness change. A detailed analysis of variability in ciliary muscle thickness measurements was performed to serve as a benchmark for the extent of this variability in studies on the ciliary muscle. Variation between sessions and examiners were found to be insignificant but the magnitude of variation should be considered when interpreting ciliary muscle results.

  1. Automated segmentation algorithm for detection of changes in vaginal epithelial morphology using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Vincent, Kathleen L.; Vargas, Gracie; Motamedi, Massoud

    2012-11-01

    We have explored the use of optical coherence tomography (OCT) as a noninvasive tool for assessing the toxicity of topical microbicides, products used to prevent HIV, by monitoring the integrity of the vaginal epithelium. A novel feature-based segmentation algorithm using a nearest-neighbor classifier was developed to monitor changes in the morphology of vaginal epithelium. The two-step automated algorithm yielded OCT images with a clearly defined epithelial layer, enabling differentiation of normal and damaged tissue. The algorithm was robust in that it was able to discriminate the epithelial layer from underlying stroma as well as residual microbicide product on the surface. This segmentation technique for OCT images has the potential to be readily adaptable to the clinical setting for noninvasively defining the boundaries of the epithelium, enabling quantifiable assessment of microbicide-induced damage in vaginal tissue.

  2. Multivendor Spectral-Domain Optical Coherence Tomography Dataset, Observer Annotation Performance Evaluation, and Standardized Evaluation Framework for Intraretinal Cystoid Fluid Segmentation.

    PubMed

    Wu, Jing; Philip, Ana-Maria; Podkowinski, Dominika; Gerendas, Bianca S; Langs, Georg; Simader, Christian; Waldstein, Sebastian M; Schmidt-Erfurth, Ursula M

    2016-01-01

    Development of image analysis and machine learning methods for segmentation of clinically significant pathology in retinal spectral-domain optical coherence tomography (SD-OCT), used in disease detection and prediction, is limited due to the availability of expertly annotated reference data. Retinal segmentation methods use datasets that either are not publicly available, come from only one device, or use different evaluation methodologies making them difficult to compare. Thus we present and evaluate a multiple expert annotated reference dataset for the problem of intraretinal cystoid fluid (IRF) segmentation, a key indicator in exudative macular disease. In addition, a standardized framework for segmentation accuracy evaluation, applicable to other pathological structures, is presented. Integral to this work is the dataset used which must be fit for purpose for IRF segmentation algorithm training and testing. We describe here a multivendor dataset comprised of 30 scans. Each OCT scan for system training has been annotated by multiple graders using a proprietary system. Evaluation of the intergrader annotations shows a good correlation, thus making the reproducibly annotated scans suitable for the training and validation of image processing and machine learning based segmentation methods. The dataset will be made publicly available in the form of a segmentation Grand Challenge.

  3. Multivendor Spectral-Domain Optical Coherence Tomography Dataset, Observer Annotation Performance Evaluation, and Standardized Evaluation Framework for Intraretinal Cystoid Fluid Segmentation

    PubMed Central

    Wu, Jing; Philip, Ana-Maria; Podkowinski, Dominika; Gerendas, Bianca S.; Langs, Georg; Simader, Christian

    2016-01-01

    Development of image analysis and machine learning methods for segmentation of clinically significant pathology in retinal spectral-domain optical coherence tomography (SD-OCT), used in disease detection and prediction, is limited due to the availability of expertly annotated reference data. Retinal segmentation methods use datasets that either are not publicly available, come from only one device, or use different evaluation methodologies making them difficult to compare. Thus we present and evaluate a multiple expert annotated reference dataset for the problem of intraretinal cystoid fluid (IRF) segmentation, a key indicator in exudative macular disease. In addition, a standardized framework for segmentation accuracy evaluation, applicable to other pathological structures, is presented. Integral to this work is the dataset used which must be fit for purpose for IRF segmentation algorithm training and testing. We describe here a multivendor dataset comprised of 30 scans. Each OCT scan for system training has been annotated by multiple graders using a proprietary system. Evaluation of the intergrader annotations shows a good correlation, thus making the reproducibly annotated scans suitable for the training and validation of image processing and machine learning based segmentation methods. The dataset will be made publicly available in the form of a segmentation Grand Challenge. PMID:27579177

  4. Mitigation of Laser Beam Scintillation in Free-Space Optical Communication Systems Through Coherence-Reducing Optical Materials

    NASA Technical Reports Server (NTRS)

    Renner, Christoffer J.

    2005-01-01

    Free-space optical communication systems (also known as lasercom systems) offer several performance advantages over traditional radio frequency communication systems. These advantages include increased data rates and reduced operating power and system weight. One serious limiting factor in a lasercom system is Optical turbulence in Earth's atmosphere. This turbulence breaks up the laser beam used to transmit the information into multiple segments that interfere with each other when the beam is focused onto the receiver. This interference pattern at the receiver changes with time causing fluctuations in the received optical intensity (scintillation). Scintillation leads to intermittent losses of the signal and an overall reduction in the lasercom system's performance. Since scintillation is a coherent effect, reducing the spatial and temporal coherence of the laser beam will reduce the scintillation. Transmitting a laser beam through certain materials is thought to reduce its coherence. Materials that were tested included: sapphire, BK7 glass, fused silica and others. The spatial and temporal coherence of the laser beam was determined by examining the interference patterns (fringes) it formed when interacting with various interferometers and etalons.

  5. Automated framework for intraretinal cystoid macular edema segmentation in three-dimensional optical coherence tomography images with macular hole

    NASA Astrophysics Data System (ADS)

    Zhu, Weifang; Zhang, Li; Shi, Fei; Xiang, Dehui; Wang, Lirong; Guo, Jingyun; Yang, Xiaoling; Chen, Haoyu; Chen, Xinjian

    2017-07-01

    Cystoid macular edema (CME) and macular hole (MH) are the leading causes for visual loss in retinal diseases. The volume of the CMEs can be an accurate predictor for visual prognosis. This paper presents an automatic method to segment the CMEs from the abnormal retina with coexistence of MH in three-dimensional-optical coherence tomography images. The proposed framework consists of preprocessing and CMEs segmentation. The preprocessing part includes denoising, intraretinal layers segmentation and flattening, and MH and vessel silhouettes exclusion. In the CMEs segmentation, a three-step strategy is applied. First, an AdaBoost classifier trained with 57 features is employed to generate the initialization results. Second, an automated shape-constrained graph cut algorithm is applied to obtain the refined results. Finally, cyst area information is used to remove false positives (FPs). The method was evaluated on 19 eyes with coexistence of CMEs and MH from 18 subjects. The true positive volume fraction, FP volume fraction, dice similarity coefficient, and accuracy rate for CMEs segmentation were 81.0%±7.8%, 0.80%±0.63%, 80.9%±5.7%, and 99.7%±0.1%, respectively.

  6. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    PubMed

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  7. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography.

    PubMed

    Venhuizen, Freerk G; van Ginneken, Bram; Liefers, Bart; van Asten, Freekje; Schreur, Vivian; Fauser, Sascha; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I

    2018-04-01

    We developed a deep learning algorithm for the automatic segmentation and quantification of intraretinal cystoid fluid (IRC) in spectral domain optical coherence tomography (SD-OCT) volumes independent of the device used for acquisition. A cascade of neural networks was introduced to include prior information on the retinal anatomy, boosting performance significantly. The proposed algorithm approached human performance reaching an overall Dice coefficient of 0.754 ± 0.136 and an intraclass correlation coefficient of 0.936, for the task of IRC segmentation and quantification, respectively. The proposed method allows for fast quantitative IRC volume measurements that can be used to improve patient care, reduce costs, and allow fast and reliable analysis in large population studies.

  8. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography

    PubMed Central

    Venhuizen, Freerk G.; van Ginneken, Bram; Liefers, Bart; van Asten, Freekje; Schreur, Vivian; Fauser, Sascha; Hoyng, Carel; Theelen, Thomas; Sánchez, Clara I.

    2018-01-01

    We developed a deep learning algorithm for the automatic segmentation and quantification of intraretinal cystoid fluid (IRC) in spectral domain optical coherence tomography (SD-OCT) volumes independent of the device used for acquisition. A cascade of neural networks was introduced to include prior information on the retinal anatomy, boosting performance significantly. The proposed algorithm approached human performance reaching an overall Dice coefficient of 0.754 ± 0.136 and an intraclass correlation coefficient of 0.936, for the task of IRC segmentation and quantification, respectively. The proposed method allows for fast quantitative IRC volume measurements that can be used to improve patient care, reduce costs, and allow fast and reliable analysis in large population studies. PMID:29675301

  9. Angiographic and structural imaging using high axial resolution fiber-based visible-light OCT

    PubMed Central

    Pi, Shaohua; Camino, Acner; Zhang, Miao; Cepurna, William; Liu, Gangjun; Huang, David; Morrison, John; Jia, Yali

    2017-01-01

    Optical coherence tomography using visible-light sources can increase the axial resolution without the need for broader spectral bandwidth. Here, a high-resolution, fiber-based, visible-light optical coherence tomography system is built and used to image normal retina in rats and blood vessels in chicken embryo. In the rat retina, accurate segmentation of retinal layer boundaries and quantification of layer thicknesses are accomplished. Furthermore, three distinct capillary plexuses in the retina and the choriocapillaris are identified and the characteristic pattern of the nerve fiber layer thickness in rats is revealed. In the chicken embryo model, the microvascular network and a venous bifurcation are examined and the ability to identify and segment large vessel walls is demonstrated. PMID:29082087

  10. Anterior Segment Optical Coherence Tomography for Tear Meniscus Evaluation and its Correlation with other Tear Variables in Healthy Individuals

    PubMed Central

    Dhasmana, Renu; Nagpal, Ramesh Chander

    2016-01-01

    Introduction Dry eye is one of the most common ocular diseases in this cyber era. Despite availability of multiple tests, no single test is accurate for the diagnosis of dry eye. Anterior segment optical coherence tomography is the recent tool which can be added in the armentarium of dry eye tests. Aim To evaluate tear meniscus with anterior segment optical coherence tomography and its correlation with other tear variables in normal healthy individuals. Materials and Methods In this prospective cross-sectional observational study, right eye of 203 consecutive patients were studied. All the patients were divided into three groups Group 1, 2 and 3 according to their age ≤20 years, 21-40 years and >40 years respectively. All patients underwent routine ophthalmologic examinations along with slit-lamp bio-microscopy for tear meniscus height measurement, tear film break up time, Schirmer’s I test (with anaesthesia) and optical coherence tomography imaging of inferior tear meniscus height. After focusing of the instrument with a Cross Line (CL) centered on lower tear meniscus at 6’0 clock of cornea, a 6 mm long scan was obtained. The tear meniscus height (μm) and tear meniscus area (mm2) were measured manually with help of callipers by joining upper corneo-meniscus junction to the lower lid-meniscus junction and tear meniscus height and area within the plotted line respectively and calculated by using the integrated analysis available in the custom software. Results There was significant decrease in the all tear variables with the increase in the age. According to age groups in group 1, the mean Schirmer’s (24.0±4.9)mm, tear film break up time (11.1±1.9) sec, tear meniscus height on slit lamp (600.2±167.3)mm were higher but decreased in group 2 (21.5±5.4,10.8±1.4, 597.5±186.3) and group 3 (19.8 ± 5.1, 10.2 ± 1.6, 485.6 ± 157.7) respectively. Schirmer’s test values and tear film break up time were similar in both sexes (p=0.1 and p= 0.9). Tear meniscus height on slit lamp and Optical coherence based tear meniscus area were similar in both sexes (p=0.5 and p=0.1). However, tear meniscus height on optical coherence tomography was significantly higher in females (p=0.04). Value of Schirmer’s and tear film break up time (r =0.2; p= 0.001) and Schirmer’s and tear meniscus height on slit lamp (r=0.6; p<0.001) had positive correlation. Tear meniscus height and tear meniscus area on optical coherence tomography had positive correlation (r =.9; p<0.001). Conclusion On optical coherence tomography tear meniscus height and area significantly correlated. Despite higher values of Schirmer’s, tear film break up time, Slit lamp based tear meniscus height in younger age group the tear meniscus height and tear meniscus area with optical coherence tomography were lower. PMID:27437253

  11. [Pay attention on optical coherence tomography evaluation for optic nerve diseases].

    PubMed

    Wang, M

    2016-12-11

    Optical coherence tomography(OCT) had become the most important imaging technique in ophthalmology. OCT is able to segment the retinal nerve fiber layer and retinal ganglion cell layer accurately. Quantitative analysis can be performed for both layers. OCT is very important to evaluate the neuron and axon loss in optic nerve diseases diagnosis. Meanwhile, OCT has great value for differentiating glaucoma and macular diseases from optic nerve diseases. This review presented OCT application in optic nerve diseases diagnosis, differentiation diagnosis, the key points in use and the features of en face OCT and OCT angiography. It gave us suggestions that it should be pay more attention to OCT examination in diagnosis and treatment of optic nerve diseases. (Chin J Ophthalmol, 2016, 52: 885 - 888) .

  12. Automated choroidal segmentation method in human eye with 1050nm optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Cindy; Wang, Ruikang K.

    2014-02-01

    Choroidal thickness (ChT), defined as the distance between the retinal pigment epithelium (RPE) and the choroid-sclera interface (CSI), is highly correlated with various ocular disorders like high myopia, diabetic retinopathy, and central serous chorioretinopathy. Long wavelength Optical Coherence Tomography (OCT) has the ability to penetrate deep to the CSI, making the measurement of the ChT possible. The ability to accurately segment the CSI and RPE is important in extracting clinical information. However, automated CSI segmentation is challenging due to the weak boundary in the lower choroid and inconsistent texture with varied blood vessels. We propose a K-means clustering based automated algorithm, which is effective in segmenting the CSI and RPE. The performance of the method was evaluated using 531 frames from 4 normal subjects. The RPE and CSI segmentation time was about 0.3 seconds per frame, and the average time was around 0.5 seconds per frame with correction among frames, which is faster than reported algorithms. The results from the proposed method are consistent with the manual segmentation results. Further investigation includes the optimization of the algorithm to cover more OCT images captured from patients and the increase of the processing speed and robustness of the segmentation method.

  13. Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images

    PubMed Central

    Dysli, Chantal; Enzmann, Volker; Sznitman, Raphael; Zinkernagel, Martin S.

    2015-01-01

    Purpose Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. Methods Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b+Prph2Rd2/J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. Results Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. Conclusions Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. Translational Relevance The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions. PMID:26336634

  14. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images.

    PubMed

    Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I

    2014-07-01

    Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.

  15. Improved methods of performing coherent optical correlation

    NASA Technical Reports Server (NTRS)

    Husain-Abidi, A. S.

    1972-01-01

    Coherent optical correlators are described in which complex spatial filters are recorded by a quasi-Fourier transform method. The high-pass spatial filtering effects (due to the dynamic range of photographic films) normally encountered in Vander Lugt type complex filters are not present in this system. Experimental results for both transmittive as well as reflective objects are presented. Experiments are also performed by illuminating the object with diffused light. A correlator using paraboloidal mirror segments as the Fourier-transforming element is also described.

  16. The Properties of Outer Retinal Band Three Investigated With Adaptive-Optics Optical Coherence Tomography.

    PubMed

    Jonnal, Ravi S; Gorczynska, Iwona; Migacz, Justin V; Azimipour, Mehdi; Zawadzki, Robert J; Werner, John S

    2017-09-01

    Optical coherence tomography's (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT. Using AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject. Band 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements. Band 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length.

  17. The Properties of Outer Retinal Band Three Investigated With Adaptive-Optics Optical Coherence Tomography

    PubMed Central

    Jonnal, Ravi S.; Gorczynska, Iwona; Migacz, Justin V.; Azimipour, Mehdi; Zawadzki, Robert J.; Werner, John S.

    2017-01-01

    Purpose Optical coherence tomography's (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT. Methods Using AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject. Results Band 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements. Conclusions Band 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length. PMID:28877320

  18. Quantitative polarization and flow evaluation of choroid and sclera by multifunctional Jones matrix optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sugiyama, S.; Hong, Y.-J.; Kasaragod, D.; Makita, S.; Miura, M.; Ikuno, Y.; Yasuno, Y.

    2016-03-01

    Quantitative evaluation of optical properties of choroid and sclera are performed by multifunctional optical coherence tomography. Five normal eyes, five glaucoma eyes and one choroidal atrophy eye are examined. The refractive error was found to be correlated with choroidal birefringence, polarization uniformity, and flow in addition to scleral birefringence among normal eyes. The significant differences were observed between the normal and the glaucoma eyes, as for choroidal polarization uniformity, flow and scleral birefringence. An automatic segmentation algorithm of retinal pigment epithelium and chorioscleral interface based on multifunctional signals is also presented.

  19. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  20. Serial imaging and structure-function correlates of high-density rings of fundus autofluorescence in retinitis pigmentosa.

    PubMed

    Robson, Anthony G; Tufail, Adnan; Fitzke, Fred; Bird, Alan C; Moore, Anthony T; Holder, Graham E; Webster, Andrew R

    2011-09-01

    To document the evolution and functional and structural significance of parafoveal rings of high-density fundus autofluorescence (AF) in patients with retinitis pigmentosa and preserved visual acuity. Fifty-two patients with nonsyndromic retinitis pigmentosa or Usher syndrome, who had a parafoveal ring of high-density AF and a visual acuity of 20/30 or better, were ascertained. All had international standard full-field electroretinography and pattern electroretinography. Autofluorescence imaging was repeated in 30 patients after periods of up to 9.3 years. Of the 52 patients, 35 underwent optical coherence tomography. Progressive constriction of the ring was detected in 17 patients. Ring radius reduced by up to 40% at a mean rate of between 0.8% and 15.8% per year. In 1 patient, a small ring was replaced by irregular AF; visual acuity deteriorated over the same period. There was a high correspondence between the lateral extent of the preserved optical coherence tomography inner segment/outer segment band and the diameter of the ring along the same optical coherence tomographic scan plane (slope, 0.9; r = 0.97; P < 0.005; n = 35) and between preserved inner segment/outer segment lamina and the pattern electroretinography P50 measure of macular function (R = 0.72; P < 0.005; n = 34). Rings of increased AF surround areas of preserved outer retina and preserved photopic function. Serial fundus AF may provide prognostic indicators for preservation of central acuity and potentially assist in the identification and evaluation of patients suitable for treatment aimed at preservation of remaining function.

  1. Automated intraretinal layer segmentation of optical coherence tomography images using graph-theoretical methods

    NASA Astrophysics Data System (ADS)

    Roy, Priyanka; Gholami, Peyman; Kuppuswamy Parthasarathy, Mohana; Zelek, John; Lakshminarayanan, Vasudevan

    2018-02-01

    Segmentation of spectral-domain Optical Coherence Tomography (SD-OCT) images facilitates visualization and quantification of sub-retinal layers for diagnosis of retinal pathologies. However, manual segmentation is subjective, expertise dependent, and time-consuming, which limits applicability of SD-OCT. Efforts are therefore being made to implement active-contours, artificial intelligence, and graph-search to automatically segment retinal layers with accuracy comparable to that of manual segmentation, to ease clinical decision-making. Although, low optical contrast, heavy speckle noise, and pathologies pose challenges to automated segmentation. Graph-based image segmentation approach stands out from the rest because of its ability to minimize the cost function while maximising the flow. This study has developed and implemented a shortest-path based graph-search algorithm for automated intraretinal layer segmentation of SD-OCT images. The algorithm estimates the minimal-weight path between two graph-nodes based on their gradients. Boundary position indices (BPI) are computed from the transition between pixel intensities. The mean difference between BPIs of two consecutive layers quantify individual layer thicknesses, which shows statistically insignificant differences when compared to a previous study [for overall retina: p = 0.17, for individual layers: p > 0.05 (except one layer: p = 0.04)]. These results substantiate the accurate delineation of seven intraretinal boundaries in SD-OCT images by this algorithm, with a mean computation time of 0.93 seconds (64-bit Windows10, core i5, 8GB RAM). Besides being self-reliant for denoising, the algorithm is further computationally optimized to restrict segmentation within the user defined region-of-interest. The efficiency and reliability of this algorithm, even in noisy image conditions, makes it clinically applicable.

  2. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

    PubMed

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin

    2013-03-01

    Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

  3. Optical coherence tomography in anterior segment imaging

    PubMed Central

    Kalev-Landoy, Maya; Day, Alexander C.; Cordeiro, M. Francesca; Migdal, Clive

    2008-01-01

    Purpose To evaluate the ability of optical coherence tomography (OCT), designed primarily to image the posterior segment, to visualize the anterior chamber angle (ACA) in patients with different angle configurations. Methods In a prospective observational study, the anterior segments of 26 eyes of 26 patients were imaged using the Zeiss Stratus OCT, model 3000. Imaging of the anterior segment was achieved by adjusting the focusing control on the Stratus OCT. A total of 16 patients had abnormal angle configurations including narrow or closed angles and plateau irides, and 10 had normal angle configurations as determined by prior full ophthalmic examination, including slit-lamp biomicroscopy and gonioscopy. Results In all cases, OCT provided high-resolution information regarding iris configuration. The ACA itself was clearly visualized in patients with narrow or closed angles, but not in patients with open angles. Conclusions Stratus OCT offers a non-contact, convenient and rapid method of assessing the configuration of the anterior chamber. Despite its limitations, it may be of help during the routine clinical assessment and treatment of patients with glaucoma, particularly when gonioscopy is not possible or difficult to interpret. PMID:17355288

  4. Primary Acquired Melanosis: Clinical, Histopathologic and Optical Coherence Tomographic Correlation

    PubMed Central

    Alzahrani, Yahya A.; Kumar, Smita; Abdul Aziz, Hassan; Plesec, Thomas; Singh, Arun D.

    2016-01-01

    Aim To assess the use of anterior segment optical coherence tomography (OCT) as an adjuvant diagnostic tool in primary acquired melanosis (PAM) by correlating clinical, histopathologic and anterior segment OCT findings. Methods Twenty-four patients (24 eyes) with PAM of the conjunctiva, cornea or both were imaged with an anterior segment OCT device (RTVue, model-RT100; Optovue Inc., Fremont, Calif., USA). Results Histopathologic diagnosis following excisional or incisional biopsy was confirmed in 13 out of 24 patients (54.6%). OCT images showed a characteristic uniformly thick basal epithelial hyperreflective band (about 20 μm thick) and normal thickness of the overlying epithelial layer in all patients (100%). The hyperreflective band on OCT correlated with the basal epithelial melanocytic pigmentation noted on histopathologic examination but did not vary in thickness between cases with or without atypia. Conclusions The characteristic basal epithelial hyperreflective band with normal overlying epithelium in the absence of cysts observed in all cases by anterior segment OCT correlated with clinical and histopathologic features of conjunctival and corneal PAM. Anterior segment OCT may be helpful as a noninvasive diagnostic tool for PAM. Improvement in resolution is necessary to detect melanocytic hyperplasia and aytpia suggestive of malignant potential. PMID:27390743

  5. Automated detection of preserved photoreceptor on optical coherence tomography in choroideremia based on machine learning.

    PubMed

    Wang, Zhuo; Camino, Acner; Hagag, Ahmed M; Wang, Jie; Weleber, Richard G; Yang, Paul; Pennesi, Mark E; Huang, David; Li, Dengwang; Jia, Yali

    2018-05-01

    Optical coherence tomography (OCT) can demonstrate early deterioration of the photoreceptor integrity caused by inherited retinal degeneration diseases (IRDs). A machine learning method based on random forests was developed to automatically detect continuous areas of preserved ellipsoid zone structure (an easily recognizable part of the photoreceptors on OCT) in 16 eyes of patients with choroideremia (a type of IRD). Pseudopodial extensions protruding from the preserved ellipsoid zone areas are detected separately by a local active contour routine. The algorithm is implemented on en face images with minimum segmentation requirements, only needing delineation of the Bruch's membrane, thus evading the inaccuracies and technical challenges associated with automatic segmentation of the ellipsoid zone in eyes with severe retinal degeneration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey

    PubMed Central

    Almazroa, Ahmed; Burman, Ritambhar; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2015-01-01

    Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio) is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed. PMID:26688751

  7. Automatic and manual segmentation of healthy retinas using high-definition optical coherence tomography.

    PubMed

    Golbaz, Isabelle; Ahlers, Christian; Goesseringer, Nina; Stock, Geraldine; Geitzenauer, Wolfgang; Prünte, Christian; Schmidt-Erfurth, Ursula Margarethe

    2011-03-01

    This study compared automatic- and manual segmentation modalities in the retina of healthy eyes using high-definition optical coherence tomography (HD-OCT). Twenty retinas in 20 healthy individuals were examined using an HD-OCT system (Carl Zeiss Meditec, Inc.). Three-dimensional imaging was performed with an axial resolution of 6 μm at a maximum scanning speed of 25,000 A-scans/second. Volumes of 6 × 6 × 2 mm were scanned. Scans were analysed using a matlab-based algorithm and a manual segmentation software system (3D-Doctor). The volume values calculated by the two methods were compared. Statistical analysis revealed a high correlation between automatic and manual modes of segmentation. The automatic mode of measuring retinal volume and the corresponding three-dimensional images provided similar results to the manual segmentation procedure. Both methods were able to visualize retinal and subretinal features accurately. This study compared two methods of assessing retinal volume using HD-OCT scans in healthy retinas. Both methods were able to provide realistic volumetric data when applied to raster scan sets. Manual segmentation methods represent an adequate tool with which to control automated processes and to identify clinically relevant structures, whereas automatic procedures will be needed to obtain data in larger patient populations. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.

  8. Automated detection of the retinal from OCT spectral domain images of healthy eyes

    NASA Astrophysics Data System (ADS)

    Giovinco, Gaspare; Savastano, Maria Cristina; Ventre, Salvatore; Tamburrino, Antonello

    2015-06-01

    Optical coherence tomography (OCT) has become one of the most relevant diagnostic tools for retinal diseases. Besides being a non-invasive technique, one distinguished feature is its unique capability of providing (in vivo) cross-sectional view of the retinal. Specifically, OCT images show the retinal layers. From the clinical point of view, the identification of the retinal layers opens new perspectives to study the correlation between morphological and functional aspects of the retinal tissue. The main contribution of this paper is a new method/algorithm for the automated segmentation of cross-sectional images of the retina of healthy eyes, obtained by means of spectral domain optical coherence tomography (SD-OCT). Specifically, the proposed segmentation algorithm provides the automated detection of different retinal layers. Tests on experimental SD-OCT scans performed by three different instruments/manufacturers have been successfully carried out and compared to a manual segmentation made by an independent ophthalmologist, showing the generality and the effectiveness of the proposed method.

  9. Automated detection of retinal layers from OCT spectral-domain images of healthy eyes

    NASA Astrophysics Data System (ADS)

    Giovinco, Gaspare; Savastano, Maria Cristina; Ventre, Salvatore; Tamburrino, Antonello

    2015-12-01

    Optical coherence tomography (OCT) has become one of the most relevant diagnostic tools for retinal diseases. Besides being a non-invasive technique, one distinguished feature is its unique capability of providing (in vivo) cross-sectional view of the retina. Specifically, OCT images show the retinal layers. From the clinical point of view, the identification of the retinal layers opens new perspectives to study the correlation between morphological and functional aspects of the retinal tissue. The main contribution of this paper is a new method/algorithm for the automated segmentation of cross-sectional images of the retina of healthy eyes, obtained by means of spectral-domain optical coherence tomography (SD-OCT). Specifically, the proposed segmentation algorithm provides the automated detection of different retinal layers. Tests on experimental SD-OCT scans performed by three different instruments/manufacturers have been successfully carried out and compared to a manual segmentation made by an independent ophthalmologist, showing the generality and the effectiveness of the proposed method.

  10. Anterior Eye Imaging with Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Huang, David; Li, Yan; Tang, Maolong

    The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100-1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

  11. Clinical characteristics of occult macular dystrophy in family with mutation of RP1l1 gene.

    PubMed

    Tsunoda, Kazushige; Usui, Tomoaki; Hatase, Tetsuhisa; Yamai, Satoshi; Fujinami, Kaoru; Hanazono, Gen; Shinoda, Kei; Ohde, Hisao; Akahori, Masakazu; Iwata, Takeshi; Miyake, Yozo

    2012-06-01

    To report the clinical characteristics of occult macular dystrophy (OMD) in members of one family with a mutation of the RP1L1 gene. Fourteen members with a p.Arg45Trp mutation in the RP1L1 gene were examined. The visual acuity, visual fields, fundus photographs, fluorescein angiograms, full-field electroretinograms, multifocal electroretinograms, and optical coherence tomographic images were examined. The clinical symptoms and signs and course of the disease were documented. All the members with the RP1L1 mutation except one woman had ocular symptoms and signs of OMD. The fundus was normal in all the patients during the entire follow-up period except in one patient with diabetic retinopathy. Optical coherence tomography detected the early morphologic abnormalities both in the photoreceptor inner/outer segment line and cone outer segment tip line. However, the multifocal electroretinograms were more reliable in detecting minimal macular dysfunction at an early stage of OMD. The abnormalities in the multifocal electroretinograms and optical coherence tomography observed in the OMD patients of different durations strongly support the contribution of RP1L1 mutation to the presence of this disease.

  12. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

    PubMed Central

    Jian, Yifan; Xu, Jing; Gradowski, Martin A.; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2014-01-01

    We present wavefront sensorless adaptive optics (WSAO) Fourier domain optical coherence tomography (FD-OCT) for in vivo small animal retinal imaging. WSAO is attractive especially for mouse retinal imaging because it simplifies optical design and eliminates the need for wavefront sensing, which is difficult in the small animal eye. GPU accelerated processing of the OCT data permitted real-time extraction of image quality metrics (intensity) for arbitrarily selected retinal layers to be optimized. Modal control of a commercially available segmented deformable mirror (IrisAO Inc.) provided rapid convergence using a sequential search algorithm. Image quality improvements with WSAO OCT are presented for both pigmented and albino mouse retinal data, acquired in vivo. PMID:24575347

  13. Pupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography

    PubMed Central

    Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Viehland, Christian; Keller, Brenton; Izatt, Joseph A.

    2016-01-01

    Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-vasculature maps of the anterior segment. Unfortunately, ASOCT structural and vasculature imaging systems do not capture volumes instantaneously and are subject to motion artifacts due to involuntary eye motion that may hinder their accuracy and repeatability. Several groups have demonstrated real-time tracking for motion-compensated in vivo OCT retinal imaging, but these techniques are not applicable in the anterior segment. In this work, we demonstrate a simple and low-cost pupil tracking system integrated into a custom swept-source OCT system for real-time motion-compensated anterior segment volumetric imaging. Pupil oculography hardware coaxial with the swept-source OCT system enabled fast detection and tracking of the pupil centroid. The pupil tracking ASOCT system with a field of view of 15 x 15 mm achieved diffraction-limited imaging over a lateral tracking range of +/- 2.5 mm and was able to correct eye motion at up to 22 Hz. Pupil tracking ASOCT offers a novel real-time motion compensation approach that may facilitate accurate and reproducible anterior segment imaging. PMID:27574800

  14. Segmentation of 830- and 1310-nm LASIK corneal optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Li, Yan; Shekhar, Raj; Huang, David

    2002-05-01

    Optical coherence tomography (OCT) provides a non-contact and non-invasive means to visualize the corneal anatomy at micron scale resolution. We obtained corneal images from an arc-scanning (converging) OCT system operating at a wavelength of 830nm and a fan-shaped-scanning high-speed OCT system with an operating wavelength of 1310nm. Different scan protocols (arc/fan) and data acquisition rates, as well as wavelength dependent bio-tissue backscatter contrast and optical absorption, make the images acquired using the two systems different. We developed image-processing algorithms to automatically detect the air-tear interface, epithelium-Bowman's layer interface, laser in-situ keratomileusis (LASIK) flap interface, and the cornea-aqueous interface in both kinds of images. The overall segmentation scheme for 830nm and 1310nm OCT images was similar, although different strategies were adopted for specific processing approaches. Ultrasound pachymetry measurements of the corneal thickness and Placido-ring based corneal topography measurements of the corneal curvature were made on the same day as the OCT examination. Anterior/posterior corneal surface curvature measurement with OCT was also investigated. Results showed that automated segmentation of OCT images could evaluate anatomic outcome of LASIK surgery.

  15. Early photoreceptor outer segment loss and retinoschisis in Cohen syndrome.

    PubMed

    Uyhazi, Katherine E; Binenbaum, Gil; Carducci, Nicholas; Zackai, Elaine H; Aleman, Tomas S

    2018-06-01

    To describe early structural and functional retinal changes in a patient with Cohen syndrome. A 13-month-old Caucasian girl of Irish and Spanish ancestry was noted to have micrognathia and laryngomalacia at birth, which prompted a genetic evaluation that revealed biallelic deletions in COH1 (VPS13B) (a maternally inherited 60-kb deletion involving exons 26-32 and a paternally inherited 3.5-kb deletion within exon 17) consistent with Cohen syndrome. She underwent a complete ophthalmic examination, full-field flash electroretinography and retinal imaging with spectral domain optical coherence tomography. Central vision was central, steady, and maintained. There was bilateral myopic astigmatic refractive error. Fundus exam was notable for dark foveolar pigmentation, but no obvious abnormalities of either eye. Spectral domain optical coherence tomography cross sections through the fovea revealed a normal appearing photoreceptor outer nuclear layer but loss of the interdigitation signal between the photoreceptor outer segments and the apical retinal pigment epithelium. Retinoschisis involving the inner nuclear layer of both eyes and possible ganglion cell layer thinning were also noted. There was a detectable electroretinogram with similarly reduced amplitudes of rod- (white, 0.01 cd.s.m -2 ) and cone-mediated (3 cd.s.m -2 , 30 Hz) responses. Photoreceptor outer segment abnormalities and retinoschisis may represent the earliest structural retinal change detected by spectral domain optical coherence tomography in patients with Cohen syndrome, suggesting a complex pathophysiology with primary involvement of the photoreceptor cilium and disorganization of the structural integrity of the inner retina.

  16. Quantification of fibrous cap thickness in intracoronary optical coherence tomography with a contour segmentation method based on dynamic programming.

    PubMed

    Zahnd, Guillaume; Karanasos, Antonios; van Soest, Gijs; Regar, Evelyn; Niessen, Wiro; Gijsen, Frank; van Walsum, Theo

    2015-09-01

    Fibrous cap thickness is the most critical component of plaque stability. Therefore, in vivo quantification of cap thickness could yield valuable information for estimating the risk of plaque rupture. In the context of preoperative planning and perioperative decision making, intracoronary optical coherence tomography imaging can provide a very detailed characterization of the arterial wall structure. However, visual interpretation of the images is laborious, subject to variability, and therefore not always sufficiently reliable for immediate decision of treatment. A novel semiautomatic segmentation method to quantify coronary fibrous cap thickness in optical coherence tomography is introduced. To cope with the most challenging issue when estimating cap thickness (namely the diffuse appearance of the anatomical abluminal interface to be detected), the proposed method is based on a robust dynamic programming framework using a geometrical a priori. To determine the optimal parameter settings, a training phase was conducted on 10 patients. Validated on a dataset of 179 images from 21 patients, the present framework could successfully extract the fibrous cap contours. When assessing minimal cap thickness, segmentation results from the proposed method were in good agreement with the reference tracings performed by a medical expert (mean absolute error and standard deviation of 22 ± 18 μm) and were similar to inter-observer reproducibility (21 ± 19 μm, R = .74), while being significantly faster and fully reproducible. The proposed framework demonstrated promising performances and could potentially be used for online identification of high-risk plaques.

  17. Quantitative assessment of rat corneal thickness and morphology during stem cell therapy by high-speed optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin

    2016-03-01

    Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.

  18. Lens-free all-fiber probe with an optimized output beam for optical coherence tomography.

    PubMed

    Ding, Zhihua; Qiu, Jianrong; Shen, Yi; Chen, Zhiyan; Bao, Wen

    2017-07-15

    A high-efficiency lensless all-fiber probe for optical coherence tomography (OCT) is presented. The probe is composed of a segment of large-core multimode fiber (MMF), a segment of tapered MMF, and a length of single-mode fiber (SMF). A controllable output beam can be designed by a simple adjustment of its probe structure parameters (PSPs), instead of the selection of fibers with different optical parameters. A side-view probe with a diameter of 340 μm and a rigid length of 6.37 mm was fabricated, which provides an effective imaging range of ∼0.6  mm with a full width at half-maximum beam diameter of less than 30 μm. The insertion loss of the probe was measured to be 0.81 dB, ensuring a high sensitivity of 102.25 dB. Satisfactory images were obtained by the probe-based OCT system, demonstrating the feasibility of the probe for endoscopic OCT applications.

  19. Optical coherence tomography noise modeling and fundamental bounds on human retinal layer segmentation accuracy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    DuBose, Theodore B.; Milanfar, Peyman; Izatt, Joseph A.; Farsiu, Sina

    2016-03-01

    The human retina is composed of several layers, visible by in vivo optical coherence tomography (OCT) imaging. To enhance diagnostics of retinal diseases, several algorithms have been developed to automatically segment one or more of the boundaries of these layers. OCT images are corrupted by noise, which is frequently the result of the detector noise and speckle, a type of coherent noise resulting from the presence of several scatterers in each voxel. However, it is unknown what the empirical distribution of noise in each layer of the retina is, and how the magnitude and distribution of the noise affects the lower bounds of segmentation accuracy. Five healthy volunteers were imaged using a spectral domain OCT probe from Bioptigen, Inc, centered at 850nm with 4.6µm full width at half maximum axial resolution. Each volume was segmented by expert manual graders into nine layers. The histograms of intensities in each layer were then fit to seven possible noise distributions from the literature on speckle and image processing. Using these empirical noise distributions and empirical estimates of the intensity of each layer, the Cramer-Rao lower bound (CRLB), a measure of the variance of an estimator, was calculated for each boundary layer. Additionally, the optimum bias of a segmentation algorithm was calculated, and a corresponding biased CRLB was calculated, which represents the improved performance an algorithm can achieve by using prior knowledge, such as the smoothness and continuity of layer boundaries. Our general mathematical model can be easily adapted for virtually any OCT modality.

  20. En face spectral domain optical coherence tomography analysis of lamellar macular holes.

    PubMed

    Clamp, Michael F; Wilkes, Geoff; Leis, Laura S; McDonald, H Richard; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D; Cunningham, Emmett T; Stewart, Paul J; Haug, Sara J; Lujan, Brandon J

    2014-07-01

    To analyze the anatomical characteristics of lamellar macular holes using cross-sectional and en face spectral domain optical coherence tomography. Forty-two lamellar macular holes were retrospectively identified for analysis. The location, cross-sectional length, and area of lamellar holes were measured using B-scans and en face imaging. The presence of photoreceptor inner segment/outer segment disruption and the presence or absence of epiretinal membrane formation were recorded. Forty-two lamellar macular holes were identified. Intraretinal splitting occurred within the outer plexiform layer in 97.6% of eyes. The area of intraretinal splitting in lamellar holes did not correlate with visual acuity. Eyes with inner segment/outer segment disruption had significantly worse mean logMAR visual acuity (0.363 ± 0.169; Snellen = 20/46) than in eyes without inner segment/outer segment disruption (0.203 ± 0.124; Snellen = 20/32) (analysis of variance, P = 0.004). Epiretinal membrane was present in 34 of 42 eyes (81.0%). En face imaging allowed for consistent detection and quantification of intraretinal splitting within the outer plexiform layer in patients with lamellar macular holes, supporting the notion that an area of anatomical weakness exists within Henle's fiber layer, presumably at the synaptic connection of these fibers within the outer plexiform layer. However, the en face area of intraretinal splitting did not correlate with visual acuity, disruption of the inner segment/outer segment junction was associated with significantly worse visual acuity in patients with lamellar macular holes.

  1. Possible role for fundus autofluorescence as a predictive factor for visual acuity recovery after epiretinal membrane surgery.

    PubMed

    Brito, Pedro N; Gomes, Nuno L; Vieira, Marco P; Faria, Pedro A; Fernandes, Augusto V; Rocha-Sousa, Amândio; Falcão-Reis, Fernando

    2014-02-01

    To study the potential association between fundus autofluorescence, spectral-domain optical coherence tomography, and visual acuity in patients undergoing surgery because of epiretinal membranes. Prospective, interventional case series including 26 patients submitted to vitrectomy because of symptomatic epiretinal membranes. Preoperative evaluation consisted of a complete ophthalmologic examination, autofluorescence, and spectral-domain optical coherence tomography. Studied variables included foveal autofluorescence (fov.AF), photoreceptor inner segment/outer segment (IS/OS) junction line integrity, external limiting membrane integrity, central foveal thickness, and foveal morphology. All examinations were repeated at the first, third, and sixth postoperative months. The main outcome measures were logarithm of minimal angle resolution visual acuity, fov.AF integrity, and IS/OS integrity. All cases showing a continuous IS/OS line had an intact fov.AF, whereas patients with IS/OS disruption could have either an increased area of foveal hypoautofluorescence or an intact fov.AF, with the latter being associated with IS/OS integrity recovery in follow-up spectral-domain optical coherence tomography imaging. The only preoperative variables presenting a significant correlation with final visual acuity were baseline visual acuity (P = 0.047) and fov.AF grade (P = 0.023). Recovery of IS/OS line integrity after surgery, in patients with preoperative IS/OS disruption and normal fov.AF, can be explained by the presence of a functional retinal pigment epithelium-photoreceptor complex, supporting normal photoreceptor activity. Autofluorescence imaging provides a functional component to the study of epiretinal membranes, complementing the structural information obtained with optical coherence tomography.

  2. Spectral domain optical coherence tomography imaging of spectacular ecdysis in the royal python (Python regius).

    PubMed

    Tusler, Charlotte A; Maggs, David J; Kass, Philip H; Paul-Murphy, Joanne R; Schwab, Ivan R; Murphy, Christopher J

    2015-01-01

    To describe using spectral domain optical coherence tomography (SD-OCT), digital slit-lamp biomicroscopy, and external photography, changes in the ophidian cuticle, spectacle, and cornea during ecdysis. Four normal royal pythons (Python regius). Snakes were assessed once daily throughout a complete shed cycle using nasal, axial, and temporal SD-OCT images, digital slit-lamp biomicroscopy, and external photography. Spectral domain optical coherence tomography (SD-OCT) images reliably showed the spectacular cuticle and stroma, subcuticular space (SCS), cornea, anterior chamber, iris, and Schlemm's canal. When visible, the subspectacular space (SSS) was more distended peripherally than axially. Ocular surface changes throughout ecdysis were relatively conserved among snakes at all three regions imaged. From baseline (7 days following completion of a full cycle), the spectacle gradually thickened before separating into superficial cuticular and deep, hyper-reflective stromal components, thereby creating the SCS. During spectacular separation, the stroma regained original reflectivity, and multiple hyper-reflective foci (likely fragments from the cuticular-stromal interface) were noted within the SCS. The cornea was relatively unchanged in character or thickness throughout all stages of ecdysis. Slit-lamp images did not permit observation of these changes. Spectral domain optical coherence tomography (SD-OCT) provided excellent high-resolution images of the snake anterior segment, and especially the cuticle, spectacle, and cornea of manually restrained normal snakes at all stages of ecdysis and warrants investigation in snakes with anterior segment disease. The peripheral spectacle may be the preferred entry point for diagnostic or therapeutic injections into the SSS and for initiating spectacular surgery. © 2014 American College of Veterinary Ophthalmologists.

  3. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.

    2009-07-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

  4. Early simultaneous fundus autofluorescence and optical coherence tomography features after pars plana vitrectomy for primary rhegmatogenous retinal detachment.

    PubMed

    Dell'Omo, Roberto; Mura, Marco; Lesnik Oberstein, Sarit Y; Bijl, Heico; Tan, H Stevie

    2012-04-01

    To describe fundus autofluorescence and optical coherence tomography (OCT) features of the macula after pars plana vitrectomy for rhegmatogenous retinal detachment. Thirty-three eyes of 33 consecutive patients with repaired rhegmatogenous retinal detachment with or without the involvement of the macula were prospectively investigated with simultaneous fundus autofluorescence and OCT imaging using the Spectralis HRA+OCT (Heidelberg Engineering, Heidelberg, Germany) within a few weeks after the operation. Fundus autofluorescence imaging of the macula showed lines of increased and decreased autofluorescence in 19 cases (57.6%). On OCT, these lines corresponded to the following abnormalities: outer retinal folds, inner retinal folds, and skip reflectivity abnormalities of the photoreceptor inner segment/outer segment band. Other OCT findings, not related to abnormal lines on fundus autofluorescence, consisted of disruption of photoreceptor inner segment/outer segment band and collection of intraretinal or subretinal fluid. The presence of outer retinal folds significantly related to metamorphopsia but did not relate to poor postoperative visual acuity. Partial-thickness retinal folds occur commonly after vitrectomy for rhegmatogenous retinal detachment repair and may represent an important anatomical substrate for postoperative metamorphopsia. Fundus autofluorescence and OCT are both sensitive techniques for the detection of these abnormalities.

  5. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland.

    PubMed

    Chitchian, Shahab; Weldon, Thomas P; Fried, Nathaniel M

    2009-01-01

    The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

  6. Ultra High-Resolution Anterior Segment Optical Coherence Tomography in the Diagnosis and Management of Ocular Surface Squamous Neoplasia

    PubMed Central

    Thomas, Benjamin J.; Galor, Anat; Nanji, Afshan A.; Sayyad, Fouad El; Wang, Jianhua; Dubovy, Sander R.; Joag, Madhura G.; Karp, Carol L.

    2014-01-01

    The development of optical coherence tomography (OCT) technology has helped to usher in a new era of in vivo diagnostic imaging of the eye. The utilization of OCT for imaging of the anterior segment and ocular surface has evolved from time-domain devices to spectral-domain devices with greater penetrance and resolution, providing novel images of anterior segment pathology to assist in diagnosis and management of disease. Ocular surface squamous neoplasia (OSSN) is one such pathology that has proven demonstrable by certain anterior segment OCT machines, specifically the newer devices capable of performing ultra high-resolution OCT (UHR-OCT). Distinctive features of OSSN on high resolution OCT allow for diagnosis and differentiation from other ocular surface pathologies. Subtle findings on these images help to characterize the OSSN lesions beyond what is apparent with the clinical examination, providing guidance for clinical management. The purpose of this review is to examine the published literature on the utilization of UHR-OCT for the diagnosis and management of OSSN, as well as to report novel uses of this technology and potential directions for its future development. PMID:24439046

  7. Rod Photopigment Kinetics After Photodisruption of the Retinal Pigment Epithelium

    PubMed Central

    Masella, Benjamin D.; Hunter, Jennifer J.; Williams, David R.

    2014-01-01

    Purpose. Advances in retinal imaging have led to the discovery of long-lasting retinal changes caused by light exposures below published safety limits, including disruption of the RPE. To investigate the functional consequences of RPE disruption, we combined adaptive optics ophthalmoscopy with retinal densitometry. Methods. A modified adaptive optics scanning light ophthalmoscope (AOSLO) measured the apparent density and regeneration rate of rhodopsin in two macaques before and after four different 568-nm retinal radiant exposures (RREs; 400–3200 J/cm2). Optical coherence tomography (OCT) was used to measure the optical path length through the photoreceptor outer segments before and after RPE disruption. Results. All tested RREs caused visible RPE disruption. Apparent rhodopsin density was significantly reduced following 1600 (P = 0.01) and 3200 J/cm2 (P = 0.007) exposures. No significant change in apparent density was observed in response to 800 J/cm2. Surprisingly, exposure to 400 J/cm2 showed a significant increase in apparent density (P = 0.047). Rhodopsin recovery rate was not significantly affected by these RREs. Optical coherence tomography measurements showed a significant decrease in the optical path length through the photoreceptor outer segments for RREs above 800 J/cm2 (P < 0.001). Conclusions. At higher RREs, optical path length through the outer segments was reduced. However, the rate of photopigment regeneration was unchanged. While some ambiguity remains as to the correlation between measured reflectivity and absolute rhodopsin density; at the lowest RREs, RPE disruption appears not to be accompanied by a loss of apparent rhodopsin density, which would have been indicative of functional loss. PMID:25316724

  8. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.

    PubMed

    Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na

    2014-01-27

    In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.

  9. Optical imaging modalities: From design to diagnosis of skin cancer

    NASA Astrophysics Data System (ADS)

    Korde, Vrushali Raj

    This study investigates three high resolution optical imaging modalities to better detect and diagnose skin cancer. The ideal high resolution optical imaging system can visualize pre-malignant tissue growth non-invasively with resolution comparable to histology. I examined 3 modalities which approached this goal. The first method examined was high magnification microscopy of thin stained tissue sections, together with a statistical analysis of nuclear chromatin patterns termed Karyometry. This method has subcellular resolution, but it necessitates taking a biopsy at the desired tissue site and imaging the tissue ex-vivo. My part of this study was to develop an automated nuclear segmentation algorithm to segment cell nuclei in skin histology images for karyometric analysis. The results of this algorithm were compared to hand segmented cell nuclei in the same images, and it was concluded that the automated segmentations can be used for karyometric analysis. The second optical imaging modality I investigated was Optical Coherence Tomography (OCT). OCT is analogous to ultrasound, in which sound waves are delivered into the body and the echo time and reflected signal magnitude are measured. Due to the fast speed of light and detector temporal integration times, low coherence interferometry is needed to gate the backscattered light. OCT acquires cross sectional images, and has an axial resolution of 1-15 mum (depending on the source bandwidth) and a lateral resolution of 10-20 mum (depending on the sample arm optics). While it is not capable of achieving subcellular resolution, it is a non-invasive imaging modality. OCT was used in this study to evaluate skin along a continuum from normal to sun damaged to precancer. I developed algorithms to detect statistically significant differences between images of sun protected and sun damaged skin, as well as between undiseased and precancerous skin. An Optical Coherence Microscopy (OCM) endoscope was developed in the third portion of this study. OCM is a high resolution en-face imaging modality. It is a hybrid system that combines the principles of confocal microscopy with coherence gating to provide an increased imaging depth. It can also be described as an OCT system with a high NA objective. Similar to OCT, the axial resolution is determined by the source center wavelength and bandwidth. The NA of the sample arm optics determines the lateral resolution, usually on the order of 1-5 mum. My effort on this system was to develop a handheld endoscope. To my knowledge, an OCM endoscope has not been developed prior to this work. An image of skin was taken as a proof of concept. This rigid handheld OCM endoscope will be useful for applications ranging from minimally invasive surgical imaging to non-invasively assessing dysplasia and sun damage in skin.

  10. Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe

    PubMed Central

    Nankivil, Derek; Waterman, Gar; LaRocca, Francesco; Keller, Brenton; Kuo, Anthony N.; Izatt, Joseph A.

    2015-01-01

    We describe the first handheld, swept source optical coherence tomography (SSOCT) system capable of imaging both the anterior and posterior segments of the eye in rapid succession. A single 2D microelectromechanical systems (MEMS) scanner was utilized for both imaging modes, and the optical paths for each imaging mode were optimized for their respective application using a combination of commercial and custom optics. The system has a working distance of 26.1 mm and a measured axial resolution of 8 μm (in air). In posterior segment mode, the design has a lateral resolution of 9 μm, 7.4 mm imaging depth range (in air), 4.9 mm 6dB fall-off range (in air), and peak sensitivity of 103 dB over a 22° field of view (FOV). In anterior segment mode, the design has a lateral resolution of 24 μm, imaging depth range of 7.4 mm (in air), 6dB fall-off range of 4.5 mm (in air), depth-of-focus of 3.6 mm, and a peak sensitivity of 99 dB over a 17.5 mm FOV. In addition, the probe includes a wide-field iris imaging system to simplify alignment. A fold mirror assembly actuated by a bi-stable rotary solenoid was used to switch between anterior and posterior segment imaging modes, and a miniature motorized translation stage was used to adjust the objective lens position to correct for patient refraction between −12.6 and + 9.9 D. The entire probe weighs less than 630 g with a form factor of 20.3 x 9.5 x 8.8 cm. Healthy volunteers were imaged to illustrate imaging performance. PMID:26601014

  11. Glaucoma diagnosis by mapping macula with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tan, Ou; Lu, Ake; Chopra, Vik; Varma, Rohit; Hiroshi, Ishikawa; Schuman, Joel; Huang, David

    2008-03-01

    A new image segmentation method was developed to detect macular retinal sub-layers boundary on newly-developed Fourier-Domain Optical Coherence Tomography (FD-OCT) with macular grid scan pattern. The segmentation results were used to create thickness map of macular ganglion cell complex (GCC), which contains the ganglion cell dendrites, cell bodies and axons. Overall average and several pattern analysis parameters were defined on the GCC thickness map and compared for the diagnosis of glaucoma. Intraclass correlation (ICC) is used to compare the reproducibility of the parameters. Area under receiving operative characteristic curve (AROC) was calculated to compare the diagnostic power. The result is also compared to the output of clinical time-domain OCT (TD-OCT). We found that GCC based parameters had good repeatability and comparable diagnostic power with circumpapillary nerve fiber layer (cpNFL) thickness. Parameters based on pattern analysis can increase the diagnostic power of GCC macular mapping.

  12. Morphometric measurement of Schlemm's canal in normal human eye using anterior segment swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shi, Guohua; Wang, Fei; Li, Xiqi; Lu, Jing; Ding, Zhihua; Sun, Xinghuai; Jiang, Chunhui; Zhang, Yudong

    2012-01-01

    We have used anterior segment swept source optical coherence tomography to measure Schlemm's canal (SC) morphometric values in the living human eye. Fifty healthy volunteers with 100 normal eyes were measured in the nasal and temporal side. Comparison with the published SC morphometric values of histologic sections proves the reliability of our results. The statistical results show that there are no significant differences between nasal and temporal SC with respect to their diameter, perimeter, and area in our study (diameter: t=0.122, p=0.903; perimeter: t=-0.003, p=0.998; area: t=-1.169, p=0.244); further, no significant differences in SC morphometric values are found between oculus sinister and oculus dexter (diameter: t=0.943, p=0.35; perimeter: t=1.346, p=0.18; area: t=1.501, p=0.135).

  13. Dynamic gonioscopy using optical coherence tomography.

    PubMed

    Matonti, Frederic; Chazalon, Elodie; Trichet, Elodie; Khaled, El Samak; Denis, Danièle; Hoffart, Louis

    2012-01-01

    To describe the use of anterior segment optical coherence tomography (AS-OCT) in studying the dynamic changes of the anterior chamber angle by corneal indentation. In a prospective observational study, the anterior segments of 21 eyes were imaged using AS-OCT. After the initial scan, a second scan was executed on the same areas with a central corneal indentation. An evaluation of the reopening of the angle and its measurement were performed. With AS-OCT, the indirect signs were accurate enough to guide the diagnosis in all plateau iris confirmed by ultrabiomicroscopy. The angle widths were significantly increased after indentation. This method would appear to offer a convenient and rapid method of assessing the configuration of the anterior chamber; it may help during the routine clinical assessment and treatment of patients with narrow or closed angles, particularly when gonioscopy is difficult to interpret. Copyright 2012, SLACK Incorporated.

  14. Anterior-segment imaging for assessment of glaucoma

    PubMed Central

    Ursea, Roxana; Silverman, Ronald H

    2010-01-01

    This article summarizes the physics, technology and clinical application of ultrasound biomicroscopy (UBM) and optical coherence tomography (OCT) for assessment of the anterior segment in glaucoma. UBM systems use frequencies ranging from approximately 35 to 80 MHz, as compared with typical 10-MHz systems used for general-purpose ophthalmic imaging. OCT systems use low-coherence, near-infrared light to provide detailed images of anterior segment structures at resolutions exceeding that of UBM. Both technologies allow visualization of the iridocorneal angle and, thus, can contribute to the diagnosis and management of glaucoma. OCT systems are advantageous, being noncontact proceedures and providing finer resolution than UBM, but UBM systems are superior for the visualization of retroiridal structures, including the ciliary body, posterior chamber and zonules, which can provide crucial diagnostic information for the assessment of glaucoma. PMID:20305726

  15. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading.

    PubMed

    Celi, Simona; Berti, Sergio

    2014-10-01

    Optical coherence tomography (OCT) is a catheter-based medical imaging technique that produces cross-sectional images of blood vessels. This technique is particularly useful for studying coronary atherosclerosis. In this paper, we present a new framework that allows a segmentation and quantification of OCT images of coronary arteries to define the plaque type and stenosis grading. These analyses are usually carried out on-line on the OCT-workstation where measuring is mainly operator-dependent and mouse-based. The aim of this program is to simplify and improve the processing of OCT images for morphometric investigations and to present a fast procedure to obtain 3D geometrical models that can also be used for external purposes such as for finite element simulations. The main phases of our toolbox are the lumen segmentation and the identification of the main tissues in the artery wall. We validated the proposed method with identification and segmentation manually performed by expert OCT readers. The method was evaluated on ten datasets from clinical routine and the validation was performed on 210 images randomly extracted from the pullbacks. Our results show that automated segmentation of the vessel and of the tissue components are possible off-line with a precision that is comparable to manual segmentation for the tissue component and to the proprietary-OCT-console for the lumen segmentation. Several OCT sections have been processed to provide clinical outcome. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Gao, Simon S.; Liu, Li; Bailey, Steven T.; Flaxel, Christina J.; Huang, David; Li, Dengwang; Jia, Yali

    2016-07-01

    Quantification of choroidal neovascularization (CNV) as visualized by optical coherence tomography angiography (OCTA) may have importance clinically when diagnosing or tracking disease. Here, we present an automated algorithm to quantify the vessel skeleton of CNV as vessel length. Initial segmentation of the CNV on en face angiograms was achieved using saliency-based detection and thresholding. A level set method was then used to refine vessel edges. Finally, a skeleton algorithm was applied to identify vessel centerlines. The algorithm was tested on nine OCTA scans from participants with CNV and comparisons of the algorithm's output to manual delineation showed good agreement.

  17. [Cornea imagery and keratitis caused by processionary caterpillar hairs].

    PubMed

    Fournier, I; Saleh, M; Beynat, J; Creuzot-Garcher, C; Bourcier, T; Speeg-Schatz, C

    2011-03-01

    With their ability to migrate into the cornea and release toxins, caterpillar hairs can induce different clinical presentations such as conjunctivitis, keratoconjunctivitis, uveitis, and less frequently vitreoretinal inflammation (hyalitis, papillitis, macular edema). We report a case that occurred in Alsace (France) in a 13-years-old boy presenting with keratitis caused by caterpillar hairs. We localized them in the cornea, for the first time, using confocal microscopy and anterior segment spectral optical coherence tomography. Confocal microscopy and spectral optical coherence tomography can be useful for diagnosis and follow-up of this disease. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  18. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko

    2006-03-01

    A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.

  19. In vivo volumetric depth-resolved vasculature imaging of human limbus and sclera with 1 μm swept source phase-variance optical coherence angiography

    NASA Astrophysics Data System (ADS)

    Poddar, Raju; Zawadzki, Robert J.; Cortés, Dennis E.; Mannis, Mark J.; Werner, John S.

    2015-06-01

    We present in vivo volumetric depth-resolved vasculature images of the anterior segment of the human eye acquired with phase-variance based motion contrast using a high-speed (100 kHz, 105 A-scans/s) swept source optical coherence tomography system (SSOCT). High phase stability SSOCT imaging was achieved by using a computationally efficient phase stabilization approach. The human corneo-scleral junction and sclera were imaged with swept source phase-variance optical coherence angiography and compared with slit lamp images from the same eyes of normal subjects. Different features of the rich vascular system in the conjunctiva and episclera were visualized and described. This system can be used as a potential tool for ophthalmological research to determine changes in the outflow system, which may be helpful for identification of abnormalities that lead to glaucoma.

  20. Quantitative Fourier Domain Optical Coherence Tomography Imaging of the Ocular Anterior Segment

    NASA Astrophysics Data System (ADS)

    McNabb, Ryan Palmer

    Clinical imaging within ophthalmology has had transformative effects on ocular health over the last century. Imaging has guided clinicians in their pharmaceutical and surgical treatments of macular degeneration, glaucoma, cataracts and numerous other pathologies. Many of the imaging techniques currently used are photography based and are limited to imaging the surface of ocular structures. This limitation forces clinicians to make assumptions about the underlying tissue which may reduce the efficacy of their diagnoses. Optical coherence tomography (OCT) is a non-invasive, non-ionizing imaging modality that has been widely adopted within the field of ophthalmology in the last 15 years. As an optical imaging technique, OCT utilizes low-coherence interferometry to produce micron-scale three-dimensional datasets of a tissue's structure. Much of the human body consists of tissues that significantly scatter and attenuate optical signals limiting the imaging depth of OCT in those tissues to only 1-2mm. However, the ocular anterior segment is unique among human tissue in that it is primarily transparent or translucent. This allows for relatively deep imaging of tissue structure with OCT and is no longer limited by the optical scattering properties of the tissue. This goal of this work is to develop methods utilizing OCT that offer the potential to reduce the assumptions made by clinicians in their evaluations of their patients' ocular anterior segments. We achieved this by first developing a method to reduce the effects of patient motion during OCT volume acquisitions allowing for accurate, three dimensional measurements of corneal shape. Having accurate corneal shape measurements then allowed us to determine corneal spherical and astigmatic refractive contribution in a given individual. This was then validated in a clinical study that showed OCT better measured refractive change due to surgery than other clinical devices. Additionally, a method was developed to combine the clinical evaluation of the iridocorneal angle through gonioscopy with OCT.

  1. Association of Baseline Anterior Segment Parameters With the Development of Incident Gonioscopic Angle Closure.

    PubMed

    Nongpiur, Monisha E; Aboobakar, Inas F; Baskaran, Mani; Narayanaswamy, Arun; Sakata, Lisandro M; Wu, Renyi; Atalay, Eray; Friedman, David S; Aung, Tin

    2017-03-01

    Baseline anterior segment imaging parameters associated with incident gonioscopic angle closure, to our knowledge, are unknown. To identify baseline quantitative anterior segment optical coherence tomography parameters associated with the development of incident gonioscopic angle closure after 4 years among participants with gonioscopically open angles at baseline. Three hundred forty-two participants aged 50 years or older were recruited to participate in this prospective, community-based observational study. Participants underwent gonioscopy and anterior segment optical coherence tomography imaging at baseline and after 4 years. Custom image analysis software was used to quantify anterior chamber parameters from anterior segment optical coherence tomography images. Baseline anterior segment optical coherence tomography measurements among participants with gonioscopically open vs closed angles at follow-up. Of the 342 participants, 187 (55%) were women and 297 (87%) were Chinese. The response rate was 62.4%. Forty-nine participants (14.3%) developed gonioscopic angle closure after 4 years. The mean age (SD) at baseline of the 49 participants was 62.9 (8.0) years, 15 (30.6%) were men, and 43 (87.8%) were Chinese. These participants had a smaller baseline angle opening distance at 750 µm (AOD750) (0.15 mm; 95% CI, 0.12-0.18), trabecular iris surface area at 750 µm (0.07 mm2; 95% CI, 0.05-0.08), anterior chamber area (30 mm2; 95% CI, 2.27-3.74), and anterior chamber volume (24.32 mm2; 95% CI, 18.20-30.44) (all P < .001). Baseline iris curvature (-0.08; 95% CI, -0.12 to -0.04) and lens vault (LV) measurements (-0.29 mm; 95% CI, -0.37 to -0.21) were larger among these participants ( all P < .001). A model consisting of the LV and AOD750 measurements explained 38% of the variance in gonioscopic angle closure occurring at 4 years, with LV accounting for 28% of this variance. For every 0.1 mm increase in LV and 0.1 mm decrease in AOD750, the odds of developing gonioscopic angle closure was 1.29 (95% CI, 1.07-1.57) and 3.27 (95% CI, 1.87-5.69), respectively. In terms of per SD change in LV and AOD750, this translates to an odds ratio of 2.14 (95% CI, 2.48-12.34) and 5.53 (95% CI, 1.22-3.77), respectively. A baseline LV cut-off value of >0.56 mm had 64.6% sensitivity and 84.0% specificity for identifying participants who developed angle closure. These findings suggest that smaller AOD750 and larger LV measurements are associated with the development of incident gonioscopic angle closure after 4 years among participants with gonioscopically open angles at baseline.

  2. ACUTE ZONAL OCCULT OUTER RETINOPATHY: Structural and Functional Analysis Across the Transition Zone Between Healthy and Diseased Retina.

    PubMed

    Duncker, Tobias; Lee, Winston; Jiang, Fan; Ramachandran, Rithambara; Hood, Donald C; Tsang, Stephen H; Sparrow, Janet R; Greenstein, Vivienne C

    2018-01-01

    To assess structure and function across the transition zone (TZ) between relatively healthy and diseased retina in acute zonal occult outer retinopathy. Six patients (6 eyes; age 22-71 years) with acute zonal occult outer retinopathy were studied. Spectral-domain optical coherence tomography, fundus autofluorescence, near-infrared reflectance, color fundus photography, and fundus perimetry were performed and images were registered to each other. The retinal layers of the spectral-domain optical coherence tomography scans were segmented and the thicknesses of two outer retinal layers, that is, the total receptor and outer segment plus layers, and the retinal nerve fiber layer were measured. All eyes showed a TZ on multimodal imaging. On spectral-domain optical coherence tomography, the TZ was in the nasal retina at varying distances from the fovea. For all eyes, it was associated with loss of the ellipsoid zone band, significant thinning of the two outer retinal layers, and in three eyes with thickening of the retinal nerve fiber layer. On fundus autofluorescence, all eyes had a clearly demarcated peripapillary area of abnormal fundus autofluorescence delimited by a border of high autofluorescence; the latter was associated with loss of the ellipsoid zone band and with a change from relatively normal to markedly decreased or nonrecordable visual sensitivity on fundus perimetry. The results of multimodal imaging clarified the TZ in acute zonal occult outer retinopathy. The TZ was outlined by a distinct high autofluorescence border that correlated with loss of the ellipsoid zone band on spectral-domain optical coherence tomography. However, in fundus areas that seemed healthy on fundus autofluorescence, thinning of the outer retinal layers and thickening of the retinal nerve fiber layer were observed near the TZ. The TZ was also characterized by a decrease in visual sensitivity.

  3. Fundus autofluorescence and optical coherence tomography of congenital grouped albinotic spots.

    PubMed

    Kim, David Y; Hwang, John C; Moore, Anthony T; Bird, Alan C; Tsang, Stephen H

    2010-09-01

    The purpose of this study was to describe the findings of fundus autofluores-cence (FAF) and optical coherence tomography in a series of patients with congenital grouped albinotic spots. Three eyes of three patients with congenital grouped albinotic spots were evaluated with FAF and optical coherence tomography imaging to evaluate the nature of the albinotic spots. In all three eyes with congenital grouped albinotic spots, FAF imaging showed autofluorescent spots corresponding to the albinotic spots seen on stereo biomicroscopy. One eye also had additional spots detected on FAF imaging that were not visible on stereo biomicroscopy or color fundus photographs. Fundus autofluorescence imaging of the spots showed decreased general autofluorescence and decreased peripheral autofluorescence surrounding central areas of retained or increased autofluorescence. Optical coherence tomography showed a disruption in signal from the hyperreflective layer corresponding to the inner and outer segment junction and increased signal backscattering from the choroid in the area of the spots. Fluorescein angiography showed early and stable hyperfluorescence of the spots without leakage. In this case series, FAF showed decreased autofluorescence of the spots consistent with focal retinal pigment epithelium atrophy or abnormal material blocking normal autofluorescence and areas of increased autofluorescence suggesting retinal pigment epithelium dysfunction. The findings of optical coherence tomography and fluorescein angiography suggest photoreceptor and retinal pigment epithelium layer abnormalities. Fundus autofluorescence and optical coherence tomography are useful noninvasive diagnostic adjuncts that can aid in the diagnosis of congenital grouped albinotic spots, help determine extent of disease, and contribute to our understanding of its pathophysiology.

  4. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.

    PubMed

    Choi, WooJhon; Waheed, Nadia K; Moult, Eric M; Adhi, Mehreen; Lee, ByungKun; De Carlo, Talisa; Jayaraman, Vijaysekhar; Baumal, Caroline R; Duker, Jay S; Fujimoto, James G

    2017-01-01

    To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.

  5. Spectral-Domain Optical Coherence Tomography Staging and Autofluorescence Imaging in Achromatopsia

    PubMed Central

    Greenberg, Jonathan P.; Sherman, Jerome; Zweifel, Sandrine A.; Chen, Royce W. S.; Duncker, Tobias; Kohl, Susanne; Baumann, Britta; Wissinger, Bernd; Yannuzzi, Lawrence A.; Tsang, Stephen H.

    2015-01-01

    Importance Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. Objectives To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. Design, Setting, and Participants A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. Main outcomes and Measures Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. Results Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3 patients (18%) displayed only increased autofluorescence, and 1 individual (6%) exhibited decreased macular pigment contrast. Inner segment ellipsoid line loss generally correlated with the area of reduced autofluorescence, but hyperautofluorescence extended into this region in 2 patients (12%). Bilateral coloboma-like atrophic macular lesions were observed in 1 patient (6%). Five novel mutations were identified (4 in the CNGA3 gene and 1 in the CNGB3 gene). Conclusions and Relevance Achromatopsia often demonstrates hyperautofluorescence suggestive of progressive retinal degeneration. The proposed staging system facilitates classification of the disease into different phases of progression and may have therapeutic implications. PMID:24504161

  6. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia.

    PubMed

    Greenberg, Jonathan P; Sherman, Jerome; Zweifel, Sandrine A; Chen, Royce W S; Duncker, Tobias; Kohl, Susanne; Baumann, Britta; Wissinger, Bernd; Yannuzzi, Lawrence A; Tsang, Stephen H

    2014-04-01

    IMPORTANCE Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. OBJECTIVES To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. DESIGN, SETTING, AND PARTICIPANTS A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. MAIN OUTCOMES AND MEASURES Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. RESULTS Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3 patients (18%) displayed only increased autofluorescence, and 1 individual (6%) exhibited decreased macular pigment contrast. Inner segment ellipsoid line loss generally correlated with the area of reduced autofluorescence, but hyperautofluorescence extended into this region in 2 patients (12%). Bilateral coloboma-like atrophic macular lesions were observed in 1 patient (6%). Five novel mutations were identified (4 in the CNGA3 gene and 1 in the CNGB3 gene). CONCLUSIONS AND RELEVANCE Achromatopsia often demonstrates hyperautofluorescence suggestive of progressive retinal degeneration. The proposed staging system facilitates classification of the disease into different phases of progression and may have therapeutic implications.

  7. Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography

    PubMed Central

    Poddar, Raju; Cortés, Dennis E.; Werner, John S.; Mannis, Mark J.

    2013-01-01

    Abstract. A high-speed (100 kHz A-scans/s) complex conjugate resolved 1 μm swept source optical coherence tomography (SS-OCT) system using coherence revival of the light source is suitable for dense three-dimensional (3-D) imaging of the anterior segment. The short acquisition time helps to minimize the influence of motion artifacts. The extended depth range of the SS-OCT system allows topographic analysis of clinically relevant images of the entire depth of the anterior segment of the eye. Patients with the type 1 Boston Keratoprosthesis (KPro) require evaluation of the full anterior segment depth. Current commercially available OCT systems are not suitable for this application due to limited acquisition speed, resolution, and axial imaging range. Moreover, most commonly used research grade and some clinical OCT systems implement a commercially available SS (Axsun) that offers only 3.7 mm imaging range (in air) in its standard configuration. We describe implementation of a common swept laser with built-in k-clock to allow phase stable imaging in both low range and high range, 3.7 and 11.5 mm in air, respectively, without the need to build an external MZI k-clock. As a result, 3-D morphology of the KPro position with respect to the surrounding tissue could be investigated in vivo both at high resolution and with large depth range to achieve noninvasive and precise evaluation of success of the surgical procedure. PMID:23912759

  8. Automated circumferential construction of first-order aqueous humor outflow pathways using spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Alex S.; Belghith, Akram; Dastiridou, Anna; Chopra, Vikas; Zangwill, Linda M.; Weinreb, Robert N.

    2017-06-01

    The purpose was to create a three-dimensional (3-D) model of circumferential aqueous humor outflow (AHO) in a living human eye with an automated detection algorithm for Schlemm's canal (SC) and first-order collector channels (CC) applied to spectral-domain optical coherence tomography (SD-OCT). Anterior segment SD-OCT scans from a subject were acquired circumferentially around the limbus. A Bayesian Ridge method was used to approximate the location of the SC on infrared confocal laser scanning ophthalmoscopic images with a cross multiplication tool developed to initiate SC/CC detection automated through a fuzzy hidden Markov Chain approach. Automatic segmentation of SC and initial CC's was manually confirmed by two masked graders. Outflow pathways detected by the segmentation algorithm were reconstructed into a 3-D representation of AHO. Overall, only <1% of images (5114 total B-scans) were ungradable. Automatic segmentation algorithm performed well with SC detection 98.3% of the time and <0.1% false positive detection compared to expert grader consensus. CC was detected 84.2% of the time with 1.4% false positive detection. 3-D representation of AHO pathways demonstrated variably thicker and thinner SC with some clear CC roots. Circumferential (360 deg), automated, and validated AHO detection of angle structures in the living human eye with reconstruction was possible.

  9. A comparison between using incoherent or coherent sources to align and test an adaptive optical telescope

    NASA Technical Reports Server (NTRS)

    Anderson, Richard

    1994-01-01

    The concept in the initial alignment of the segmented mirror adaptive optics telescope called the phased array mirror extendable large aperture telescope (Pamela) is to produce an optical transfer function (OTF) which closely approximates the diffraction limited value which would correspond to a system pupil function that is unity over the aperture and zero outside. There are differences in the theory of intensity measurements between coherent and incoherent radiation. As a result, some of the classical quantities which describe the performance of an optical system for incoherent radiation can not be defined for a coherent field. The most important quantity describing the quality of an optical system is the OTF and for a coherent source the OTF is not defined. Instead a coherent transfer function (CTF) is defined. The main conclusion of the paper is that an incoherent collimated source and not a collimated laser source is preferred to calibrate the Hartmann wavefront sensor (WFS) of an aligned adaptive optical system. A distant laser source can be used with minimum problems to correct the system for atmospheric turbulence. The collimation of the HeNe laser alignment source can be improved by using a very small pin hole in the spatial filter so only the central portion of the beam is transmitted and the beam from the filter is nearly constant in amplitude. The size of this pin hole will be limited by the sensitivity of the lateral effect diode (LEDD) elements.

  10. Quantitative, simultaneous, and collinear eye-tracked, high dynamic range optical coherence tomography at 850 and 1060 nm

    NASA Astrophysics Data System (ADS)

    Mooser, Matthias; Burri, Christian; Stoller, Markus; Luggen, David; Peyer, Michael; Arnold, Patrik; Meier, Christoph; Považay, Boris

    2017-07-01

    Ocular optical coherence tomography at the wavelengths ranges of 850 and 1060 nm have been integrated with a confocal scanning laser ophthalmoscope eye-tracker as a clinical commercial-class system. Collinear optics enables an exact overlap of the different channels to produce precisely overlapping depth-scans for evaluating the similarities and differences between the wavelengths to extract additional physiologic information. A reliable segmentation algorithm utilizing Graphcuts has been implemented and applied to automatically extract retinal and choroidal shape in cross-sections and volumes. The device has been tested in normals and pathologies including a cross-sectional and longitudinal study of myopia progress and control with a duplicate instrument in Asian children.

  11. Integration of Optical Coherence Tomography Scan Patterns to Augment Clinical Data Suite

    NASA Technical Reports Server (NTRS)

    Mason, S.; Patel, N.; Van Baalen, M.; Tarver, W.; Otto, C.; Samuels, B.; Koslovsky, M.; Schaefer, C.; Taiym, W.; Wear, M.; hide

    2018-01-01

    Vision changes identified in long duration spaceflight astronauts has led Space Medicine at NASA to adopt a more comprehensive clinical monitoring protocol. Optical Coherence Tomography (OCT) was recently implemented at NASA, including on board the International Space Station in 2013. NASA is collaborating with Heidelberg Engineering to increase the fidelity of the current OCT data set by integrating the traditional circumpapillary OCT image with radial and horizontal block images at the optic nerve head. The retinal nerve fiber layer was segmented by two experienced individuals. Intra-rater (N=4 subjects and 70 images) and inter-rater (N=4 subjects and 221 images) agreement was performed. The results of this analysis and the potential benefits will be presented.

  12. Texture based segmentation method to detect atherosclerotic plaque from optical tomography images

    NASA Astrophysics Data System (ADS)

    Prakash, Ammu; Hewko, Mark; Sowa, Michael; Sherif, Sherif

    2013-06-01

    Optical coherence tomography (OCT) imaging has been widely employed in assessing cardiovascular disease. Atherosclerosis is one of the major cause cardio vascular diseases. However visual detection of atherosclerotic plaque from OCT images is often limited and further complicated by high frame rates. We developed a texture based segmentation method to automatically detect plaque and non plaque regions from OCT images. To verify our results we compared them to photographs of the vascular tissue with atherosclerotic plaque that we used to generate the OCT images. Our results show a close match with photographs of vascular tissue with atherosclerotic plaque. Our texture based segmentation method for plaque detection could be potentially used in clinical cardiovascular OCT imaging for plaque detection.

  13. Real-time Optical Coherence Tomography Incorporated in the Operating Microscope during Cataract Surgery.

    PubMed

    Almutlak, Mohammed A; Aloniazan, Turki; May, William

    2017-01-01

    A 55-year-old male presented with reduced vision due to senile cataract. The patient consented to undergo real-time intraoperative anterior segment-optical coherence tomography (AS-OCT) during phacoemulsification with intraocular lens (IOL) implantation. Images were captured at various points during the surgery. The use of AS-OCT incorporated into the surgical microscope was evaluated as an adjunct to cataract surgery. We were able to successfully evaluate, in real-time, wound architecture, the attachment of Descemet's membrane, the posterior capsule, and IOL position. Real-time AS-OCT can be used to proactively address potential complications and verify IOL placement intraoperatively.

  14. A parametric study of various synthetic aperture telescope configurations for coherent imaging applications

    NASA Technical Reports Server (NTRS)

    Harvey, James E.; Wissinger, Alan B.; Bunner, Alan N.

    1986-01-01

    The comparative advantages of synthetic aperture telescopes (SATs) of segmented primary mirror and common secondary mirror type, on the one hand, and on the other those employing an array of independent telescopes, are discussed. The diffraction-limited optical performance of both redundant and nonredundant subaperture configurations are compared in terms of point spread function characteristics and encircled energy plots. Coherent imaging with afocal telescope SATs involves a pupil-mapping operation followed by a Fourier transform one. A quantitative analysis of the off-axis optical performance degradation due to pupil-mapping errors is presented, together with the field-dependent effects of residual design aberrations of independent telescopes.

  15. Inter-device size variation of small choroidal nevi measured using stereographic projection ultra-widefield imaging and optical coherence tomography.

    PubMed

    Maloca, Peter; Gyger, Cyrill; Schoetzau, Andreas; Hasler, Pascal W

    2016-04-01

    Our purpose was to compare the tumor sizes of small choroidal nevi using ultra-widefield imaging (UWF) and different optical coherence tomography systems. Thirteen choroidal nevi were measured using automatic and manual segmentation techniques, including enhanced depth imaging spectral-domain optical coherence tomography (EDI-SDOCT) and 1050 nm swept source OCT (SSOCT), to compare to measurements obtained using the Optos projection ultra-widefield fundus (UWF) imaging technique. Segmentation artifacts were evaluated for all 13 cases, alongside an additional 12 choroidal nevi, using SSOCT. In tumor eyes, segmentation artifacts for the choroid-sclera interface were found in 42 % of SSOCT scans. EDI-SDOCT can underestimate tumor dimensions and differs up to -8.41 % compared to UWF imaging and by 1.25 % compared to SSOCT cases. The horizontal length of the nevi showed an average difference between EDI-SDOCT and SSOCT of ± 9.38 %. Measured markers showed an average difference in length of ± 12.51 %. The average tumor thickness showed a difference of ± 11.47 %. Comparisons between EDI-SDOCT/UWF, SSOCT/EDI-SDOCT, and marker EDI-SDOCT/SSOCT showed significant mean differences of -122 μm (CI: -212 to -31 μm, p = 0.013), 134 μm (CI: 65-203 μm, p = 0.0012), and -193 μm (CI: -345 to -41 μm, p = 0.017), whereas SSOCT/UWF showed no significant difference with a measurement of 13 μm (CI: -69-95 μm, p = 0.74). Automatic segmentation of nevi requires much caution, because a choroidal tumor can trigger many artifacts. It would be beneficial to monitor choroidal nevi using the same type of OCT technology, because a tumor is displayed differently.

  16. Infrared scanning laser ophthalmoscope imaging of the macula and its correlation with functional loss and structural changes in patients with stargardt disease.

    PubMed

    Anastasakis, Anastasios; Fishman, Gerald A; Lindeman, Martin; Genead, Mohamed A; Zhou, Wensheng

    2011-05-01

    To correlate the degree of functional loss with structural changes in patients with Stargardt disease. Eighteen eyes of 10 patients with Stargardt disease were studied. Scanning laser ophthalmoscope infrared images were compared with corresponding spectral-domain optical coherence tomography scans. Additionally, scanning laser ophthalmoscope microperimetry was performed, and results were superimposed on scanning laser ophthalmoscope infrared images and in selected cases on fundus autofluorescence images. Seventeen of 18 eyes showed a distinct hyporeflective foveal and/or perifoveal area with distinct borders on scanning laser ophthalmoscope infrared images, which was less evident on funduscopy and incompletely depicted in fundus autofluorescence images. This hyporeflective zone corresponded to areas of significantly elevated psychophysical thresholds on microperimetry testing, in addition to thinning of the retinal pigment epithelium and disorganization or loss of the photoreceptor cell inner segment-outer segment junction and external-limiting membrane on spectral-domain optical coherence tomography. Scanning laser ophthalmoscope infrared fundus images are useful for depicting retinal structural changes in patients with Stargardt disease. A spectral-domain optical coherence tomography/scanning laser ophthalmoscope microperimetry device allows for a direct correlation of structural abnormalities with functional defects that will likely be applicable for the determination of retinal areas for potential improvement of retinal function in these patients during future clinical trials and for the monitoring of the diseases' natural history.

  17. In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography.

    PubMed

    de Freitas, Carolina; Ruggeri, Marco; Manns, Fabrice; Ho, Arthur; Parel, Jean-Marie

    2013-01-15

    We present a method for measuring the average group refractive index of the human crystalline lens in vivo using an optical coherence tomography (OCT) system which, allows full-length biometry of the eye. A series of OCT images of the eye including the anterior segment and retina were recorded during accommodation. Optical lengths of the anterior chamber, lens, and vitreous were measured dynamically along the central axis on the OCT images. The group refractive index of the crystalline lens along the central axis was determined using linear regression analysis of the intraocular optical length measurements. Measurements were acquired on three subjects of age 21, 24, and 35 years. The average group refractive index for the three subjects was, respectively, n=1.41, 1.43, and 1.39 at 835 nm.

  18. CHARACTERIZING PHOTORECEPTOR CHANGES IN ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY USING ADAPTIVE OPTICS.

    PubMed

    Roberts, Philipp K; Nesper, Peter L; Onishi, Alex C; Skondra, Dimitra; Jampol, Lee M; Fawzi, Amani A

    2018-01-01

    To characterize lesions of acute posterior multifocal placoid pigment epitheliopathy (APMPPE) by multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO). We included patients with APMPPE at different stages of evolution of the placoid lesions. Color fundus photography, spectral domain optical coherence tomography, infrared reflectance, fundus autofluorescence, and AOSLO images were obtained and registered to correlate microstructural changes. Eight eyes of four patients (two women) were included and analyzed by multimodal imaging. Photoreceptor reflectivity within APMPPE lesions was more heterogeneous than in adjacent healthy areas. Hyperpigmentation on color fundus photography appeared hyperreflective on infrared reflectance and on AOSLO. Irregularity of the interdigitation zone and the photoreceptor inner and outer segment junctions (IS/OS) on spectral domain optical coherence tomography was associated with photoreceptor hyporeflectivity on AOSLO. Interruption of the interdigitation zone or IS/OS was associated with loss of photoreceptor reflectivity on AOSLO. Irregularities in the reflectivity of the photoreceptor mosaic are visible on AOSLO even in inactive APMPPE lesions, where the photoreceptor bands on spectral domain optical coherence tomography have recovered. Adaptive optics scanning laser ophthalmoscopy combined with multimodal imaging has the potential to enhance our understanding of photoreceptor involvement in APMPPE.

  19. Changes in Tear Volume after 3% Diquafosol Treatment in Patients with Dry Eye Syndrome: An Anterior Segment Spectral-domain Optical Coherence Tomography Study.

    PubMed

    Lee, Kwan Bok; Koh, Kyung Min; Kwon, Young A; Song, Sang Wroul; Kim, Byoung Yeop; Chung, Jae Lim

    2017-08-01

    To evaluate changes in the tear meniscus area and tear meniscus height over time in patients with dry eye syndrome, using anterior segment spectral-domain optical coherence tomography after the instillation of 3% diquafosol ophthalmic solution. Sixty eyes from 30 patients with mild to moderate dry eye syndrome were included. Tear meniscus images acquired by anterior segment spectral-domain optical coherence tomography were analyzed using National Institutes of Health's image-analysis software (ImageJ 1.44p). Tear meniscus area and tear meniscus height were measured at baseline, 5 minutes, 10 minutes, and 30 minutes after instillation of a drop of diquafosol in one eye and normal saline in the other eye. Changes in ocular surface disease index score, tear film break-up time, corneal staining score by Oxford schema, and meibomian expressibility were also evaluated at baseline, and after 1 week and 1 month of a diquafosol daily regimen. Sixty eyes from 30 subjects (mean age, 29.3 years; 8 men and 22 women) were included. In eyes receiving diquafosol, tear volume was increased at 5 and 10 minutes compared with baseline. It was also higher than saline instilled eyes at 5, 10, and 30 minutes. Changes in tear volume with respect to baseline were not statistically different after the use of diquafosol for 1 month. Ocular surface disease index score, tear film break-up time, and Oxford cornea stain score were significantly improved after 1 week and 1 month of daily diquafosol instillation, but meibomian expressibility did not change. Topical diquafosol ophthalmic solution effectively increased tear volume for up to 30 minutes, compared to normal saline in patients with dry eye syndrome. © 2017 The Korean Ophthalmological Society

  20. Association of narrow angles with anterior chamber area and volume measured with anterior-segment optical coherence tomography.

    PubMed

    Wu, Ren-Yi; Nongpiur, Monisha E; He, Ming-Guang; Sakata, Lisandro M; Friedman, David S; Chan, Yiong-Huak; Lavanya, Raghavan; Wong, Tien-Yin; Aung, Tin

    2011-05-01

    To describe the measurement of anterior chamber area and anterior chamber volume by anterior-segment optical coherence tomography and to investigate the association of these parameters with the presence of narrow angles. This was a cross-sectional study of subjects aged at least 50 years without ophthalmic symptoms recruited from a community clinic. All participants underwent standardized ocular examination and anterior-segment optical coherence tomography. Customized software was used to measure anterior chamber area (cross-sectional area bounded by the corneal endothelium, anterior surface of iris, and lens within the pupil) and anterior chamber volume (calculated by rotating the anterior chamber area 360° around a vertical axis through the midpoint of the anterior chamber area). An eye was considered to have narrow angles if the posterior pigmented trabecular meshwork was not visible for at least 180° on gonioscopy with the eye in the primary position. A total of 1922 subjects were included in the final analyses, 317 (16.5%) of whom had narrow angles. Mean anterior chamber area (15.6 vs 21.1 mm(2); P < .001) and anterior chamber volume (97.6 vs 142.1 mm(3); P < .001) were smaller in eyes with narrow angles compared with those in eyes without narrow angles. After adjusting for age, sex, anterior chamber depth, axial length, and pupil size, smaller anterior chamber area (odds ratio, 53.2; 95% confidence interval, 27.1-104.5) and anterior chamber volume (odds ratio, 40.2; 95% confidence interval, 21.5-75.2) were significantly associated with the presence of narrow angles. Smaller anterior chamber area and anterior chamber volume were independently associated with narrow angles in Singaporeans, even after controlling for other known ocular risk factors.

  1. Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma.

    PubMed

    Mansberger, Steven L; Menda, Shivali A; Fortune, Brad A; Gardiner, Stuart K; Demirel, Shaban

    2017-02-01

    To characterize the error of optical coherence tomography (OCT) measurements of retinal nerve fiber layer (RNFL) thickness when using automated retinal layer segmentation algorithms without manual refinement. Cross-sectional study. This study was set in a glaucoma clinical practice, and the dataset included 3490 scans from 412 eyes of 213 individuals with a diagnosis of glaucoma or glaucoma suspect. We used spectral domain OCT (Spectralis) to measure RNFL thickness in a 6-degree peripapillary circle, and exported the native "automated segmentation only" results. In addition, we exported the results after "manual refinement" to correct errors in the automated segmentation of the anterior (internal limiting membrane) and the posterior boundary of the RNFL. Our outcome measures included differences in RNFL thickness and glaucoma classification (i.e., normal, borderline, or outside normal limits) between scans with automated segmentation only and scans using manual refinement. Automated segmentation only resulted in a thinner global RNFL thickness (1.6 μm thinner, P < .001) when compared to manual refinement. When adjusted by operator, a multivariate model showed increased differences with decreasing RNFL thickness (P < .001), decreasing scan quality (P < .001), and increasing age (P < .03). Manual refinement changed 298 of 3486 (8.5%) of scans to a different global glaucoma classification, wherein 146 of 617 (23.7%) of borderline classifications became normal. Superior and inferior temporal clock hours had the largest differences. Automated segmentation without manual refinement resulted in reduced global RNFL thickness and overestimated the classification of glaucoma. Differences increased in eyes with a thinner RNFL thickness, older age, and decreased scan quality. Operators should inspect and manually refine OCT retinal layer segmentation when assessing RNFL thickness in the management of patients with glaucoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Amblyopia secondary to iris cyst.

    PubMed

    López-Arroquia, T E; Avendaño-Cantos, E M; Mesa-Varona, D; Gálvez-Martínez, J; López-Romero, S; Nuñez-Plascencia, R; González del Valle, F

    2014-12-01

    A 5 year-old child diagnosed with moderate anisometropic amblyopia secondary to primary cyst of iris pigment epithelium. He was evaluated with ultrasound biomicroscopy (BMU) and optical coherence tomography (OCT) of anterior segment. The OCT, although with some limitations, is a useful tool to study the anterior segment. It is probably more recommendable than BMU in the childhood. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  3. Intraoperative optical coherence tomography: past, present, and future

    PubMed Central

    Ehlers, J P

    2016-01-01

    To provide an overview of the current state of intraoperative optical coherence tomography (OCT). Literature review of studies pertaining to intraoperative OCT examining both the technology aspects of the imaging platform and the current evidence for patient care. Over the last several years, there have been significant advances in integrative technology for intraoperative OCT. This has resulted in the development of multiple microscope-integrated systems and a rapidly expanding field of image-guided surgical care. Multiple studies have demonstrated the potential role for intraoperative OCT in facilitating surgeon understanding of the surgical environment, tissue configuration, and overall changes to anatomy. In fact, the PIONEER and DISCOVER studies, both demonstrated a potential significant percentage of cases that intraoperative OCT alters surgical decision-making in both anterior and posterior segment surgery. Current areas of exploration and development include OCT-compatible instrumentation, automated tracking, intraoperative OCT software platforms, and surgeon feedback/visualization platforms. Intraoperative OCT is an emerging technology that holds promise for enhancing the surgical care of both anterior segment and posterior segment conditions. Hurdles remain for adoption and widespread utilization, including cost, optimized feedback platforms, and more definitive value for individualized surgical care with image guidance. PMID:26681147

  4. Morphological image analysis for classification of gastrointestinal tissues using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Garcia-Allende, P. Beatriz; Amygdalos, Iakovos; Dhanapala, Hiruni; Goldin, Robert D.; Hanna, George B.; Elson, Daniel S.

    2012-01-01

    Computer-aided diagnosis of ophthalmic diseases using optical coherence tomography (OCT) relies on the extraction of thickness and size measures from the OCT images, but such defined layers are usually not observed in emerging OCT applications aimed at "optical biopsy" such as pulmonology or gastroenterology. Mathematical methods such as Principal Component Analysis (PCA) or textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric auto-correlation (CSAC) and spatial grey-level dependency matrices (SGLDM), as well as, quantitative measurements of the attenuation coefficient have been previously proposed to overcome this problem. We recently proposed an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technology for feature quantification. OCT images were first segmented in the axial direction in an automated manner according to intensity. Afterwards, a morphological analysis of the segmented OCT images was employed for quantifying the features that served for tissue classification. In this study, a PCA processing of the extracted features is accomplished to combine their discriminative power in a lower number of dimensions. Ready discrimination of gastrointestinal surgical specimens is attained demonstrating that the approach further surpasses the algorithms previously reported and is feasible for tissue classification in the clinical setting.

  5. Assessment of edema volume in skin upon injury in a mouse ear model with optical coherence tomography

    PubMed Central

    Qin, Wan

    2017-01-01

    Accurate measurement of edema volume is essential for the investigation of tissue response and recovery following a traumatic injury. The measurements must be noninvasive and repetitive over time so as to monitor tissue response throughout the healing process. Such techniques are particularly necessary for the evaluation of therapeutics that are currently in development to suppress or prevent edema formation. In this study, we propose to use optical coherence tomography (OCT) technique to image and quantify edema in a mouse ear model where the injury is induced by a superficial-thickness burn. Extraction of edema volume is achieved by an attenuation compensation algorithm performed on the three-dimensional OCT images, followed by two segmentation procedures. In addition to edema volume, the segmentation method also enables accurate thickness mapping of edematous tissue, which is an important characteristic of the external symptoms of edema. To the best of our knowledge, this is the first method for noninvasively measuring absolute edema volume. PMID:27282161

  6. Assessment of Corneal and Tear Film Parameters in Rheumatoid Arthritis Patients Using Anterior Segment Spectral Domain Optical Coherence Tomography.

    PubMed

    El-Fayoumi, Dina; Youssef, Maha Mohamed; Khafagy, Mohamed Mahmoud; Badr El Dine, Nashwa; Gaber, Wafaa

    2018-01-01

    To study the corneal changes in rheumatoid arthritis (RA) patients in vivo, using spectral domain anterior segment optical coherence tomography (AS-OCT). A case-control study was done on 43 RA patients and 40 controls. The disease activity score (DAS28-ESR) was calculated and all participants had lower tear meniscus, corneal thickness, and epithelial thickness evaluation using AS-OCT. The lower tear meniscus height (LTMH) and the lower tear meniscus area (LTMA) were significantly lower in the RA patients than in controls (p < 0.001). RA patients also had a significantly thinner central corneal thickness (p = 0.02) and their epithelium was found to be thinner in the superotemporal peripheral sector. The LTMH and LTMA are significantly reduced in RA patients, despite the absence of clinical diagnosis of dry eye. RA patients have thinner corneal thickness and epithelial thickness than controls, which did not correlate with either disease duration or activity.

  7. Fast coarse-fine locating method for φ-OTDR.

    PubMed

    Mei, Xuanwei; Pang, Fufei; Liu, Huanhuan; Yu, Guoqin; Shao, Yuying; Qian, Tianyu; Mou, Chengbo; Lv, Longbao; Wang, Tingyun

    2018-02-05

    We proposed and demonstrated a coarse-fine method to achieve fast locating of external vibration for the phase-sensitive optical time-domain reflectometer (φ-OTDR) sensing system. Firstly, the acquired backscattered traces from heterodyne coherent φ-OTDR systems are spatially divided into a few segments along a sensing fiber for coarse locating, and most of the acquired data can be excluded by comparing the phase difference between the endpoints in adjacent segments. Secondly, the amplitude-based locating is implemented within the target segments for fine locating. By using the proposed coarse-fine locating method, we have numerically and experimentally investigated a distributed vibration sensor based on the heterodyne coherent φ-OTDR system with a 50-km-long sensing fiber. We find that the computation cost of signal processing for locating is significantly reduced in the long-haul sensing fiber, showing a potential application in real-time locating of external vibration.

  8. Optical coherence elastography in ophthalmology

    NASA Astrophysics Data System (ADS)

    Kirby, Mitchell A.; Pelivanov, Ivan; Song, Shaozhen; Ambrozinski, Łukasz; Yoon, Soon Joon; Gao, Liang; Li, David; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2017-12-01

    Optical coherence elastography (OCE) can provide clinically valuable information based on local measurements of tissue stiffness. Improved light sources and scanning methods in optical coherence tomography (OCT) have led to rapid growth in systems for high-resolution, quantitative elastography using imaged displacements and strains within soft tissue to infer local mechanical properties. We describe in some detail the physical processes underlying tissue mechanical response based on static and dynamic displacement methods. Namely, the assumptions commonly used to interpret displacement and strain measurements in terms of tissue elasticity for static OCE and propagating wave modes in dynamic OCE are discussed with the ultimate focus on OCT system design for ophthalmic applications. Practical OCT motion-tracking methods used to map tissue elasticity are also presented to fully describe technical developments in OCE, particularly noting those focused on the anterior segment of the eye. Clinical issues and future directions are discussed in the hope that OCE techniques will rapidly move forward to translational studies and clinical applications.

  9. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography

    PubMed Central

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2016-01-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  10. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography.

    PubMed

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D; Chen, Zhongping

    2016-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement.

  11. Optical coherence tomography study of retinal changes in normal aging and after ischemia.

    PubMed

    Shariati, Mohammad Ali; Park, Joyce Ho; Liao, Yaping Joyce

    2015-05-01

    Age-related thinning of the retinal ganglion cell axons in the nerve fiber layer has been measured in humans using optical coherence tomography (OCT). In this study, we used OCT to measure inner retinal changes in 3-month-, 1-year-, and 2-year-old mice and after experimental anterior ischemic optic neuropathy (AION). We used OCT to quantify retinal thickness in over 200 eyes at different ages before and after a photochemical thrombosis model of AION. The scans were manually or automatically segmented. In normal aging, there was 1.3-μm thinning of the ganglion cell complex (GCC) between 3 months and 1 year (P < 0.0001) and no further thinning at 2 years. In studying age-related inner retinal changes, measurement of the GCC (circular scan) was superior to that of the total retinal thickness (posterior pole scan) despite the need for manual segmentation because it was not contaminated by outer retinal changes. Three weeks after AION, there was 8.9-μm thinning of the GCC (circular scan; P < 0.0001), 50-μm thinning of the optic disc (posterior pole scan; P < 0.0001), and 17-μm thinning of the retina (posterior pole scan; P < 0.0001) in the 3-month-old group. Changes in the older eyes after AION were similar to those of the 3-month-old group. Optical coherence tomography imaging of a large number of eyes showed that, like humans, mice exhibited small, age-related inner retinal thinning. Measurement of the GCC was superior to total retinal thickness in quantifying age-related changes, and both circular and posterior pole scans were useful to track short-term changes after AION.

  12. Automated segmentation of intraretinal layers from macular optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Haeker, Mona; Sonka, Milan; Kardon, Randy; Shah, Vinay A.; Wu, Xiaodong; Abràmoff, Michael D.

    2007-03-01

    Commercially-available optical coherence tomography (OCT) systems (e.g., Stratus OCT-3) only segment and provide thickness measurements for the total retina on scans of the macula. Since each intraretinal layer may be affected differently by disease, it is desirable to quantify the properties of each layer separately. Thus, we have developed an automated segmentation approach for the separation of the retina on (anisotropic) 3-D macular OCT scans into five layers. Each macular series consisted of six linear radial scans centered at the fovea. Repeated series (up to six, when available) were acquired for each eye and were first registered and averaged together, resulting in a composite image for each angular location. The six surfaces defining the five layers were then found on each 3-D composite image series by transforming the segmentation task into that of finding a minimum-cost closed set in a geometric graph constructed from edge/regional information and a priori-determined surface smoothness and interaction constraints. The method was applied to the macular OCT scans of 12 patients with unilateral anterior ischemic optic neuropathy (corresponding to 24 3-D composite image series). The boundaries were independently defined by two human experts on one raw scan of each eye. Using the average of the experts' tracings as a reference standard resulted in an overall mean unsigned border positioning error of 6.7 +/- 4.0 μm, with five of the six surfaces showing significantly lower mean errors than those computed between the two observers (p < 0.05, pixel size of 50 × 2 μm).

  13. Quantitative analysis of retina layer elasticity based on automatic 3D segmentation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    He, Youmin; Qu, Yueqiao; Zhang, Yi; Ma, Teng; Zhu, Jiang; Miao, Yusi; Humayun, Mark; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    Age-related macular degeneration (AMD) is an eye condition that is considered to be one of the leading causes of blindness among people over 50. Recent studies suggest that the mechanical properties in retina layers are affected during the early onset of disease. Therefore, it is necessary to identify such changes in the individual layers of the retina so as to provide useful information for disease diagnosis. In this study, we propose using an acoustic radiation force optical coherence elastography (ARF-OCE) system to dynamically excite the porcine retina and detect the vibrational displacement with phase resolved Doppler optical coherence tomography. Due to the vibrational mechanism of the tissue response, the image quality is compromised during elastogram acquisition. In order to properly analyze the images, all signals, including the trigger and control signals for excitation, as well as detection and scanning signals, are synchronized within the OCE software and are kept consistent between frames, making it possible for easy phase unwrapping and elasticity analysis. In addition, a combination of segmentation algorithms is used to accommodate the compromised image quality. An automatic 3D segmentation method has been developed to isolate and measure the relative elasticity of every individual retinal layer. Two different segmentation schemes based on random walker and dynamic programming are implemented. The algorithm has been validated using a 3D region of the porcine retina, where individual layers have been isolated and analyzed using statistical methods. The errors compared to manual segmentation will be calculated.

  14. Partitioned-Interval Quantum Optical Communications Receiver

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2013-01-01

    The proposed quantum receiver in this innovation partitions each binary signal interval into two unequal segments: a short "pre-measurement" segment in the beginning of the symbol interval used to make an initial guess with better probability than 50/50 guessing, and a much longer segment used to make the high-sensitivity signal detection via field-cancellation and photon-counting detection. It was found that by assigning as little as 10% of the total signal energy to the pre-measurement segment, the initial 50/50 guess can be improved to about 70/30, using the best available measurements such as classical coherent or "optimized Kennedy" detection.

  15. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang; Niu, Sijie; Yuan, Songtao

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, basedmore » on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.« less

  16. Optical Coherence Tomography (OCT) Device Independent Intraretinal Layer Segmentation

    PubMed Central

    Ehnes, Alexander; Wenner, Yaroslava; Friedburg, Christoph; Preising, Markus N.; Bowl, Wadim; Sekundo, Walter; zu Bexten, Erdmuthe Meyer; Stieger, Knut; Lorenz, Birgit

    2014-01-01

    Purpose To develop and test an algorithm to segment intraretinal layers irrespectively of the actual Optical Coherence Tomography (OCT) device used. Methods The developed algorithm is based on the graph theory optimization. The algorithm's performance was evaluated against that of three expert graders for unsigned boundary position difference and thickness measurement of a retinal layer group in 50 and 41 B-scans, respectively. Reproducibility of the algorithm was tested in 30 C-scans of 10 healthy subjects each with the Spectralis and the Stratus OCT. Comparability between different devices was evaluated in 84 C-scans (volume or radial scans) obtained from 21 healthy subjects, two scans per subject with the Spectralis OCT, and one scan per subject each with the Stratus OCT and the RTVue-100 OCT. Each C-scan was segmented and the mean thickness for each retinal layer in sections of the early treatment of diabetic retinopathy study (ETDRS) grid was measured. Results The algorithm was able to segment up to 11 intraretinal layers. Measurements with the algorithm were within the 95% confidence interval of a single grader and the difference was smaller than the interindividual difference between the expert graders themselves. The cross-device examination of ETDRS-grid related layer thicknesses highly agreed between the three OCT devices. The algorithm correctly segmented a C-scan of a patient with X-linked retinitis pigmentosa. Conclusions The segmentation software provides device-independent, reliable, and reproducible analysis of intraretinal layers, similar to what is obtained from expert graders. Translational Relevance Potential application of the software includes routine clinical practice and multicenter clinical trials. PMID:24820053

  17. Multimodal segmentation of optic disc and cup from stereo fundus and SD-OCT images

    NASA Astrophysics Data System (ADS)

    Miri, Mohammad Saleh; Lee, Kyungmoo; Niemeijer, Meindert; Abràmoff, Michael D.; Kwon, Young H.; Garvin, Mona K.

    2013-03-01

    Glaucoma is one of the major causes of blindness worldwide. One important structural parameter for the diagnosis and management of glaucoma is the cup-to-disc ratio (CDR), which tends to become larger as glaucoma progresses. While approaches exist for segmenting the optic disc and cup within fundus photographs, and more recently, within spectral-domain optical coherence tomography (SD-OCT) volumes, no approaches have been reported for the simultaneous segmentation of these structures within both modalities combined. In this work, a multimodal pixel-classification approach for the segmentation of the optic disc and cup within fundus photographs and SD-OCT volumes is presented. In particular, after segmentation of other important structures (such as the retinal layers and retinal blood vessels) and fundus-to-SD-OCT image registration, features are extracted from both modalities and a k-nearest-neighbor classification approach is used to classify each pixel as cup, rim, or background. The approach is evaluated on 70 multimodal image pairs from 35 subjects in a leave-10%-out fashion (by subject). A significant improvement in classification accuracy is obtained using the multimodal approach over that obtained from the corresponding unimodal approach (97.8% versus 95.2%; p < 0:05; paired t-test).

  18. Optical coherence tomography angiography in glaucoma care.

    PubMed

    Chansangpetch, Sunee; Lin, Shan C

    2018-05-14

    Rapid improvements in optical coherence tomography (OCT) technology have allowed for enhancement of both image resolution and scanning speed, and the development of vascular assessment modality. Optical coherence tomography angiography (OCTA) is the non-invasive in vivo imaging of the vasculature located within the retina and optic nerve head area. The principle of OCTA is to use the variations in OCT signals caused by moving particles as the contrast mechanism for imaging of flow. Several algorithms which aim to maximize the contrast signal and minimize the noise have been developed including the phase-based techniques, intensity-based techniques (e.g., split-spectrum amplitude decorrelation angiography (SSADA)), and complex-based techniques (e.g., optical microangiography (OMAG)). With its reliable technique, high image resolution, and current availability, OCTA has been widely used in the assessment of posterior segment diseases including glaucoma in which ocular perfusion dysfunction has been proposed as a pathophysiological mechanism. This review will provide the reader with information on the principle techniques of OCTA; the current literature on OCTA reproducibility; its applications to glaucoma detection and monitoring of progression; and the role of OCTA in the assessment of the vascular component in glaucoma pathogenesis.

  19. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas

    NASA Astrophysics Data System (ADS)

    Wang, Benquan; Lu, Yiming; Yao, Xincheng

    2016-09-01

    Intrinsic optical signal (IOS) imaging promises a noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, it is essential to understand anatomic and physiological sources of retinal IOSs and to establish the relationship between IOS distortions and eye diseases. The purpose of this study was designed to demonstrate the feasibility of in vivo IOS imaging of mouse models. A high spatiotemporal resolution spectral domain optical coherence tomography (SD-OCT) was employed for depth-resolved retinal imaging. A custom-designed animal holder equipped with ear bar and bite bar was used to minimize eye movements. Dynamic OCT imaging revealed rapid IOS from the photoreceptor's outer segment immediately after the stimulation delivery, and slow IOS changes were observed from inner retinal layers. Comparative photoreceptor IOS and electroretinography recordings suggested that the fast photoreceptor IOS may be attributed to the early stage of phototransduction before the hyperpolarization of retinal photoreceptor.

  20. Three-dimensional spectral domain optical coherence tomography in X linked foveal retinoschisis

    PubMed Central

    Saxena, Sandeep; Manisha; Meyer, Carsten H

    2013-01-01

    Spectral domain optical coherence tomography (SD-OCT) was performed in two cases of bilateral X linked foveal retinoschisis of different age groups. On fundus examination spoke wheel and honeycomb pattern of cysts were observed along with retinal nerve fibre layer (RNFL) defects. On SD-OCT, schisis was observed in the outer plexiform layer. External limiting membrane disruption was observed in the subfoveal area, along with disruption of outer nuclear layer (ONL) and inner–outer segment junction. Elevation of ONL due to tractional pull of central palisade was a novel observation. Retinoschisis extended beyond the optic disc up to the nasal region. Extracted RNFL tomogram presented an unprecedented visualisation of schisis along 360° of the optic disc. Tractional elevation in the foveal area and schisis involving nasal region, not observed upon clinical examination, was highlighted on SD-OCT. This investigative modality is an important adjunct in the assessment of foveal retinoschisis. PMID:23563673

  1. Platform-Independent Cirrus and Spectralis Thickness Measurements in Eyes with Diabetic Macular Edema Using Fully Automated Software

    PubMed Central

    Willoughby, Alex S.; Chiu, Stephanie J.; Silverman, Rachel K.; Farsiu, Sina; Bailey, Clare; Wiley, Henry E.; Ferris, Frederick L.; Jaffe, Glenn J.

    2017-01-01

    Purpose We determine whether the automated segmentation software, Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP), can measure, in a platform-independent manner, retinal thickness on Cirrus and Spectralis spectral domain optical coherence tomography (SD-OCT) images in eyes with diabetic macular edema (DME) under treatment in a clinical trial. Methods Automatic segmentation software was used to segment the internal limiting membrane (ILM), inner retinal pigment epithelium (RPE), and Bruch's membrane (BM) in SD-OCT images acquired by Cirrus and Spectralis commercial systems, from the same eye, on the same day during a clinical interventional DME trial. Mean retinal thickness differences were compared across commercial and DOCTRAP platforms using intraclass correlation (ICC) and Bland-Altman plots. Results The mean 1 mm central subfield thickness difference (standard error [SE]) comparing segmentation of Spectralis images with DOCTRAP versus HEYEX was 0.7 (0.3) μm (0.2 pixels). The corresponding values comparing segmentation of Cirrus images with DOCTRAP versus Cirrus software was 2.2 (0.7) μm. The mean 1 mm central subfield thickness difference (SE) comparing segmentation of Cirrus and Spectralis scan pairs with DOCTRAP using BM as the outer retinal boundary was −2.3 (0.9) μm compared to 2.8 (0.9) μm with inner RPE as the outer boundary. Conclusions DOCTRAP segmentation of Cirrus and Spectralis images produces validated thickness measurements that are very similar to each other, and very similar to the values generated by the corresponding commercial software in eyes with treated DME. Translational Relevance This software enables automatic total retinal thickness measurements across two OCT platforms, a process that is impractical to perform manually. PMID:28180033

  2. Automated circumferential construction of first-order aqueous humor outflow pathways using spectral-domain optical coherence tomography.

    PubMed

    Huang, Alex S; Belghith, Akram; Dastiridou, Anna; Chopra, Vikas; Zangwill, Linda M; Weinreb, Robert N

    2017-06-01

    The purpose was to create a three-dimensional (3-D) model of circumferential aqueous humor outflow (AHO) in a living human eye with an automated detection algorithm for Schlemm’s canal (SC) and first-order collector channels (CC) applied to spectral-domain optical coherence tomography (SD-OCT). Anterior segment SD-OCT scans from a subject were acquired circumferentially around the limbus. A Bayesian Ridge method was used to approximate the location of the SC on infrared confocal laser scanning ophthalmoscopic images with a cross multiplication tool developed to initiate SC/CC detection automated through a fuzzy hidden Markov Chain approach. Automatic segmentation of SC and initial CC’s was manually confirmed by two masked graders. Outflow pathways detected by the segmentation algorithm were reconstructed into a 3-D representation of AHO. Overall, only <1% of images (5114 total B-scans) were ungradable. Automatic segmentation algorithm performed well with SC detection 98.3% of the time and <0.1% false positive detection compared to expert grader consensus. CC was detected 84.2% of the time with 1.4% false positive detection. 3-D representation of AHO pathways demonstrated variably thicker and thinner SC with some clear CC roots. Circumferential (360 deg), automated, and validated AHO detection of angle structures in the living human eye with reconstruction was possible.

  3. Spectral domain optical coherence tomography findings in acute syphilitic posterior placoid chorioretinitis.

    PubMed

    Burkholder, Bryn M; Leung, Theresa G; Ostheimer, Trucian A; Butler, Nicholas J; Thorne, Jennifer E; Dunn, James P

    2014-01-27

    We describe the spectral domain optical coherence tomography (SD-OCT) findings in three patients with acute syphilitic posterior placoid chorioretinitis (ASPPC). The SD-OCT images demonstrate the pathologic changes in ASPPC with a high level of anatomic detail and may provide information about the pathophysiology of the disease. We report a series of three consecutive patients seen at the Wilmer Eye Institute in 2012 and 2013 who presented with clinical and laboratory findings consistent with a diagnosis of unilateral ASPPC. Two of the three patients had HIV co-infection with good immune recovery. SD-OCT images from their initial (pre-treatment) presentation demonstrated thickening and hyperreflective nodularity of the choroid-retinal pigment epithelium (RPE) complex, with focal disruption of the overlying photoreceptor inner segment-outer segment junction in the areas corresponding to the retinal lesions seen on clinical examination. These changes improved with intravenous antibiotic treatment over a 3-month period of follow-up. SD-OCT imaging in ASPPC demonstrates reversible, focal thickening, and nodularity of the RPE with disruption of the overlying photoreceptor inner segment-outer segment junction. We believe that these SD-OCT images support the concept that ASPPC involves an inflammatory process at the level of the choroid-RPE with resultant structural and functional changes in the retinal photoreceptors. Further study with OCT imaging may be helpful in better understanding this disease.

  4. [Slit lamp optical coherence tomography study of anterior segment changes after phacoemulsification and foldable intraocular lens implantation].

    PubMed

    Yan, Pi-song; Zhang, Zhen-ping; Lin, Hao-tian; Wu, Wen-jie; Bai, Ling

    2009-09-01

    To investigate quantitative changes of the anterior segment configuration after clear corneal incision phacoemulsification and foldable intraocular lens (IOL) implantation with slit-lamp-adapted optical coherence tomography (SL-OCT). In prospective consecutive case series, clear corneal incision phacoemulsification and foldable intraocular lens implantation were performed in 44 eyes of 40 patients. The changes of the anterior segment configuration were performed by SL-OCT before and 1 day, 1 week, 2 weeks and 1 month after surgery. SPSS 16.0 software was used to analyze statistical difference. For all patients, the central corneal thickness (CCT) and the incisional corneal thickness (ICT) increased significantly 1 day after surgery (CCT increased 99.59 microm, ICT increased 234.57 microm; P = 0.490). At 1 month, the CCT almost had returned to baseline, but the ICT had been thicker about 19.25 microm than baseline(P = 0.001). The measurements of ACD, AOD500, AOD750, TISA500, TISA750 also increased significantly 1 day after surgery. Although the ACD had no changes within 2 weeks (all P < 0.05), it had been not stable. The changes of the width of the anterior chamber had been stable in the early period after surgery (all P > 0.05). The SL-OCT could impersonality and quantificationally evaluate the anterior segment changes induced by cataract surgery.

  5. Fundus autofluorescence and optical coherence tomographic findings in acute zonal occult outer retinopathy.

    PubMed

    Fujiwara, Takamitsu; Imamura, Yutaka; Giovinazzo, Vincent J; Spaide, Richard F

    2010-09-01

    The purpose of this study was to investigate the fundus autofluorescence and optical coherence tomography findings in eyes with acute zonal occult outer retinopathy (AZOOR). A retrospective observational case series of the fundus autofluorescence and spectral domain optical coherence tomography in a series of patients with AZOOR. There were 19 eyes of 11 patients (10 women), who had a mean age of 49.1 +/- 13.9 years. Fundus autofluorescence abnormalities were seen in 17 of the 19 eyes, were more common in the peripapillary area, and were smaller in extent than the optical coherence tomography abnormalities. Nine eyes showed progression of hypoautofluorescence area during the mean follow-up of 69.7 months. The mean thickness of the photoreceptor layer at fovea was 177 microm in eyes with AZOOR, which was significantly thinner than controls (193 microm, P = 0.049). Abnormal retinal laminations were found in 12 eyes and were located over areas of loss of the photoreceptors. The subfoveal choroidal thickness was 243 microm, which is normal. Fundus autofluorescence abnormalities in AZOOR showed distinct patterns of retinal pigment epithelial involvement, which may be progressive. Thinning of photoreceptor cell layer with loss of the outer segments and abnormal inner retinal lamination in the context of a normal choroid are commonly found in AZOOR.

  6. Three-dimensional choroidal segmentation in spectral OCT volumes using optic disc prior information

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Girkin, Christopher A.; Hariri, Amirhossein; Sadda, SriniVas R.

    2016-03-01

    Recently, much attention has been focused on determining the role of the peripapillary choroid - the layer between the outer retinal pigment epithelium (RPE)/Bruchs membrane (BM) and choroid-sclera (C-S) junction, whether primary or secondary in the pathogenesis of glaucoma. However, the automated choroidal segmentation in spectral-domain optical coherence tomography (SD-OCT) images of optic nerve head (ONH) has not been reported probably due to the fact that the presence of the BM opening (BMO, corresponding to the optic disc) can deflect the choroidal segmentation from its correct position. The purpose of this study is to develop a 3D graph-based approach to identify the 3D choroidal layer in ONH-centered SD-OCT images using the BMO prior information. More specifically, an initial 3D choroidal segmentation was first performed using the 3D graph search algorithm. Note that varying surface interaction constraints based on the choroidal morphological model were applied. To assist the choroidal segmentation, two other surfaces of internal limiting membrane and innerouter segment junction were also segmented. Based on the segmented layer between the RPE/BM and C-S junction, a 2D projection map was created. The BMO in the projection map was detected by a 2D graph search. The pre-defined BMO information was then incorporated into the surface interaction constraints of the 3D graph search to obtain more accurate choroidal segmentation. Twenty SD-OCT images from 20 healthy subjects were used. The mean differences of the choroidal borders between the algorithm and manual segmentation were at a sub-voxel level, indicating a high level segmentation accuracy.

  7. INCREASED SERUM LEVELS OF UREA AND CREATININE ARE SURROGATE MARKERS FOR DISRUPTION OF RETINAL PHOTORECEPTOR EXTERNAL LIMITING MEMBRANE AND INNER SEGMENT ELLIPSOID ZONE IN TYPE 2 DIABETES MELLITUS.

    PubMed

    Saxena, Sandeep; Ruia, Surabhi; Prasad, Senthamizh; Jain, Astha; Mishra, Nibha; Natu, Shankar M; Meyer, Carsten H; Gilhotra, Jagjit S; Kruzliak, Peter; Akduman, Levent

    2017-02-01

    To evaluate the role of serum urea and creatinine as surrogate markers for disruption of retinal photoreceptor external limiting membrane (ELM) and inner segment ellipsoid zone (EZ) in Type 2 diabetic retinopathy (DR) using spectral-domain optical coherence tomography, for the first time. One hundred and seventeen consecutive cases of Type 2 diabetes mellitus (diabetes without retinopathy [No DR; n = 39], nonproliferative diabetic retinopathy [NPDR; n = 39], proliferative diabetic retinopathy [PDR; n = 39]) and 40 healthy control subjects were included. Serum levels of urea and creatinine were assessed using standard protocol. Spectral-domain optical coherence tomography was used to grade the disruption of ELM and EZ as follows: Grade 0, no disruption of ELM and EZ; Grade 1, ELM disrupted, EZ intact; Grade 2, ELM and EZ disrupted. Data were analyzed statistically. Increase in serum levels of urea (F = 22.93) and creatinine (F = 15.82) and increased grades of disruption of ELM and EZ (γ = 116.3) were observed with increased severity of DR (P < 0.001). Increase in serum levels of urea (F = 10.45) and creatinine (F = 6.89) was observed with increased grades of disruption of ELM and EZ (P = 0.001). Serum levels of urea and creatinine are surrogate markers for disruption of retinal photoreceptor ELM and EZ on spectral-domain optical coherence tomography in DR.

  8. Comparison of retinal thickness by Fourier-domain optical coherence tomography and OCT retinal image analysis software segmentation analysis derived from Stratus optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Tátrai, Erika; Ranganathan, Sudarshan; Ferencz, Mária; Debuc, Delia Cabrera; Somfai, Gábor Márk

    2011-05-01

    Purpose: To compare thickness measurements between Fourier-domain optical coherence tomography (FD-OCT) and time-domain OCT images analyzed with a custom-built OCT retinal image analysis software (OCTRIMA). Methods: Macular mapping (MM) by StratusOCT and MM5 and MM6 scanning protocols by an RTVue-100 FD-OCT device are performed on 11 subjects with no retinal pathology. Retinal thickness (RT) and the thickness of the ganglion cell complex (GCC) obtained with the MM6 protocol are compared for each early treatment diabetic retinopathy study (ETDRS)-like region with corresponding results obtained with OCTRIMA. RT results are compared by analysis of variance with Dunnett post hoc test, while GCC results are compared by paired t-test. Results: A high correlation is obtained for the RT between OCTRIMA and MM5 and MM6 protocols. In all regions, the StratusOCT provide the lowest RT values (mean difference 43 +/- 8 μm compared to OCTRIMA, and 42 +/- 14 μm compared to RTVue MM6). All RTVue GCC measurements were significantly thicker (mean difference between 6 and 12 μm) than the GCC measurements of OCTRIMA. Conclusion: High correspondence of RT measurements is obtained not only for RT but also for the segmentation of intraretinal layers between FD-OCT and StratusOCT-derived OCTRIMA analysis. However, a correction factor is required to compensate for OCT-specific differences to make measurements more comparable to any available OCT device.

  9. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  10. Optimization of the segmented method for optical compression and multiplexing system

    NASA Astrophysics Data System (ADS)

    Al Falou, Ayman

    2002-05-01

    Because of the constant increasing demands of images exchange, and despite the ever increasing bandwidth of the networks, compression and multiplexing of images is becoming inseparable from their generation and display. For high resolution real time motion pictures, electronic performing of compression requires complex and time-consuming processing units. On the contrary, by its inherent bi-dimensional character, coherent optics is well fitted to perform such processes that are basically bi-dimensional data handling in the Fourier domain. Additionally, the main limiting factor that was the maximum frame rate is vanishing because of the recent improvement of spatial light modulator technology. The purpose of this communication is to benefit from recent optical correlation algorithms. The segmented filtering used to store multi-references in a given space bandwidth product optical filter can be applied to networks to compress and multiplex images in a given bandwidth channel.

  11. Automated tissue classification of intracardiac optical coherence tomography images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gan, Yu; Tsay, David; Amir, Syed B.; Marboe, Charles C.; Hendon, Christine P.

    2016-03-01

    Remodeling of the myocardium is associated with increased risk of arrhythmia and heart failure. Our objective is to automatically identify regions of fibrotic myocardium, dense collagen, and adipose tissue, which can serve as a way to guide radiofrequency ablation therapy or endomyocardial biopsies. Using computer vision and machine learning, we present an automated algorithm to classify tissue compositions from cardiac optical coherence tomography (OCT) images. Three dimensional OCT volumes were obtained from 15 human hearts ex vivo within 48 hours of donor death (source, NDRI). We first segmented B-scans using a graph searching method. We estimated the boundary of each region by minimizing a cost function, which consisted of intensity, gradient, and contour smoothness. Then, features, including texture analysis, optical properties, and statistics of high moments, were extracted. We used a statistical model, relevance vector machine, and trained this model with abovementioned features to classify tissue compositions. To validate our method, we applied our algorithm to 77 volumes. The datasets for validation were manually segmented and classified by two investigators who were blind to our algorithm results and identified the tissues based on trichrome histology and pathology. The difference between automated and manual segmentation was 51.78 +/- 50.96 μm. Experiments showed that the attenuation coefficients of dense collagen were significantly different from other tissue types (P < 0.05, ANOVA). Importantly, myocardial fibrosis tissues were different from normal myocardium in entropy and kurtosis. The tissue types were classified with an accuracy of 84%. The results show good agreements with histology.

  12. Automated detection of Schlemm's canal in spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tom, Manu; Ramakrishnan, Vignesh; van Oterendorp, Christian; Deserno, Thomas M.

    2015-03-01

    Recent advances in optical coherence tomography (OCT) technology allow in vivo imaging of the complex network of intra-scleral aqueous veins in the anterior segment of the eye. Pathological changes in this network, draining the aqueous humor from the eye, are considered to play a role in intraocular pressure elevation, which can lead to glaucoma, one of the major causes of blindness in the world. Through acquisition of OCT volume scans of the anterior eye segment, we aim at reconstructing the three dimensional network of aqueous veins in healthy and glaucomatous subjects. A novel algorithm for segmentation of the three-dimensional (3D) vessel system in human Schlemms canal is presented analyzing frames of spectral domain OCT (SD-OCT) of the eyes surface in either horizontal or vertical orientation. Distortions such as vertical stripes are caused by the superficial blood vessels in the conjunctiva and the episclera. They are removed in the discrete Fourier domain (DFT) masking particular frequencies. Feature-based rigid registration of these noise-filtered images is then performed using the scale invariant feature transform (SIFT). Segmentation of the vessels deep in the sclera originating at or in the vicinity of or having indirect connection to the Schlemm's canal is then performed with 3D region growing technique. The segmented vessels are visualized in 3D providing diagnostically relevant information to the physicians. A proof-of-concept study was performed on a healthy volunteer before and after a pharmaceutical narrowing of Schlemm's canal. A relative decreases 17% was measured based on manual ground truth and the image processing method.

  13. Joint optic disc and cup boundary extraction from monocular fundus images.

    PubMed

    Chakravarty, Arunava; Sivaswamy, Jayanthi

    2017-08-01

    Accurate segmentation of optic disc and cup from monocular color fundus images plays a significant role in the screening and diagnosis of glaucoma. Though optic cup is characterized by the drop in depth from the disc boundary, most existing methods segment the two structures separately and rely only on color and vessel kink based cues due to the lack of explicit depth information in color fundus images. We propose a novel boundary-based Conditional Random Field formulation that extracts both the optic disc and cup boundaries in a single optimization step. In addition to the color gradients, the proposed method explicitly models the depth which is estimated from the fundus image itself using a coupled, sparse dictionary trained on a set of image-depth map (derived from Optical Coherence Tomography) pairs. The estimated depth achieved a correlation coefficient of 0.80 with respect to the ground truth. The proposed segmentation method outperformed several state-of-the-art methods on five public datasets. The average dice coefficient was in the range of 0.87-0.97 for disc segmentation across three datasets and 0.83 for cup segmentation on the DRISHTI-GS1 test set. The method achieved a good glaucoma classification performance with an average AUC of 0.85 for five fold cross-validation on RIM-ONE v2. We propose a method to jointly segment the optic disc and cup boundaries by modeling the drop in depth between the two structures. Since our method requires a single fundus image per eye during testing it can be employed in the large-scale screening of glaucoma where expensive 3D imaging is unavailable. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. In vivo endoscopic Doppler optical coherence tomography imaging of the colon

    PubMed Central

    Welge, Weston A.; Barton, Jennifer K.

    2017-01-01

    Background and Objective Colorectal cancer remains the second deadliest cancer in the United States. Several screening methods exist, however detection of small polyps remains a challenge. Optical coherence tomography has been demonstrated to be capable of detecting lesions as small as 1 mm in the mouse colon, but detection is based on measuring a doubling of the mucosa thickness. The colon microvasculature may be an attractive biomarker of early tumor development because tumor vessels are characterized by irregular structure and dysfunction. Our goal was to develop an endoscopic method of detecting and segmenting colon vessels using Doppler optical coherence tomography to enable future studies for improving early detection and development of novel chemopreventive agents. Method We conducted in vivo colon imaging in an azoxymethane (AOM)-treated mouse model of colorectal cancer using a miniature endoscope and a swept-source OCT system at 1040 nm with a 16 kHz sweep rate. We applied the Kasai autocorrelation algorithm to laterally oversampled OCT B-scans to resolve vascular flow in the mucosa and submucosa. Vessels were segmented by applying a series of image processing steps: (1) intensity thresholding, (2) two-dimensional matched filtering, and (3) histogram segmentation. Results We observed differences in the vessels sizes and spatial distribution in a mature adenoma compared to surrounding undiseased tissue and compared the results with histology. We also imaged flow in four young mice (2 AOM-treated and 2 control) showing no significant differences, which is expected so early after carcinogen exposure. We also present flow images of adenoma in a living mouse and a euthanized mouse to demonstrate that no flow is detected after euthanasia. Conclusion We present, to the best of our knowledge, the first Doppler OCT images of in vivo mouse colon collected with a fiber-based endoscope. We also describe a fast and robust image processing method for segmenting vessels in the colon. These results suggest that Doppler OCT is a promising imaging modality for vascular imaging in the colon that requires no exogenous contrast agents. PMID:27546786

  15. Generation of dark hollow beam via coherent combination based on adaptive optics.

    PubMed

    Zheng, Yi; Wang, Xiaohua; Shen, Feng; Li, Xinyang

    2010-12-20

    A novel method for generating a dark hollow beam (DHB) is proposed and studied both theoretically and experimentally. A coherent combination technique for laser arrays is implemented based on adaptive optics (AO). A beam arraying structure and an active segmented mirror are designed and described. Piston errors are extracted by a zero-order interference detection system with the help of a custom-made photo-detectors array. An algorithm called the extremum approach is adopted to calculate feedback control signals. A dynamic piston error is imported by LiNbO3 to test the capability of the AO servo. In a closed loop the stable and clear DHB is obtained. The experimental results confirm the feasibility of the concept.

  16. In vivo imaging of raptor retina with ultra high resolution spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Major, James C., Jr.; McKeown, Craig; Wehbe, Hassan; Jiao, Shuliang; Puliafito, Carmen A.

    2008-02-01

    Among birds, raptors are well known for their exceptional eyesight, which is partly due to the unique structure of their retina. Because the raptor retina is the most advanced of any animal species, in vivo examination of its structure would be remarkable. Furthermore, a noticeable percentage of traumatic ocular injuries are identified in birds of prey presented to rehabilitation facilities. Injuries affecting the posterior segment have been considered as a major impact on raptor vision. Hence, in vivo examination of the structure of the posterior segment of the raptors would be helpful for the diagnosis of traumatized birds. The purpose of this study is to demonstrate the application of ultrahigh-resolution Spectral Domain Optical Coherence Tomography (SD-OCT) for non contact in vivo imaging of the retina of birds of prey, which to the best of our knowledge has never been attempted. For the first time we present high quality OCT images of the retina of two species of bird of prey, one diurnal hawk and one nocturnal owl.

  17. Non-destructive analysis of flake properties in automotive paints with full-field optical coherence tomography and 3D segmentation.

    PubMed

    Zhang, Jinke; Williams, Bryan M; Lawman, Samuel; Atkinson, David; Zhang, Zijian; Shen, Yaochun; Zheng, Yalin

    2017-08-07

    Automotive coating systems are designed to protect vehicle bodies from corrosion and enhance their aesthetic value. The number, size and orientation of small metallic flakes in the base coat of the paint has a significant effect on the appearance of automotive bodies. It is important for quality assurance (QA) to be able to measure the properties of these small flakes, which are approximately 10μm in radius, yet current QA techniques are limited to measuring layer thickness. We design and develop a time-domain (TD) full-field (FF) optical coherence tomography (OCT) system to scan automotive panels volumetrically, non-destructively and without contact. We develop and integrate a segmentation method to automatically distinguish flakes and allow measurement of their properties. We test our integrated system on nine sections of five panels and demonstrate that this integrated approach can characterise small flakes in automotive coating systems in 3D, calculating the number, size and orientation accurately and consistently. This has the potential to significantly impact QA testing in the automotive industry.

  18. Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy

    PubMed Central

    Ughi, Giovanni J.; Gora, Michalina J.; Swager, Anne-Fré; Soomro, Amna; Grant, Catriona; Tiernan, Aubrey; Rosenberg, Mireille; Sauk, Jenny S.; Nishioka, Norman S.; Tearney, Guillermo J.

    2016-01-01

    Optical coherence tomography (OCT) is an optical diagnostic modality that can acquire cross-sectional images of the microscopic structure of the esophagus, including Barrett’s esophagus (BE) and associated dysplasia. We developed a swallowable tethered capsule OCT endomicroscopy (TCE) device that acquires high-resolution images of entire gastrointestinal (GI) tract luminal organs. This device has a potential to become a screening method that identifies patients with an abnormal esophagus that should be further referred for upper endoscopy. Currently, the characterization of the OCT-TCE esophageal wall data set is performed manually, which is time-consuming and inefficient. Additionally, since the capsule optics optimally focus light approximately 500 µm outside the capsule wall and the best quality images are obtained when the tissue is in full contact with the capsule, it is crucial to provide feedback for the operator about tissue contact during the imaging procedure. In this study, we developed a fully automated algorithm for the segmentation of in vivo OCT-TCE data sets and characterization of the esophageal wall. The algorithm provides a two-dimensional representation of both the contact map from the data collected in human clinical studies as well as a tissue map depicting areas of BE with or without dysplasia. Results suggest that these techniques can potentially improve the current TCE data acquisition procedure and provide an efficient characterization of the diseased esophageal wall. PMID:26977350

  19. High definition spectral domain optical coherence tomography findings in three patients with solar retinopathy and review of the literature.

    PubMed

    Chen, Kevin C; Jung, Jesse J; Aizman, Alexander

    2012-01-01

    To describe ocular findings in 3 cases of solar retinopathy using high definition, spectral domain optical coherence tomography (SD-OCT) and review the literature for optical coherence tomography (OCT) characteristics associated with worse vision. Case series and retrospective review of clinical features and Spectralis SD-OCT (Heidelberg Engineering, Vista, California, United States of America). A literature review of OCT findings in cases of solar retinopathy reported on MEDLINE was also performed and analyzed. Six eyes of 3 patients with solar retinopathy revealed significant foveal pathology. Visual acuity ranged from Snellen 20/30 to 20/50. High definition SD-OCT demonstrated defects at the level of the inner and outer segment junction of the photoreceptors as well as in the inner high reflective layer. There was a significant correlation between chronic disruption of the inner photoreceptor junction with worse vision based on the current case series and literature review. Screening patients with exposure to central foveal damage from solar retinopathy with high definition SD-OCT improves diagnosis and assessment of photoreceptor damage and vision loss.

  20. Automated 3D segmentation of intraretinal layers from optic nerve head optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Abràmoff, Michael D.; Lee, Kyungmoo; Sonkova, Pavlina; Gupta, Priya; Kwon, Young; Niemeijer, Meindert; Hu, Zhihong; Garvin, Mona K.

    2010-03-01

    Optical coherence tomography (OCT), being a noninvasive imaging modality, has begun to find vast use in the diagnosis and management of ocular diseases such as glaucoma, where the retinal nerve fiber layer (RNFL) has been known to thin. Furthermore, the recent availability of the considerably larger volumetric data with spectral-domain OCT has increased the need for new processing techniques. In this paper, we present an automated 3-D graph-theoretic approach for the segmentation of 7 surfaces (6 layers) of the retina from 3-D spectral-domain OCT images centered on the optic nerve head (ONH). The multiple surfaces are detected simultaneously through the computation of a minimum-cost closed set in a vertex-weighted graph constructed using edge/regional information, and subject to a priori determined varying surface interaction and smoothness constraints. The method also addresses the challenges posed by presence of the large blood vessels and the optic disc. The algorithm was compared to the average manual tracings of two observers on a total of 15 volumetric scans, and the border positioning error was found to be 7.25 +/- 1.08 μm and 8.94 +/- 3.76 μm for the normal and glaucomatous eyes, respectively. The RNFL thickness was also computed for 26 normal and 70 glaucomatous scans where the glaucomatous eyes showed a significant thinning (p < 0.01, mean thickness 73.7 +/- 32.7 μm in normal eyes versus 60.4 +/- 25.2 μm in glaucomatous eyes).

  1. CAPILLARY NETWORK ALTERATIONS IN X-LINKED RETINOSCHISIS IMAGED ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    Romano, Francesco; Arrigo, Alessandro; Chʼng, Soon Wai; Battaglia Parodi, Maurizio; Manitto, Maria Pia; Martina, Elisabetta; Bandello, Francesco; Stanga, Paulo E

    2018-06-05

    To assess foveal and parafoveal vasculature at the superficial capillary plexus, deep capillary plexus, and choriocapillaris of patients with X-linked retinoschisis by means of optical coherence tomography angiography. Six patients with X-linked retinoschisis (12 eyes) and seven healthy controls (14 eyes) were recruited and underwent complete ophthalmologic examination, including best-corrected visual acuity, dilated fundoscopy, and 3 × 3-mm optical coherence tomography angiography macular scans (DRI OCT Triton; Topcon Corp). After segmentation and quality review, optical coherence tomography angiography slabs were imported into ImageJ 1.50 (NIH; Bethesda) and digitally binarized. Quantification of vessel density was performed after foveal avascular zone area measurement and exclusion. Patients were additionally divided into "responders" and "nonresponders" to dorzolamide therapy. Foveal avascular zone area resulted markedly enlarged at the deep capillary plexus (P < 0.001), particularly in nonresponders. Moreover, patients disclosed a significant deep capillary plexus rarefaction, when compared with controls (P: 0.04); however, a subanalysis revealed that this damage was limited to the fovea (P: 0.006). Finally, the enlargement of foveal avascular zone area positively correlated with a decline in best-corrected visual acuity (P: 0.01). Prominent foveal vascular impairment is detectable in the deep capillary plexus of patients with X-linked retinoschisis. Our results correlate with functional outcomes, suggesting a possible vascular role in X-linked retinoschisis clinical manifestations.

  2. Culprit lesion thrombus burden after manual thrombectomy or percutaneous coronary intervention-alone in ST-segment elevation myocardial infarction: the optical coherence tomography sub-study of the TOTAL (ThrOmbecTomy versus PCI ALone) trial.

    PubMed

    Bhindi, Ravinay; Kajander, Olli A; Jolly, Sanjit S; Kassam, Saleem; Lavi, Shahar; Niemelä, Kari; Fung, Anthony; Cheema, Asim N; Meeks, Brandi; Alexopoulos, Dimitrios; Kočka, Viktor; Cantor, Warren J; Kaivosoja, Timo P; Shestakovska, Olga; Gao, Peggy; Stankovic, Goran; Džavík, Vladimír; Sheth, Tej

    2015-08-01

    Manual thrombectomy has been proposed as a strategy to reduce thrombus burden during primary percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI). However, the effectiveness of manual thrombectomy in reducing thrombus burden is uncertain. In this substudy of the TOTAL (ThrOmbecTomy versus PCI ALone) trial, we compared the thrombus burden at the culprit lesion using optical coherence tomography (OCT) in patients treated with thrombectomy vs. PCI-alone. The TOTAL trial (N = 10 732) was an international, multicentre, randomized trial of thrombectomy (using the Export catheter, Medtronic Cardiovascular, Santa Rosa, CA, USA) in STEMI patients treated with primary PCI. The OCT substudy prospectively enrolled 214 patients from 13 sites in 5 countries. Optical coherence tomography was performed immediately after thrombectomy or PCI-alone and then repeated after stent deployment. Thrombus quantification was performed by an independent core laboratory blinded to treatment assignment. The primary outcome of pre-stent thrombus burden as a percentage of segment analysed was 2.36% (95% CI: 1.73-3.22) in the thrombectomy group and 2.88% (95% CI: 2.12-3.90) in the PCI-alone group (P = 0.373). Absolute pre-stent thrombus volume was not different (2.99 vs. 3.74 mm(3), P = 0.329). Other secondary outcomes of pre-stent quadrants of thrombus, post-stent atherothrombotic burden, and post-stent atherothrombotic volume were not different between groups. Manual thrombectomy did not reduce pre-stent thrombus burden at the culprit lesion compared with PCI-alone. Both strategies were associated with low thrombus burden at the lesion site after the initial intervention to restore flow. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  3. Textural analysis of optical coherence tomography skin images: quantitative differentiation between healthy and cancerous tissues

    NASA Astrophysics Data System (ADS)

    Adabi, Saba; Conforto, Silvia; Hosseinzadeh, Matin; Noe, Shahryar; Daveluy, Steven; Mehregan, Darius; Nasiriavanaki, Mohammadreza

    2017-02-01

    Optical Coherence Tomography (OCT) offers real-time high-resolution three-dimensional images of tissue microstructures. In this study, we used OCT skin images acquired from ten volunteers, neither of whom had any skin conditions addressing the features of their anatomic location. OCT segmented images are analyzed based on their optical properties (attenuation coefficient) and textural image features e.g., contrast, correlation, homogeneity, energy, entropy, etc. Utilizing the information and referring to their clinical insight, we aim to make a comprehensive computational model for the healthy skin. The derived parameters represent the OCT microstructural morphology and might provide biological information for generating an atlas of normal skin from different anatomic sites of human skin and may allow for identification of cell microstructural changes in cancer patients. We then compared the parameters of healthy samples with those of abnormal skin and classified them using a linear Support Vector Machines (SVM) with 82% accuracy.

  4. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    PubMed Central

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-01-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage. PMID:25901915

  5. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-04-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.

  6. Exploring photoreceptor reflectivity via multimodal imaging of outer retinal tubulation in advanced age-related macular degeneration

    PubMed Central

    Litts, Katie M.; Wang, Xiaolin; Clark, Mark E.; Owsley, Cynthia; Freund, K. Bailey; Curcio, Christine A.; Zhang, Yuhua

    2016-01-01

    Purpose To investigate the microscopic structure of outer retinal tubulation (ORT) and optical properties of cone photoreceptors in vivo, we studied ORT appearance by multimodal imaging, including spectral domain optical coherence tomography (SD-OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO). Methods Four eyes of 4 subjects with advanced AMD underwent color fundus photography, infrared reflectance imaging, SD-OCT, and AOSLO with a high-resolution research instrument. ORT was identified in closely spaced (11 μm) SD-OCT volume scans. Results ORT in cross-sectional and en face SD-OCT was a hyporeflective area representing a lumen surrounded by a hyperreflective border consisting of cone photoreceptor mitochondria and external limiting membrane, per previous histology. In contrast, ORT by AOSLO was a hyporeflective structure of the same shape as in en face SD-OCT but lacking visualizable cone photoreceptors. Conclusion Lack of ORT cone reflectivity by AOSLO indicates that cones have lost their normal directionality and waveguiding property due to loss of outer segments and subsequent retinal remodeling. Reflective ORT cones by SD-OCT, in contrast, may depend partly on mitochondria as light scatterers within inner segments of these degenerating cells, a phenomenon enhanced by coherent imaging. Multimodal imaging of ORT provides insight into cone degeneration and reflectivity sources in OCT. PMID:27584549

  7. Vessel segmentation in 3D spectral OCT scans of the retina

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Garvin, Mona K.; van Ginneken, Bram; Sonka, Milan; Abràmoff, Michael D.

    2008-03-01

    The latest generation of spectral optical coherence tomography (OCT) scanners is able to image 3D cross-sectional volumes of the retina at a high resolution and high speed. These scans offer a detailed view of the structure of the retina. Automated segmentation of the vessels in these volumes may lead to more objective diagnosis of retinal vascular disease including hypertensive retinopathy, retinopathy of prematurity. Additionally, vessel segmentation can allow color fundus images to be registered to these 3D volumes, possibly leading to a better understanding of the structure and localization of retinal structures and lesions. In this paper we present a method for automatically segmenting the vessels in a 3D OCT volume. First, the retina is automatically segmented into multiple layers, using simultaneous segmentation of their boundary surfaces in 3D. Next, a 2D projection of the vessels is produced by only using information from certain segmented layers. Finally, a supervised, pixel classification based vessel segmentation approach is applied to the projection image. We compared the influence of two methods for the projection on the performance of the vessel segmentation on 10 optic nerve head centered 3D OCT scans. The method was trained on 5 independent scans. Using ROC analysis, our proposed vessel segmentation system obtains an area under the curve of 0.970 when compared with the segmentation of a human observer.

  8. Investigation of Retinal Morphology Alterations Using Spectral Domain Optical Coherence Tomography in a Mouse Model of Retinal Branch and Central Retinal Vein Occlusion

    PubMed Central

    Ebneter, Andreas; Agca, Cavit; Dysli, Chantal; Zinkernagel, Martin S.

    2015-01-01

    Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001) compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001). Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions. PMID:25775456

  9. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging

    PubMed Central

    Chew, Avenell L.; Lamey, Tina; McLaren, Terri; De Roach, John

    2016-01-01

    Purpose To present en face optical coherence tomography (OCT) images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities. Methods En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory) and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering)) were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO) and microperimetry. Results Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE) pathology due to segmentation error at the level of Bruch’s membrane (BM). Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities. Conclusions Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis. PMID:27959968

  10. Optical coherence tomography of the intracranial vasculature and Wingspan stent in a patient

    PubMed Central

    Given, Curtis Alden; Ramsey, Christian Norman; Attizzani, Guilherme Ferragut; Jones, Michael R; Brooks, William H; Bezerra, Hiram G; Costa, Marco A

    2014-01-01

    Summary A 67-year-old man with medically refractory vertebrobasilar insufficiency and short segment occlusions of the intracranial vertebral arteries was treated with angioplasty and stent placement. Fifteen hours after the procedure the patient developed symptoms of posterior fossa ischemia and repeat angiography showed thrombus formation within the stent which was treated with thrombolytic and aggressive antiplatelet therapy. Angiography revealed lysis of the clot, but concerns regarding the mechanism of the thrombotic phenomenon prompted frequency-domain optical coherence tomography (FDOCT) assessment. FDOCT provided excellent visualization of the stent and vessel wall interactions, as well as excluding residual flow-limiting stenosis, obviating the need for further intervention. The potential utility of FDOCT in the evaluation of intracranial atherosclerotic disease and additional intracranial applications are discussed. PMID:24835808

  11. Back-to-back optical coherence tomography-ultrasound probe for co-registered three-dimensional intravascular imaging with real-time display

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Ma, Teng; Jing, Joseph; Zhang, Jun; Patel, Pranav M.; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2014-03-01

    We have developed a novel integrated optical coherence tomography (OCT)-intravascular ultrasound (IVUS) probe, with a 1.5 mm-long rigid-part and 0.9 mm outer diameter, for real-time intracoronary imaging of atherosclerotic plaques and guiding interventional procedures. By placing the OCT ball lens and IVUS 45MHz single element transducer back-to-back at the same axial position, this probe can provide automatically co-registered, co-axial OCT-IVUS imaging. To demonstrate its capability, 3D OCT-IVUS imaging of a pig's coronary artery in real-time displayed in polar coordinates, as well as images of two major types of advanced plaques in human cadaver coronary segments, was obtained using this probe and our upgraded system. Histology validation is also presented.

  12. Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography.

    PubMed

    Ahlers, C; Simader, C; Geitzenauer, W; Stock, G; Stetson, P; Dastmalchi, S; Schmidt-Erfurth, U

    2008-02-01

    A limited number of scans compromise conventional optical coherence tomography (OCT) to track chorioretinal disease in its full extension. Failures in edge-detection algorithms falsify the results of retinal mapping even further. High-definition-OCT (HD-OCT) is based on raster scanning and was used to visualise the localisation and volume of intra- and sub-pigment-epithelial (RPE) changes in fibrovascular pigment epithelial detachments (fPED). Two different scanning patterns were evaluated. 22 eyes with fPED were imaged using a frequency-domain, high-speed prototype of the Cirrus HD-OCT. The axial resolution was 6 mum, and the scanning speed was 25 kA scans/s. Two different scanning patterns covering an area of 6 x 6 mm in the macular retina were compared. Three-dimensional topographic reconstructions and volume calculations were performed using MATLAB-based automatic segmentation software. Detailed information about layer-specific distribution of fluid accumulation and volumetric measurements can be obtained for retinal- and sub-RPE volumes. Both raster scans show a high correlation (p<0.01; R2>0.89) of measured values, that is PED volume/area, retinal volume and mean retinal thickness. Quality control of the automatic segmentation revealed reasonable results in over 90% of the examinations. Automatic segmentation allows for detailed quantitative and topographic analysis of the RPE and the overlying retina. In fPED, the 128 x 512 scanning-pattern shows mild advantages when compared with the 256 x 256 scan. Together with the ability for automatic segmentation, HD-OCT clearly improves the clinical monitoring of chorioretinal disease by adding relevant new parameters. HD-OCT is likely capable of enhancing the understanding of pathophysiology and benefits of treatment for current anti-CNV strategies in future.

  13. Comparison of anterior segment optical coherence tomography angiography and fluorescein angiography for iris vasculature analysis.

    PubMed

    Zett, Claudio; Stina, Deborah M Rosa; Kato, Renata Tiemi; Novais, Eduardo Amorim; Allemann, Norma

    2018-04-01

    The aim of this study is to perform imaging of irises of different colors using spectral domain anterior segment optical coherence tomography angiography (AS-OCTA) and iris fluorescein angiography (IFA) and compare their effectiveness in examining iris vasculature. This is a cross-sectional observational clinical study. Patients with no vascular iris alterations and different pigmentation levels were recruited. Participants were imaged using OCTA adapted with an anterior segment lens and IFA with a confocal scanning laser ophthalmoscope (cSLO) adapted with an anterior segment lens. AS-OCTA and IFA images were then compared. Two blinded readers classified iris pigmentation and compared the percentage of visible vessels between OCTA and IFA images. Twenty eyes of 10 patients with different degrees of iris pigmentation were imaged using AS-OCTA and IFA. Significantly more visible iris vessels were observed using OCTA than using FA (W = 5.22; p < 0.001). Iris pigmentation was negatively correlated to the percentage of visible vessels in both imaging methods (OCTA, rho = - 0.73, p < 0.001; IFA, rho = - 0.77, p < 0.001). Unlike FA, AS-OCTA could not detect leakage of dye, delay, or impregnation. Nystagmus and inadequate fixation along with motion artifacts resulted in lower quality images in AS-OCTA than in IFA. AS-OCTA is a new imaging modality which allows analysis of iris vasculature. In both AS-OCTA and IFA, iris pigmentation caused vasculature imaging blockage, but AS-OCTA provided more detailed iris vasculature images than IFA. Additional studies including different iris pathologies are needed to determine the most optimal scanning parameters in OCTA of the anterior segment.

  14. Numerical simulation and optimal design of Segmented Planar Imaging Detector for Electro-Optical Reconnaissance

    NASA Astrophysics Data System (ADS)

    Chu, Qiuhui; Shen, Yijie; Yuan, Meng; Gong, Mali

    2017-12-01

    Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) is a cutting-edge electro-optical imaging technology to realize miniaturization and complanation of imaging systems. In this paper, the principle of SPIDER has been numerically demonstrated based on the partially coherent light theory, and a novel concept of adjustable baseline pairing SPIDER system has further been proposed. Based on the results of simulation, it is verified that the imaging quality could be effectively improved by adjusting the Nyquist sampling density, optimizing the baseline pairing method and increasing the spectral channel of demultiplexer. Therefore, an adjustable baseline pairing algorithm is established for further enhancing the image quality, and the optimal design procedure in SPIDER for arbitrary targets is also summarized. The SPIDER system with adjustable baseline pairing method can broaden its application and reduce cost under the same imaging quality.

  15. Cross-sectional, Observational Study of Anterior Segment Parameters Using Anterior Segment Optical Coherence Tomography in North Indian Population

    PubMed Central

    Dalal, Latika Khatri; Dhasmana, Renu; Maitreya, Amit

    2017-01-01

    Purpose: To study the anterior segment (AS) parameters using AS optical coherence tomography (AS-OCT) in the North Indian population. Methods: A hospital-based, observational, cross-sectional study was conducted over a period of 1 year. It included 251 normal individuals aged 20–70 years. Participants underwent imaging with AS-OCT. Ocular parameters included anterior chamber angle (ACA), iris cross-sectional area (ICSA), iris thickness (IT), and iris curvature (IC). The parameters were measured nasally and temporally for both sexes and different age groups. Results: The mean age of participants was 48.3 ± 13.9 years and 50.6% were men. The ACA decreased with age whereas ICSA, IT, and IC increased with age. The ACA (P = 0.0001nasally and temporally), ICSA (P = 0.011 nasally, P = 0.027 temporally), IT750 (P = 0.001 nasally, P = 0.011 temporally), IT1500 (P = 0.002 nasally, P = 0.002 temporally), and IC (P = 0.059 nasally, P = 0.128 temporally) underwent statistically significant changes with increasing age. No significant difference was seen in parameters of different sex. Conclusion: In this subset of the Indian population, the change in the AC parameters with age influences the AC dimensions predisposing the eye to glaucomatous conditions. These data are applicable clinically for the assessment and surgical management of patients requiring AS surgery. PMID:28671154

  16. Concept for image-guided vitreo-retinal fs-laser surgery: adaptive optics and optical coherence tomography for laser beam shaping and positioning

    NASA Astrophysics Data System (ADS)

    Matthias, Ben; Brockmann, Dorothee; Hansen, Anja; Horke, Konstanze; Knoop, Gesche; Gewohn, Timo; Zabic, Miroslav; Krüger, Alexander; Ripken, Tammo

    2015-03-01

    Fs-lasers are well established in ophthalmic surgery as high precision tools for corneal flap cutting during laser in situ keratomileusis (LASIK) and increasingly utilized for cutting the crystalline lens, e.g. in assisting cataract surgery. For addressing eye structures beyond the cornea, an intraoperative depth resolved imaging is crucial to the safety and success of the surgical procedure due to interindividual anatomical disparities. Extending the field of application even deeper to the posterior eye segment, individual eye aberrations cannot be neglected anymore and surgery with fs-laser is impaired by focus degradation. Our demonstrated concept for image-guided vitreo-retinal fs-laser surgery combines adaptive optics (AO) for spatial beam shaping and optical coherence tomography (OCT) for focus positioning guidance. The laboratory setup comprises an adaptive optics assisted 800 nm fs-laser system and is extended by a Fourier domain optical coherence tomography system. Phantom structures are targeted, which mimic tractional epiretinal membranes in front of excised porcine retina within an eye model. AO and OCT are set up to share the same scanning and focusing optics. A Hartmann-Shack sensor is employed for aberration measurement and a deformable mirror for aberration correction. By means of adaptive optics the threshold energy for laser induced optical breakdown is lowered and cutting precision is increased. 3D OCT imaging of typical ocular tissue structures is achieved with sufficient resolution and the images can be used for orientation of the fs-laser beam. We present targeted dissection of the phantom structures and its evaluation regarding retinal damage.

  17. Resolution and throughput optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) for multimodal imaging during ophthalmic microsurgery

    NASA Astrophysics Data System (ADS)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Leeburg, Kelsey C.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Limited visualization of semi-transparent structures in the eye remains a critical barrier to improving clinical outcomes and developing novel surgical techniques. While increases in imaging speed has enabled intraoperative optical coherence tomography (iOCT) imaging of surgical dynamics, several critical barriers to clinical adoption remain. Specifically, these include (1) static field-of-views (FOVs) requiring manual instrument-tracking; (2) high frame-rates require sparse sampling, which limits FOV; and (3) small iOCT FOV also limits the ability to co-register data with surgical microscopy. We previously addressed these limitations in image-guided ophthalmic microsurgery by developing microscope-integrated multimodal intraoperative swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography. Complementary en face images enabled orientation and coregistration with the widefield surgical microscope view while OCT imaging enabled depth-resolved visualization of surgical instrument positions relative to anatomic structures-of-interest. In addition, we demonstrated novel integrated segmentation overlays for augmented-reality surgical guidance. Unfortunately, our previous system lacked the resolution and optical throughput for in vivo retinal imaging and necessitated removal of cornea and lens. These limitations were predominately a result of optical aberrations from imaging through a shared surgical microscope objective lens, which was modeled as a paraxial surface. Here, we present an optimized intraoperative spectrally encoded coherence tomography and reflectometry (iSECTR) system. We use a novel lens characterization method to develop an accurate model of surgical microscope objective performance and balance out inherent aberrations using iSECTR relay optics. Using this system, we demonstrate in vivo multimodal ophthalmic imaging through a surgical microscope

  18. Optical coherence tomography patterns as predictors of visual outcome in dengue-related maculopathy.

    PubMed

    Teoh, Stephen C; Chee, Caroline K; Laude, Augustinus; Goh, Kong Y; Barkham, Timothy; Ang, Brenda S

    2010-03-01

    The purpose of this study was to characterize the presentations, long-term outcomes, and visual prognostic factors in dengue-related maculopathy of 41 patients with dengue fever and impaired vision from dengue-related maculopathy in a retrospective noninterventional and observational series. The medical records of patients with dengue-related maculopathy diagnosed over 18 months between July 2004 and December 2005 at The Eye Institute, Tan Tock Seng Hospital and Communicable Disease Center, Singapore, were reviewed and followed up for 24 months. Visual acuity and symptoms (presence of scotoma on automated visual fields and Amsler grid) were correlated with optical coherence tomography evaluation. Mean age was 28.7 years and there were more men (53.7%). The most common visual complaints were blurring of vision (51.2%) and central scotoma (34.1%). Most patients recovered best-corrected visual acuity >20/40. Optical coherence tomography showed 3 patterns of maculopathy: 1) diffuse retinal thickening; 2) cystoid macular edema; and 3) foveolitis. The visual outcome was independent of the extent of edema, but scotomata persisted longest in patients with foveolitis and shortest with those with diffuse retinal thickening. Dengue-associated ocular inflammation is an emerging ophthalmic condition and often involves the posterior segment. Prognosis is variable. Patients usually regain good vision but may retain persistent scotomata even at 2 years despite clinical resolution of the disease. Optical coherence tomography patterns in dengue maculopathy are useful for characterization, monitoring, and prognostication of the visual defect.

  19. Infrared image segmentation method based on spatial coherence histogram and maximum entropy

    NASA Astrophysics Data System (ADS)

    Liu, Songtao; Shen, Tongsheng; Dai, Yao

    2014-11-01

    In order to segment the target well and suppress background noises effectively, an infrared image segmentation method based on spatial coherence histogram and maximum entropy is proposed. First, spatial coherence histogram is presented by weighting the importance of the different position of these pixels with the same gray-level, which is obtained by computing their local density. Then, after enhancing the image by spatial coherence histogram, 1D maximum entropy method is used to segment the image. The novel method can not only get better segmentation results, but also have a faster computation time than traditional 2D histogram-based segmentation methods.

  20. Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract

    PubMed Central

    CORON, E.; AUKSORIUS, E.; PIERETTI, A.; MAHÉ, M. M.; LIU, L.; STEIGER, C.; BROMBERG, Y.; BOUMA, B.; TEARNEY, G.; NEUNLIST, M.; GOLDSTEIN, A. M.

    2013-01-01

    Background Noninvasive methods are needed to improve the diagnosis of enteric neuropathies. Full-field optical coherence microscopy (FFOCM) is a novel optical microscopy modality that can acquire 1 μm resolution images of tissue. The objective of this research was to demonstrate FFOCM imaging for the characterization of the enteric nervous system (ENS). Methods Normal mice and EdnrB−/− mice, a model of Hirschsprung’s disease (HD), were imaged in three-dimensions ex vivo using FFOCM through the entire thickness and length of the gut. Quantitative analysis of myenteric ganglia was performed on FFOCM images obtained from whole-mount tissues and compared with immunohistochemistry imaged by confocal microscopy. Key Results Full-field optical coherence microscopy enabled visualization of the full thickness gut wall from serosa to mucosa. Images of the myenteric plexus were successfully acquired from the stomach, duodenum, colon, and rectum. Quantification of ganglionic neuronal counts on FFOCM images revealed strong interobserver agreement and identical values to those obtained by immunofluorescence microscopy. In EdnrB−/− mice, FFOCM analysis revealed a significant decrease in ganglia density along the colorectum and a significantly lower density of ganglia in all colorectal segments compared with normal mice. Conclusions & Inferences Full-field optical coherence microscopy enables optical microscopic imaging of the ENS within the bowel wall along the entire intestine. FFOCM is able to differentiate ganglionic from aganglionic colon in a mouse model of HD, and can provide quantitative assessment of ganglionic density. With further refinements that enable bowel wall imaging in vivo, this technology has the potential to revolutionize the characterization of the ENS and the diagnosis of enteric neuropathies. PMID:23106847

  1. Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis.

    PubMed

    Debuc, Delia Cabrera; Salinas, Harry M; Ranganathan, Sudarshan; Tátrai, Erika; Gao, Wei; Shen, Meixiao; Wang, Jianhua; Somfai, Gábor M; Puliafito, Carmen A

    2010-01-01

    We demonstrate quantitative analysis and error correction of optical coherence tomography (OCT) retinal images by using a custom-built, computer-aided grading methodology. A total of 60 Stratus OCT (Carl Zeiss Meditec, Dublin, California) B-scans collected from ten normal healthy eyes are analyzed by two independent graders. The average retinal thickness per macular region is compared with the automated Stratus OCT results. Intergrader and intragrader reproducibility is calculated by Bland-Altman plots of the mean difference between both gradings and by Pearson correlation coefficients. In addition, the correlation between Stratus OCT and our methodology-derived thickness is also presented. The mean thickness difference between Stratus OCT and our methodology is 6.53 microm and 26.71 microm when using the inner segment/outer segment (IS/OS) junction and outer segment/retinal pigment epithelium (OS/RPE) junction as the outer retinal border, respectively. Overall, the median of the thickness differences as a percentage of the mean thickness is less than 1% and 2% for the intragrader and intergrader reproducibility test, respectively. The measurement accuracy range of the OCT retinal image analysis (OCTRIMA) algorithm is between 0.27 and 1.47 microm and 0.6 and 1.76 microm for the intragrader and intergrader reproducibility tests, respectively. Pearson correlation coefficients demonstrate R(2)>0.98 for all Early Treatment Diabetic Retinopathy Study (ETDRS) regions. Our methodology facilitates a more robust and localized quantification of the retinal structure in normal healthy controls and patients with clinically significant intraretinal features.

  2. Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis

    NASA Astrophysics Data System (ADS)

    Cabrera Debuc, Delia; Salinas, Harry M.; Ranganathan, Sudarshan; Tátrai, Erika; Gao, Wei; Shen, Meixiao; Wang, Jianhua; Somfai, Gábor M.; Puliafito, Carmen A.

    2010-07-01

    We demonstrate quantitative analysis and error correction of optical coherence tomography (OCT) retinal images by using a custom-built, computer-aided grading methodology. A total of 60 Stratus OCT (Carl Zeiss Meditec, Dublin, California) B-scans collected from ten normal healthy eyes are analyzed by two independent graders. The average retinal thickness per macular region is compared with the automated Stratus OCT results. Intergrader and intragrader reproducibility is calculated by Bland-Altman plots of the mean difference between both gradings and by Pearson correlation coefficients. In addition, the correlation between Stratus OCT and our methodology-derived thickness is also presented. The mean thickness difference between Stratus OCT and our methodology is 6.53 μm and 26.71 μm when using the inner segment/outer segment (IS/OS) junction and outer segment/retinal pigment epithelium (OS/RPE) junction as the outer retinal border, respectively. Overall, the median of the thickness differences as a percentage of the mean thickness is less than 1% and 2% for the intragrader and intergrader reproducibility test, respectively. The measurement accuracy range of the OCT retinal image analysis (OCTRIMA) algorithm is between 0.27 and 1.47 μm and 0.6 and 1.76 μm for the intragrader and intergrader reproducibility tests, respectively. Pearson correlation coefficients demonstrate R2>0.98 for all Early Treatment Diabetic Retinopathy Study (ETDRS) regions. Our methodology facilitates a more robust and localized quantification of the retinal structure in normal healthy controls and patients with clinically significant intraretinal features.

  3. Synchronous imaging of the pulse response of the ciliary muscle and lens with SD-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Cherng; Pham, Alex; Williams, Siobhan; Alawa, Karam A.; de Freitas, Carolina; Ruggeri, Marco; Parel, Jean-Marie A.; Manns, Fabrice

    2017-02-01

    Purpose: To determine the dynamic interaction between ciliary muscle and lens during accommodation and disaccommodation through synchronous imaging of ciliary muscle and lens response to pulse stimulus Methods: The ciliary muscle and lens were imaged simultaneously in a 33 year old subject responding to a 4D pulse stimulus (accommodative stimulus at 1.7 s, disaccommodative stimulus at 7.7 s) using an existing imaging system (Ruggeri et al, 2016) consisting of an Anterior Segment Optical Coherence Tomography system, Ciliary Muscle Optical Coherence Tomography system, and custom-built accommodation module. OCT images were recorded at an effective frame rate of 13.0 frames per second for a total scan time of 11.5 s. An automated segmentation algorithm was applied to images of the anterior segment to detect the boundaries of the cornea and lens, from which lens thickness was extracted. Segmentation of the ciliary muscle was performed manually and then corrected for distortion due to refraction of the beam to obtain measurements of thicknesses at the apex and fixed distances from the scleral spur. Results: The dynamic biometric response to a pulse stimulus at 4D was determined for both the ciliary muscle and lens, suggesting the ciliary muscle and lens interact differently in accommodation and disaccommodation. Conclusions: The study introduces new data and analyses of the ciliary muscle and lens interaction during a complete accommodative response from the relaxed to the accommodated state and back, providing insight into the interplay between individual elements in the accommodative system and how their relationships may change with age.

  4. Evaluation of Retinal and Choroidal Thickness by Swept-Source Optical Coherence Tomography: Repeatability and Assessment of Artifacts

    PubMed Central

    Mansouri, Kaweh; Medeiros, Felipe A.; Tatham, Andrew J.; Marchase, Nicholas; Weinreb, Robert N.

    2017-01-01

    PURPOSE To determine the repeatability of automated retinal and choroidal thickness measurements with swept-source optical coherence tomography (SS OCT) and the frequency and type of scan artifacts. DESIGN Prospective evaluation of new diagnostic technology. METHODS Thirty healthy subjects were recruited prospectively and underwent imaging with a prototype SS OCT instrument. Undilated scans of 54 eyes of 27 subjects (mean age, 35.1 ± 9.3 years) were obtained. Each subject had 4 SS OCT protocols repeated 3 times: 3-dimensional (3D) 6 × 6-mm raster scan of the optic disc and macula, radial, and line scan. Automated measurements were obtained through segmentation software. Interscan repeatability was assessed by intraclass correlation coefficients (ICCs). RESULTS ICCs for choroidal measurements were 0.92, 0.98, 0.80, and 0.91, respectively, for 3D macula, 3D optic disc, radial, and line scans. ICCs for retinal measurements were 0.39, 0.49, 0.71, and 0.69, respectively. Artifacts were present in up to 9% scans. Signal loss because of blinking was the most common artifact on 3D scans (optic disc scan, 7%; macula scan, 9%), whereas segmentation failure occurred in 4% of radial and 3% of line scans. When scans with image artifacts were excluded, ICCs for choroidal thickness increased to 0.95, 0.99, 0.87, and 0.93 for 3D macula, 3D optic disc, radial, and line scans, respectively. ICCs for retinal thickness increased to 0.88, 0.83, 0.89, and 0.76, respectively. CONCLUSIONS Improved repeatability of automated choroidal and retinal thickness measurements was found with the SS OCT after correction of scan artifacts. Recognition of scan artifacts is important for correct interpretation of SS OCT measurements. PMID:24531020

  5. Use of optical coherence tomography to evaluate visual acuity and visual field changes in dengue fever.

    PubMed

    Rhee, Taek Kwan; Han, Jung Il

    2014-02-01

    Dengue fever is a viral disease that is transmitted by mosquitoes and affects humans. In rare cases, dengue fever can cause visual impairment, which usually occurs within 1 month after contracting dengue fever and ranges from mild blurring of vision to severe blindness. Visual impairment due to dengue fever can be detected through angiography, retinography, optical coherence tomography (OCT) imaging, electroretinography, event electroencephalography (visually evoked potentials), and visual field analysis. The purpose of this study is to report changes in the eye captured using fluorescein angiography, indocyanine green, and OCT in 3 cases of dengue fever visual impairment associated with consistent visual symptoms and similar retinochoroidopathic changes. The OCT results of the three patients with dengue fever showed thinning of the outer retinal layer and disruption of the inner segment/outer segment (IS/OS) junction. While thinning of the retina outer layer is an irreversible process, disruption of IS/OS junction is reported to be reversible. Follow-up examination of individuals with dengue fever and associated visual impairment should involve the use of OCT to evaluate visual acuity and visual field changes in patients with acute choroidal ischemia.

  6. Type 3 Neovascularization Associated with Retinitis Pigmentosa.

    PubMed

    Sayadi, Jihene; Miere, Alexandra; Souied, Eric H; Cohen, Salomon Y

    2017-01-01

    To report a case of type 3 neovascular lesion in a patient with retinitis pigmentosa (RP) complicated by macular edema. A 78-year-old man with a long follow-up for RP was referred for painless visual acuity decrease in the right eye. Best-corrected visual acuity was 20/125 in the right eye and 20/40 in the left. Fundus examination showed typical RP and macular edema in both eyes. In the right eye, spectral domain optical coherence tomography revealed a marked cystic macular edema associated with disruption of the Bruch membrane/retinal pigment epithelium complex overlying a pigmentary epithelium detachment, with a vascular structure which appeared to originate from the deep capillary plexus and to be connected with the subretinal pigment epithelium space. Optical coherence tomography angiography showed a high-flow vessel infiltrating the outer retinal layers in the deep capillary plexus segmentation, and a tuft-shaped, bright, high-flow network that seemed to be connected with the subretinal pigment epithelium space in the outer retinal layer segmentation. This presentation was consistent with an early type 3 neovascular lesion in the right eye. Type 3 neovascularization may be considered a possible complication of RP.

  7. Evaluating tear clearance rate with optical coherence tomography.

    PubMed

    Garaszczuk, Izabela K; Mousavi, Maryam; Cervino Exposito, Alejandro; Bartuzel, Maciej M; Montes-Micó, Robert; Iskander, D Robert

    2018-02-01

    To assess the early-phase of tear clearance rate (TCR) with anterior segment optical coherence tomography (OCT) and to determine the association between TCR and other clinical measures of the tear film in a group of young subjects with different levels of tear film quality. TCR was classified as the percentage decrease of subject's inferior tear meniscus height 30s after instillation of 5μl 0.9% saline solution. Fifty subjects (32F and 18M) aged (mean±standard deviation) 25.5±4.3 years volunteered for the study. It consisted of a review of medical history, Ocular Surface Disease Index (OSDI) questionnaire, tear film osmolarity measurements, slit lamp examination and TCR estimation based on dynamic measurements of the lower tear meniscus with OCT. Estimates of TCR were contrasted against subject age and tear film measures commonly used for dry eye diagnosis, which includes OSDI score, fluorescein tear film break-up time (FBUT), tear meniscus height (TMH), blinking frequency, tear film osmolarity and corneal staining. The group mean TCR was 29±13% and 36±19% respectively after 30 and 60s margin after saline solution instillation. Statistically significant correlations were found between TCR and FBUT (r 2 =0.319, p<0.001), blinking frequency (r 2 =0.138, p<0.01), tear film osmolarity (r 2 =0.133, p<0.01) and subject's age (r 2 =0.095, p<0.05). Anterior segment optical coherence tomography allows following changes of tear meniscus morphology post saline solution instillation and evaluating the TCR. OCT based TCR might be used as additional measure of the lacrimal functional unit. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. PARACENTRAL ACUTE MIDDLE MACULOPATHY IN A PERIVENULAR FERN-LIKE DISTRIBUTION WITH EN FACE OPTICAL COHERENCE TOMOGRAPHY.

    PubMed

    Garrity, Sean T; Tseng, Victoria L; Sarraf, David

    2017-11-22

    To report a case of central retinal vein occlusion resulting in a perivenular pattern of paracentral acute middle maculopathy lesions best identified with en face optical coherence tomography (OCT). Retrospective case report. Optos ultra-widefield fluorescein angiography, spectral domain OCT, en face OCT, and OCT angiography were performed. A 41-year-old man presented with decreased vision in the right eye for 2 weeks. Funduscopic examination of the affected right eye was notable for subtle retinal whitening in the macula, mild retinal venous dilation and tortuosity, and few scattered retinal dot and blot hemorrhages consistent with an acute central retinal vein occlusion. Widefield fluorescein angiography demonstrated delayed arterial and venous filling but no evidence of significant peripheral retinal vascular ischemia. En face OCT segmented at the inner nuclear layer illustrated a remarkable and precise perivenular distribution of fern-like paracentral acute middle maculopathy with periarterial sparing, whereas en face OCT segmented at the outer nuclear layer demonstrated florid cystoid macular edema. At 6-week follow-up, OCT demonstrated patchy areas of atrophic inner nuclear layer and spontaneous resolution of the cystoid macular edema. Optical coherence tomography angiography at the level of the deep capillary plexus illustrated remarkable flow reduction of the deep capillary plexus in mainly a perivenular distribution. The authors report a case of a central retinal vein occlusion with mild retinal findings associated with a remarkable perivenular pattern of paracentral acute middle maculopathy with en face OCT. Follow-up OCT angiography demonstrated significant flow reduction of the deep capillary plexus in a perivenular pattern. The perivenular pattern of paracentral acute middle maculopathy lesions with en face OCT can be an important finding suggestive of a central retinal vein occlusion.

  9. Agreement of angle closure assessments between gonioscopy, anterior segment optical coherence tomography and spectral domain optical coherence tomography.

    PubMed

    Tay, Elton Lik Tong; Yong, Vernon Khet Yau; Lim, Boon Ang; Sia, Stelson; Wong, Elizabeth Poh Ying; Yip, Leonard Wei Leon

    2015-01-01

    To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography (AS-OCT), as well as gonioscopy and spectral domain OCT (SD-OCT). A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments. Seventeen consecutive subjects (33 eyes) were recruited from the study hospital's Glaucoma clinic. Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 other glaucomatologists masked to gonioscopy findings as well as each other's analyses of OCT images. Totally 84.8% and 45.5% of scleral spurs were visualized in AS-OCT and SD-OCT images respectively (P<0.01). The agreement for angle closure between AS-OCT and gonioscopy was fair at k=0.31 (95% confidence interval, CI: 0.03-0.59) and k=0.35 (95% CI: 0.07-0.63) for reader 1 and 2 respectively. The agreement for angle closure between SD-OCT and gonioscopy was fair at k=0.21 (95% CI: 0.07-0.49) and slight at k=0.17 (95% CI: 0.08-0.42) for reader 1 and 2 respectively. The inter-reader agreement for angle closure in AS-OCT images was moderate at 0.51 (95% CI: 0.13-0.88). The inter-reader agreement for angle closure in SD-OCT images was slight at 0.18 (95% CI: 0.08-0.45). Significant proportion of scleral spurs were not visualised with SD-OCT imaging resulting in weaker inter-reader agreements. Identifying other angle landmarks in SD-OCT images will allow more consistent angle closure assessments. Gonioscopy and OCT imaging do not always agree in angle closure assessments but have their own advantages, and should be used together and not exclusively.

  10. Segmented swept source optical coherence tomography angiography assessment of the perifoveal vasculature in patients with X-linked juvenile retinoschisis: a serial case report.

    PubMed

    Stringa, Francesco; Tsamis, Emmanouli; Papayannis, Alessandro; Chwiejczak, Katarzyna; Jalil, Assad; Biswas, Susmito; Ahmad, Hassan; Stanga, Paulo Eduardo

    2017-01-01

    To describe perifoveal microvascular changes occurring in X-linked juvenile retinoschisis (XLRS) using swept source optical coherence tomography angiography (SS OCTA). This is a serial case report of three patients. Retrospective data of patients affected by XLRS were collected. Structural optical coherence tomography (OCT) and color fundus photography (CFPh) were carried out with Topcon ® OCT 2000 3D OCT as part of the standard care. Two patients were imaged on Topcon Atlantis ® SS OCTA and one on Topcon Triton ® SS OCTA. SS OCTA images were acquired using the 3 × 3 mm fovea-centered cubes scanning protocol. Analysis of both perifoveal superficial vascular plexus (pSVP) and perifoveal deep vascular plexus (pDVP) was performed by two observers after automated segmentation. Four eyes of three males (mean age 14 ± 3.8 years) were analyzed. All eyes showed foveoschisis on CFPh images. OCT B-scans of three eyes showed schistic cysts in the ganglion cell layer, inner nuclear layer (INL) and outer nuclear layer (ONL); in one eye, cysts were depicted in INL and ONL only. In two eyes, SS OCTA showed abnormal foveal avascular zone (FAZ) shape in the pSVP, and in the other two, FAZ shape was abnormal in both plexuses. In all eyes, retinal vascular abnormalities (ie, microvascular protrusions) were present in pDVP. SS OCTA can depict perifoveal microvascular changes in young patients affected by XLRS. In this study, the structural and vascular changes seem to be more evident in the pDVP and may represent a useful biomarker of prognosis.

  11. Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging

    PubMed Central

    Beaton, L.; Mazzaferri, J.; Lalonde, F.; Hidalgo-Aguirre, M.; Descovich, D.; Lesk, M. R.; Costantino, S.

    2015-01-01

    We have developed a novel optical approach to determine pulsatile ocular volume changes using automated segmentation of the choroid, which, together with Dynamic Contour Tonometry (DCT) measurements of intraocular pressure (IOP), allows estimation of the ocular rigidity (OR) coefficient. Spectral Domain Optical Coherence Tomography (OCT) videos were acquired with Enhanced Depth Imaging (EDI) at 7Hz during ~50 seconds at the fundus. A novel segmentation algorithm based on graph search with an edge-probability weighting scheme was developed to measure choroidal thickness (CT) at each frame. Global ocular volume fluctuations were derived from frame-to-frame CT variations using an approximate eye model. Immediately after imaging, IOP and ocular pulse amplitude (OPA) were measured using DCT. OR was calculated from these peak pressure and volume changes. Our automated segmentation algorithm provides the first non-invasive method for determining ocular volume change due to pulsatile choroidal filling, and the estimation of the OR constant. Future applications of this method offer an important avenue to understanding the biomechanical basis of ocular pathophysiology. PMID:26137373

  12. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons

    DOE PAGES

    Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi

    2015-01-20

    Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces themore » NEGF results, including optical Dirac Fabry-Pérot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs.« less

  13. Retinal layer segmentation of macular OCT images using boundary classification

    PubMed Central

    Lang, Andrew; Carass, Aaron; Hauser, Matthew; Sotirchos, Elias S.; Calabresi, Peter A.; Ying, Howard S.; Prince, Jerry L.

    2013-01-01

    Optical coherence tomography (OCT) has proven to be an essential imaging modality for ophthalmology and is proving to be very important in neurology. OCT enables high resolution imaging of the retina, both at the optic nerve head and the macula. Macular retinal layer thicknesses provide useful diagnostic information and have been shown to correlate well with measures of disease severity in several diseases. Since manual segmentation of these layers is time consuming and prone to bias, automatic segmentation methods are critical for full utilization of this technology. In this work, we build a random forest classifier to segment eight retinal layers in macular cube images acquired by OCT. The random forest classifier learns the boundary pixels between layers, producing an accurate probability map for each boundary, which is then processed to finalize the boundaries. Using this algorithm, we can accurately segment the entire retina contained in the macular cube to an accuracy of at least 4.3 microns for any of the nine boundaries. Experiments were carried out on both healthy and multiple sclerosis subjects, with no difference in the accuracy of our algorithm found between the groups. PMID:23847738

  14. Spectral-Domain Optical Coherence Tomography Imaging in 67 321 Adults: Associations with Macular Thickness in the UK Biobank Study.

    PubMed

    Patel, Praveen J; Foster, Paul J; Grossi, Carlota M; Keane, Pearse A; Ko, Fang; Lotery, Andrew; Peto, Tunde; Reisman, Charles A; Strouthidis, Nicholas G; Yang, Qi

    2016-04-01

    To derive macular thickness measures and their associations by performing rapid, automated segmentation of spectral-domain optical coherence tomography (SD OCT) images collected and stored as part of the UK Biobank (UKBB) study. Large, multisite cohort study in the United Kingdom. Analysis of cross-sectional data. Adults from the United Kingdom aged 40 to 69 years. Participants had nonmydriatic SD OCT (Topcon 3D OCT-1000 Mark II; Topcon GB, Newberry, Berkshire, UK) performed as part of the ocular assessment module. Rapid, remote, automated segmentation of the images was performed using custom optical coherence tomography (OCT) image analysis software (Topcon Advanced Boundary Segmentation [TABS]; Topcon GB) to generate macular thickness values. We excluded people with a history of ocular or systemic disease (diabetes or neurodegenerative diseases) and eyes with reduced vision (<0.1 logarithm of the minimum angle of resolution) or with low SD OCT signal-to-noise ratio and low segmentation success certainty. Macular thickness values across 9 Early Treatment of Diabetic Retinopathy Study (ETDRS) subfields. The SD OCT scans of 67 321 subjects were available for analysis, with 32 062 people with at least 1 eye meeting the inclusion criteria. There were 17 274 women and 14 788 men, with a mean (standard deviation [SD]) age of 55.2 (8.2) years. The mean (SD) logarithm of the minimum angle of resolution visual acuity was -0.075 (0.087), and the refractive error was -0.071 (+1.91) diopters (D). The mean (SD) central macular thickness (CMT) in the central 1-mm ETDRS subfield was 264.5 (22.9) μm, with 95% confidence limits of 220.8 and 311.5 μm. After adjusting for covariates, CMT was positively correlated with older age, female gender, greater myopia, smoking, body mass index (BMI), and white ethnicity (all P < 0.001). Of note, macular thickness in other subfields was negatively correlated with older age and greater myopia. We report macular thickness data derived from SD OCT images collected as part of the UKBB study and found novel associations among older age, ethnicity, BMI, smoking, and macular thickness. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  15. Comparison of Anterior Segment Measurements with Optical Low-coherence Reflectometry and Partial-coherence Interferometry Optical Biometers.

    PubMed

    Can, Ertuğrul; Duran, Mustafa; Çetinkaya, Tuğba; Arıtürk, Nurşen

    2016-01-01

    To evaluate a new noncontact optical biometer using partial-coherence interferometry and to compare the clinical measurements with those obtained from the device using optical low-coherence reflectometry (OLCR). Ondokuz Mayis University, Samsun, Turkey. Nonrandomized, prospective clinical trial. The study was performed on the healthy phakic eyes of volunteers in the year 2014. Measurements of axial length (AL), anterior chamber depth (ACD), central corneal thickness (CCT), mean keratometry (K), and white-to-white (WTW) measurements obtained with the low-time coherence interferometry (LTCI) were compared with those obtained with the OLCR. The results were evaluated using Bland-Altman analyses. The differences between both methods were assessed using the paired t -test, and its correlation was evaluated by Pearson's coefficient. We examined seventy participants with a mean age of 33.06 (±9.7) (range: 19-53) years. AL measurements with LTCI and OLCR were 23.7 (±1.08) mm and 23.7 (±1.1) mm, respectively. ACD was 3.6 (±0.4) mm and 3.5 (±0.4) mm for LTCI and OLCR, respectively. The mean CCT measurements for both devices were 533 (±28) mm and 522 (±28) mm, respectively. The mean K readings measurements for LTCI and OLCR were 43.3 (±1.5) D and 43.3 (±1.5) D, respectively. The mean WTW distance measurements for both devices were 12.0 (±0.5) mm and 12.1 (±0.5) mm, respectively. Measurements with LTCI correlated well with those with the OLCR. These two devices showed good agreement for the measurement of all parameters.

  16. An innovative approach for investigating the ceramic bracket-enamel interface - optical coherence tomography and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Romînu, Roxana Otilia; Sinescu, Cosmin; Romînu, Mihai; Negrutiu, Meda; Laissue, Philippe; Mihali, Sorin; Cuc, Lavinia; Hughes, Michael; Bradu, Adrian; Podoleanu, Adrian

    2008-09-01

    Bonding has become a routine procedure in several dental specialties - from prosthodontics to conservative dentistry and even orthodontics. In many of these fields it is important to be able to investigate the bonded interfaces to assess their quality. All currently employed investigative methods are invasive, meaning that samples are destroyed in the testing procedure and cannot be used again. We have investigated the interface between human enamel and bonded ceramic brackets non-invasively, introducing a combination of new investigative methods - optical coherence tomography (OCT) and confocal microscopy (CM). Brackets were conventionally bonded on conditioned buccal surfaces of teeth The bonding was assessed using these methods. Three dimensional reconstructions of the detected material defects were developed using manual and semi-automatic segmentation. The results clearly prove that OCT and CM are useful in orthodontic bonding investigations.

  17. Classification of wet aged related macular degeneration using optical coherence tomographic images

    NASA Astrophysics Data System (ADS)

    Haq, Anam; Mir, Fouwad Jamil; Yasin, Ubaid Ullah; Khan, Shoab A.

    2013-12-01

    Wet Age related macular degeneration (AMD) is a type of age related macular degeneration. In order to detect Wet AMD we look for Pigment Epithelium detachment (PED) and fluid filled region caused by choroidal neovascularization (CNV). This form of AMD can cause vision loss if not treated in time. In this article we have proposed an automated system for detection of Wet AMD in Optical coherence tomographic (OCT) images. The proposed system extracts PED and CNV from OCT images using segmentation and morphological operations and then detailed feature set are extracted. These features are then passed on to the classifier for classification. Finally performance measures like accuracy, sensitivity and specificity are calculated and the classifier delivering the maximum performance is selected as a comparison measure. Our system gives higher performance using SVM as compared to other methods.

  18. Fully Automated Segmentation of Fluid/Cyst Regions in Optical Coherence Tomography Images With Diabetic Macular Edema Using Neutrosophic Sets and Graph Algorithms.

    PubMed

    Rashno, Abdolreza; Koozekanani, Dara D; Drayna, Paul M; Nazari, Behzad; Sadri, Saeed; Rabbani, Hossein; Parhi, Keshab K

    2018-05-01

    This paper presents a fully automated algorithm to segment fluid-associated (fluid-filled) and cyst regions in optical coherence tomography (OCT) retina images of subjects with diabetic macular edema. The OCT image is segmented using a novel neutrosophic transformation and a graph-based shortest path method. In neutrosophic domain, an image is transformed into three sets: (true), (indeterminate) that represents noise, and (false). This paper makes four key contributions. First, a new method is introduced to compute the indeterminacy set , and a new -correction operation is introduced to compute the set in neutrosophic domain. Second, a graph shortest-path method is applied in neutrosophic domain to segment the inner limiting membrane and the retinal pigment epithelium as regions of interest (ROI) and outer plexiform layer and inner segment myeloid as middle layers using a novel definition of the edge weights . Third, a new cost function for cluster-based fluid/cyst segmentation in ROI is presented which also includes a novel approach in estimating the number of clusters in an automated manner. Fourth, the final fluid regions are achieved by ignoring very small regions and the regions between middle layers. The proposed method is evaluated using two publicly available datasets: Duke, Optima, and a third local dataset from the UMN clinic which is available online. The proposed algorithm outperforms the previously proposed Duke algorithm by 8% with respect to the dice coefficient and by 5% with respect to precision on the Duke dataset, while achieving about the same sensitivity. Also, the proposed algorithm outperforms a prior method for Optima dataset by 6%, 22%, and 23% with respect to the dice coefficient, sensitivity, and precision, respectively. Finally, the proposed algorithm also achieves sensitivity of 67.3%, 88.8%, and 76.7%, for the Duke, Optima, and the university of minnesota (UMN) datasets, respectively.

  19. The Cellular Origins of the Outer Retinal Bands in Optical Coherence Tomography Images

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Zawadzki, Robert J.; Lee, Sang-Hyuck; Werner, John S.; Miller, Donald T.

    2014-01-01

    Purpose. To test the recently proposed hypothesis that the second outer retinal band, observed in clinical OCT images, originates from the inner segment ellipsoid, by measuring: (1) the thickness of this band within single cone photoreceptors, and (2) its respective distance from the putative external limiting membrane (band 1) and cone outer segment tips (band 3). Methods. Adaptive optics-optical coherence tomography images were acquired from four subjects without known retinal disease. Images were obtained at foveal (2°) and perifoveal (5°) locations. Cone photoreceptors (n = 9593) were identified and segmented in three dimensions using custom software. Features corresponding to bands 1, 2, and 3 were automatically identified. The thickness of band 2 was assessed in each cell by fitting the longitudinal reflectance profile of the band with a Gaussian function. Distances between bands 1 and 2, and between 2 and 3, respectively, were also measured in each cell. Two independent calibration techniques were employed to determine the depth scale (physical length per pixel) of the imaging system. Results. When resolved within single cells, the thickness of band 2 is a factor of three to four times narrower than in corresponding clinical OCT images. The distribution of band 2 thickness across subjects and eccentricities had a modal value of 4.7 μm, with 48% of the cones falling between 4.1 and 5.2 μm. No significant differences were found between cells in the fovea and perifovea. The distance separating bands 1 and 2 was found to be larger than the distance between bands 2 and 3, across subjects and eccentricities, with a significantly larger difference at 5° than 2°. Conclusions. On the basis of these findings, we suggest that ascription of the outer retinal band 2 to the inner segment ellipsoid is unjustified, because the ellipsoid is both too thick and proximally located to produce the band. PMID:25324288

  20. Posterior Eye Shape Measurement With Retinal OCT Compared to MRI

    PubMed Central

    Kuo, Anthony N.; Verkicharla, Pavan K.; McNabb, Ryan P.; Cheung, Carol Y.; Hilal, Saima; Farsiu, Sina; Chen, Christopher; Wong, Tien Y.; Ikram, M. Kamran; Cheng, Ching Y.; Young, Terri L.; Saw, Seang M.; Izatt, Joseph A.

    2016-01-01

    Purpose Posterior eye shape assessment by magnetic resonance imaging (MRI) is used to study myopia. We tested the hypothesis that optical coherence tomography (OCT), as an alternative, could measure posterior eye shape similarly to MRI. Methods Macular spectral-domain OCT and brain MRI images previously acquired as part of the Singapore Epidemiology of Eye Diseases study were analyzed. The right eye in the MRI and OCT images was automatically segmented. Optical coherence tomography segmentations were corrected for optical and display distortions requiring biometry data. The segmentations were fitted to spheres and ellipsoids to obtain the posterior eye radius of curvature (Rc) and asphericity (Qxz). The differences in Rc and Qxz measured by MRI and OCT were tested using paired t-tests. Categorical assignments of prolateness or oblateness using Qxz were compared. Results Fifty-two subjects (67.8 ± 5.6 years old) with spherical equivalent refraction from +0.50 to −5.38 were included. The mean paired difference between MRI and original OCT posterior eye Rc was 24.03 ± 46.49 mm (P = 0.0005). For corrected OCT images, the difference in Rc decreased to −0.23 ± 2.47 mm (P = 0.51). The difference between MRI and OCT asphericity, Qxz, was −0.052 ± 0.343 (P = 0.28). However, categorical agreement was only moderate (κ = 0.50). Conclusions Distortion-corrected OCT measurements of Rc and Qxz were not statistically significantly different from MRI, although the moderate categorical agreement suggests that individual differences remained. This study provides evidence that with distortion correction, noninvasive office-based OCT could potentially be used instead of MRI for the study of posterior eye shape. PMID:27409473

  1. Automated choroid segmentation based on gradual intensity distance in HD-OCT images.

    PubMed

    Chen, Qiang; Fan, Wen; Niu, Sijie; Shi, Jiajia; Shen, Honglie; Yuan, Songtao

    2015-04-06

    The choroid is an important structure of the eye and plays a vital role in the pathology of retinal diseases. This paper presents an automated choroid segmentation method for high-definition optical coherence tomography (HD-OCT) images, including Bruch's membrane (BM) segmentation and choroidal-scleral interface (CSI) segmentation. An improved retinal nerve fiber layer (RNFL) complex removal algorithm is presented to segment BM by considering the structure characteristics of retinal layers. By analyzing the characteristics of CSI boundaries, we present a novel algorithm to generate a gradual intensity distance image. Then an improved 2-D graph search method with curve smooth constraints is used to obtain the CSI segmentation. Experimental results with 212 HD-OCT images from 110 eyes in 66 patients demonstrate that the proposed method can achieve high segmentation accuracy. The mean choroid thickness difference and overlap ratio between our proposed method and outlines drawn by experts was 6.72µm and 85.04%, respectively.

  2. Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy

    PubMed Central

    Xu, Yupeng; Yan, Ke; Kim, Jinman; Wang, Xiuying; Li, Changyang; Su, Li; Yu, Suqin; Xu, Xun; Feng, Dagan David

    2017-01-01

    Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management. PMID:28966847

  3. Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy.

    PubMed

    Xu, Yupeng; Yan, Ke; Kim, Jinman; Wang, Xiuying; Li, Changyang; Su, Li; Yu, Suqin; Xu, Xun; Feng, Dagan David

    2017-09-01

    Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management.

  4. Automated retinal layer segmentation and characterization

    NASA Astrophysics Data System (ADS)

    Luisi, Jonathan; Briley, David; Boretsky, Adam; Motamedi, Massoud

    2014-05-01

    Spectral Domain Optical Coherence Tomography (SD-OCT) is a valuable diagnostic tool in both clinical and research settings. The depth-resolved intensity profiles generated by light backscattered from discrete layers of the retina provide a non-invasive method of investigating progressive diseases and injury within the eye. This study demonstrates the application of steerable convolution filters capable of automatically separating gradient orientations to identify edges and delineate tissue boundaries. The edge maps were recombined to measure thickness of individual retinal layers. This technique was successfully applied to longitudinally monitor changes in retinal morphology in a mouse model of laser-induced choroidal neovascularization (CNV) and human data from age-related macular degeneration patients. The steerable filters allow for direct segmentation of noisy images, while novel recombination of weaker segmentations allow for denoising post-segmentation. The segmentation before denoising strategy allows the rapid detection of thin retinal layers even under suboptimal imaging conditions.

  5. Anterior segment biometry during accommodation imaged with ultra-long scan depth optical coherence tomography

    PubMed Central

    Du, Chixin; Shen, Meixiao; Li, Ming; Zhu, Dexi; Wang, Michael R.; Wang, Jianhua

    2012-01-01

    Purpose To measure by ultra-long scan depth optical coherence tomography (UL-OCT) dimensional changes in the anterior segment of human eyes during accommodation. Design Evaluation of diagnostic test or technology. Participants Forty-one right eyes of healthy subjects with a mean age of 34 years (range, 22–41 years) and a mean refraction of −2.5±2.6 diopters (D) were imaged in two repeated measurements at minimal and maximal accommodation. Methods A specially adapted designed UL-OCT instrument was used to image from the front surface of the cornea to the back surface of the crystalline lens. Custom software corrected the optical distortion of the images and yielded the biometric measurements. The coefficient of repeatability (COR) and the intraclass correlation coefficient (ICC) were calculated to evaluate the repeatability and reliability. Main Outcome Measures Anterior segment parameters and associated repeatability and reliability upon accommodation. The dimensional results included central corneal thickness (CCT), anterior chamber depth and width (ACD, ACW), pupil diameter (PD), lens thickness (LT), anterior segment length (ASL=ACD+LT), lens central position (LCP=ACD+1/2LT) and horizontal radii of the lens anterior and posterior surface curvatures (LAC, LPC). Results Repeated measurements of each variable within each accommodative state did not differ significantly (P>0.05). The CORs and ICCs for CCT, ACW, ACD, LT, LCP, and ASL were excellent (1.2% to 3.59% and 0.998 to 0.877, respectively). They were higher for PD (18.90% to 21.63% and 0.880 to 0.874, respectively), and moderate for LAC and LPC (34.86% to 42.72% and 0.669 to 0.251, respectively) in the two accommodative states. Compared to minimal accommodation, PD, ACD, LAC, LPC, and LCP decreased and LT and ASL increased significantly at maximal accommodation (P<0.05), while CCT and ACW did not change (P>0.05). Conclusions UL-OCT measured changes in anterior segment dimensions during accommodation with good repeatability and reliability. During accommodation, the back surface of the lens became steeper as the lens moved forward. PMID:22902211

  6. Fully automatic three-dimensional visualization of intravascular optical coherence tomography images: methods and feasibility in vivo

    PubMed Central

    Ughi, Giovanni J; Adriaenssens, Tom; Desmet, Walter; D’hooge, Jan

    2012-01-01

    Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization. PMID:23243578

  7. In situ optical microscopy of the martensitic phase transformation of lithium

    NASA Astrophysics Data System (ADS)

    Krystian, M.; Pichl, W.

    2000-12-01

    The phase transformation of lithium was investigated by in situ optical microscopy in a helium cryostat. The martensite microstructure is composed of irregular segments which grow in rapid bursts from many nuclei to a final size of 10 to 20 μm and then are immobilized. A major part of the segments is arranged in groups of parallel lamellas. A theoretical consideration of lattice compatibility predicts the existence of an almost perfectly coherent habit-plane interface between bcc and 9R in lithium. Therefore, the irregular microstructure is interpreted by the presence of the disordered polytype phase. Comparison with an earlier investigation in comparably impure lithium indicates a strong influence of impurities on the transformation mechanism. The connections between the low-temperature phase diagram, the geometrical compatibility condition, and the martensite microstructure are discussed.

  8. Fully Automatic Software for Retinal Thickness in Eyes With Diabetic Macular Edema From Images Acquired by Cirrus and Spectralis Systems

    PubMed Central

    Lee, Joo Yong; Chiu, Stephanie J.; Srinivasan, Pratul P.; Izatt, Joseph A.; Toth, Cynthia A.; Farsiu, Sina; Jaffe, Glenn J.

    2013-01-01

    Purpose. To determine whether a novel automatic segmentation program, the Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP), can be applied to spectral-domain optical coherence tomography (SD-OCT) images obtained from different commercially available SD-OCT in eyes with diabetic macular edema (DME). Methods. A novel segmentation framework was used to segment the retina, inner retinal pigment epithelium, and Bruch's membrane on images from eyes with DME acquired by one of two SD-OCT systems, Spectralis or Cirrus high definition (HD)-OCT. Thickness data obtained by the DOCTRAP software were compared with those produced by Spectralis and Cirrus. Measurement agreement and its dependence were assessed using intraclass correlation (ICC). Results. A total of 40 SD-OCT scans from 20 subjects for each machine were included in the analysis. Spectralis: the mean thickness in the 1-mm central area determined by DOCTRAP and Spectralis was 463.8 ± 107.5 μm and 467.0 ± 108.1 μm, respectively (ICC, 0.999). There was also a high level agreement in surrounding areas (out to 3 mm). Cirrus: the mean thickness in the 1-mm central area was 440.8 ± 183.4 μm and 442.7 ± 182.4 μm by DOCTRAP and Cirrus, respectively (ICC, 0.999). The thickness agreement in surrounding areas (out to 3 mm) was more variable due to Cirrus segmentation errors in one subject (ICC, 0.734–0.999). After manual correction of the errors, there was a high level of thickness agreement in surrounding areas (ICC, 0.997–1.000). Conclusions. The DOCTRAP may be useful to compare retinal thicknesses in eyes with DME across OCT platforms. PMID:24084089

  9. Evaluation of a New Software Version of the RTVue Optical Coherence Tomograph for Image Segmentation and Detection of Glaucoma in High Myopia.

    PubMed

    Holló, Gábor; Shu-Wei, Hsu; Naghizadeh, Farzaneh

    2016-06-01

    To compare the current (6.3) and a novel software version (6.12) of the RTVue-100 optical coherence tomograph (RTVue-OCT) for ganglion cell complex (GCC) and retinal nerve fiber layer thickness (RNFLT) image segmentation and detection of glaucoma in high myopia. RNFLT and GCC scans were acquired with software version 6.3 of the RTVue-OCT on 51 highly myopic eyes (spherical refractive error ≤-6.0 D) of 51 patients, and were analyzed with both the software versions. Twenty-two eyes were nonglaucomatous, 13 were ocular hypertensive and 16 eyes had glaucoma. No difference was seen for any RNFLT, and average GCC parameter between the software versions (paired t test, P≥0.084). Global loss volume was significantly lower (more normal) with version 6.12 than with version 6.3 (Wilcoxon signed-rank test, P<0.001). The percentage agreement (κ) between the clinical (normal and ocular hypertensive vs. glaucoma) and the software-provided classifications (normal and borderline vs. outside normal limits) were 0.3219 and 0.4442 for average RNFLT, and 0.2926 and 0.4977 for average GCC with versions 1 and 2, respectively (McNemar symmetry test, P≥0.289). No difference in average RNFLT and GCC classification (McNemar symmetry test, P≥0.727) and the number of eyes with at least 1 segmentation error (P≥0.109) was found between the software versions, respectively. Although GCC segmentation was improved with software version 6.12 compared with the current version in highly myopic eyes, this did not result in a significant change of the average RNFLT and GCC values, and did not significantly improve the software-provided classification for glaucoma.

  10. Evaluation of the Anterior Segment Angle-to-Angle Scan of Cirrus High-Definition Optical Coherence Tomography and Comparison With Gonioscopy and With the Visante OCT.

    PubMed

    Tun, Tin A; Baskaran, Mani; Tan, Shayne S; Perera, Shamira A; Aung, Tin; Husain, Rahat

    2017-01-01

    To evaluate the diagnostic performance of the anterior segment angle-to-angle scan of the Cirrus high-definition optical coherence tomography (HD-OCT) in detecting eyes with closed angles. All subjects underwent dark-room gonioscopy by an ophthalmologist. A technician performed anterior segment imaging with Cirrus (n = 202) and Visante OCT (n = 85) under dark-room conditions. All eyes were categorized by two masked graders as per number of closed quadrants. Each quadrant of anterior chamber angle was categorized as a closed angle if posterior trabecular meshwork could not be seen on gonioscopy or if there was any irido-corneal contact anterior to scleral spur in Cirrus and Visante images. An eye was graded as having a closed angle if two or more quadrants were closed. Agreement and area under the curve (AUC) were performed. There were 50 (24.8%) eyes with closed angles. The agreements of closed-angle diagnosis (by eye) between Cirrus HD-OCT and gonioscopy (k = 0.59; 95% confidence interval (CI) 0.45-0.72; AC1 = 0.76) and between Cirrus and Visante OCT (k = 0.65; 95% CI 0.48-0.82, AC1 = 0.77) were moderate. The AUC for diagnosing the eye with gonioscopic closed angle by Cirrus HD-OCT was good (AUC = 0.86; sensitivity = 83.33; specificity = 77.78). The diagnostic performance of Cirrus HD-OCT in detecting the eyes with closed angles was similar to that of Visante (AUC 0.87 vs. 0.9, respectively; P = 0.51). The anterior segment angle-to-angle scans of Cirrus HD-OCT demonstrated similar diagnostic performance as Visante in detecting gonioscopic closed angles. The agreement between Cirrus and gonioscopy for detecting eyes with closed angles was moderate.

  11. Biomedical sensing and imaging for the anterior segment of the eye

    NASA Astrophysics Data System (ADS)

    Eom, Tae Joong; Yoo, Young-Sik; Lee, Yong-Eun; Kim, Beop-Min; Joo, Choun-Ki

    2015-07-01

    Eye is an optical system composed briefly of cornea, lens, and retina. Ophthalmologists can diagnose status of patient's eye from information provided by optical sensors or images as well as from history taking or physical examinations. Recently, we developed a prototype of optical coherence tomography (OCT) image guided femtosecond laser cataract surgery system. The system combined a swept-source OCT and a femtosecond (fs) laser and afford the 2D and 3D structure information to increase the efficiency and safety of the cataract procedure. The OCT imaging range was extended to achieve the 3D image from the cornea to lens posterior. A prototype of OCT image guided fs laser cataract surgery system. The surgeons can plan the laser illumination range for the nuclear division and segmentation, and monitor the whole cataract surgery procedure using the real time OCT. The surgery system was demonstrated with an extracted pig eye and in vivo rabbit eye to verify the system performance and stability.

  12. Potential use of combining the diffusion equation with the free Shrödinger equation to improve the Optical Coherence Tomography image analysis

    NASA Astrophysics Data System (ADS)

    Cabrera Fernandez, Delia; Salinas, Harry M.; Somfai, Gabor; Puliafito, Carmen A.

    2006-03-01

    Optical coherence tomography (OCT) is a rapidly emerging medical imaging technology. In ophthalmology, OCT is a powerful tool because it enables visualization of the cross sectional structure of the retina and anterior eye with higher resolutions than any other non-invasive imaging modality. Furthermore, OCT image information can be quantitatively analyzed, enabling objective assessment of features such as macular edema and diabetes retinopathy. We present specific improvements in the quantitative analysis of the OCT system, by combining the diffusion equation with the free Shrödinger equation. In such formulation, important features of the image can be extracted by extending the analysis from the real axis to the complex domain. Experimental results indicate that our proposed novel approach has good performance in speckle noise removal, enhancement and segmentation of the various cellular layers of the retina using the OCT system.

  13. In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography

    PubMed Central

    Gong, Peijun; Es’haghian, Shaghayegh; Harms, Karl-Anton; Murray, Alexandra; Rea, Suzanne; Wood, Fiona M.; Sampson, David D.; McLaughlin, Robert A.

    2016-01-01

    We present an automated, label-free method for lymphangiography of cutaneous lymphatic vessels in humans in vivo using optical coherence tomography (OCT). This method corrects for the variation in OCT signal due to the confocal function and sensitivity fall-off of a spectral-domain OCT system and utilizes a single-scattering model to compensate for A-scan signal attenuation to enable reliable thresholding of lymphatic vessels. A segment-joining algorithm is then incorporated into the method to mitigate partial-volume effects with small vessels. The lymphatic vessel images are augmented with images of the blood vessel network, acquired from the speckle decorrelation with additional weighting to differentiate blood vessels from the observed high decorrelation in lymphatic vessels. We demonstrate the method with longitudinal scans of human burn scar patients undergoing ablative fractional laser treatment, showing the visualization of the cutaneous lymphatic and blood vessel networks. PMID:28018713

  14. Microstructural abnormalities in MEWDS demonstrated by ultrahigh resolution optical coherence tomography.

    PubMed

    Nguyen, My Hanh T; Witkin, Andre J; Reichel, Elias; Ko, Tony H; Fujimoto, James G; Schuman, Joel S; Duker, Jay S

    2007-01-01

    Histopathological studies of acute multiple evanescent white dot syndrome (MEWDS) have not been reported because of the transient and benign nature of the disease. Ultrahigh resolution optical coherence tomography (UHR-OCT), capable of high resolution in vivo imaging, offers a unique opportunity to visualize retinal microstructure in the disease. UHR-OCT images of the maculae of five patients with MEWDS were obtained and analyzed. Diagnosis was based on clinical presentation, examination, visual field testing, and angiography. UHR-OCT revealed disturbances in the photoreceptor inner/outer segment junction (IS/OS) in each of the five patients (six eyes) with MEWDS. In addition, thinning of the outer nuclear layer was seen in the case of recurrent MEWDS, suggesting that repeated episodes of MEWDS may result in photoreceptor atrophy. Subtle disruptions of the photoreceptor IS/OS are demonstrated in all eyes affected by MEWDS. UHR-OCT may be a useful adjunct to diagnosis and monitoring of MEWDS.

  15. Utilizing optical coherence tomography for CAD/CAM of indirect dental restorations

    NASA Astrophysics Data System (ADS)

    Chityala, Ravishankar; Vidal, Carola; Jones, Robert

    Optical Coherence Tomography (OCT) has seen broad application in dentistry including early carious lesion detection and imaging defects in resin composite restorations. This study investigates expanding the clinical usefulness by investigating methods to use OCT for obtaining three-dimensional (3D) digital impressions, which can be integrated to CAD/CAM manufacturing of indirect restorations. 3D surface topography `before' and `after' a cavity preparation was acquired by an intraoral cross polarization swept source OCT (CP-OCT) system with a Micro-Electro-Mechanical System (MEMS) scanning mirror. Image registration and segmentation methods were used to digitally construct a replacement restoration that modeled the original surface morphology of a hydroxyapatite sample. After high resolution additive manufacturing (e.g. polymer 3D printing) of the replacement restoration, micro-CT imaging was performed to examine the marginal adaptation. This study establishes the protocol for further investigation of integrating OCT with CAD/CAM of indirect dental restorations.

  16. Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning.

    PubMed

    Chen, Yiwei; Hong, Young-Joo; Makita, Shuichi; Yasuno, Yoshiaki

    2018-03-01

    To correct eye motion artifacts in en face optical coherence tomography angiography (OCT-A) images, a Lissajous scanning method with subsequent software-based motion correction is proposed. The standard Lissajous scanning pattern is modified to be compatible with OCT-A and a corresponding motion correction algorithm is designed. The effectiveness of our method was demonstrated by comparing en face OCT-A images with and without motion correction. The method was further validated by comparing motion-corrected images with scanning laser ophthalmoscopy images, and the repeatability of the method was evaluated using a checkerboard image. A motion-corrected en face OCT-A image from a blinking case is presented to demonstrate the ability of the method to deal with eye blinking. Results show that the method can produce accurate motion-free en face OCT-A images of the posterior segment of the eye in vivo .

  17. En face swept-source optical coherence tomographic analysis of X-linked juvenile retinoschisis.

    PubMed

    Ono, Shinji; Takahashi, Atsushi; Mase, Tomoko; Nagaoka, Taiji; Yoshida, Akitoshi

    2016-07-01

    To clarify the area of retinoschisis by X-linked juvenile retinoschisis (XLRS) using swept-source optical coherence tomography (SS-OCT) en face images. We report two cases of XLRS in the same family. The patients presented with bilateral blurred vision. The posterior segment examination showed a spoked-wheel pattern in the macula. SS-OCT cross-sectional images revealed widespread retinal splitting at the level of the inner nuclear layer bilaterally. We diagnosed XLRS. To evaluate the area of retinoschisis, we obtained en face SS-OCT images, which clearly visualized the area of retinoschisis seen as a sunflower-like structure in the macula. We report the findings on en face SS-OCT images from patients with XLRS. The en face images using SS-OCT showed the precise area of retinoschisis compared with the SS-OCT thickness map and are useful for managing patients with XLRS.

  18. A scale-based connected coherence tree algorithm for image segmentation.

    PubMed

    Ding, Jundi; Ma, Runing; Chen, Songcan

    2008-02-01

    This paper presents a connected coherence tree algorithm (CCTA) for image segmentation with no prior knowledge. It aims to find regions of semantic coherence based on the proposed epsilon-neighbor coherence segmentation criterion. More specifically, with an adaptive spatial scale and an appropriate intensity-difference scale, CCTA often achieves several sets of coherent neighboring pixels which maximize the probability of being a single image content (including kinds of complex backgrounds). In practice, each set of coherent neighboring pixels corresponds to a coherence class (CC). The fact that each CC just contains a single equivalence class (EC) ensures the separability of an arbitrary image theoretically. In addition, the resultant CCs are represented by tree-based data structures, named connected coherence tree (CCT)s. In this sense, CCTA is a graph-based image analysis algorithm, which expresses three advantages: 1) its fundamental idea, epsilon-neighbor coherence segmentation criterion, is easy to interpret and comprehend; 2) it is efficient due to a linear computational complexity in the number of image pixels; 3) both subjective comparisons and objective evaluation have shown that it is effective for the tasks of semantic object segmentation and figure-ground separation in a wide variety of images. Those images either contain tiny, long and thin objects or are severely degraded by noise, uneven lighting, occlusion, poor illumination, and shadow.

  19. The application of optical coherence tomography angiography in retinal diseases.

    PubMed

    Sambhav, Kumar; Grover, Sandeep; Chalam, Kakarla V

    Optical coherence tomography angiography (OCTA) is a new, noninvasive imaging technique that generates real-time volumetric data on chorioretinal vasculature and its flow pattern. With the advent of high-speed optical coherence tomography, established enface chorioretinal segmentation, and efficient algorithms, OCTA generates images that resemble an angiogram. The principle of OCTA involves determining the change in backscattering between consecutive B-scans and then attributing the differences to the flow of erythrocytes through retinal blood vessels. OCTA has shown promise in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age-related macular degeneration, and retinal vascular occlusions. It quantifies vascular compromise reflecting the severity of diabetic retinopathy. OCTA detects the presence of choroidal neovascularization in exudative age-related macular degeneration and maps loss of choriocapillaris in nonexudative age-related macular degeneration. We describe principles of OCTA and findings in common and some uncommon retinal pathologies. Finally, we summarize its potential future applications. Its current limitations include a relatively small field of view, inability to show leakage, and a tendency for image artifacts. Further larger studies will define OCTAs utility in clinical settings and establish if the technology may offer its utility in decreasing morbidity through early detection and guide therapeutic interventions in retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Optical coherence tomography visualizes neurons in human entorhinal cortex

    PubMed Central

    Magnain, Caroline; Augustinack, Jean C.; Konukoglu, Ender; Frosch, Matthew P.; Sakadžić, Sava; Varjabedian, Ani; Garcia, Nathalie; Wedeen, Van J.; Boas, David A.; Fischl, Bruce

    2015-01-01

    Abstract. The cytoarchitecture of the human brain is of great interest in diverse fields: neuroanatomy, neurology, neuroscience, and neuropathology. Traditional histology is a method that has been historically used to assess cell and fiber content in the ex vivo human brain. However, this technique suffers from significant distortions. We used a previously demonstrated optical coherence microscopy technique to image individual neurons in several square millimeters of en-face tissue blocks from layer II of the human entorhinal cortex, over 50  μm in depth. The same slices were then sectioned and stained for Nissl substance. We registered the optical coherence tomography (OCT) images with the corresponding Nissl stained slices using a nonlinear transformation. The neurons were then segmented in both images and we quantified the overlap. We show that OCT images contain information about neurons that is comparable to what can be obtained from Nissl staining, and thus can be used to assess the cytoarchitecture of the ex vivo human brain with minimal distortion. With the future integration of a vibratome into the OCT imaging rig, this technique can be scaled up to obtain undistorted volumetric data of centimeter cube tissue blocks in the near term, and entire human hemispheres in the future. PMID:25741528

  1. STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF BENIGN FLECK RETINA USING MULTIMODAL IMAGING.

    PubMed

    Neriyanuri, Srividya; Rao, Chetan; Raman, Rajiv

    2017-01-01

    To report structural and functional features in a case series of benign fleck retina using multimodal imaging. Four cases with benign fleck retina underwent complete ophthalmic examination that included detailed history, visual acuity, and refractive error testing, FM-100 hue test, dilated fundus evaluation, full field electroretinogram, fundus photography with autofluorescence, fundus fluorescein angiography, and swept-source optical coherence tomography. Age group of the cases ranged from 19 years to 35 years (3 males and 1 female). Parental consanguinity was reported in two cases. All of them were visually asymptomatic with best-corrected visual acuity of 20/20 (moderate astigmatism) in both the eyes. Low color discrimination was seen in two cases. Fundus photography showed pisciform flecks which were compactly placed on posterior pole and were discrete, diverging towards periphery. Lesions were seen as smaller dots within 1500 microns from fovea and were hyperfluorescent on autofluorescence. Palisading retinal pigment epithelium defects were seen in posterior pole on fundus fluorescein angiography imaging; irregular hyper fluorescence was also noted. One case had reduced cone responses on full field electroretinogram; the other three cases had normal electroretinogram. On optical coherence tomography, level of lesions varied from retinal pigment epithelium, inner segment to outer segment extending till external limiting membrane. Functional and structural deficits in benign fleck retina were picked up using multimodal imaging.

  2. Optical Coherence Tomography of Fovea Before and after Laser Treatment in Retinopathy of Prematurity

    PubMed Central

    Narang, Subina; Singh, Amrita; Jain, Suksham; Sood, Sunandan; Chawla, Deepak

    2014-01-01

    Purpose: To study the fovea in preterm babies with Type I retinopathy of prematurity (ROP) before and after laser treatment using optical coherence tomography (OCT). Materials and Methods: This was a prospective observational case-control study including preterm neonates undergoing screening for ROP from May 2009 to July 2011. Group 1 included 30 eyes of 15 neonates with Type I ROP. A 532-nm laser was used for treatment in all cases for Group 1. Group 2 included 14 eyes of 7 preterm neonates without ROP that served as controls. OCT was performed under sedation in the lateral position before and after laser treatment. P <0.05 was considered statistically significant. Results: The mean initial central macular thickness (CMT) was comparable in both groups (P = 0.832) and statistically significantly correlated with gestational age (P = 0.015). No adverse effects on the anterior segment or posterior segment were observed. There was no significant difference in CMT before and after laser treatment in Group 1 (P = 0.007). There was one case of cystoid macular edema after laser treatment. Conclusion: The macula in preterm babies with Type 1 ROP was comparable to those without ROP. Gestational age was the only predictor of CMT. PMID:25371634

  3. Stromal demarcation line induced by corneal cross-linking in eyes with keratoconus and nonkeratoconic asymmetric topography.

    PubMed

    Malta, João B N; Renesto, Adimara C; Moscovici, Bernardo K; Soong, H K; Campos, Mauro

    2015-02-01

    To evaluate stromal demarcation lines following corneal cross-linking (CXL) using anterior segment optical coherence tomography in patients with keratoconus and nonkeratoconic asymmetric topography. Fifth-nine eyes of 59 patients were enrolled in a retrospective comparative case series, of which 19 eyes had keratoconus and 40 eyes had asymmetric topography. Eyes with asymmetric topography were treated in preparation for photorefractive keratectomy. One month after CXL, a stromal demarcation line was evaluated at 5 standardized corneal points using anterior segment optical coherence tomography. Mean stromal demarcation line depths were measured at 5 points on the cornea, namely, centrally, 3.0 mm temporally, 1.5 mm temporally, 3.0 mm nasally, and 1.5 mm nasally. For the keratoconus group, the values were 178 ± 47, 123 ± 15, 152 ± 47, 125 ± 23, and 160 ± 43 μm, respectively. For the asymmetric corneal topography group (without keratoconus), they were 305 ± 64, 235 ± 57, 294 ± 50, 214 ± 54, and 285 ± 58 μm, respectively. There was no correlation between central corneal pachymetry and stromal demarcation line depth in all 5 measured corneal points in both groups. CXL treatment profiles are similar in keratoconic and nonkeratoconic eyes with asymmetric topography.

  4. In vivo imaging of coin-shaped lesions in cytomegalovirus corneal endotheliitis by anterior segment optical coherence tomography.

    PubMed

    Yokogawa, Hideaki; Kobayashi, Akira; Yamazaki, Natsuko; Sugiyama, Kazuhisa

    2014-12-01

    The aim of this study was to investigate in vivo corneal changes of coin-shaped lesions in cytomegalovirus corneal endotheliitis using anterior segment optical coherence tomography (AS-OCT). Two eyes of 2 patients (69- and 71-year-old men), with polymerase chain reaction-proven CMV corneal endotheliitis presenting coin-shaped lesions, were included in this study. AS-OCT examination was performed on the initial visit and at follow-up visits by paying special attention to the coin-shaped lesions. Selected AS-OCT images of the cornea were evaluated qualitatively for changes in the shape and degree of light reflection. In both cases, coin-shaped lesions were observed at the corneal endothelial surface as clusters of fine precipitates using slit-lamp biomicroscopy. Using AS-OCT, high-resolution images of the putative coin-shaped lesions were successfully obtained in both patients as an irregularly thickened highly reflective endothelial cell layer. After anti-CMV treatment, the coin-shaped lesions were resolved as assessed by slit-lamp biomicroscopy and AS-OCT in both patients. High-resolution AS-OCT provides novel and detailed visual information of coin-shaped lesions in patients with CMV corneal endotheliitis. Visualization of coin-shaped lesions by AS-OCT may be a useful adjunct to the diagnosis and follow-up of CMV corneal endotheliitis.

  5. Evaluation of Kayser-Fleischer ring in Wilson disease by anterior segment optical coherence tomography.

    PubMed

    Sridhar, Mittanamalli S; Rangaraju, Advithi; Anbarasu, Kavitha; Reddy, Sharat Putta; Daga, Sachin; Jayalakshmi, Sita; Shaik, Bajibhi

    2017-05-01

    The purpose of the study is to present anterior segment optical coherence tomography (AS-OCT) as an alternative method of evaluating Kayser-Fleischer (KF) ring in Wilson disease (WD) not only by ophthalmologists but also by other clinicians dealing with WD. This was a retrospective case series of six WD patients with KF ring. Evaluation of KF ring was done by naked eye examination using torch light, slit lamp biomicroscopy (SL), and AS-OCT. SL examination was done using a narrow slit of the superior cornea. AS-OCT was done using the Optovue RTvue PremierTM device (Fremont, CA, USA). AS-OCT revealed KF ring as an intense hyperreflective band at the level of Descemet membrane (DM). Color scale of AS-OCT showed KF ring as greenish/greenish yellow/orange yellow/yellowish/red band. Validation of AS-OCT findings was done by second ophthalmologist, medical gastroenterologist, surgical gastroenterologist, and neurophysician. After seeing the first observation, they could identify the AS-OCT features in all pictures with ease. This is the first observation of KF ring in WD on AS-OCT. On AS-OCT, KF ring is visualized as intense hyperreflectivity at the level of DM in the peripheral cornea. Further, studies are needed to evaluate the usefulness of AS-OCT in WD management.

  6. Corneal edema after phacoemulsification

    PubMed Central

    Sharma, Namrata; Singhal, Deepali; Nair, Sreelakshmi P; Sahay, Pranita; Sreeshankar, SS; Maharana, Prafulla Kumar

    2017-01-01

    Phacoemulsification is the most commonly performed cataract surgery in this era. With all the recent advances in investigations and management of cataract through phacoemulsification, most of the patients are able to achieve excellent visual outcome. Corneal edema after phacoemulsification in the immediate postoperative period often leads to patient dissatisfaction and worsening of outcome. Delayed onset corneal edema often warrants endothelial keratoplasty. This review highlights the etiopathogenesis, risk factors, and management of corneal edema in the acute phase including descemet's membrane detachment (DMD) and toxic anterior segment syndrome. Various investigative modalities such as pachymetry, specular microscopy, anterior segment optical coherence tomography, and confocal microscopy have been discussed briefly. PMID:29208818

  7. Automated seeding-based nuclei segmentation in nonlinear optical microscopy.

    PubMed

    Medyukhina, Anna; Meyer, Tobias; Heuke, Sandro; Vogler, Nadine; Dietzek, Benjamin; Popp, Jürgen

    2013-10-01

    Nonlinear optical (NLO) microscopy based, e.g., on coherent anti-Stokes Raman scattering (CARS) or two-photon-excited fluorescence (TPEF) is a fast label-free imaging technique, with a great potential for biomedical applications. However, NLO microscopy as a diagnostic tool is still in its infancy; there is a lack of robust and durable nuclei segmentation methods capable of accurate image processing in cases of variable image contrast, nuclear density, and type of investigated tissue. Nonetheless, such algorithms specifically adapted to NLO microscopy present one prerequisite for the technology to be routinely used, e.g., in pathology or intraoperatively for surgical guidance. In this paper, we compare the applicability of different seeding and boundary detection methods to NLO microscopic images in order to develop an optimal seeding-based approach capable of accurate segmentation of both TPEF and CARS images. Among different methods, the Laplacian of Gaussian filter showed the best accuracy for the seeding of the image, while a modified seeded watershed segmentation was the most accurate in the task of boundary detection. The resulting combination of these methods followed by the verification of the detected nuclei performs high average sensitivity and specificity when applied to various types of NLO microscopy images.

  8. Macular function and morphologic features in juvenile stargardt disease: longitudinal study.

    PubMed

    Testa, Francesco; Melillo, Paolo; Di Iorio, Valentina; Orrico, Ada; Attanasio, Marcella; Rossi, Settimio; Simonelli, Francesca

    2014-12-01

    To evaluate disease progression in a cohort of patients with a clinical and genetic diagnosis of Stargardt disease. Longitudinal cohort study. A total of 56 selected patients with a clinical and molecular diagnosis of Stargardt disease, an early age of onset, and a median follow-up length of 2 years. Patients underwent routine examination, including full-field electroretinography, microperimetry, and optical coherence tomography. Best-corrected visual acuity (BCVA), mean retinal sensitivity, fixation stability, preferred retinal locus, inner segment/outer segment (IS/OS) junction loss, and atrophic lesion area. A total of 56 patients with a mean age at disease onset of 15.3 years (range, 3-28 years), a mean disease duration of 12.1 years, and a mean age at baseline of 27.4 years were analyzed. The median BCVA was 20/200 in both eyes. Optical coherence tomography parameters (IS/OS alteration and retinal pigment epithelium lesion area) were obtained in only 49 patients because the signal quality was poor in the remaining 7 patients. Optical coherence tomography revealed a mean retinal pigment epithelium lesion area of 2.6 mm(2), preserved foveal IS/OS in 4.1% of patients, loss of foveal IS/OS in 59.2% of patients, and extensive loss of macular IS/OS in 36.7% of patients. Microperimetric findings showed a reduced macular sensitivity (mean, 10 decibels [dB]) and an unstable fixation in half of the patient cohort. The longitudinal analysis showed a significant progressive reduction of BCVA and macular sensitivity (at an estimated rate of 0.04 decimals and 1.19 dB/year, respectively) associated with a significant enlargement of retinal pigment epithelium lesion area (0.282 mm(2)/year). No significant changes in ophthalmoscopic findings and electroretinographic responses were detected. This study highlights the importance of microperimetry and optical coherence tomography in monitoring patients with Stargardt disease. Quantifying the decline of visual functionality and detecting morphologic macular changes prove useful in evaluating disease progression over a short-term follow-up and should be taken into account for the design of future clinical trials of gene therapy to treat retinal dystrophy. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  9. Efficient Third-Order Distributed Feedback Laser with Enhanced Beam Pattern

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor); Kao, Tsung-Yu (Inventor)

    2015-01-01

    A third-order distributed feedback laser has an active medium disposed on a substrate as a linear array of segments having a series of periodically spaced interstices therebetween and a first conductive layer disposed on a surface of the active medium on each of the segments and along a strip from each of the segments to a conductive electrical contact pad for application of current along a path including the active medium. Upon application of a current through the active medium, the active medium functions as an optical waveguide, and there is established an alternating electric field, at a THz frequency, both in the active medium and emerging from the interstices. Spacing of adjacent segments is approximately half of a wavelength of the THz frequency in free space or an odd integral multiple thereof, so that the linear array has a coherence length greater than the length of the linear array.

  10. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  11. Optical Coherence Tomography Angiography Features of Iris Racemose Hemangioma in 4 Cases.

    PubMed

    Chien, Jason L; Sioufi, Kareem; Ferenczy, Sandor; Say, Emil Anthony T; Shields, Carol L

    2017-10-01

    Optical coherence tomography angiography (OCTA) allows visualization of iris racemose hemangioma course and its relation to the normal iris microvasculature. To describe OCTA features of iris racemose hemangioma. Descriptive, noncomparative case series at a tertiary referral center (Ocular Oncology Service of Wills Eye Hospital). Patients diagnosed with unilateral iris racemose hemangioma were included in the study. Features of iris racemose hemangioma on OCTA. Four eyes of 4 patients with unilateral iris racemose hemangioma were included in the study. Mean patient age was 50 years, all patients were white, and Snellen visual acuity was 20/20 in each case. All eyes had sectoral iris racemose hemangioma without associated iris or ciliary body solid tumor on clinical examination and ultrasound biomicroscopy. By anterior segment OCT, the racemose hemangioma was partially visualized in all cases. By OCTA, the hemangioma was clearly visualized as a uniform large-caliber vascular tortuous loop with intense flow characteristics superimposed over small-caliber radial iris vessels against a background of low-signal iris stroma. The vascular course on OCTA resembled a light bulb filament (filament sign), arising from the peripheral iris (base of light bulb) and forming a tortuous loop on reaching its peak (midfilament) near the pupil (n = 3) or midzonal iris (n = 1), before returning to the peripheral iris (base of light bulb). Intravenous fluorescein angiography performed in 1 eye depicted the iris hemangioma; however, small-caliber radial iris vessels were more distinct on OCTA than intravenous fluorescein angiography. Optical coherence tomography angiography is a noninvasive vascular imaging modality that clearly depicts the looping course of iris racemose hemangioma. Optical coherence tomography angiography depicted fine details of radial iris vessels, not distinct on intravenous fluorescein angiography.

  12. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    NASA Astrophysics Data System (ADS)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  13. Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics.

    PubMed

    Salas, Matthias; Augustin, Marco; Ginner, Laurin; Kumar, Abhishek; Baumann, Bernhard; Leitgeb, Rainer; Drexler, Wolfgang; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2017-01-01

    The purpose of this work is to investigate the benefits of adaptive optics (AO) technology for optical coherence tomography angiography (OCTA). OCTA has shown great potential in non-invasively enhancing the contrast of vessels and small capillaries. Especially the capability of the technique to visualize capillaries with a lateral extension that is below the transverse resolution of the system opens unique opportunities in diagnosing retinal vascular diseases. However, there are some limitations of this technology such as shadowing and projection artifacts caused by overlying vasculature or the inability to determine the true extension of a vessel. Thus, the evaluation of the vascular structure and density based on OCTA alone can be misleading. In this paper we compare the performance of AO-OCT, AO-OCTA and OCTA for imaging retinal vasculature. The improved transverse resolution and the reduced depth of focus of AO-OCT and AO-OCTA greatly reduce shadowing artifacts allowing for a better differentiation and segmentation of different vasculature layers of the inner retina. The comparison is done on images recorded in healthy volunteers and in diabetic patients with distinct pathologies of the retinal microvasculature.

  14. High resolution spectroscopic optical coherence tomography in the 900-1100 nm wavelength range

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Povazay, Boris; Apolonski, Alexander A.; Unterhuber, Angelika; Hermann, Boris; Sattmann, Harald; Russell, Phillip S. J.; Krausz, Ferenc; Fercher, Adolf F.; Drexler, Wolfgang

    2002-06-01

    We demonstrate for the first time optical coherence tomography (OCT) in the 900-1100 nm wavelength range. A photonic crystal fiber (PCF) in combination with a sub-15fs Ti:sapphire laser is used to produce an emission spectrum with an optical bandwidth of 35 nm centered at ~1070 nm. Coupling the light from the PCF based source to an optimized free space OCT system results in ~15 micrometers axial resolution in air, corresponding to ~10 micrometers in biological tissue. The near infrared wavelength range around 1100 nm is very attractive for high resolution ophthalmologic OCT imaging of the anterior and posterior eye segment with enhanced penetration. The emission spectrum of the PCF based light source can also be reshaped and tuned to cover the wavelength region around 950-970 nm, where water absorption has a local peak. Therefore, the OCT system described in this paper can also be used for spatially resolved water absorption measurements in non-transparent biological tissue. A preliminary qualitative spectroscopic Oct measurement in D2O and H2 O phantoms is described in this paper.

  15. Nondestructive analysis of automotive paints with spectral domain optical coherence tomography.

    PubMed

    Dong, Yue; Lawman, Samuel; Zheng, Yalin; Williams, Dominic; Zhang, Jinke; Shen, Yao-Chun

    2016-05-01

    We have demonstrated for the first time, to our knowledge, the use of optical coherence tomography (OCT) as an analytical tool for nondestructively characterizing the individual paint layer thickness of multiple layered automotive paints. A graph-based segmentation method was used for automatic analysis of the thickness distribution for the top layers of solid color paints. The thicknesses measured with OCT were in good agreement with the optical microscope and ultrasonic techniques that are the current standard in the automobile industry. Because of its high axial resolution (5.5 μm), the OCT technique was shown to be able to resolve the thickness of individual paint layers down to 11 μm. With its high lateral resolution (12.4 μm), the OCT system was also able to measure the cross-sectional area of the aluminum flakes in a metallic automotive paint. The range of values measured was 300-1850  μm2. In summary, the proposed OCT is a noncontact, high-resolution technique that has the potential for inclusion as part of the quality assurance process in automobile coating.

  16. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography

    NASA Astrophysics Data System (ADS)

    Campbell, J. P.; Zhang, M.; Hwang, T. S.; Bailey, S. T.; Wilson, D. J.; Jia, Y.; Huang, D.

    2017-02-01

    Optical coherence tomography angiography (OCTA) is a noninvasive method of 3D imaging of the retinal and choroidal circulations. However, vascular depth discrimination is limited by superficial vessels projecting flow signal artifact onto deeper layers. The projection-resolved (PR) OCTA algorithm improves depth resolution by removing projection artifact while retaining in-situ flow signal from real blood vessels in deeper layers. This novel technology allowed us to study the normal retinal vasculature in vivo with better depth resolution than previously possible. Our investigation in normal human volunteers revealed the presence of 2 to 4 distinct vascular plexuses in the retina, depending on location relative to the optic disc and fovea. The vascular pattern in these retinal plexuses and interconnecting layers are consistent with previous histologic studies. Based on these data, we propose an improved system of nomenclature and segmentation boundaries for detailed 3-dimensional retinal vascular anatomy by OCTA. This could serve as a basis for future investigation of both normal retinal anatomy, as well as vascular malformations, nonperfusion, and neovascularization.

  17. Performance evaluation of automated segmentation software on optical coherence tomography volume data

    PubMed Central

    Tian, Jing; Varga, Boglarka; Tatrai, Erika; Fanni, Palya; Somfai, Gabor Mark; Smiddy, William E.

    2016-01-01

    Over the past two decades a significant number of OCT segmentation approaches have been proposed in the literature. Each methodology has been conceived for and/or evaluated using specific datasets that do not reflect the complexities of the majority of widely available retinal features observed in clinical settings. In addition, there does not exist an appropriate OCT dataset with ground truth that reflects the realities of everyday retinal features observed in clinical settings. While the need for unbiased performance evaluation of automated segmentation algorithms is obvious, the validation process of segmentation algorithms have been usually performed by comparing with manual labelings from each study and there has been a lack of common ground truth. Therefore, a performance comparison of different algorithms using the same ground truth has never been performed. This paper reviews research-oriented tools for automated segmentation of the retinal tissue on OCT images. It also evaluates and compares the performance of these software tools with a common ground truth. PMID:27159849

  18. Adaptive optics optical coherence tomography for measuring phase and reflectance dynamics of photoreceptors

    NASA Astrophysics Data System (ADS)

    Kocaoglu, Omer P.; Jonnal, Ravi S.; Lee, Sangyeol; Wang, Qiang; Liu, Zhuolin; Miller, Donald T.

    2012-03-01

    Optical coherence tomography with adaptive optics (AO-OCT) is a noninvasive method for imaging the living retina at the microscopic level. We used AO-OCT technology to follow changes in cone photoreceptor outer segment (OS) length and reflectance. To substantially increase sensitivity of the length measurements, a novel phase retrieval technique was demonstrated, capable of detecting changes on a nanometer scale. We acquired volume videos of 0.65°x0.65° retinal patches at 1.5° temporal to the fovea over 75 and 105 minutes in two subjects. Volumes were dewarped and registered, after which the cone intensity, OS length, and referenced phase difference were tracked over time. The reflections from inner segment/OS junction (IS/OS) and posterior tips of OS (PT) showed significant intensity variations over time. In contrast, the OS length as measured from the intensity images did not change, indicative of a highly stable OS length at least down to the level of the system's axial resolution (3μm). Smaller axial changes, however, were detected with our phase retrieval technique. Specifically, the PT-IS/OS phase difference for the same cones showed significant variation, suggesting real sub-wavelength changes in OS length of 125+/-46 nm/hr for the 22 cones followed. We believe these length changes are due to the normal renewal process of the cone OS that elongate the OS at a rate of about 100 nm/hr. The phase difference measurements were strongly correlated among Alines within the same cone (0.65 radians standard deviation) corresponding to a length sensitivity of 31 nm, or ~100 times smaller than the axial resolution of our system.

  19. Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch

    PubMed Central

    Dhalla, Al-Hafeez; Shia, Kevin; Izatt, Joseph A.

    2012-01-01

    We describe a novel buffering technique for increasing the A-scan rate of swept source optical coherence tomography (SSOCT) systems employing low duty cycle swept source lasers. This technique differs from previously reported buffering techniques in that it employs a fast optical switch, capable of switching in 60 ns, instead of a fused fiber coupler at the end of the buffering stage, and is therefore appreciably more power efficient. The use of the switch also eliminates patient exposure to light that is not used for imaging that occurs at the end of the laser sweep, thereby increasing the system sensitivity. We also describe how careful management of polarization can remove undesirable artifacts due to polarization mode dispersion. In addition, we demonstrate how numerical compensation techniques can be used to modify the signal from a Mach-Zehnder interferometer (MZI) clock obtained from the original sweep to recalibrate the buffered sweep, thereby reducing the complexity of systems employing lasers with integrated MZI clocks. Combining these methods, we constructed an SSOCT system employing an Axsun technologies laser with a sweep rate of 100kHz and 6dB imaging range of 5.5mm. The sweep rate was doubled with sweep buffering to 200 kHz, and the imaging depth was extended to 9 mm using coherence revival. We demonstrated the feasibility of this system by acquiring images of the anterior segments and retinas of healthy human volunteers. PMID:23243559

  20. Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch.

    PubMed

    Dhalla, Al-Hafeez; Shia, Kevin; Izatt, Joseph A

    2012-12-01

    We describe a novel buffering technique for increasing the A-scan rate of swept source optical coherence tomography (SSOCT) systems employing low duty cycle swept source lasers. This technique differs from previously reported buffering techniques in that it employs a fast optical switch, capable of switching in 60 ns, instead of a fused fiber coupler at the end of the buffering stage, and is therefore appreciably more power efficient. The use of the switch also eliminates patient exposure to light that is not used for imaging that occurs at the end of the laser sweep, thereby increasing the system sensitivity. We also describe how careful management of polarization can remove undesirable artifacts due to polarization mode dispersion. In addition, we demonstrate how numerical compensation techniques can be used to modify the signal from a Mach-Zehnder interferometer (MZI) clock obtained from the original sweep to recalibrate the buffered sweep, thereby reducing the complexity of systems employing lasers with integrated MZI clocks. Combining these methods, we constructed an SSOCT system employing an Axsun technologies laser with a sweep rate of 100kHz and 6dB imaging range of 5.5mm. The sweep rate was doubled with sweep buffering to 200 kHz, and the imaging depth was extended to 9 mm using coherence revival. We demonstrated the feasibility of this system by acquiring images of the anterior segments and retinas of healthy human volunteers.

  1. Surgical approach and optic coherence tomographic evaluation of optic disc anomaly in association with serous macular detachment.

    PubMed

    Güven, Dilek; Balcıoğlu, Nihal; Türker, Cağrı; Baydar, Yasemin; Sendül, Yekta

    2013-12-01

    Serous macular detachment (SMD) may accompany optic disc pit (ODP) and cause visual loss if untreated. We want to present different therapeutic approaches and interesting optical coherence tomography (OCT) findings in three consecutive cases. In this case series, two patients with SMD and one patient with partial macular detachment and inferior retinal detachment accompanying ODP were evaluated before and after surgical intervention clinically and by spectral-domain OCT. The patients were 44 (case 1), 22 (case 2) and 24 (case 3) years old. Pars plana vitrectomy (PPV) + silicone oil + laser, PPV + sulfur hexafluoride gas (SF6) + laser and pneumatic retinopexy were applied, respectively. The patients were followed for 18, 15 and 14 months. Preoperative best-corrected visual acuities (BCVAs) were 5/100, 7/10 and counting fingers at 1 m. Vision improved in all cases with resolution of subretinal fluid. Final BCVAs were 3/10, 10/10 and 1/10, respectively. OCT images revealed optic disc anomaly details and changes after surgical intervention, photoreceptor outer segment alterations at the detached area and macular surface changes. Surgical intervention should be tailored individually in cases with SMD. OCT is efficient for in vivo evaluation of this pathological condition and anatomical outcomes of surgery.

  2. Measurement of wall shear stress in chick embryonic heart using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Zhenhe; Dou, Shidan; Zhao, Yuqian; Wang, Yi; Suo, Yanyan; Wang, Fengwen

    2015-03-01

    The cardiac development is a complicated process affected by genetic and environmental factors. Wall shear stress (WSS) is one of the components which have been proved to influence the morphogenesis during early stages of cardiac development. To study the mechanism, WSS measurement is a step with significant importance. WSS is caused by blood flow imposed on the inner surface of the heart wall and it can be determined by calculating velocity gradients of blood flow in a direction perpendicular to the wall. However, the WSS of the early stage embryonic heart is difficult to measure since the embryonic heart is tiny and beating fast. Optical coherence tomography (OCT) is a non-invasive imaging modality with high spatial and temporal resolution, which is uniquely suitable for the study of early stage embryonic heart development. In this paper, we introduce a method to measure the WSS of early stage chick embryonic heart based on high speed spectral domain optical coherence tomography (SDOCT). 4D (x,y,z,t) scan was performed on the outflow tract (OFT) of HH18 (~3 days of incubation) chick embryonic heart. After phase synchronization, OFT boundary segmentation, and OFT center line calculation, Doppler angle of the blood flow in the OFT can be achieved (This method has been described in previous publications). Combining with the Doppler OCT results, we calculate absolute blood flow velocity distribution in the OFT. The boundary of the OFT was segmented at each cross-sectional structural image, then geometrical center of the OFT can be calculated. Thus, the gradients of blood flow in radial direction can be calculated. This velocity gradient near the wall is termed wall shear rate and the WSS value is proportional to the wall shear rate. Based on this method, the WSS at different heart beating phase are compare. The result demonstrates that OCT is capable of early stage chicken embryonic heart WSS study.

  3. Agreement of angle closure assessments between gonioscopy, anterior segment optical coherence tomography and spectral domain optical coherence tomography

    PubMed Central

    Tay, Elton Lik Tong; Yong, Vernon Khet Yau; Lim, Boon Ang; Sia, Stelson; Wong, Elizabeth Poh Ying; Yip, Leonard Wei Leon

    2015-01-01

    AIM To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography (AS-OCT), as well as gonioscopy and spectral domain OCT (SD-OCT). A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments. METHODS Seventeen consecutive subjects (33 eyes) were recruited from the study hospital's Glaucoma clinic. Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 other glaucomatologists masked to gonioscopy findings as well as each other's analyses of OCT images. RESULTS Totally 84.8% and 45.5% of scleral spurs were visualized in AS-OCT and SD-OCT images respectively (P<0.01). The agreement for angle closure between AS-OCT and gonioscopy was fair at k=0.31 (95% confidence interval, CI: 0.03-0.59) and k=0.35 (95% CI: 0.07-0.63) for reader 1 and 2 respectively. The agreement for angle closure between SD-OCT and gonioscopy was fair at k=0.21 (95% CI: 0.07-0.49) and slight at k=0.17 (95% CI: 0.08-0.42) for reader 1 and 2 respectively. The inter-reader agreement for angle closure in AS-OCT images was moderate at 0.51 (95% CI: 0.13-0.88). The inter-reader agreement for angle closure in SD-OCT images was slight at 0.18 (95% CI: 0.08-0.45). CONCLUSION Significant proportion of scleral spurs were not visualised with SD-OCT imaging resulting in weaker inter-reader agreements. Identifying other angle landmarks in SD-OCT images will allow more consistent angle closure assessments. Gonioscopy and OCT imaging do not always agree in angle closure assessments but have their own advantages, and should be used together and not exclusively. PMID:25938053

  4. Lenticular meridional astigmatism secondary to iris mesectodermal leiomyoma.

    PubMed

    Chalam, K V; Cutler Peck, Carolee M; Grover, Sandeep; Radhakrishnan, Ravi

    2012-01-01

    A 61-year-old African American man presented with decreased vision of 2 months duration. Examination revealed a significant lenticular astigmatism and sectoral cataract as a result of an amelanotic iris lesion. Slitlamp optical coherence tomography (OCT) revealed angle crowding. An excisional biopsy was performed along with phacoemulsification in the right eye, with intraocular lens implantation for meridional lenticular astigmatism. Histopathology and histoimmunochemistry confirmed a diagnosis of uveal mesectodermal leiomyoma. Lenticular astigmatism may be a subtle sign of an anterior segment tumor. Anterior segment slitlamp OCT is an effective tool in diagnosing as well as monitoring small interval changes in these types of tumors. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Invariant polarimetric contrast parameters of coherent light.

    PubMed

    Réfrégier, Philippe; Goudail, François

    2002-06-01

    Many applications use an active coherent illumination and analyze the variation of the polarization state of optical signals. However, as a result of the use of coherent light, these signals are generally strongly perturbed with speckle noise. This is the case, for example, for active polarimetric imaging systems that are useful for enhancing contrast between different elements in a scene. We propose a rigorous definition of the minimal set of parameters that characterize the difference between two coherent and partially polarized states. Indeed, two states of partially polarized light are a priori defined by eight parameters, for example, their two Stokes vectors. We demonstrate that the processing performance for such signal processing tasks as detection, localization, or segmentation of spatial or temporal polarization variations is uniquely determined by two scalar functions of these eight parameters. These two scalar functions are the invariant parameters that define the polarimetric contrast between two polarized states of coherent light. Different polarization configurations with the same invariant contrast parameters will necessarily lead to the same performance for a given task, which is a desirable quality for a rigorous contrast measure. The definition of these polarimetric contrast parameters simplifies the analysis and the specification of processing techniques for coherent polarimetric signals.

  6. Automated boundary segmentation and wound analysis for longitudinal corneal OCT images

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Shi, Fei; Zhu, Weifang; Pan, Lingjiao; Chen, Haoyu; Huang, Haifan; Zheng, Kangkeng; Chen, Xinjian

    2017-03-01

    Optical coherence tomography (OCT) has been widely applied in the examination and diagnosis of corneal diseases, but the information directly achieved from the OCT images by manual inspection is limited. We propose an automatic processing method to assist ophthalmologists in locating the boundaries in corneal OCT images and analyzing the recovery of corneal wounds after treatment from longitudinal OCT images. It includes the following steps: preprocessing, epithelium and endothelium boundary segmentation and correction, wound detection, corneal boundary fitting and wound analysis. The method was tested on a data set with longitudinal corneal OCT images from 20 subjects. Each subject has five images acquired after corneal operation over a period of time. The segmentation and classification accuracy of the proposed algorithm is high and can be used for analyzing wound recovery after corneal surgery.

  7. Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa.

    PubMed

    Wang, Bo; Lucy, Katie A; Schuman, Joel S; Sigal, Ian A; Bilonick, Richard A; Lu, Chen; Liu, Jonathan; Grulkowski, Ireneusz; Nadler, Zachary; Ishikawa, Hiroshi; Kagemann, Larry; Fujimoto, James G; Wollstein, Gadi

    2018-05-08

    The lamina cribrosa is a primary site of damage in glaucoma. While mechanical distortion is hypothesized to cause reduction of axoplasmic flow, little is known about how the pores, which contains the retinal ganglion cell axons, traverse the lamina cribrosa. We investigated lamina cribrosa pore paths in vivo to quantify differences in tortuosity of pore paths between healthy and glaucomatous eyes. We imaged 16 healthy, 23 glaucoma suspect and 48 glaucomatous eyes from 70 subjects using a swept source optical coherence tomography system. The lamina cribrosa pores were automatically segmented using a previously described segmentation algorithm. Individual pore paths were automatically tracked through the depth of the lamina cribrosa using custom software. Pore path convergence to the optic nerve center and tortuosity was quantified for each eye. We found that lamina cribrosa pore pathways traverse the lamina cribrosa closer to the optic nerve center along the depth of the lamina cribrosa regardless of disease severity or diagnostic category. In addition, pores of glaucoma eyes take a more tortuous path through the lamina cribrosa compared to those of healthy eyes, suggesting a potential mechanism for reduction of axoplasmic flow in glaucoma.

  8. Retinal imaging in uveitis

    PubMed Central

    Gupta, Vishali; Al-Dhibi, Hassan A.; Arevalo, J. Fernando

    2014-01-01

    Ancillary investigations are the backbone of uveitis workup for posterior segment inflammations. They help in establishing the differential diagnosis and making certain diagnosis by ruling out certain pathologies and are a useful aid in monitoring response to therapy during follow-up. These investigations include fundus photography including ultra wide field angiography, fundus autofluorescence imaging, fluorescein angiography, optical coherence tomography and multimodal imaging. This review aims to be an overview describing the role of these retinal investigations for posterior uveitis. PMID:24843301

  9. Evaluation of the Lower Punctum Parameters and Morphology Using Spectral Domain Anterior Segment Optical Coherence Tomography

    PubMed Central

    Allam, Riham S. H. M.; Ahmed, Rania A.

    2015-01-01

    Purpose. To study features of the lower punctum in normal subjects using spectral domain anterior segment optical coherence tomography (SD AS-OCT). Methods. Observational cross-sectional study that included 147 punctae (76 subjects). Punctae were evaluated clinically for appearance, position, and size. AS-OCT was used to evaluate the punctal shape, contents, and junction with the vertical canaliculus. Inner and outer diameters as well as depth were measured. Results. 24 males and 52 females (mean age 44 ± 14.35 y) were included. Lower punctum was perceived by OCT to be an area with an outer diameter (mean 412.16 ± 163 μm), inner diameter (mean 233.67 ± 138.73 μm), and depth (mean 251.7 ± 126.58 μm). The OCT measured outer punctum diameter was significantly less than that measured clinically (P: 0.000). Seven major shapes were identified. The junction with the vertical canaliculus was detectable in 44%. Fluid was detected in 34%, one of which had an air bubble; however, 63% of punctae showed no contents and 4% had debris. Conclusions. AS-OCT can be a useful tool in understanding the anatomy of the punctum and distal lacrimal system as well as tear drainage physiology. Measuring the punctum size may play a role in plugs fitting. PMID:26090219

  10. Agreement between Gonioscopic Examination and Swept Source Fourier Domain Anterior Segment Optical Coherence Tomography Imaging

    PubMed Central

    Nguyen, Donna; Minnal, Vandana R.

    2016-01-01

    Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT) for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4) years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69) and FD ASOCT (0.58 and 0.75). Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86) and FD ASOCT (0.57 and 0.85). Interinstrument agreements were fair to good (0.34 to 0.63), with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy. PMID:27990300

  11. Automated 3-D cell counting method for grading uveitis of rodent eye in vivo with optical coherence tomograph.

    PubMed

    Choi, Woo June; Pepple, Kathryn L; Wang, Ruikang K

    2018-05-24

    In preclinical vision research, cell grading in small animal models is essential for the quantitative evaluation of intraocular inflammation. Here, we present a new and practical optical coherence tomography (OCT) image analysis method for the automated detection and counting of aqueous cells in the anterior chamber (AC) of a rodent model of uveitis. Anterior segment OCT (AS-OCT) images are acquired with a 100kHz swept-source OCT (SS-OCT) system. The proposed method consists of two steps. In the first step, we first despeckle and binarize each OCT image. After removing AS structures in the binary image, we then apply area thresholding to isolate cell-like objects. Potential cell candidates are selected based on their best fit to roundness. The second step performs the cell counting within the whole AC, in which additional cell tracking analysis is conducted on the successive OCT images to eliminate redundancy in cell counting. Finally, 3-D cell grading using the proposed method is demonstrated in longitudinal OCT imaging of a mouse model of anterior uveitis in vivo. Rendering of anterior segment (orange) of mouse eye and automatically counted anterior chamber cells (green). Inset is a top view of the rendering, showing the cell distribution across the anterior chamber. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yasuno, Yoshiaki; Yamanari, Masahiro; Kawana, Keisuke; Miura, Masahiro; Fukuda, Shinichi; Makita, Shuichi; Sakai, Shingo; Oshika, Tetsuro

    2010-11-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is known to be advantageous because of its additional tissue-specific contrast of the anterior eye. So far, this advantage has been shown only qualitatively. We evaluate the improved visibility afforded by 3-D PS corneal and anterior eye segment OCT (PS-CAS-OCT) in visualizing the trabecular meshwork (TM) based on statistical evidences. A total of 31 normal subjects participated in this study. The anterior eye segments of both the eyes of the subjects are scanned using a custom-made PS-CAS-OCT and the standard-scattering OCT (S-OCT) and polarization-sensitive phase-retardation OCT (P-OCT) images are obtained. Three graders grade the visibility of the TM using a four-leveled grading system. The intergrader agreement, intermodality differences, and interquadrant dependence of visibility are statistically examined. All three of three combinations of graders show substantial agreement in visibility with P-OCT (ρ = 0.74, 0.70, and 0.68, Spearman's correlation), while only one of three shows substantial agreement with S-OCT (ρ = 0.72). Significant dependence of the visibility on the modality (S-OCT versus P-OCT) and quadrants are found by the analysis of variance. A subsequent Wilcoxon signed-rank test reveals significantly improved visibility. PS-CAS-OCT may become a useful tool for screening angle-closure glaucoma.

  13. Optical coherence tomography based microangiography for quantitative monitoring of structural and vascular changes in a rat model of acute uveitis in vivo: a preliminary study

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Pepple, Kathryn L.; Zhi, Zhongwei; Wang, Ruikang K.

    2015-01-01

    Uveitis models in rodents are important in the investigation of pathogenesis in human uveitis and the development of appropriate therapeutic strategies for treatment. Quantitative monitoring of ocular inflammation in small animal models provides an objective metric to assess uveitis progression and/or therapeutic effects. We present a new application of optical coherence tomography (OCT) and OCT-based microangiography (OMAG) to a rat model of acute anterior uveitis induced by intravitreal injection of a killed mycobacterial extract. OCT/OMAG is used to provide noninvasive three-dimensional imaging of the anterior segment of the eyes prior to injection (baseline) and two days post-injection (peak inflammation) in rats with and without steroid treatments. OCT imaging identifies characteristic structural and vascular changes in the anterior segment of the inflamed animals when compared to baseline images. Characteristics of inflammation identified include anterior chamber cells, corneal edema, pupillary membranes, and iris vasodilation. In contrast, no significant difference from the control is observed for the steroid-treated eye. These findings are compared with the histology assessment of the same eyes. In addition, quantitative measurements of central corneal thickness and iris vessel diameter are determined. This pilot study demonstrates that OCT-based microangiography promises to be a useful tool for the assessment and management of uveitis in vivo.

  14. Comparative Study of Anterior Eye Segment Measurements with Spectral Swept-Source and Time-Domain Optical Coherence Tomography in Eyes with Corneal Dystrophies

    PubMed Central

    Teper, Sławomir J.; Janiszewska, Dominika A.; Lyssek-Boron, Anita; Dobrowolski, Dariusz; Koprowski, Robert; Wylegala, Edward

    2015-01-01

    Purpose. To compare anterior eye segment measurements and morphology obtained with two optical coherence tomography systems (TD OCT, SS OCT) in eyes with corneal dystrophies (CDs). Methods. Fifty healthy volunteers (50 eyes) and 54 patients (96 eyes) diagnosed with CD (epithelial basement membrane dystrophy, EBMD = 12 eyes; Thiel-Behnke CD = 6 eyes; lattice CD TGFBI type = 15 eyes; granular CD type 1 = 7 eyes, granular CD type 2 = 2 eyes; macular CD = 23 eyes; and Fuchs endothelial CD = 31 eyes) were recruited for the study. Automated and manual central corneal thickness (aCCT, mCCT), anterior chamber depth (ACD), and nasal and temporal trabecular iris angle (nTIA, tTIA) were measured and compared with Bland-Altman plots. Results. Good agreement between the TD and SS OCT measurements was demonstrated for mCCT and aCCT in normal individuals and for mCCT in the CDs group. The ACD, nTIA, and tTIA measurements differed significantly in both groups. TBCD, LCD, and FECD caused increased CCT. MCD caused significant corneal thinning. FECD affected all analyzed parameters. Conclusions. Better agreement between SS OCT and TD OCT measurements was demonstrated in normal individuals compared to the CDs group. OCT provides comprehensive corneal deposits analysis and demonstrates the association of CD with CCT, ACD, and TIA measurements. PMID:26457303

  15. Comparative Study of Anterior Eye Segment Measurements with Spectral Swept-Source and Time-Domain Optical Coherence Tomography in Eyes with Corneal Dystrophies.

    PubMed

    Nowinska, Anna K; Teper, Sławomir J; Janiszewska, Dominika A; Lyssek-Boron, Anita; Dobrowolski, Dariusz; Koprowski, Robert; Wylegala, Edward

    2015-01-01

    To compare anterior eye segment measurements and morphology obtained with two optical coherence tomography systems (TD OCT, SS OCT) in eyes with corneal dystrophies (CDs). Fifty healthy volunteers (50 eyes) and 54 patients (96 eyes) diagnosed with CD (epithelial basement membrane dystrophy, EBMD = 12 eyes; Thiel-Behnke CD = 6 eyes; lattice CD TGFBI type = 15 eyes; granular CD type 1 = 7 eyes, granular CD type 2 = 2 eyes; macular CD = 23 eyes; and Fuchs endothelial CD = 31 eyes) were recruited for the study. Automated and manual central corneal thickness (aCCT, mCCT), anterior chamber depth (ACD), and nasal and temporal trabecular iris angle (nTIA, tTIA) were measured and compared with Bland-Altman plots. Good agreement between the TD and SS OCT measurements was demonstrated for mCCT and aCCT in normal individuals and for mCCT in the CDs group. The ACD, nTIA, and tTIA measurements differed significantly in both groups. TBCD, LCD, and FECD caused increased CCT. MCD caused significant corneal thinning. FECD affected all analyzed parameters. Better agreement between SS OCT and TD OCT measurements was demonstrated in normal individuals compared to the CDs group. OCT provides comprehensive corneal deposits analysis and demonstrates the association of CD with CCT, ACD, and TIA measurements.

  16. Spontaneous Resolution of Long-Standing Macular Detachment due to Optic Disc Pit with Significant Visual Improvement.

    PubMed

    Parikakis, Efstratios A; Chatziralli, Irini P; Peponis, Vasileios G; Karagiannis, Dimitrios; Stratos, Aimilianos; Tsiotra, Vasileia A; Mitropoulos, Panagiotis G

    2014-01-01

    To report a case of spontaneous resolution of a long-standing serous macular detachment associated with an optic disc pit, leading to significant visual improvement. A 63-year-old female presented with a 6-month history of blurred vision and micropsia in her left eye. Her best-corrected visual acuity was 6/24 in the left eye, and fundoscopy revealed serous macular detachment associated with optic disc pit, which was confirmed by optical coherence tomography (OCT). The patient was offered vitrectomy as a treatment alternative, but she preferred to be reviewed conservatively. Three years after initial presentation, neither macular detachment nor subretinal fluid was evident in OCT, while the inner segment/outer segment (IS/OS) junction line was intact. Her visual acuity was improved from 6/24 to 6/12 in her left eye, remaining stable at the 6-month follow-up after resolution. We present a case of spontaneous resolution of a long-standing macular detachment associated with an optic disc pit with significant visual improvement, postulating that the integrity of the IS/OS junction line may be a prognostic factor for final visual acuity and suggesting OCT as an indicator of visual prognosis and the probable necessity of a surgical management.

  17. Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2015-03-01

    High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  18. Optical Coherence Tomography as a Biomarker for Diagnosis, Progression, and Prognosis of Neurodegenerative Diseases

    PubMed Central

    Otin, Sofia; Fuertes, Maria I.; Vilades, Elisa; Gracia, Hector; Ara, Jose R.; Alarcia, Raquel; Polo, Vicente; Larrosa, Jose M.; Pablo, Luis E.

    2016-01-01

    Neurodegenerative diseases present a current challenge for accurate diagnosis and for providing precise prognostic information. Developing imaging biomarkers for multiple sclerosis (MS), Parkinson disease (PD), and Alzheimer's disease (AD) will improve the clinical management of these patients and may be useful for monitoring treatment effectiveness. Recent research using optical coherence tomography (OCT) has demonstrated that parameters provided by this technology may be used as potential biomarkers for MS, PD, and AD. Retinal thinning has been observed in these patients and new segmentation software for the analysis of the different retinal layers may provide accurate information on disease progression and prognosis. In this review we analyze the application of retinal evaluation using OCT technology to provide better understanding of the possible role of the retinal layers thickness as biomarker for the detection of these neurodegenerative pathologies. Current OCT analysis of the retinal nerve fiber layer and, specially, the ganglion cell layer thickness may be considered as a good biomarker for disease diagnosis, severity, and progression. PMID:27840739

  19. Mapping of photoreceptor dysfunction using high resolution three-dimensional spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sikorski, B. L.; Szkulmowski, M.; Kałużny, J. J.; Bajraszewski, T.; Kowalczyk, A.; Wojtkowski, M.

    2008-02-01

    The ability to obtain reliable information on functional status of photoreceptor layer is essential for assessing vision impairment in patients with macular diseases. The reconstruction of three-dimensional retinal structure in vivo using Spectral Optical Coherence Tomography (Spectral OCT) became possible with a recent progress of the OCT field. Three-dimensional data collected by Spectral OCT devices comprise information on light intensity back-reflected from the junction between photoreceptor outer and inner segments (IS/OS) and thus can be used for evaluating photoreceptors impairment. In this paper, we introduced so called Spectral OCT reflectivity maps - a new method of selecting and displaying the spatial distribution of reflectivity of individual retinal layers. We analyzed the reflectivity of the IS/OS layer in various macular diseases. We have measured eyes of 49 patients with photoreceptor dysfunction in course of age-related macular degeneration, macular holes, central serous chorioretinopathy, acute zonal occult outer retinopathy, multiple evanescent white dot syndrome, acute posterior multifocal placoid pigment epitheliopathy, drug-induced retinopathy and congenital disorders.

  20. MICROSTRUCTURAL ABNORMALITIES IN MEWDS DEMONSTRATED BY ULTRAHIGH RESOLUTION OPTICAL COHERENCE TOMOGRAPHY

    PubMed Central

    NGUYEN, MY HANH T.; WITKIN, ANDRE J.; REICHEL, ELIAS; KO, TONY H.; FUJIMOTO, JAMES G.; SCHUMAN, JOEL S.; DUKER, JAY S.

    2007-01-01

    Background Histopathological studies of acute multiple evanescent white dot syndrome (MEWDS) have not been reported because of the transient and benign nature of the disease. Ultrahigh resolution optical coherence tomography (UHR-OCT), capable of high resolution in vivo imaging, offers a unique opportunity to visualize retinal microstructure in the disease. Methods UHR-OCT images of the maculae of five patients with MEWDS were obtained and analyzed. Diagnosis was based on clinical presentation, examination, visual field testing, and angiography. Results UHR-OCT revealed disturbances in the photoreceptor inner/outer segment junction (IS/OS) in each of the five patients (six eyes) with MEWDS. In addition, thinning of the outer nuclear layer was seen in the case of recurrent MEWDS, suggesting that repeated episodes of MEWDS may result in photoreceptor atrophy. Conclusions Subtle disruptions of the photoreceptor IS/OS are demonstrated in all eyes affected by MEWDS. UHR-OCT may be a useful adjunct to diagnosis and monitoring of MEWDS. PMID:17420691

  1. Ultra-Wide-Field Fundus Autofluorescence and Spectral-Domain Optical Coherence Tomography Findings in Syphilitic Outer Retinitis.

    PubMed

    Saleh, Mohamed G A; Campbell, John Peter; Yang, Paul; Lin, Phoebe

    2017-03-01

    To determine the ultra-wide-field fundus autofluorescence (UWFFAF) and optical coherence tomography (OCT) features of syphilitic outer retinopathy (SOR). Retrospective chart review. Three patients with SOR were investigated. Treatment with parenteral penicillin led to improvement of outer retinopathy, visual acuity, and symptoms. UWFFAF showed speckled hyperautofluorescence, hypoautofluorescence, and normal autofluorescence, similar to what has been described as a trizonal pattern in acute zonal occult outer retinopathy (AZOOR) in the chronic case of SOR, but with hyperautofluorescent areas in the two acute cases. OCT showed disruption of the photoreceptor outer segment ellipsoid zone and external limiting membrane, which improved after penicillin treatment, and corresponded to normalization of the hyperautofluorescent areas on UWFFAF. There was irregularity and nodular thickening of retinal pigment epithelium on OCT in areas of mottled hyperautofluorescence. SOR can present similarly to AZOOR on UWFFAF and should be highly suspected in cases presenting like AZOOR. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:208-215. ]. Copyright 2017, SLACK Incorporated.

  2. Three-dimensional Fourier-domain optical coherence tomography of alveolar mechanics in stepwise inflated and deflated isolated and perfused rabbit lungs

    NASA Astrophysics Data System (ADS)

    Krueger, Alexander; Knels, Lilla; Meissner, Sven; Wendel, Martina; Heller, Axel R.; Lambeck, Thomas; Koch, Thea; Koch, Edmund

    2007-07-01

    Fourier domain optical coherence tomography (FD-OCT) was used to acquire three-dimensional image stacks of isolated and perfused rabbit lungs (n = 4) at different constant pulmonary airway pressures (CPAP) and during vascular fixation. After despeckling and applying a threshold, the images were segmented into air and tissue, and registered to each other to compensate for movement between CPAP steps. The air-filled cross-sectional areas were quantified using a semi-automatic algorithm. The cross-sectional area of alveolar structures taken at all three perpendicular planes increased with increasing CPAP. Between the minimal CPAP of 3 mbar and the maximum of 25 mbar the areas increased to about 140% of their initial value. There was no systematic dependency of inflation rate on initial size of the alveolar structure. During the perfusion fixation of the lungs with glutaraldehyde morphometric changes of the alveolar geometry measured with FD-OCT were negligible.

  3. Ultrahigh-Resolution Optical Coherence Tomography in Glaucoma

    PubMed Central

    Wollstein, Gadi; Paunescu, Leila A.; Ko, Tony H.; Fujimoto, James G.; Kowalevicz, Andrew; Hartl, Ingmar; Beaton, Siobahn; Ishikawa, Hiroshi; Mattox, Cynthia; Singh, Omah; Duker, Jay; Drexler, Wolfgang; Schuman, Joel S.

    2007-01-01

    Objective Optical coherence tomography (OCT) has been shown to be a valuable tool in glaucoma assessment. We investigated a new ultrahigh-resolution OCT (UHR-OCT) imaging system in glaucoma patients and compared the findings with those obtained by conventional-resolution OCT. Design Retrospective comparative case series. Participants A normal subject and 4 glaucoma patients representing various stages of glaucomatous damage. Testing All participants were scanned with StratusOCT (axial resolution of ~10 μm) and UHR-OCT (axial resolution of ~3 μm) at the same visit. Main Outcome Measure Comparison of OCT findings detected with StratusOCT and UHR-OCT. Results Ultrahigh-resolution OCT provides a detailed cross-sectional view of the scanned retinal area that allows differentiation between retinal layers. These UHR images were markedly better than those obtained by the conventional-resolution OCT. Conclusions Ultrahigh-resolution OCT provides high-resolution images of the ocular posterior segment, which improves the ability to detect retinal abnormalities due to glaucoma. PMID:15691556

  4. Evaluation of Corneal Neovascularization Using Optical Coherence Tomography Angiography in Patients With Limbal Stem Cell Deficiency.

    PubMed

    Oie, Yoshinori; Nishida, Kohji

    2017-11-01

    Detection of the exact area of corneal neovascularization using slit-lamp photography is often difficult. Thus, we evaluated corneal neovascularization in patients with limbal stem cell deficiency using optical coherence tomography angiography (OCTA). Five patients with 5 eyes showing partial or total limbal stem cell deficiency were enrolled. Three eyes had severe corneal scarring. Five 6- × 6-mm images (frontal, upper, lower, nasal, and temporal) were obtained by OCTA. Slit-lamp photography was performed for all patients on the same day. OCTA has 2 advantages over slit-lamp photography for clear demonstration of corneal neovascularization. First, OCTA can show neovascularization in cases with severe corneal opacification. Second, OCTA can detect not only large vessels but also small vessels that cannot be seen by slit-lamp photography. OCTA is a powerful tool for objective evaluation of vascularization in the anterior and posterior segments of the eye. We have demonstrated that OCTA can visualize corneal neovascularization in patients with corneal diseases more clearly than slit-lamp photography.

  5. Clinical applications of optical coherence tomography in the posterior pole: the 2011 José Manuel Espino Lecture – Part II

    PubMed Central

    Arevalo, J Fernando; Lasave, Andres F; Arias, Juan D; Serrano, Martin A; Arevalo, Fernando A

    2013-01-01

    Optical coherence tomography (OCT) is a high-resolution, cross-sectional imaging technique that allows detailed assessment of retinal thickness and morphologic evaluation of the retinal layers. This technology has developed quickly over the past two decades. OCT imaging has rapidly been integrated into routine ophthalmic clinical practice and trials. It has complemented fluorescein angiography in many instances, especially in the diagnosis and management of retinal disorders, including diabetic macular edema and age-related macular degeneration. With OCT, the exact localization of pathologic features can be visualized in segmentation maps of the retina, and this has allowed OCT to be used to evaluate specific features that may serve as predictive factors in the prognosis and follow up of these pathologies. Therefore, it has become an important clinical and research tool for the diagnosis, follow up, treatment, and assessment of new treatment modalities for all diseases that affect the posterior pole of the eye. PMID:24235811

  6. A method of measuring anterior chamber volume using the anterior segment optical coherence tomographer and specialized software.

    PubMed

    Wang, Ningli; Wang, Bingsong; Zhai, Gaoshou; Lei, Kun; Wang, Lan; Congdon, Nathan

    2007-05-01

    To describe and evaluate a new method for measuring anterior chamber volume (ACV). Observational case series. The authors measured ACV using the anterior chamber (AC) optical coherence tomographer (OCT) and applied image-processing software developed by them. Repeatability was evaluated. The ACV was measured in patient groups with normal ACs, shallow ACs, and deep ACs. The volume difference before and after laser peripheral iridotomy (LPI) was analyzed for the shallow and deep groups. Coefficients of repeatability for intraoperator, interoperator, and interimage measurements were 0.406%, 0.958%, and 0.851%, respectively. The limits of agreement for intraoperator and interoperator measurement were -0.911 microl to 1.343 microl and -7.875 microl to -2.463 microl, respectively. There were significant ACV differences in normal, shallow, and deep AC eyes (P < .001) and before and after LPI in shallow AC (P < .001) and deep AC (P = .008) eyes. The ACV values obtained by this method were repeatable and in accord with clinical observation.

  7. Optical Coherence Tomography in the UK Biobank Study - Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies.

    PubMed

    Keane, Pearse A; Grossi, Carlota M; Foster, Paul J; Yang, Qi; Reisman, Charles A; Chan, Kinpui; Peto, Tunde; Thomas, Dhanes; Patel, Praveen J

    2016-01-01

    To describe an approach to the use of optical coherence tomography (OCT) imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness. In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available "spectral domain" OCT device (3D OCT-1000, Topcon). Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL). This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion. 67,321 participants (134,642 eyes) in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days. We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging.

  8. Optical Coherence Tomography in the UK Biobank Study – Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies

    PubMed Central

    Grossi, Carlota M.; Foster, Paul J.; Yang, Qi; Reisman, Charles A.; Chan, Kinpui; Peto, Tunde; Thomas, Dhanes; Patel, Praveen J.

    2016-01-01

    Purpose To describe an approach to the use of optical coherence tomography (OCT) imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness. Methods In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available “spectral domain” OCT device (3D OCT-1000, Topcon). Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL). This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion. Results 67,321 participants (134,642 eyes) in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days. Conclusions We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging. PMID:27716837

  9. Dynamic changes in ocular Zernike aberrations and tear menisci measured with a wavefront sensor and an anterior segment OCT.

    PubMed

    Xu, Jingjing; Bao, Jinhua; Deng, Jun; Lu, Fan; He, Ji C

    2011-07-29

    To measure dynamic change characteristics of spatial and temporal variations in the post-blink tear film of normal eyes. A wavefront sensor was used to measure dynamic changes in wavefront aberrations, up to the seventh order, for 10 seconds in a group of 33 normal young adults. Tear menisci were imaged with an anterior segment optical coherence tomography (AS-OCT) system and tear film break-up times (TFBUTs) were determined. Systematic changes in main axis astigmatism (R(2) = 0.933, P < 0.0001), vertical coma (R(2) = 0.935, P < 0.0001) and spherical aberrations (R(2) = 0.879, P = 0.0002) occurred during the 10-second post-blink period. Both lower tear meniscus height and area increased by 10 seconds compared with the initial levels (P < 0.0001 for each). The change of vertical coma had significant correlation with the increase of lower tear meniscus areas during the 10-second post-blink period (R(2) = 0.181, P = 0.014). Subjects with TFBUTs < 15 seconds had significantly increased main axis astigmatism, vertical coma, and spherical aberrations by 10 seconds. Subjects with longer TFBUTs did not have any significant wavefront aberrations during that period. Systematic changes in some Zernike aberrations after blinking are associated with the changes in tear menisci and TFBUT. There was a substantial individual variation in dynamic changes of Zernike aberrations, suggesting the necessity to explore individual differences in tear quality and tear performance. Dynamic wavefront measurement combined with anterior segment optical coherence tomography could provide a useful tool to understand spatial and temporal processes of the tear film in clinical practice.

  10. Comparison of factors associated with occludable angle between american Caucasians and ethnic Chinese.

    PubMed

    Wang, Ye Elaine; Li, Yingjie; Wang, Dandan; He, Mingguang; Lin, Shan

    2013-11-21

    To determine if factors associated with gonioscopy-determined occludable angle among American Caucasians are similar to those found in ethnic Chinese. This is a prospective cross-sectional study with 120 American Caucasian, 116 American Chinese, and 116 mainland Chinese subjects. All three groups were matched for sex and age (40-80 years). Gonioscopy was performed for each subject (occludable angles = posterior trabecular meshwork not visible for ≥2 quadrants). Anterior segment optical coherence tomography and customized software was used to measure anterior segment biometry and iris parameters, including anterior chamber depth/width (ACD, ACW), lens vault (LV), and iris thickness/area/curvature. In both Chinese and Caucasians, eyes with occludable angles had smaller ACD and ACW, and larger LV and iris curvature than eyes with open angles (all P < 0.005). Chinese eyes had smaller ACD and ACW than Caucasian eyes (both P < 0.01) in the occludable angle cohort. Iris characteristics did not differ significantly between Chinese and Caucasians in the occludable angle cohort. Based on multivariate logistic regression, gonioscopy-determined occludable angle was significantly associated with LV, iris area, and sex (all P < 0.03) in Chinese; and with LV, ACD, iris thickness, age, and sex (all P < 0.04) in Caucasians. Several factors associated with occludable angle differed between Caucasians and Chinese, suggesting potentially different mechanisms in occludable angle development in the two racial groups. This is the first study to demonstrate that lens vault is an important anterior segment optical coherence tomography parameter in the screening for angle closure in Caucasians. In addition, iris thickness was a significant predictor for occludable angles in Caucasians but was not in ethnic Chinese.

  11. Comparison of Factors Associated With Occludable Angle Between American Caucasians and Ethnic Chinese

    PubMed Central

    Wang, Ye Elaine; Li, Yingjie; Wang, Dandan; He, Mingguang; Lin, Shan

    2013-01-01

    Purpose. To determine if factors associated with gonioscopy-determined occludable angle among American Caucasians are similar to those found in ethnic Chinese. Methods. This is a prospective cross-sectional study with 120 American Caucasian, 116 American Chinese, and 116 mainland Chinese subjects. All three groups were matched for sex and age (40–80 years). Gonioscopy was performed for each subject (occludable angles = posterior trabecular meshwork not visible for ≥2 quadrants). Anterior segment optical coherence tomography and customized software was used to measure anterior segment biometry and iris parameters, including anterior chamber depth/width (ACD, ACW), lens vault (LV), and iris thickness/area/curvature. Results. In both Chinese and Caucasians, eyes with occludable angles had smaller ACD and ACW, and larger LV and iris curvature than eyes with open angles (all P < 0.005). Chinese eyes had smaller ACD and ACW than Caucasian eyes (both P < 0.01) in the occludable angle cohort. Iris characteristics did not differ significantly between Chinese and Caucasians in the occludable angle cohort. Based on multivariate logistic regression, gonioscopy-determined occludable angle was significantly associated with LV, iris area, and sex (all P < 0.03) in Chinese; and with LV, ACD, iris thickness, age, and sex (all P < 0.04) in Caucasians. Conclusions. Several factors associated with occludable angle differed between Caucasians and Chinese, suggesting potentially different mechanisms in occludable angle development in the two racial groups. This is the first study to demonstrate that lens vault is an important anterior segment optical coherence tomography parameter in the screening for angle closure in Caucasians. In addition, iris thickness was a significant predictor for occludable angles in Caucasians but was not in ethnic Chinese. PMID:24168992

  12. Three-Dimensional Morphometric Analysis of the Iris by Swept-Source Anterior Segment Optical Coherence Tomography in a Caucasian Population.

    PubMed

    Invernizzi, Alessandro; Giardini, Piero; Cigada, Mario; Viola, Francesco; Staurenghi, Giovanni

    2015-07-01

    We analyzed by swept-source anterior segment optical coherence tomography (SS-ASOCT) the three-dimensional iris morphology in a Caucasian population, and correlated the findings with iris color, iris sectors, subject age, and sex. One eye each from consecutive healthy emmetropic (refractive spherical equivalent ± 3 diopters) volunteers were selected for the study. The enrolled eye underwent standardized anterior segment photography to assess iris color. Iris images were assessed by SS-ASOCT for volume, thickness, width, and pupil size. Sectoral variations of morphometric data among the superior, nasal, inferior, and temporal sectors were recorded. A total of 135 eyes from 57 males and 78 females, age 49 ± 17 years, fulfilled the inclusion criteria. All iris morphometric parameters varied significantly among the different sectors (all P < 0.0001). Iris total volume and thickness were significantly correlated with increasingly darker pigmentation (P < 0.0001, P = 0.0384, respectively). Neither width nor pupil diameter was influenced by iris color. Age did not affect iris volume or thickness; iris width increased and pupil diameter decreased with age (rs = 0.52, rs = -0.58, respectively). There was no effect of sex on iris volume, thickness, or pupil diameter; iris width was significantly greater in males (P = 0.007). Morphology of the iris varied by iris sector, and iris color was associated with differences in iris volume and thickness. Morphological parameter variations associated with iris color, sector, age, and sex can be used to identify pathological changes in suspect eyes. To be effective in clinical settings, construction of iris morphological databases for different ethnic and racial populations is essential.

  13. Reliability and repeatability of swept-source Fourier-domain optical coherence tomography and Scheimpflug imaging in keratoconus.

    PubMed

    Szalai, Eszter; Berta, András; Hassan, Ziad; Módis, László

    2012-03-01

    To evaluate the repeatability and reliability of a recently introduced swept-source Fourier-domain anterior segment optical coherence tomography (AS-OCT) system and a high-resolution Scheimpflug camera and to assess the agreement between the 2 instruments when measuring healthy eyes and eyes with keratoconus. Department of Ophthalmology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary. Evaluation of diagnostic test or technology. Three consecutive series of anterior segment images were taken with AS-OCT (Casia SS-1000) followed by rotating Scheimpflug imaging (Pentacam high resolution). Axial keratometry in the steep and flat meridians and astigmatism values were recorded. Pachymetry in the apex, center, and the thinnest position and anterior chamber depth (ACD) measurements were also taken. This study enrolled 57 healthy volunteers (57 eyes) and 56 patients (84 eyes) with keratoconus. Significant difference was found in all measured anterior segment parameters between normal eyes and keratoconic eyes (P<.05). In keratoconic eyes, the difference between repeated measurements was less with AS-OCT than with Scheimpflug imaging in every keratometry and astigmatism value, in apical thickness, and in ACD. For keratometry, the thinnest and central pachymetry measurement repeatability was better in healthy eyes than in keratoconic eyes with both instruments. In general, the mean difference between AS-OCT and Scheimpflug imaging was higher in cases of keratoconus. Significant differences in keratometry, pachymetry, and ACD results were found between AS-OCT and Scheimpflug imaging. However, the repeatability of the measurements was comparable. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  14. Waardenburg syndrome: iris and choroidal hypopigmentation: findings on anterior and posterior segment imaging.

    PubMed

    Shields, Carol L; Nickerson, Stephanie J; Al-Dahmash, Saad; Shields, Jerry A

    2013-09-01

    Waardenburg syndrome typically manifests with congenital iris pigmentary abnormalities, but careful inspection can reveal additional posterior uveal pigmentary abnormalities. To demonstrate iris and choroidal hypopigmentation in patients with Waardenburg syndrome. Retrospective review of 7 patients referred for evaluation of presumed ocular melanocytosis. To describe the clinical and imaging features of the anterior and posterior uvea. In all patients, the diagnosis of Waardenburg syndrome was established. The nonocular features included white forelock in 4 of 7 (57%), tubular nose in 5 of 6 (83%), and small nasal alae in 5 of 6 (83%) patients. In 2 patients, a hearing deficit was documented on audiology testing. Family history of Waardenburg syndrome was elicited in 5 of 7 (71%) patients. Ocular features (7 patients) included telecanthus in 5 (71%), synophrys in 2 (29%), iris hypopigmentation in 5 (71%), and choroidal hypopigmentation in 5 (71%) patients. No patient had muscle contractures or Hirschsprung disease. Visual acuity was 20/20 to 20/50 in all patients. Iris hypopigmentation in 8 eyes was sector in 6 (75%) and diffuse (complete) in 2 (25%). Choroidal hypopigmentation in 9 eyes (100%) showed a sector pattern in 6 (67%) and a diffuse pattern in 3 (33%). Anterior segment optical coherence tomography revealed the hypopigmented iris to be thinner and with shallower crypts than the normal iris. Posterior segment optical coherence tomography showed a normal retina in all patients, but the subfoveal choroid in the hypopigmented region was slightly thinner (mean, 197 μm) compared with the opposite normal choroid (243 μm). Fundus autofluorescence demonstrated mild hyperautofluorescence (scleral unmasking) in hypopigmented choroid and no lipofuscin abnormality. Waardenburg syndrome manifests hypopigmentation of the iris and choroid with imaging features showing a slight reduction in the thickness of the affected tissue.

  15. Determining degree of optic nerve edema from color fundus photography

    NASA Astrophysics Data System (ADS)

    Agne, Jason; Wang, Jui-Kai; Kardon, Randy H.; Garvin, Mona K.

    2015-03-01

    Swelling of the optic nerve head (ONH) is subjectively assessed by clinicians using the Frisén scale. It is believed that a direct measurement of the ONH volume would serve as a better representation of the swelling. However, a direct measurement requires optic nerve imaging with spectral domain optical coherence tomography (SD-OCT) and 3D segmentation of the resulting images, which is not always available during clinical evaluation. Furthermore, telemedical imaging of the eye at remote locations is more feasible with non-mydriatic fundus cameras which are less costly than OCT imagers. Therefore, there is a critical need to develop a more quantitative analysis of optic nerve swelling on a continuous scale, similar to SD-OCT. Here, we select features from more commonly available 2D fundus images and use them to predict ONH volume. Twenty-six features were extracted from each of 48 color fundus images. The features include attributes of the blood vessels, optic nerve head, and peripapillary retina areas. These features were used in a regression analysis to predict ONH volume, as computed by a segmentation of the SD-OCT image. The results of the regression analysis yielded a mean square error of 2.43 mm3 and a correlation coefficient between computed and predicted volumes of R = 0:771, which suggests that ONH volume may be predicted from fundus features alone.

  16. Investigation of the benefit of adaptive optics optical coherence tomography angiography for the human retina (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Salas, Matthias; Augustin, Marco; Ginner, Laurin; Kumar, Abhishek; Baumann, Bernhard; Leitgeb, Rainer A.; Drexler, Wolfgang; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2017-02-01

    In this work we investigate the benefits of using optical coherence tomography angiography (OCTA) in combination with adaptive optics (AO) technology. It has been demonstrated that the contrast of vessels and small capillaries can be greatly enhanced by the use of OCTA. Moreover, small capillaries that are below the transverse resolution of the ophthalmic instrument can be detected. This opens unique opportunities for diagnosing retinal diseases. However, there are some limitations of this technology such as shadowing artifacts caused by overlying vasculature or the inability to determine the true extension of a vessel. Thus, the evaluation of the vascular structure and density can be misleading. To overcome these limitations we applied the OCT angiography technique to images recorded with AO-OCT. Due to the higher collection efficiency of AO-OCT in comparison with standard OCT an increased intensity contrast of vasculature can be seen. Using AO-OCTA the contrast of the vasculature to the surrounding static tissue is further increased. The improved transverse resolution and the reduced depth of focus of the AO-OCT greatly reduce shadowing artifacts allowing for a correct differentiation and segmentation of different vascular layers of the inner retina. The method is investigated in healthy volunteers and in patients with diabetic retinopathy.

  17. Imaging of the peripheral retina

    PubMed Central

    Kernt, Marcus; Kampik, Anselm

    2013-01-01

    The technical progress of the recent years has revolutionized imaging in ophthalmology. Scanning laser ophthalmoscopy (SLO), digital angiography, optical coherence tomography (OCT), and detection of fundus autofluorescence (FAF) have fundamentally changed our understanding of numerous retinal and choroidal diseases. Besides the tremendous advances in macular diagnostics, there is more and more evidence that central pathologies are often directly linked to changes in the peripheral retina. This review provides a brief overview on current posterior segment imaging techniques with a special focus on the peripheral retina. PMID:24391370

  18. Deep learning applications in ophthalmology.

    PubMed

    Rahimy, Ehsan

    2018-05-01

    To describe the emerging applications of deep learning in ophthalmology. Recent studies have shown that various deep learning models are capable of detecting and diagnosing various diseases afflicting the posterior segment of the eye with high accuracy. Most of the initial studies have centered around detection of referable diabetic retinopathy, age-related macular degeneration, and glaucoma. Deep learning has shown promising results in automated image analysis of fundus photographs and optical coherence tomography images. Additional testing and research is required to clinically validate this technology.

  19. The SL SCAN-1: Fourier Domain Optical Coherence Tomography Integrated into a Slit Lamp

    NASA Astrophysics Data System (ADS)

    Verbraak, F. D.; Stehouwer, M.

    The detailed cross-sectional images of OCT can be used for diagnosis and follow-up, assessing therapeutic success or failure. Recently, the OCT technology has been implemented in a small unit compatible with existing slit lamps. This increases the efficiency of the routine clinical examination of a patient, will increase the comfort of the patient, and saves time. Additionally, the posterior segment can be scanned through a handheld lens and even through a three-mirror lens.

  20. Towards automated segmentation of cells and cell nuclei in nonlinear optical microscopy.

    PubMed

    Medyukhina, Anna; Meyer, Tobias; Schmitt, Michael; Romeike, Bernd F M; Dietzek, Benjamin; Popp, Jürgen

    2012-11-01

    Nonlinear optical (NLO) imaging techniques based e.g. on coherent anti-Stokes Raman scattering (CARS) or two photon excited fluorescence (TPEF) show great potential for biomedical imaging. In order to facilitate the diagnostic process based on NLO imaging, there is need for an automated calculation of quantitative values such as cell density, nucleus-to-cytoplasm ratio, average nuclear size. Extraction of these parameters is helpful for the histological assessment in general and specifically e.g. for the determination of tumor grades. This requires an accurate image segmentation and detection of locations and boundaries of cells and nuclei. Here we present an image processing approach for the detection of nuclei and cells in co-registered TPEF and CARS images. The algorithm developed utilizes the gray-scale information for the detection of the nuclei locations and the gradient information for the delineation of the nuclear and cellular boundaries. The approach reported is capable for an automated segmentation of cells and nuclei in multimodal TPEF-CARS images of human brain tumor samples. The results are important for the development of NLO microscopy into a clinically relevant diagnostic tool. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experimental generation of optical coherence lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn; Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  2. Improving graph-based OCT segmentation for severe pathology in retinitis pigmentosa patients

    NASA Astrophysics Data System (ADS)

    Lang, Andrew; Carass, Aaron; Bittner, Ava K.; Ying, Howard S.; Prince, Jerry L.

    2017-03-01

    Three dimensional segmentation of macular optical coherence tomography (OCT) data of subjects with retinitis pigmentosa (RP) is a challenging problem due to the disappearance of the photoreceptor layers, which causes algorithms developed for segmentation of healthy data to perform poorly on RP patients. In this work, we present enhancements to a previously developed graph-based OCT segmentation pipeline to enable processing of RP data. The algorithm segments eight retinal layers in RP data by relaxing constraints on the thickness and smoothness of each layer learned from healthy data. Following from prior work, a random forest classifier is first trained on the RP data to estimate boundary probabilities, which are used by a graph search algorithm to find the optimal set of nine surfaces that fit the data. Due to the intensity disparity between normal layers of healthy controls and layers in various stages of degeneration in RP patients, an additional intensity normalization step is introduced. Leave-one-out validation on data acquired from nine subjects showed an average overall boundary error of 4.22 μm as compared to 6.02 μm using the original algorithm.

  3. Longitudinal Analysis of Mouse SDOCT Volumes

    PubMed Central

    Antony, Bhavna J.; Carass, Aaron; Lang, Andrew; Kim, Byung-Jin; Zack, Donald J.; Prince, Jerry L.

    2017-01-01

    Spectral-domain optical coherence tomography (SDOCT), in addition to its routine clinical use in the diagnosis of ocular diseases, has begun to find increasing use in animal studies. Animal models are frequently used to study disease mechanisms as well as to test drug efficacy. In particular, SDOCT provides the ability to study animals longitudinally and non-invasively over long periods of time. However, the lack of anatomical landmarks makes the longitudinal scan acquisition prone to inconsistencies in orientation. Here, we propose a method for the automated registration of mouse SDOCT volumes. The method begins by accurately segmenting the blood vessels and the optic nerve head region in the scans using a pixel classification approach. The segmented vessel maps from follow-up scans were registered using an iterative closest point (ICP) algorithm to the baseline scan to allow for the accurate longitudinal tracking of thickness changes. Eighteen SDOCT volumes from a light damage model study were used to train a random forest utilized in the pixel classification step. The area under the curve (AUC) in a leave-one-out study for the retinal blood vessels and the optic nerve head (ONH) was found to be 0.93 and 0.98, respectively. The complete proposed framework, the retinal vasculature segmentation and the ICP registration, was applied to a secondary set of scans obtained from a light damage model. A qualitative assessment of the registration showed no registration failures. PMID:29138527

  4. Longitudinal analysis of mouse SDOCT volumes

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Carass, Aaron; Lang, Andrew; Kim, Byung-Jin; Zack, Donald J.; Prince, Jerry L.

    2017-03-01

    Spectral-domain optical coherence tomography (SDOCT), in addition to its routine clinical use in the diagnosis of ocular diseases, has begun to fund increasing use in animal studies. Animal models are frequently used to study disease mechanisms as well as to test drug efficacy. In particular, SDOCT provides the ability to study animals longitudinally and non-invasively over long periods of time. However, the lack of anatomical landmarks makes the longitudinal scan acquisition prone to inconsistencies in orientation. Here, we propose a method for the automated registration of mouse SDOCT volumes. The method begins by accurately segmenting the blood vessels and the optic nerve head region in the scans using a pixel classification approach. The segmented vessel maps from follow-up scans were registered using an iterative closest point (ICP) algorithm to the baseline scan to allow for the accurate longitudinal tracking of thickness changes. Eighteen SDOCT volumes from a light damage model study were used to train a random forest utilized in the pixel classification step. The area under the curve (AUC) in a leave-one-out study for the retinal blood vessels and the optic nerve head (ONH) was found to be 0.93 and 0.98, respectively. The complete proposed framework, the retinal vasculature segmentation and the ICP registration, was applied to a secondary set of scans obtained from a light damage model. A qualitative assessment of the registration showed no registration failures.

  5. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search

    PubMed Central

    Fang, Leyuan; Cunefare, David; Wang, Chong; Guymer, Robyn H.; Li, Shutao; Farsiu, Sina

    2017-01-01

    We present a novel framework combining convolutional neural networks (CNN) and graph search methods (termed as CNN-GS) for the automatic segmentation of nine layer boundaries on retinal optical coherence tomography (OCT) images. CNN-GS first utilizes a CNN to extract features of specific retinal layer boundaries and train a corresponding classifier to delineate a pilot estimate of the eight layers. Next, a graph search method uses the probability maps created from the CNN to find the final boundaries. We validated our proposed method on 60 volumes (2915 B-scans) from 20 human eyes with non-exudative age-related macular degeneration (AMD), which attested to effectiveness of our proposed technique. PMID:28663902

  6. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.

    PubMed

    Fang, Leyuan; Cunefare, David; Wang, Chong; Guymer, Robyn H; Li, Shutao; Farsiu, Sina

    2017-05-01

    We present a novel framework combining convolutional neural networks (CNN) and graph search methods (termed as CNN-GS) for the automatic segmentation of nine layer boundaries on retinal optical coherence tomography (OCT) images. CNN-GS first utilizes a CNN to extract features of specific retinal layer boundaries and train a corresponding classifier to delineate a pilot estimate of the eight layers. Next, a graph search method uses the probability maps created from the CNN to find the final boundaries. We validated our proposed method on 60 volumes (2915 B-scans) from 20 human eyes with non-exudative age-related macular degeneration (AMD), which attested to effectiveness of our proposed technique.

  7. Optical Coherence Tomography Study of Experimental Anterior Ischemic Optic Neuropathy and Histologic Confirmation

    PubMed Central

    Ho, Joyce K.; Stanford, Madison P.; Shariati, Mohammad A.; Dalal, Roopa; Liao, Yaping Joyce

    2013-01-01

    Purpose. The optic nerve is part of the central nervous system, and interruption of this pathway due to ischemia typically results in optic atrophy and loss of retinal ganglion cells. In this study, we assessed in vivo retinal changes following murine anterior ischemic optic neuropathy (AION) by using spectral-domain optical coherence tomography (SD-OCT) and compared these anatomic measurements to that of histology. Methods. We induced ischemia at the optic disc via laser-activated photochemical thrombosis, performed serial SD-OCT and manual segmentation of the retinal layers to measure the ganglion cell complex (GCC) and total retinal thickness, and correlated these measurements with that of histology. Results. There was impaired perfusion and leakage at the optic disc on fluorescein angiography immediately after AION and severe swelling and distortion of the peripapillary retina on day-1. We used SD-OCT to quantify the changes in retinal thickness following experimental AION, which revealed significant thickening of the GCC on day-1 after ischemia followed by gradual thinning that plateaued by week-3. Thickness of the peripapillary sensory retina was also increased on day-1 and thinned chronically. This pattern of acute retinal swelling and chronic thinning on SD-OCT correlated well with changes seen in histology and corresponded to loss of retinal ganglion layer cells after ischemia. Conclusions. This was a serial SD-OCT quantification of acute and chronic changes following experimental AION, which revealed changes in the GCC similar to that of human AION, but over a time frame of weeks rather than months. PMID:23887804

  8. Quantified elasticity mapping of ocular tissue using acoustic radiation force optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao; He, Youmin; Zhang, Yi; Ma, Teng; Zhu, Jiang; Miao, Yusi; Dai, Cuixia; Silverman, Ronald; Humayun, Mark S.; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    Age-related macular degeneration and keratoconus are two ocular diseases occurring in the posterior and anterior eye, respectively. In both conditions, the mechanical elasticity of the respective tissues changes during the early onset of disease. It is necessary to detect these differences and treat the diseases in their early stages to provide proper treatment. Acoustic radiation force optical coherence elastography is a method of elasticity mapping using confocal ultrasound waves for excitation and Doppler optical coherence tomography for detection. We report on an ARF-OCE system that uses modulated compression wave based excitation signals, and detects the spatial and frequency responses of the tissue. First, all components of the system is synchronized and triggered such that the signal is consistent between frames. Next, phantom studies are performed to validate and calibrate the relationship between the resonance frequency and the Young's modulus. Then the frequency responses of the anterior and posterior eye are detected for porcine and rabbit eyes, and the results correlated to the elasticity. Finally, spatial elastograms are obtained for a porcine retina. Layer segmentation and analysis is performed and correlated to the histology of the retina, where five distinct layers are recognized. The elasticities of the tissue layers will be quantified according to the mean thickness and displacement response for the locations on the retina. This study is a stepping stone to future in-vivo animal studies, where the elastic modulus of the ocular tissue can be quantified and mapped out accordingly.

  9. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-01-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively. PMID:23837966

  10. Multimodal ophthalmic imaging using spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-08-01

    Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.

  11. Quality of Green's Functions Improved by Automatic Detection and Removal of Coherent Anthropogenic Noise

    NASA Astrophysics Data System (ADS)

    Williams, E. F.; Martin, E. R.; Biondi, B. C.; Lindsey, N.; Ajo Franklin, J. B.; Wagner, A. M.; Bjella, K.; Daley, T. M.; Dou, S.; Freifeld, B. M.; Robertson, M.; Ulrich, C.

    2016-12-01

    We analyze the impact of identifying and removing coherent anthropogenic noise on synthetic Green's functions extracted from ambient noise recorded on a dense linear distributed acoustic sensing (DAS) array. Low-cost, low-impact urban seismic surveys are possible with DAS, which uses dynamic strain sensing to record seismic waves incident to a buried fiber optic cable. However, interferometry and tomography of ambient noise data recorded in urban areas include coherent noise from near-field infrastructure such as cars and trains passing the array, in some cases causing artifacts in estimated Green's functions and potentially incorrect surface wave velocities. Based on our comparison of several methods, we propose an automated, real-time data processing workflow to detect and reduce the impact of these events on data from a dense array in an urban environment. We utilize a recursive STA/LTA (short-term average/long-term average) algorithm on each channel to identify sharp amplitude changes typically associated with an event arrival. In order to distinguish between optical noise and physical events, an event is cataloged only if STA/LTA is triggered on enough channels across the array in a short time window. For each event in the catalog, a conventional semblance analysis is performed across a straight segment of the array to determine whether the event has a coherent velocity signature. Events that demonstrate a semblance peak at low apparent velocities (5-50 m/s) are assumed to represent coherent transportation-related noise and are down-weighted in the time domain before cross-correlation. We show the impact of removing such noise on estimated Green's functions from ambient noise data recorded in Richmond, CA in December 2014. This method has been developed for use on a continuous time-lapse ambient noise survey collected with DAS near Fairbanks, AK, and an upcoming ambient noise survey on the Stanford University campus using DAS with a re-purposed telecommunications fiber optic cable.

  12. Development of Extended-Depth Swept Source Optical Coherence Tomography for Applications in Ophthalmic Imaging of the Anterior and Posterior Eye

    NASA Astrophysics Data System (ADS)

    Dhalla, Al-Hafeez Zahir

    Optical coherence tomography (OCT) is a non-invasive optical imaging modality that provides micron-scale resolution of tissue micro-structure over depth ranges of several millimeters. This imaging technique has had a profound effect on the field of ophthalmology, wherein it has become the standard of care for the diagnosis of many retinal pathologies. Applications of OCT in the anterior eye, as well as for imaging of coronary arteries and the gastro-intestinal tract, have also shown promise, but have not yet achieved widespread clinical use. The usable imaging depth of OCT systems is most often limited by one of three factors: optical attenuation, inherent imaging range, or depth-of-focus. The first of these, optical attenuation, stems from the limitation that OCT only detects singly-scattered light. Thus, beyond a certain penetration depth into turbid media, essentially all of the incident light will have been multiply scattered, and can no longer be used for OCT imaging. For many applications (especially retinal imaging), optical attenuation is the most restrictive of the three imaging depth limitations. However, for some applications, especially anterior segment, cardiovascular (catheter-based) and GI (endoscopic) imaging, the usable imaging depth is often not limited by optical attenuation, but rather by the inherent imaging depth of the OCT systems. This inherent imaging depth, which is specific to only Fourier Domain OCT, arises due to two factors: sensitivity fall-off and the complex conjugate ambiguity. Finally, due to the trade-off between lateral resolution and axial depth-of-focus inherent in diffractive optical systems, additional depth limitations sometimes arises in either high lateral resolution or extended depth OCT imaging systems. The depth-of-focus limitation is most apparent in applications such as adaptive optics (AO-) OCT imaging of the retina, and extended depth imaging of the ocular anterior segment. In this dissertation, techniques for extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.

  13. Automated classifiers for early detection and diagnosis of retinopathy in diabetic eyes.

    PubMed

    Somfai, Gábor Márk; Tátrai, Erika; Laurik, Lenke; Varga, Boglárka; Ölvedy, Veronika; Jiang, Hong; Wang, Jianhua; Smiddy, William E; Somogyi, Anikó; DeBuc, Delia Cabrera

    2014-04-12

    Artificial neural networks (ANNs) have been used to classify eye diseases, such as diabetic retinopathy (DR) and glaucoma. DR is the leading cause of blindness in working-age adults in the developed world. The implementation of DR diagnostic routines could be feasibly improved by the integration of structural and optical property test measurements of the retinal structure that provide important and complementary information for reaching a diagnosis. In this study, we evaluate the capability of several structural and optical features (thickness, total reflectance and fractal dimension) of various intraretinal layers extracted from optical coherence tomography images to train a Bayesian ANN to discriminate between healthy and diabetic eyes with and with no mild retinopathy. When exploring the probability as to whether the subject's eye was healthy (diagnostic condition, Test 1), we found that the structural and optical property features of the outer plexiform layer (OPL) and the complex formed by the ganglion cell and inner plexiform layers (GCL + IPL) provided the highest probability (positive predictive value (PPV) of 91% and 89%, respectively) for the proportion of patients with positive test results (healthy condition) who were correctly diagnosed (Test 1). The true negative, TP and PPV values remained stable despite the different sizes of training data sets (Test 2). The sensitivity, specificity and PPV were greater or close to 0.70 for the retinal nerve fiber layer's features, photoreceptor outer segments and retinal pigment epithelium when 23 diabetic eyes with mild retinopathy were mixed with 38 diabetic eyes with no retinopathy (Test 3). A Bayesian ANN trained on structural and optical features from optical coherence tomography data can successfully discriminate between healthy and diabetic eyes with and with no retinopathy. The fractal dimension of the OPL and the GCL + IPL complex predicted by the Bayesian radial basis function network provides better diagnostic utility to classify diabetic eyes with mild retinopathy. Moreover, the thickness and fractal dimension parameters of the retinal nerve fiber layer, photoreceptor outer segments and retinal pigment epithelium show promise for the diagnostic classification between diabetic eyes with and with no mild retinopathy.

  14. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography.

    PubMed

    Grewal, Dilraj S; Tanna, Angelo P

    2013-03-01

    With the rapid adoption of spectral domain optical coherence tomography (SDOCT) in clinical practice and the recent advances in software technology, there is a need for a review of the literature on glaucoma detection and progression analysis algorithms designed for the commercially available instruments. Peripapillary retinal nerve fiber layer (RNFL) thickness and macular thickness, including segmental macular thickness calculation algorithms, have been demonstrated to be repeatable and reproducible, and have a high degree of diagnostic sensitivity and specificity in discriminating between healthy and glaucomatous eyes across the glaucoma continuum. Newer software capabilities such as glaucoma progression detection algorithms provide an objective analysis of longitudinally obtained structural data that enhances our ability to detect glaucomatous progression. RNFL measurements obtained with SDOCT appear more sensitive than time domain OCT (TDOCT) for glaucoma progression detection; however, agreement with the assessments of visual field progression is poor. Over the last few years, several studies have been performed to assess the diagnostic performance of SDOCT structural imaging and its validity in assessing glaucoma progression. Most evidence suggests that SDOCT performs similarly to TDOCT for glaucoma diagnosis; however, SDOCT may be superior for the detection of early stage disease. With respect to progression detection, SDOCT represents an important technological advance because of its improved resolution and repeatability. Advancements in RNFL thickness quantification, segmental macular thickness calculation and progression detection algorithms, when used correctly, may help to improve our ability to diagnose and manage glaucoma.

  15. Correlation between the graft-host junction of penetrating keratoplasty by anterior segment-optical coherence tomography and the magnitude of postoperative astigmatism.

    PubMed

    Nassar, Ghada Azab; Arfeen, Shaimaa Abd El Salam

    2017-07-01

    This study aimed to evaluate the alignment pattern of the graft-host junction after penetrating keratoplasty (PK) by anterior segment-optical coherence tomography (AS-OCT) and to correlate this pattern with the magnitude of postoperative astigmatism. This retrospective observational study was carried out on forty patients who underwent PK from February 2013 to August 2014. AS-OCT was performed, and the graft-host junctions were classified into well-apposed junction, malapposed junction, and equally apposed junction. Mal-apposition is subdivided into gap and protrusion. The correlations between clinical characteristics, wound profiles from the AS-OCT, and the magnitude of postoperative astigmatism by Sirius camera (Costruzione Strumenti Oftalmici [CSO], Florence, Italy (CSO, Sirius), were analyzed. Graft-host junctions from forty patients were analyzed; 18 eyes had well-apposed junctions, ten eyes had malapposed junctions, and 12 had equally apposed junctions. The mean cylinder was -9.44 ± -4.00D in well-apposed group, -13.40 ± -5.01D in malapposed group, and -4.67 ± -0.94D in equally apposed group. Alignment pattern of the graft-host junction correlated significantly with the magnitude of astigmatism (P = 0.034). Preoperative corneal diseases did not have an effect on the magnitude of astigmatism (P = 0.123). The alignment pattern of the graft-host junction by AS-OCT can explain the postoperative astigmatism after PK where it correlates significantly with the magnitude of astigmatism.

  16. Ratiometric analysis of optical coherence tomography-measured in vivo retinal layer thicknesses for the detection of early diabetic retinopathy.

    PubMed

    Bhaduri, Basanta; Shelton, Ryan L; Nolan, Ryan M; Hendren, Lucas; Almasov, Alexandra; Labriola, Leanne T; Boppart, Stephen A

    2017-11-01

    Influence of diabetes mellitus (DM) and diabetic retinopathy (DR) on parafoveal retinal thicknesses and their ratios was evaluated. Six retinal layer boundaries were segmented from spectral-domain optical coherence tomography images using open-source software. Five study groups: (1) healthy control (HC) subjects, and subjects with (2) controlled DM, (3) uncontrolled DM, (4) controlled DR and (5) uncontrolled DR, were identified. The one-way analyses of variance (ANOVA) between adjacent study groups (i. e. 1 with 2, 2 with 3, etc) indicated differences in retinal thicknesses and ratios. Overall retinal thickness, ganglion cell layer (GCL) thickness, inner plexiform layer (IPL) thickness, and their combination (GCL+ IPL), appeared to be significantly less in the uncontrolled DM group when compared to controlled DM and controlled DR groups. Although the combination of nerve fiber layer (NFL) and GCL, and IPL thicknesses were not different, their ratio, (NFL+GCL)/IPL, was found to be significantly higher in the controlled DM group compared to the HC group. Comparisons of the controlled DR group with the controlled DM group, and with the uncontrolled DR group, do not show any differences in the layer thicknesses, though several significant ratios were obtained. Ratiometric analysis may provide more sensitive parameters for detecting changes in DR. Picture: A representative segmented OCT image of the human retina is shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart.

    PubMed

    Grishina, Olga A; Wang, Shang; Larina, Irina V

    2017-05-01

    Efficient separation of blood and cardiac wall in the beating embryonic heart is essential and critical for experiment-based computational modelling and analysis of early-stage cardiac biomechanics. Although speckle variance optical coherence tomography (SV-OCT) relying on calculation of intensity variance over consecutively acquired frames is a powerful approach for segmentation of fluid flow from static tissue, application of this method in the beating embryonic heart remains challenging because moving structures generate SV signal indistinguishable from the blood. Here, we demonstrate a modified four-dimensional SV-OCT approach that effectively separates the blood flow from the dynamic heart wall in the beating mouse embryonic heart. The method takes advantage of the periodic motion of the cardiac wall and is based on calculation of the SV signal over the frames corresponding to the same phase of the heartbeat cycle. Through comparison with Doppler OCT imaging, we validate this speckle-based approach and show advantages in its insensitiveness to the flow direction and velocity as well as reduced influence from the heart wall movement. This approach has a potential in variety of applications relying on visualization and segmentation of blood flow in periodically moving structures, such as mechanical simulation studies and finite element modelling. Picture: Four-dimensional speckle variance OCT imaging shows the blood flow inside the beating heart of an E8.5 mouse embryo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Salvaging deep anterior lamellar keratoplasty with microbubble incision technique in failed "big bubble" cases: an update study.

    PubMed

    Banerjee, Sanjib; Li, He J; Tsaousis, Konstantinos T; Tabin, Geoffrey C

    2016-11-04

    To report the achievement rate of bare Descemet membrane (DM) dissection with the help of microbubble incision technique in eyes with failed big bubble formation and to investigate the mechanism of the microbubble rescue technique through ex vivo imaging of human cadaver corneas. This retrospective clinical study included 80 eyes of 80 patients that underwent deep anterior lamellar keratoplasty (DALK). In 22/80 (27.5%) cases, big bubble dissection failed. After puncturing the microbubbles, viscodissection helped to achieve separation of DM from the remaining stroma. In addition, an ex vivo study with human cadaver cornea specimens, gross photography, and anterior segment optical coherence tomography imaging was accomplished ex vivo to explore the mechanism of this method. Microbubble dissection technique led to successful DALK in 19 of 22 cases of failed big bubble. Microperforation occurred in 3 eyes. Deep anterior lamellar keratoplasty was completed without any complications in 2 out of the 3 eyes with microperforation. In 1 eye, conversion to penetrating keratoplasty was required. Microbubble-guided viscodissection achieved 95.4% (21/22) success in exposing bare DM in failed big-bubble cases of DALK. Anterior segment optical coherence tomography imaging results of cadaver eyes showed where these microbubbles were concentrated and their related size. Microbubble-guided DALK should be considered an effective rescue technique in achieving bare DM in eyes with failed big bubble. Our ex vivo experiment illustrated the possible alterations in cornea anatomy during this technique.

  19. Tissue thickness calculation in ocular optical coherence tomography

    PubMed Central

    Alonso-Caneiro, David; Read, Scott A.; Vincent, Stephen J.; Collins, Michael J.; Wojtkowski, Maciej

    2016-01-01

    Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature. PMID:26977367

  20. Alterations in Retinal Layer Thickness and Reflectance at Different Stages of Diabetic Retinopathy by En Face Optical Coherence Tomography

    PubMed Central

    Wanek, Justin; Blair, Norman P.; Chau, Felix Y.; Lim, Jennifer I.; Leiderman, Yannek I.; Shahidi, Mahnaz

    2016-01-01

    Purpose This article reports a method for en face optical coherence tomography (OCT) imaging and quantitative assessment of alterations in both thickness and reflectance of individual retinal layers at different stages of diabetic retinopathy (DR). Methods High-density OCT raster volume scans were acquired in 29 diabetic subjects divided into no DR (NDR) or non-proliferative DR (NPDR) groups and 22 control subjects (CNTL). A customized image segmentation method identified eight retinal layer interfaces and generated en face thickness maps and reflectance images for nerve fiber layer (NFL), ganglion cell and inner plexiform layers (GCLIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor outer segment layer (OSL), and retinal pigment epithelium (RPE). Mean thickness and intensity values were calculated in nine macular subfields for each retinal layer. Results En face thickness maps and reflectance images of retinal layers in CNTL subjects corresponded to normal retinal anatomy. Total retinal thickness correlated negatively with age in nasal subfields (R ≤−0.31; P ≤ 0.03, N = 51). In NDR subjects, NFL and OPL thickness were decreased (P = 0.05), and ONL thickness was increased (P = 0.04) compared to CNTL. In NPDR subjects, GCLIPL thickness was increased in perifoveal subfields (P < 0.05) and INL intensity was higher in all macular subfields (P = 0.04) compared to CNTL. Conclusions Depth and spatially resolved retinal thickness and reflectance measurements are potential biomarkers for assessment and monitoring of DR. PMID:27409491

  1. Comparing Laser Peripheral Iridotomy to Cataract Extraction in Narrow Angle Eyes Using Anterior Segment Optical Coherence Tomography

    PubMed Central

    Melese, Ephrem; Peterson, Jeffrey R.; Feldman, Robert M.; Baker, Laura A.; Bell, Nicholas P.; Chuang, Alice Z.

    2016-01-01

    Purpose To evaluate the changes in anterior chamber angle (ACA) parameters in primary angle closure (PAC) spectrum eyes before and after cataract extraction (CE) and compare to the changes after laser peripheral iridotomy (LPI) using anterior segment optical coherence tomography (ASOCT). Methods Twenty-eight PAC spectrum eyes of 18 participants who underwent CE and 34 PAC spectrum eyes of 21 participants who underwent LPI were included. ASOCT images with 3-dimensional mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after CE or LPI. Mixed-effect model analysis was used to 1) compare best-corrected visual acuity, intraocular pressure, and ACA parameters before and after CE; 2) identify and estimate the effects of potential contributing factors affecting changes in ACA parameters; and 3) compare CE and LPI treatment groups. Results The increase in average angle parameters (TISA750 and TICV750) was significantly greater after CE than LPI. TICV750 increased by 102% (2.114 [±1.203] μL) after LPI and by 174% (4.546 [± 1.582] μL) after CE (P < 0.001). Change of TICV750 in the CE group was significantly affected by age (P = 0.002), race (P = 0.006), and intraocular lens power (P = 0.037). Conclusions CE results in greater anatomic changes in the ACA than LPI in PAC spectrum eyes. ASOCT may be used to follow anatomic changes in the angle after intervention. PMID:27606482

  2. Longitudinal Evaluation of Wound Healing after Penetrating Corneal Injury: Anterior Segment Optical Coherence Tomography Study.

    PubMed

    Zheng, Kang Keng; Cai, Jianhao; Rong, Shi Song; Peng, Kun; Xia, Honghe; Jin, Chuan; Lu, Xuehui; Liu, Xinyu; Chen, Haoyu; Jhanji, Vishal

    2017-07-01

    Ocular imaging can enhance our understanding of wound healing. We report anterior segment optical coherence tomography (ASOCT) findings in penetrating corneal injury. Serial ASOCT was performed after repair of penetrating corneal injury. Internal aberrations of wound edges were labeled as "steps" or "gaps" on ASOCT images. The wound type was characterized as: type 1: continuous inner wound edge or step height ≤ 80 µm; type 2: step height > 80 µm; type 3: gap between wound edges; and type 4: intraocular tissue adherent to wound. Surgical outcomes of different wound types were compared. 50 consecutive patients were included (6 females, 44 males; mean age 33 ± 12 years). The average size of wound was 4.2 ± 2.6 mm (type 1, 8 eyes; type 2, 27 eyes; type 3, 12 eyes; type 4, 3 eyes). At the end of 3 months, 70% (n = 35) of the wounds were type 1. At the end of 6 months, all type 1 wounds had healed completely, whereas about half of type 2 (48.1%) and type 3 (50%) wounds had recovered to type 1 configuration. The wound type at baseline affected the height of step (p = 0.047) and corneal thickness at 6 months (p = 0.035). ASOCT is a useful tool for monitoring wound healing in cases with penetrating corneal injury. Majority of the wound edges appose between 3 and 6 months after trauma. In our study, baseline wound configuration affected the healing pattern.

  3. Effect of Nocturnal Intermittent Peritoneal Dialysis on Intraocular Pressure and Anterior Segment Optical Coherence Tomography Parameters.

    PubMed

    Chong, Ka Lung; Samsudin, Amir; Keng, Tee Chau; Kamalden, Tengku Ain; Ramli, Norlina

    2017-02-01

    To evaluate the effect of nocturnal intermittent peritoneal dialysis (NIPD) on intraocular pressure (IOP) and anterior segment optical coherence tomography (ASOCT) parameters. Systemic changes associated with NIPD were also analyzed. Observational study. Nonglaucomatous patients on NIPD underwent systemic and ocular assessment including mean arterial pressure (MAP), body weight, serum osmolarity, visual acuity, IOP measurement, and ASOCT within 2 hours both before and after NIPD. The Zhongshan Angle Assessment Program (ZAAP) was used to measure ASOCT parameters including anterior chamber depth, anterior chamber width, anterior chamber area, anterior chamber volume, lens vault, angle opening distance, trabecular-iris space area, and angle recess area. T tests and Pearson correlation tests were performed with P<0.05 considered statistically significant. A total of 46 eyes from 46 patients were included in the analysis. There were statistically significant reductions in IOP (-1.8±0.6 mm Hg, P=0.003), MAP (-11.9±3.1 mm Hg, P<0.001), body weight (-0.7±2.8 kg, P<0.001), and serum osmolarity (-3.4±2.0 mOsm/L, P=0.002) after NIPD. All the ASOCT parameters did not have any statistically significant changes after NIPD. There were no statistically significant correlations between the changes in IOP, MAP, body weight, and serum osmolarity (all P>0.05). NIPD results in reductions in IOP, MAP, body weight, and serum osmolarity in nonglaucomatous patients.

  4. Coherent/Noncoherent Detection of Coherent Optical Heterodyne DPSK-CDMA and MFSK-CDMA Signals

    DTIC Science & Technology

    1991-12-01

    AD-A246 215 NAVAL POSTGRADUATE SCHOOL Monterey, Californla DTI THESIS COHERENT/ NONCOHERENT DETECTION OF COHERENT OPTICAL HETERODYNE DPSK-CDMA AND...NO ~ ACCESSION NO 11TILE(ncud S~riy ~a~fiat~r)COHERENT/ NONCOHERENT DETECTION OF COHERENT OPTICAL HETERODYNE DPSK-CDMA AND MFSK-CDMA SIGNALS 12 PERSONAL...early optical fiber communication systems. Gas lasers are also disregarded for practical systems due to size and safety considerations, even though

  5. Drawing the line between constituent structure and coherence relations in visual narratives

    PubMed Central

    Cohn, Neil; Bender, Patrick

    2016-01-01

    Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of Visual Narrative Grammar posits that hierarchic “grammatical” structures operate at the discourse level using categorical roles for images, which may or may not co-occur with shifts in coherence. We therefore examined the relationship between narrative structure and coherence shifts in the segmentation of visual narrative sequences using a “segmentation task” where participants drew lines between images in order to divide them into sub-episodes. We used regressions to analyze the influence of the expected constituent structure boundary, narrative categories, and semantic coherence relationships on the segmentation of visual narrative sequences. Narrative categories were a stronger predictor of segmentation than linear coherence relationships between panels, though both influenced participants’ divisions. Altogether, these results support the theory that meaningful sequential images use a narrative grammar that extends above and beyond linear semantic shifts between discourse units. PMID:27709982

  6. Drawing the line between constituent structure and coherence relations in visual narratives.

    PubMed

    Cohn, Neil; Bender, Patrick

    2017-02-01

    Theories of visual narrative understanding have often focused on the changes in meaning across a sequence, like shifts in characters, spatial location, and causation, as cues for breaks in the structure of a discourse. In contrast, the theory of visual narrative grammar posits that hierarchic "grammatical" structures operate at the discourse level using categorical roles for images, which may or may not co-occur with shifts in coherence. We therefore examined the relationship between narrative structure and coherence shifts in the segmentation of visual narrative sequences using a "segmentation task" where participants drew lines between images in order to divide them into subepisodes. We used regressions to analyze the influence of the expected constituent structure boundary, narrative categories, and semantic coherence relationships on the segmentation of visual narrative sequences. Narrative categories were a stronger predictor of segmentation than linear coherence relationships between panels, though both influenced participants' divisions. Altogether, these results support the theory that meaningful sequential images use a narrative grammar that extends above and beyond linear semantic shifts between discourse units. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics

    PubMed Central

    Jonnal, Ravi S.; Kocaoglu, Omer P.; Wang, Qiang; Lee, Sangyeol; Miller, Donald T.

    2011-01-01

    The cone photoreceptor’s outer segment (OS) experiences changes in optical path length, both in response to visible stimuli and as a matter of its daily course of renewal and shedding. These changes are of interest, to quantify function in healthy cells and assess dysfunction in diseased ones. While optical coherence tomography (OCT), combined with adaptive optics (AO), has permitted unprecedented three-dimensional resolution in the living retina, it has not generally been able to measure these OS dynamics, whose scale is smaller than OCT’s axial resolution of a few microns. A possible solution is to take advantage of the phase information encoded in the OCT signal. Phase-sensitive implementations of spectral-domain optical coherence tomography (SD-OCT) have been demonstrated, capable of resolving sample axial displacements much smaller than the imaging wavelength, but these have been limited to ex vivo samples. In this paper we present a novel technique for retrieving phase information from OCT volumes of the outer retina. The key component of our technique is quantification of phase differences within the retina. We provide a quantitative analysis of such phase information and show that–when combined with appropriate methods for filtering and unwrapping–it can improve the sensitivity to OS length change by more than an order of magnitude, down to 45 nm, slightly thicker than a single OS disc. We further show that phase sensitivity drops off with retinal eccentricity, and that the best location for phase imaging is close to the fovea. We apply the technique to the measurement of sub-resolution changes in the OS over matters of hours. Using custom software for registration and tracking, these microscopic changes are monitored in hundreds of cones over time. In two subjects, the OS was found to have average elongation rates of 150 nm/hr, values which agree with our previous findings. PMID:22254172

  8. IMAGING AND MEASUREMENT OF THE PRERETINAL SPACE IN VITREOMACULAR ADHESION AND VITREOMACULAR TRACTION BY A NEW SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY ANALYSIS.

    PubMed

    Stopa, Marcin; Marciniak, Elżbieta; Rakowicz, Piotr; Stankiewicz, Agnieszka; Marciniak, Tomasz; Dąbrowski, Adam

    2017-10-01

    To evaluate a new method for volumetric imaging of the preretinal space (also known as the subhyaloid, subcortical, or retrocortical space) and investigate differences in preretinal space volume in vitreomacular adhesion (VMA) and vitreomacular traction (VMT). Nine patients with VMA and 13 with VMT were prospectively evaluated. Automatic inner limiting membrane line segmentation, which exploits graph search theory implementation, and posterior cortical vitreous line segmentation were performed on 141 horizontal spectral domain optical coherence tomography B-scans per patient. Vertical distances (depths) between the posterior cortical vitreous and inner limiting membrane lines were calculated for each optical coherence tomography B-scan acquired. The derived distances were merged and visualized as a color depth map that represented the preretinal space between the posterior surface of the hyaloid and the anterior surface of the retina. The early treatment d retinopathy study macular map was overlaid onto final virtual maps, and preretinal space volumes were calculated for each early treatment diabetic retinopathy study map sector. Volumetric maps representing preretinal space volumes were created for each patient in the VMA and VMT groups. Preretinal space volumes were larger in all early treatment diabetic retinopathy study map macular regions in the VMT group compared with those in the VMA group. The differences reached statistical significance in all early treatment diabetic retinopathy study sectors, except for the superior outer macula and temporal outer macula where significance values were P = 0.05 and P = 0.08, respectively. Overall, the relative differences in preretinal space volumes between the VMT and VMA groups varied from 2.7 to 4.3 in inner regions and 1.8 to 2.9 in outer regions. Our study provides evidence of significant differences in preretinal space volume between eyes with VMA and those with VMT. This may be useful not only in the investigation of preretinal space properties in VMA and VMT, but also in other conditions, such as age-related macular degeneration, diabetic retinopathy, and central retinal vein occlusion.

  9. Intensity noise limit in a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    E Alekseev, A.; Tezadov, Ya A.; Potapov, V. T.

    2017-05-01

    In the present paper we perform, for the first time, the analysis of the average intensity noise power level at the output of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source. The origin of the considered intensity noise lies in random phase fluctuations of a semiconductor laser source field. These phase fluctuations are converted to intensity noise in the process of interference of backscattered light. This intensity noise inevitably emerges in every phase-OTDR spatial channel and limits its sensitivity to external phase actions. The analysis of intensity noise in a phase-OTDR was based on the study of a fiber scattered-light interferometer (FSLI) which is treated as the constituent part of OTDR. When considered independently, FSLI has a broad intensity noise spectrum at its output; when FSLI is treated as a part of a phase-OTDR, due to aliasing effect, the wide FSLI noise spectrum is folded within the spectral band, determined by the probe pulse repetition frequency. In the analysis one of the conventional phase-OTDR schemes with rectangular dual-pulse probe signal was considered, the FSLI, which corresponds to this OTDR scheme, has two scattering fiber segments with additional time delay introduced between backscattered fields. The average intensity noise power and resulting noise spectrum at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments and by the additional time delay between the scattering segments. The average intensity noise characteristics at the output of the corresponding phase-OTDR are determined by the analogous parameters: the source coherence, the lengths of the parts constituting the dual-pulse and the time interval which separates the parts of the dual-pulse. In the paper the expression for the average noise power spectral density (NPSD) at the output of FSLI was theoretically derived and experimentally verified. Based on the found average NPSD of FSLI, a simple relation connecting the phase-OTDR parameters and the limiting level of full average intensity noise power at its output was derived. This relation was verified by experimental measurement of the average noise power at the output of phase-OTDR. The limiting noise level, considered in the paper, determines the fundamental noise floor for the phase-OTDR with given parameters of the source coherence, probe pulse length and time delay between two pulses constituting the dual-pulse.

  10. Sensitivity of a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    Alekseev, A. E.; Tezadov, Ya A.; Potapov, V. T.

    2018-06-01

    In the present paper we perform, for the first time, an analysis of the average sensitivity of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source to external actions. The sensitivity of this OTDR can be defined in a conventional manner via average SNR at its output, which in turn is defined by the average useful signal power and the average intensity noise power in the OTDR spatial channels in the bandwidth defined by the OTDR sampling frequency. The average intensity noise power is considered in detail in a previous paper. In the current paper we examine the average useful signal power at the output of a phase-OTDR. The analysis of the average useful signal power of a phase-OTDR is based on the study of a fiber scattered-light interferometer (FSLI) which is treated as a constituent part of a phase- OTDR. In the analysis, one of the conventional phase-OTDR schemes with a rectangular dual-pulse probe signal is considered. The FSLI which corresponds to this OTDR scheme has two scattering fiber segments with additional time delay, introduced between backscattered fields. The average useful signal power and the resulting average SNR at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments, and by the additional time delay between the scattering fiber segments. The average useful signal power characteristic of the corresponding phase-OTDR is determined by analogous parameters: the source coherence, the time durations of the parts constituting the dual-pulse, and the time interval which separates these parts. In the paper an expression for the average useful signal power of a phase-OTDR is theoretically derived and experimentally verified. Based on the found average useful signal power of a phase-OTDR and the average intensity noise power, derived in the previous paper, the average SNR of a phase-OTDR is defined. Setting the average signal SNR to 1, at a defined spectral band the minimum detectable external action amplitude for our particular phase-OTDR setup is determined. We also derive a simple relation for the average useful signal power and the average SNR which results when making the assumption that the laser source coherence is high. The results of the paper can serve as the basis for further development of the concept of phase-OTDR sensitivity.

  11. Impact of B-Scan Averaging on Spectralis Optical Coherence Tomography Image Quality before and after Cataract Surgery

    PubMed Central

    Podkowinski, Dominika; Sharian Varnousfaderani, Ehsan; Simader, Christian; Bogunovic, Hrvoje; Philip, Ana-Maria; Gerendas, Bianca S.

    2017-01-01

    Background and Objective To determine optimal image averaging settings for Spectralis optical coherence tomography (OCT) in patients with and without cataract. Study Design/Material and Methods In a prospective study, the eyes were imaged before and after cataract surgery using seven different image averaging settings. Image quality was quantitatively evaluated using signal-to-noise ratio, distinction between retinal layer image intensity distributions, and retinal layer segmentation performance. Measures were compared pre- and postoperatively across different degrees of averaging. Results 13 eyes of 13 patients were included and 1092 layer boundaries analyzed. Preoperatively, increasing image averaging led to a logarithmic growth in all image quality measures up to 96 frames. Postoperatively, increasing averaging beyond 16 images resulted in a plateau without further benefits to image quality. Averaging 16 frames postoperatively provided comparable image quality to 96 frames preoperatively. Conclusion In patients with clear media, averaging 16 images provided optimal signal quality. A further increase in averaging was only beneficial in the eyes with senile cataract. However, prolonged acquisition time and possible loss of details have to be taken into account. PMID:28630764

  12. Optical coherence tomography assessment of vessel wall degradation in thoracic aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Real, Eusebio; Eguizabal, Alma; Pontón, Alejandro; Díez, Marta Calvo; Fernando Val-Bernal, José; Mayorga, Marta; Revuelta, José M.; López-Higuera, José M.; Conde, Olga M.

    2013-12-01

    Optical coherence tomography images of human thoracic aorta from aneurysms reveal elastin disorders and smooth muscle cell alterations when visualizing the media layer of the aortic wall. These disorders can be employed as indicators for wall degradation and, therefore, become a hallmark for diagnosis of risk of aneurysm under intraoperative conditions. Two approaches are followed to evaluate this risk: the analysis of the reflectivity decay along the penetration depth and the textural analysis of a two-dimensional spatial distribution of the aortic wall backscattering. Both techniques require preprocessing stages for the identification of the air-sample interface and for the segmentation of the media layer. Results show that the alterations in the media layer of the aortic wall are better highlighted when the textural approach is considered and also agree with a semiquantitative histopathological grading that assesses the degree of wall degradation. The correlation of the co-occurrence matrix attains a sensitivity of 0.906 and specificity of 0.864 when aneurysm automatic diagnosis is evaluated with a receiver operating characteristic curve.

  13. Limitations in imaging common conjunctival and corneal pathologies with fourier-domain optical coherence tomography.

    PubMed

    Demirci, Hakan; Steen, Daniel W

    2014-01-01

    To describe the limitations of Fourier-domain optical coherence tomography (OCT) in imaging common conjunctival and corneal pathology. Retrospective, single-center case series of 40 patients with conjunctival and cornea pathology. Fourier-domain OCT imaged laser in situ keratomileusis (LASIK) flaps in detail, including its relation to other corneal structures and abnormalities. Similarly, in infectious or degenerative corneal disorders, Fourier-domain OCT successfully showed the extent of infiltration or material deposition, which appeared as hyper-reflective areas. In cases with pterygium, the underlying cornea could not be imaged. All cases of common conjunctival pathologies, such as nevus or pinguecula, were successfully imaged in detail. Nevi, scleritis, pterygium, pinguecula, and subconjunctival hemorrhage were hyper-reflective lesions, while cysts and lymphangiectasia were hyporeflective. The details of the underlying sclera were not uniformly imaged in conjunctival pathologies. Fourier-domain OCT imaged the trabeculectomy bleb in detail, whereas the details of structures of the anterior chamber angle were not routinely visualized in all cases. Light scatter through vascularized, densely inflamed, or thick lesions limits the imaging capabilities of Fourier-domain anterior segment OCT.

  14. CLASSIFICATION AND QUANTITATIVE ANALYSIS OF GEOGRAPHIC ATROPHY JUNCTIONAL ZONE USING SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY.

    PubMed

    Qu, Jinfeng; Velaga, Swetha Bindu; Hariri, Amir H; Nittala, Muneeswar Gupta; Sadda, Srinivas

    2017-08-22

    The junctional zone at the border of areas of geographic atrophy (GA) in eyes with nonneovascular age-related macular degeneration is an important target region for future therapeutic strategies. The goal of this study was to perform a detailed classification and quantitative characterization of the junctional zone using spectral domain optical coherence tomography. Spectral domain optical coherence tomography volume cube scans (Spectralis OCT, 1024 × 37, Automatic Real Time > 9) were obtained from 15 eyes of 11 patients with GA because of nonneovascular age-related macular degeneration. Volume optical coherence tomography data were imported into previously described validated grading software (3D-OCTOR), and manual segmentation of the retinal pigment epithelium (RPE) and photoreceptor layers was performed on all B-scans (total of 555). Retinal pigment epithelium and photoreceptor defect maps were produced for each case. The borders of the photoreceptor defect area and RPE defect area were delineated individually on separate annotation layers. The two outlines were then superimposed to compare the areas of overlap and nonoverlap. The perimeter of the RPE defect area was calculated by the software in pixels. The superimposed outline of the photoreceptor defect area and the RPE defect area was scrutinized to classify the overlap configuration of the junctional zone into one of three categories: Type 0, exact correspondence between the edge of the RPE defect and photoreceptor defect; Type 1, loss of photoreceptors outside and beyond the edge of the RPE defect; Type 2, preservation of photoreceptors beyond the edge of the RPE defect. The relative proportion of the various border configurations was expressed as a percentage of the perimeter of the RPE defect. Each configuration was then classified into four subgroups according to irregularity of the RPE band and the presence of debris. Fifteen eyes of 11 patients (mean age: 79.3 ± 4.3 years; range: 79-94 years) were included in this study. Seventeen GA lesions were analyzed. Two hundred and thirty-two B-scans were found to pass through the GA lesions, yielding 612 individual GA borders which were separately analyzed and classified. The mean area of the RPE defect was 4.0 ± 4.4 mm, which was significantly smaller than that of the photoreceptor defect which measured 4.4 ± 4.1 mm (paired t test, P = 0.037). On average, 18.0 ± 9.6% (range, 2.3-36.6%) of the junctional zone was of the Type 0 configuration, 57.3 ± 19.0% (range, 21.3-96.8%) was Type 1, and 24.7 ± 18.0% (range, 0.9-64.4%) was Type 2. Type 1 was more prevalent than Type 0 and 2 (analysis of variance, P = 0.000). Debris was present at the margin of the defect in 24.3% (149 of 612) of all assessed junctional zones; 20.0% (14 of 70) of Type 0 junctions, 28.7% (120 of 418) of Type 1, and 12.1% (15 of 124) of Type 2. Debris was more common in Type 1 than Type 2 junctions (P < 0.001). Retinal pigment epithelial irregularity was present at the margin of the defect in 34.8% (213 of 612) of all assessed junctional zones; 52.9% (37 of 70) of Type 0 junctions, 38.0% (159 of 418) of Type 1, and 13.7% (17 of 124) of Type 2. Retinal pigment epithelial irregularity was present more often at Type 0 and Type 1 than at Type 2 junctions (P < 0.001 for both). The size of the optical coherence tomography-visible RPE and photoreceptor defect in GA lesions differ significantly. There were significant areas where the photoreceptor outer segments were preserved despite the absence of visible RPE cells, and also areas of photoreceptor outer segment loss despite apparent RPE preservation. These findings have implications for development of therapeutic strategies, particularly cell-replacement approaches.

  15. Advances of optical coherence tomography in myopia and pathologic myopia

    PubMed Central

    Ng, D S C; Cheung, C Y L; Luk, F O; Mohamed, S; Brelen, M E; Yam, J C S; Tsang, C W; Lai, T Y Y

    2016-01-01

    The natural course of high-axial myopia is variable and the development of pathologic myopia is not fully understood. Advancements in optical coherence tomography (OCT) technology have revealed peculiar intraocular structures in highly myopic eyes and unprecedented pathologies that cause visual impairment. New OCT findings include posterior precortical vitreous pocket and precursor stages of posterior vitreous detachment; peripapillary intrachoroidal cavitation; morphological patterns of scleral inner curvature and dome-shaped macula. Swept source OCT is capable of imaging deeper layers in the posterior pole for investigation of optic nerve pits, stretched and thinned lamina cribrosa, elongated dural attachment at posterior scleral canal, and enlargement of retrobulbar subarachnoid spaces. This has therefore enabled further evaluation of various visual field defects in high myopia and the pathogenesis of glaucomatous optic neuropathy. OCT has many potential clinical uses in managing visual impairing conditions in pathologic myopia. Understanding how retinal nerve fibers are redistributed in axial elongation will allow the development of auto-segmentation software for diagnosis and monitoring progression of glaucoma. OCT is indispensable in the diagnosis of various conditions associated with myopic traction maculopathy and monitoring of post-surgical outcomes. In addition, OCT is commonly used in the multimodal imaging assessment of myopic choroidal neovascularization. Biometry and topography of the retinal layers and choroid will soon be validated for the classification of myopic maculopathy for utilization in epidemiological studies as well as clinical trials. PMID:27055674

  16. Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images

    PubMed Central

    Antony, Bhavna; Abràmoff, Michael D.; Tang, Li; Ramdas, Wishal D.; Vingerling, Johannes R.; Jansonius, Nomdo M.; Lee, Kyungmoo; Kwon, Young H.; Sonka, Milan; Garvin, Mona K.

    2011-01-01

    The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct the distinct axial artifacts in SD-OCT images. The method was quantitatively validated using nine pairs of OCT scans obtained with orthogonal fast-scanning axes, where a segmented surface was compared after both datasets had been corrected. The mean unsigned difference computed between the locations of this artifact-corrected surface after the single-spline and dual-spline correction was 23.36 ± 4.04 μm and 5.94 ± 1.09 μm, respectively, and showed a significant difference (p < 0.001 from two-tailed paired t-test). The method was also validated using depth maps constructed from stereo fundus photographs of the optic nerve head, which were compared to the flattened top surface from the OCT datasets. Significant differences (p < 0.001) were noted between the artifact-corrected datasets and the original datasets, where the mean unsigned differences computed over 30 optic-nerve-head-centered scans (in normalized units) were 0.134 ± 0.035 and 0.302 ± 0.134, respectively. PMID:21833377

  17. Adaptive Optics Optical Coherence Tomography in Glaucoma

    PubMed Central

    Dong, Zachary M.; Wollstein, Gadi; Wang, Bo; Schuman, Joel S.

    2016-01-01

    Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm3. It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal. PMID:27916682

  18. Temporally coherent 4D video segmentation for teleconferencing

    NASA Astrophysics Data System (ADS)

    Ehmann, Jana; Guleryuz, Onur G.

    2013-09-01

    We develop an algorithm for 4-D (RGB+Depth) video segmentation targeting immersive teleconferencing ap- plications on emerging mobile devices. Our algorithm extracts users from their environments and places them onto virtual backgrounds similar to green-screening. The virtual backgrounds increase immersion and interac- tivity, relieving the users of the system from distractions caused by disparate environments. Commodity depth sensors, while providing useful information for segmentation, result in noisy depth maps with a large number of missing depth values. By combining depth and RGB information, our work signi¯cantly improves the other- wise very coarse segmentation. Further imposing temporal coherence yields compositions where the foregrounds seamlessly blend with the virtual backgrounds with minimal °icker and other artifacts. We achieve said improve- ments by correcting the missing information in depth maps before fast RGB-based segmentation, which operates in conjunction with temporal coherence. Simulation results indicate the e±cacy of the proposed system in video conferencing scenarios.

  19. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  20. Depth of intrastromal corneal ring segments by OCT.

    PubMed

    Naftali, Modi; Jabaly-Habib, Haneen

    2013-01-01

    To compare the depth of intrastromal corneal ring segments (ICRS) with the expected depth value using optical coherence tomography (OCT). This was a retrospective comparative study in an ophthalmic unit in a government hospital, the Baruch Padeh Medical Center, Poriya, Israel. Ten eyes of 8 patients with 18 ICRS were reviewed. Eleven segments were Intacs (Addition Technology, Inc.) and 7 Kerarings (Mediphacos). Using anterior segment OCT (OPKO OTI) the shortest distance from the epithelium to the segment at 3 points was measured for each segment. The 3 points are proximal, middle, and distal to the incision. The mean depth of the 18 segments was 360±68 µm. The mean maximal and minimal depths were 383±70 and 336±72 µm, respectively. The mean depths of the distal, central, and proximal point measurements of all ICRS were 358±79, 361±77, and 362±59 µm, respectively; no significant difference was found. No part of the segments tended to be more superficial than others (p=0.98). There was no significant difference between Intacs and Kerarings depths (p=0.43). There was a significant difference between the expected ICRS depth and the OCT measurements (mean 480±20) and 360±68), respectively. The ICRS actual depth was less than expected. There was mild variability in segment depth, both between segments and along the same segment. No significant difference was found between the depth of Intacs and Kerarings.

  1. Collaborative SDOCT Segmentation and Analysis Software.

    PubMed

    Yun, Yeyi; Carass, Aaron; Lang, Andrew; Prince, Jerry L; Antony, Bhavna J

    2017-02-01

    Spectral domain optical coherence tomography (SDOCT) is routinely used in the management and diagnosis of a variety of ocular diseases. This imaging modality also finds widespread use in research, where quantitative measurements obtained from the images are used to track disease progression. In recent years, the number of available scanners and imaging protocols grown and there is a distinct absence of a unified tool that is capable of visualizing, segmenting, and analyzing the data. This is especially noteworthy in longitudinal studies, where data from older scanners and/or protocols may need to be analyzed. Here, we present a graphical user interface (GUI) that allows users to visualize and analyze SDOCT images obtained from two commonly used scanners. The retinal surfaces in the scans can be segmented using a previously described method, and the retinal layer thicknesses can be compared to a normative database. If necessary, the segmented surfaces can also be corrected and the changes applied. The interface also allows users to import and export retinal layer thickness data to an SQL database, thereby allowing for the collation of data from a number of collaborating sites.

  2. MULTIMODAL IMAGING OF ACUTE EXUDATIVE POLYMORPHOUS VITELLIFORM MACULOPATHY WITH OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY AND ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPY.

    PubMed

    Skondra, Dimitra; Nesper, Peter L; Fawzi, Amani A

    2017-05-16

    To report a case of acute exudative polymorphous vitelliform maculopathy including the findings of optical coherence tomography angiography and adaptive optics scanning laser ophthalmoscopy. Findings on clinical examination, color fundus photography, spectral-domain optical coherence tomography, infrared reflectance, autofluorescence, optical coherence tomography angiography, and adaptive optics scanning laser ophthalmoscopy. A 54-year-old white man with no significant medical history and history of smoking presented with bilateral multiple serous and vitelliform detachments consistent with acute exudative polymorphous vitelliform maculopathy. Extensive infectious, inflammatory, and malignancy workup was negative. Spectral-domain optical coherence tomography showed thickened, hyperreflective ellipsoid zone, subretinal fluid, and focal as well as diffuse subretinal hyperreflective material corresponding to the vitelliform lesions. Optical coherence tomography angiography showed normal retinal and choroidal vasculature, whereas adaptive optics scanning laser ophthalmoscopy showed circular focal "target" lesions at the level of the photoreceptors in the area of foveal detachment. Multimodal imaging is valuable in evaluating patients with acute exudative polymorphous vitelliform maculopathy.

  3. Phase noise suppression for coherent optical block transmission systems: a unified framework.

    PubMed

    Yang, Chuanchuan; Yang, Feng; Wang, Ziyu

    2011-08-29

    A unified framework for phase noise suppression is proposed in this paper, which could be applied in any coherent optical block transmission systems, including coherent optical orthogonal frequency-division multiplexing (CO-OFDM), coherent optical single-carrier frequency-domain equalization block transmission (CO-SCFDE), etc. Based on adaptive modeling of phase noise, unified observation equations for different coherent optical block transmission systems are constructed, which lead to unified phase noise estimation and suppression. Numerical results demonstrate that the proposal is powerful in mitigating laser phase noise.

  4. Coherent time-stretch transformation for real-time capture of wideband signals.

    PubMed

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-09

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  5. Optical coherence tomography – current and future applications

    PubMed Central

    Adhi, Mehreen; Duker, Jay S.

    2013-01-01

    Purpose of review Optical coherence tomography (OCT) has revolutionized the clinical practice of ophthalmology. It is a noninvasive imaging technique that provides high-resolution, cross-sectional images of the retina, retinal nerve fiber layer and the optic nerve head. This review discusses the present applications of the commercially available spectral-domain OCT (SD-OCT) systems in the diagnosis and management of retinal diseases, with particular emphasis on choroidal imaging. Future directions of OCT technology and their potential clinical uses are discussed. Recent findings Analysis of the choroidal thickness in healthy eyes and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies has been successfully achieved using SD-OCT devices with software improvements. Future OCT innovations such as longer-wavelength OCT systems including the swept-source technology, along with Doppler OCT and en-face imaging, may improve the detection of subtle microstructural changes in chorioretinal diseases by improving imaging of the choroid. Summary Advances in OCT technology provide for better understanding of pathogenesis, improved monitoring of progression and assistance in quantifying response to treatment modalities in diseases of the posterior segment of the eye. Further improvements in both hardware and software technologies should further advance the clinician’s ability to assess and manage chorioretinal diseases. PMID:23429598

  6. Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G.; Buchsbaum, Andreas

    2015-03-01

    Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm.

  7. Coherence degree of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this article the coherence of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is analyzed. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian optical beam of optical radiation. The behavior of a coherence degree of a fundamental Bessel-Gaussian optical beam depending on parameters of an optical beam and characteristics of turbulent atmosphere is examined. It was revealed that at low levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam has the characteristic oscillating appearance. At high levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam is described by an one-scale decreasing curve which in process of increase of level of fluctuations on a line of formation of a laser beam becomes closer to the same characteristic of a spherical optical wave.

  8. Coherence of the vortex Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this paper the theoretical research of coherent properties of the vortex Bessel-Gaussian optical beams propagating in turbulent atmosphere are developed. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of a field of optical radiation. The behavior of integral scale of coherence degree of vortex Bessel-Gaussian optical beams depending on parameters of an optical beam and characteristics of turbulent atmosphere is particularly considered. It is shown that the integral scale of coherence degree of a vortex Bessel-Gaussian optical beam essentially depends on value of a topological charge of a vortex optical beam. With increase in a topological charge of a vortex Bessel-Gaussian optical beam the value of integral scale of coherence degree of a vortex Bessel-Gaussian optical beam are decreased.

  9. Segmentation and Quantification for Angle-Closure Glaucoma Assessment in Anterior Segment OCT.

    PubMed

    Fu, Huazhu; Xu, Yanwu; Lin, Stephen; Zhang, Xiaoqin; Wong, Damon Wing Kee; Liu, Jiang; Frangi, Alejandro F; Baskaran, Mani; Aung, Tin

    2017-09-01

    Angle-closure glaucoma is a major cause of irreversible visual impairment and can be identified by measuring the anterior chamber angle (ACA) of the eye. The ACA can be viewed clearly through anterior segment optical coherence tomography (AS-OCT), but the imaging characteristics and the shapes and locations of major ocular structures can vary significantly among different AS-OCT modalities, thus complicating image analysis. To address this problem, we propose a data-driven approach for automatic AS-OCT structure segmentation, measurement, and screening. Our technique first estimates initial markers in the eye through label transfer from a hand-labeled exemplar data set, whose images are collected over different patients and AS-OCT modalities. These initial markers are then refined by using a graph-based smoothing method that is guided by AS-OCT structural information. These markers facilitate segmentation of major clinical structures, which are used to recover standard clinical parameters. These parameters can be used not only to support clinicians in making anatomical assessments, but also to serve as features for detecting anterior angle closure in automatic glaucoma screening algorithms. Experiments on Visante AS-OCT and Cirrus high-definition-OCT data sets demonstrate the effectiveness of our approach.

  10. Three-beam coherent combination experiments based on segmented mirrors and measure of phase characteristics of beams passing through Yb-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Yang, Ruo fu; Shen, Feng; Ao, Mingwu; Jiang, Wenhan

    2009-05-01

    Coherent combination is one of the most promising ways to realize high power laser output. A three- laser-beam coherent combination system based on adaptive optics (AO) technique has been set up in our laboratory. In this system, three 1064nm laser beams are placed side-by-side and compressed by two reflective mirrors. An active segmented deformable mirror (DM) is used to compensate the optical path difference (OPD) among three laser beams. The beams are overlapped onto a 2900Hz CCD camera to form an interference pattern while the peak intensity of the interference pattern is taken as the cost function to optimize by a stochastic parallel gradient descent (SPGD) algorithm. SPGD algorithm is realized on a RT-Linux dual-core industrial computer. A series of experiments have been accomplished and experimental results show that both static distorted aberrations in the beams and active distorted aberrations (which are brought in by a hot iron and the frequency is about 5Hz) can be compensated successfully when the gain coefficients and the perturbation amplitude of SPGD are chosed appropriately, thereby three beams can be well combined. For controlling the phase of fiber lasers, the phase characteristics of beams passing through Yb-doped dual-clad fiber amplifier are measured by means of investigating the interference pattern under different output power through experiments. The frequency of phase fluctuation is evaluated through analyzing the fluctuation of power within a 90um aperture of far-field focal spot. Experimental results show that the phase fluctuation frequencies of laser beam transmitted through fiber amplifier are mainly in the range of 100~1500Hz. As a result, to control the phase fluctuation of beams passing through fiber amplifier, the bandwidth of any potential phase control scheme must be greater than 1.5 kilohertz.

  11. The New Physical Optics Notebook: Tutorials in Fourier Optics.

    ERIC Educational Resources Information Center

    Reynolds, George O.; And Others

    This is a textbook of Fourier optics for the classroom or self-study. Major topics included in the 38 chapters are: Huygens' principle and Fourier transforms; image formation; optical coherence theory; coherent imaging; image analysis; coherent noise; interferometry; holography; communication theory techniques; analog optical computing; phase…

  12. MOEMS optical delay line for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.

    2014-09-01

    Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.

  13. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.

    PubMed

    Forooghian, Farzin; Stetson, Paul F; Meyer, Scott A; Chew, Emily Y; Wong, Wai T; Cukras, Catherine; Meyerle, Catherine B; Ferris, Frederick L

    2010-01-01

    The purpose of this study was to quantify photoreceptor outer segment (PROS) length in 27 consecutive patients (30 eyes) with diabetic macular edema using spectral domain optical coherence tomography and to describe the correlation between PROS length and visual acuity. Three spectral domain-optical coherence tomography scans were performed on all eyes during each session using Cirrus HD-OCT. A prototype algorithm was developed for quantitative assessment of PROS length. Retinal thicknesses and PROS lengths were calculated for 3 parameters: macular grid (6 x 6 mm), central subfield (1 mm), and center foveal point (0.33 mm). Intrasession repeatability was assessed using coefficient of variation and intraclass correlation coefficient. The association between retinal thickness and PROS length with visual acuity was assessed using linear regression and Pearson correlation analyses. The main outcome measures include intrasession repeatability of macular parameters and correlation of these parameters with visual acuity. Mean retinal thickness and PROS length were 298 mum to 381 microm and 30 microm to 32 mum, respectively, for macular parameters assessed in this study. Coefficient of variation values were 0.75% to 4.13% for retinal thickness and 1.97% to 14.01% for PROS length. Intraclass correlation coefficient values were 0.96 to 0.99 and 0.73 to 0.98 for retinal thickness and PROS length, respectively. Slopes from linear regression analyses assessing the association of retinal thickness and visual acuity were not significantly different from 0 (P > 0.20), whereas the slopes of PROS length and visual acuity were significantly different from 0 (P < 0.0005). Correlation coefficients for macular thickness and visual acuity ranged from 0.13 to 0.22, whereas coefficients for PROS length and visual acuity ranged from -0.61 to -0.81. Photoreceptor outer segment length can be quantitatively assessed using Cirrus HD-OCT. Although the intrasession repeatability of PROS measurements was less than that of macular thickness measurements, the stronger correlation of PROS length with visual acuity suggests that the PROS measures may be more directly related to visual function. Photoreceptor outer segment length may be a useful physiologic outcome measure, both clinically and as a direct assessment of treatment effects.

  14. Femtosecond laser-assisted cataract surgery in Alport syndrome with anterior lenticonus.

    PubMed

    Ecsedy, Mónika; Súndor, Gúbor L; Takúcs, Úgnes I; Krúnitz, Kinga; Kiss, Zoltún; Kolev, Krasimir; Nagy, Zoltún Z

    2015-01-01

    To report the surgical treatment of 3 eyes of 2 patients with bilateral anterior lenticonus due to Alport syndrome using femtosecond laser-assisted cataract surgery (FLACS). Two patients with Alport syndrome presented to our department due to anterior lenticonus in both eyes. We performed FLACS with posterior chamber lens implantation in both eyes of one patient and in one eye of the other patient. Anterior segment morphologic changes were visualized with a Scheimpflug camera, and anterior segment optical coherence tomography preoperatively and 3 months after surgery. Ultrastructure of the cut capsule edges was observed with scanning electron microscopy and compared to the edge of femtosecond laser capsulotomy performed on an otherwise healthy patient with cataract (control). The intraocular lens (IOL) postoperative positioning parameters met the international requirements of aspherical and wavefront customized IOLs (tilt <10 degree, decentration <800 µm). Scanning electron microscopy revealed the same characteristics of the cut capsule edges in the Alport and in the control eyes. Femtosecond laser cataract surgery can be a safe and successful method for optical rehabilitation of anterior lenticonus in patients with Alport syndrome.

  15. Real-time microstructural and functional imaging and image processing in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Westphal, Volker

    Optical Coherence Tomography (OCT) is a noninvasive optical imaging technique that allows high-resolution cross-sectional imaging of tissue microstructure, achieving a spatial resolution of about 10 mum. OCT is similar to B-mode ultrasound (US) except that it uses infrared light instead of ultrasound. In contrast to US, no coupling gel is needed, simplifying the image acquisition. Furthermore, the fiber optic implementation of OCT is compatible with endoscopes. In recent years, the transition from slow imaging, bench-top systems to real-time clinical systems has been under way. This has lead to a variety of applications, namely in ophthalmology, gastroenterology, dermatology and cardiology. First, this dissertation will demonstrate that OCT is capable of imaging and differentiating clinically relevant tissue structures in the gastrointestinal tract. A careful in vitro correlation study between endoscopic OCT images and corresponding histological slides was performed. Besides structural imaging, OCT systems were further developed for functional imaging, as for example to visualize blood flow. Previously, imaging flow in small vessels in real-time was not possible. For this research, a new processing scheme similar to real-time Doppler in US was introduced. It was implemented in dedicated hardware to allow real-time acquisition and overlayed display of blood flow in vivo. A sensitivity of 0.5mm/s was achieved. Optical coherence microscopy (OCM) is a variation of OCT, improving the resolution even further to a few micrometers. Advances made in the OCT scan engine for the Doppler setup enabled real-time imaging in vivo with OCM. In order to generate geometrical correct images for all the previous applications in real-time, extensive image processing algorithms were developed. Algorithms for correction of distortions due to non-telecentric scanning, nonlinear scan mirror movements, and refraction were developed and demonstrated. This has led to interesting new applications, as for example in imaging of the anterior segment of the eye.

  16. Automated peroperative assessment of stents apposition from OCT pullbacks.

    PubMed

    Dubuisson, Florian; Péry, Emilie; Ouchchane, Lemlih; Combaret, Nicolas; Kauffmann, Claude; Souteyrand, Géraud; Motreff, Pascal; Sarry, Laurent

    2015-04-01

    This study's aim was to control the stents apposition by automatically analyzing endovascular optical coherence tomography (OCT) sequences. Lumen is detected using threshold, morphological and gradient operators to run a Dijkstra algorithm. Wrong detection tagged by the user and caused by bifurcation, struts'presence, thrombotic lesions or dissections can be corrected using a morphing algorithm. Struts are also segmented by computing symmetrical and morphological operators. Euclidian distance between detected struts and wall artery initializes a stent's complete distance map and missing data are interpolated with thin-plate spline functions. Rejection of detected outliers, regularization of parameters by generalized cross-validation and using the one-side cyclic property of the map also optimize accuracy. Several indices computed from the map provide quantitative values of malapposition. Algorithm was run on four in-vivo OCT sequences including different incomplete stent apposition's cases. Comparison with manual expert measurements validates the segmentation׳s accuracy and shows an almost perfect concordance of automated results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Surgical repair of large cyclodialysis clefts.

    PubMed

    Gross, Jacob B; Davis, Garvin H; Bell, Nicholas P; Feldman, Robert M; Blieden, Lauren S

    2017-05-11

    To describe a new surgical technique to effectively close large (>180 degrees) cyclodialysis clefts. Our method involves the use of procedures commonly associated with repair of retinal detachment and complex cataract extraction: phacoemulsification with placement of a capsular tension ring followed by pars plana vitrectomy and gas tamponade with light cryotherapy. We also used anterior segment optical coherence tomography (OCT) as a noninvasive mechanism to determine the extent of the clefts and compared those results with ultrasound biomicroscopy (UBM) and gonioscopy. This technique was used to repair large cyclodialysis clefts in 4 eyes. All 4 eyes had resolution of hypotony and improvement of visual acuity. One patient had an intraocular pressure spike requiring further surgical intervention. Anterior segment OCT imaging in all 4 patients showed a more extensive cleft than UBM or gonioscopy. This technique is effective in repairing large cyclodialysis clefts. Anterior segment OCT more accurately predicted the extent of each cleft, while UBM and gonioscopy both underestimated the size of the cleft.

  18. Optimized pulse shaping for trapped ion quantum computing

    NASA Astrophysics Data System (ADS)

    Manning, T.; Debnath, Shantanu; Choi, Taeyoung; Figgatt, Caroline; Monroe, Chris

    2013-05-01

    We perform entangling phase gates between pairs of qubits in a chain of trapped atomic ytterbium ions. Beat notes between frequency comb lines of a pulsed laser coherently drive Raman transitions that couple the hyperfine qubits to multiple collective transverse modes of motion. By optimizing the phase and amplitude of segmented laser pulses, we demonstrate a five-segment scheme to entangle two qubits with high fidelity over a range of detunings. We compare this special case of full control of spin-motion entanglement to a traditional single-segment gate. We extend this scheme to selectively entangle pairs of qubits in larger chains using individual optical addressing, where we couple to all the motional modes. We show how these robust gates can achieve high fidelities for practical gate times in an approach that scales realistically to much larger numbers of qubits. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.

  19. Photoreceptor disc shedding in the living human eye

    PubMed Central

    Kocaoglu, Omer P.; Liu, Zhuolin; Zhang, Furu; Kurokawa, Kazuhiro; Jonnal, Ravi S.; Miller, Donald T.

    2016-01-01

    Cone photoreceptors undergo a daily cycle of renewal and shedding of membranous discs in their outer segments (OS), the portion responsible for light capture. These physiological processes are fundamental to maintaining photoreceptor health, and their dysfunction is associated with numerous retinal diseases. While both processes have been extensively studied in animal models and postmortem eyes, little is known about them in the living eye, in particular human. In this study, we report discovery of the optical signature associated with disc shedding using a method based on adaptive optics optical coherence tomography (AO-OCT) in conjunction with post-processing methods to track and monitor individual cone cells in 4D. The optical signature of disc shedding is characterized by an abrupt transient loss in the cone outer segment tip (COST) reflection followed by its return that is axially displaced anteriorly. Using this signature, we measured the temporal and spatial properties of shedding events in three normal subjects. Average duration of the shedding event was 8.8 ± 13.4 minutes, and average length loss of the OS was 2.1 μm (7.0% of OS length). Prevalence of cone shedding was highest in the morning (14.3%) followed by the afternoon (5.7%) and evening (4.0%), with load distributed across the imaged patch. To the best of our knowledge these are the first images of photoreceptor disc shedding in the living retina. PMID:27895995

  20. Coherent perfect rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Dawson, Nathan J.; Andrews, James H.

    2012-09-01

    Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. Faraday rotation, but not optical activity, is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. Unlike coherent perfect absorption, however, this process is explicitly energy conserving and reversible. Our study highlights the necessity of time-reversal-odd processes (not just absorption) and coherence in perfect mode conversion and thus informs the optimization of active multiport optical devices.

  1. Loosely coupled level sets for retinal layers and drusen segmentation in subjects with dry age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Novosel, Jelena; Wang, Ziyuan; de Jong, Henk; Vermeer, Koenraad A.; van Vliet, Lucas J.

    2016-03-01

    Optical coherence tomography (OCT) is used to produce high-resolution three-dimensional images of the retina, which permit the investigation of retinal irregularities. In dry age-related macular degeneration (AMD), a chronic eye disease that causes central vision loss, disruptions such as drusen and changes in retinal layer thicknesses occur which could be used as biomarkers for disease monitoring and diagnosis. Due to the topology disrupting pathology, existing segmentation methods often fail. Here, we present a solution for the segmentation of retinal layers in dry AMD subjects by extending our previously presented loosely coupled level sets framework which operates on attenuation coefficients. In eyes affected by AMD, Bruch's membrane becomes visible only below the drusen and our segmentation framework is adapted to delineate such a partially discernible interface. Furthermore, the initialization stage, which tentatively segments five interfaces, is modified to accommodate the appearance of drusen. This stage is based on Dijkstra's algorithm and combines prior knowledge on the shape of the interface, gradient and attenuation coefficient in the newly proposed cost function. This prior knowledge is incorporated by varying the weights for horizontal, diagonal and vertical edges. Finally, quantitative evaluation of the accuracy shows a good agreement between manual and automated segmentation.

  2. Retinal Optical Coherence Tomography Imaging

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in combination with three-dimensional UHR OCT, recently enabled in vivo cellular resolution retinal imaging.

  3. Investigation of retinal microstructure in healthy eyes and dry age-related macular degeneration using a combined AO-OCT-SLO system

    NASA Astrophysics Data System (ADS)

    Wells-Gray, Elaine M.; Choi, Stacey S.; Ohr, Matthew; Cebulla, Colleen M.; Doble, Nathan

    2017-02-01

    Combined adaptive optics (AO) optical coherence tomography (OCT) scanning laser ophthalmoscopy (SLO) imaging allows simultaneous en face and cross sectional views of the retina. We describe improvements to our AO-OCT-SLO system and highlight its resolution capability and clinical utility by presenting results from 3 control and 4 dry agerelated macular degeneration (AMD) subjects. From a group of subjects with healthy eyes, OCT A-scans were grouped as originating from cones or rods and were averaged. The resulting reflectance profiles were then used to identify the location of cone and rod segments. Results for rods and cones were compared, with the focus on inner segment (IS) and outer segment (OS) structures and where these cells embed into the retinal pigment epithelium (RPE). In the AMD patients, cone IS and OS lengths were measured over and around drusen for two retinal regions (fovea-2° and 2°-4°), and those results were correlated to drusen height. For the fovea-2° region, the drusen height that caused statistically significant shortening of cone ISL and OSL compared to the unaffected adjacent area were 40 μm and 50 μm respectively (p = 0.009, and p < 0.001, respectively). For the 2°-4° region, the equivalent drusen heights that caused significant shortening of segment length were 60 μm for IS (p = 0.017) and 80 μm for OS (p < 0.001)

  4. Optical coherence tomography assessment of efficacy of thrombus aspiration in patients undergoing a primary percutaneous coronary intervention for acute ST-elevation myocardial infarction

    PubMed Central

    Yamaguchi, Tomoyuki; Ino, Yasushi; Matsuo, Yoshiki; Shiono, Yasutsugu; Yamano, Takashi; Taruya, Akira; Nishiguchi, Tsuyoshi; Shimokado, Aiko; Orii, Makoto; Tanaka, Atsushi; Hozumi, Takeshi; Akasaka, Takashi

    2015-01-01

    Objective We used optical coherence tomography (OCT) to assess the impact of thrombus aspiration before angioplasty on poststenting tissue protrusions in patients undergoing a primary percutaneous coronary intervention (PCI) for ST-segment elevation myocardial infarction (STEMI). Methods and results A total of 188 patients with STEMI who underwent thrombus-aspiration PCI (n=113) or standard PCI (n=75) were examined in this study. OCT was performed immediately after primary PCI to assess lesion morphology in the stented segment. The minimum stent area was similar between the thrombus-aspiration PCI group and the standard PCI group [7.4 interquartile range (IQR): 5.8–9.4 vs. 7.4 IQR: 5.8–8.9 mm2, P=0.788]. The maximum tissue protrusion area [0.6 (IQR: 0.3–1.1) vs. 1.2 (IQR: 0.8–1.9) mm2, P<0.001], the mean tissue protrusion area [0.1 (IQR: 0.1–0.2) vs. 0.5 (IQR: 0.3–0.8) mm2, P<0.001], and tissue protrusion volume [2.3 (IQR: 1.3–4.3) vs. 8.3 (IQR: 5.4–14.6) mm3, P<0.001] were significantly smaller in the thrombus-aspiration PCI group compared with the standard PCI group. Minimum lumen area was significantly greater in the thrombus-aspiration PCI group compared with the standard PCI group [6.9 (IQR: 5.4–8.8) vs. 6.3 (IQR: 4.6–7.8) mm2, P=0.033]. Conclusion Thrombus aspiration before angioplasty in patients with STEMI was associated with significantly smaller tissue protrusion and larger lumen poststenting compared with standard PCI. Thrombus aspiration in primary PCI favorably influenced lesion morphologies in the stented segment. PMID:26230885

  5. Agreement of Anterior Segment Parameters Obtained From Swept-Source Fourier-Domain and Time-Domain Anterior Segment Optical Coherence Tomography.

    PubMed

    Chansangpetch, Sunee; Nguyen, Anwell; Mora, Marta; Badr, Mai; He, Mingguang; Porco, Travis C; Lin, Shan C

    2018-03-01

    To assess the interdevice agreement between swept-source Fourier-domain and time-domain anterior segment optical coherence tomography (AS-OCT). Fifty-three eyes from 41 subjects underwent CASIA2 and Visante OCT imaging. One hundred eighty-degree axis images were measured with the built-in two-dimensional analysis software for the swept-source Fourier-domain AS-OCT (CASIA2) and a customized program for the time-domain AS-OCT (Visante OCT). In both devices, we examined the angle opening distance (AOD), trabecular iris space area (TISA), angle recess area (ARA), anterior chamber depth (ACD), anterior chamber width (ACW), and lens vault (LV). Bland-Altman plots and intraclass correlation (ICC) were performed. Orthogonal linear regression assessed any proportional bias. ICC showed strong correlation for LV (0.925) and ACD (0.992) and moderate agreement for ACW (0.801). ICC suggested good agreement for all angle parameters (0.771-0.878) except temporal AOD500 (0.743) and ARA750 (nasal 0.481; temporal 0.481). There was a proportional bias in nasal ARA750 (slope 2.44, 95% confidence interval [CI]: 1.95-3.18), temporal ARA750 (slope 2.57, 95% CI: 2.04-3.40), and nasal TISA500 (slope 1.30, 95% CI: 1.12-1.54). Bland-Altman plots demonstrated in all measured parameters a minimal mean difference between the two devices (-0.089 to 0.063); however, evidence of constant bias was found in nasal AOD250, nasal AOD500, nasal AOD750, nasal ARA750, temporal AOD500, temporal AOD750, temporal ARA750, and ACD. Among the parameters with constant biases, CASIA2 tends to give the larger numbers. Both devices had generally good agreement. However, there were proportional and constant biases in most angle parameters. Thus, it is not recommended that values be used interchangeably.

  6. Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography

    PubMed Central

    Hubler, Zita; Shemonski, Nathan D.; Shelton, Ryan L.; Monroy, Guillermo L.; Nolan, Ryan M.

    2015-01-01

    Background Otitis media (OM), an infection in the middle ear, is extremely common in the pediatric population. Current gold-standard methods for diagnosis include otoscopy for visualizing the surface features of the tympanic membrane (TM) and making qualitative assessments to determine middle ear content. OM typically presents as an acute infection, but can progress to chronic OM, and after numerous infections and antibiotic treatments over the course of many months, this disease is often treated by surgically inserting small tubes in the TM to relieve pressure, enable drainage, and provide aeration to the middle ear. Diagnosis and monitoring of OM is critical for successful management, but remains largely qualitative. Methods We have developed an optical coherence tomography (OCT) system for high-resolution, depth-resolved, cross-sectional imaging of the TM and middle ear content, and for the quantitative assessment of in vivo TM thickness including the presence or absence of a middle ear biofilm. A novel algorithm was developed and demonstrated for automatic, real-time, and accurate measurement of TM thickness to aid in the diagnosis and monitoring of OM and other middle ear conditions. The segmentation algorithm applies a Hough transform to the OCT image data to determine the boundaries of the TM to calculate thickness. Results The use of OCT and this segmentation algorithm is demonstrated first on layered phantoms and then during real-time acquisition of in vivo OCT from humans. For the layered phantoms, measured thicknesses varied by approximately 5 µm over time in the presence of large axial and rotational motion. In vivo data also demonstrated differences in thicknesses both spatially on a single TM, and across normal, acute, and chronic OM cases. Conclusions Real-time segmentation and thickness measurements of image data from both healthy subjects and those with acute and chronic OM demonstrate the use of OCT and this algorithm as a robust, quantitative, and accurate method for use during real-time in vivo human imaging. PMID:25694956

  7. Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography.

    PubMed

    Hubler, Zita; Shemonski, Nathan D; Shelton, Ryan L; Monroy, Guillermo L; Nolan, Ryan M; Boppart, Stephen A

    2015-02-01

    Otitis media (OM), an infection in the middle ear, is extremely common in the pediatric population. Current gold-standard methods for diagnosis include otoscopy for visualizing the surface features of the tympanic membrane (TM) and making qualitative assessments to determine middle ear content. OM typically presents as an acute infection, but can progress to chronic OM, and after numerous infections and antibiotic treatments over the course of many months, this disease is often treated by surgically inserting small tubes in the TM to relieve pressure, enable drainage, and provide aeration to the middle ear. Diagnosis and monitoring of OM is critical for successful management, but remains largely qualitative. We have developed an optical coherence tomography (OCT) system for high-resolution, depth-resolved, cross-sectional imaging of the TM and middle ear content, and for the quantitative assessment of in vivo TM thickness including the presence or absence of a middle ear biofilm. A novel algorithm was developed and demonstrated for automatic, real-time, and accurate measurement of TM thickness to aid in the diagnosis and monitoring of OM and other middle ear conditions. The segmentation algorithm applies a Hough transform to the OCT image data to determine the boundaries of the TM to calculate thickness. The use of OCT and this segmentation algorithm is demonstrated first on layered phantoms and then during real-time acquisition of in vivo OCT from humans. For the layered phantoms, measured thicknesses varied by approximately 5 µm over time in the presence of large axial and rotational motion. In vivo data also demonstrated differences in thicknesses both spatially on a single TM, and across normal, acute, and chronic OM cases. Real-time segmentation and thickness measurements of image data from both healthy subjects and those with acute and chronic OM demonstrate the use of OCT and this algorithm as a robust, quantitative, and accurate method for use during real-time in vivo human imaging.

  8. Evidence of early ultrastructural photoreceptor abnormalities in light-induced retinal degeneration using spectral domain optical coherence tomography.

    PubMed

    Aziz, Mehak K; Ni, Aiguo; Esserman, Denise A; Chavala, Sai H

    2014-07-01

    To study spatiotemporal in vivo changes in retinal morphology and quantify thickness of retinal layers in a mouse model of light-induced retinal degeneration using spectral domain optical coherence tomography (SD-OCT). BALB/c mice were exposed to 5000 lux of constant light for 3 h. SD-OCT images were taken 3 h, 24 h, 3 days, 1 week and 1 month after light exposure and were compared with histology at the same time points. SD-OCT images were also taken at 0, 1 and 2 h after light exposure in order to analyse retinal changes at the earliest time points. The thickness of retinal layers was measured using the Bioptigen software InVivoVue Diver. SD-OCT demonstrated progressive outer retinal thinning. 3 h after light exposure, the outer nuclear layer converted from hyporeflective to hyper-reflective. At 24 h, outer retinal bands and nuclear layer demonstrated similar levels of hyper-reflectivity. Significant variations in outer retinal thickness, vitreous opacities and retinal detachments occurred within days of injury. Thinning of the retina was observed at 1 month after injury. It was also determined that outer nuclear layer changes precede photoreceptor segment structure disintegration and the greatest change in segment structure occurs between 1 and 2 h after light exposure. Longitudinal SD-OCT reveals intraretinal changes that cannot be observed by histopathology at early time points in the light injury model. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Anterior segment optical coherence tomography evaluation of corneal epithelium healing time after 2 different surface ablation methods

    PubMed Central

    Eliaçik, Mustafa; Bayramlar, Hüseyin; Erdur, Sevil K.; Karabela, Yunus; Demirci, Göktuğ; Gülkilik, İbrahim G.; Özsütçü, Mustafa

    2015-01-01

    Objectives: To compare epithelial healing time following laser epithelial keratomileusis (LASEK) and photorefractive keratectomy (PRK) with anterior segment optic coherence tomography (AS-OCT). Methods: This prospective interventional case series study comprised 56 eyes of 28 patients that underwent laser refractive surgery in the Department of Ophthalmology, Medipol University Medical Faculty, Istanbul, Turkey, between March 2014 and May 2014. Each patient was randomized to have one eye operated on with PRK, and the other with LASEK. Patients were examined daily for 5 days, and epithelial healing time was assessed by using AS-OCT without removing therapeutic contact lens (TCL). Average discomfort scores were calculated from ratings obtained from questions regarding pain, photophobia, and lacrimation according to a scale of 0 (none) to 5. Results: The mean re-epithelialization time assessed with AS-OCT was 3.07±0.64 days in the PRK group, 3.55±0.54 days in the LASEK group, and the difference was statistically significant (p=0.03). Mean subjective discomfort score was 4.42±0.50 in the PRK eyes, and 2.85±0.44 in the LASEK eyes on the first exam day (p=0.001). The score obtained on the second (p=0.024), and third day (p=0.03) were also statistically significant. The fourth (p=0.069), and fifth days scores (p=0.1) showed no statistically significant difference between groups. Conclusion: The PRK showed a statistically significant shorter epithelial healing time, but had a statistically significant higher discomfort score until the postoperative fourth day compared with LASEK. PMID:25630007

  10. Serial intracameral visualization of the Ahmed glaucoma valve tube by anterior segment optical coherence tomography.

    PubMed

    Lopilly Park, H-Y; Jung, K I; Park, C K

    2012-09-01

    To investigate serial changes of the Ahmed glaucoma valve (AGV) implant tube in the anterior chamber by anterior segment optical coherence tomography (AS-OCT). Patients who had received AGV implantation without complications (n=48) were included in this study. Each patient received follow-up examinations including AS-OCT at days 1 and 2, week 1, and months 1, 3, 6, and 12. Tube parameters were defined to measure its length and position. The intracameral length of the tube was from the tip of the bevel-edged tube to the sclerolimbal junction. The distance between the extremity of the tube and the anterior iris surface (T-I distance), and the angle between the tube and the posterior endothelial surface of the cornea (T-C angle) were defined. Factors that were related to tube parameters were analysed by multiple regression analysis. The mean change in tube length was -0.20 ± 0.17 mm, indicating that the tube length shortened from the initial inserted length. The mean T-I distance change was 0.11 ± 0.07 mm and the mean T-C angle change was -6.7 ± 5.6°. Uveitic glaucoma and glaucoma following penetrating keratoplasty showed the most changes in tube parameters. By multiple regression analysis, diagnosis of glaucoma including uveitic glaucoma (P=0.049) and glaucoma following penetrating keratoplasty (P=0.008) were related to the change of intracameral tube length. These results suggest that the length and position of the AGV tube changes after surgery. The change was prominent in uveitic glaucoma and glaucoma following penetrating keratoplasty.

  11. Development of a score and probability estimate for detecting angle closure based on anterior segment optical coherence tomography.

    PubMed

    Nongpiur, Monisha E; Haaland, Benjamin A; Perera, Shamira A; Friedman, David S; He, Mingguang; Sakata, Lisandro M; Baskaran, Mani; Aung, Tin

    2014-01-01

    To develop a score along with an estimated probability of disease for detecting angle closure based on anterior segment optical coherence tomography (AS OCT) imaging. Cross-sectional study. A total of 2047 subjects 50 years of age and older were recruited from a community polyclinic in Singapore. All subjects underwent standardized ocular examination including gonioscopy and imaging by AS OCT (Carl Zeiss Meditec). Customized software (Zhongshan Angle Assessment Program) was used to measure AS OCT parameters. Complete data were available for 1368 subjects. Data from the right eyes were used for analysis. A stepwise logistic regression model with Akaike information criterion was used to generate a score that then was converted to an estimated probability of the presence of gonioscopic angle closure, defined as the inability to visualize the posterior trabecular meshwork for at least 180 degrees on nonindentation gonioscopy. Of the 1368 subjects, 295 (21.6%) had gonioscopic angle closure. The angle closure score was calculated from the shifted linear combination of the AS OCT parameters. The score can be converted to an estimated probability of having angle closure using the relationship: estimated probability = e(score)/(1 + e(score)), where e is the natural exponential. The score performed well in a second independent sample of 178 angle-closure subjects and 301 normal controls, with an area under the receiver operating characteristic curve of 0.94. A score derived from a single AS OCT image, coupled with an estimated probability, provides an objective platform for detection of angle closure. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Spectral domain optical coherence tomography as an effective screening test for hydroxychloroquine retinopathy (the "flying saucer" sign).

    PubMed

    Chen, Eric; Brown, David M; Benz, Matthew S; Fish, Richard H; Wong, Tien P; Kim, Rosa Y; Major, James C

    2010-10-21

    While the long-term incidence of hydroxychloroquine (HCQ) retinopathy is low, there remains no definitive clinical screening test to recognize HCQ toxicity before ophthalmoscopic fundus changes or visual symptoms. Patients receiving HCQ were evaluated with spectral domain optical coherence tomography (SD OCT) to assess the feasibility of identifying HCQ retinopathy at an early stage. Twenty-five patients referred for the evaluation of hydroxychloroquine toxicity underwent a comprehensive ocular examination, Humphrey visual field (HVF) perimetry, time domain OCT, and SD OCT. Some patients with screening abnormalities also underwent further diagnostic testing at the discretion of the treating providers. Five patients were found to have SD OCT findings corresponding to HCQ toxicity and retinal damage as seen by clinical exam and/or HVF perimetry. Two patients with advanced toxicity were found to have significant outer retina disruption in the macula on SD OCT. Three patients with early HCQ toxicity and HVF 10-2 perifoveal defects were found to have loss of the perifoveal photoreceptor inner segment/outer segment (IS/OS) junction with intact outer retina directly under the fovea, creating the "flying saucer" sign. While two of these three patients had early ophthalmoscopic fundus changes, one had none. Outer retinal abnormalities including perifoveal photoreceptor IS/OS junction disruption can be identified by SD OCT in early HCQ toxicity, sometimes even before ophthalmoscopic fundus changes are apparent. SD OCT may have a potential complementary role in screening for HCQ retinopathy due to its quick acquisition and because it is more objective than automated perimetry.

  13. Anterior segment biometry with 2 imaging technologies: very-high-frequency ultrasound scanning versus optical coherence tomography.

    PubMed

    Piñero, David P; Plaza, Ana Belén; Alió, Jorge L

    2008-01-01

    To determine the interchangeability of 2 anterior segment imaging systems: a very-high-frequency (VHF) ultrasound scanning system (Artemis 2, Ultralink LLC) and an optical coherence tomography (OCT) system (Visante, Zeiss). Vissum Instituto Oftalmologico de Alicante, Alicante, Spain. This study comprised 20 eyes without pathology or previous surgery. The anterior chamber depth (ACD), central corneal thickness (CCT), angle-to-angle distance (ATA), and the iridocorneal angle size (IAS) at the 0-degree and 180-degree positions were measured with 2 imaging techniques: VHF ultrasound scanning and OCT. Analysis of agreement and interchangeability was performed by the Bland and Altman method. In addition, each measurement was performed 3 times consecutively to determine intrasession repeatability by means of the coefficient of variation (CV) and the intraclass correlation coefficient (ICC). No statistically significant differences were found between imaging techniques in ACD, CCT, or ATA (P>.40). The ranges of agreement were 0.20 mm, 16.11 mum, and 0.80 mm for ACD, CCT, and ATA, respectively. Regarding IAS, no statistically significant differences were found in the nasal (P = .78) or temporal (P = .63) measurements between devices. However, the range of agreement for nasal (14.3 degrees) and temporal (14.90 degrees) values was relevant, indicating the 2 techniques cannot be used interchangeably for IAS measurement. Excellent intrasession repeatability scores were obtained (CV and ICC). The Artemis 2 and the Visante OCT systems provide equivalent and repeatable measurements of the ACD, CCT, and ATA and can be used interchangeably for these purposes.

  14. Automated measurement of epidermal thickness from optical coherence tomography images using line region growing

    NASA Astrophysics Data System (ADS)

    Delacruz, Jomer; Weissman, Jesse; Gossage, Kirk

    2010-02-01

    Optical Coherence Tomography (OCT) is a non-invasive imaging modality that acquires cross sectional images of tissue in-vivo. It accelerates skin diagnosis by eliminating invasive biopsy and laborious histology in the process. Dermatologists have widely used it for looking at morphology of skin diseases such as psoriasis, dermatitis, basal cell carcinoma etc. Skin scientists have also successfully used it for looking at differences in epidermal thickness and its underlying structure with respect to age, body sites, ethnicity, gender, and other related factors. Similar to other in-vivo imaging systems, OCT images suffer from a high degree of speckle and noise content, which hinders examination of tissue structures. Most of the previous work in OCT segmentation of skin was done manually. This compromised the quality of the results by limiting the analyses to a few frames per area. In this paper, we discuss a region growing method for automatic identification of the upper and lower boundaries of the epidermis in living human skin tissue. This image analysis method utilizes images obtained from a frequency-domain OCT. This system is high-resolution and high-speed, and thus capable of capturing volumetric images of the skin in short time. The three-dimensional (3D) data provides additional information that is used in the segmentation process to help compensate for the inherent noise in the images. This method not only provides a better estimation of the epidermal thickness, but also generates a 3D surface map of the epidermal-dermal junction, from which underlying topography can be visualized and further quantified.

  15. En-face optical coherence tomography in the diagnosis and management of age-related macular degeneration and polypoidal choroidal vasculopathy.

    PubMed

    Lau, Tiffany; Wong, Ian Y; Iu, Lawrence; Chhablani, Jay; Yong, Tao; Hideki, Koizumi; Lee, Jacky; Wong, Raymond

    2015-05-01

    Optical coherence tomography (OCT) is a noninvasive imaging modality providing high-resolution images of the central retina that has completely transformed the field of ophthalmology. While traditional OCT has produced longitudinal cross-sectional images, advancements in data processing have led to the development of en-face OCT, which produces transverse images of retinal and choroidal layers at any specified depth. This offers additional benefit on top of longitudinal cross-sections because it provides an extensive overview of pathological structures in a single image. The aim of this review was to discuss the utility of en-face OCT in the diagnosis and management of age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV). En-face imaging of the inner segment/outer segment junction of retinal photoreceptors has been shown to be a useful indicator of visual acuity and a predictor of the extent of progression of geographic atrophy. En-face OCT has also enabled high-resolution analysis and quantification of pathological structures such as reticular pseudodrusen (RPD) and choroidal neovascularization, which have the potential to become useful markers for disease monitoring. En-face Doppler OCT enables subtle changes in the choroidal vasculature to be detected in eyes with RPD and AMD, which has significantly advanced our understanding of their pathogenesis. En-face Doppler OCT has also been shown to be useful for detecting the polypoid lesions and branching vascular networks diagnostic of PCV. It may therefore serve as a noninvasive alternative to fluorescein and indocyanine green angiography for the diagnosis of PCV and other forms of the exudative macular disease.

  16. Anterior segment morphology and morphometry in selected reptile species using optical coherence tomography.

    PubMed

    Rival, Franck; Linsart, Adeline; Isard, Pierre-François; Besson, Christian; Dulaurent, Thomas

    2015-01-01

    To provide new and original images of the anterior segment (AS) of the eye of selected Ophidian, Chelonian, and Saurian species and to compare the AS architecture among and within these three groups. 17 Saurians, 14 Ophidians, and 11 Chelonians with no concurrent systemic or eye disease were included in the study. Age, weight, nose-cloaca distance (NCD), and pupil shape were collected for each animal. The AS was examined by optical coherence tomography (OCT). After gross description of the appearance of the AS, the central and peripheral corneal thickness (CCT, PCT) and anterior chamber depth (ACD) were measured using the software provided with the OCT device. The ratio CCT/ACD was then calculated for each animal. Pupil shape was a vertical slit in all the crepuscular or nocturnal animals (except for 1 chelonian and 1 ophidian). Each group had its own particular AS architecture. Saurians had a regularly thin cornea with a flat anterior lens capsule and a deep anterior chamber. Ophidians had a thick cornea with a narrow anterior chamber due to a very anteriorly anchored spherical lens. The spectacle was difficult to identify in all ophidians except in Python molurus bivitattus in which it was more obvious. Chelonians displayed an intermediate architecture which more closely resembled the Saurian type than the Ophidian type. Despite grossly similar AS architecture, the three groups of reptiles in the study demonstrated differences that are suggestive of a link between anatomical disparities and variations in environment and lifestyle. © 2014 American College of Veterinary Ophthalmologists.

  17. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes.

    PubMed

    Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S

    2013-11-01

    To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p < 0.0001) and ultrasound pachymetry (p = < .0001). Ultrasound pachymetry readings had better 95% limits of agreement with swept source optical coherence tomography than slit scanning topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p < 0.05 for all). Overall, reproducibility coefficients and intraclass correlation coefficients were significantly better with swept source optical coherence tomography for measurement of central corneal thickness, anterior best-fit sphere and, posterior best-fit sphere (all p < 0.001). Corneal thickness and elevation measurements were significantly different between swept source optical coherence tomography and slit scanning topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  18. SPECTRAL DOMAIN VERSUS SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF THE RETINAL CAPILLARY PLEXUSES IN SICKLE CELL MACULOPATHY.

    PubMed

    Jung, Jesse J; Chen, Michael H; Frambach, Caroline R; Rofagha, Soraya; Lee, Scott S

    2018-01-01

    To compare the spectral domain and swept source optical coherence tomography angiography findings in two cases of sickle cell maculopathy. A 53-year-old man and a 24-year-old man both with sickle cell disease (hemoglobin SS) presented with no visual complaints; Humphrey visual field testing demonstrated asymptomatic paracentral scotomas that extended nasally in the involved eyes. Clinical examination and multimodal imaging including spectral domain and swept source optical coherence tomography, and spectral domain optical coherence tomography angiography and swept source optical coherence tomography angiography (Carl Zeiss Meditec Inc, Dublin, CA) were performed. Fundus examination of both patients revealed subtle thinning of the macula. En-face swept source optical coherence tomography confirmed the extent of the thinning correlating with the functional paracentral scotomas on Humphrey visual field. Swept source optical coherence tomography B-scan revealed multiple confluent areas of inner nuclear thinning and significant temporal retinal atrophy. En-face 6 × 6-mm spectral domain optical coherence tomography angiography of the macula demonstrated greater loss of the deep capillary plexus compared with the superficial capillary plexus. Swept source optical coherence tomography angiography 12 × 12-mm imaging captured the same macular findings and loss of both plexuses temporally outside the macula. In these two cases of sickle cell maculopathy, deep capillary plexus ischemia is more extensive within the macula, whereas both the superficial capillary plexus and deep capillary plexus are involved outside the macula likely due to the greater oxygen demands and watershed nature of these areas. Swept source optical coherence tomography angiography clearly demonstrates the angiographic extent of the disease correlating with the Humphrey visual field scotomas and confluent areas of inner nuclear atrophy.

  19. Stimulus-evoked outer segment changes in rod photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng

    2016-06-01

    Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.

  20. Comparative investigation of stimulus-evoked rod outer segment movement and retinal electrophysiological activity

    NASA Astrophysics Data System (ADS)

    Lu, Yiming; Wang, Benquan; Yao, Xincheng

    2017-02-01

    Transient retinal phototropism (TRP) has been observed in rod photoreceptors activated by oblique visible light flashes. Time-lapse confocal microscopy and optical coherence tomography (OCT) revealed rod outer segment (ROS) movements as the physical source of TRP. However, the physiological source of TRP is still not well understood. In this study, concurrent TRP and electroretinogram (ERG) measurements disclosed a remarkably earlier onset time of the ROS movements (<=10 ms) than that ( 38 ms) of the ERG a-wave. Furthermore, low sodium treatment reversibly blocked the photoreceptor ERG a-wave, which is known to reflect hyperpolarization of retinal photoreceptors, but preserved the TRP associated rod OS movements well. Our experimental results and theoretical analysis suggested that the physiological source of TRP might be attributed to early stages of phototransduction, before the hyperpolarization of retinal photoreceptors.

  1. Stimulus-evoked outer segment changes in rod photoreceptors

    PubMed Central

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng

    2016-01-01

    Abstract. Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation. PMID:27334933

  2. Framework for computing the spatial coherence effects of polycapillary x-ray optics

    PubMed Central

    Zysk, Adam M.; Schoonover, Robert W.; Xu, Qiaofeng; Anastasio, Mark A.

    2012-01-01

    Despite the extensive use of polycapillary x-ray optics for focusing and collimating applications, there remains a significant need for characterization of the coherence properties of the output wavefield. In this work, we present the first quantitative computational method for calculation of the spatial coherence effects of polycapillary x-ray optical devices. This method employs the coherent mode decomposition of an extended x-ray source, geometric optical propagation of individual wavefield modes through a polycapillary device, output wavefield calculation by ray data resampling onto a uniform grid, and the calculation of spatial coherence properties by way of the spectral degree of coherence. PMID:22418154

  3. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Scott; Freeman, Dennis M.; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometermore » motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.« less

  4. Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian

    2011-03-01

    Partially coherent beams, such as Gaussian Schell-model beam, partially coherent dark hollow beam, partially coherent flat-topped beam and electromagnetic Gaussian Schell-model beam, have important applications in free space optical communications, optical imaging, optical trapping, inertial confinement fusion and nonlinear optics. In this paper, experimental generations of various partially coherent beams are introduced. Furthermore, with the help of a tensor method, analytical formulae for such beams propagating in turbulent atmosphere are derived, and the propagation properties of such beams in turbulent atmosphere are reviewed.

  5. Coherent Optical Communications: Historical Perspectives and Future Directions

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kazuro

    Coherent optical fiber communications were studied extensively in the 1980s mainly because high sensitivity of coherent receivers could elongate the unrepeated transmission distance; however, their research and development have been interrupted for nearly 20 years behind the rapid progress in high-capacity wavelength-division multiplexed (WDM) systems using erbium-doped fiber amplifiers (EDFAs). In 2005, the demonstration of digital carrier phase estimation in coherent receivers has stimulated a widespread interest in coherent optical communications again. This is due to the fact that the digital coherent receiver enables us to employ a variety of spectrally efficient modulation formats such as M-ary phase-shift keying (PSK) and quadrature amplitude modulation (QAM) without relying upon a rather complicated optical phase-locked loop. In addition, since the phase information is preserved after detection, we can realize electrical post-processing functions such as compensation for chromatic dispersion and polarization-mode dispersion in the digital domain. These advantages of the born-again coherent receiver have enormous potential for innovating existing optical communication systems. In this chapter, after reviewing the 20-year history of coherent optical communication systems, we describe the principle of operation of coherent detection, the concept of the digital coherent receiver, and its performance evaluation. Finally, challenges for the future are summarized.

  6. Macular function and morphological features in juvenile Stargardt disease: Longitudinal study

    PubMed Central

    Testa, Francesco; Melillo, Paolo; Iorio, Valentina Di; Orrico, Ada; Attanasio, Marcella; Rossi, Settimio; Simonelli, Francesca

    2014-01-01

    Purpose to evaluate disease progression in a cohort of patients with clinical and genetic diagnosis of Stargardt disease. Design longitudinal cohort study. Subjects 56 selected patients with a clinical and molecular diagnosis of Stargardt disease, an early age of onset and a median follow-up length of two years. Methods patients underwent routine examination including full-field electroretinography, microperimetry and optical coherence tomography. Main Outcome Measures best corrected visual acuity, mean retinal sensitivity, fixation stability, preferred retinal locus, inner-outer segment (IS/OS) junction loss, atrophic lesion area. Results 56 patients with a mean age of disease onset of 15.3 years (range: 3 - 28 years), a mean disease length of 12.1 years and a mean age at baseline of 27.4 years were analyzed. The median best corrected visual acuity was 20/200 in both eyes. Optical coherence tomography parameters (IS/OS alteration and retinal pigment epithelium lesion area) were obtained in 49 patients because signal quality was poor in the remaining 7 patients. Optical coherence tomography revealed a mean retinal pigment epithelium lesion area of 2.6 mm2, preserved foveal IS/OS in 4.1% of patients, loss of foveal IS/OS in 59.2%, and extensive loss of macular IS/OS in 36.7%. Microperimetric findings showed a reduced macular sensitivity (mean 10 dB) and an unstable fixation in half of the patient cohort. The longitudinal analysis showed a significant progressive reduction of best corrected visual acuity and macular sensitivity (at an estimated rate of 0.04 decimals and 1.19 dB per year, respectively) associated with a significant enlargement of retinal pigment epithelium lesion area (0.282 mm2 per year). No significant changes in ophthalmoscopic findings and electroretinographic responses were detected. Conclusions this study highlights the importance of microperimetry and optical coherence tomography in monitoring Stargardt patients. In fact, quantifying the decline of visual functionality and detecting morphological macular changes proves useful to evaluate disease progression over a short-term follow-up and should be taken into account for the design of future gene therapy clinical trials to treat retinal dystrophy. PMID:25097154

  7. IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook

    2016-12-01

    Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.

  8. Coherent optical modulation for antenna remoting

    NASA Technical Reports Server (NTRS)

    Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.

    1991-01-01

    A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.

  9. Comparison of retinal vessel measurements using adaptive optics scanning laser ophthalmoscopy and optical coherence tomography.

    PubMed

    Arichika, Shigeta; Uji, Akihito; Ooto, Sotaro; Muraoka, Yuki; Yoshimura, Nagahisa

    2016-05-01

    We compared adaptive optics scanning laser ophthalmoscopy (AOSLO) and optical coherence tomography (OCT) vessel caliber measurements. AOSLO videos were acquired from 28 volunteers with healthy eyes. Artery measurements were made 0.5-1 disc diameters away from the optic disc margin. Individual segmented retinal arterial caliber was measured in synchronization with cardiac pulsation and averaged to obtain final horizontal retinal arterial caliber (ACH) and horizontal retinal arterial lumen (ALH). All OCT images were obtained with the Spectralis OCT, a spectral-domain OCT system. Vertical retinal arterial caliber (ACV) and vertical retinal arterial lumen (ALV) were measured on the same artery measured with AOSLO. Measurements made with the two imaging systems were compared. Average ACH, measured with AOSLO, was 123.4 ± 11.2 and average ALH was 101.8 ± 10.2 µm. Average ACV, measured with OCT, was 125.5 ± 11.4 and average ALV was 99.1 ± 10.6 µm. Both arterial caliber (r = 0.767, p < 0.0001) and arterial lumen (r = 0.81, p < 0.0001) measurements were significantly correlated between imaging modalities. Additionally, ACH and ACV were not significantly different (p = 0.16). However, ALH measurements were significantly higher than ALV measurements (p = 0.03). Vessel measurements made with AOSLO and OCT were well correlated. Moreover, plasma is visible and distinguishable from the retinal vessel wall in AOSLO images but not in OCT images. Therefore, AOSLO may measure vessel width more precisely than OCT.

  10. Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics

    DTIC Science & Technology

    2012-02-24

    AND SUBTITLE Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics 6. AUTHORS Marian O...Maximum 200 words) Results of our earlier research in the realm of quantum optics were extended in order to solve the challenging technical problems of...efficient methods of generating UV light via quantum coherence. 14. SUBJECT TERMS Quantum coherence, quantum optics, lasers 15. NUMBER OF PAGES 15

  11. Recent advances in laser in situ keratomileusis-associated dry eye.

    PubMed

    Xie, Wenjia

    2016-03-01

    Dry eye is the most common complication after laser in situ keratomileusis (LASIK). The major cause of LASIK-associated dry eye is corneal nerve damage. Early identification and treatment of post-operative dry eye are essential to prevent further ocular surface damage. This article reviews the recent studies of LASIK-associated dry eye, including clinical features, aetiology, risk factors, evaluations and treatment. The applications of novel technologies in LASIK-associated dry eye evaluation like anterior segment spectral-domain optical coherence tomography (SD-OCT) and corneal confocal microscopy are also introduced in this review. © 2016 Optometry Australia.

  12. Methods, systems, and apparatus for storage, transfer and/or control of information via matter wave dynamics

    NASA Technical Reports Server (NTRS)

    Vestergaard Hau, Lene (Inventor)

    2012-01-01

    Methods, systems and apparatus for generating atomic traps, and for storing, controlling and transferring information between first and second spatially separated phase-coherent objects, or using a single phase-coherent object. For plural objects, both phase-coherent objects have a macroscopic occupation of a particular quantum state by identical bosons or identical BCS-paired fermions. The information may be optical information, and the phase-coherent object(s) may be Bose-Einstein condensates, superfluids, or superconductors. The information is stored in the first phase-coherent object at a first storage time and recovered from the second phase-coherent object, or the same first phase-coherent object, at a second revival time. In one example, an integrated silicon wafer-based optical buffer includes an electrolytic atom source to provide the phase-coherent object(s), a nanoscale atomic trap for the phase-coherent object(s), and semiconductor-based optical sources to cool the phase-coherent object(s) and provide coupling fields for storage and transfer of optical information.

  13. Quantitative Characteristics of Spectral-Domain Optical Coherence Tomography in Corresponding Areas of Increased Autofluorescence at the Margin of Geographic Atrophy in Patients With Age-Related Macular Degeneration.

    PubMed

    Hariri, Amir H; Nittala, Muneeswar G; Sadda, SriniVas R

    2016-06-01

    To evaluate the spectral-domain optical coherence tomography (SD-OCT) characteristics of the junctional zone corresponding to areas of increased autofluorescence (IAF) at the margin of geographic atrophy (GA) in patients with age-related macular degeneration (AMD). SD-OCT and fundus autofluorescence (FAF) images from untreated eyes with GA available from archived studies at Doheny Image Reading Center were evaluated. Areas of definite decreased autofluorescence (DDAF) corresponding to GA, and areas of IAF at the margins of the GA were manually segmented. Eyes with evidence of IAF were selected. Following manual registration of FAF and OCT data, areas of IAF and normal fluorescence were correlated with OCT features at these locations. Thirty eyes were included. The mean retinal pigment epithelium (RPE) thickness in areas of IAF was 40.6 µm ± 7.69 µm, compared to 28.8 µm ± 7.09 µm in normal adjacent areas (P < .001). Regions of IAF at the junctional zone of GA lesions appear to correspond to thickening of the presumed RPE band on OCT. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:523-527.]. Copyright 2016, SLACK Incorporated.

  14. Fabrication of anatomically tapered foveal pits for retinal phantoms for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Gary C. F.; Smith, Gennifer T.; Agrawal, Monica; Ellerbee, Audrey K.

    2015-03-01

    Optical Coherence Tomography (OCT) has become a standard tool for diagnosing retinal disease in many ophthalmology clinics. Nonetheless, the technical and clinical research communities still lack a standardized phantom that could aid in evaluating and normalizing the various scan protocols and OCT machines employed at different institutions. Existing retinal phantoms designed for OCT imaging mimic some important features of the retina, such as the thickness and scattering properties of its many layers. However, the morphology of the foveal pit and the visible tapering of the retinal layers underlying the surface surrounding the pit remains a challenge to replicate in current phantoms. Recent attempts at creating a realistic foveal pit include molding, ablation and laser etching but have not proved sufficient to replicate this particular anatomical feature. In this work, we demonstrate a new fabrication procedure that is capable of replicating the tapered appearance of the retinal layers near the foveal pit using a combination of spin-coating and replica molding. The ability to create an anatomically correct foveal pit will allow for a new phantom better suited for intra- and inter-system evaluation and for improved testing of retinal segmentation algorithms.

  15. Extracting cardiac shapes and motion of the chick embryo heart outflow tract from four-dimensional optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Yin, Xin; Liu, Aiping; Thornburg, Kent L.; Wang, Ruikang K.; Rugonyi, Sandra

    2012-09-01

    Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.

  16. [Anterior segment tumor imaging: advantages of ultrasound (10, 20 and 50 MHz) and optical coherence tomography].

    PubMed

    Siahmed, K; Berges, O; Desjardins, L; Lumbroso, L; Brasseur, G

    2004-02-01

    Detail the role of different imaging techniques for diagnosis of tumors of the iris. Sixty-one tumors of the iris were explored using ultrasound at 10 and 20MHz (Cinescan, BVI Quantel Medical) and 50MHz (UBM, Paradigm) and optical coherence tomography (OCT) (Humphrey Zeiss). Ultrasound should be used at frequencies of 20MHz or greater to precisely characterize, localize and measure a lesion. Ultrasound biomicroscopy (UBM) is inadequate to measure large tumors (extending toward the back of the ciliary body), because of the transducer and the considerably lower image quality caused by the lesion. Ultrasound alone cannot characterize a solid lesion, and moreover cannot differentiate benign and malignant lesions. Clinical notions are also important in diagnosis and patient management. OCT recognizes whether a lesion is liquid or solid in certain cases. With a tumor that seems solid, a 50MHz examination must be done rapidly, and if the entire lesion is difficult to see, a 20MHz ultrasound should be used. With a protruding iris, high-frequency ultrasound and OCT differentiate a cystic lesion from a solid mass, but only BMU provides a precise measurement and regular surveillance capabilities.

  17. Polymeric endovascular strut and lumen detection algorithm for intracoronary optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Amrute, Junedh M.; Athanasiou, Lambros S.; Rikhtegar, Farhad; de la Torre Hernández, José M.; Camarero, Tamara García; Edelman, Elazer R.

    2018-03-01

    Polymeric endovascular implants are the next step in minimally invasive vascular interventions. As an alternative to traditional metallic drug-eluting stents, these often-erodible scaffolds present opportunities and challenges for patients and clinicians. Theoretically, as they resorb and are absorbed over time, they obviate the long-term complications of permanent implants, but in the short-term visualization and therefore positioning is problematic. Polymeric scaffolds can only be fully imaged using optical coherence tomography (OCT) imaging-they are relatively invisible via angiography-and segmentation of polymeric struts in OCT images is performed manually, a laborious and intractable procedure for large datasets. Traditional lumen detection methods using implant struts as boundary limits fail in images with polymeric implants. Therefore, it is necessary to develop an automated method to detect polymeric struts and luminal borders in OCT images; we present such a fully automated algorithm. Accuracy was validated using expert annotations on 1140 OCT images with a positive predictive value of 0.93 for strut detection and an R2 correlation coefficient of 0.94 between detected and expert-annotated lumen areas. The proposed algorithm allows for rapid, accurate, and automated detection of polymeric struts and the luminal border in OCT images.

  18. Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ruggeri, Marco; Major, James C.; McKeown, Craig; Knighton, Robert W.; Puliafito, Carmen A.

    2010-01-01

    Purpose. To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. Methods. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. Results. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Conclusions. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey. PMID:20554605

  19. Passive optical coherence elastography using a time-reversal approach (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Zorgani, Ali; Fink, Mathias; Catheline, Stefan; Boccara, A. Claude

    2017-02-01

    Background and motivation - Conventional Optical Coherence Elastography (OCE) methods consist in launching controlled shear waves in tissues, and measuring their propagation speed using an ultrafast imaging system. However, the use of external shear sources limits transfer to clinical practice, especially for ophthalmic applications. Here, we propose a totally passive OCE method for ocular tissues based on time-reversal of the natural vibrations. Methods - Experiments were first conducted on a tissue-mimicking phantom containing a stiff inclusion. Pulsatile motions were reproduced by stimulating the phantom surface with two piezoelectric actuators excited asynchronously at low frequencies (50-500 Hz). The resulting random displacements were tracked at 190 frames/sec using spectral-domain optical coherence tomography (SD-OCT), with a 10x5µm² resolution over a 3x2mm² field-of-view (lateral x depth). The shear wavefield was numerically refocused (i.e. time-reversed) at each pixel using noise-correlation algorithms. The focal spot size yields the shear wavelength. Results were validated by comparison with shear wave speed measurements obtained from conventional active OCE. In vivo tests were then conducted on anesthetized rats. Results - The stiff inclusion of the phantom was delineated on the wavelength map with a wavelength ratio between the inclusion and the background (1.6) consistent with the speed ratio (1.7). This validates the wavelength measurements. In vivo, natural shear waves were detected in the eye and wavelength maps of the anterior segment showed a clear elastic contrast between the cornea, the sclera and the iris. Conclusion - We validated the time-reversal approach for passive elastography using SD-OCT imaging at low frame-rate. This method could accelerate the clinical transfer of ocular elastography.

  20. Ganglion cell-inner plexiform layer and retinal nerve fibre layer changes within the macula in retinitis pigmentosa: a spectral domain optical coherence tomography study.

    PubMed

    Yoon, Chang Ki; Yu, Hyeong Gon

    2018-03-01

    To investigate how macular ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre layer (RNFL) thicknesses within the macula change with retinitis pigmentosa (RP) severity. Spectral domain optical coherence tomography (SD-OCT) was used to examine 177 patients with RP and 177 normal controls. An optical coherence tomography (OCT) line scan was used to grade RP severity. Retinitis pigmentosa (RP) was categorized as more advanced if there was no identifiable inner segment ellipsoid (ISe) band (NISE) and as less advanced if an ISe band could be identified and peripheral loss of ISe was apparent (IISE). Ganglion cell-inner plexiform layer (GCIPL) and RNFL thicknesses were manually measured on OCT images and analysed. Pearson's correlation analyses were used to examine correlations between GCIPL thickness, RNFL thickness, visual acuity (VA) and visual field extent in patients and controls. Ganglion cell-inner plexiform layer (GCIPL) was significantly thicker in IISE than in control eyes (p < 0.001), but significantly thinner in NISE than in IISE eyes (p < 0.001) in both horizontal and vertical OCT scans. Retinal nerve fibre layer (RNFL) was significantly thicker in eyes with IISE and NISE than in control eyes in both horizontal and vertical meridians (all p < 0.001). Ganglion cell-inner plexiform layer (GCIPL) thickness showed a weak positive correlation with vision, and RNFL thickness showed a weak negative correlation with vision and visual field extent. Based on these results, the inner retina, including the GCIPL and RNFL, maintains its gross integrity longer than the photoreceptor layer in RP. Additionally, thickening of the inner retina may have some functional implications in patients with RP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Assessment of the posterior segment of the cat eye by optical coherence tomography (OCT).

    PubMed

    Gekeler, Florian; Gmeiner, Helmut; Völker, Michael; Sachs, Helmut; Messias, Andre; Eule, Corinna; Bartz-Schmidt, Karl Ulrich; Zrenner, Eberhart; Shinoda, Kei

    2007-01-01

    To assess the feasibility of optical coherence tomography (OCT) for examining the cat ocular fundus, to provide normative data on retinal thickness in different fundus regions, and to demonstrate selected surgically induced vitreoretinal pathologies in the cat. Forty-five eyes of 28 healthy domestic cats and two eyes of domestic cats that had undergone subretinal implantation surgery for a visual prosthesis were examined. An optical coherence tomograph (Zeiss-Humphrey) was used to examine the anesthetized animals. At least five vertical and five horizontal scans in regular distribution were recorded for each cat including (1) the peripapillary region, (2) the area centralis, and (3) the peripheral retina. Thickness was measured manually at five locations in each scan. Retinal thickness was compared in the three above-mentioned fundus regions, between eyes and between vertical and horizontal scans. OCT was additionally performed in animals with retinal detachment and a subretinal visual prosthesis. OCT measurements required only minimal adjustments of human settings and yielded high quality images. In comparison to humans intraretinal layers were more difficult to differentiate. Retinal thickness was highest in the peripapillary region (245 +/- 21 microm), followed by the peripheral retina (204 +/- 11 microm) and the area centralis (182 +/- 11 microm; all P < 0.0001). There was no statistically significant difference between right and left eye or between vertical and horizontal scans. OCT demonstrated retinal detachment, an iatrogenic break and a subretinal prosthetic device in high detail. Retinal thickness was measurable with high precision; values compare well to older histologic studies. OCT bears significant advantages over histology in enabling one to repeat measurements in living animals and thus allowing longitudinal studies. Various vitreoretinal pathologies common in feline eyes are detectable and quantifiable by OCT.

  2. Assessment of a spectral domain OCT segmentation software in a retrospective cohort study of exudative AMD patients.

    PubMed

    Tilleul, Julien; Querques, Giuseppe; Canoui-Poitrine, Florence; Leveziel, Nicolas; Souied, Eric H

    2013-01-01

    To assess the ability of the Spectralis optical coherence tomography (OCT) segmentation software to identify the inner limiting membrane and Bruch's membrane in exudative age-related macular degeneration (AMD) patients. Thirty-eight eyes of 38 naive exudative AMD patients were retrospectively included. They all had a complete ophthalmologic examination including Spectralis OCT at baseline, at month 1 and 2. Reliability of the segmentation software was assessed by 2 ophthalmologists. Reliability of the segmentation software was defined as good if both inner limiting membrane and Bruch's membrane were correctly drawn. A total of 38 patients charts were reviewed (114 scans). The inner limiting membrane was correctly drawn by the segmentation software in 114/114 spectral domain OCT scans (100%). Conversely, Bruch's membrane was correctly drawn in 59/114 scans (51.8%). The software was less reliable in locating Bruch's membrane in case of pigment epithelium detachment (PED) than without PED (42.5 vs. 73.5%, respectively; p = 0.049), but its reliability was not associated with SRF or CME (p = 0.55 and p = 0.10, respectively). Segmentation of the inner limiting membrane was constantly trustworthy but Bruch's membrane segmentation was poorly reliable using the automatic Spectralis segmentation software. Based on this software, evaluation of retinal thickness may be incorrect, particularly in case of PED. PED is effectively an important parameter which is not included when measuring retinal thickness. Copyright © 2012 S. Karger AG, Basel.

  3. Conditions for space invariance in optical data processors used with coherent or noncoherent light.

    PubMed

    Arsenault, H R

    1972-10-01

    The conditions for space invariance in coherent and noncoherent optical processors are considered. All linear optical processors are shown to belong to one of two types. The conditions for space invariance are more stringent for noncoherent processors than for coherent processors, so that a system that is linear in coherent light may be nonlinear in noncoherent light. However, any processor that is linear in noncoherent light is also linear in the coherent limit.

  4. Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.

    2007-02-01

    Measurement of retinal blood vessel parameters like the blood blow in the vessels may have significant impact on the study and diagnosis of glaucoma, a leading blinding disease worldwide. Optical coherence tomography (OCT) is a noninvasive imaging technique that can provide not only microscopic structural imaging of the retina but also functional information like the blood flow velocity in the retina. The aim of this study is to automatically extract the parameters of retinal blood vessels like the 3D orientation, the vessel diameters, as well as the corresponding absolute blood flow velocity in the vessel. The parameters were extracted from circular OCT scans around the optic disc. By removing the surface reflection through simple segmentation of the circular OCT scans a blood vessel shadowgram can be generated. The lateral coordinates and the diameter of each blood vessel are extracted from the shadowgram through a series of signal processing. Upon determination of the lateral position and the vessel diameter, the coordinate in the depth direction of each blood vessel is calculated in combination with the Doppler information for the vessel. The extraction of the vessel coordinates and diameter makes it possible to calculate the orientation of the vessel in reference to the direction of the incident sample light, which in turn can be used to calculate the absolute blood flow velocity and the flow rate.

  5. Optimal Multiple Surface Segmentation With Shape and Context Priors

    PubMed Central

    Bai, Junjie; Garvin, Mona K.; Sonka, Milan; Buatti, John M.; Wu, Xiaodong

    2014-01-01

    Segmentation of multiple surfaces in medical images is a challenging problem, further complicated by the frequent presence of weak boundary evidence, large object deformations, and mutual influence between adjacent objects. This paper reports a novel approach to multi-object segmentation that incorporates both shape and context prior knowledge in a 3-D graph-theoretic framework to help overcome the stated challenges. We employ an arc-based graph representation to incorporate a wide spectrum of prior information through pair-wise energy terms. In particular, a shape-prior term is used to penalize local shape changes and a context-prior term is used to penalize local surface-distance changes from a model of the expected shape and surface distances, respectively. The globally optimal solution for multiple surfaces is obtained by computing a maximum flow in a low-order polynomial time. The proposed method was validated on intraretinal layer segmentation of optical coherence tomography images and demonstrated statistically significant improvement of segmentation accuracy compared to our earlier graph-search method that was not utilizing shape and context priors. The mean unsigned surface positioning errors obtained by the conventional graph-search approach (6.30 ± 1.58 μm) was improved to 5.14 ± 0.99 μm when employing our new method with shape and context priors. PMID:23193309

  6. Laser diode technology for coherent communications

    NASA Technical Reports Server (NTRS)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  7. Semi-automatic geographic atrophy segmentation for SD-OCT images.

    PubMed

    Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Zheng, Luoluo; Kutzscher, Lauren; Rubin, Daniel L

    2013-01-01

    Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in which the projection region is restricted to a sub-volume of the retina where the presence of GA can be identified. Subsequently, a geometric active contour model is employed to automatically detect and segment the extent of GA in the projection images. Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, respectively, were utilized to qualitatively and quantitatively evaluate the proposed GA segmentation method. Experimental results suggest that the proposed algorithm can achieve high segmentation accuracy. The mean GA overlap ratios between our proposed method and outlines drawn in the SD-OCT scans, our method and outlines drawn in the fundus auto-fluorescence (FAF) images, and the commercial software (Carl Zeiss Meditec proprietary software, Cirrus version 6.0) and outlines drawn in FAF images were 72.60%, 65.88% and 59.83%, respectively.

  8. Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation.

    PubMed

    Lee, Aaron Y; Lee, Cecilia S; Keane, Pearse A; Tufail, Adnan

    2016-01-01

    Purpose. To evaluate the feasibility of using Mechanical Turk as a massively parallel platform to perform manual segmentations of macular spectral domain optical coherence tomography (SD-OCT) images using a MapReduce framework. Methods. A macular SD-OCT volume of 61 slice images was map-distributed to Amazon Mechanical Turk. Each Human Intelligence Task was set to $0.01 and required the user to draw five lines to outline the sublayers of the retinal OCT image after being shown example images. Each image was submitted twice for segmentation, and interrater reliability was calculated. The interface was created using custom HTML5 and JavaScript code, and data analysis was performed using R. An automated pipeline was developed to handle the map and reduce steps of the framework. Results. More than 93,500 data points were collected using this framework for the 61 images submitted. Pearson's correlation of interrater reliability was 0.995 (p < 0.0001) and coefficient of determination was 0.991. The cost of segmenting the macular volume was $1.21. A total of 22 individual Mechanical Turk users provided segmentations, each completing an average of 5.5 HITs. Each HIT was completed in an average of 4.43 minutes. Conclusions. Amazon Mechanical Turk provides a cost-effective, scalable, high-availability infrastructure for manual segmentation of OCT images.

  9. Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation

    PubMed Central

    Lee, Aaron Y.; Lee, Cecilia S.; Keane, Pearse A.; Tufail, Adnan

    2016-01-01

    Purpose. To evaluate the feasibility of using Mechanical Turk as a massively parallel platform to perform manual segmentations of macular spectral domain optical coherence tomography (SD-OCT) images using a MapReduce framework. Methods. A macular SD-OCT volume of 61 slice images was map-distributed to Amazon Mechanical Turk. Each Human Intelligence Task was set to $0.01 and required the user to draw five lines to outline the sublayers of the retinal OCT image after being shown example images. Each image was submitted twice for segmentation, and interrater reliability was calculated. The interface was created using custom HTML5 and JavaScript code, and data analysis was performed using R. An automated pipeline was developed to handle the map and reduce steps of the framework. Results. More than 93,500 data points were collected using this framework for the 61 images submitted. Pearson's correlation of interrater reliability was 0.995 (p < 0.0001) and coefficient of determination was 0.991. The cost of segmenting the macular volume was $1.21. A total of 22 individual Mechanical Turk users provided segmentations, each completing an average of 5.5 HITs. Each HIT was completed in an average of 4.43 minutes. Conclusions. Amazon Mechanical Turk provides a cost-effective, scalable, high-availability infrastructure for manual segmentation of OCT images. PMID:27293877

  10. Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm

    NASA Astrophysics Data System (ADS)

    Lee, Sieun; Beg, Mirza F.; Sarunic, Marinko V.

    2013-06-01

    Retinal imaging with optical coherence tomography (OCT) has rapidly advanced in ophthalmic applications with the broad availability of Fourier domain (FD) technology in commercial systems. The high sensitivity afforded by FD-OCT has enabled imaging of the choroid, a layer of blood vessels serving the outer retina. Improved visualization of the choroid and the choroid-sclera boundary has been investigated using techniques such as enhanced depth imaging (EDI), and also with OCT systems operating in the 1060-nm wavelength range. We report on a comparison of imaging the macular choroid with commercial and prototype OCT systems, and present automated 3D segmentation of the choroid-scleral layer using a graph cut algorithm. The thickness of the choroid is an important measurement to investigate for possible correlation with severity, or possibly early diagnosis, of diseases such as age-related macular degeneration.

  11. Foveal damage in habitual poppers users.

    PubMed

    Audo, Isabelle; El Sanharawi, Mohamed; Vignal-Clermont, Catherine; Villa, Antoine; Morin, Annie; Conrath, John; Fompeydie, Dominique; Sahel, José-Alain; Gocho-Nakashima, Kiyoko; Goureau, Olivier; Paques, Michel

    2011-06-01

    To describe foveal damage in habitual use of poppers, a popular recreational drug. Retrospective observational case series. Six patients with bilateral vision loss after chronic popper inhalation were seen in 4 university-based ophthalmology departments. Symptoms, medical history, ophthalmic examination, and functional and morphological tests are described. All patients experienced progressive bilateral vision loss, with central photopsia in 2 cases. Initial visual acuities ranged from 20/50 to 20/25. In all patients, a bilateral yellow foveal spot was present that, by optical coherence tomography, was associated with disruption of the outer segments of foveal cones. Functional and anatomical damage was restricted to the fovea. The poppers involved were identified as isopropyl nitrite in 3 cases. Four patients showed anatomical and/or functional improvement over several months after discontinuing popper inhalation. Repeated inhalation of poppers may be associated with prolonged bilateral vision loss due to the disruption of foveal cone outer segments. Retinal damage may progressively improve following drug discontinuation.

  12. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT.

    PubMed

    Bendschneider, Delia; Tornow, Ralf P; Horn, Folkert K; Laemmer, Robert; Roessler, Christopher W; Juenemann, Anselm G; Kruse, Friedrich E; Mardin, Christian Y

    2010-09-01

    To determine normal values for peripapillary retinal nerve fiber layer thickness (RNFL) measured by spectral domain Optical Coherence Tomography (SOCT) in healthy white adults and to examine the relationship of RNFL with age, gender, and clinical variables. The peripapillary RNFL of 170 healthy patients (96 males and 74 females, age 20 to 78 y) was imaged with a high-resolution SOCT (Spectralis HRA+OCT, Heidelberg Engineering) in an observational cross-sectional study. RNFL thickness was measured around the optic nerve head using 16 automatically averaged, consecutive circular B-scans with 3.4-mm diameter. The automatically segmented RNFL thickness was divided into 32 segments (11.25 degrees each). One randomly selected eye per subject entered the study. Mean RNFL thickness in the study population was 97.2 ± 9.7 μm. Mean RNFL thickness was significantly negatively correlated with age (r = -0.214, P = 0.005), mean RNFL decrease per decade was 1.90 μm. As age dependency was different in different segments, age-correction of RNFL values was made for all segments separately. Age-adjusted RNFL thickness showed a significant correlation with axial length (r = -0.391, P = 0.001) and with refractive error (r = 0.396, P<0.001), but not with disc size (r = 0.124). Normal RNFL results with SOCT are comparable to those reported with time-domain OCT. In accordance with the literature on other devices, RNFL thickness measured with SOCT was significantly correlated with age and axial length. For creating a normative database of SOCT RNFL values have to be age adjusted.

  13. Automated feature extraction for retinal vascular biometry in zebrafish using OCT angiography

    NASA Astrophysics Data System (ADS)

    Bozic, Ivan; Rao, Gopikrishna M.; Desai, Vineet; Tao, Yuankai K.

    2017-02-01

    Zebrafish have been identified as an ideal model for angiogenesis because of anatomical and functional similarities with other vertebrates. The scale and complexity of zebrafish assays are limited by the need to manually treat and serially screen animals, and recent technological advances have focused on automation and improving throughput. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo imaging of retinal vasculature in zebrafish. OCT-A summed voxel projections were low pass filtered and skeletonized to create an en face vascular map prior to connectivity analysis. Vascular segmentation was referenced to the optic nerve head (ONH), which was identified by automatically segmenting the retinal pigment epithelium boundary on the OCT structural volume. The first vessel branch generation was identified as skeleton segments with branch points closest to the ONH, and subsequent generations were found iteratively by expanding the search space outwards from the ONH. Biometric parameters, including length, curvature, and branch angle of each vessel segment were calculated and grouped by branch generation. Despite manual handling and alignment of each animal over multiple time points, we observe distinct qualitative patterns that enable unique identification of each eye from individual animals. We believe this OCT-based retinal biometry method can be applied for automated animal identification and handling in high-throughput organism-level pharmacological assays and genetic screens. In addition, these extracted features may enable high-resolution quantification of longitudinal vascular changes as a method for studying zebrafish models of retinal neovascularization and vascular remodeling.

  14. Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere.

    PubMed

    Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang

    2012-04-23

    The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams. © 2012 Optical Society of America

  15. Diabetic retinal pigment epitheliopathy: fundus autofluorescence and spectral-domain optical coherence tomography findings.

    PubMed

    Kang, Eui Chun; Seo, Yuri; Byeon, Suk Ho

    2016-10-01

    To describe the characteristics of an unfamiliar disease entity, diabetic retinal pigment epitheliopathy (DRPE), using fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (SD-OCT). This retrospective study included 17 eyes from 10 proliferative diabetic retinopathy (PDR) patients with granular hypo-autofluorescence and/or variable hyper-autofluorescence on FAF (DRPE group) and 17 eyes from 10 age- and sex-matched PDR patients without abnormal autofluorescence (PDR group). Eyes with diabetic macular edema were excluded. Visual acuity (VA), retinal thickness (RT), and choroidal thickness (CT) were compared between the groups. Eyes in the DRPE group had worse logMAR VA than eyes in the PDR group (0.369 ± 0.266 vs. 0.185 ± 0.119; P = 0.026). The thickness of the retinal pigment epithelium plus the inner segment/outer segment of the photoreceptors was reduced to a greater degree in the DRPE group than the PDR group (P < 0.001). Moreover, the thickness of the outer nuclear layer plus the outer plexiform layer was thinner in the DRPE group than in the PDR (P = 0.013). However, the thickness of the inner retina showed no differences between the two groups. CT was significantly thicker in the DRPE group than in the PDR group (329.00 ± 33.76 vs. 225.62 ± 37.47 μm; P < 0.001). Eyes with DRPE showed reduced VA, a thinner outer retina, and thicker choroid in comparison with eyes with PDR. Alterations of autofluorescence on FAF and changes in the outer retinal thickness and CT on SD-OCT can be helpful for differentiating DRPE in patients with PDR.

  16. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement.

    PubMed

    Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei

    2017-01-01

    To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), -1 D, -3 D and -5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress.

  17. The Safety and Predictability of Implanting Autologous Lenticule Obtained by SMILE for Hyperopia.

    PubMed

    Sun, Ling; Yao, Peijun; Li, Meiyan; Shen, Yang; Zhao, Jing; Zhou, Xingtao

    2015-06-01

    To evaluate the safety, effectiveness, stability, and predictability of implanting autologous lenticules obtained from small incision lenticule extraction for the treatment of hyperopia. Five patients (10 eyes) with one myopic eye and one hyperopic eye were enrolled. The myopic eye was treated with small incision lenticule extraction; a lenticule was extracted and subsequently implanted in the hyperopic eye. Follow-up was at 1 day, 1, 3, 6, and 9 months, and 1 year postoperatively. Patients received a complete ophthalmologic examination at each visit, including uncorrected distance visual acuity, corrected distance visual acuity, anterior segment optical coherence tomography, and corneal topography. There were no complications in any eye during follow-up. Compared with preoperative levels, at the last follow-up visit the eyes with lenticule implantation showed mean spherical equivalent reduced by 5.53 diopters (residual spherical equivalent was +1.13 to -2.63 diopters), mean uncorrected distance visual acuity increased approximately two lines (approximately 20/63 to 20/40 Snellen), and corrected distance visual acuity in 4 (80%) eyes gained one line, 2 (40%) eyes gained two lines, and 1 (20%) eye gained more than two lines. There was no significant difference (P > .05) in spherical equivalent compared with 1 day postoperatively and the last follow-up visit. Corneal topography showed that the lenticule was uniform and located well; anterior segment optical coherence tomography images showed that the lenticule was transparent and the demarcation line was visible. Implanting an autologous lenticule obtained by small incision lenticule extraction for hyperopia might be safe, effective, and stable, but its predictability should be improved in the future. Copyright 2015, SLACK Incorporated.

  18. Delayed-onset descemet membrane detachment after uneventful cataract surgery treated by corneal venting incision with air tamponade: a case report.

    PubMed

    Bhatia, Harsimran Kaur; Gupta, Rakesh

    2016-04-04

    Descemet membrane detachment (DMD) is a significant complication noted during or early after cataract surgery. Review of literature revealed a few cases of delayed-onset DMD with presentation ranging from weeks to months after cataract surgery but most of them were treated with pneumatic descemetopexy and a few ended in penetrating keratoplasty. We report this case, to highlight the usefulness of corneal venting incision with air tamponade in late-onset DMD cases not responding to pneumatic descemetopexy. A retrospective case review of a 66 year old male who presented with diminution of vision in right eye 17 days after uneventful cataract surgery was done. Visual acuity in this eye was 20/200 at presentation. DMD was noted 3 days later (approximately 3 weeks post-operatively) and Anterior Segment Optical Coherence Tomography & Scheimpflug imaging were done in view of diffuse corneal edema. Pneumatic descemetopexy was attempted thrice (twice with SF6, once with air) over a week's span with limited success at re-attaching the DM. Finally, corneal venting incision with air tamponade was done resulting in egress of supra-descemet's fluid and DM appeared apposed to stroma. Bandage contact lens (BCL) was applied at the end of the procedure. DM was seen attached the next day. Corneal edema cleared completely in 1 week. Best corrected visual acuity (BCVA) at 6 weeks follow-up was 20/30. Delayed-onset DMD should be considered as a differential diagnosis in cases with late-onset corneal edema post-cataract surgery. Anterior segment Optical Coherence Tomography (AS-OCT) and Scheimpflug Imaging are useful tools in cases with dense corneal edema. Corneal venting incision with air tamponade is an option in cases where methods like pneumatic descemetopexy fail.

  19. Inability to perform posterior segment monitoring by scanning laser ophthalmoscopy or optical coherence tomography with some occlusive intraocular lenses in clinical use.

    PubMed

    Yusuf, Imran H; Peirson, Stuart N; Patel, Chetan K

    2012-03-01

    To evaluate whether occlusive intraocular lenses (IOLs) produced by several manufacturers for clinical use equivalently transmit near-infrared (IR) light for scanning laser ophthalmoscopy (SLO) or optical coherence tomography (OCT) imaging. Nuffield Laboratory of Ophthalmology, Oxford University, United Kingdom. Evaluation of diagnostic test or technology. The study evaluated 6 black IOLs of 2 designs: 3 poly(methyl methacrylate) (PMMA) and 3 iris-claw anterior chamber IOLs. Each IOL was placed between a broad-spectrum white light source and a spectroradiometer to generate transmission spectra. Transmission in the near-IR range was examined using an 850 nm light-emitting diode. Scanning laser ophthalmoscopy or OCT imaging using Spectralis spectral-domain SLO or OCT was attempted through occlusive IOLs in a model eye. Artisan iris-claw and MS 612 PMMA occlusive IOLs totally occluded all wavelengths of light, including in the near IR range in which SLO and OCT imaging systems operate. It was not possible to capture SLO or OCT images through the iris-claw and PMMA occlusive IOLs in a model eye. Results suggest the property of near-IR transmission that permits SLO or OCT imaging through occlusive IOLs is restricted to the Morcher range of occlusive IOLs. Patients with non-near IR transmitting IOLs will not be able to receive detailed posterior segment monitoring with SLO or OCT. This finding may have a significant impact on preoperative occlusive IOL selection and the management of current patients with occlusive IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Comparison of EyeCam and anterior segment optical coherence tomography in detecting angle closure.

    PubMed

    Baskaran, Mani; Aung, Tin; Friedman, David S; Tun, Tin A; Perera, Shamira A

    2012-12-01

    To compare the diagnostic performance of EyeCam (Clarity Medical Systems, Pleasanton, CA, USA) and anterior segment optical coherence tomography (ASOCT, Visante; Carl Zeiss Meditec, Dublin, CA, USA) in detecting angle closure, using gonioscopy as the reference standard. Ninety-eight phakic patients, recruited from a glaucoma clinic, underwent gonioscopy by a single examiner, and EyeCam and ASOCT imaging by another examiner. Another observer, masked to gonioscopy findings, graded EyeCam and ASOCT images. For both gonioscopy and EyeCam, a closed angle in a particular quadrant was defined if the posterior trabecular meshwork was not visible. For ASOCT, angle closure was defined by any contact between the iris and angle anterior to the scleral spur. An eye was diagnosed as having angle closure if ≥2 quadrants were closed. Agreement and area under the receiver operating characteristic curves (AUC) were evaluated. The majority of subjects were Chinese (69/98, 70.4%) with a mean age of 60.6 years. Angle closure was diagnosed in 39/98 (39.8%) eyes with gonioscopy, 40/98 (40.8%) with EyeCam and 56/97 (57.7%) with ASOCT. The agreement (kappa statistic) for angle closure diagnosis for gonioscopy versus EyeCam was 0.89; gonioscopy versus ASOCT and EyeCam versus ASOCT were both 0.56. The AUC for detecting eyes with gonioscopic angle closure with EyeCam was 0.978 (95% CI: 0.93-1.0) and 0.847 (95% CI: 0.76-0.92, p < 0.01) for ASOCT. The diagnostic performance of EyeCam was better than ASOCT in detecting angle closure when gonioscopic grading was used as the reference standard. The agreement between the two imaging modalities was moderate. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  1. Assessment of narrow angles by gonioscopy, Van Herick method and anterior segment optical coherence tomography.

    PubMed

    Park, Seong Bae; Sung, Kyung Rim; Kang, Sung Yung; Jo, Jung Woo; Lee, Kyoung Sub; Kook, Michael S

    2011-07-01

    To evaluate anterior chamber (AC) angles using gonioscopy, Van Herick technique and anterior segment optical coherence tomography (AS-OCT). One hundred forty-eight consecutive subjects were enrolled. The agreement between any two of three diagnostic methods, gonioscopy, AS-OCT and Van Herick, was calculated in narrow-angle patients. The area under receiver-operating characteristic curves (AUC) for discriminating between narrow and open angles determined by gonioscopy was calculated in all participants for AS-OCT parameter angle opening distance (AOD), angle recess area, trabecular iris surface area and anterior chamber depth (ACD). As a subgroup analysis, capability of AS-OCT parameters for detecting angle closure defined by AS-OCT was assessed in narrow-angle patients. The agreement between the Van Herick method and gonioscopy in detecting angle closure was excellent in narrow angles (κ = 0.80, temporal; κ = 0.82, nasal). However, agreement between gonioscopy and AS-OCT and between the Van Herick method and AS-OCT was poor (κ = 0.11-0.16). Discrimination capability of AS-OCT parameters between open and narrow angles determined by gonioscopy was excellent for all AS-OCT parameters (AUC, temporal: AOD500 = 0.96, nasal: AOD500 = 0.99). The AUCs for detecting angle closure defined by AS-OCT image in narrow angle subjects was good for all AS-OCT parameters (AUC, 0.80-0.94) except for ACD (temporal: ACD = 0.70, nasal: ACD = 0.63). Assessment of narrow angles by gonioscopy and the Van Herick technique showed good agreement, but both measurements revealed poor agreement with AS-OCT. The angle closure detection capability of AS-OCT parameters was excellent; however, it was slightly lower in ACD.

  2. Novel Automated Approach to Predict the Outcome of Laser Peripheral Iridotomy for Primary Angle Closure Suspect Eyes Using Anterior Segment Optical Coherence Tomography.

    PubMed

    Koh, Victor; Swamidoss, Issac Niwas; Aquino, Maria Cecilia D; Chew, Paul T; Sng, Chelvin

    2018-04-27

    Develop an algorithm to predict the success of laser peripheral iridotomy (LPI) in primary angle closure suspect (PACS), using pre-treatment anterior segment optical coherence tomography (ASOCT) scans. A total of 116 eyes with PACS underwent LPI and time-domain ASOCT scans (temporal and nasal cuts) were performed before and 1 month after LPI. All the post-treatment scans were classified to one of the following categories: (a) both angles open, (b) one of two angles open and (c) both angles closed. After LPI, success is defined as one or more angles changed from close to open. In this proposed method, the pre and post-LPI ASOCT scans were registered at the corresponding angles based on similarities between the respective local descriptor features and random sample consensus technique was used to identify the largest consensus set of correspondences between the pre and post-LPI ASOCT scans. Subsequently, features such as correlation co-efficient (CC) and structural similarity index (SSIM) were extracted and correlated with the success of LPI. We included 116 eyes and 91 (78.44%) eyes fulfilled the criteria for success after LPI. Using the CC and SSIM index scores from this training set of ASOCT images, our algorithm showed that the success of LPI in eyes with narrow angles can be predicted with 89.7% accuracy, specificity of 95.2% and sensitivity of 36.4% based on pre-LPI ASOCT scans only. Using pre-LPI ASOCT scans, our proposed algorithm showed good accuracy in predicting the success of LPI for PACS eyes. This fully-automated algorithm could aid decision making in offering LPI as a prophylactic treatment for PACS.

  3. Curvature of iris profile in spectral domain optical coherence tomography and dependency to refraction, age and pupil size - the MIPH Eye&Health Study.

    PubMed

    Schuster, Alexander K; Fischer, Joachim E; Vossmerbaeumer, Urs

    2017-03-01

    Optical coherence tomography (OCT) of the anterior segment allows quantitative analysis of the geometry of the iris. We performed spectral domain OCT examinations in healthy emmetropic, hyperopic and myopic subjects to investigate iris curvature and its associations. In a cross-sectional study, out of 4617 eyes (2309 subjects) those with refractive errors of <-4 or >+3 dioptres were identified by objective refraction. The iris was examined using the anterior segment mode of a spectral domain 3D OCT-2000 (Topcon Inc., Japan) in the temporal meridian, and OCT scans were investigated with respect to presence and amount of convex and concave iris configuration. Ninety-three eyes of 50 subjects served as emmetropic group (-0.5 ≤ x ≤+0.5 dioptres). Previous ocular surgery was exclusion criterion. Six hundred and sixty-eight eyes of 398 persons [292 male (76%); age range; 18-66 years] were included in the study. In the myopic group, 105 eyes had a concave iris configuration (26%), while in the hyperopic group, no eye had this configuration (0%) and in the emmetropic group five eyes (5%). Convex iris configuration was found in 96% of hyperopic, in 85% of the emmetropic and in 67% of the myopic eyes. There was an association between concave iris configuration and myopia, younger age and male gender, and with anterior chamber angle width. Spectral domain OCT images can be used for analysis of the iris structure and geometry. Our results are limited to the properties of the study population having an age range from 18 to 66 years and consisting mainly of men. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement

    PubMed Central

    Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei

    2017-01-01

    Objective To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. Methods and analysis One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), −1 D, −3 D and −5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. Results The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. Conclusions This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress. PMID:29354706

  5. Utility of bleb imaging with anterior segment optical coherence tomography in clinical decision-making after trabeculectomy.

    PubMed

    Singh, Mandeep; Aung, Tin; Aquino, Maria C; Chew, Paul T K

    2009-08-01

    To determine if imaging of blebs with anterior segment optical coherence tomography (ASOCT) affects clinical decision-making with regard to laser suture lysis (LSL) after trabeculectomy. In this prospective observational case series, we included patients with poorly controlled intraocular pressure (IOP) after standardized trabeculectomy from May to November 2006. One observer assessed IOP, anterior chamber depth and bleb formation, and recorded a decision of whether or not to undertake LSL based on clinical grounds. A second observer masked to clinical data recorded a decision of whether or not to perform LSL based on ASOCT assessment of scleral flap position, presence of a sub-flap space, patency of the internal ostium, and bleb wall thickening. We compared the 2 observers' decisions to determine how ASOCT influenced decision-making. Seven eyes of 7 patients were included. On the basis of clinical examination, LSL was recommended in all 7 (100.0%) cases due to presence of elevated IOP, deep anterior chambers and poorly formed blebs. Using ASOCT, LSL was recommended in 5/7 (71.4%) cases with apposed scleral flaps, absent sub-flap spaces, and absent bleb wall thickening. In 2/7 (28.7%) cases, LSL was not recommended based on ASOCT findings of an elevated scleral flap, a patent sub-flap space, and bleb wall thickening. All 7 patients had good IOP control and formed blebs at a mean of 8.4+/-2.6 months after trabeculectomy, with a mean IOP of 14.3+/-3.2 mm Hg with no medications. This small study suggests that ASOCT imaging may affect decision-making with regard to LSL by providing information not apparent on clinical examination.

  6. Optical Coherence Tomography of Retinal Degeneration in Royal College of Surgeons Rats and Its Correlation with Morphology and Electroretinography

    PubMed Central

    Yamauchi, Kodai; Mounai, Natsuki; Tanabu, Reiko; Nakazawa, Mitsuru

    2016-01-01

    Purpose To evaluate the correlation between optical coherence tomography (OCT) and the histological, ultrastructural and electroretinography (ERG) findings of retinal degeneration in Royal College of Surgeons (RCS-/-) rats. Materials and Methods Using OCT, we qualitatively and quantitatively observed the continual retinal degeneration in RCS-/- rats, from postnatal (PN) day 17 until PN day 111. These findings were compared with the corresponding histological, electron microscopic, and ERG findings. We also compared them to OCT findings in wild type RCS+/+ rats, which were used as controls. Results After PN day 17, the hyperreflective band at the apical side of the photoreceptor layer became blurred. The inner segment (IS) ellipsoid zone then became obscured, and the photoreceptor IS and outer segment (OS) layers became diffusely hyperreflective after PN day 21. These changes correlated with histological and electron microscopic findings showing extracellular lamellar material that accumulated in the photoreceptor OS layer. After PN day 26, the outer nuclear layer became significantly thinner (P < 0.01) and hyperreflective compared with that in the controls; conversely, the photoreceptor IS and OS layers, as well as the inner retinal layers, became significantly thicker (P < 0.001 and P = 0.05, respectively). The apical hyperreflective band, as well as the IS ellipsoid zone, gradually disappeared between PN day 20 and PN day 30; concurrently, the ERG a- and b-wave amplitudes deteriorated. In contrast, the thicknesses of the combined retinal pigment epithelium and choroid did not differ significantly between RCS-/- and RCS+/+ rats. Conclusion Our results suggest that OCT demonstrates histologically validated photoreceptor degeneration in RCS rats, and that OCT findings partly correlate with ERG findings. We propose that OCT is a less invasive and useful method for evaluating photoreceptor degeneration in animal models of retinitis pigmentosa. PMID:27644042

  7. Evaluation of a new method for the measurement of corneal thickness in eye bank posterior corneal lenticules using Anterior Segment Optical Coherence Tomography.

    PubMed

    Amato, Domenico; Lombardo, Marco; Oddone, Francesco; Nubile, Mario; Colabelli Gisoldi, Rossella A M; Villani, Carlo M; Yoo, Sonia; Parel, Jean-Marie; Pocobelli, Augusto

    2011-04-01

    To preliminarily evaluate the repeatability of central corneal thickness (CCT) measurements performed with Anterior Segment Optical Coherence Tomography (AS-OCT) on eye bank posterior corneal lenticules. Six donor lenticules were created with a 350 μm head microkeratome (Moria, Antony, France). All donor tissues were stored at 4°C in Eusol-C solution (Alchimia S.r.l, Ponte S. Nicolò, Italy), without the anterior cornea lamella. The CCT of each lenticule, maintained in the glass phial, was measured using a commercial AS-OCT instrument (Visante, Carl Zeiss Meditec, Dublin, California, USA) and a specially designed adaptor immediately and 4, 24 and 48 hours after dissection. Immediately after AS-OCT, CCT values were measured with the ultrasound pachymetry method used at the Eye Bank. The mean donor cornea central thickness was 647±36 μm and 660 ± 38 μm (p=0.001) as measured by AS-OCT and ultrasound, respectively; immediately after dissection, CCT values of posterior lenticules were 235 ± 43 μm and 248 ± 44 μm, respectively (p=0.001). No statistically significant changes in CCT values of donor lenticules were assessed over the 48 h period with both methods. There was a high level of agreement, evidenced by Bland-Altman analysis, between the two methods of pachymetry. AS-OCT, with the corneal tissue in the vial, was revealed to be a repeatable and reliable method for measuring posterior donor lenticule central thickness. Lenticule CCT values measured with the investigational AS-OCT method were on average 10 μm thinner than those measured with the established ultrasound method.

  8. Photoreceptor Layer Thickness Changes During Dark Adaptation Observed With Ultrahigh-Resolution Optical Coherence Tomography.

    PubMed

    Lu, Chen D; Lee, ByungKun; Schottenhamml, Julia; Maier, Andreas; Pugh, Edward N; Fujimoto, James G

    2017-09-01

    To examine outer retinal band changes after flash stimulus and subsequent dark adaptation with ultrahigh-resolution optical coherence tomography (UHR-OCT). Five dark-adapted left eyes of five normal subjects were imaged with 3-μm axial-resolution UHR-OCT during 30 minutes of dark adaptation following 96%, 54%, 23%, and 0% full-field and 54% half-field rhodopsin bleach. We identified the ellipsoid zone inner segment/outer segment (EZ[IS/OS]), cone interdigitation zone (CIZ), rod interdigitation zone (RIZ), retinal pigment epithelium (RPE), and Bruch's membrane (BM) axial positions and generated two-dimensional thickness maps of the EZ(IS/OS) to the four bands. The average thickness over an area of the thickness map was compared against that of the dark-adapted baselines. The time-dependent thickness changes (photoresponses) were statistically compared against 0% bleach. Dark adaptometry was performed with the same bleaching protocol. The EZ(IS/OS)-CIZ photoresponse was significantly different at 96% (P < 0.0001) and 54% (P = 0.006) bleach. At all three bleaching levels, the EZ(IS/OS)-RIZ, -RPE, and -BM responses were significantly different (P < 0.0001). The EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ time courses were similar to the recovery of rod- and cone-mediated sensitivity, respectively, measured with dark adaptometry. The maximal EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ response magnitudes doubled from 54% to 96% bleach. Both EZ(IS/OS)-RPE and EZ(IS/OS)-BM responses resembled dampened oscillations that were graded in amplitude and duration with bleaching intensity. Half-field photoresponses were localized to the stimulated retina. With noninvasive, near-infrared UHR-OCT, we characterized three distinct, spatially localized photoresponses in the outer retinal bands. These photoresponses have potential value as physical correlates of photoreceptor function.

  9. Inter-ethnic variation of ocular traits-design and methodology of comparison study among American Caucasians, American Chinese and mainland Chinese.

    PubMed

    Wang, Dan Dan; Huang, Guo Fu; He, Ming Guang; Wu, Ling Ling; Lin, Shan

    2011-03-01

    To summarize the design and methodology of a multi-center study. With the existed ethnic differences of glaucoma, this survey will explore the differences with regard to anterior and posterior ocular segment parameters between Caucasians and Chinese. In this study, four cohorts including American Caucasians and American Chinese from San Francisco, southern mainland Chinese from Guangzhou, and northern mainland Chinese from Beijing were prospectively enrolled for a series of eye examinations and tests from May 2008 to December 2010. A total of 120 subjects including 15 of each gender in each age decade from 40s to 70s were recruited for each group. Data of the following tests were collected: a questionnaire eliciting systemic and ocular disease history, blood pressure, presenting and best corrected visual acuity, auto-refraction, Goldmann applanation tonometry, gonioscopy, A-scan, anterior segment optical coherence tomography (ASOCT), ultrasound biomicroscopy (UBM), visual field (VF), Heidelberg retinal tomography (HRT), OCT for optic nerve, and digital fundus photography. this study will provide insights to the etiologies of glaucoma especially PACG through inter-ethnic comparisons of relevant ocular anatomic and functional parameters.

  10. A chip-integrated coherent photonic-phononic memory.

    PubMed

    Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J

    2017-09-18

    Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.

  11. Structure and symmetry in coherent perfect polarization rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Zhou, Chuanhong; Andrews, James H.; Baker, Michael A.

    2015-01-01

    Theoretical investigations of different routes to coherent perfect polarization rotation illustrate its phenomenological connection with coherent perfect absorption. Our study of systems with broken parity, layering, combined Faraday rotation and optical activity, or a rotator-loaded optical cavity highlights their similarity and suggests alternate approaches to improving and miniaturizing optical devices.

  12. Optical coherence tomography angiography in age-related macular degeneration: The game changer.

    PubMed

    Lupidi, Marco; Cerquaglia, Alessio; Chhablani, Jay; Fiore, Tito; Singh, Sumit Randhir; Cardillo Piccolino, Felice; Corbucci, Roberta; Coscas, Florence; Coscas, Gabriel; Cagini, Carlo

    2018-04-01

    Optical coherence tomography angiography is one of the biggest advances in ophthalmic imaging. It enables a depth-resolved assessment of the retinal and choroidal blood flow, far exceeding the levels of detail commonly obtained with dye angiographies. One of the first applications of optical coherence tomography angiography was in detecting the presence of choroidal neovascularization in age-related macular degeneration and establishing its position in relation to the retinal pigmented epithelium and Bruch's membrane, and thereby classifying the CNV as type 1, type 2, type 3, or mixed lesions. Optical coherence tomography angiograms, due to the longer wavelength used by optical coherence tomography, showed a more distinct choroidal neovascularization vascular pattern than fluorescein angiography, since there is less suffering from light scattering or is less obscured by overlying subretinal hemorrhages or exudation. Qualitative and quantitative assessments of optical coherence tomography angiography findings in exudative and nonexudative age-related macular degeneration have been largely investigated within the past 3 years both in clinical and experimental settings. This review constitutes an up-to-date of all the potential applications of optical coherence tomography angiography in age-related macular degeneration in order to better understand how to translate its theoretical usefulness into the current clinical practice.

  13. Coherence rephasing combined with spin-wave storage using chirped control pulses

    NASA Astrophysics Data System (ADS)

    Demeter, Gabor

    2014-06-01

    Photon-echo based optical quantum memory schemes often employ intermediate steps to transform optical coherences to spin coherences for longer storage times. We analyze a scheme that uses three identical chirped control pulses for coherence rephasing in an inhomogeneously broadened ensemble of three-level Λ systems. The pulses induce a cyclic permutation of the atomic populations in the adiabatic regime. Optical coherences created by a signal pulse are stored as spin coherences at an intermediate time interval, and are rephased for echo emission when the ensemble is returned to the initial state. Echo emission during a possible partial rephasing when the medium is inverted can be suppressed with an appropriate choice of control pulse wave vectors. We demonstrate that the scheme works in an optically dense ensemble, despite control pulse distortions during propagation. It integrates conveniently the spin-wave storage step into memory schemes based on a second rephasing of the atomic coherences.

  14. Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime.

    PubMed

    Liu, Xiang; Chandrasekhar, S; Winzer, P J; Chraplyvy, A R; Tkach, R W; Zhu, B; Taunay, T F; Fishteyn, M; DiGiovanni, D J

    2012-08-13

    Coherent superposition of light waves has long been used in various fields of science, and recent advances in digital coherent detection and space-division multiplexing have enabled the coherent superposition of information-carrying optical signals to achieve better communication fidelity on amplified-spontaneous-noise limited communication links. However, fiber nonlinearity introduces highly correlated distortions on identical signals and diminishes the benefit of coherent superposition in nonlinear transmission regime. Here we experimentally demonstrate that through coordinated scrambling of signal constellations at the transmitter, together with appropriate unscrambling at the receiver, the full benefit of coherent superposition is retained in the nonlinear transmission regime of a space-diversity fiber link based on an innovatively engineered multi-core fiber. This scrambled coherent superposition may provide the flexibility of trading communication capacity for performance in future optical fiber networks, and may open new possibilities in high-performance and secure optical communications.

  15. Coherent phonon optics in a chip with an electrically controlled active device.

    PubMed

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  16. Retinal vessel segmentation on SLO image

    PubMed Central

    Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.

    2010-01-01

    A scanning laser ophthalmoscopy (SLO) image, taken from optical coherence tomography (OCT), usually has lower global/local contrast and more noise compared to the traditional retinal photograph, which makes the vessel segmentation challenging work. A hybrid algorithm is proposed to efficiently solve these problems by fusing several designed methods, taking the advantages of each method and reducing the error measurements. The algorithm has several steps consisting of image preprocessing, thresholding probe and weighted fusing. Four different methods are first designed to transform the SLO image into feature response images by taking different combinations of matched filter, contrast enhancement and mathematical morphology operators. A thresholding probe algorithm is then applied on those response images to obtain four vessel maps. Weighted majority opinion is used to fuse these vessel maps and generate a final vessel map. The experimental results showed that the proposed hybrid algorithm could successfully segment the blood vessels on SLO images, by detecting the major and small vessels and suppressing the noises. The algorithm showed substantial potential in various clinical applications. The use of this method can be also extended to medical image registration based on blood vessel location. PMID:19163149

  17. Effects of Coherence and Relevance on Shallow and Deep Text Processing.

    ERIC Educational Resources Information Center

    Lehman, Stephen; Schraw, Gregory

    2002-01-01

    Examines the effects of coherence and relevance on shallow and deeper text processing, testing the hypothesis that enhancing the relevance of text segments compensates for breaks in local and global coherence. Results reveal that breaks in local coherence had no effect on any outcome measures, whereas relevance enhanced deeper processing.…

  18. Multi-Aperture Digital Coherent Combining for Free-Space Optical Communication Receivers

    DTIC Science & Technology

    2016-04-21

    Distribution A: Public Release; unlimited distribution 2016 Optical Society of America OCIS codes: (060.1660) Coherent communications; (070.2025) Discrete ...Coherent combining algorithm Multi-aperture coherent combining enables using many discrete apertures together to create a large effective aperture. A

  19. Atmospheric free-space coherent optical communications with adaptive optics

    NASA Astrophysics Data System (ADS)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  20. Multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography at 400 kHz

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mohamed T.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-02-01

    Multimodal imaging systems that combine scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) have demonstrated the utility of concurrent en face and volumetric imaging for aiming, eye tracking, bulk motion compensation, mosaicking, and contrast enhancement. However, this additional functionality trades off with increased system complexity and cost because both SLO and OCT generally require dedicated light sources, galvanometer scanners, relay and imaging optics, detectors, and control and digitization electronics. We previously demonstrated multimodal ophthalmic imaging using swept-source spectrally encoded SLO and OCT (SS-SESLO-OCT). Here, we present system enhancements and a new optical design that increase our SS-SESLO-OCT data throughput by >7x and field-of-view (FOV) by >4x. A 200 kHz 1060 nm Axsun swept-source was optically buffered to 400 kHz sweep-rate, and SESLO and OCT were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.2 GS/s per channel using a custom k-clock. We show in vivo human imaging of the anterior segment out to the limbus and retinal fundus over a >40° FOV. In addition, nine overlapping volumetric SS-SESLO-OCT volumes were acquired under video-rate SESLO preview and guidance. In post-processing, all nine SESLO images and en face projections of the corresponding OCT volumes were mosaicked to show widefield multimodal fundus imaging with a >80° FOV. Concurrent multimodal SS-SESLO-OCT may have applications in clinical diagnostic imaging by enabling aiming, image registration, and multi-field mosaicking and benefit intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted image-based surrogate biomarkers of disease.

  1. Simultaneous measurement of tear film dynamics using wavefront sensor and optical coherence tomography.

    PubMed

    Koh, Shizuka; Tung, Cynthia; Aquavella, James; Yadav, Rahul; Zavislan, James; Yoon, Geunyoung

    2010-07-01

    PURPOSE. To investigate tear film dynamics using simultaneous measurements of ocular aberrations and lower tear meniscus. METHODS. Simultaneous measurements of wavefront aberration and lower tear meniscus were performed for 11 normal eyes and 7 eyes with short tear film break-up time (SBUT) dry eye, with a tear film break-up time shorter than 5 seconds, using a wavefront sensor and an anterior segment optical coherence tomography (OCT). During the measurement, the subjects were instructed to blink every 6 seconds for a total of 30 seconds. From the measured aberration, root mean square (RMS) wavefront error and volume modulation transfer function (vMTF) induced by changes in tear film dynamics were calculated for a 5-mm pupil. Lower tear meniscus height (TMH) and area (TMA) were estimated from the cross-sectional OCT images of lower tear meniscus. RESULTS. There was a positive correlation between RMS and tear meniscus dimensions and a negative correlation between vMTF and tear meniscus in both groups. There were moderate negative correlations between the postblink initial RMS change and baseline TMH (R = -0.61) and TMA (R = -0.54) in SBUT dry eyes that were stronger than in normal eyes (R = -0.37, R = -0.38). CONCLUSIONS. Tear meniscus dimensions increase with RMS over time, and tear quantity before blink has a significant role in maintaining initial optical integrity, especially in SBUT dry eye. Simultaneous measurement of optical quality and tear meniscus has the potential to improve understanding of tear stability in normal eyes and dry eyes.

  2. EN FACE IMAGING OF RETINAL ARTERY MACROANEURYSMS USING SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY.

    PubMed

    Hanhart, Joel; Strassman, Israel; Rozenman, Yaakov

    2017-01-01

    To describe the advantages of en face view with swept-source optical coherence tomography in assessing the morphologic features of retinal arterial macroaneurysms, their consequences on adjacent retina, planning laser treatment, and evaluating its effects. Three eyes were treated for retinal arterial macroaneurysms and followed by swept-source optical coherence tomography in 2014-2015. En face images of the retina and choroid were obtained by EnView, a swept-source optical coherence tomography program. Retinal arterial macroaneurysms have a typical optical coherence tomography appearance. En face view allows delineation of the macroaneurysm wall, thrombotic components within the dilation, and lumen measurement. Hemorrhage, lipids, and fluids can be precisely described in terms of amount and extent over the macula and depth. This technique is also practical for planning focal laser treatment and determining its effects. En face swept-source optical coherence tomography is a rapid, noninvasive, high-resolution, promising technology, which allows excellent visualization of retinal arterial macroaneurysms and their consequences on surrounding tissues. It could make angiography with intravenous injection redundant in planning and assessing therapy.

  3. OCT for glaucoma diagnosis, screening and detection of glaucoma progression.

    PubMed

    Bussel, Igor I; Wollstein, Gadi; Schuman, Joel S

    2014-07-01

    Optical coherence tomography (OCT) is a commonly used imaging modality in the evaluation of glaucomatous damage. The commercially available spectral domain (SD)-OCT offers benefits in glaucoma assessment over the earlier generation of time domain-OCT due to increased axial resolution, faster scanning speeds and has been reported to have improved reproducibility but similar diagnostic accuracy. The capabilities of SD-OCT are rapidly advancing with 3D imaging, reproducible registration, and advanced segmentation algorithms of macular and optic nerve head regions. A review of the evidence to date suggests that retinal nerve fibre layer remains the dominant parameter for glaucoma diagnosis and detection of progression while initial studies of macular and optic nerve head parameters have shown promising results. SD-OCT still currently lacks the diagnostic performance for glaucoma screening. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Characterization of dynamic physiology of the bladder by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian

    2012-03-01

    Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.

  5. Potentials of RF/FSO Communication in UAS Operations

    NASA Astrophysics Data System (ADS)

    Griethe, Wolfgang; Heine, Frank

    2013-08-01

    Free Space Optical Communications (FSOC) has gained particular attention during the past few years and is progressing continuously. With the successful in-orbit verification of a Laser Communication Terminal (LCT), the coherent homodyne BPSK scheme advanced to a standard for Free-Space Optical Communication (FSOC) which now prevails more and more. The LCT is presently operated on satellites in Low Earth Orbit (LEO). In the near future, the LCT will be operated in Geosynchronous Orbit (GEO) onboard the ALPHASAT-TDP and the European Data Relay System (EDRS). In other words, the LCT has reached a point of maturity to realize its practical application. With existence of such space assets the time has come for other utilization beyond that of optical Inter-Satellite Links (ISL). Aeronautical applications, as for instance High Altitude Long Endurance (HALE) or Medium Altitude Long Endurance (MALE) Unmanned Aerial Systems (UAS) have to be addressed. This is caused due to an extremely high demand for bandwidth. Driving factors and advantages of FSOC in HALE/MALE UAS missions are highlighted. Numerous practice-related issues are described concerning the space segment, the aeronautical segment as well as the ground segment. The advantages for UAS missions are described resulting from the utilization of FSOC exclusively for wideband transmission of sensor data while vehicle Command & Control (C2) can be maintained, as before, via RF communication. Moreover, the paper discusses FSOC as an enabler for the integration of air and space-based wideband Intelligence, Surveillance & Reconnaissance (ISR) systems into existent military command and control networks. From the given information it can be concluded that FSOC contributes to the future increase of air-and space power.

  6. Semi-Automatic Extraction Algorithm for Images of the Ciliary Muscle

    PubMed Central

    Kao, Chiu-Yen; Richdale, Kathryn; Sinnott, Loraine T.; Ernst, Lauren E.; Bailey, Melissa D.

    2011-01-01

    Purpose To development and evaluate a semi-automatic algorithm for segmentation and morphological assessment of the dimensions of the ciliary muscle in Visante™ Anterior Segment Optical Coherence Tomography images. Methods Geometric distortions in Visante images analyzed as binary files were assessed by imaging an optical flat and human donor tissue. The appropriate pixel/mm conversion factor to use for air (n = 1) was estimated by imaging calibration spheres. A semi-automatic algorithm was developed to extract the dimensions of the ciliary muscle from Visante images. Measurements were also made manually using Visante software calipers. Interclass correlation coefficients (ICC) and Bland-Altman analyses were used to compare the methods. A multilevel model was fitted to estimate the variance of algorithm measurements that was due to differences within- and between-examiners in scleral spur selection versus biological variability. Results The optical flat and the human donor tissue were imaged and appeared without geometric distortions in binary file format. Bland-Altman analyses revealed that caliper measurements tended to underestimate ciliary muscle thickness at 3 mm posterior to the scleral spur in subjects with the thickest ciliary muscles (t = 3.6, p < 0.001). The percent variance due to within- or between-examiner differences in scleral spur selection was found to be small (6%) when compared to the variance due to biological difference across subjects (80%). Using the mean of measurements from three images achieved an estimated ICC of 0.85. Conclusions The semi-automatic algorithm successfully segmented the ciliary muscle for further measurement. Using the algorithm to follow the scleral curvature to locate more posterior measurements is critical to avoid underestimating thickness measurements. This semi-automatic algorithm will allow for repeatable, efficient, and masked ciliary muscle measurements in large datasets. PMID:21169877

  7. Coherent Excitation of Optical Phonons in GaAs by Broadband Terahertz Pulses

    PubMed Central

    Fu, Zhengping; Yamaguchi, Masashi

    2016-01-01

    Coherent excitation and control of lattice motion by electromagnetic radiation in optical frequency range has been reported through variety of indirect interaction mechanisms with phonon modes. However, coherent phonon excitation by direct interaction of electromagnetic radiation and nuclei has not been demonstrated experimentally in terahertz (THz) frequency range mainly due to the lack of THz emitters with broad bandwidth suitable for the purpose. We report the experimental observation of coherent phonon excitation and detection in GaAs using ultrafast THz-pump/optical-probe scheme. From the results of THz pump field dependence, pump/probe polarization dependence, and crystal orientation dependence, we attributed THz wave absorption and linear electro-optic effect to the excitation and detection mechanisms of coherent polar TO phonons. Furthermore, the carrier density dependence of the interaction of coherent phonons and free carriers is reported. PMID:27905563

  8. Coupling Photonics and Coherent Spintronics for Low-Loss Flexible Optical Logic

    DTIC Science & Technology

    2015-12-02

    AFRL-AFOSR-VA-TR-2016-0055 Coupling photonics and coherent spintronics for low-loss flexible optical logic Jesse Berezovsky CASE WESTERN RESERVE UNIV...2012 - 14/06/2015 4. TITLE AND SUBTITLE Coupling photonics and coherent spintronics for low-loss flexible optical logic 5a. CONTRACT NUMBER 5b...into devices, ranging from macroscopic optical cavities, to arrays of microlens cavities, to quantum dot-impregnated integrated polymer waveguides

  9. A super resolution framework for low resolution document image OCR

    NASA Astrophysics Data System (ADS)

    Ma, Di; Agam, Gady

    2013-01-01

    Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.

  10. Traumatic cyclodialysis treated with transscleral ciclodiode laser: Anterior and posterior segment evolution.

    PubMed

    González-Martín-Moro, J; Castro-Rebollo, M; Zarallo-Gallardo, J; Muñoz-Negrete, F J

    2017-08-01

    A 35-year-old man suffered a severe hipotension maculopathy after being kicked in his left eye. He presented a broad area of iridodialisis. Gonioscopy, ultrasound biomicroscopy and optic coherence tomography were not able to locate the suspected cyclodialysis. Medical treatment was ineffective. Five months later the patient received transcleral diode laser cyclophotocoagulation with clinical resolution. Transscleral diode laser constitutes an effective treatment, with low iatrogenia, that can solve cases of ocular hypotension, even when the location of the cyclodialysis has not been determined. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Autofluorescence Imaging and Spectral-Domain Optical Coherence Tomography in Incomplete Congenital Stationary Night Blindness and Comparison with Retinitis Pigmentosa

    PubMed Central

    CHEN, ROYCE W. S.; GREENBERG, JONATHAN P.; LAZOW, MARGOT A.; RAMACHANDRAN, RITHU; LIMA, LUIZ H.; HWANG, JOHN C.; SCHUBERT, CARL; BRAUNSTEIN, ALEXANDRA; ALLIKMETS, RANDO; TSANG, STEPHEN H.

    2015-01-01

    PURPOSE To test the hypothesis that the evaluation of retinal structure can have diagnostic value in differentiating between incomplete congenital stationary night blindness (CSNB2) and retinitis pigmentosa (RP). To compare retinal thickness differences between patients with CSNB2 and myopic controls. DESIGN Prospective cross-sectional study. METHODS Ten eyes of 5 patients diagnosed with CSNB2 (4 X-linked recessive, 1 autosomal recessive) and 6 eyes of 3 patients with RP (2 autosomal dominant, 1 autosomal recessive) were evaluated with spectral-domain optical coherence tomography (SD OCT) and fundus autofluorescence (FAF). Diagnoses of CSNB2 and RP were confirmed by full-field electroretinography (ERG). Manual segmentation of retinal layers, aided by a computer program, was performed by 2 professional segmenters on SD OCT images of all CSNB2 patients and 4 age-similar, normal myopic controls. Seven patients were screened for mutations with congenital stationary night blindness and RP genotyping arrays. RESULTS Patients with CSNB2 had specific findings on SD OCT and FAF that were distinct from those found in RP. CSNB2 patients showed qualitatively normal SD OCT results with preserved photoreceptor inner segment/outer segment junction, whereas this junction was lost in RP patients. In addition, CSNB2 patients had normal FAF images, whereas patients with RP demonstrated a ring of increased autofluorescence around the macula. On SD OCT segmentation, the inner and outer retinal layers of both X-linked recessive and autosomal recessive CSNB2 patients were thinner compared with those of normal myopic controls, with means generally outside of normal 95% confidence intervals. The only layers that demonstrated similar thickness between CSNB2 patients and the controls were the retinal nerve fiber layer and, temporal to the fovea, the combined outer segment layer and retinal pigment epithelium. A proband and his 2 affected brothers from a family segregating X-linked recessive CSNB2 had a mutation, p.R614X, in the gene encoding calcium channel, α 1F subunit. CONCLUSIONS CSNB2 patients (X-linked recessive and autosomal recessive) had significantly thinner retinas than myopic controls. However, they demonstrated qualitatively normal SD OCT and FAF images, and therefore can be differentiated from RP patients with these techniques. Although ERG testing remains the gold standard for the diagnosis of these conditions, FAF and SD OCT systems are more widely available to community ophthalmologists, offer shorter acquisition times, and, unlike ERG, can be performed on the same day as the initial clinic visit. Therefore, as a supplement to ERG and genetic testing, we advocate the use of FAF and SD OCT in the examination of patients with CSNB2 and RP. PMID:21920492

  12. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle.

    PubMed

    Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao

    2018-02-19

    Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.

  13. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.

    2007-12-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.

  14. Choroidal thickness in Chinese patients with non-arteritic anterior ischemic optic neuropathy.

    PubMed

    Jiang, Libin; Chen, Lanlan; Qiu, Xiujuan; Jiang, Ran; Wang, Yaxing; Xu, Liang; Lai, Timothy Y Y

    2016-08-31

    Non-arteritic anterior ischemic optic neuropathy (NA-AION) is one of the most common types of ischemic optic neuropathy. Several recent studies suggested that abnormalities of choroidal thickness might be associated with NA-AION. The main objective of this case-control study was to evaluate whether choroidal thickness is an ocular risk factor for the development of NA-AION by evaluating the peripapillary and subfoveal choroidal thicknesses in affected Chinese patients. Forty-four Chinese patients with unilateral NA-AION were recruited and compared with 60 eyes of 60 normal age and refractive-error matched control subjects. Peripapillary and subfoveal choroidal thicknesses were measured by enhanced depth imaging optical coherence tomography. Choroidal thicknesses of eyes with NA-AION and unaffected fellow eyes were compared with normal controls. Choroidal thicknesses of NA-AION eyes with or without optic disc edema were also compared. The correlation between choroidal thickness and retinal nerve fiber layer (RNFL) thickness, logMAR best-corrected visual acuity (BCVA), and the mean deviation (MD) of Humphrey static perimetry in NA-AION eyes were analyzed. The peripapillary choroidal thicknesses at the nasal, nasal inferior and temporal inferior segments in NA-AION eyes with optic disc edema were significantly thicker compared with that of normal subjects (P < 0.05). There was no significant difference in the choroidal thicknesses between the unaffected fellow eyes of NA-AION patients and normal eyes of healthy controls; or between the NA-AION eyes with resolved optic disc edema and normal eyes (all P > 0.05). No significant correlation between choroidal thickness and RNFL thickness, logMAR BCVA and perimetry MD was found in eyes affected by NA-AION (all P > 0.05). Increase in peripapillary choroid thickness in some segments was found in NA-ION eyes with optic disc edema. However, our findings do not support the hypothesis that choroidal thickness is abnormal in Chinese patients with NA-AION compared with normal subjects with similar age and refractive error status.

  15. Biometric analysis of pigment dispersion syndrome using anterior segment optical coherence tomography.

    PubMed

    Aptel, Florent; Beccat, Sylvain; Fortoul, Vincent; Denis, Philippe

    2011-08-01

    To compare anterior chamber volume (ACV), iris volume, and iridolenticular contact (ILC) area before and after laser peripheral iridotomy (LPI) in eyes with pigment dispersion syndrome (PDS) using anterior segment optical coherence tomography (AS OCT) and image processing software. Cross-sectional study. Eighteen eyes of 18 patients with PDS; 30 eyes of 30 controls matched for age, gender, and refraction. Anterior segment OCT imaging was performed in all eyes before LPI and 1, 4, and 12 weeks after LPI. At each visit, 12 cross-sectional images of the AS were taken: 4 in bright conditions with accommodation (accommodation), 4 in bright conditions without accommodation (physiological miosis), and 4 under dark conditions (physiologic mydriasis). Biometric parameters were estimated using AS OCT radial sections and customized image-processing software. Anterior chamber volume, iris volume-to-length ratio, ILC area, AS OCT anterior chamber depth, and A-scan ultrasonography axial length. Before LPI, PDS eyes had a significantly greater ACV and ILC area than control eyes (P<0.01) and a significantly smaller iris volume-to-length ratio than the controls (P<0.05). After LPI, ACV and ILC area decreased significantly in PDS eyes, but iris volume-to-length ratio increased significantly (P<0.02) and was not significantly different from that of controls. These biometric changes were stable over time. Iris volume-to-length ratio decreased significantly from accommodation to mydriasis and from miosis to mydriasis, both in PDS and control eyes (P<0.01). In PDS eyes, ILC area decreased significantly from accommodation to mydriasis, both before and after LPI (P<0.01). On multivariate analysis, greater anterior chamber (AC) volume (P<0.02) and larger AC depth (P<0.05) before LPI were significant predictors of a larger ILC area. Pigment dispersion syndrome eyes do not have an iris that is abnormally large, relative to the AS size, but have a weakly resistant iris that is stretched and pushed against the lens when there is a pressure difference across the iris. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  16. Optical coherence tomography measurement of the retinal nerve fiber layer in normal and juvenile glaucomatous eyes.

    PubMed

    Mrugacz, Malgorzata; Bakunowicz-Lazarczyk, Alina

    2005-01-01

    The aim of this study was to quantitatively assess and compare the thickness of the retinal nerve fiber layer (RNFL) in normal and glaucomatous eyes of children using the optical coherence tomograph. The mean RNFL thickness of normal eyes (n=26) was compared with that of glaucomatous eyes (n=26). The eyes were classified into diagnostic groups based on conventional ophthalmological physical examination, Humphrey 30-2 visual fields, stereoscopic optic nerve head photography, and optical coherence tomography. The mean RNFL was significantly thinner in glaucomatous eyes than in normal eyes: 95+/-26.3 and 132+/-24.5 microm, respectively. More specifically, the RNFL was significantly thinner in glaucomatous eyes than in normal eyes in the inferior quadrant: 87+/-23.5 and 122+/-24.2 microm, respectively. The mean and inferior quadrant RFNL thicknesses as measured by the optical coherence tomograph showed a statistically significant correlation with glaucoma. Optical coherence tomography may contribute to tracking of juvenile glaucoma progression. Copyright (c) 2005 S. Karger AG, Basel.

  17. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Hsun; Ferdous, Fahmida; Miao, Houxun; Wang, Jian; Leaird, Daniel E.; Srinivasan, Kartik; Chen, Lei; Aksyuk, Vladimir; Weiner, Andrew M.

    2012-12-01

    Microresonator optical frequency combs based on cascaded four-wave mixing are potentially attractive as a multi-wavelength source for on-chip optical communications. In this paper we compare time domain coherence, radio-frequency (RF) intensity noise, and individual line optical communications performance for combs generated from two different silicon nitride microresonators. The comb generated by one microresonator forms directly with lines spaced by a single free spectral range (FSR) and exhibits high coherence, low noise, and excellent 10 Gbit/s optical communications results. The comb generated by the second microresonator forms initially with multiple FSR line spacing, with additional lines later filling to reach single FSR spacing. This comb exhibits degraded coherence, increased intensity noise, and severely degraded communications performance. This study is to our knowledge the first to simultaneously investigate and observe a correlation between the route to comb formation, the coherence, noise, and optical communications performance of a Kerr comb.

  18. Automatic detection and recognition of multiple macular lesions in retinal optical coherence tomography images with multi-instance multilabel learning

    NASA Astrophysics Data System (ADS)

    Fang, Leyuan; Yang, Liumao; Li, Shutao; Rabbani, Hossein; Liu, Zhimin; Peng, Qinghua; Chen, Xiangdong

    2017-06-01

    Detection and recognition of macular lesions in optical coherence tomography (OCT) are very important for retinal diseases diagnosis and treatment. As one kind of retinal disease (e.g., diabetic retinopathy) may contain multiple lesions (e.g., edema, exudates, and microaneurysms) and eye patients may suffer from multiple retinal diseases, multiple lesions often coexist within one retinal image. Therefore, one single-lesion-based detector may not support the diagnosis of clinical eye diseases. To address this issue, we propose a multi-instance multilabel-based lesions recognition (MIML-LR) method for the simultaneous detection and recognition of multiple lesions. The proposed MIML-LR method consists of the following steps: (1) segment the regions of interest (ROIs) for different lesions, (2) compute descriptive instances (features) for each lesion region, (3) construct multilabel detectors, and (4) recognize each ROI with the detectors. The proposed MIML-LR method was tested on 823 clinically labeled OCT images with normal macular and macular with three common lesions: epiretinal membrane, edema, and drusen. For each input OCT image, our MIML-LR method can automatically identify the number of lesions and assign the class labels, achieving the average accuracy of 88.72% for the cases with multiple lesions, which better assists macular disease diagnosis and treatment.

  19. Multifocal electroretinogram and Optical Coherence tomography spectral-domain in arc welding macular injury: a case report.

    PubMed

    Cellini, Mauro; Gattegna, Roberto; Toschi, Pier Giorgio; Strobbe, Ernesto; Campos, Emilio C

    2011-12-30

    the purpose of this study was to report a binocular photic retinal injury induced by plasma arc welding and the follow-up after treatment with vitamin supplements for a month. In our study, we used different diagnostic tools such as fluorescein angiography (FA), optical coherence tomography (OCT) and multifocal electroretinogram (mfERG). in the first visit after five days from arc welding injury in the left eye (LE) the visual acuity was 0.9 and 1.0 in the right eye (RE). FA was normal in both eyes. OCT in the left eye showed normal profile and normal reflectivity and one month later, a hyperreflectivity appeared in the external limiting membrane (ELM). The mfERG signal in the LE was 102.30 nV/deg2 five days after the injury and 112.62 nV/deg2 after one month and in the RE respectively 142.70 nV/deg2 and 159.46 nV/deg2. in cases of retinal photo injury it is important for the ophthalmologist to evaluate tests such as OCT and the mfERG in the diagnosis and follow-up of the patient because the recovery of visual acuity cannot exclude the persistence of phototoxic damage charged to the complex inner-outer segment of photoreceptors.

  20. Impacts of age and sex on retinal layer thicknesses measured by spectral domain optical coherence tomography with Spectralis.

    PubMed

    Nieves-Moreno, María; Martínez-de-la-Casa, José M; Morales-Fernández, Laura; Sánchez-Jean, Rubén; Sáenz-Francés, Federico; García-Feijoó, Julián

    2018-01-01

    To examine differences in individual retinal layer thicknesses measured by spectral domain optical coherence tomography (SD-OCT) (Spectralis®) produced with age and according to sex. Cross-sectional, observational study. The study was conducted in 297 eyes of 297 healthy subjects aged 18 to 87 years. In one randomly selected eye of each participant the volume and mean thicknesses of the different macular layers were measured by SD-OCT using the instrument's macular segmentation software. Volume and mean thickness of macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigmentary epithelium (RPE) and photoreceptor layer (PR). Retinal thickness was reduced by 0.24 μm for every one year of age. Age adjusted linear regression analysis revealed mean GCL, IPL, ONL and PR thickness reductions and a mean OPL thickness increase with age. Women had significantly lower mean GCL, IPL, INL, ONL and PR thicknesses and volumes and a significantly greater mRNFL volume than men. The thickness of most retinal layers varies both with age and according to sex. Longitudinal studies are needed to determine the rate of layer thinning produced with age.

  1. Using optical coherence tomography to rapidly phenotype and quantify congenital heart defects associated with prenatal alcohol exposure

    PubMed Central

    Karunamuni, Ganga; Gu, Shi; Doughman, Yong Qiu; Noonan, Amanda I.; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Background The most commonly used method to analyze congenital heart defects involves serial sectioning and histology. However, this is often a time-consuming process where the quantification of cardiac defects can be difficult due to problems with accurate section registration. Here we demonstrate the advantages of using optical coherence tomography, a comparatively new and rising technology, to phenotype avian embryo hearts in a model of Fetal Alcohol Syndrome where a binge-like quantity of alcohol/ethanol was introduced at gastrulation. Results The rapid, consistent imaging protocols allowed for the immediate identification of cardiac anomalies, including ventricular septal defects and misaligned/missing vessels. Interventricular septum thicknesses and vessel diameters for three of the five outflow arteries were also significantly reduced. Outflow and atrio-ventricular valves were segmented using image processing software and had significantly reduced volumes compared to controls. This is the first study to our knowledge that has 3-D reconstructed the late-stage cardiac valves in precise detail in order to examine their morphology and dimensions. Conclusion We believe therefore that OCT, with its ability to rapidly image and quantify tiny embryonic structures in high resolution, will serve as an excellent and cost-effective preliminary screening tool for developmental biologists working with a variety of experimental/disease models. PMID:25546089

  2. Characterization of rat model of acute anterior uveitis using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Pepple, Kathryn L.; Zhi, Zhongwei; Wang, Ruikang K.

    2015-03-01

    Uveitis, or ocular inflammation, is a cause of severe visual impairment. Rodent models of uveitis are powerful tools used to investigate the pathological mechanisms of ocular inflammation and to study the efficacy of new therapies prior to human testing. In this paper, we report the utility of spectral-domain optical coherence tomography (SD-OCT) angiography in characterizing the inflammatory changes induced in the anterior segment of a rat model of uveitis. Acute anterior uveitis (AAU) was induced in two rats by intravitreal injection of a killed mycobacterial extract. One of them received a concurrent periocular injection of steroids to model a treatment effect. OCT imaging was performed prior to inflammation induction on day 0 (baseline), and 2 days post-injection (peak inflammation). Baseline and inflamed images were compared. OCT angiography identified swelling of the cornea, inflammatory cells in the anterior and posterior chambers, a fibrinous papillary membrane, and dilation of iris vessels in the inflamed eyes when compared to baseline images. Steroid treatment was shown to prevent the changes associated with inflammation. This is a novel application of anterior OCT imaging in animal models of uveitis, and provides a high resolution, in vivo assay for detecting and quantifying ocular inflammation and the response to new therapies.

  3. Quantitative analysis of iris parameters in keratoconus patients using optical coherence tomography.

    PubMed

    Bonfadini, Gustavo; Arora, Karun; Vianna, Lucas M; Campos, Mauro; Friedman, David; Muñoz, Beatriz; Jun, Albert S

    2015-01-01

    To investigate the relationship between quantitative iris parameters and the presence of keratoconus. Cross-sectional observational study that included 15 affected eyes of 15 patients with keratoconus and 26 eyes of 26 normal age- and sex-matched controls. Iris parameters (area, thickness, and pupil diameter) of affected and unaffected eyes were measured under standardized light and dark conditions using anterior segment optical coherence tomography (AS-OCT). To identify optimal iris thickness cutoff points to maximize the sensitivity and specificity when discriminating keratoconus eyes from normal eyes, the analysis included the use of receiver operating characteristic (ROC) curves. Iris thickness and area were lower in keratoconus eyes than in normal eyes. The mean thickness at the pupillary margin under both light and dark conditions was found to be the best parameter for discriminating normal patients from keratoconus patients. Diagnostic performance was assessed by the area under the ROC curve (AROC), which had a value of 0.8256 with 80.0% sensitivity and 84.6% specificity, using a cutoff of 0.4125 mm. The sensitivity increased to 86.7% when a cutoff of 0.4700 mm was used. In our sample, iris thickness was lower in keratoconus eyes than in normal eyes. These results suggest that tomographic parameters may provide novel adjunct approaches for keratoconus screening.

  4. STRUCTURAL ASSESSMENT OF HYPERAUTOFLUORESCENT RING IN PATIENTS WITH RETINITIS PIGMENTOSA

    PubMed Central

    LIMA, LUIZ H.; CELLA, WENER; GREENSTEIN, VIVIENNE C.; WANG, NAN-KAI; BUSUIOC, MIHAI; THEODORE SMITH, R.; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2009-01-01

    Purpose To analyze the retinal structure underlying the hyperautofluorescent ring visible on fundus autofluorescence in patients with retinitis pigmentosa. Methods Twenty-four eyes of 13 patients with retinitis pigmentosa, aged 13 years to 67 years, were studied. The integrity of the photoreceptor cilia, also known as the inner/outer segment junction of the photoreceptors, the outer nuclear layer, and retinal pigment epithelium, was evaluated outside, across, and inside the ring with spectral-domain optical coherence tomography (OCT). Results Inside the foveal area, fundus autofluorescence did not detect abnormalities. Outside the ring, fundus autofluorescence revealed hypoautofluorescence compatible with the photoreceptor/retinal pigment epithelium degeneration. Spectral-domain OCT inside the ring, in the area of normal foveal fundus autofluorescence, revealed an intact retinal structure in all eyes and total retinal thickness values that were within normal limits. Across the ring, inner/outer segment junction disruption was observed and the outer nuclear layer was decreased in thickness in a centrifugal direction in all eyes. Outside the hyperautofluorescent ring, the inner/outer segment junction and the outer nuclear layer appeared to be absent and there were signs of retinal pigment epithelium degeneration. Conclusion Disruption of the inner/outer segment junction and a decrease in outer retinal thickness were found across the central hyperautofluorescent ring seen in retinitis pigmentosa. Outer segment phagocytosis by retinal pigment epithelium is necessary for the formation of an hyperautofluorescent ring. PMID:19584660

  5. Dense concentric circle scanning protocol for measuring pulsatile retinal blood flow in rats with Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tan, Bingyao; Hosseinaee, Zohreh; Bizheva, Kostadinka

    2017-11-01

    The variability in the spatial orientation of retinal blood vessels near the optic nerve head (ONH) results in imprecision of the measured Doppler angle and therefore the pulsatile blood flow (BF), when those parameters are evaluated using Doppler OCT imaging protocols based on dual-concentric circular scans. Here, we utilized a dense concentric circle scanning protocol and evaluated its precision for measuring pulsatile retinal BF in rats for different numbers of the circular scans. An spectral domain optical coherence tomography (SD-OCT) system operating in the 1060-nm spectral range with image acquisition rate of 47,000 A-scans/s was used to acquire concentric circular scans centered at the rat's ONH, with diameters ranging from 0.8 to 1.0 mm. A custom, automatic blood vessel segmentation algorithm was used to track the spatial orientation of the retinal blood vessels in three dimensions, evaluate the spatially dependent Doppler angle and calculate more accurately the axial BF for each major retinal blood vessel. Metrics such as retinal BF, pulsatility index, and resistance index were evaluated for each and all of the major retinal blood vessels. The performance of the proposed dense concentric circle scanning protocols was compared with that of the dual-circle scanning protocol. Results showed a 3.8±2.2 deg difference in the Doppler angle calculation between the two approaches, which resulted in ˜7% difference in the calculated retinal BF.

  6. Dental optical coherence domain reflectometry explorer

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  7. PREFACE: XVIII International Youth Scientific School "Coherent Optics and Optical Spectroscopy"

    NASA Astrophysics Data System (ADS)

    Salakhov, M. Kh; Samartsev, V. V.; Gainutdinov, R. Kh

    2015-05-01

    Kazan Federal University has held the annual International Youth School "Coherent Optics and Optical Spectroscopy" since 1997. The choice of the topic is not accidental. Kazan is the home of photon echo which was predicted at Kazan Physical-Technical Institute in 1963 by Prof. U.G. Kopvil'em and V.R. Nagibarov and observed in Columbia University by N.A. Kurnit, I.D. Abella, and S.R. Hartmann in 1964. Since then, photon echo has become a powerful tool of coherent optical spectroscopy and optical information processing, which have been developed here in Kazan in close collaboration between Kazan Physical-Technical Institute and Kazan Federal University. The main subjects of the XVIII International Youth School are: Nonlinear and coherent optics; Atomic and molecular spectroscopy; Coherent laser spectroscopy; Problems of quantum optics; Quantum theory of radiation; and Nanophotonics and Scanning Probe Microscopy. The unchallenged organizers of that school are Kazan Federal University and Kazan E.K. Zavoisky Physical-Technical Institute. The rector of the School is Professor Myakzyum Salakhov, and the vice-rector is Professor Vitaly Samartsev. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" follows the global pattern of comprehensive studies of matter properties and their interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from the USA, Germany, Ukraine, Belarus and Russia have given plenary lecture presentations. Here over 1000 young scientists had an opportunity to participate in lively discussions about the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the fullsize papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. The International Youth Scientific School "Coherent Optics and Optical Spectroscopy" was greatly supported by The Optical Society of America, the Russian Foundation for Basic Research, the non-profit Dynasty Foundation, the Tatarstan Academy of Science, and the Ministry of Education and Science of the Russian Federation. It is a pleasure to thank the sponsors and all the participants and contributors who made the International School meeting possible and interesting.

  8. Methods and apparatus for optical switching using electrically movable optical fibers

    DOEpatents

    Peterson, Kenneth A [Albuquerque, NM

    2007-03-13

    Methods and apparatuses for electrically controlled optical switches are presented. An electrically controlled optical switch includes a fixture formed using a laminated dielectric material, a first optical fiber having a fixed segment supported by the fixture and a movable segment extending into a cavity, a second optical fiber having a fixed segment supported by the fixture and an extended segment where an optical interconnect may be established between the first optical fiber and the second optical fiber, and a first electrical actuator functionally coupled to the fixture and the first fiber which alters a position of the moveable segment, based upon a control signal, for changing a state of the optical interconnect between one of two states.

  9. Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex

    2012-01-01

    A document discusses an electro-optic sensor that consists of a collimator, attached to one segment, and a quad diode, attached to an adjacent segment. Relative segment-segment motion causes the beam from the collimator to move across the quad diode, thus generating a measureable electric signal. This sensor type, which is relatively inexpensive, can be configured as an edge sensor, or as a remote segment-segment motion sensor.

  10. Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma.

    PubMed

    Guerra, Ricardo Luz Leitão; Marback, Eduardo Ferrari; Silva, Igor Sandes Pessoa da; Maia Junior, Otacílio de Oliveira; Marback, Roberto Lorens

    2014-01-01

    The authors report fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (OCT) findings of two consecutive patients who presented with optic disk melanocytoma (ODM). A retrospective study was performed by reviewing medical records and ophthalmic imaging examinations. Optical coherence tomography findings were sloped and brightly reflective anterior tumor surface, adjacent retinal desorganization and abrupt posterior optical shadowing. Vitreous seeds were found in one patient. Fundus autofluorescence revealed outstanding hypoautofluorescence at the tumor area and isoautofluorescence at the remaining retina. Optical coherence tomography findings of the reported cases are consistent with those reported in the reviewed literature. Fundus autofluorescence has been used in the assessment of choroidal melanocytic tumors, but not yet in melanocytomas. We assume that this is the first report of these findings and believe that when its pattern has become clearly defined, fundus autofluorescence will be a useful tool to avoid misdiagnosis in suspicious cases and for follow-up.

  11. Automated Segmentability Index for Layer Segmentation of Macular SD-OCT Images.

    PubMed

    Lee, Kyungmoo; Buitendijk, Gabriëlle H S; Bogunovic, Hrvoje; Springelkamp, Henriët; Hofman, Albert; Wahle, Andreas; Sonka, Milan; Vingerling, Johannes R; Klaver, Caroline C W; Abràmoff, Michael D

    2016-03-01

    To automatically identify which spectral-domain optical coherence tomography (SD-OCT) scans will provide reliable automated layer segmentations for more accurate layer thickness analyses in population studies. Six hundred ninety macular SD-OCT image volumes (6.0 × 6.0 × 2.3 mm 3 ) were obtained from one eyes of 690 subjects (74.6 ± 9.7 [mean ± SD] years, 37.8% of males) randomly selected from the population-based Rotterdam Study. The dataset consisted of 420 OCT volumes with successful automated retinal nerve fiber layer (RNFL) segmentations obtained from our previously reported graph-based segmentation method and 270 volumes with failed segmentations. To evaluate the reliability of the layer segmentations, we have developed a new metric, segmentability index SI, which is obtained from a random forest regressor based on 12 features using OCT voxel intensities, edge-based costs, and on-surface costs. The SI was compared with well-known quality indices, quality index (QI), and maximum tissue contrast index (mTCI), using receiver operating characteristic (ROC) analysis. The 95% confidence interval (CI) and the area under the curve (AUC) for the QI are 0.621 to 0.805 with AUC 0.713, for the mTCI 0.673 to 0.838 with AUC 0.756, and for the SI 0.784 to 0.920 with AUC 0.852. The SI AUC is significantly larger than either the QI or mTCI AUC ( P < 0.01). The segmentability index SI is well suited to identify SD-OCT scans for which successful automated intraretinal layer segmentations can be expected. Interpreting the quantification of SD-OCT images requires the underlying segmentation to be reliable, but standard SD-OCT quality metrics do not predict which segmentations are reliable and which are not. The segmentability index SI presented in this study does allow reliable segmentations to be identified, which is important for more accurate layer thickness analyses in research and population studies.

  12. Potentials of radial partially coherent beams in free-space optical communication: a numerical investigation.

    PubMed

    Wang, Minghao; Yuan, Xiuhua; Ma, Donglin

    2017-04-01

    Nonuniformly correlated partially coherent beams (PCBs) have extraordinary propagation properties, making it possible to further improve the performance of free-space optical communications. In this paper, a series of PCBs with varying degrees of coherence in the radial direction, academically called radial partially coherent beams (RPCBs), are considered. RPCBs with arbitrary coherence distributions can be created by adjusting the amplitude profile of a spatial modulation function imposed on a uniformly correlated phase screen. Since RPCBs cannot be well characterized by the coherence length, a modulation depth factor is introduced as an indicator of the overall distribution of coherence. By wave optics simulation, free-space and atmospheric propagation properties of RPCBs with (inverse) Gaussian and super-Gaussian coherence distributions are examined in comparison with conventional Gaussian Schell-model beams. Furthermore, the impacts of varying central coherent areas are studied. Simulation results reveal that under comparable overall coherence, beams with a highly coherent core and a less coherent margin exhibit a smaller beam spread and greater on-axis intensity, which is mainly due to the self-focusing phenomenon right after the beam exits the transmitter. Particularly, those RPCBs with super-Gaussian coherence distributions will repeatedly focus during propagation, resulting in even greater intensities. Additionally, RPCBs also have a considerable ability to reduce scintillation. And it is demonstrated that those properties have made RPCBs very effective in improving the mean signal-to-noise ratio of small optical receivers, especially in relatively short, weakly fluctuating links.

  13. Cone structure in patients with usher syndrome type III and mutations in the Clarin 1 gene.

    PubMed

    Ratnam, Kavitha; Västinsalo, Hanna; Roorda, Austin; Sankila, Eeva-Marja K; Duncan, Jacque L

    2013-01-01

    To study macular structure and function in patients with Usher syndrome type III (USH3) caused by mutations in the Clarin 1 gene (CLRN1). High-resolution macular images were obtained by adaptive optics scanning laser ophthalmoscopy and spectral domain optical coherence tomography in 3 patients with USH3 and were compared with those of age-similar control subjects. Vision function measures included best-corrected visual acuity, kinetic and static perimetry, and full-field electroretinography. Coding regions of the CLRN1 gene were sequenced. CLRN1 mutations were present in all the patients; a 20-year-old man showed compound heterozygous mutations (p.N48K and p.S188X), and 2 unrelated women aged 25 and 32 years had homozygous mutations (p.N48K). Best-corrected visual acuity ranged from 20/16 to 20/40, with scotomas beginning at 3° eccentricity. The inner segment-outer segment junction or the inner segment ellipsoid band was disrupted within 1° to 4° of the fovea, and the foveal inner and outer segment layers were significantly thinner than normal. Cones near the fovea in patients 1 and 2 showed normal spacing, and the preserved region ended abruptly. Retinal pigment epithelial cells were visible in patient 3 where cones were lost. Cones were observed centrally but not in regions with scotomas, and retinal pigment epithelial cells were visible in regions without cones in patients with CLRN1 mutations. High-resolution measures of retinal structure demonstrate patterns of cone loss associated with CLRN1 mutations. These findings provide insight into the effect of CLRN1 mutations on macular cone structure, which has implications for the development of treatments for USH3. clinicaltrials.gov Identifier: NCT00254605.

  14. Dark and white lesions observed in central serous chorioretinopathy on optical coherence tomography angiography.

    PubMed

    De Bats, Flore; Cornut, Pierre-Loïc; Wolff, Benjamin; Kodjikian, Laurent; Mauget-Faÿsse, Martine

    2018-03-01

    To describe abnormal dark (hyposignal) and white (hypersignal) lesions observed on optical coherence tomography angiography in central serous chorioretinopathy. Prospective, multicenter, and descriptive study including patients with active or quiescent central serous chorioretinopathy. All patients had undergone a complete ophthalmic examination. Abnormal dark lesions were detected as "dark spots" and "dark areas" on optical coherence tomography angiography. A "dark spot" could correspond to six different abnormalities: pigment epithelium detachment, subretinal deposit, "Lucency" within surrounding subretinal fibrin, choroidal cavitation, choroidal excavation, and choroidal fluid. A "dark area" could be related to a serous retinal detachment or choriocapillary compression. Abnormal white lesions were also detected: A "white spot" could correspond with the leaking point on fluorescein angiography or with hyper-reflective dots; A "white filamentous pattern" at the Brüch's membrane level corresponded to abnormal choroidal neovascular vessels. A semiology is described using optical coherence tomography angiography in central serous chorioretinopathy as abnormal dark and white lesions. Multimodal imaging is mandatory in addition to optical coherence tomography angiography to diagnose non-neovascular retinal and choroidal central serous chorioretinopathy lesions. However, optical coherence tomography angiography alone is helpful in detecting choroidal neovascular membrane in central serous chorioretinopathy.

  15. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    PubMed

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering.

    PubMed

    Monfared, Yashar E; Ponomarenko, Sergey A

    2017-03-20

    We explore theoretically and numerically optical rogue wave formation in stimulated Raman scattering inside a hydrogen filled hollow core photonic crystal fiber. We assume a weak noisy Stokes pulse input and explicitly construct the input Stokes pulse ensemble using the coherent mode representation of optical coherence theory, thereby providing a link between optical coherence and rogue wave theories. We show that the Stokes pulse peak power probability distribution function (PDF) acquires a long tail in the limit of nearly incoherent input Stokes pulses. We demonstrate a clear link between the PDF tail magnitude and the source coherence time. Thus, the latter can serve as a convenient parameter to control the former. We explain our findings qualitatively using the concepts of statistical granularity and global degree of coherence.

  17. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    NASA Astrophysics Data System (ADS)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  18. Cyclodialysis: an update.

    PubMed

    González-Martín-Moro, Julio; Contreras-Martín, Inés; Muñoz-Negrete, Francisco José; Gómez-Sanz, Fernando; Zarallo-Gallardo, Jesús

    2017-04-01

    Cyclodialysis is the result of the separation of the longitudinal ciliary muscle fibers from the scleral spur, which creates an abnormal pathway for aqueous humor drainage that may lead to ocular hypotony. For many years cyclodialysis was considered a treatment option for glaucoma. However, today it usually occurs as a complication of blunt trauma or more rarely as a complication of anterior segment ocular surgery. Ocular hypotony can lead to cataract development, optic disk swelling, refractive changes, and several retinal complications, making accurate identification and timely intervention of the cleft mandatory. Traditionally gonioscopy was the only available technique to diagnose and localize the cleft. However, other tests such as optical coherence tomography, magnetic resonance imaging, transillumination, and specially ultrasound biomicroscopy are now available for the diagnosis of cyclodialysis. Multiple treatment options are also available for this condition. Although medical treatment can be effective to close small clefts, surgery is needed in most patients to restore ocular pressure.

  19. Monte Carlo modeling of spatial coherence: free-space diffraction

    PubMed Central

    Fischer, David G.; Prahl, Scott A.; Duncan, Donald D.

    2008-01-01

    We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335

  20. Multicenter reliability of semiautomatic retinal layer segmentation using OCT

    PubMed Central

    Oberwahrenbrock, Timm; Traber, Ghislaine L.; Lukas, Sebastian; Gabilondo, Iñigo; Nolan, Rachel; Songster, Christopher; Balk, Lisanne; Petzold, Axel; Paul, Friedemann; Villoslada, Pablo; Brandt, Alexander U.; Green, Ari J.

    2018-01-01

    Objective To evaluate the inter-rater reliability of semiautomated segmentation of spectral domain optical coherence tomography (OCT) macular volume scans. Methods Macular OCT volume scans of left eyes from 17 subjects (8 patients with MS and 9 healthy controls) were automatically segmented by Heidelberg Eye Explorer (v1.9.3.0) beta-software (Spectralis Viewing Module v6.0.0.7), followed by manual correction by 5 experienced operators from 5 different academic centers. The mean thicknesses within a 6-mm area around the fovea were computed for the retinal nerve fiber layer, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer (OPL), and outer nuclear layer (ONL). Intraclass correlation coefficients (ICCs) were calculated for mean layer thickness values. Spatial distribution of ICC values for the segmented volume scans was investigated using heat maps. Results Agreement between raters was good (ICC > 0.84) for all retinal layers, particularly inner retinal layers showed excellent agreement across raters (ICC > 0.96). Spatial distribution of ICC showed highest values in the perimacular area, whereas the ICCs were poorer for the foveola and the more peripheral macular area. The automated segmentation of the OPL and ONL required the most correction and showed the least agreement, whereas differences were less prominent for the remaining layers. Conclusions Automated segmentation with manual correction of macular OCT scans is highly reliable when performed by experienced raters and can thus be applied in multicenter settings. Reliability can be improved by restricting analysis to the perimacular area and compound segmentation of GCL and IPL. PMID:29552598

  1. Photoreceptor change and visual outcome after idiopathic epiretinal membrane removal with or without additional internal limiting membrane peeling.

    PubMed

    Ahn, Seong Joon; Ahn, Jeeyun; Woo, Se Joon; Park, Kyu Hyung

    2014-01-01

    To compare the postoperative photoreceptor status and visual outcome after epiretinal membrane removal with or without additional internal limiting membrane (ILM) peeling. Medical records of 40 eyes from 37 patients undergoing epiretinal membrane removal with residual ILM peeling (additional ILM peeling group) and 69 eyes from 65 patients undergoing epiretinal membrane removal without additional ILM peeling (no additional peeling group) were reviewed. The length of defects in cone outer segment tips, inner segment/outer segment junction, and external limiting membrane line were measured using spectral domain optical coherence tomography images of the fovea before and at 1, 3, 6, and 12 months after the surgery. Cone outer segment tips and inner segment/outer segment junction line defects were most severe at postoperative 1 month and gradually restored at 12 months postoperatively. The cone outer segment tips line defect in the additional ILM peeling group was significantly greater than that in the no additional peeling group at postoperative 1 month (P = 0.006), and best-corrected visual acuity was significantly worse in the former group at the same month (P = 0.001). There was no significant difference in the defect size and best-corrected visual acuity at subsequent visits and recurrence rates between the two groups. Patients who received epiretinal membrane surgery without additional ILM peeling showed better visual and anatomical outcome than those with additional ILM peeling at postoperative 1 month. However, surgical outcomes were comparable between the two groups, thereafter. In terms of visual outcome and photoreceptor integrity, additional ILM peeling may not be an essential procedure.

  2. A coherent optical feedback system for optical information processing

    NASA Technical Reports Server (NTRS)

    Jablonowski, D. P.; Lee, S. H.

    1975-01-01

    A unique optical feedback system for coherent optical data processing is described. With the introduction of feedback, the well-known transfer function for feedback systems is obtained in two dimensions. Operational details of the optical feedback system are given. Experimental results of system applications in image restoration, contrast control and analog computation are presented.

  3. Optical subcarrier processing for Nyquist SCM signals via coherent spectrum overlapping in four-wave mixing with coherent multi-tone pump.

    PubMed

    Lu, Guo-Wei; Luís, Ruben S; Mendinueta, José Manuel Delgado; Sakamoto, Takahide; Yamamoto, Naokatsu

    2018-01-22

    As one of the promising multiplexing and multicarrier modulation technologies, Nyquist subcarrier multiplexing (Nyquist SCM) has recently attracted research attention to realize ultra-fast and ultra-spectral-efficient optical networks. In this paper, we propose and experimentally demonstrate optical subcarrier processing technologies for Nyquist SCM signals such as frequency conversion, multicast and data aggregation of subcarriers, through the coherent spectrum overlapping between subcarriers in four-wave mixing (FWM) with coherent multi-tone pump. The data aggregation is realized by coherently superposing or combining low-level subcarriers to yield high-level subcarriers in the optical field. Moreover, multiple replicas of the data-aggregated subcarriers and the subcarriers carrying the original data are obtained. In the experiment, two 5 Gbps quadrature phase-shift keying (QPSK) subcarriers are coherently combined to generate a 10 Gbps 16 quadrature amplitude modulation (QAM) subcarrier with frequency conversions through the FWM with coherent multi-tone pump. Less than 1 dB optical signal-to-noise ratio (OSNR) penalty variation is observed for the synthesized 16QAM subcarriers after the data aggregation. In addition, some subcarriers are kept in the original formats, QPSK, with a power penalty of less than 0.4 dB with respect to the original input subcarriers. The proposed subcarrier processing technology enables flexibility for spectral management in future dynamic optical networks.

  4. Efficient dynamic coherence transfer relying on offset locking using optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Xie, Weilin; Dong, Yi; Bretenaker, Fabien; Shi, Hongxiao; Zhou, Qian; Xia, Zongyang; Qin, Jie; Zhang, Lin; Lin, Xi; Hu, Weisheng

    2018-01-01

    We design and experimentally demonstrate a highly efficient coherence transfer based on composite optical phaselocked loop comprising multiple feedback servo loops. The heterodyne offset-locking is achieved by conducting an acousto-optic frequency shifter in combination with the current tuning and the temperature controlling of the semiconductor laser. The adaptation of the composite optical phase-locked loop enables the tight coherence transfer from a frequency comb to a semiconductor laser in a fully dynamic manner.

  5. A first demonstration of audio-frequency optical coherence elastography of tissue

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Alexandrov, Sergey A.; Armstrong, Julian J.; Kennedy, Brendan F.; Sampson, David D.

    2008-12-01

    Optical elastography is aimed at using the visco-elastic properties of soft tissue as a contrast mechanism, and could be particularly suitable for high-resolution differentiation of tumour from surrounding normal tissue. We present a new approach to measure the effect of an applied stimulus in the kilohertz frequency range that is based on optical coherence tomography. We describe the approach and present the first in vivo optical coherence elastography measurements in human skin at audio excitation frequencies.

  6. T-2 in Coherent Optics: Collision, Dephasing Time, or Reciprocal Linewidth.

    ERIC Educational Resources Information Center

    Nettel, Stephen J.; Lempicki, Alexander

    1979-01-01

    Discusses how the frequency domain (line widths) and time domain (coherent optical transients) are related to the concept of transverse relaxation time in the study of high resolution optical spectroscopy. (HM)

  7. Multi-contrast imaging of human posterior eye by Jones matrix optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yasuno, Yoshiaki

    2017-04-01

    A multi-contrast imaging of pathologic posterior eyes is demonstrated by Jones matrix optical coherence tomography (Jones matrix OCT). The Jones matrix OCT provides five tomographies, which includes scattering, local attenuation, birefringence, polarization uniformity, and optical coherence angiography, by a single scan. The hardware configuration, algorithms of the Jones matrix OCT as well as its application to ophthalmology is discussed.

  8. Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue.

    PubMed

    Telenkov, Sergey A; Dave, Digant P; Sethuraman, Shriram; Akkin, Taner; Milner, Thomas E

    2004-01-07

    We describe a differential phase low-coherence interferometric probe for non-invasive, quantitative imaging of photothermal phenomena in biological materials. Our detection method utilizes principles of optical coherence tomography with differential phase measurement of interference fringe signals. A dual-channel optical low-coherence probe is used to analyse laser-induced thermoelastic and thermorefractive effects in tissue with micrometre axial resolution and nanometre sensitivity. We demonstrate an application of the technique using tissue phantoms and ex-vivo tissue specimens of rodent dorsal skin.

  9. Coherent startup of an infrared free-electron laser

    NASA Astrophysics Data System (ADS)

    Jaroszynski, D. A.; Bakker, R. J.; van der Meer, A. F. G.; Oepts, D.; van Amersfoort, P. W.

    1993-12-01

    Coherent enhancement of the spontaneous undulator radiation by several orders of magnitude has been observed in a free-electron laser at wavelengths from 40 to 100 μm. The coherent emission can be explained by details of the electron-beam micropulse structure. Furthermore, it has been found that the phase of the optical micropulses is fixed by the electron pulse structure and that the coherence extends over successive optical micropulses, which gives rise to interference effects as a function of the optical cavity length in a laser oscillator.

  10. A landmark recognition and tracking experiment for flight on the Shuttle/Advanced Technology Laboratory (ATL)

    NASA Technical Reports Server (NTRS)

    Welch, J. D.

    1975-01-01

    The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.

  11. Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igal; Pe'er, Avi

    2016-02-01

    Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.

  12. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.

    PubMed

    Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo

    2013-07-29

    We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

  13. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses

    PubMed Central

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2015-01-01

    All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals. PMID:26323238

  14. Optical coherence of 166Er:7LiYF4 crystal below 1 K

    NASA Astrophysics Data System (ADS)

    Kukharchyk, N.; Sholokhov, D.; Morozov, O.; Korableva, S. L.; Kalachev, A. A.; Bushev, P. A.

    2018-02-01

    We explore optical coherence and spin dynamics of an isotopically purified 166Er:7LiYF4 crystal below 1 K and at weak magnetic fields < 0.3T. Crystals were grown in our lab and demonstrate narrow inhomogeneous optical broadening down to 16 MHz. Solid-state atomic ensembles with such narrow linewidths are very attractive for implementing of off-resonant Raman quantum memory and for the interfacing of superconducting quantum circuits and telecom C-band optical photons. Both applications require a low magnetic field of ∼10 mT. However, at conventional experimental temperatures T > 1.5 K, optical coherence of Er:LYF crystal attains ≃ 10 μ {{s}} time scale only at strong magnetic fields above 1.5 T. In the present work, we demonstrate that the deep freezing of Er:LYF crystal below 1 K results in the increase of optical coherence time to ≃ 100 μ {{s}} at weak fields.

  15. The Photosensitivity of Rhodopsin Bleaching and Light-Induced Increases of Fundus Reflectance in Mice Measured In Vivo With Scanning Laser Ophthalmoscopy

    PubMed Central

    Zhang, Pengfei; Goswami, Mayank; Zawadzki, Robert J.; Pugh, Edward N.

    2016-01-01

    Purpose To quantify bleaching-induced changes in fundus reflectance in the mouse retina. Methods Light reflected from the fundus of albino (Balb/c) and pigmented (C57Bl/6J) mice was measured with a multichannel scanning laser ophthalmoscopy optical coherence tomography (SLO-OCT) optical system. Serial scanning of small retinal regions was used for bleaching rhodopsin and measuring reflectance changes. Results Serial scanning generated a saturating reflectance increase centered at 501 nm with a photosensitivity of 1.4 × 10−8 per molecule μm2 in both strains, 2-fold higher than expected were irradiance at the rod outer segment base equal to that at the retinal surface. The action spectrum of the reflectance increase corresponds to the absorption spectrum of mouse rhodopsin in situ. Spectra obtained before and after bleaching were fitted with a model of fundus reflectance, quantifying contributions from loss of rhodopsin absorption with bleaching, absorption by oxygenated hemoglobin (HbO2) in the choroid (Balb/c), and absorption by melanin (C57Bl/6J). Both mouse strains exhibited light-induced broadband reflectance changes explained as bleaching-induced reflectivity increases at photoreceptor inner segment/outer segment (IS/OS) junctions and OS tips. Conclusions The elevated photosensitivity of rhodopsin bleaching in vivo is explained by waveguide condensing of light in propagation from rod inner segment (RIS) to rod outer segment (ROS). The similar photosensitivity of rhodopsin in the two strains reveals that little light backscattered from the sclera can enter the ROS. The bleaching-induced increases in reflectance at the IS/OS junctions and OS tips resemble results previously reported in human cones, but are ascribed to rods due to their 30/1 predominance over cones in mice and to the relatively minor amount of cone M-opsin in the regions scanned. PMID:27403994

  16. 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.

    2006-02-01

    The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.

  17. Optical Coherence Elastography

    NASA Astrophysics Data System (ADS)

    Kennedy, Brendan F.; Kennedy, Kelsey M.; Oldenburg, Amy L.; Adie, Steven G.; Boppart, Stephen A.; Sampson, David D.

    The mechanical properties of tissue are pivotal in its function and behavior, and are often modified by disease. From the nano- to the macro-scale, many tools have been developed to measure tissue mechanical properties, both to understand the contribution of mechanics in the origin of disease and to improve diagnosis. Optical coherence elastography is applicable to the intermediate scale, between that of cells and whole organs, which is critical in the progression of many diseases and not widely studied to date. In optical coherence elastography, a mechanical load is imparted to a tissue and the resulting deformation is measured using optical coherence tomography. The deformation is used to deduce a mechanical parameter, e.g., Young's modulus, which is mapped into an image, known as an elastogram. In this chapter, we review the development of optical coherence elastography and report on the latest developments. We provide a focus on the underlying principles and assumptions, techniques to measure deformation, loading mechanisms, imaging probes and modeling, including the inverse elasticity problem.

  18. High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers.

    PubMed

    Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin

    2017-11-10

    High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.

  19. All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.

    PubMed

    Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P

    2018-05-29

    Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.

  20. A Deep Learning Approach to Digitally Stain Optical Coherence Tomography Images of the Optic Nerve Head.

    PubMed

    Devalla, Sripad Krishna; Chin, Khai Sing; Mari, Jean-Martial; Tun, Tin A; Strouthidis, Nicholas G; Aung, Tin; Thiéry, Alexandre H; Girard, Michaël J A

    2018-01-01

    To develop a deep learning approach to digitally stain optical coherence tomography (OCT) images of the optic nerve head (ONH). A horizontal B-scan was acquired through the center of the ONH using OCT (Spectralis) for one eye of each of 100 subjects (40 healthy and 60 glaucoma). All images were enhanced using adaptive compensation. A custom deep learning network was then designed and trained with the compensated images to digitally stain (i.e., highlight) six tissue layers of the ONH. The accuracy of our algorithm was assessed (against manual segmentations) using the dice coefficient, sensitivity, specificity, intersection over union (IU), and accuracy. We studied the effect of compensation, number of training images, and performance comparison between glaucoma and healthy subjects. For images it had not yet assessed, our algorithm was able to digitally stain the retinal nerve fiber layer + prelamina, the RPE, all other retinal layers, the choroid, and the peripapillary sclera and lamina cribrosa. For all tissues, the dice coefficient, sensitivity, specificity, IU, and accuracy (mean) were 0.84 ± 0.03, 0.92 ± 0.03, 0.99 ± 0.00, 0.89 ± 0.03, and 0.94 ± 0.02, respectively. Our algorithm performed significantly better when compensated images were used for training (P < 0.001). Besides offering a good reliability, digital staining also performed well on OCT images of both glaucoma and healthy individuals. Our deep learning algorithm can simultaneously stain the neural and connective tissues of the ONH, offering a framework to automatically measure multiple key structural parameters of the ONH that may be critical to improve glaucoma management.

  1. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  2. Restoration of the photoreceptor layer and improvement of visual acuity in successfully treated optic disc pit maculopathy: a long follow-up study by optical coherence tomography.

    PubMed

    Theodossiadis, George P; Grigoropoulos, Vlassis G; Liarakos, Vasilis S; Rouvas, Alexandros; Emfietzoglou, Ioannis; Theodossiadis, Panagiotis G

    2012-07-01

    To investigate by optical coherence tomography (OCT) the evolution of the photoreceptor layer and its association with best-corrected visual acuity (BCVA) in optic disc pit (ODP) maculopathy after successful surgical treatment. Fourteen eyes of 14 patients were included in this study, and followed up from 36 to 95 months (mean 57.36 ± 18.32 months). The follow-up period started at the time of complete subretinal fluid absorption. Examination was performed by time-domain OCT before and after treatment. Spectral-domain OCT was used after treatment. Parameters assessed were type of elevation, central foveal thickness, time elapsed from onset to treatment, type of treatment, BCVA, and inner segment outer segment (IS/OS) junction line. The IS/OS junction was characterized after treatment as intact, interrupted, or absent (not distinguishable). Significant restoration of the IS/OS junction line was first noticed between 6 and 12 months after fluid absorption (p = 0.02; Wilcoxon signed rank test). Restoration was continuous up to the 24th month of postoperative examination after fluid absorption (p = 0.14; Wilcoxon signed rank test). BCVA was 0.99 ± 0.38 logMar before treatment, 0.81 ± 0.26 logMar (p = 0.011; paired t-test) immediately after fluid absorption and 0.61 ± 0.33 logMar (p = 0.026; one-way ANOVA) 24 months after fluid resolution. BCVA was significantly positively correlated with the integrity of the IS/OS junction line during follow-up (Pearson r = 0.775; p < 0.001). The IS/OS junction restoration cannot be detected immediately after fluid resolution in the majority of cases. It became evident 6-12 months later and was completed 24 months after fluid absorption. Improvement in BCVA was noticed only during the first 2 years of follow-up. No significant changes were noticed in BCVA or the IS/OS line after 2 years. Among the studied variables, the final photoreceptor layer condition and BCVA immediately after fluid absorption are the main factors predicting final BCVA after successful surgical treatment of ODP maculopathy.

  3. Applications of Optical Coherence Tomography in Pediatric Clinical Neuroscience

    PubMed Central

    Avery, Robert A.; Rajjoub, Raneem D.; Trimboli-Heidler, Carmelina; Waldman, Amy T.

    2015-01-01

    For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve—the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. PMID:25803824

  4. Applications of optical coherence tomography in pediatric clinical neuroscience.

    PubMed

    Avery, Robert A; Rajjoub, Raneem D; Trimboli-Heidler, Carmelina; Waldman, Amy T

    2015-04-01

    For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve-the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. Georg Thieme Verlag KG Stuttgart · New York.

  5. Beyond Retinal Layers: A Deep Voting Model for Automated Geographic Atrophy Segmentation in SD-OCT Images

    PubMed Central

    Ji, Zexuan; Chen, Qiang; Niu, Sijie; Leng, Theodore; Rubin, Daniel L.

    2018-01-01

    Purpose To automatically and accurately segment geographic atrophy (GA) in spectral-domain optical coherence tomography (SD-OCT) images by constructing a voting system with deep neural networks without the use of retinal layer segmentation. Methods An automatic GA segmentation method for SD-OCT images based on the deep network was constructed. The structure of the deep network was composed of five layers, including one input layer, three hidden layers, and one output layer. During the training phase, the labeled A-scans with 1024 features were directly fed into the network as the input layer to obtain the deep representations. Then a soft-max classifier was trained to determine the label of each individual pixel. Finally, a voting decision strategy was used to refine the segmentation results among 10 trained models. Results Two image data sets with GA were used to evaluate the model. For the first dataset, our algorithm obtained a mean overlap ratio (OR) 86.94% ± 8.75%, absolute area difference (AAD) 11.49% ± 11.50%, and correlation coefficients (CC) 0.9857; for the second dataset, the mean OR, AAD, and CC of the proposed method were 81.66% ± 10.93%, 8.30% ± 9.09%, and 0.9952, respectively. The proposed algorithm was capable of improving over 5% and 10% segmentation accuracy, respectively, when compared with several state-of-the-art algorithms on two data sets. Conclusions Without retinal layer segmentation, the proposed algorithm could produce higher segmentation accuracy and was more stable when compared with state-of-the-art methods that relied on retinal layer segmentation results. Our model may provide reliable GA segmentations from SD-OCT images and be useful in the clinical diagnosis of advanced nonexudative AMD. Translational Relevance Based on the deep neural networks, this study presents an accurate GA segmentation method for SD-OCT images without using any retinal layer segmentation results, and may contribute to improved understanding of advanced nonexudative AMD. PMID:29302382

  6. Beyond Retinal Layers: A Deep Voting Model for Automated Geographic Atrophy Segmentation in SD-OCT Images.

    PubMed

    Ji, Zexuan; Chen, Qiang; Niu, Sijie; Leng, Theodore; Rubin, Daniel L

    2018-01-01

    To automatically and accurately segment geographic atrophy (GA) in spectral-domain optical coherence tomography (SD-OCT) images by constructing a voting system with deep neural networks without the use of retinal layer segmentation. An automatic GA segmentation method for SD-OCT images based on the deep network was constructed. The structure of the deep network was composed of five layers, including one input layer, three hidden layers, and one output layer. During the training phase, the labeled A-scans with 1024 features were directly fed into the network as the input layer to obtain the deep representations. Then a soft-max classifier was trained to determine the label of each individual pixel. Finally, a voting decision strategy was used to refine the segmentation results among 10 trained models. Two image data sets with GA were used to evaluate the model. For the first dataset, our algorithm obtained a mean overlap ratio (OR) 86.94% ± 8.75%, absolute area difference (AAD) 11.49% ± 11.50%, and correlation coefficients (CC) 0.9857; for the second dataset, the mean OR, AAD, and CC of the proposed method were 81.66% ± 10.93%, 8.30% ± 9.09%, and 0.9952, respectively. The proposed algorithm was capable of improving over 5% and 10% segmentation accuracy, respectively, when compared with several state-of-the-art algorithms on two data sets. Without retinal layer segmentation, the proposed algorithm could produce higher segmentation accuracy and was more stable when compared with state-of-the-art methods that relied on retinal layer segmentation results. Our model may provide reliable GA segmentations from SD-OCT images and be useful in the clinical diagnosis of advanced nonexudative AMD. Based on the deep neural networks, this study presents an accurate GA segmentation method for SD-OCT images without using any retinal layer segmentation results, and may contribute to improved understanding of advanced nonexudative AMD.

  7. Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT.

    PubMed

    Zhang, Li; Buitendijk, Gabriëlle H S; Lee, Kyungmoo; Sonka, Milan; Springelkamp, Henriët; Hofman, Albert; Vingerling, Johannes R; Mullins, Robert F; Klaver, Caroline C W; Abràmoff, Michael D

    2015-05-01

    To evaluate the validity of a novel fully automated three-dimensional (3D) method capable of segmenting the choroid from two different optical coherence tomography scanners: swept-source OCT (SS-OCT) and spectral-domain OCT (SD-OCT). One hundred eight subjects were imaged using SS-OCT and SD-OCT. A 3D method was used to segment the choroid and quantify the choroidal thickness along each A-scan. The segmented choroidal posterior boundary was evaluated by comparing to manual segmentation. Differences were assessed to test the agreement between segmentation results of the same subject. Choroidal thickness was defined as the Euclidian distance between Bruch's membrane and the choroidal posterior boundary, and reproducibility was analyzed using automatically and manually determined choroidal thicknesses. For SS-OCT, the average choroidal thickness of the entire 6- by 6-mm2 macular region was 219.5 μm (95% confidence interval [CI], 204.9-234.2 μm), and for SD-OCT it was 209.5 μm (95% CI, 197.9-221.0 μm). The agreement between automated and manual segmentations was high: Average relative difference was less than 5 μm, and average absolute difference was less than 15 μm. Reproducibility of choroidal thickness between repeated SS-OCT scans was high (coefficient of variation [CV] of 3.3%, intraclass correlation coefficient [ICC] of 0.98), and differences between SS-OCT and SD-OCT results were small (CV of 11.0%, ICC of 0.73). We have developed a fully automated 3D method for segmenting the choroid and quantifying choroidal thickness along each A-scan. The method yielded high validity. Our method can be used reliably to study local choroidal changes and may improve the diagnosis and management of patients with ocular diseases in which the choroid is affected.

  8. OPTICAL PROCESSING OF INFORMATION: Potential applications of quasi-cw partially coherent radiation in optical data recording and processing

    NASA Astrophysics Data System (ADS)

    Volkov, L. V.; Larkin, A. I.

    1994-04-01

    Theoretical and experimental investigations are reported of the potential applications of quasi-cw partially coherent radiation in optical systems based on diffraction—interference principles. It is shown that the spectral characteristics of quasi-cw radiation influence the data-handling capabilities of a holographic correlator and of a partially coherent holographic system for data acquisition. Relevant experimental results are reported.

  9. Developments in Coherent Perfect Polarization Rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Andrews, James; Zhou, Chaunhong; Baker, Michael

    2015-05-01

    Coherent Perfect Polarization Rotation (CPR) is a useful technique akin to Coherent Perfect Absorption (CPA, also known as the anti-laser) but that results in very high efficiency optical mode conversion. We describe the analysis of recent experimental data from our CPR testbed, the use of CPR in miniaturizing optical isolators and CPR phenomena in non-linear optics. Work supported by the N.S.F. under Grant No. ECCS-1360725.

  10. [Chamber Angle Assessment in Clinical Practice - A Comparison between Optical Coherence Tomography and Gonioscopy].

    PubMed

    Mösler, M P; Werner, J U; Lang, G K

    2015-07-01

    In glaucoma the structures of the anterior chamber are important for classification, therapy, progression and prognosis. In this context anterior segment optical coherence tomography (AS-OCT) gains more relevance. This study compares AS-OCT with gonioscopy in diagnostic performance of chamber angle (CA) assessment. 104 consecutive subjects with glaucoma underwent AS-OCT imaging using the Visante OCT. RESULTS were compared to gonioscopic grading from patient history using the Shaffer system. In addition, anterior chamber depth (ACD) assessment using slitlamp examination was evaluated as a prognostic factor for chamber angle width (CAW) and verified by AS-OCT measurement. Average CAW was 29° (AS-OCT). 17 % of the CAs that were "wide" in gonioscopy (variance 5-55°), showed a "narrow" CA in AS-OCT. 35 % of the CAs that were "narrow" in gonioscopy (variance 0-39°) showed a "wide" CA in AS-OCT. ACD assessment using slitlamp examination is a good predictor for CAW. In this context the technique provides equal informative value as gonioscopy. In cases of "wide" ACDs it is even superior. The critical ACD for an increased risk of angle closure is 2.4 mm. Concerning the critical ACD (< 2.4 mm) the technique gave the possibility to estimate, whether the patients were in the crucial range or not. Average ACD was 2.7 mm (AS-OCT). A strong correlation (correlation coefficient 0.83) between ACD and CAW was observed. Variation of 1 mm in the ACD leads to a change of 18.9° in the CAW. All patients with angle closure glaucoma were below this threshold and 74 % of patients with critical ACD had "narrow" (AS-OCT) CAs. In the case of routine clinical practice with inexperienced residents or circumstances that make gonioscopy difficult or impossible, optical coherence tomography is an effective alternative to the gold standard and is to some extent even superior. Georg Thieme Verlag KG Stuttgart · New York.

  11. Posterior Segment Toxicity Following Gemcitabine and Docetaxel Chemotherapy

    PubMed Central

    Valeshabad, Ali Kord; Mieler, William F.; Setlur, Vikram; Thomas, Merina; Shahidi, Mahnaz

    2015-01-01

    Purpose To report outer retinal disruption and uveal effusion following gemcitabine and docetaxel combination therapy. Case Report A 78-year-old woman presented with blurry vision following two cycles of gemcitabine and docetaxel combination chemotherapy for stage IV sarcoma. At presentation, visual acuity (VA) was finger counting and 20/25 in the right and left eyes, respectively. Slit lamp examination and B scan ultrasonography revealed severe uveal effusion in the right eye and choroidal folds in the left eye. Spectral domain optical coherence tomography showed disruption of photoreceptor inner segment ellipsoid band in the right eye. The patient was monitored weekly with ophthalmic examination and B scan ultrasonography, while continuing with gemcitabine monotherapy. At 8 weeks follow up, uveal effusion improved considerably and VA was 20/40 and 20/20 in the right and left eyes, respectively. Conclusions Uveal effusion and outer retinal disruption were reported following gemcitabine and docetaxel chemotherapy. Early detection and close ophthalmic monitoring may allow concurrent cancer treatment and prevention of possible chemotherapy-induced ocular side effects. PMID:25822016

  12. Simultaneous segmentation of retinal surfaces and microcystic macular edema in SDOCT volumes

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Lang, Andrew; Swingle, Emily K.; Al-Louzi, Omar; Carass, Aaron; Solomon, Sharon; Calabresi, Peter A.; Saidha, Shiv; Prince, Jerry L.

    2016-03-01

    Optical coherence tomography (OCT) is a noninvasive imaging modality that has begun to find widespread use in retinal imaging for the detection of a variety of ocular diseases. In addition to structural changes in the form of altered retinal layer thicknesses, pathological conditions may also cause the formation of edema within the retina. In multiple sclerosis, for instance, the nerve fiber and ganglion cell layers are known to thin. Additionally, the formation of pseudocysts called microcystic macular edema (MME) have also been observed in the eyes of about 5% of MS patients, and its presence has been shown to be correlated with disease severity. Previously, we proposed separate algorithms for the segmentation of retinal layers and MME, but since MME mainly occurs within specific regions of the retina, a simultaneous approach is advantageous. In this work, we propose an automated globally optimal graph-theoretic approach that simultaneously segments the retinal layers and the MME in volumetric OCT scans. SD-OCT scans from one eye of 12 MS patients with known MME and 8 healthy controls were acquired and the pseudocysts manually traced. The overall precision and recall of the pseudocyst detection was found to be 86.0% and 79.5%, respectively.

  13. Multimodal Imaging of the Normal Eye.

    PubMed

    Kawali, Ankush; Pichi, Francesco; Avadhani, Kavitha; Invernizzi, Alessandro; Hashimoto, Yuki; Mahendradas, Padmamalini

    2017-10-01

    Multimodal imaging is the concept of "bundling" images obtained from various imaging modalities, viz., fundus photograph, fundus autofluorescence imaging, infrared (IR) imaging, simultaneous fluorescein and indocyanine angiography, optical coherence tomography (OCT), and, more recently, OCT angiography. Each modality has its pros and cons as well as its limitations. Combination of multiple imaging techniques will overcome their individual weaknesses and give a comprehensive picture. Such approach helps in accurate localization of a lesion and understanding the pathology in posterior segment. It is important to know imaging of normal eye before one starts evaluating pathology. This article describes multimodal imaging modalities in detail and discusses healthy eye features as seen on various imaging modalities mentioned above.

  14. Angle imaging: Advances and challenges

    PubMed Central

    Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin

    2011-01-01

    Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037

  15. Segmentation of optic disc and optic cup in retinal fundus images using shape regression.

    PubMed

    Sedai, Suman; Roy, Pallab K; Mahapatra, Dwarikanath; Garnavi, Rahil

    2016-08-01

    Glaucoma is one of the leading cause of blindness. The manual examination of optic cup and disc is a standard procedure used for detecting glaucoma. This paper presents a fully automatic regression based method which accurately segments optic cup and disc in retinal colour fundus image. First, we roughly segment optic disc using circular hough transform. The approximated optic disc is then used to compute the initial optic disc and cup shapes. We propose a robust and efficient cascaded shape regression method which iteratively learns the final shape of the optic cup and disc from a given initial shape. Gradient boosted regression trees are employed to learn each regressor in the cascade. A novel data augmentation approach is proposed to improve the regressors performance by generating synthetic training data. The proposed optic cup and disc segmentation method is applied on an image set of 50 patients and demonstrate high segmentation accuracy for optic cup and disc with dice metric of 0.95 and 0.85 respectively. Comparative study shows that our proposed method outperforms state of the art optic cup and disc segmentation methods.

  16. Optical amplifiers for coherent lidar

    NASA Technical Reports Server (NTRS)

    Fork, Richard

    1996-01-01

    We examine application of optical amplification to coherent lidar for the case of a weak return signal (a number of quanta of the return optical field close to unity). We consider the option that has been explored to date, namely, incorporation of an optical amplifier operated in a linear manner located after reception of the signal and immediately prior to heterodyning and photodetection. We also consider alternative strategies where the coherent interaction, the nonlinear processes, and the amplification are not necessarily constrained to occur in the manner investigated to date. We include the complications that occur because of mechanisms that occur at the level of a few, or one, quantum excitation. Two factors combine in the work to date that limit the value of the approach. These are: (1) the weak signal tends to require operation of the amplifier in the linear regime where the important advantages of nonlinear optical processing are not accessed, (2) the linear optical amplifier has a -3dB noise figure (SN(out)/SN(in)) that necessarily degrades the signal. Some improvement is gained because the gain provided by the optical amplifier can be used to overcome losses in the heterodyned process and photodetection. The result, however, is that introduction of an optical amplifier in a well optimized coherent lidar system results in, at best, a modest improvement in signal to noise. Some improvement may also be realized on incorporating more optical components in a coherent lidar system for purely practical reasons. For example, more compact, lighter weight, components, more robust alignment, or more rapid processing may be gained. We further find that there remain a number of potentially valuable, but unexplored options offered both by the rapidly expanding base of optical technology and the recent investigation of novel nonlinear coherent interference phenomena occurring at the single quantum excitation level. Key findings are: (1) insertion of linear optical amplifiers in well optimized conventional lidar systems offers modest improvements, at best, (2) the practical advantages of optical amplifiers, especially fiber amplifiers, such as ease of alignment, compactness, efficiency, lightweight, etc., warrant further investigation for coherent lidar, (3) the possibility of more fully optical lidar systems should be explored, (4) advantages gained by use of coherent interference of optical fields at the level of one, or a few, signal quanta should be explored, (5) amplification without inversion, population trapping, and use of electromagnetic induced transparency warrant investigation in connection with coherent lidar, (6) these new findings are probably more applicable to earth related NASA work, although applications to deep space should not be excluded, and (7) our own work in the Ultrafast Laboratory at UAH along some of the above lines of investigation, may be useful.

  17. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  18. Low-cost coherent receiver for long-reach optical access network using single-ended detection.

    PubMed

    Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2014-09-15

    A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.

  19. Use of optical coherence topography for objective assessment of fundus torsion.

    PubMed

    Sophocleous, Sophocles

    2017-02-23

    Objective assessment of fundus torsion is currently performed with indirect ophthalmoscopy or fundus photography. Using the infrared image of the macular scan of the optical coherence tomography one can assess the presence and amount of fundus torsion. In addition, the line scan through the fovea can be used as a reference to confirm the position of the foveal pit in relation to the optic nerve head. Two cases are used to demonstrate how to assess fundus torsion with the use of the optical coherence tomography. 2017 BMJ Publishing Group Ltd.

  20. Overlapped optics induced perfect coherent effects.

    PubMed

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-20

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

Top