Zhu, F; Kuhlmann, M K; Kaysen, G A; Sarkar, S; Kaitwatcharachai, C; Khilnani, R; Stevens, L; Leonard, E F; Wang, J; Heymsfield, S; Levin, N W
2006-02-01
Discrepancies in body fluid estimates between segmental bioimpedance spectroscopy (SBIS) and gold-standard methods may be due to the use of a uniform value of tissue resistivity to compute extracellular fluid volume (ECV) and intracellular fluid volume (ICV). Discrepancies may also arise from the exclusion of fluid volumes of hands, feet, neck, and head from measurements due to electrode positions. The aim of this study was to define the specific resistivity of various body segments and to use those values for computation of ECV and ICV along with a correction for unmeasured fluid volumes. Twenty-nine maintenance hemodialysis patients (16 men) underwent body composition analysis including whole body MRI, whole body potassium (40K) content, deuterium, and sodium bromide dilution, and segmental and wrist-to-ankle bioimpedance spectroscopy, all performed on the same day before a hemodialysis. Segment-specific resistivity was determined from segmental fat-free mass (FFM; by MRI), hydration status of FFM (by deuterium and sodium bromide), tissue resistance (by SBIS), and segment length. Segmental FFM was higher and extracellular hydration of FFM was lower in men compared with women. Segment-specific resistivity values for arm, trunk, and leg all differed from the uniform resistivity used in traditional SBIS algorithms. Estimates for whole body ECV, ICV, and total body water from SBIS using segmental instead of uniform resistivity values and after adjustment for unmeasured fluid volumes of the body did not differ significantly from gold-standard measures. The uniform tissue resistivity values used in traditional SBIS algorithms result in underestimation of ECV, ICV, and total body water. Use of segmental resistivity values combined with adjustment for body volumes that are neglected by traditional SBIS technique significantly improves estimations of body fluid volume in hemodialysis patients.
van der Palen, Roel L F; Roest, Arno A W; van den Boogaard, Pieter J; de Roos, Albert; Blom, Nico A; Westenberg, Jos J M
2018-05-26
The aim was to investigate scan-rescan reproducibility and observer variability of segmental aortic 3D systolic wall shear stress (WSS) by phase-specific segmentation with 4D flow MRI in healthy volunteers. Ten healthy volunteers (age 26.5 ± 2.6 years) underwent aortic 4D flow MRI twice. Maximum 3D systolic WSS (WSSmax) and mean 3D systolic WSS (WSSmean) for five thoracic aortic segments over five systolic cardiac phases by phase-specific segmentations were calculated. Scan-rescan analysis and observer reproducibility analysis were performed. Scan-rescan data showed overall good reproducibility for WSSmean (coefficient of variation, COV 10-15%) with moderate-to-strong intraclass correlation coefficient (ICC 0.63-0.89). The variability in WSSmax was high (COV 16-31%) with moderate-to-good ICC (0.55-0.79) for different aortic segments. Intra- and interobserver reproducibility was good-to-excellent for regional aortic WSSmax (ICC ≥ 0.78; COV ≤ 17%) and strong-to-excellent for WSSmean (ICC ≥ 0.86; COV ≤ 11%). In general, ascending aortic segments showed more WSSmax/WSSmean variability compared to aortic arch or descending aortic segments for scan-rescan, intraobserver and interobserver comparison. Scan-rescan reproducibility was good for WSSmean and moderate for WSSmax for all thoracic aortic segments over multiple systolic phases in healthy volunteers. Intra/interobserver reproducibility for segmental WSS assessment was good-to-excellent. Variability of WSSmax is higher and should be taken into account in case of individual follow-up or in comparative rest-stress studies to avoid misinterpretation.
Lago, M A; Rupérez, M J; Monserrat, C; Martínez-Martínez, F; Martínez-Sanchis, S; Larra, E; Díez-Ajenjo, M A; Peris-Martínez, C
2015-11-01
The purpose of this study was the simulation of the implantation of intrastromal corneal-ring segments for patients with keratoconus. The aim of the study was the prediction of the corneal curvature recovery after this intervention. Seven patients with keratoconus diagnosed and treated by implantation of intrastromal corneal-ring segments were enrolled in the study. The 3D geometry of the cornea of each patient was obtained from its specific topography and a hyperelastic model was assumed to characterize its mechanical behavior. To simulate the intervention, the intrastromal corneal-ring segments were modeled and placed at the same location at which they were placed in the surgery. The finite element method was then used to obtain a simulation of the deformation of the cornea after the ring segment insertion. Finally, the predicted curvature was compared with the real curvature after the intervention. The simulation of the ring segment insertion was validated comparing the curvature change with the data after the surgery. Results showed a flattening of the cornea which was in consonance with the real improvement of the corneal curvature. The mean difference obtained was of 0.74 mm using properties of healthy corneas. For the first time, a patient-specific model of the cornea has been used to predict the outcomes of the surgery after the intrastromal corneal-ring segments implantation in real patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
A JOINT FRAMEWORK FOR 4D SEGMENTATION AND ESTIMATION OF SMOOTH TEMPORAL APPEARANCE CHANGES.
Gao, Yang; Prastawa, Marcel; Styner, Martin; Piven, Joseph; Gerig, Guido
2014-04-01
Medical imaging studies increasingly use longitudinal images of individual subjects in order to follow-up changes due to development, degeneration, disease progression or efficacy of therapeutic intervention. Repeated image data of individuals are highly correlated, and the strong causality of information over time lead to the development of procedures for joint segmentation of the series of scans, called 4D segmentation. A main aim was improved consistency of quantitative analysis, most often solved via patient-specific atlases. Challenging open problems are contrast changes and occurance of subclasses within tissue as observed in multimodal MRI of infant development, neurodegeneration and disease. This paper proposes a new 4D segmentation framework that enforces continuous dynamic changes of tissue contrast patterns over time as observed in such data. Moreover, our model includes the capability to segment different contrast patterns within a specific tissue class, for example as seen in myelinated and unmyelinated white matter regions in early brain development. Proof of concept is shown with validation on synthetic image data and with 4D segmentation of longitudinal, multimodal pediatric MRI taken at 6, 12 and 24 months of age, but the methodology is generic w.r.t. different application domains using serial imaging.
H-Ransac a Hybrid Point Cloud Segmentation Combining 2d and 3d Data
NASA Astrophysics Data System (ADS)
Adam, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I.
2018-05-01
In this paper, we present a novel 3D segmentation approach operating on point clouds generated from overlapping images. The aim of the proposed hybrid approach is to effectively segment co-planar objects, by leveraging the structural information originating from the 3D point cloud and the visual information from the 2D images, without resorting to learning based procedures. More specifically, the proposed hybrid approach, H-RANSAC, is an extension of the well-known RANSAC plane-fitting algorithm, incorporating an additional consistency criterion based on the results of 2D segmentation. Our expectation that the integration of 2D data into 3D segmentation will achieve more accurate results, is validated experimentally in the domain of 3D city models. Results show that HRANSAC can successfully delineate building components like main facades and windows, and provide more accurate segmentation results compared to the typical RANSAC plane-fitting algorithm.
Is it possible to shorten ambulatory blood pressure monitoring?
Wolak, Talya; Wilk, Lior; Paran, Esther; Wolak, Arik; Gutmacher, Bella; Shleyfer, Elena; Friger, Michael
2013-08-01
The aim of this investigation was to find a time segment in which average blood pressure (BP) has the best correlation with 24-hour BP control. A total of 240 patients with full ambulatory BP monitoring (ABPM) were included; 120 had controlled BP (systolic BP [SBP] ≤135 mm Hg and diastolic BP [DBP] ≤85 mm Hg) and 120 had uncontrolled BP (SBP >135 mm Hg and/or DBP >85 mm Hg). Each ABPM was divided into 6- and 8-hour segments. Evaluation for correlation between mean BP for each time segment and 24-hour BP control was performed using receiver operating characteristic curve analysis and Youden's index for threshold with the best sensitivity and specificity. The mean BP in the following segments showed the highest area under the curve (AUC) compared with average controlled 24-hour BP: SBP 2 am to 8 am (AUC, 0.918; threshold value of 133.5 mm Hg, sensitivity-0.752 and specificity-0.904); SBP 2 pm to 10 pm (AUC, 0.911; threshold value of 138.5 mm Hg, sensitivity-0.803 and specificity-0.878); and SBP 6 am to 2 pm (AUC, 0.903; threshold value of 140.5 mm Hg, sensitivity-0.778 and specificity-0.888). The time segment 2 pm to 10 pm was shown to have good correlation with 24-hour BP control (AUC >0.9; sensitivity and specificity >80%). This time segment might replace full ABPM as a screening measure for BP control or as abbreviated ABPM for patients with difficulty in performing full ABPM. © 2013 Wiley Periodicals, Inc.
Onwezen, Marleen C; Bartels, Jos
2011-08-01
In general, fruit consumption in the EU does not meet governments' recommended levels, and innovations in the fruit industry are thought to be useful for increasing fruit consumption. Despite the enormous number of product innovations, the majority of new products in the market fail within the first two years, due to a lack of consumer acceptance. Consumer segmentation may be a useful research tool to increase the success rates of new fruit products. The current study aims to identify consumer segments based on individual importance rankings of fruit choice motives. We conducted a cross-national, online panel survey on fresh fruit innovations in four European countries: the Netherlands (n=251), Greece (n=246), Poland (n=250), and Spain (n=250). Our cluster analysis revealed three homogeneous consumer segments: Average Joe, the Naturally conscious consumer, and the Health-oriented consumer. These consumer segments differed with respect to their importance ratings for fruit choice motives. Furthermore, the willingness to buy specific fruit innovations (i.e., genetically modified, functional food and convenience innovation) and the perceived product characteristics that influence this willingness differed across the segments. Our study could lead to more tailored marketing strategies aimed at increasing consumer acceptance of fruit product innovations based on consumer segmentation. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cullen, Cionaith J.; Benedicto, Xavier; Tafazolli, Rahim; Evans, Barry
1993-01-01
Various design factors for mobile satellite systems, whose aim is to provide worldwide voice and data communications to users with hand-held terminals, are examined. Two network segments are identified - the ground segment (GS) and the space segment (SS) - and are seen to be highly dependent on each other. The overall architecture must therefore be adapted to both of these segments, rather than each being optimized according to its own criteria. Terrestrial networks are grouped and called the terrestrial segment (TS). In the SS, of fundamental importance is the constellation altitude. The effect of the altitude on decisions such as constellation design choice and on network aspects like call handover statistics are fundamental. Orbit resonance is introduced and referred to throughout. It is specifically examined for its useful properties relating to GS/SS connectivities.
Lebenberg, Jessica; Lalande, Alain; Clarysse, Patrick; Buvat, Irene; Casta, Christopher; Cochet, Alexandre; Constantinidès, Constantin; Cousty, Jean; de Cesare, Alain; Jehan-Besson, Stephanie; Lefort, Muriel; Najman, Laurent; Roullot, Elodie; Sarry, Laurent; Tilmant, Christophe; Frouin, Frederique; Garreau, Mireille
2015-01-01
This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert.
Lebenberg, Jessica; Lalande, Alain; Clarysse, Patrick; Buvat, Irene; Casta, Christopher; Cochet, Alexandre; Constantinidès, Constantin; Cousty, Jean; de Cesare, Alain; Jehan-Besson, Stephanie; Lefort, Muriel; Najman, Laurent; Roullot, Elodie; Sarry, Laurent; Tilmant, Christophe
2015-01-01
This work aimed at combining different segmentation approaches to produce a robust and accurate segmentation result. Three to five segmentation results of the left ventricle were combined using the STAPLE algorithm and the reliability of the resulting segmentation was evaluated in comparison with the result of each individual segmentation method. This comparison was performed using a supervised approach based on a reference method. Then, we used an unsupervised statistical evaluation, the extended Regression Without Truth (eRWT) that ranks different methods according to their accuracy in estimating a specific biomarker in a population. The segmentation accuracy was evaluated by estimating six cardiac function parameters resulting from the left ventricle contour delineation using a public cardiac cine MRI database. Eight different segmentation methods, including three expert delineations and five automated methods, were considered, and sixteen combinations of the automated methods using STAPLE were investigated. The supervised and unsupervised evaluations demonstrated that in most cases, STAPLE results provided better estimates than individual automated segmentation methods. Overall, combining different automated segmentation methods improved the reliability of the segmentation result compared to that obtained using an individual method and could achieve the accuracy of an expert. PMID:26287691
Schober, Daniel; Schwendener, Nicole; Zech, Wolf-Dieter; Jackowski, Christian
2017-01-01
Segmentation of the lungs using post-mortem computed tomography (PMCT) data was so far not feasible due to post-mortem changes such as internal livores. Recently, an Osirix plug-in has been developed allowing automatically segmenting lungs also in PMCT data. The aim of this study was to investigate if the Hounsfield unit (HU) profiles obtained in PMCT data of the segmented lung tissue present with specific behaviour in relation to the cause of death. In 105 PMCT data sets of forensic cases, the entire lung volumes were segmented using the Mia Lite plug-in on Osirix. HU profiles of the lungs were generated and correlated to cause of death groups as assessed after forensic autopsy (cardiac death, fatal haemorrhage, craniocerebral injury, intoxication, drowning, hypothermia, hanging and suffocation). Especially cardiac death cases, intoxication cases, fatal haemorrhage cases and hypothermia cases showed very specific HU profiles. In drowning, the profiles showed two different behaviours representing wet and dry drowning. HU profiles rather varied in craniocerebral injury cases, hanging cases as well as in suffocation cases. HU profiles of the lungs segmented from PMCT data may support the cause of death diagnosis as they represent specific morphological changes in the lungs such as oedema, congestion or blood loss. Especially in cardiac death, intoxication, fatal haemorrhage, hypothermia and drowning cases, HU profiles may be very supportive for the forensic pathologist.
ERIC Educational Resources Information Center
Lawrence, Michael A.
1985-01-01
"Narrowcasting" is information and entertainment aimed at specific population segments, including previously ignored minorities. Cable, satellite, videodisc, low-power television, and video cassette recorders may all help keep minorities from being "information poor." These elements, however, are expensive, and study is needed to understand how…
Primal/dual linear programming and statistical atlases for cartilage segmentation.
Glocker, Ben; Komodakis, Nikos; Paragios, Nikos; Glaser, Christian; Tziritas, Georgios; Navab, Nassir
2007-01-01
In this paper we propose a novel approach for automatic segmentation of cartilage using a statistical atlas and efficient primal/dual linear programming. To this end, a novel statistical atlas construction is considered from registered training examples. Segmentation is then solved through registration which aims at deforming the atlas such that the conditional posterior of the learned (atlas) density is maximized with respect to the image. Such a task is reformulated using a discrete set of deformations and segmentation becomes equivalent to finding the set of local deformations which optimally match the model to the image. We evaluate our method on 56 MRI data sets (28 used for the model and 28 used for evaluation) and obtain a fully automatic segmentation of patella cartilage volume with an overlap ratio of 0.84 with a sensitivity and specificity of 94.06% and 99.92%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.
Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used tomore » guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation results significantly (p < 0.01) based on DSC (6.72%) and SD of contour-to-contour distances (0.08 cm) and decreased the 95% confidence intervals of the bladder volume differences. Moreover, expanding the shape model improved the segmentation results significantly (p < 0.01) based on DSC and SD of contour-to-contour distances. Conclusions: This patient-specific shape model based automatic bladder segmentation method on CBCT is accurate and generic. Our segmentation method only needs two pretreatment imaging data sets as prior knowledge, is independent of patient gender and patient treatment position and has the possibility to manually adapt the segmentation locally.« less
MRI and Additive Manufacturing of Nasal Alar Constructs for Patient-specific Reconstruction.
Visscher, Dafydd O; van Eijnatten, Maureen; Liberton, Niels P T J; Wolff, Jan; Hofman, Mark B M; Helder, Marco N; Don Griot, J Peter W; Zuijlen, Paul P M van
2017-08-30
Surgical reconstruction of cartilaginous defects remains a major challenge. In the current study, we aimed to identify an imaging strategy for the development of patient-specific constructs that aid in the reconstruction of nasal deformities. Magnetic Resonance Imaging (MRI) was performed on a human cadaver head to find the optimal MRI sequence for nasal cartilage. This sequence was subsequently used on a volunteer. Images of both were assessed by three independent researchers to determine measurement error and total segmentation time. Three dimensionally (3D) reconstructed alar cartilage was then additively manufactured. Validity was assessed by comparing manually segmented MR images to the gold standard (micro-CT). Manual segmentation allowed delineation of the nasal cartilages. Inter- and intra-observer agreement was acceptable in the cadaver (coefficient of variation 4.6-12.5%), but less in the volunteer (coefficient of variation 0.6-21.9%). Segmentation times did not differ between observers (cadaver P = 0.36; volunteer P = 0.6). The lateral crus of the alar cartilage was consistently identified by all observers, whereas part of the medial crus was consistently missed. This study suggests that MRI is a feasible imaging modality for the development of 3D alar constructs for patient-specific reconstruction.
Clustering approach for unsupervised segmentation of malarial Plasmodium vivax parasite
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Mohamed, Zeehaida
2017-10-01
Malaria is a global health problem, particularly in Africa and south Asia where it causes countless deaths and morbidity cases. Efficient control and prompt of this disease require early detection and accurate diagnosis due to the large number of cases reported yearly. To achieve this aim, this paper proposes an image segmentation approach via unsupervised pixel segmentation of malaria parasite to automate the diagnosis of malaria. In this study, a modified clustering algorithm namely enhanced k-means (EKM) clustering, is proposed for malaria image segmentation. In the proposed EKM clustering, the concept of variance and a new version of transferring process for clustered members are used to assist the assignation of data to the proper centre during the process of clustering, so that good segmented malaria image can be generated. The effectiveness of the proposed EKM clustering has been analyzed qualitatively and quantitatively by comparing this algorithm with two popular image segmentation techniques namely Otsu's thresholding and k-means clustering. The experimental results show that the proposed EKM clustering has successfully segmented 100 malaria images of P. vivax species with segmentation accuracy, sensitivity and specificity of 99.20%, 87.53% and 99.58%, respectively. Hence, the proposed EKM clustering can be considered as an image segmentation tool for segmenting the malaria images.
Segmentation of overweight Americans and opportunities for social marketing
Kolodinsky, Jane; Reynolds, Travis
2009-01-01
Background The food industry uses market segmentation to target products toward specific groups of consumers with similar attitudinal, demographic, or lifestyle characteristics. Our aims were to identify distinguishable segments within the US overweight population to be targeted with messages and media aimed at moving Americans toward more healthy weights. Methods Cluster analysis was used to identify segments of consumers based on both food and lifestyle behaviors related to unhealthy weights. Drawing from Social Learning Theory, the Health Belief Model, and existing market segmentation literature, the study identified five distinct, recognizable market segments based on knowledge and behavioral and environmental factors. Implications for social marketing campaigns designed to move Americans toward more healthy weights were explored. Results The five clusters identified were: Highest Risk (19%); At Risk (22%); Right Behavior/Wrong Results (33%); Getting Best Results (13%); and Doing OK (12%). Ninety-nine percent of those in the Highest Risk cluster were overweight; members watched the most television and exercised the least. Fifty-five percent of those in the At Risk cluster were overweight; members logged the most computer time and almost half rarely or never read food labels. Sixty-six percent of those in the Right Behavior/Wrong Results cluster were overweight; however, 95% of them were familiar with the food pyramid. Members reported eating a low percentage of fast food meals (8%) compared to other groups but a higher percentage of other restaurant meals (15%). Less than six percent of those in the Getting Best Results cluster were overweight; every member read food labels and 75% of members' meals were "made from scratch." Eighteen percent of those in the Doing OK cluster were overweight; members watched the least television and reported eating 78% of their meals "made from scratch." Conclusion This study demonstrated that five distinct market segments can be identified for social marketing efforts aimed at addressing the obesity epidemic. Through the identification of these five segments, social marketing campaigns can utilize selected channels and messages that communicate the most relevant and important information. The results of this study offer insight into how segmentation strategies and social marketing messages may improve public health. PMID:19267936
Segmentation of overweight Americans and opportunities for social marketing.
Kolodinsky, Jane; Reynolds, Travis
2009-03-08
The food industry uses market segmentation to target products toward specific groups of consumers with similar attitudinal, demographic, or lifestyle characteristics. Our aims were to identify distinguishable segments within the US overweight population to be targeted with messages and media aimed at moving Americans toward more healthy weights. Cluster analysis was used to identify segments of consumers based on both food and lifestyle behaviors related to unhealthy weights. Drawing from Social Learning Theory, the Health Belief Model, and existing market segmentation literature, the study identified five distinct, recognizable market segments based on knowledge and behavioral and environmental factors. Implications for social marketing campaigns designed to move Americans toward more healthy weights were explored. The five clusters identified were: Highest Risk (19%); At Risk (22%); Right Behavior/Wrong Results (33%); Getting Best Results (13%); and Doing OK (12%). Ninety-nine percent of those in the Highest Risk cluster were overweight; members watched the most television and exercised the least. Fifty-five percent of those in the At Risk cluster were overweight; members logged the most computer time and almost half rarely or never read food labels. Sixty-six percent of those in the Right Behavior/Wrong Results cluster were overweight; however, 95% of them were familiar with the food pyramid. Members reported eating a low percentage of fast food meals (8%) compared to other groups but a higher percentage of other restaurant meals (15%). Less than six percent of those in the Getting Best Results cluster were overweight; every member read food labels and 75% of members' meals were "made from scratch." Eighteen percent of those in the Doing OK cluster were overweight; members watched the least television and reported eating 78% of their meals "made from scratch." This study demonstrated that five distinct market segments can be identified for social marketing efforts aimed at addressing the obesity epidemic. Through the identification of these five segments, social marketing campaigns can utilize selected channels and messages that communicate the most relevant and important information. The results of this study offer insight into how segmentation strategies and social marketing messages may improve public health.
Domestic mobile satellite systems in North America
NASA Technical Reports Server (NTRS)
Wachira, Muya
1990-01-01
Telest Mobile Inc. (TMI) and the American Mobile Satellite Corporation (AMSC) are authorized to provide mobile satellite services (MSS) in Canada and the United States respectively. They are developing compatible systems and are undertaking joint specification and procurement of spacecraft and ground segment with the aim of operational systems by late 1993. Early entry (phase 1) mobile data services are offered in 1990 using space segment capacity leased from Inmarsat. Here, an overview is given of these domestic MSS with an emphasis on the TMI component of the MSAT systen.
Multi-segmental movement patterns reflect juggling complexity and skill level.
Zago, Matteo; Pacifici, Ilaria; Lovecchio, Nicola; Galli, Manuela; Federolf, Peter Andreas; Sforza, Chiarella
2017-08-01
The juggling action of six experts and six intermediates jugglers was recorded with a motion capture system and decomposed into its fundamental components through Principal Component Analysis. The aim was to quantify trends in movement dimensionality, multi-segmental patterns and rhythmicity as a function of proficiency level and task complexity. Dimensionality was quantified in terms of Residual Variance, while the Relative Amplitude was introduced to account for individual differences in movement components. We observed that: experience-related modifications in multi-segmental actions exist, such as the progressive reduction of error-correction movements, especially in complex task condition. The systematic identification of motor patterns sensitive to the acquisition of specific experience could accelerate the learning process. Copyright © 2017 Elsevier B.V. All rights reserved.
Lopez Castillo, Maria A; Carlson, Jordan A; Cain, Kelli L; Bonilla, Edith A; Chuang, Emmeline; Elder, John P; Sallis, James F
2015-01-01
The study aims were to determine: (a) how class structure varies by dance type, (b) how moderate-to-vigorous physical activity (MVPA) and sedentary behavior vary by dance class segments, and (c) how class structure relates to total MVPA in dance classes. Participants were 291 boys and girls ages 5 to 18 years old enrolled in 58 dance classes at 21 dance studios in Southern California. MVPA and sedentary behavior were assessed with accelerometry, with data aggregated to 15-s epochs. Percent and minutes of MVPA and sedentary behavior during dance class segments and percent of class time and minutes spent in each segment were calculated using Freedson age-specific cut points. Differences in MVPA (Freedson 3 Metabolic Equivalents of Tasks age-specific cut points) and sedentary behavior ( < 100 counts/min) were examined using mixed-effects linear regression. The length of each class segment was fairly consistent across dance types, with the exception that in ballet, more time was spent in technique as compared with private jazz/hip-hop classes and Latin-flamenco and less time was spent in routine/practice as compared with Latin-salsa/ballet folklorico. Segment type accounted for 17% of the variance in the proportion of the segment spent in MVPA. The proportion of the segment in MVPA was higher for routine/practice (44.2%) than for technique (34.7%). The proportion of the segment in sedentary behavior was lowest for routine/practice (22.8%). The structure of dance lessons can impact youths' physical activity. Working with instructors to increase time in routine/practice during dance classes could contribute to physical activity promotion in youth.
Multisensory Modalities for Blending and Segmenting among Early Readers
ERIC Educational Resources Information Center
Lee, Lay Wah
2016-01-01
With the advent of touch-screen interfaces on the tablet computer, multisensory elements in reading instruction have taken on a new dimension. This computer assisted language learning research aimed to determine whether specific technology features of a tablet computer can add to the functionality of multisensory instruction in early reading…
Image segmentation with a novel regularized composite shape prior based on surrogate study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu
Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulatedmore » in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.« less
GeoSegmenter: A statistically learned Chinese word segmenter for the geoscience domain
NASA Astrophysics Data System (ADS)
Huang, Lan; Du, Youfu; Chen, Gongyang
2015-03-01
Unlike English, the Chinese language has no space between words. Segmenting texts into words, known as the Chinese word segmentation (CWS) problem, thus becomes a fundamental issue for processing Chinese documents and the first step in many text mining applications, including information retrieval, machine translation and knowledge acquisition. However, for the geoscience subject domain, the CWS problem remains unsolved. Although a generic segmenter can be applied to process geoscience documents, they lack the domain specific knowledge and consequently their segmentation accuracy drops dramatically. This motivated us to develop a segmenter specifically for the geoscience subject domain: the GeoSegmenter. We first proposed a generic two-step framework for domain specific CWS. Following this framework, we built GeoSegmenter using conditional random fields, a principled statistical framework for sequence learning. Specifically, GeoSegmenter first identifies general terms by using a generic baseline segmenter. Then it recognises geoscience terms by learning and applying a model that can transform the initial segmentation into the goal segmentation. Empirical experimental results on geoscience documents and benchmark datasets showed that GeoSegmenter could effectively recognise both geoscience terms and general terms.
A functional-based segmentation of human body scans in arbitrary postures.
Werghi, Naoufel; Xiao, Yijun; Siebert, Jan Paul
2006-02-01
This paper presents a general framework that aims to address the task of segmenting three-dimensional (3-D) scan data representing the human form into subsets which correspond to functional human body parts. Such a task is challenging due to the articulated and deformable nature of the human body. A salient feature of this framework is that it is able to cope with various body postures and is in addition robust to noise, holes, irregular sampling and rigid transformations. Although whole human body scanners are now capable of routinely capturing the shape of the whole body in machine readable format, they have not yet realized their potential to provide automatic extraction of key body measurements. Automated production of anthropometric databases is a prerequisite to satisfying the needs of certain industrial sectors (e.g., the clothing industry). This implies that in order to extract specific measurements of interest, whole body 3-D scan data must be segmented by machine into subsets corresponding to functional human body parts. However, previously reported attempts at automating the segmentation process suffer from various limitations, such as being restricted to a standard specific posture and being vulnerable to scan data artifacts. Our human body segmentation algorithm advances the state of the art to overcome the above limitations and we present experimental results obtained using both real and synthetic data that confirm the validity, effectiveness, and robustness of our approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nassirpour, Rounak, E-mail: Rounak.nassirpour@pfiz
Drug-induced nephrotoxicity is a common drug development complication for pharmaceutical companies. Sensitive, specific, translatable and non-invasive biomarkers of renal toxicity are urgently needed to diagnose nephron segment specific injury. The currently available gold standard biomarkers for nephrotoxicity are not kidney-specific, lack sensitivity for early detection, and are not suitable for renal damage localization (glomerular vs tubulointerstitial injury). MicroRNAs (miRNAs) are increasingly gaining momentum as promising biomarkers of various organ toxicities, including drug induced renal injury. This is mostly due to their stability in easily accessible biofluids, ease of developing nucleic acids detection compared to protein detection assays, as well asmore » their interspecies translatability. Increasing concordance of miRNA findings by standardizing methodology most suitable for their detection and quantitation, as well as characterization of their expression pattern in a cell type specific manner, will accelerate progress toward validation of these miRNAs as biomarkers in pre-clinical, and clinical settings. This review aims to highlight the current pre-clinical findings surrounding miRNAs as biomarkers in two important segments of the nephron, the glomerulus and tubules. - Highlights: • miRNAs are promising biomarkers of drug-induced kidney injury. • Summarized pre-clinical miRNA biomarkers of drug-induced nephrotoxicity. • Described the strengths and challenges associated with miRNAs as biomarkers.« less
Atuk, Oğuz; Özmen, M Utku
2017-05-01
The current tobacco taxation scheme in Turkey, a mix of high ad valorem tax and low specific tax, contains incentives for firms and consumers to change pricing and consumption patterns, respectively. The association between tax structure and price and tax revenue stability has not been studied in detail with micro data containing price segment information. In this study, we analyse whether incentives for firms and consumers undermine the effectiveness of tax policy in reducing consumption. We calculate alternative taxation scheme outcomes using differing ad valorem and specific tax rates through simulation analysis. We also estimate price elasticity of demand using detailed price and volume statistics between segments via regression analysis. A very high ad valorem rate provides strong incentives to firms to reduce prices. Therefore, this sort of tax strategy may induce even more consumption despite its initial aim of discouraging consumption. While higher prices dramatically reduce consumption of economy and medium price segment cigarettes, demand for premium segment cigarettes is found to be highly price-inelastic. The current tax scheme, based on both ad valorem and specific components, introduces various incentives to firms as well as to consumers which reduce the effectiveness of the tax policy. Therefore, on the basis of our theoretical predictions, an appropriate tax scheme should involve a balanced combination of ad valorem and specific rates, away from extreme ( ad valorem or specific dominant) cases to enhance the effectiveness of tax policy for curbing consumption. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Owusu-Sekyere, Enoch; Jordaan, Henry
2017-04-01
In recent years, governments, policy-makers, and managers of private food companies and agribusinesses are interested in understanding how consumers will react to environmentally sustainable attributes and information on food product labels. This study examines consumers' stated preferences for water and carbon footprints labelled food products from the viewpoint of black and white South Africans. Discrete choice experimental data was collected from black and white consumers to possibly assess cross-ethnic variations in preferences for environmentally sustainable products. Two widely purchased livestock products were chosen for the choice experiment. We found that consumers' preferences for environmentally sustainable attributes vary significantly between black and white South Africans. Our findings revealed that there are profound heterogeneous consumer segments within black and white respondents. The heterogeneity within both sub-samples is better explained at the segment level, rather than at individual level. For both product categories, the findings revealed that there are more distinct consumer segments among black respondents, relative to white respondents. The black respondents consist of water sustainability advocates, carbon reduction advocates, keen environmentalist and environmental neutrals. The white respondents entail keen environmentalist, environmental cynics, and environmental neutrals. The inherent significant variations in preferences for environmentally sustainable attributes across segments and racial groups would help in formulating feasible, and segment-specific environmental sustainability policies and marketing strategies aimed at changing consumers' attitude towards environmentally sustainable products. Demographic targeting of consumer segments, sustainability awareness and segment-specific educational campaigns meant to enhance subjective and objective knowledge on environmental sustainability are important tools for food companies and agribusinesses to promote and market environmentally sustainable food products.
The Research Proposal in Biomechanical and Biological Engineering Courses
ERIC Educational Resources Information Center
Harrison, Roger G.; Nollert, Matthias U.; Schmidtke, David W.; Sikavitsas, Vassilios I.
2006-01-01
Students in four biochemical and biological engineering courses for upper-level undergraduates and graduate students were required to write a research proposal. Breaking the requirements down into segments (such as a summary with specific aims, rough draft, and final draft) due on different dates helped make the assignment more manageable for the…
Profile and effects of consumer involvement in fresh meat.
Verbeke, Wim; Vackier, Isabelle
2004-05-01
This study investigates the profile and effects of consumer involvement in fresh meat as a product category based on cross-sectional data collected in Belgium. Analyses confirm that involvement in meat is a multidimensional construct including four facets: pleasure value, symbolic value, risk importance and risk probability. Four involvement-based meat consumer segments are identified: straightforward, cautious, indifferent, and concerned. Socio-demographic differences between the segments relate to gender, age and presence of children. The segments differ in terms of extensiveness of the decision-making process, impact and trust in information sources, levels of concern, price consciousness, claimed meat consumption, consumption intention, and preferred place of purchase. The two segments with a strong perception of meat risks constitute two-thirds of the market. They can be typified as cautious meat lovers versus concerned meat consumers. Efforts aiming at consumer reassurance through quality improvement, traceability, labelling or communication may gain effectiveness when targeted specifically to these two segments. Whereas straightforward meat lovers focus mainly on taste as the decisive criterion, indifferent consumers are strongly price oriented.
NASA Technical Reports Server (NTRS)
1991-01-01
The Reusable Reentry Satellite (RRS) System is composed of the payload segment (PS), vehicle segment (VS), and mission support (MS) segments. This specification establishes the performance, design, development, and test requirements for the RRS Rodent Module (RM).
Twelve automated thresholding methods for segmentation of PET images: a phantom study.
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M
2012-06-21
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Twelve automated thresholding methods for segmentation of PET images: a phantom study
NASA Astrophysics Data System (ADS)
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.
2012-06-01
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Automated segmentation of murine lung tumors in x-ray micro-CT images
NASA Astrophysics Data System (ADS)
Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis
2014-03-01
Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.
Benn, Matthew L; Pizzari, Tania; Rath, Leanne; Tucker, Kylie; Semciw, Adam I
2018-05-01
Cadaveric studies indicate that adductor magnus is structurally partitioned into at least two regions. The aim of this study was to investigate the direction-specific actions of proximal and distal portions of adductor magnus, and in doing so determine if these segments have distinct functional roles. Fine-wire EMG electrodes were inserted into two portions of adductor magnus of 12 healthy young adults. Muscle activity was recorded during maximum voluntary isometric contractions (MVICs) across eight tests (hip flexion/extension, internal/external rotation, abduction, and adduction at 0°, 45°, and 90° hip flexion). Median activity within each action (normalized to peak) was compared between segments using repeated measures nonparametric tests (α = 0.05). An effect size (ES = z-score/√sample size) was calculated to determine the magnitude of difference between muscle segments. The relative contribution of each muscle segment differed significantly during internal rotation (P < 0.001; ES = 0.88) and external rotation (P = 0.003, ES = 0.79). The distal portion was most active during extension [median (interquartile range); 100(0)% MVIC)] and internal rotation [58(34)% MVIC]. The proximal portion was most active during extension [100(49)% MVIC] and adduction [59(64)%MVIC], with low level activity during external rotation [15(41)%MVIC]. This study suggests that adductor magnus has at least two functionally unique regions. Differences were most evident during rotation. The different direction-specific actions may imply that each segment performs separate roles in hip stability and movement. These findings may have implications on injury prevention and rehabilitation for adductor-related groin injuries, hamstring strain injury, and hip pathology. Clin. Anat. 31:535-543, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
CT image segmentation methods for bone used in medical additive manufacturing.
van Eijnatten, Maureen; van Dijk, Roelof; Dobbe, Johannes; Streekstra, Geert; Koivisto, Juha; Wolff, Jan
2018-01-01
The accuracy of additive manufactured medical constructs is limited by errors introduced during image segmentation. The aim of this study was to review the existing literature on different image segmentation methods used in medical additive manufacturing. Thirty-two publications that reported on the accuracy of bone segmentation based on computed tomography images were identified using PubMed, ScienceDirect, Scopus, and Google Scholar. The advantages and disadvantages of the different segmentation methods used in these studies were evaluated and reported accuracies were compared. The spread between the reported accuracies was large (0.04 mm - 1.9 mm). Global thresholding was the most commonly used segmentation method with accuracies under 0.6 mm. The disadvantage of this method is the extensive manual post-processing required. Advanced thresholding methods could improve the accuracy to under 0.38 mm. However, such methods are currently not included in commercial software packages. Statistical shape model methods resulted in accuracies from 0.25 mm to 1.9 mm but are only suitable for anatomical structures with moderate anatomical variations. Thresholding remains the most widely used segmentation method in medical additive manufacturing. To improve the accuracy and reduce the costs of patient-specific additive manufactured constructs, more advanced segmentation methods are required. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Spinal cord grey matter segmentation challenge.
Prados, Ferran; Ashburner, John; Blaiotta, Claudia; Brosch, Tom; Carballido-Gamio, Julio; Cardoso, Manuel Jorge; Conrad, Benjamin N; Datta, Esha; Dávid, Gergely; Leener, Benjamin De; Dupont, Sara M; Freund, Patrick; Wheeler-Kingshott, Claudia A M Gandini; Grussu, Francesco; Henry, Roland; Landman, Bennett A; Ljungberg, Emil; Lyttle, Bailey; Ourselin, Sebastien; Papinutto, Nico; Saporito, Salvatore; Schlaeger, Regina; Smith, Seth A; Summers, Paul; Tam, Roger; Yiannakas, Marios C; Zhu, Alyssa; Cohen-Adad, Julien
2017-05-15
An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
What are Segments in Google Analytics
Segments find all sessions that meet a specific condition. You can then apply this segment to any report in Google Analytics (GA). Segments are a way of identifying sessions and users while filters identify specific events, like pageviews.
NASA Astrophysics Data System (ADS)
Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.
2016-03-01
Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.
Lemon, W C; Levine, R B
1997-06-01
During the metamorphosis of Manduca sexta the larval nervous system is reorganized to allow the generation of behaviors that are specific to the pupal and adult stages. In some instances, metamorphic changes in neurons that persist from the larval stage are segment-specific and lead to expression of segment-specific behavior in later stages. At the larval-pupal transition, the larval abdominal bending behavior, which is distributed throughout the abdomen, changes to the pupal gin trap behavior which is restricted to three abdominal segments. This study suggests that the neural circuit that underlies larval bending undergoes segment specific modifications to produce the segmentally restricted gin trap behavior. We show, however, that non-gin trap segments go through a developmental change similar to that seen in gin trap segments. Pupal-specific motor patterns are produced by stimulation of sensory neurons in abdominal segments that do not have gin traps and cannot produce the gin trap behavior. In particular, sensory stimulation in non-gin trap pupal segments evokes a motor response that is faster than the larval response and that displays the triphasic contralateral-ipsilateral-contralateral activity pattern that is typical of the pupal gin trap behavior. Despite the alteration of reflex activity in all segments, developmental changes in sensory neuron morphology are restricted to those segments that form gin traps. In non-gin trap segments, persistent sensory neurons do not expand their terminal arbors, as do sensory neurons in gin trap segments, yet are capable of eliciting gin trap-like motor responses.
Combining population and patient-specific characteristics for prostate segmentation on 3D CT images
NASA Astrophysics Data System (ADS)
Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M.; Fei, Baowei
2016-03-01
Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy.
Carbone, V; Fluit, R; Pellikaan, P; van der Krogt, M M; Janssen, D; Damsgaard, M; Vigneron, L; Feilkas, T; Koopman, H F J M; Verdonschot, N
2015-03-18
When analyzing complex biomechanical problems such as predicting the effects of orthopedic surgery, subject-specific musculoskeletal models are essential to achieve reliable predictions. The aim of this paper is to present the Twente Lower Extremity Model 2.0, a new comprehensive dataset of the musculoskeletal geometry of the lower extremity, which is based on medical imaging data and dissection performed on the right lower extremity of a fresh male cadaver. Bone, muscle and subcutaneous fat (including skin) volumes were segmented from computed tomography and magnetic resonance images scans. Inertial parameters were estimated from the image-based segmented volumes. A complete cadaver dissection was performed, in which bony landmarks, attachments sites and lines-of-action of 55 muscle actuators and 12 ligaments, bony wrapping surfaces, and joint geometry were measured. The obtained musculoskeletal geometry dataset was finally implemented in the AnyBody Modeling System (AnyBody Technology A/S, Aalborg, Denmark), resulting in a model consisting of 12 segments, 11 joints and 21 degrees of freedom, and including 166 muscle-tendon elements for each leg. The new TLEM 2.0 dataset was purposely built to be easily combined with novel image-based scaling techniques, such as bone surface morphing, muscle volume registration and muscle-tendon path identification, in order to obtain subject-specific musculoskeletal models in a quick and accurate way. The complete dataset, including CT and MRI scans and segmented volume and surfaces, is made available at http://www.utwente.nl/ctw/bw/research/projects/TLEMsafe for the biomechanical community, in order to accelerate the development and adoption of subject-specific models on large scale. TLEM 2.0 is freely shared for non-commercial use only, under acceptance of the TLEMsafe Research License Agreement. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Yuyang; Xing, Zhen; She, Dejun; Huang, Nan; Cao, Dairong
The aim of this study was to prospectively evaluate the repeatability of non-contrast-enhanced lower-extremity magnetic resonance angiography using the flow-spoiled fresh blood imaging (FS-FBI). Forty-three healthy volunteers and 15 patients with lower-extremity arterial stenosis were recruited in this study and were examined by FS-FBI. Digital subtraction angiography was performed within a week after the FS-FBI in the patient group. Repeatability was assessed by the following parameters: grading of image quality, diameter and area of major arteries, and grading of stenosis of lower-extremity arteries. Two experienced radiologists blinded for patient data independently evaluated the FS-FBI and digital subtraction angiography images. Intraclass correlation coefficients (ICCs), sensitivity, and specificity were used for statistical analysis. The grading of image quality of most data was satisfactory. The ICCs for the first and second measures were 0.792 and 0.884 in the femoral segment and 0.803 and 0.796 in the tibiofibular segment for healthy volunteer group, 0.873 and 1.000 in the femoral segment, and 0.737 and 0.737 in the tibiofibular segment for the patient group. Intraobserver and interobserver agreements on diameter and area of arteries were excellent, with ICCs mostly greater than 0.75 in the volunteer group. For stenosis grading analysis, intraobserver ICCs range from 0.784 to 0.862 and from 0.778 to 0.854, respectively. Flow-spoiled fresh blood imaging yielded a mean sensitivity and specificity to detect arterial stenosis or occlusion of 90% and 80% for femoral segment and 86.7% and 93.3% for tibiofibular segment at least. Lower-extremity angiography with FS-FBI is a reliable and reproducible screening tool for lower-extremity atherosclerotic disease, especially for patients with impaired renal function.
Basirat, Anahita
2017-01-01
Cochlear implant (CI) users frequently achieve good speech understanding based on phoneme and word recognition. However, there is a significant variability between CI users in processing prosody. The aim of this study was to examine the abilities of an excellent CI user to segment continuous speech using intonational cues. A post-lingually deafened adult CI user and 22 normal hearing (NH) subjects segmented phonemically identical and prosodically different sequences in French such as 'l'affiche' (the poster) versus 'la fiche' (the sheet), both [lafiʃ]. All participants also completed a minimal pair discrimination task. Stimuli were presented in auditory-only and audiovisual presentation modalities. The performance of the CI user in the minimal pair discrimination task was 97% in the auditory-only and 100% in the audiovisual condition. In the segmentation task, contrary to the NH participants, the performance of the CI user did not differ from the chance level. Visual speech did not improve word segmentation. This result suggests that word segmentation based on intonational cues is challenging when using CIs even when phoneme/word recognition is very well rehabilitated. This finding points to the importance of the assessment of CI users' skills in prosody processing and the need for specific interventions focusing on this aspect of speech communication.
Trullo, Roger; Petitjean, Caroline; Nie, Dong; Shen, Dinggang; Ruan, Su
2017-09-01
Computed Tomography (CT) is the standard imaging technique for radiotherapy planning. The delineation of Organs at Risk (OAR) in thoracic CT images is a necessary step before radiotherapy, for preventing irradiation of healthy organs. However, due to low contrast, multi-organ segmentation is a challenge. In this paper, we focus on developing a novel framework for automatic delineation of OARs. Different from previous works in OAR segmentation where each organ is segmented separately, we propose two collaborative deep architectures to jointly segment all organs, including esophagus, heart, aorta and trachea. Since most of the organ borders are ill-defined, we believe spatial relationships must be taken into account to overcome the lack of contrast. The aim of combining two networks is to learn anatomical constraints with the first network, which will be used in the second network, when each OAR is segmented in turn. Specifically, we use the first deep architecture, a deep SharpMask architecture, for providing an effective combination of low-level representations with deep high-level features, and then take into account the spatial relationships between organs by the use of Conditional Random Fields (CRF). Next, the second deep architecture is employed to refine the segmentation of each organ by using the maps obtained on the first deep architecture to learn anatomical constraints for guiding and refining the segmentations. Experimental results show superior performance on 30 CT scans, comparing with other state-of-the-art methods.
Yuceler, Zeyneb; Kantarci, Mecit; Yuce, Ihsan; Kizrak, Yesim; Bayraktutan, Ummugulsum; Ogul, Hayri; Kiris, Adem; Celik, Omer; Pirimoglu, Berhan; Genc, Berhan; Gundogdu, Fuat
2014-01-01
Our aim was to evaluate the diagnostic accuracy of 256-slice, high-pitch mode multidetector computed tomography (MDCT) for coronary artery bypass graft (CABG) patency. Eighty-eight patients underwent 256-slice MDCT angiography to evaluate their graft patency after CABG surgery using a prospectively synchronized electrocardiogram in the high-pitch spiral acquisition mode. Effective radiation doses were calculated. We investigated the diagnostic accuracy of high-pitch, low-dose, prospective, electrocardiogram-triggering, dual-source MDCT for CABG patency compared with catheter coronary angiography imaging findings. A total of 215 grafts and 645 vessel segments were analyzed. All graft segments had diagnostic image quality. The proximal and middle graft segments had significantly (P < 0.05) better mean image quality scores (1.18 ± 0.4) than the distal segments (1.31 ± 0.5). Using catheter coronary angiography as the reference standard, high-pitch MDCT had the following sensitivity, specificity, positive predictive value, and negative predictive value of per-segment analysis for detecting graft patency: 97.1%, 99.6%, 94.4%, and 99.8%, respectively. In conclusion, MDCT can be used noninvasively with a lower radiation dose for the assessment of restenosis in CABG patients.
Automated detection of videotaped neonatal seizures of epileptic origin.
Karayiannis, Nicolaos B; Xiong, Yaohua; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M
2006-06-01
This study aimed at the development of a seizure-detection system by training neural networks with quantitative motion information extracted from short video segments of neonatal seizures of the myoclonic and focal clonic types and random infant movements. The motion of the infants' body parts was quantified by temporal motion-strength signals extracted from video segments by motion-segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The motion of the infants' body parts also was quantified by temporal motion-trajectory signals extracted from video recordings by robust motion trackers based on block-motion models. These motion trackers were developed to adjust autonomously to illumination and contrast changes that may occur during the video-frame sequence. Video segments were represented by quantitative features obtained by analyzing motion-strength and motion-trajectory signals in both the time and frequency domains. Seizure recognition was performed by conventional feed-forward neural networks, quantum neural networks, and cosine radial basis function neural networks, which were trained to detect neonatal seizures of the myoclonic and focal clonic types and to distinguish them from random infant movements. The computational tools and procedures developed for automated seizure detection were evaluated on a set of 240 video segments of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). Regardless of the decision scheme used for interpreting the responses of the trained neural networks, all the neural network models exhibited sensitivity and specificity>90%. For one of the decision schemes proposed for interpreting the responses of the trained neural networks, the majority of the trained neural-network models exhibited sensitivity>90% and specificity>95%. In particular, cosine radial basis function neural networks achieved the performance targets of this phase of the project (i.e., sensitivity>95% and specificity>95%). The best among the motion segmentation and tracking methods developed in this study produced quantitative features that constitute a reliable basis for detecting neonatal seizures. The performance targets of this phase of the project were achieved by combining the quantitative features obtained by analyzing motion-strength signals with those produced by analyzing motion-trajectory signals. The computational procedures and tools developed in this study to perform off-line analysis of short video segments will be used in the next phase of this project, which involves the integration of these procedures and tools into a system that can process and analyze long video recordings of infants monitored for seizures in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Gao, Yaozong; Shi, Feng
Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segmentmore » CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT segmentation based on 15 patients.« less
Lengths of nephron tubule segments and collecting ducts in the CD-1 mouse kidney: an ontogeny study.
Walton, Sarah L; Moritz, Karen M; Bertram, John F; Singh, Reetu R
2016-11-01
The kidney continues to mature postnatally, with significant elongation of nephron tubules and collecting ducts to maintain fluid/electrolyte homeostasis. The aim of this project was to develop methodology to estimate lengths of specific segments of nephron tubules and collecting ducts in the CD-1 mouse kidney using a combination of immunohistochemistry and design-based stereology (vertical uniform random sections with cycloid arc test system). Lengths of tubules were determined at postnatal day 21 (P21) and 2 and 12 mo of age and also in mice fed a high-salt diet throughout adulthood. Immunohistochemistry was performed to identify individual tubule segments [aquaporin-1, proximal tubules (PT) and thin descending limbs of Henle (TDLH); uromodulin, distal tubules (DT); aquaporin-2, collecting ducts (CD)]. All tubular segments increased significantly in length between P21 and 2 mo of age (PT, 602% increase; DT, 200% increase; TDLH, 35% increase; CD, 53% increase). However, between 2 and 12 mo, a significant increase in length was only observed for PT (76% increase in length). At 12 mo of age, kidneys of mice on a high-salt diet demonstrated a 27% greater length of the TDLH, but no significant change in length was detected for PT, DT, and CD compared with the normal-salt group. Our study demonstrates an efficient method of estimating lengths of specific segments of the renal tubular system. This technique can be applied to examine structure of the renal tubules in combination with the number of glomeruli in the kidney in models of altered renal phenotype. Copyright © 2016 the American Physiological Society.
Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki
2015-01-01
This paper addresses the automated segmentation of multiple organs in upper abdominal computed tomography (CT) data. The aim of our study is to develop methods to effectively construct the conditional priors and use their prediction power for more accurate segmentation as well as easy adaptation to various imaging conditions in CT images, as observed in clinical practice. We propose a general framework of multi-organ segmentation which effectively incorporates interrelations among multiple organs and easily adapts to various imaging conditions without the need for supervised intensity information. The features of the framework are as follows: (1) A method for modeling conditional shape and location (shape–location) priors, which we call prediction-based priors, is developed to derive accurate priors specific to each subject, which enables the estimation of intensity priors without the need for supervised intensity information. (2) Organ correlation graph is introduced, which defines how the conditional priors are constructed and segmentation processes of multiple organs are executed. In our framework, predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented using conditional shape–location priors. The proposed framework was evaluated through the segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six imaging conditions at two hospitals. The experimental results show the effectiveness of the proposed prediction-based priors and the applicability to various imaging conditions without the need for supervised intensity information. Average Dice coefficients for the liver, spleen, and kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, respectively. PMID:26277022
Okada, Toshiyuki; Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki; Sato, Yoshinobu
2015-12-01
This paper addresses the automated segmentation of multiple organs in upper abdominal computed tomography (CT) data. The aim of our study is to develop methods to effectively construct the conditional priors and use their prediction power for more accurate segmentation as well as easy adaptation to various imaging conditions in CT images, as observed in clinical practice. We propose a general framework of multi-organ segmentation which effectively incorporates interrelations among multiple organs and easily adapts to various imaging conditions without the need for supervised intensity information. The features of the framework are as follows: (1) A method for modeling conditional shape and location (shape-location) priors, which we call prediction-based priors, is developed to derive accurate priors specific to each subject, which enables the estimation of intensity priors without the need for supervised intensity information. (2) Organ correlation graph is introduced, which defines how the conditional priors are constructed and segmentation processes of multiple organs are executed. In our framework, predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented using conditional shape-location priors. The proposed framework was evaluated through the segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six imaging conditions at two hospitals. The experimental results show the effectiveness of the proposed prediction-based priors and the applicability to various imaging conditions without the need for supervised intensity information. Average Dice coefficients for the liver, spleen, and kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Preliminary Analysis of Effect of Random Segment Errors on Coronagraph Performance
NASA Technical Reports Server (NTRS)
Stahl, Mark T.; Shaklan, Stuart B.; Stahl, H. Philip
2015-01-01
Are we alone in the Universe is probably the most compelling science question of our generation. To answer it requires a large aperture telescope with extreme wavefront stability. To image and characterize Earth-like planets requires the ability to block 10(exp 10) of the host stars light with a 10(exp -11) stability. For an internal coronagraph, this requires correcting wavefront errors and keeping that correction stable to a few picometers rms for the duration of the science observation. This requirement places severe specifications upon the performance of the observatory, telescope and primary mirror. A key task of the AMTD project (initiated in FY12) is to define telescope level specifications traceable to science requirements and flow those specifications to the primary mirror. From a systems perspective, probably the most important question is: What is the telescope wavefront stability specification? Previously, we suggested this specification should be 10 picometers per 10 minutes; considered issues of how this specification relates to architecture, i.e. monolithic or segmented primary mirror; and asked whether it was better to have few or many segmented. This paper reviews the 10 picometers per 10 minutes specification; provides analysis related to the application of this specification to segmented apertures; and suggests that a 3 or 4 ring segmented aperture is more sensitive to segment rigid body motion that an aperture with fewer or more segments.
A combined learning algorithm for prostate segmentation on 3D CT images.
Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei
2017-11-01
Segmentation of the prostate on CT images has many applications in the diagnosis and treatment of prostate cancer. Because of the low soft-tissue contrast on CT images, prostate segmentation is a challenging task. A learning-based segmentation method is proposed for the prostate on three-dimensional (3D) CT images. We combine population-based and patient-based learning methods for segmenting the prostate on CT images. Population data can provide useful information to guide the segmentation processing. Because of inter-patient variations, patient-specific information is particularly useful to improve the segmentation accuracy for an individual patient. In this study, we combine a population learning method and a patient-specific learning method to improve the robustness of prostate segmentation on CT images. We train a population model based on the data from a group of prostate patients. We also train a patient-specific model based on the data of the individual patient and incorporate the information as marked by the user interaction into the segmentation processing. We calculate the similarity between the two models to obtain applicable population and patient-specific knowledge to compute the likelihood of a pixel belonging to the prostate tissue. A new adaptive threshold method is developed to convert the likelihood image into a binary image of the prostate, and thus complete the segmentation of the gland on CT images. The proposed learning-based segmentation algorithm was validated using 3D CT volumes of 92 patients. All of the CT image volumes were manually segmented independently three times by two, clinically experienced radiologists and the manual segmentation results served as the gold standard for evaluation. The experimental results show that the segmentation method achieved a Dice similarity coefficient of 87.18 ± 2.99%, compared to the manual segmentation. By combining the population learning and patient-specific learning methods, the proposed method is effective for segmenting the prostate on 3D CT images. The prostate CT segmentation method can be used in various applications including volume measurement and treatment planning of the prostate. © 2017 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Fordyce, Jess
1996-01-01
Work carried out to re-engineer the mission analysis segment of JPL's mission planning ground system architecture is reported on. The aim is to transform the existing software tools, originally developed for specific missions on different support environments, into an integrated, general purpose, multi-mission tool set. The issues considered are: the development of a partnership between software developers and users; the definition of key mission analysis functions; the development of a consensus based architecture; the move towards evolutionary change instead of revolutionary replacement; software reusability, and the minimization of future maintenance costs. The current status and aims of new developments are discussed and specific examples of cost savings and improved productivity are presented.
Shi, Y; Qi, F; Xue, Z; Chen, L; Ito, K; Matsuo, H; Shen, D
2008-04-01
This paper presents a new deformable model using both population-based and patient-specific shape statistics to segment lung fields from serial chest radiographs. There are two novelties in the proposed deformable model. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel. Second, the deformable contour is constrained by both population-based and patient-specific shape statistics, and it yields more robust and accurate segmentation of lung fields for serial chest radiographs. In particular, for segmenting the initial time-point images, the population-based shape statistics is used to constrain the deformable contour; as more subsequent images of the same patient are acquired, the patient-specific shape statistics online collected from the previous segmentation results gradually takes more roles. Thus, this patient-specific shape statistics is updated each time when a new segmentation result is obtained, and it is further used to refine the segmentation results of all the available time-point images. Experimental results show that the proposed method is more robust and accurate than other active shape models in segmenting the lung fields from serial chest radiographs.
Bertilson, Bo C; Brosjö, Eva; Billing, Hans; Strender, Lars-Erik
2010-09-10
Detection of nerve involvement originating in the spine is a primary concern in the assessment of spine symptoms. Magnetic resonance imaging (MRI) has become the diagnostic method of choice for this detection. However, the agreement between MRI and other diagnostic methods for detecting nerve involvement has not been fully evaluated. The aim of this diagnostic study was to evaluate the agreement between nerve involvement visible in MRI and findings of nerve involvement detected in a structured physical examination and a simplified pain drawing. Sixty-one consecutive patients referred for MRI of the lumbar spine were - without knowledge of MRI findings - assessed for nerve involvement with a simplified pain drawing and a structured physical examination. Agreement between findings was calculated as overall agreement, the p value for McNemar's exact test, specificity, sensitivity, and positive and negative predictive values. MRI-visible nerve involvement was significantly less common than, and showed weak agreement with, physical examination and pain drawing findings of nerve involvement in corresponding body segments. In spine segment L4-5, where most findings of nerve involvement were detected, the mean sensitivity of MRI-visible nerve involvement to a positive neurological test in the physical examination ranged from 16-37%. The mean specificity of MRI-visible nerve involvement in the same segment ranged from 61-77%. Positive and negative predictive values of MRI-visible nerve involvement in segment L4-5 ranged from 22-78% and 28-56% respectively. In patients with long-standing nerve root symptoms referred for lumbar MRI, MRI-visible nerve involvement significantly underestimates the presence of nerve involvement detected by a physical examination and a pain drawing. A structured physical examination and a simplified pain drawing may reveal that many patients with "MRI-invisible" lumbar symptoms need treatment aimed at nerve involvement. Factors other than present MRI-visible nerve involvement may be responsible for findings of nerve involvement in the physical examination and the pain drawing.
Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming
2018-02-19
The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.
A scale-based connected coherence tree algorithm for image segmentation.
Ding, Jundi; Ma, Runing; Chen, Songcan
2008-02-01
This paper presents a connected coherence tree algorithm (CCTA) for image segmentation with no prior knowledge. It aims to find regions of semantic coherence based on the proposed epsilon-neighbor coherence segmentation criterion. More specifically, with an adaptive spatial scale and an appropriate intensity-difference scale, CCTA often achieves several sets of coherent neighboring pixels which maximize the probability of being a single image content (including kinds of complex backgrounds). In practice, each set of coherent neighboring pixels corresponds to a coherence class (CC). The fact that each CC just contains a single equivalence class (EC) ensures the separability of an arbitrary image theoretically. In addition, the resultant CCs are represented by tree-based data structures, named connected coherence tree (CCT)s. In this sense, CCTA is a graph-based image analysis algorithm, which expresses three advantages: 1) its fundamental idea, epsilon-neighbor coherence segmentation criterion, is easy to interpret and comprehend; 2) it is efficient due to a linear computational complexity in the number of image pixels; 3) both subjective comparisons and objective evaluation have shown that it is effective for the tasks of semantic object segmentation and figure-ground separation in a wide variety of images. Those images either contain tiny, long and thin objects or are severely degraded by noise, uneven lighting, occlusion, poor illumination, and shadow.
A human visual based binarization technique for histological images
NASA Astrophysics Data System (ADS)
Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos
2017-05-01
In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.
Segmentation and determination of joint space width in foot radiographs
NASA Astrophysics Data System (ADS)
Schenk, O.; de Muinck Keizer, D. M.; Bernelot Moens, H. J.; Slump, C. H.
2016-03-01
Joint damage in rheumatoid arthritis is frequently assessed using radiographs of hands and feet. Evaluation includes measurements of the joint space width (JSW) and detection of erosions. Current visual scoring methods are timeconsuming and subject to inter- and intra-observer variability. Automated measurement methods avoid these limitations and have been fairly successful in hand radiographs. This contribution aims at foot radiographs. Starting from an earlier proposed automated segmentation method we have developed a novel model based image analysis algorithm for JSW measurements. This method uses active appearance and active shape models to identify individual bones. The model compiles ten submodels, each representing a specific bone of the foot (metatarsals 1-5, proximal phalanges 1-5). We have performed segmentation experiments using 24 foot radiographs, randomly selected from a large database from the rheumatology department of a local hospital: 10 for training and 14 for testing. Segmentation was considered successful if the joint locations are correctly determined. Segmentation was successful in only 14%. To improve results a step-by-step analysis will be performed. We performed JSW measurements on 14 randomly selected radiographs. JSW was successfully measured in 75%, mean and standard deviation are 2.30+/-0.36mm. This is a first step towards automated determination of progression of RA and therapy response in feet using radiographs.
Eerdekens, Maarten; Staes, Filip; Pilkington, Thomas; Deschamps, Kevin
2017-01-01
Application of in-shoe multi-segment foot kinematic analyses currently faces a number of challenges, including: (i) the difficulty to apply regular markers onto the skin, (ii) the necessity for an adequate shoe which fits various foot morphologies and (iii) the need for adequate repeatability throughout a repeated measure condition. The aim of this study therefore was to design novel magnet based 3D printed markers for repeated in-shoe measurements while using accordingly adapted modified shoes for a specific multi-segment foot model. Multi-segment foot kinematics of ten participants were recorded and kinematics of hindfoot, midfoot and forefoot were calculated. Dynamic trials were conducted to check for intra and inter-session repeatability when combining novel markers and modified shoes in a repeated measures design. Intraclass correlation coefficients were calculated to determine reliability. Both repeatability and reliability were proven to be good to excellent with maximum joint angle deviations of 1.11° for intra-session variability and 1.29° for same-day inter-session variability respectively and ICC values of >0.91. The novel markers can be reliably used in future research settings using in-shoe multi-segment foot kinematic analyses with multiple shod conditions.
Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI.
Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jonas, Eduard
2010-10-01
Gd-EOB-DTPA (gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid) is a gadolinium-based hepatocyte-specific contrast agent for magnetic resonance imaging (MRI). The aim of this study was to determine whether the hepatic uptake and excretion of Gd-EOB-DTPA differ between patients with primary biliary cirrhosis (PBC) and healthy controls, and whether differences could be quantified. Gd-EOB-DTPA-enhanced liver MRI was performed in 20 healthy volunteers and 12 patients with PBC. The uptake of Gd-EOB-DTPA was assessed using traditional semi-quantitative parameters (C(max) , T(max) and T(1/2) ), as well as model-free parameters derived after deconvolutional analysis (hepatic extraction fraction [HEF], input-relative blood flow [irBF] and mean transit time [MTT]). In each individual, all parameters were calculated for each liver segment and the median of the segmental values was used to define a global liver median (GLM). Although the PBC patients had relatively mild disease according to their Model for End-stage Liver Disease (MELD), Child-Pugh and Mayo risk scores, they had significantly lower HEF and shorter MTT values compared with the healthy controls. These differences significantly increased with increasing MELD and Child-Pugh scores. Dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) has a potential role as an imaging-based liver function test. The high spatial resolution of MRI enables hepatic function to be assessed on segmental and sub-segmental levels. © 2010 International Hepato-Pancreato-Biliary Association.
Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images.
Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Arlt, Felix; Ituna-Yudonago, Jean Fulbert; Chalopin, Claire
2018-03-01
Intraoperative ultrasound (iUS) imaging is commonly used to support brain tumor operation. The tumor segmentation in the iUS images is a difficult task and still under improvement because of the low signal-to-noise ratio. The success of automatic methods is also limited due to the high noise sensibility. Therefore, an alternative brain tumor segmentation method in 3D-iUS data using a tumor model obtained from magnetic resonance (MR) data for local MR-iUS registration is presented in this paper. The aim is to enhance the visualization of the brain tumor contours in iUS. A multistep approach is proposed. First, a region of interest (ROI) based on the specific patient tumor model is defined. Second, hyperechogenic structures, mainly tumor tissues, are extracted from the ROI of both modalities by using automatic thresholding techniques. Third, the registration is performed over the extracted binary sub-volumes using a similarity measure based on gradient values, and rigid and affine transformations. Finally, the tumor model is aligned with the 3D-iUS data, and its contours are represented. Experiments were successfully conducted on a dataset of 33 patients. The method was evaluated by comparing the tumor segmentation with expert manual delineations using two binary metrics: contour mean distance and Dice index. The proposed segmentation method using local and binary registration was compared with two grayscale-based approaches. The outcomes showed that our approach reached better results in terms of computational time and accuracy than the comparative methods. The proposed approach requires limited interaction and reduced computation time, making it relevant for intraoperative use. Experimental results and evaluations were performed offline. The developed tool could be useful for brain tumor resection supporting neurosurgeons to improve tumor border visualization in the iUS volumes.
Development of numerical phantoms by MRI for RF electromagnetic dosimetry: a female model.
Mazzurana, M; Sandrini, L; Vaccari, A; Malacarne, C; Cristoforetti, L; Pontalti, R
2004-01-01
Numerical human models for electromagnetic dosimetry are commonly obtained by segmentation of CT or MRI images and complex permittivity values are ascribed to each issue according to literature values. The aim of this study is to provide an alternative semi-automatic method by which non-segmented images, obtained by a MRI tomographer, can be automatically related to the complex permittivity values through two frequency dependent transfer functions. In this way permittivity and conductivity vary with continuity--even in the same tissue--reflecting the intrinsic realistic spatial dispersion of such parameters. A female human model impinged by a plane wave is tested using finite-difference time-domain algorithm and the results of the total body and layer-averaged specific absorption rate are reported.
Ciardo, Delia; Gerardi, Marianna Alessandra; Vigorito, Sabrina; Morra, Anna; Dell'acqua, Veronica; Diaz, Federico Javier; Cattani, Federica; Zaffino, Paolo; Ricotti, Rosalinda; Spadea, Maria Francesca; Riboldi, Marco; Orecchia, Roberto; Baroni, Guido; Leonardi, Maria Cristina; Jereczek-Fossa, Barbara Alicja
2017-04-01
Atlas-based automatic segmentation (ABAS) addresses the challenges of accuracy and reliability in manual segmentation. We aim to evaluate the contribution of specific-purpose in ABAS of breast cancer (BC) patients with respect to generic-purpose libraries. One generic-purpose and 9 specific-purpose libraries, stratified according to type of surgery and size of thorax circumference, were obtained from the computed tomography of 200 BC patients. Keywords about contralateral breast volume and presence of breast expander/prostheses were recorded. ABAS was validated on 47 independent patients, considering manual segmentation from scratch as reference. Five ABAS datasets were obtained, testing single-ABAS and multi-ABAS with simultaneous truth and performance level estimation (STAPLE). Center of mass distance (CMD), average Hausdorff distance (AHD) and Dice similarity coefficient (DSC) between corresponding ABAS and manual structures were evaluated and statistically significant differences between different surgeries, structures and ABAS strategies were investigated. Statistically significant differences between patients who underwent different surgery were found, with superior results for conservative-surgery group, and between different structures were observed: ABAS of heart, lungs, kidneys and liver was satisfactory (median values: CMD<2 mm, DSC≥0.80, AHD<1.5 mm), whereas chest wall, breast and spinal cord obtained moderate performance (median values: 2 mm ≤ CMD<5 mm, 0.60 ≤ DSC<0.80, 1.5 mm ≤ AHD<4 mm) and esophagus, stomach, brachial plexus and supraclavicular nodes obtained poor performance (median CMD≥5 mm, DSC<0.60, AHD≥4 mm). The application of STAPLE algorithm generally yields higher performance and the use of keywords improves results for breast ABAS. The homogeneity in the selection of atlases based on multiple anatomical and clinical features and the use of specific-purpose libraries can improve ABAS performance with respect to generic-purpose libraries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tarascio, Michela; Leo, Laura Anna; Klersy, Catherine; Murzilli, Romina; Moccetti, Tiziano; Faletra, Francesco Fulvio
2017-07-01
Identification of the extent of scar transmurality in chronic ischemic heart disease is important because it correlates with viability. The aim of this retrospective study was to evaluate whether layer-specific two-dimensional speckle-tracking echocardiography allows distinction of scar presence and transmurality. A total of 70 subjects, 49 with chronic ischemic cardiomyopathy and 21 healthy subjects, underwent two-dimensional speckle-tracking echocardiography and late gadolinium-enhanced cardiac magnetic resonance. Scar extent was determined as the relative amount of hyperenhancement using late gadolinium-enhanced cardiac magnetic resonance in an 18-segment model (0% hyperenhancement = normal; 1%-50% = subendocardial scar; 51%-100% = transmural scar). In the same 18-segment model, peak systolic circumferential strain and longitudinal strain were calculated separately for the endocardial and epicardial layers as well as the full-wall myocardial thickness. All strain parameters showed cutoff values (area under the curve > 0.69) that allowed the discrimination of normal versus scar segments but not of transmural versus subendocardial scars. This was true for all strain parameters analyzed, without differences in efficacy between longitudinal and circumferential strain and subendocardial, subepicardial, and full-wall-thickness strain values. Circumferential and longitudinal strain in normal segments showed transmural and basoapical gradients (greatest values at the subendocardial layer and apex). In segments with scar, transmural gradient was maintained, whereas basoapical gradient was lost because the reduction of strain values in the presence of the scar was greater at the apex. The two-dimensional speckle-tracking echocardiographic values distinguish scar presence but not transmurality; thus, they are not useful predictors of scar segment viability. It remains unclear why there is a greater strain value reduction in the presence of a scar at the apical level. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Zhang, Yuyang; Xing, Zhen; She, Dejun; Huang, Nan; Cao, Dairong
2018-01-01
Purpose The aim of this study was to prospectively evaluate the repeatability of non–contrast-enhanced lower-extremity magnetic resonance angiography using the flow-spoiled fresh blood imaging (FS-FBI). Methods Forty-three healthy volunteers and 15 patients with lower-extremity arterial stenosis were recruited in this study and were examined by FS-FBI. Digital subtraction angiography was performed within a week after the FS-FBI in the patient group. Repeatability was assessed by the following parameters: grading of image quality, diameter and area of major arteries, and grading of stenosis of lower-extremity arteries. Two experienced radiologists blinded for patient data independently evaluated the FS-FBI and digital subtraction angiography images. Intraclass correlation coefficients (ICCs), sensitivity, and specificity were used for statistical analysis. Results The grading of image quality of most data was satisfactory. The ICCs for the first and second measures were 0.792 and 0.884 in the femoral segment and 0.803 and 0.796 in the tibiofibular segment for healthy volunteer group, 0.873 and 1.000 in the femoral segment, and 0.737 and 0.737 in the tibiofibular segment for the patient group. Intraobserver and interobserver agreements on diameter and area of arteries were excellent, with ICCs mostly greater than 0.75 in the volunteer group. For stenosis grading analysis, intraobserver ICCs range from 0.784 to 0.862 and from 0.778 to 0.854, respectively. Flow-spoiled fresh blood imaging yielded a mean sensitivity and specificity to detect arterial stenosis or occlusion of 90% and 80% for femoral segment and 86.7% and 93.3% for tibiofibular segment at least. Conclusions Lower-extremity angiography with FS-FBI is a reliable and reproducible screening tool for lower-extremity atherosclerotic disease, especially for patients with impaired renal function. PMID:28787351
NASA Astrophysics Data System (ADS)
Fornas, D.; Sales, J.; Peñalver, A.; Pérez, J.; Fernández, J. J.; Marín, R.; Sanz, P. J.
2016-03-01
This article presents research on the subject of autonomous underwater robot manipulation. Ongoing research in underwater robotics intends to increase the autonomy of intervention operations that require physical interaction in order to achieve social benefits in fields such as archaeology or biology that cannot afford the expenses of costly underwater operations using remote operated vehicles. Autonomous grasping is still a very challenging skill, especially in underwater environments, with highly unstructured scenarios, limited availability of sensors and adverse conditions that affect the robot perception and control systems. To tackle these issues, we propose the use of vision and segmentation techniques that aim to improve the specification of grasping operations on underwater primitive shaped objects. Several sources of stereo information are used to gather 3D information in order to obtain a model of the object. Using a RANSAC segmentation algorithm, the model parameters are estimated and a set of feasible grasps are computed. This approach is validated in both simulated and real underwater scenarios.
Patient-specific semi-supervised learning for postoperative brain tumor segmentation.
Meier, Raphael; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2014-01-01
In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.
The interaction between specificity and linguistic contrast
NASA Astrophysics Data System (ADS)
Nielsen, Kuniko
2005-09-01
Previous studies have shown listeners' ability to remember fine phonetic details [e.g., Mullennix et al., 1989], providing support for the episodic view of speech perception. The imitation paradigm [Goldinger, 1998, Shockley et al., 2004], in which subjects' speech is compared before and after they are exposed to target speech (= study phase) has shown that subjects shift their production in the direction of the target. Our earlier results [Nielsen, 2005] showed that the imitation effect for extended VOT was generalized to new stimuli as well as to a new segment, suggesting that the locus of the imitation effect can be smaller than individual words or segments. The current study aims to further investigate how experienced speech input interacts with linguistic representations, by testing whether the imitation effect is observed when the modeled stimuli have reduced VOT (which could introduce linguistic ambiguity). In other words, do speakers imitate and generalize shorter VOT even if the change might impair linguistic contrasts? To address this question, the study phase includes words with initial /p/ with reduced VOT, while the pre- and post-study production list includes (1) the modeled words, (2) the modeled segments /p/ in new words, and (3) the new segment /k/.
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen
2008-02-01
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.
Rotation invariant eigenvessels and auto-context for retinal vessel detection
NASA Astrophysics Data System (ADS)
Montuoro, Alessio; Simader, Christian; Langs, Georg; Schmidt-Erfurth, Ursula
2015-03-01
Retinal vessels are one of the few anatomical landmarks that are clearly visible in various imaging modalities of the eye. As they are also relatively invariant to disease progression, retinal vessel segmentation allows cross-modal and temporal registration enabling exact diagnosing for various eye diseases like diabetic retinopathy, hypertensive retinopathy or age-related macular degeneration (AMD). Due to the clinical significance of retinal vessels many different approaches for segmentation have been published in the literature. In contrast to other segmentation approaches our method is not specifically tailored to the task of retinal vessel segmentation. Instead we utilize a more general image classification approach and show that this can achieve comparable results. In the proposed method we utilize the concepts of eigenfaces and auto-context. Eigenfaces have been described quite extensively in the literature and their performance is well known. They are however quite sensitive to translation and rotation. The former was addressed by computing the eigenvessels in local image windows of different scales, the latter by estimating and correcting the local orientation. Auto-context aims to incorporate automatically generated context information into the training phase of classification approaches. It has been shown to improve the performance of spinal cord segmentation4 and 3D brain image segmentation. The proposed method achieves an area under the receiver operating characteristic (ROC) curve of Az = 0.941 on the DRIVE data set, being comparable to current state-of-the-art approaches.
White, Maria C; Steel, John; Lowen, Anice C
2017-06-01
Influenza A virus (IAV) RNA packaging signals serve to direct the incorporation of IAV gene segments into virus particles, and this process is thought to be mediated by segment-segment interactions. These packaging signals are segment and strain specific, and as such, they have the potential to impact reassortment outcomes between different IAV strains. Our study aimed to quantify the impact of packaging signal mismatch on IAV reassortment using the human seasonal influenza A/Panama/2007/99 (H3N2) and pandemic influenza A/Netherlands/602/2009 (H1N1) viruses. Focusing on the three most divergent segments, we constructed pairs of viruses that encoded identical proteins but differed in the packaging signal regions on a single segment. We then evaluated the frequency with which segments carrying homologous versus heterologous packaging signals were incorporated into reassortant progeny viruses. We found that, when segment 4 (HA) of coinfecting parental viruses was modified, there was a significant preference for the segment containing matched packaging signals relative to the background of the virus. This preference was apparent even when the homologous HA constituted a minority of the HA segment population available in the cell for packaging. Conversely, when segment 6 (NA) or segment 8 (NS) carried modified packaging signals, there was no significant preference for homologous packaging signals. These data suggest that movement of NA and NS segments between the human H3N2 and H1N1 lineages is unlikely to be restricted by packaging signal mismatch, while movement of the HA segment would be more constrained. Our results indicate that the importance of packaging signals in IAV reassortment is segment dependent. IMPORTANCE Influenza A viruses (IAVs) can exchange genes through reassortment. This process contributes to both the highly diverse population of IAVs found in nature and the formation of novel epidemic and pandemic IAV strains. Our study sought to determine the extent to which IAV packaging signal divergence impacts reassortment between seasonal IAVs. Our knowledge in this area is lacking, and insight into the factors that influence IAV reassortment will inform and strengthen ongoing public health efforts to anticipate the emergence of new viruses. We found that the packaging signals on the HA segment, but not the NA or NS segments, restricted IAV reassortment. Thus, the packaging signals of the HA segment could be an important factor in determining the likelihood that two IAV strains of public health interest will undergo reassortment. Copyright © 2017 American Society for Microbiology.
White, Maria C.; Steel, John
2017-01-01
ABSTRACT Influenza A virus (IAV) RNA packaging signals serve to direct the incorporation of IAV gene segments into virus particles, and this process is thought to be mediated by segment-segment interactions. These packaging signals are segment and strain specific, and as such, they have the potential to impact reassortment outcomes between different IAV strains. Our study aimed to quantify the impact of packaging signal mismatch on IAV reassortment using the human seasonal influenza A/Panama/2007/99 (H3N2) and pandemic influenza A/Netherlands/602/2009 (H1N1) viruses. Focusing on the three most divergent segments, we constructed pairs of viruses that encoded identical proteins but differed in the packaging signal regions on a single segment. We then evaluated the frequency with which segments carrying homologous versus heterologous packaging signals were incorporated into reassortant progeny viruses. We found that, when segment 4 (HA) of coinfecting parental viruses was modified, there was a significant preference for the segment containing matched packaging signals relative to the background of the virus. This preference was apparent even when the homologous HA constituted a minority of the HA segment population available in the cell for packaging. Conversely, when segment 6 (NA) or segment 8 (NS) carried modified packaging signals, there was no significant preference for homologous packaging signals. These data suggest that movement of NA and NS segments between the human H3N2 and H1N1 lineages is unlikely to be restricted by packaging signal mismatch, while movement of the HA segment would be more constrained. Our results indicate that the importance of packaging signals in IAV reassortment is segment dependent. IMPORTANCE Influenza A viruses (IAVs) can exchange genes through reassortment. This process contributes to both the highly diverse population of IAVs found in nature and the formation of novel epidemic and pandemic IAV strains. Our study sought to determine the extent to which IAV packaging signal divergence impacts reassortment between seasonal IAVs. Our knowledge in this area is lacking, and insight into the factors that influence IAV reassortment will inform and strengthen ongoing public health efforts to anticipate the emergence of new viruses. We found that the packaging signals on the HA segment, but not the NA or NS segments, restricted IAV reassortment. Thus, the packaging signals of the HA segment could be an important factor in determining the likelihood that two IAV strains of public health interest will undergo reassortment. PMID:28331085
Boudissa, M; Orfeuvre, B; Chabanas, M; Tonetti, J
2017-09-01
The Letournel classification of acetabular fracture shows poor reproducibility in inexperienced observers, despite the introduction of 3D imaging. We therefore developed a method of semi-automatic segmentation based on CT data. The present prospective study aimed to assess: (1) whether semi-automatic bone-fragment segmentation increased the rate of correct classification; (2) if so, in which fracture types; and (3) feasibility using the open-source itksnap 3.0 software package without incurring extra cost for users. Semi-automatic segmentation of acetabular fractures significantly increases the rate of correct classification by orthopedic surgery residents. Twelve orthopedic surgery residents classified 23 acetabular fractures. Six used conventional 3D reconstructions provided by the center's radiology department (conventional group) and 6 others used reconstructions obtained by semi-automatic segmentation using the open-source itksnap 3.0 software package (segmentation group). Bone fragments were identified by specific colors. Correct classification rates were compared between groups on Chi 2 test. Assessment was repeated 2 weeks later, to determine intra-observer reproducibility. Correct classification rates were significantly higher in the "segmentation" group: 114/138 (83%) versus 71/138 (52%); P<0.0001. The difference was greater for simple (36/36 (100%) versus 17/36 (47%); P<0.0001) than complex fractures (79/102 (77%) versus 54/102 (53%); P=0.0004). Mean segmentation time per fracture was 27±3min [range, 21-35min]. The segmentation group showed excellent intra-observer correlation coefficients, overall (ICC=0.88), and for simple (ICC=0.92) and complex fractures (ICC=0.84). Semi-automatic segmentation, identifying the various bone fragments, was effective in increasing the rate of correct acetabular fracture classification on the Letournel system by orthopedic surgery residents. It may be considered for routine use in education and training. III: prospective case-control study of a diagnostic procedure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Nephron segment-specific gene expression using AAV vectors.
Asico, Laureano D; Cuevas, Santiago; Ma, Xiaobo; Jose, Pedro A; Armando, Ines; Konkalmatt, Prasad R
2018-02-26
AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na + /glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Latest recanalization techniques for complex superficial femoral artery occlusions.
Gonzalez, L; Chen, A; Lin, P H; Pisimisis, G; Barshes, N R; Bechara, C F; Kougias, P
2012-08-01
Complex, long segment lesions of the superficial femoral artery (SFA) are common, occurring in 40% of patients with peripheral vascular disease. In particular, chronic total occlusions (CTOs) continue to pose a challenge in the endovascular management of SFA disease. Several conventional wire and catheter based techniques have been described including subintimal recanalization and retrograde techniques. In addition, advances in endovascular technology have led to the development of a series of new devices aimed specifically at facilitating the crossing of long segment SFA occlusions or establishing re-entry of the true lumen. Here we present an overview of the minimally invasive techniques used to recanalize CTOs of the SFA and the latest specialized devices available for both recanalization and re-entry, as well as a summary of the literature supporting their application.
McCalpin, J.P.; Nishenko, S.P.
1996-01-01
The chronology of M>7 paleoearthquakes on the central five segments of the Wasatch fault zone (WFZ) is one of the best dated in the world and contains 16 earthquakes in the past 5600 years with an average repeat time of 350 years. Repeat times for individual segments vary by a factor of 2, and range from about 1200 to 2600 years. Four of the central five segments ruptured between ??? 620??30 and 1230??60 calendar years B.P. The remaining segment (Brigham City segment) has not ruptured in the past 2120??100 years. Comparison of the WFZ space-time diagram of paleoearthquakes with synthetic paleoseismic histories indicates that the observed temporal clusters and gaps have about an equal probability (depending on model assumptions) of reflecting random coincidence as opposed to intersegment contagion. Regional seismicity suggests that for exposure times of 50 and 100 years, the probability for an earthquake of M>7 anywhere within the Wasatch Front region, based on a Poisson model, is 0.16 and 0.30, respectively. A fault-specific WFZ model predicts 50 and 100 year probabilities for a M>7 earthquake on the WFZ itself, based on a Poisson model, as 0.13 and 0.25, respectively. In contrast, segment-specific earthquake probabilities that assume quasi-periodic recurrence behavior on the Weber, Provo, and Nephi segments are less (0.01-0.07 in 100 years) than the regional or fault-specific estimates (0.25-0.30 in 100 years), due to the short elapsed times compared to average recurrence intervals on those segments. The Brigham City and Salt Lake City segments, however, have time-dependent probabilities that approach or exceed the regional and fault specific probabilities. For the Salt Lake City segment, these elevated probabilities are due to the elapsed time being approximately equal to the average late Holocene recurrence time. For the Brigham City segment, the elapsed time is significantly longer than the segment-specific late Holocene recurrence time.
3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images
NASA Astrophysics Data System (ADS)
Castro-Mateos, Isaac; Pozo, Jose M.; Eltes, Peter E.; Del Rio, Luis; Lazary, Aron; Frangi, Alejandro F.
2014-12-01
Computational medicine aims at employing personalised computational models in diagnosis and treatment planning. The use of such models to help physicians in finding the best treatment for low back pain (LBP) is becoming popular. One of the challenges of creating such models is to derive patient-specific anatomical and tissue models of the lumbar intervertebral discs (IVDs), as a prior step. This article presents a segmentation scheme that obtains accurate results irrespective of the degree of IVD degeneration, including pathological discs with protrusion or herniation. The segmentation algorithm, employing a novel feature selector, iteratively deforms an initial shape, which is projected into a statistical shape model space at first and then, into a B-Spline space to improve accuracy. The method was tested on a MR dataset of 59 patients suffering from LBP. The images follow a standard T2-weighted protocol in coronal and sagittal acquisitions. These two image volumes were fused in order to overcome large inter-slice spacing. The agreement between expert-delineated structures, used here as gold-standard, and our automatic segmentation was evaluated using Dice Similarity Index and surface-to-surface distances, obtaining a mean error of 0.68 mm in the annulus segmentation and 1.88 mm in the nucleus, which are the best results with respect to the image resolution in the current literature.
Lozoya-Agullo, Isabel; Zur, Moran; Beig, Avital; Fine, Noa; Cohen, Yael; González-Álvarez, Marta; Merino-Sanjuán, Matilde; González-Álvarez, Isabel; Bermejo, Marival; Dahan, Arik
2016-12-30
Intestinal drug permeability is position dependent and pertains to a specific point along the intestinal membrane, and the resulted segmental-dependent permeability phenomenon has been recognized as a critical factor in the overall absorption of drug following oral administration. The aim of this research was to compare segmental-dependent permeability data obtained from two different rat intestinal perfusion approaches: the single-pass intestinal perfusion (SPIP) model and the closed-loop (Doluisio) rat perfusion method. The rat intestinal permeability of 12 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was assessed in three small intestinal regions: the upper jejunum, mid-small intestine, and the terminal ileum, using both the SPIP and the Doluisio experimental methods. Excellent correlation was evident between the two approaches, especially in the upper jejunum (R 2 =0.95). Significant regional-dependent permeability was found in half of drugs studied, illustrating the importance and relevance of segmental-dependent intestinal permeability. Despite the differences between the two methods, highly comparable results were obtained by both methods, especially in the medium-high P eff range. In conclusion, the SPIP and the Doluisio method are both equally useful in obtaining crucial segmental-dependent intestinal permeability data. Copyright © 2016 Elsevier B.V. All rights reserved.
Dehydrin expression as a potential diagnostic tool for cold stress in white clover.
Vaseva, Irina Ivanova; Anders, Iwona; Yuperlieva-Mateeva, Bistra; Nenkova, Rosa; Kostadinova, Anelia; Feller, Urs
2014-05-01
Cold acclimation is important for crop survival in environments undergoing seasonal low temperatures. It involves the induction of defensive mechanisms including the accumulation of different cryoprotective molecules among which are dehydrins (DHN). Recently several sequences coding for dehydrins were identified in white clover (Trifolium repens). This work aimed to select the most responsive to cold stress DHN analogues in search for cold stress diagnostic markers. The assessment of dehydrin transcript accumulation via RT-PCR and immunodetection performed with three antibodies against the conserved K-, Y-, and S-segment allowed to outline different dehydrin types presented in the tested samples. Both analyses confirmed that YnKn dehydrins were underrepresented in the controls but exposure to low temperature specifically induced their accumulation. Strong immunosignals corresponding to 37-40 kDa with antibodies against Y- and K-segment were revealed in cold-stressed leaves. Another 'cold-specific' band at position 52-55 kDa was documented on membranes probed with antibodies against K-segment. Real time RT-qPCR confirmed that low temperatures induced the accumulation of SKn and YnSKn transcripts in leaves and reduced their expression in roots. Results suggest that a YnKn dehydrin transcript with GenBank ID: KC247805 and the immunosignal at 37-40 kDa, obtained with antibodies against Y- and K-segment are reliable markers for cold stress in white clover. The assessment of SKn (GenBank ID: EU846208) and YnSKn (GenBank ID: KC247804) transcript levels in leaves could serve as additional diagnostic tools. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Aramburu, Jorge; Antón, Raúl; Rivas, Alejandro; Ramos, Juan Carlos; Sangro, Bruno; Bilbao, José Ignacio
2017-12-01
Liver radioembolization is a promising treatment option for combating liver tumors. It is performed by placing a microcatheter in the hepatic artery and administering radiation-emitting microspheres through the arterial bloodstream so that they get lodged in the tumoral bed. In avoiding nontarget radiation, the standard practice is to conduct a pretreatment, in which the microcatheter location and injection velocity are decided. However, between pretreatment and actual treatment, some of the parameters that influence the particle distribution in the liver can vary, resulting in radiation-induced complications. The present study aims to analyze the influence of a commercially available microcatheter with an angled tip and particle injection velocity in terms of segment-to-segment particle distribution. Specifically, 4 tip orientations and 2 injection velocities are combined to yield a set of 8 numerical simulations of the particle-hemodynamics in a patient-specific truncated hepatic artery. For each simulation, 4 cardiac pulses are simulated. Particles are injected during the first cycle, and the remaining pulses enable the majority of the injected particles to exit the computational domain. Results indicate that, in terms of injection velocity, particles are more spread out in the cross-sectional lumen areas as the injection velocity increases. The tip's orientation also plays a role because it influences the near-tip hemodynamics, therefore altering the particle travel through the hepatic artery. However, results suggest that particle distribution tries to match the blood flow split, therefore particle injection velocity and microcatheter tip orientation playing a minor role in segment-to-segment particle distribution. Copyright © 2017 John Wiley & Sons, Ltd.
Segmentation by fusion of histogram-based k-means clusters in different color spaces.
Mignotte, Max
2008-05-01
This paper presents a new, simple, and efficient segmentation approach, based on a fusion procedure which aims at combining several segmentation maps associated to simpler partition models in order to finally get a more reliable and accurate segmentation result. The different label fields to be fused in our application are given by the same and simple (K-means based) clustering technique on an input image expressed in different color spaces. Our fusion strategy aims at combining these segmentation maps with a final clustering procedure using as input features, the local histogram of the class labels, previously estimated and associated to each site and for all these initial partitions. This fusion framework remains simple to implement, fast, general enough to be applied to various computer vision applications (e.g., motion detection and segmentation), and has been successfully applied on the Berkeley image database. The experiments herein reported in this paper illustrate the potential of this approach compared to the state-of-the-art segmentation methods recently proposed in the literature.
Words in Puddles of Sound: Modelling Psycholinguistic Effects in Speech Segmentation
ERIC Educational Resources Information Center
Monaghan, Padraic; Christiansen, Morten H.
2010-01-01
There are numerous models of how speech segmentation may proceed in infants acquiring their first language. We present a framework for considering the relative merits and limitations of these various approaches. We then present a model of speech segmentation that aims to reveal important sources of information for speech segmentation, and to…
Identification of the two rotavirus genes determining neutralization specificities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Offit, P.A.; Blavat, G.
1986-01-01
Bovine rotavirus NCDV and simian rotavirus SA-11 represent two distinct rotavirus serotypes. A genetic approach was used to determine which viral gene segments segregated with serotype-specific viral neutralization. There were 16 reassortant rotarviruses derived by coinfection of MA-104 cells in vitro with the SA-11 and NCDV strains. The parental origin of reassortant rotavirus double-stranded RNA segments was determined by gene segment mobility in polyacrylamide gels and by hybridization with radioactively labeled parental viral transcripts. The authors found that two rotavirus gene segments found previously to code for outer capsid proteins vp3 and vp7 cosegreated with virus neutralization specificities.
Electrocardiographic evaluation of reperfusion therapy in patients with acute myocardial infarction.
Clemmensen, P
1996-02-01
The present thesis is based on 6 previously published clinical studies in patients with AMI. Thrombolytic therapy for patients with AMI improves early infarct coronary artery patency, limits AMI size, improves left ventricular function and survival, as demonstrated in large placebo-controlled clinical trials. With the advent of interventions aimed at limiting AMI size it became important to assess the amount of ischemic myocardium in the early phase of AMI, and to develop noninvasive methods for evaluation of these therapies. The aims of the present studies were to develop such methods. The studies have included 267 patients with AMI admitted up to 12 hours after onset of symptoms. All included patients had acute ECG ST-segment changes indicating subepicardial ischemia, and patients with bundle branch block were excluded. Serial ECG's were analyzed with quantitative ST-segment measurements in the acute phase and compared to the Selvester QRS score estimated final AMI size. These ECG indices were compared to and validated through comparisons with other independent noninvasive and invasive methods, used for the purpose of evaluating patients with AMI treated with thrombolytic therapy. It was found that in patients with first AMI not treated with reperfusion therapies the QRS score estimated final AMI size can be predicted from the acute ST-segment elevation. Based on the number of ECG leads with ST-segment elevation and its summated magnitude, formulas were developed to provide an "ST score" for estimating the amount of myocardium in jeopardy during the early phase of AMI. The ST-segment deviation present in the ECG in patients with documented occlusion of the infarct related coronary artery, was subsequently shown to correlate with the degree of regional and global left ventricular dysfunction. Because serial changes in ST-segment elevation, during the acute phase of AMI were believed to reflect changes is myocardial ischemia and thus possibly infarct artery patency status, the summated ST-segment elevation present on the admission ECG was compared to that present after administration of intravenous thrombolytic therapy, and immediately prior to angiographic visualization of the infarct related coronary artery. The entire spectrum of sensitivities and specificities, derived from different cut-off values for the degree of ST-segment normalization, was described for the first time. It was found that a 20% decrease in ST-segment elevation could predict coronary artery patency with a high level of accuracy: positive predictive value = 88% and negative predictive value = 80%.(ABSTRACT TRUNCATED)
Bone microarchitecture of the tibial plateau in skeletal health and osteoporosis.
Krause, Matthias; Hubert, Jan; Deymann, Simon; Hapfelmeier, Alexander; Wulff, Birgit; Petersik, Andreas; Püschel, Klaus; Amling, Michael; Hawellek, Thelonius; Frosch, Karl-Heinz
2018-05-07
Impaired bone structure poses a challenge for the treatment of osteoporotic tibial plateau fractures. As knowledge of region-specific structural bone alterations is a prerequisite to achieving successful long-term fixation, the aim of the current study was to characterize tibial plateau bone structure in patients with osteoporosis and the elderly. Histomorphometric parameters were assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 21 proximal tibiae from females with postmenopausal osteoporosis (mean age: 84.3 ± 4.9 years) and eight female healthy controls (45.5 ± 6.9 years). To visualize region-specific structural bony alterations with age, the bone mineral density (Hounsfield units) was additionally analyzed in 168 human proximal tibiae. Statistical analysis was based on evolutionary learning using globally optimal regression trees. Bone structure deterioration of the tibial plateau due to osteoporosis was region-specific. Compared to healthy controls (20.5 ± 4.7%) the greatest decrease in bone volume fraction was found in the medio-medial segments (9.2 ± 3.5%, p < 0.001). The lowest bone volume was found in central segments (tibial spine). Trabecular connectivity was severely reduced. Importantly, in the anterior and posterior 25% of the lateral and medial tibial plateaux, trabecular support and subchondral cortical bone thickness itself were also reduced. Thinning of subchondral cortical bone and marked bone loss in the anterior and posterior 25% of the tibial plateau should require special attention when osteoporotic patients require fracture fixation of the posterior segments. This knowledge may help to improve the long-term, fracture-specific fixation of complex tibial plateau fractures in osteoporosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Age-Related Differences and Heritability of the Perisylvian Language Networks.
Budisavljevic, Sanja; Dell'Acqua, Flavio; Rijsdijk, Frühling V; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M; Murphy, Declan G; Craig, Michael C; Catani, Marco
2015-09-16
Acquisition of language skills depends on the progressive maturation of specialized brain networks that are usually lateralized in adult population. However, how genetic and environmental factors relate to the age-related differences in lateralization of these language pathways is still not known. We recruited 101 healthy right-handed subjects aged 9-40 years to investigate age-related differences in the anatomy of perisylvian language pathways and 86 adult twins (52 monozygotic and 34 dizygotic) to understand how heritability factors influence language anatomy. Diffusion tractography was used to dissect and extract indirect volume measures from the three segments of the arcuate fasciculus connecting Wernicke's to Broca's region (i.e., long segment), Broca's to Geschwind's region (i.e., anterior segment), and Wernicke's to Geschwind's region (i.e., posterior segment). We found that the long and anterior arcuate segments are lateralized before adolescence and their lateralization remains stable throughout adolescence and early adulthood. Conversely, the posterior segment shows right lateralization in childhood but becomes progressively bilateral during adolescence, driven by a reduction in volume in the right hemisphere. Analysis of the twin sample showed that genetic and shared environmental factors influence the anatomy of those segments that lateralize earlier, whereas specific environmental effects drive the variability in the volume of the posterior segment that continues to change in adolescence and adulthood. Our results suggest that the age-related differences in the lateralization of the language perisylvian pathways are related to the relative contribution of genetic and environmental effects specific to each segment. Our study shows that, by early childhood, frontotemporal (long segment) and frontoparietal (anterior segment) connections of the arcuate fasciculus are left and right lateralized, respectively, and remain lateralized throughout adolescence and early adulthood. In contrast, temporoparietal (posterior segment) connections are right lateralized in childhood, but become progressively bilateral during adolescence. Preliminary twin analysis suggested that lateralization of the arcuate fasciculus is a heterogeneous process that depends on the interplay between genetic and environment factors specific to each segment. Tracts that exhibit higher age effects later in life (i.e., posterior segment) appear to be influenced more by specific environmental factors. Copyright © 2015 Budisavljevic et al.
Age-Related Differences and Heritability of the Perisylvian Language Networks
Dell'Acqua, Flavio; Rijsdijk, Frühling V.; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M.; Murphy, Declan G.; Craig, Michael C.
2015-01-01
Acquisition of language skills depends on the progressive maturation of specialized brain networks that are usually lateralized in adult population. However, how genetic and environmental factors relate to the age-related differences in lateralization of these language pathways is still not known. We recruited 101 healthy right-handed subjects aged 9–40 years to investigate age-related differences in the anatomy of perisylvian language pathways and 86 adult twins (52 monozygotic and 34 dizygotic) to understand how heritability factors influence language anatomy. Diffusion tractography was used to dissect and extract indirect volume measures from the three segments of the arcuate fasciculus connecting Wernicke's to Broca's region (i.e., long segment), Broca's to Geschwind's region (i.e., anterior segment), and Wernicke's to Geschwind's region (i.e., posterior segment). We found that the long and anterior arcuate segments are lateralized before adolescence and their lateralization remains stable throughout adolescence and early adulthood. Conversely, the posterior segment shows right lateralization in childhood but becomes progressively bilateral during adolescence, driven by a reduction in volume in the right hemisphere. Analysis of the twin sample showed that genetic and shared environmental factors influence the anatomy of those segments that lateralize earlier, whereas specific environmental effects drive the variability in the volume of the posterior segment that continues to change in adolescence and adulthood. Our results suggest that the age-related differences in the lateralization of the language perisylvian pathways are related to the relative contribution of genetic and environmental effects specific to each segment. SIGNIFICANCE STATEMENT Our study shows that, by early childhood, frontotemporal (long segment) and frontoparietal (anterior segment) connections of the arcuate fasciculus are left and right lateralized, respectively, and remain lateralized throughout adolescence and early adulthood. In contrast, temporoparietal (posterior segment) connections are right lateralized in childhood, but become progressively bilateral during adolescence. Preliminary twin analysis suggested that lateralization of the arcuate fasciculus is a heterogeneous process that depends on the interplay between genetic and environment factors specific to each segment. Tracts that exhibit higher age effects later in life (i.e., posterior segment) appear to be influenced more by specific environmental factors. PMID:26377454
2010-01-01
Background Detection of nerve involvement originating in the spine is a primary concern in the assessment of spine symptoms. Magnetic resonance imaging (MRI) has become the diagnostic method of choice for this detection. However, the agreement between MRI and other diagnostic methods for detecting nerve involvement has not been fully evaluated. The aim of this diagnostic study was to evaluate the agreement between nerve involvement visible in MRI and findings of nerve involvement detected in a structured physical examination and a simplified pain drawing. Methods Sixty-one consecutive patients referred for MRI of the lumbar spine were - without knowledge of MRI findings - assessed for nerve involvement with a simplified pain drawing and a structured physical examination. Agreement between findings was calculated as overall agreement, the p value for McNemar's exact test, specificity, sensitivity, and positive and negative predictive values. Results MRI-visible nerve involvement was significantly less common than, and showed weak agreement with, physical examination and pain drawing findings of nerve involvement in corresponding body segments. In spine segment L4-5, where most findings of nerve involvement were detected, the mean sensitivity of MRI-visible nerve involvement to a positive neurological test in the physical examination ranged from 16-37%. The mean specificity of MRI-visible nerve involvement in the same segment ranged from 61-77%. Positive and negative predictive values of MRI-visible nerve involvement in segment L4-5 ranged from 22-78% and 28-56% respectively. Conclusion In patients with long-standing nerve root symptoms referred for lumbar MRI, MRI-visible nerve involvement significantly underestimates the presence of nerve involvement detected by a physical examination and a pain drawing. A structured physical examination and a simplified pain drawing may reveal that many patients with "MRI-invisible" lumbar symptoms need treatment aimed at nerve involvement. Factors other than present MRI-visible nerve involvement may be responsible for findings of nerve involvement in the physical examination and the pain drawing. PMID:20831785
Wagner, Moritz; Knobloch, Gesine; Gielen, Martin; Lauff, Marie-Teres; Romano, Valentina; Hamm, Bernd; Kröncke, Thomas
2015-04-01
Quiescent-interval single-shot MRA (QISS-MRA) is a promising nonenhanced imaging technique for assessment of peripheral arterial disease (PAD). Previous studies at 3 Tesla included only very limited numbers of patients for correlation of QISS-MRA with digital subtraction angiography (DSA) as standard of reference (SOR). The aim of this prospective institutional review board-approved study was to compare QISS-MRA at 3 Tesla with DSA in a larger patient group. Our study included 32 consecutive patients who underwent QISS-MRA, contrast-enhanced MRA (CE-MRA), and DSA. Two readers independently performed a per-segment evaluation of QISS-MRA and CE-MRA for image quality and identification of non-significant stenosis (<50%) versus significant stenosis (50-100%). The final dataset included 1,027 vessel segments. Reader 1 and 2 rated image quality as diagnostic in 96.8 and 98.0% of the vessel segments on QISS-MRA and in 99.3 and 98.4% of the vessel segments on CE-MRA, respectively. DSA was available for 922 segments and detected significant stenosis in 133 segments (14.4%). Consensus reading yielded the following diagnostic parameters for QISS-MRA versus CE-MRA: sensitivity: 83.5% (111/133) versus 82.7% (110/133), p = 0.80; specificity: 93.9% (741/789) versus 95.7% (755/789), p = 0.25; and diagnostic accuracy: 92.4% (852/922) versus 93.8% (865/922), p = 0.35. In conclusion, using DSA as SOR, QISS-MRA and CE-MRA at 3 Tesla showed similar diagnostic accuracy in the assessment of PAD. A limitation of QISS-MRA was the lower rate of assessable vessel segments compared to CE-MRA.
Vives-Borrás, Miquel; Jorge, Esther; Amorós-Figueras, Gerard; Millán, Xavier; Arzamendi, Dabit; Cinca, Juan
2018-01-01
Simultaneous ischemia in two myocardial regions is a potentially lethal clinical condition often unrecognized whose corresponding electrocardiographic (ECG) patterns have not yet been characterized. Thus, this study aimed to determine the QRS complex and ST-segment changes induced by concurrent ischemia in different myocardial regions elicited by combined double occlusion of the three main coronary arteries. For this purpose, 12 swine were randomized to combination of 5-min single and double coronary artery occlusion: Group 1: left Circumflex (LCX) and right (RCA) coronary arteries ( n = 4); Group 2: left anterior descending artery (LAD) and LCX ( n = 4) and; Group 3: LAD and RCA ( n = 4). QRS duration and ST-segment displacement were measured in 15-lead ECG. As compared with single occlusion, double LCX+RCA blockade induced significant QRS widening of about 40 ms in nearly all ECG leads and magnification of the ST-segment depression in leads V1-V3 (maximal 228% in lead V3, p < 0.05). In contrast, LAD+LCX or LAD+RCA did not induce significant QRS widening and markedly attenuated the ST-segment elevation in precordial leads (maximal attenuation of 60% in lead V3 in LAD+LCX and 86% in lead V5 in LAD+RCA, p < 0.05). ST-segment elevation in leads V7-V9 was a specific sign of single LCX occlusion. In conclusion, concurrent infero-lateral ischemia was associated with a marked summation effect of the ECG changes previously elicited by each single ischemic region. By contrast, a cancellation effect on ST-segment changes with no QRS widening was observed when the left anterior descending artery was involved.
Orloff, Elisabeth; Fournier, Pauline; Bouisset, Frédéric; Moine, Thomas; Cournot, Maxime; Elbaz, Meyer; Carrié, Didier; Galinier, Michel; Lairez, Olivier; Cognet, Thomas
2018-05-14
The aim of this study was to evaluate the value of multilayer strain analysis to the assessment of myocardial viability (MV) through the comparison of both speckle tracking echocardiography and single-photon emission computed tomography (SPECT) imaging. We also intended to determine which segmental longitudinal strain (LS) cutoff value would be optimal to discriminate viable myocardium. We included 47 patients (average age: 61 ± 11 years) referred to our cardiac imaging center for MV evaluation. All patients underwent transthoracic echocardiography with measures of LS, SPECT, and coronary angiography. In all, 799 segments were analyzed. We correlated myocardial tracer uptake by SPECT with sub-endocardial, sub-epicardial, and mid-segmental LS values with r = .514 P < .0001, r = .501 P < .0001, and r = .520 P < .0001, respectively. The measurements of each layer strain (sub-endocardial, sub-epicardial, and mid) had the same performance to predict MV viability as defined by SPECT with areas under curve of 0.819 [0.778-0.861, P < .0001], 0.809 [0.764-0.854, P < .0001], and 0.817 [0.773-0.860, P < .0001], respectively. The receiver-operating characteristic analysis yielded a cutoff value of -6.5% for mid-segmental LS with a sensitivity of 76% and specificity of 76% to predict segmental MV as defined by SPECT. Multilayer strain analysis does not evaluate MV with more accuracy than standard segmental LS analysis. © 2018 Wiley Periodicals, Inc.
Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.
Salvi, Massimo; Molinari, Filippo
2018-06-20
Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.
Salo, Zoryana; Beek, Maarten; Wright, David; Whyne, Cari Marisa
2015-04-13
Current methods for the development of pelvic finite element (FE) models generally are based upon specimen specific computed tomography (CT) data. This approach has traditionally required segmentation of CT data sets, which is time consuming and necessitates high levels of user intervention due to the complex pelvic anatomy. The purpose of this research was to develop and assess CT landmark-based semi-automated mesh morphing and mapping techniques to aid the generation and mechanical analysis of specimen-specific FE models of the pelvis without the need for segmentation. A specimen-specific pelvic FE model (source) was created using traditional segmentation methods and morphed onto a CT scan of a different (target) pelvis using a landmark-based method. The morphed model was then refined through mesh mapping by moving the nodes to the bone boundary. A second target model was created using traditional segmentation techniques. CT intensity based material properties were assigned to the morphed/mapped model and to the traditionally segmented target models. Models were analyzed to evaluate their geometric concurrency and strain patterns. Strains generated in a double-leg stance configuration were compared to experimental strain gauge data generated from the same target cadaver pelvis. CT landmark-based morphing and mapping techniques were efficiently applied to create a geometrically multifaceted specimen-specific pelvic FE model, which was similar to the traditionally segmented target model and better replicated the experimental strain results (R(2)=0.873). This study has shown that mesh morphing and mapping represents an efficient validated approach for pelvic FE model generation without the need for segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nierkens, Vera; Cremer, Stephan W.; Verhoeff, Arnoud; Stronks, Karien
2014-01-01
Objective To explore similarities and differences in the use and perception of communication channels to access weight-related health promotion among women in three ethnic minority groups. The ultimate aim was to determine whether similar channels might reach ethnic minority women in general or whether segmentation to ethnic groups would be required. Design Eight ethnically homogeneous focus groups were conducted among 48 women of Ghanaian, Antillean/Aruban, or Afro-Surinamese background living in Amsterdam. Our questions concerned which communication channels they usually used to access weight-related health advice or information about programs and whose information they most valued. The content analysis of data was performed. Results The participants mentioned four channels – regular and traditional healthcare, general or ethnically specific media, multiethnic and ethnic gatherings, and interpersonal communication with peers in the Netherlands and with people in the home country. Ghanaian women emphasized ethnically specific channels (e.g., traditional healthcare, Ghanaian churches). They were comfortable with these channels and trusted them. They mentioned fewer general channels – mainly limited to healthcare – and if discussed, negative perceptions were expressed. Antillean women mentioned the use of ethnically specific channels (e.g., communication with Antilleans in the home country) on balance with general audience–oriented channels (e.g., regular healthcare). Perceptions were mixed. Surinamese participants discussed, in a positive manner, the use of general audience–oriented channels, while they said they did not use traditional healthcare or advice from Surinam. Local language proficiency, time resided in the Netherlands, and approaches and messages received seemed to explain channel use and perception. Conclusion The predominant differences in channel use and perception among the ethnic groups indicate a need for channel segmentation to reach a multiethnic target group with weight-related health promotion. The study results reveal possible segmentation criteria besides ethnicity, such as local language proficiency and time since migration, worthy of further investigation. PMID:24750018
Hartman, Marieke A; Nierkens, Vera; Cremer, Stephan W; Verhoeff, Arnoud; Stronks, Karien
2015-01-01
To explore similarities and differences in the use and perception of communication channels to access weight-related health promotion among women in three ethnic minority groups. The ultimate aim was to determine whether similar channels might reach ethnic minority women in general or whether segmentation to ethnic groups would be required. Eight ethnically homogeneous focus groups were conducted among 48 women of Ghanaian, Antillean/Aruban, or Afro-Surinamese background living in Amsterdam. Our questions concerned which communication channels they usually used to access weight-related health advice or information about programs and whose information they most valued. The content analysis of data was performed. The participants mentioned four channels - regular and traditional health care, general or ethnically specific media, multiethnic and ethnic gatherings, and interpersonal communication with peers in the Netherlands and with people in the home country. Ghanaian women emphasized ethnically specific channels (e.g., traditional health care, Ghanaian churches). They were comfortable with these channels and trusted them. They mentioned fewer general channels - mainly limited to health care - and if discussed, negative perceptions were expressed. Antillean women mentioned the use of ethnically specific channels (e.g., communication with Antilleans in the home country) on balance with general audience-oriented channels (e.g., regular health care). Perceptions were mixed. Surinamese participants discussed, in a positive manner, the use of general audience-oriented channels, while they said they did not use traditional health care or advice from Surinam. Local language proficiency, time resided in the Netherlands, and approaches and messages received seemed to explain channel use and perception. The predominant differences in channel use and perception among the ethnic groups indicate a need for channel segmentation to reach a multiethnic target group with weight-related health promotion. The study results reveal possible segmentation criteria besides ethnicity, such as local language proficiency and time since migration, worthy of further investigation.
Sanchis-Moysi, Joaquin; Idoate, Fernando; Izquierdo, Mikel; Calbet, Jose A; Dorado, Cecilia
2013-03-01
The aim was to determine the volume and degree of asymmetry of quadratus lumborum (QL), obliques, and transversus abdominis; the last two considered conjointly (OT), in tennis and soccer players. The volume of QL and OT was determined using magnetic resonance imaging in professional tennis and soccer players, and in non-active controls (n = 8, 14, and 6, respectively). In tennis players the hypertrophy of OT was limited to proximal segments (cephalic segments), while in soccer players it was similar along longitudinal axis. In tennis players the hypertrophy was asymmetric (18% greater volume in the non-dominant than in the dominant OT, p = 0.001), while in soccer players and controls both sides had similar volumes (p > 0.05). In controls, the non-dominant QL was 15% greater than that of the dominant (p = 0.049). Tennis and soccer players had similar volumes in both sides of QL. Tennis alters the dominant-to-non-dominant balance in the muscle volume of the lateral abdominal wall. In tennis the hypertrophy is limited to proximal segments and is greater in the non-dominant side. Soccer, however, is associated to a symmetric hypertrophy of the lateral abdominal wall. Tennis and soccer elicit an asymmetric hypertrophy of QL.
An automatic method for segmentation of fission tracks in epidote crystal photomicrographs
NASA Astrophysics Data System (ADS)
de Siqueira, Alexandre Fioravante; Nakasuga, Wagner Massayuki; Pagamisse, Aylton; Tello Saenz, Carlos Alberto; Job, Aldo Eloizo
2014-08-01
Manual identification of fission tracks has practical problems, such as variation due to observe-observation efficiency. An automatic processing method that could identify fission tracks in a photomicrograph could solve this problem and improve the speed of track counting. However, separation of nontrivial images is one of the most difficult tasks in image processing. Several commercial and free softwares are available, but these softwares are meant to be used in specific images. In this paper, an automatic method based on starlet wavelets is presented in order to separate fission tracks in mineral photomicrographs. Automatization is obtained by the Matthews correlation coefficient, and results are evaluated by precision, recall and accuracy. This technique is an improvement of a method aimed at segmentation of scanning electron microscopy images. This method is applied in photomicrographs of epidote phenocrystals, in which accuracy higher than 89% was obtained in fission track segmentation, even for difficult images. Algorithms corresponding to the proposed method are available for download. Using the method presented here, a user could easily determine fission tracks in photomicrographs of mineral samples.
NASA Astrophysics Data System (ADS)
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-01
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-21
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
Fuzzy pulmonary vessel segmentation in contrast enhanced CT data
NASA Astrophysics Data System (ADS)
Kaftan, Jens N.; Kiraly, Atilla P.; Bakai, Annemarie; Das, Marco; Novak, Carol L.; Aach, Til
2008-03-01
Pulmonary vascular tree segmentation has numerous applications in medical imaging and computer-aided diagnosis (CAD), including detection and visualization of pulmonary emboli (PE), improved lung nodule detection, and quantitative vessel analysis. We present a novel approach to pulmonary vessel segmentation based on a fuzzy segmentation concept, combining the strengths of both threshold and seed point based methods. The lungs of the original image are first segmented and a threshold-based approach identifies core vessel components with a high specificity. These components are then used to automatically identify reliable seed points for a fuzzy seed point based segmentation method, namely fuzzy connectedness. The output of the method consists of the probability of each voxel belonging to the vascular tree. Hence, our method provides the possibility to adjust the sensitivity/specificity of the segmentation result a posteriori according to application-specific requirements, through definition of a minimum vessel-probability required to classify a voxel as belonging to the vascular tree. The method has been evaluated on contrast-enhanced thoracic CT scans from clinical PE cases and demonstrates overall promising results. For quantitative validation we compare the segmentation results to randomly selected, semi-automatically segmented sub-volumes and present the resulting receiver operating characteristic (ROC) curves. Although we focus on contrast enhanced chest CT data, the method can be generalized to other regions of the body as well as to different imaging modalities.
Multi-atlas segmentation for abdominal organs with Gaussian mixture models
NASA Astrophysics Data System (ADS)
Burke, Ryan P.; Xu, Zhoubing; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.
2015-03-01
Abdominal organ segmentation with clinically acquired computed tomography (CT) is drawing increasing interest in the medical imaging community. Gaussian mixture models (GMM) have been extensively used through medical segmentation, most notably in the brain for cerebrospinal fluid / gray matter / white matter differentiation. Because abdominal CT exhibit strong localized intensity characteristics, GMM have recently been incorporated in multi-stage abdominal segmentation algorithms. In the context of variable abdominal anatomy and rich algorithms, it is difficult to assess the marginal contribution of GMM. Herein, we characterize the efficacy of an a posteriori framework that integrates GMM of organ-wise intensity likelihood with spatial priors from multiple target-specific registered labels. In our study, we first manually labeled 100 CT images. Then, we assigned 40 images to use as training data for constructing target-specific spatial priors and intensity likelihoods. The remaining 60 images were evaluated as test targets for segmenting 12 abdominal organs. The overlap between the true and the automatic segmentations was measured by Dice similarity coefficient (DSC). A median improvement of 145% was achieved by integrating the GMM intensity likelihood against the specific spatial prior. The proposed framework opens the opportunities for abdominal organ segmentation by efficiently using both the spatial and appearance information from the atlases, and creates a benchmark for large-scale automatic abdominal segmentation.
Library Resources for Bac End Sequencing. Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieter J. de Jong
2000-10-01
Studies directed towards the specific aims outlined for this research award are summarized. The RPCI II Human Bac Library has been expanded by the addition of 6.9-fold genomic coverage. This segment has been generated from a MBOI partial digest of the same anonymous donor DNA used for the rest of the library. A new cloning vector, pTARBAC1, has been constructed and used in the construction of RPCI-II segment 5. This new cloning vector provides a new strategy in identifying targeted genomic regions and will greatly facilitate a large-scale analysis for positional cloning. A new maleCS7BC/6J mouse BAC library has beenmore » constructed. RPCI-23 contain 576 plates (approx 210,000 clones) and represents approximately 11-fold coverage of the mouse genome.« less
Heuristic Bayesian segmentation for discovery of coexpressed genes within genomic regions.
Pehkonen, Petri; Wong, Garry; Törönen, Petri
2010-01-01
Segmentation aims to separate homogeneous areas from the sequential data, and plays a central role in data mining. It has applications ranging from finance to molecular biology, where bioinformatics tasks such as genome data analysis are active application fields. In this paper, we present a novel application of segmentation in locating genomic regions with coexpressed genes. We aim at automated discovery of such regions without requirement for user-given parameters. In order to perform the segmentation within a reasonable time, we use heuristics. Most of the heuristic segmentation algorithms require some decision on the number of segments. This is usually accomplished by using asymptotic model selection methods like the Bayesian information criterion. Such methods are based on some simplification, which can limit their usage. In this paper, we propose a Bayesian model selection to choose the most proper result from heuristic segmentation. Our Bayesian model presents a simple prior for the segmentation solutions with various segment numbers and a modified Dirichlet prior for modeling multinomial data. We show with various artificial data sets in our benchmark system that our model selection criterion has the best overall performance. The application of our method in yeast cell-cycle gene expression data reveals potential active and passive regions of the genome.
Algara, Patricia; Mateo, Marisol S; Sanchez-Beato, Margarita; Mollejo, Manuela; Navas, Immaculada C; Romero, Lourdes; Solé, Francesc; Salido, Marta; Florensa, Lourdes; Martínez, Pedro; Campo, Elias; Piris, Miguel A
2002-02-15
This study aimed to correlate the frequency of somatic mutations in the IgV(H) gene and the use of specific segments in the V(H) repertoire with the clinical and characteristic features of a series of 35 cases of splenic marginal zone lymphoma (SMZL). The cases were studied by seminested polymerase chain reaction by using primers from the FR1 and J(H) region. The results showed unexpected molecular heterogeneity in this entity, with 49% unmutated cases (less than 2% somatic mutations). The 7q31 deletions and a shorter overall survival were more frequent in this group. Additionally a high percentage (18 of 40 sequences) of SMZL cases showed usage of the V(H)1-2 segment, thereby emphasizing the singularity of this neoplasia, suggesting that this tumor derives from a highly selected B-cell population and encouraging the search for specific antigens that are pathogenically relevant in the genesis or progression of this tumor.
Multislice Computed Tomography Accurately Detects Stenosis in Coronary Artery Bypass Conduits
Duran, Cihan; Sagbas, Ertan; Caynak, Baris; Sanisoglu, Ilhan; Akpinar, Belhhan; Gulbaran, Murat
2007-01-01
The aim of this study was to evaluate the accuracy of multislice computed tomography in detecting graft stenosis or occlusion after coronary artery bypass grafting, using coronary angiography as the standard. From January 2005 through May 2006, 25 patients (19 men and 6 women; mean age, 54 ± 11.3 years) underwent diagnostic investigation of their bypass grafts by multislice computed tomography within 1 month of coronary angiography. The mean time elapsed after coronary artery bypass grafting was 6.2 years. In these 25 patients, we examined 65 bypass conduits (24 arterial and 41 venous) and 171 graft segments (the shaft, proximal anastomosis, and distal anastomosis). Compared with coronary angiography, the segment-based sensitivity, specificity, and positive and negative predictive values of multislice computed tomography in the evaluation of stenosis were 89%, 100%, 100%, and 99%, respectively. The patency rate for multislice compu-ted tomography was 85% (55/65: 3 arterial and 7 venous grafts were occluded), with 100% sensitivity and specificity. From these data, we conclude that multislice computed tomography can accurately evaluate the patency and stenosis of bypass grafts during outpatient follow-up. PMID:17948078
Campelo, Diana; Lautier, Thomas; Urban, Philippe; Esteves, Francisco; Bozonnet, Sophie; Truan, Gilles; Kranendonk, Michel
2017-01-01
NADPH-cytochrome P450 reductase (CPR) is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction), a linker (hinge), and a connecting/FAD domain (NADPH oxidation). It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state) to an ensemble of open conformations (unlocked state), the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners. PMID:29163152
Blanc-Durand, Paul; Van Der Gucht, Axel; Schaefer, Niklaus; Itti, Emmanuel; Prior, John O
2018-01-01
Amino-acids positron emission tomography (PET) is increasingly used in the diagnostic workup of patients with gliomas, including differential diagnosis, evaluation of tumor extension, treatment planning and follow-up. Recently, progresses of computer vision and machine learning have been translated for medical imaging. Aim was to demonstrate the feasibility of an automated 18F-fluoro-ethyl-tyrosine (18F-FET) PET lesion detection and segmentation relying on a full 3D U-Net Convolutional Neural Network (CNN). All dynamic 18F-FET PET brain image volumes were temporally realigned to the first dynamic acquisition, coregistered and spatially normalized onto the Montreal Neurological Institute template. Ground truth segmentations were obtained using manual delineation and thresholding (1.3 x background). The volumetric CNN was implemented based on a modified Keras implementation of a U-Net library with 3 layers for the encoding and decoding paths. Dice similarity coefficient (DSC) was used as an accuracy measure of segmentation. Thirty-seven patients were included (26 [70%] in the training set and 11 [30%] in the validation set). All 11 lesions were accurately detected with no false positive, resulting in a sensitivity and a specificity for the detection at the tumor level of 100%. After 150 epochs, DSC reached 0.7924 in the training set and 0.7911 in the validation set. After morphological dilatation and fixed thresholding of the predicted U-Net mask a substantial improvement of the DSC to 0.8231 (+ 4.1%) was noted. At the voxel level, this segmentation led to a 0.88 sensitivity [95% CI, 87.1 to, 88.2%] a 0.99 specificity [99.9 to 99.9%], a 0.78 positive predictive value: [76.9 to 78.3%], and a 0.99 negative predictive value [99.9 to 99.9%]. With relatively high performance, it was proposed the first full 3D automated procedure for segmentation of 18F-FET PET brain images of patients with different gliomas using a U-Net CNN architecture.
Freyler, Kathrin; Gollhofer, Albert; Colin, Ralf; Brüderlin, Uli; Ritzmann, Ramona
2015-01-01
Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG) activity, centre of pressure (COP) displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental) and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR), medium (MLR) and long latency response (LLR) of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane), medial-lateral (frontal plane)), displacement (2 vs. 3cm) and velocity (0.11 vs. 0.18m/s) of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (P<0.05); LLR was scaled to increased displacement (P<0.05). Segments: phasic interrelationships were accompanied by segmental distinctions: distal muscles were used for fast compensation in SLR (P<0.05) and proximal muscles to stabilise in LLR (P<0.05). Kinematics: ankle joints compensated for both increasing displacement and velocity in all directions (P<0.05), whereas knee joint deflections were particularly sensitive to increasing displacement in the sagittal (P<0.05) and hip joint deflections to increasing velocity in the frontal plane (P<0.05). COP measures increased with increasing perturbation velocity and displacement (P<0.05). Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb serve as delayed stabilisers after a balance disturbance. Further, a kinematic distinction regarding the compensation for balance disturbance indicated different plane- and segment-specific sensitivities with respect to the determinants displacement and velocity. PMID:26678061
Shi, Feng; Yap, Pew-Thian; Fan, Yong; Cheng, Jie-Zhi; Wald, Lawrence L.; Gerig, Guido; Lin, Weili; Shen, Dinggang
2010-01-01
The acquisition of high quality MR images of neonatal brains is largely hampered by their characteristically small head size and low tissue contrast. As a result, subsequent image processing and analysis, especially for brain tissue segmentation, are often hindered. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by effectively combing images obtained from 8 coil elements without lengthening data acquisition time. In addition, a subject-specific atlas based tissue segmentation algorithm is specifically developed for the delineation of fine structures in the acquired neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical gray matter (GM) structures in neonatal images with a Hessian filter for generation of cortical GM prior. Then, the prior is combined with our neonatal population atlas to form a cortical enhanced hybrid atlas, which we refer to as the subject-specific atlas. Various experiments are conducted to compare the proposed method with manual segmentation results, as well as with additional two population atlas based segmentation methods. Results show that the proposed method is capable of segmenting the neonatal brain with the highest accuracy, compared to other two methods. PMID:20862268
Min-cut segmentation of cursive handwriting in tabular documents
NASA Astrophysics Data System (ADS)
Davis, Brian L.; Barrett, William A.; Swingle, Scott D.
2015-01-01
Handwritten tabular documents, such as census, birth, death and marriage records, contain a wealth of information vital to genealogical and related research. Much work has been done in segmenting freeform handwriting, however, segmentation of cursive handwriting in tabular documents is still an unsolved problem. Tabular documents present unique segmentation challenges caused by handwriting overlapping cell-boundaries and other words, both horizontally and vertically, as "ascenders" and "descenders" overlap into adjacent cells. This paper presents a method for segmenting handwriting in tabular documents using a min-cut/max-flow algorithm on a graph formed from a distance map and connected components of handwriting. Specifically, we focus on line, word and first letter segmentation. Additionally, we include the angles of strokes of the handwriting as a third dimension to our graph to enable the resulting segments to share pixels of overlapping letters. Word segmentation accuracy is 89.5% evaluating lines of the data set used in the ICDAR2013 Handwriting Segmentation Contest. Accuracy is 92.6% for a specific application of segmenting first and last names from noisy census records. Accuracy for segmenting lines of names from noisy census records is 80.7%. The 3D graph cutting shows promise in segmenting overlapping letters, although highly convoluted or overlapping handwriting remains an ongoing challenge.
PLÉIADES: Responsiveness, Flexibility, Reactivity
NASA Astrophysics Data System (ADS)
Gabriel-Robez, C.; Lees, R.; Bernard, M.
2012-08-01
By the end of 2011, Astrium GEO-Information Services launched Pléiades 1, the first of two identical optical imaging satellites that will be operated on a phased orbit. This satellite system, designed by the French Space Agency, CNES, based upon French Defense specifications, will provide 50-cm products in record time. The overall aim of this paper is to describe the benefits of the innovative features of Pléiades 1 and its operations, so as to assess their combined potential in emergency situations, crisis recovery, regular monitoring or large area mapping. Specific care will be brought to describe the reactivity enabled by the system. Based on real-life examples, the paper will lead the analysis on the two main components of the system. On the one hand, the space segment will be presented through the following characteristics: revisit capacity, agility, acquisition capacity and acquisition scenarios (target, single-pass mosaics, stereo, tristereo, linear monitoring, persistent surveillance). On the other hand, the flexibility of the ground segment will be assessed. The benefits of multiple tasking plans per day, direct tasking capacity, automated processing and on-line ordering and delivering will be illustrated, tested and qualified for applications requiring a high level of responsiveness and reactivity. The presentation will end with a summary of the benefits of the space segment features and the flexibility of the ground segment, fine-tuned to answer both military and civilian / commercial needs. The analysis will be extended in the perspective of the second Pléiades' launch, highlighting the advantages of having two satellites operating on a phased orbit, affording a daily revisit anywhere on Earth, with very high resolution.
Segmental dilatation of the intestine.
Ben Brahim, Mohamed; Belghith, Mohsen; Mekki, Mongi; Jouini, Riadh; Sahnoun, Lassaad; Maazoun, Kaies; Krichene, Imed; Golli, Mondher; Monastiri, Kamel; Nouri, Abdellatif
2006-06-01
The aim of this work is to discuss the pathogenesis of the segmental dilatation of the intestine (SDI) and to review its clinical presentation and the ways to confirm the diagnosis. Eight cases of pathologically proven SDI from 1987 to 2003 were reviewed and discussed. There were 7 newborns and a 1-year-old boy. Our patients are 5 boys and 3 girls. In all cases, the diagnosis was not suspected before surgery. Two patients presented with a low neonatal bowel obstruction. Six patients were operated for omphalocele, which was the most frequent associated malformation. The SDI involved the ileum in all patients. The treatment consisted on a resection of the dilated segment with an end-to-end anastomosis. Histological examination demonstrated the presence of ganglion cells in all cases. The muscular layer was hypertrophied in two cases and very thin in one case. A heterotopic gastric mucosa was observed in one case. No anomalies were observed in 5 cases. The postoperative course was uneventful in 6 cases with a mean follow-up of 5 years. Segmental intestinal dilatation is an exceptional pathology with an unknown etiology and a misleading clinical presentation. Several theories were proposed to explain this malformation; however, most authors are rather inclined to an embryological theory incriminating an extrinsic intrauterine intestinal compression. Most cases are neonatal discoveries. The clinical polymorphism and the lack of specificity of radiological investigations explain the difficulties to have a preoperative diagnosis. However, this difficulty is compensated by the favorable evolution after the resection of the dilated segment.
Magnetic resonance brain tissue segmentation based on sparse representations
NASA Astrophysics Data System (ADS)
Rueda, Andrea
2015-12-01
Segmentation or delineation of specific organs and structures in medical images is an important task in the clinical diagnosis and treatment, since it allows to characterize pathologies through imaging measures (biomarkers). In brain imaging, segmentation of main tissues or specific structures is challenging, due to the anatomic variability and complexity, and the presence of image artifacts (noise, intensity inhomogeneities, partial volume effect). In this paper, an automatic segmentation strategy is proposed, based on sparse representations and coupled dictionaries. Image intensity patterns are singly related to tissue labels at the level of small patches, gathering this information in coupled intensity/segmentation dictionaries. This dictionaries are used within a sparse representation framework to find the projection of a new intensity image onto the intensity dictionary, and the same projection can be used with the segmentation dictionary to estimate the corresponding segmentation. Preliminary results obtained with two publicly available datasets suggest that the proposal is capable of estimating adequate segmentations for gray matter (GM) and white matter (WM) tissues, with an average overlapping of 0:79 for GM and 0:71 for WM (with respect to original segmentations).
Blood vessel segmentation algorithms - Review of methods, datasets and evaluation metrics.
Moccia, Sara; De Momi, Elena; El Hadji, Sara; Mattos, Leonardo S
2018-05-01
Blood vessel segmentation is a topic of high interest in medical image analysis since the analysis of vessels is crucial for diagnosis, treatment planning and execution, and evaluation of clinical outcomes in different fields, including laryngology, neurosurgery and ophthalmology. Automatic or semi-automatic vessel segmentation can support clinicians in performing these tasks. Different medical imaging techniques are currently used in clinical practice and an appropriate choice of the segmentation algorithm is mandatory to deal with the adopted imaging technique characteristics (e.g. resolution, noise and vessel contrast). This paper aims at reviewing the most recent and innovative blood vessel segmentation algorithms. Among the algorithms and approaches considered, we deeply investigated the most novel blood vessel segmentation including machine learning, deformable model, and tracking-based approaches. This paper analyzes more than 100 articles focused on blood vessel segmentation methods. For each analyzed approach, summary tables are presented reporting imaging technique used, anatomical region and performance measures employed. Benefits and disadvantages of each method are highlighted. Despite the constant progress and efforts addressed in the field, several issues still need to be overcome. A relevant limitation consists in the segmentation of pathological vessels. Unfortunately, not consistent research effort has been addressed to this issue yet. Research is needed since some of the main assumptions made for healthy vessels (such as linearity and circular cross-section) do not hold in pathological tissues, which on the other hand require new vessel model formulations. Moreover, image intensity drops, noise and low contrast still represent an important obstacle for the achievement of a high-quality enhancement. This is particularly true for optical imaging, where the image quality is usually lower in terms of noise and contrast with respect to magnetic resonance and computer tomography angiography. No single segmentation approach is suitable for all the different anatomical region or imaging modalities, thus the primary goal of this review was to provide an up to date source of information about the state of the art of the vessel segmentation algorithms so that the most suitable methods can be chosen according to the specific task. Copyright © 2018 Elsevier B.V. All rights reserved.
Performance of an open-source heart sound segmentation algorithm on eight independent databases.
Liu, Chengyu; Springer, David; Clifford, Gari D
2017-08-01
Heart sound segmentation is a prerequisite step for the automatic analysis of heart sound signals, facilitating the subsequent identification and classification of pathological events. Recently, hidden Markov model-based algorithms have received increased interest due to their robustness in processing noisy recordings. In this study we aim to evaluate the performance of the recently published logistic regression based hidden semi-Markov model (HSMM) heart sound segmentation method, by using a wider variety of independently acquired data of varying quality. Firstly, we constructed a systematic evaluation scheme based on a new collection of heart sound databases, which we assembled for the PhysioNet/CinC Challenge 2016. This collection includes a total of more than 120 000 s of heart sounds recorded from 1297 subjects (including both healthy subjects and cardiovascular patients) and comprises eight independent heart sound databases sourced from multiple independent research groups around the world. Then, the HSMM-based segmentation method was evaluated using the assembled eight databases. The common evaluation metrics of sensitivity, specificity, accuracy, as well as the [Formula: see text] measure were used. In addition, the effect of varying the tolerance window for determining a correct segmentation was evaluated. The results confirm the high accuracy of the HSMM-based algorithm on a separate test dataset comprised of 102 306 heart sounds. An average [Formula: see text] score of 98.5% for segmenting S1 and systole intervals and 97.2% for segmenting S2 and diastole intervals were observed. The [Formula: see text] score was shown to increases with an increases in the tolerance window size, as expected. The high segmentation accuracy of the HSMM-based algorithm on a large database confirmed the algorithm's effectiveness. The described evaluation framework, combined with the largest collection of open access heart sound data, provides essential resources for evaluators who need to test their algorithms with realistic data and share reproducible results.
Two-stage atlas subset selection in multi-atlas based image segmentation.
Zhao, Tingting; Ruan, Dan
2015-06-01
Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. The authors have developed a novel two-stage atlas subset selection scheme for multi-atlas based segmentation. It achieves good segmentation accuracy with significantly reduced computation cost, making it a suitable configuration in the presence of extensive heterogeneous atlases.
Identification of highly variable supernumerary chromosome segments in an asexual pathogen
USDA-ARS?s Scientific Manuscript database
Supernumerary chromosome segments are known to harbor different transposons from their essential counterparts. The aim of this study was to investigate the role of transposons in the origin and evolution of supernumerary segments in the asexual fungal pathogen Fusariumvirguliforme. We compared the g...
NASA Technical Reports Server (NTRS)
1974-01-01
The specifications for the Earth Observatory Satellite (EOS) peculiar spacecraft segment and associated subsystems and modules are presented. The specifications considered include the following: (1) wideband communications subsystem module, (2) mission peculiar software, (3) hydrazine propulsion subsystem module, (4) solar array assembly, and (5) the scanning spectral radiometer.
NASA Astrophysics Data System (ADS)
Gloger, Oliver; Tönnies, Klaus; Bülow, Robin; Völzke, Henry
2017-07-01
To develop the first fully automated 3D spleen segmentation framework derived from T1-weighted magnetic resonance (MR) imaging data and to verify its performance for spleen delineation and volumetry. This approach considers the issue of low contrast between spleen and adjacent tissue in non-contrast-enhanced MR images. Native T1-weighted MR volume data was performed on a 1.5 T MR system in an epidemiological study. We analyzed random subsamples of MR examinations without pathologies to develop and verify the spleen segmentation framework. The framework is modularized to include different kinds of prior knowledge into the segmentation pipeline. Classification by support vector machines differentiates between five different shape types in computed foreground probability maps and recognizes characteristic spleen regions in axial slices of MR volume data. A spleen-shape space generated by training produces subject-specific prior shape knowledge that is then incorporated into a final 3D level set segmentation method. Individually adapted shape-driven forces as well as image-driven forces resulting from refined foreground probability maps steer the level set successfully to the segment the spleen. The framework achieves promising segmentation results with mean Dice coefficients of nearly 0.91 and low volumetric mean errors of 6.3%. The presented spleen segmentation approach can delineate spleen tissue in native MR volume data. Several kinds of prior shape knowledge including subject-specific 3D prior shape knowledge can be used to guide segmentation processes achieving promising results.
Effects of Teacher Controlled Segmented-Animation Presentation in Facilitating Learning
ERIC Educational Resources Information Center
Mohamad Ali, Ahmad Zamzuri
2010-01-01
The aim of this research was to study the effectiveness of teacher controlled segmented-animation presentation on learning achievement of students with lower level of prior knowledge. Segmented-animation and continuous-animation courseware showing cellular signal transmission process were developed for the research purpose. Pre-test and post-test…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Y; Olsen, J.; Parikh, P.
2014-06-01
Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE),more » along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information, different filtering methods and their influences on the segmentation results. Parag Parikh receives research grant from ViewRay. Sasa Mutic has consulting and research agreements with ViewRay. Yanle Hu receives travel reimbursement from ViewRay. Iwan Kawrakow and James Dempsey are ViewRay employees.« less
Watermarked cardiac CT image segmentation using deformable models and the Hermite transform
NASA Astrophysics Data System (ADS)
Gomez-Coronel, Sandra L.; Moya-Albor, Ernesto; Escalante-Ramírez, Boris; Brieva, Jorge
2015-01-01
Medical image watermarking is an open area for research and is a solution for the protection of copyright and intellectual property. One of the main challenges of this problem is that the marked images should not differ perceptually from the original images allowing a correct diagnosis and authentication. Furthermore, we also aim at obtaining watermarked images with very little numerical distortion so that computer vision tasks such as segmentation of important anatomical structures do not be impaired or affected. We propose a preliminary watermarking application in cardiac CT images based on a perceptive approach that includes a brightness model to generate a perceptive mask and identify the image regions where the watermark detection becomes a difficult task for the human eye. We propose a normalization scheme of the image in order to improve robustness against geometric attacks. We follow a spread spectrum technique to insert an alphanumeric code, such as patient's information, within the watermark. The watermark scheme is based on the Hermite transform as a bio-inspired image representation model. In order to evaluate the numerical integrity of the image data after watermarking, we perform a segmentation task based on deformable models. The segmentation technique is based on a vector-value level sets method such that, given a curve in a specific image, and subject to some constraints, the curve can evolve in order to detect objects. In order to stimulate the curve evolution we introduce simultaneously some image features like the gray level and the steered Hermite coefficients as texture descriptors. Segmentation performance was assessed by means of the Dice index and the Hausdorff distance. We tested different mark sizes and different insertion schemes on images that were later segmented either automatic or manual by physicians.
Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu
2017-06-03
Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (p<0.05). In addition, intensity-dependent decreases in RBF during hind paw stimulation were attenuated by chronic pain at T2 (p's<0.05) and T10 (p's<0.05), but less so at T10 compared with T2 (p's<0.05). These results indicate that chronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Shiose, Keisuke; Yamada, Yosuke; Motonaga, Keiko; Sagayama, Hiroyuki; Higaki, Yasuki; Tanaka, Hiroaki; Takahashi, Hideyuki
2016-07-01
Body water content increases during carbohydrate loading because 2.7-4-g water binds each 1 g of glycogen. Bioelectrical impedance spectroscopy (BIS) allows separate assessment of extracellular and intracellular water (ECW and ICW, respectively) in the whole body and each body segment. However, BIS has not been shown to detect changes in body water induced by carbohydrate loading. Here, we aimed to investigate whether BIS had sufficient sensitivity to detect changes in body water content and to determine segmental water distribution after carbohydrate loading. Eight subjects consumed a high-carbohydrate diet containing 12 g carbohydrates·kg body mass(-1)·day(-1) for 72 h after glycogen depletion cycling exercise. Changes in muscle glycogen concentration were measured by (13)C-magnetic resonance spectroscopy, and total body water (TBW) was measured by the deuterium dilution technique (TBWD2O). ICW and ECW in the whole body (wrist-to-ankle) and in each body segment (arm, trunk, and leg) were assessed by BIS. Muscle glycogen concentration [72.7 ± 10.0 (SD) to 169.4 ± 55.9 mmol/kg wet wt, P < 0.001] and TBWD2O (39.3 ± 3.2 to 40.2 ± 3.0 kg, P < 0.05) increased significantly 72 h after exercise compared with baseline, respectively. Whole-body BIS showed significant increases in ICW (P < 0.05), but not in ECW. Segmental BIS showed significant increases in ICW in the legs (P < 0.05), but not in the arms or trunk. Our results suggest that increase in body water after carbohydrate loading can be detected by BIS and is caused by segment-specific increases in ICW. Copyright © 2016 the American Physiological Society.
Using the animal to the last bit: Consumer preferences for different beef cuts.
Scozzafava, Gabriele; Corsi, Armando Maria; Casini, Leonardo; Contini, Caterina; Loose, Simone Mueller
2016-01-01
Meat is expensive to produce, making it is essential to understand the importance consumers pay to different meat cuts. Previous research on consumers' meat choices has mainly focused on meat species, while consumer preferences for meat cuts has so far only received limited interest. The aim of this study is to shed some light into this relatively unexplored area by answering four research questions. First, this study intends to show the relative importance meat cuts play in relation to other extrinsic product attributes. Secondly, this paper looks into differences in choice criteria between regular and special occasions. Third, consumer segments that differ in their preferences and beef purchase are identified, and, finally, the meat purchase portfolios of these segments are revealed. A stated preference methodology of a discrete choice experiment with cut-specific prices covering several meat cuts simultaneously is proposed to answer the research questions. The sample consists of 1500 respondents representative of the Italian population in terms of age, gender and geographic location The results shows that meat cut is the most important factor when choosing bovine meat followed by quality certification (origin), production technique, the type of breed and price. In terms of consumption occasions, we observe significantly lower price sensitivity for marbled steaks and cutlets for special occasions compared to normal occasions. Segmentation analysis shows that while the choices of two segments (comprising about 40% of the sample) are mostly driven by extrinsic product attributes, the remaining segments are mostly driven by meat cuts. These varying preferences are also reflected in the purchase portfolios of the different segments, while less variability is detected from a socio-demographic perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Youn-Jung; Min, Sun-Yang; Lee, Dong Hun; Lee, Byung Kook; Jeung, Kyung Woon; Lee, Hui Jai; Shin, Jonghwan; Ko, Byuk Sung; Ahn, Shin; Nam, Gi-Byoung; Lim, Kyoung Soo; Kim, Won Young
2017-03-13
The authors aimed to evaluate the role of post-resuscitation electrocardiogram (ECG) in patients showing significant ST-segment changes on the initial ECG and to provide useful diagnostic indicators for physicians to determine in which out-of-hospital cardiac arrest (OHCA) patients brain computed tomography (CT) should be performed before emergency coronary angiography. The usefulness of immediate brain CT and ECG for all resuscitated patients with nontraumatic OHCA remains controversial. Between January 2010 and December 2014, 1,088 consecutive adult nontraumatic patients with return of spontaneous circulation who visited the emergency department of 3 tertiary care hospitals were enrolled. After excluding 245 patients with obvious extracardiac causes, 200 patients were finally included. The patients were categorized into 2 groups: those with ST-segment changes with spontaneous subarachnoid hemorrhage (SAH) (n = 50) and those with OHCA of suspected cardiac origin group (n = 150). The combination of 4 ECG characteristics including narrow QRS (<120 ms), atrial fibrillation, prolonged QTc interval (≥460 ms), and ≥4 ST-segment depressions had a 66.0% sensitivity, 80.0% specificity, 52.4% positive predictive value, and 87.6% negative predictive value for predicting SAH. The area under the receiver-operating characteristic curves in the post-resuscitation ECG findings was 0.816 for SAH. SAH was observed in a substantial number of OHCA survivors (25.0%) with significant ST-segment changes on post-resuscitation ECG. Resuscitated patients with narrow QRS complex and any 2 ECG findings of atrial fibrillation, QTc interval prolongation, or ≥4 ST-segment depressions may help identify patients who need brain CT as the next diagnostic work-up. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Lee, Hyuk; Lee, Sang Kil; Park, Jun Chul; Shin, Sung Kwan; Lee, Yong Chan
2013-01-01
There are heterogeneous subgroups among those with heartburn, and data on these individuals are relatively scant. We aimed to evaluate the effect of acid challenge on the segmental contractions of esophageal smooth muscle in endoscopy-negative patients with normal esophageal acid exposure. High-resolution esophageal manometry (HRM) was performed on 30 endoscopy-negative patients with heartburn accompanied by normal esophageal acid exposure using 10 water swallows followed by 10 acidic pomegranate juice swallows. Patients were classified into functional heartburn (FH) and hypersensitive esophagus (HE) groups based on the results of 24-hr impedance pH testing. HRM topographic plots were analyzed and maximal wave amplitude and pressure volumes were measured for proximal and distal smooth muscle segments. The pressure volume of the distal smooth muscle segment in the HE group measured during acidic swallows was higher than during water swallows (2224.1 ± 68.2 mmHg/cm per s versus 2105.6 ± 66.4 mmHg/cm per s, P = 0.027). A prominent shift in the pressure volume to the distal smooth muscle segment was observed in the HE group compared with the FH group (segmental ratio: 2.72 ± 0.08 versus 2.39 ± 0.07, P = 0.005). Manometric measurements during acidic swallows revealed that this shift was augmented in the HE group. The optimal ratio of pomegranate juice swallowing for discrimination of FH from HE was 2.82, with a sensitivity of 88.9% and a specificity of 100%. Hypercontractile response of distal smooth muscle segment to acid swallowing was more prominent in the HE group than the FH group. © 2012 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
INTEGRAL/SPI data segmentation to retrieve source intensity variations
NASA Astrophysics Data System (ADS)
Bouchet, L.; Amestoy, P. R.; Buttari, A.; Rouet, F.-H.; Chauvin, M.
2013-07-01
Context. The INTEGRAL/SPI, X/γ-ray spectrometer (20 keV-8 MeV) is an instrument for which recovering source intensity variations is not straightforward and can constitute a difficulty for data analysis. In most cases, determining the source intensity changes between exposures is largely based on a priori information. Aims: We propose techniques that help to overcome the difficulty related to source intensity variations, which make this step more rational. In addition, the constructed "synthetic" light curves should permit us to obtain a sky model that describes the data better and optimizes the source signal-to-noise ratios. Methods: For this purpose, the time intensity variation of each source was modeled as a combination of piecewise segments of time during which a given source exhibits a constant intensity. To optimize the signal-to-noise ratios, the number of segments was minimized. We present a first method that takes advantage of previous time series that can be obtained from another instrument on-board the INTEGRAL observatory. A data segmentation algorithm was then used to synthesize the time series into segments. The second method no longer needs external light curves, but solely SPI raw data. For this, we developed a specific algorithm that involves the SPI transfer function. Results: The time segmentation algorithms that were developed solve a difficulty inherent to the SPI instrument, which is the intensity variations of sources between exposures, and it allows us to obtain more information about the sources' behavior. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic and Poland with participation of Russia and the USA.
Nyati, Lukhanyo H; Norris, Shane A; Cameron, Noel; Pettifor, John M
2006-05-01
Bones in the axial and appendicular skeletons exhibit heterogeneous growth patterns between different ethnic and sex groups. However, the influence of this differential growth on the expression of bone mineral content is not yet established. The aims of the present study were to investigate: 1) whether there are ethnic and sex differences in axial and appendicular dimensions of South African children; and 2) whether regional segment length is a better predictor of bone mass than stature. Anthropometric measurements of stature, weight, sitting height, and limb lengths were taken on 368 black and white, male and female 9-year-old children. DXA (dual-energy x-ray absorptiometry) scans of the distal ulna, distal radius, and hip and lumbar spine were also obtained. Analyses of covariance were performed to assess differences in limb lengths, adjusted for differences in stature. Multiple regression analyses were used to assess significant predictors of site-specific bone mass. Stature-adjusted means of limb lengths show that black boys have longer legs and humeri but shorter trunks than white boys. In addition, black children have longer forearms than white children, and girls have longer thighs than boys. The regression analysis demonstrated that site-specific bone mass was more strongly associated with regional segment length than stature, but this had little effect on the overall pattern of ethnic and sex differences. In conclusion, there is a differential effect of ethnicity and sex on the growth of the axial and appendicular skeletons, and regional segment length is a better predictor of site-specific bone mass than stature. Copyright 2005 Wiley-Liss, Inc.
Smart markers for watershed-based cell segmentation.
Koyuncu, Can Fahrettin; Arslan, Salim; Durmaz, Irem; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem
2012-01-01
Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of "smart markers" for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.
An Algorithm to Automate Yeast Segmentation and Tracking
Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.
2013-01-01
Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484
The Contribution of Segmental and Suprasegmental Phonology to Reading Comprehension
ERIC Educational Resources Information Center
Veenendaal, Nathalie J.; Groen, Margriet A.; Verhoeven, Ludo
2016-01-01
The aim of the present study was to examine the relation between decoding and segmental and suprasegmental phonology, and their contribution to reading comprehension, in the upper primary grades. Following a longitudinal design, the performance of 99 Dutch primary school students on phonological awareness (segmental phonology) and text-reading…
Hoyng, Lieke L; Frings, Virginie; Hoekstra, Otto S; Kenny, Laura M; Aboagye, Eric O; Boellaard, Ronald
2015-01-01
Positron emission tomography (PET) with (18)F-3'-deoxy-3'-fluorothymidine ([(18)F]FLT) can be used to assess tumour proliferation. A kinetic-filtering (KF) classification algorithm has been suggested for segmentation of tumours in dynamic [(18)F]FLT PET data. The aim of the present study was to evaluate KF segmentation and its test-retest performance in [(18)F]FLT PET in non-small cell lung cancer (NSCLC) patients. Nine NSCLC patients underwent two 60-min dynamic [(18)F]FLT PET scans within 7 days prior to treatment. Dynamic scans were reconstructed with filtered back projection (FBP) as well as with ordered subsets expectation maximisation (OSEM). Twenty-eight lesions were identified by an experienced physician. Segmentation was performed using KF applied to the dynamic data set and a source-to-background corrected 50% threshold (A50%) was applied to the sum image of the last three frames (45- to 60-min p.i.). Furthermore, several adaptations of KF were tested. Both for KF and A50% test-retest (TRT) variability of metabolically active tumour volume and standard uptake value (SUV) were evaluated. KF performed better on OSEM- than on FBP-reconstructed PET images. The original KF implementation segmented 15 out of 28 lesions, whereas A50% segmented each lesion. Adapted KF versions, however, were able to segment 26 out of 28 lesions. In the best performing adapted versions, metabolically active tumour volume and SUV TRT variability was similar to those of A50%. KF misclassified certain tumour areas as vertebrae or liver tissue, which was shown to be related to heterogeneous [(18)F]FLT uptake areas within the tumour. For [(18)F]FLT PET studies in NSCLC patients, KF and A50% show comparable tumour volume segmentation performance. The KF method needs, however, a site-specific optimisation. The A50% is therefore a good alternative for tumour segmentation in NSCLC [(18)F]FLT PET studies in multicentre studies. Yet, it was observed that KF has the potential to subsegment lesions in high and low proliferative areas.
Automated detection of videotaped neonatal seizures based on motion segmentation methods.
Karayiannis, Nicolaos B; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M
2006-07-01
This study was aimed at the development of a seizure detection system by training neural networks using quantitative motion information extracted by motion segmentation methods from short video recordings of infants monitored for seizures. The motion of the infants' body parts was quantified by temporal motion strength signals extracted from video recordings by motion segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by direct thresholding, by clustering of the pixel velocities, and by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The computational tools and procedures developed for automated seizure detection were tested and evaluated on 240 short video segments selected and labeled by physicians from a set of video recordings of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). The experimental study described in this paper provided the basis for selecting the most effective strategy for training neural networks to detect neonatal seizures as well as the decision scheme used for interpreting the responses of the trained neural networks. Depending on the decision scheme used for interpreting the responses of the trained neural networks, the best neural networks exhibited sensitivity above 90% or specificity above 90%. The best among the motion segmentation methods developed in this study produced quantitative features that constitute a reliable basis for detecting myoclonic and focal clonic neonatal seizures. The performance targets of this phase of the project may be achieved by combining the quantitative features described in this paper with those obtained by analyzing motion trajectory signals produced by motion tracking methods. A video system based upon automated analysis potentially offers a number of advantages. Infants who are at risk for seizures could be monitored continuously using relatively inexpensive and non-invasive video techniques that supplement direct observation by nursery personnel. This would represent a major advance in seizure surveillance and offers the possibility for earlier identification of potential neurological problems and subsequent intervention.
Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.
Weijers, Gert; Starke, Alexander; Haudum, Alois; Thijssen, Johan M; Rehage, Jürgen; De Korte, Chris L
2010-07-01
The aim of this study was to test the hypothesis that automatic segmentation of vessels in ultrasound (US) images can produce similar or better results in grading fatty livers than interactive segmentation. A study was performed in postpartum dairy cows (N=151), as an animal model of human fatty liver disease, to test this hypothesis. Five transcutaneous and five intraoperative US liver images were acquired in each animal and a liverbiopsy was taken. In liver tissue samples, triacylglycerol (TAG) was measured by biochemical analysis and hepatic diseases other than hepatic lipidosis were excluded by histopathologic examination. Ultrasonic tissue characterization (UTC) parameters--Mean echo level, standard deviation (SD) of echo level, signal-to-noise ratio (SNR), residual attenuation coefficient (ResAtt) and axial and lateral speckle size--were derived using a computer-aided US (CAUS) protocol and software package. First, the liver tissue was interactively segmented by two observers. With increasing fat content, fewer hepatic vessels were visible in the ultrasound images and, therefore, a smaller proportion of the liver needed to be excluded from these images. Automatic-segmentation algorithms were implemented and it was investigated whether better results could be achieved than with the subjective and time-consuming interactive-segmentation procedure. The automatic-segmentation algorithms were based on both fixed and adaptive thresholding techniques in combination with a 'speckle'-shaped moving-window exclusion technique. All data were analyzed with and without postprocessing as contained in CAUS and with different automated-segmentation techniques. This enabled us to study the effect of the applied postprocessing steps on single and multiple linear regressions ofthe various UTC parameters with TAG. Improved correlations for all US parameters were found by using automatic-segmentation techniques. Stepwise multiple linear-regression formulas where derived and used to predict TAG level in the liver. Receiver-operating-characteristics (ROC) analysis was applied to assess the performance and area under the curve (AUC) of predicting TAG and to compare the sensitivity and specificity of the methods. Best speckle-size estimates and overall performance (R2 = 0.71, AUC = 0.94) were achieved by using an SNR-based adaptive automatic-segmentation method (used TAG threshold: 50 mg/g liver wet weight). Automatic segmentation is thus feasible and profitable.
NASA Astrophysics Data System (ADS)
Polan, Daniel F.; Brady, Samuel L.; Kaufman, Robert A.
2016-09-01
There is a need for robust, fully automated whole body organ segmentation for diagnostic CT. This study investigates and optimizes a Random Forest algorithm for automated organ segmentation; explores the limitations of a Random Forest algorithm applied to the CT environment; and demonstrates segmentation accuracy in a feasibility study of pediatric and adult patients. To the best of our knowledge, this is the first study to investigate a trainable Weka segmentation (TWS) implementation using Random Forest machine-learning as a means to develop a fully automated tissue segmentation tool developed specifically for pediatric and adult examinations in a diagnostic CT environment. Current innovation in computed tomography (CT) is focused on radiomics, patient-specific radiation dose calculation, and image quality improvement using iterative reconstruction, all of which require specific knowledge of tissue and organ systems within a CT image. The purpose of this study was to develop a fully automated Random Forest classifier algorithm for segmentation of neck-chest-abdomen-pelvis CT examinations based on pediatric and adult CT protocols. Seven materials were classified: background, lung/internal air or gas, fat, muscle, solid organ parenchyma, blood/contrast enhanced fluid, and bone tissue using Matlab and the TWS plugin of FIJI. The following classifier feature filters of TWS were investigated: minimum, maximum, mean, and variance evaluated over a voxel radius of 2 n , (n from 0 to 4), along with noise reduction and edge preserving filters: Gaussian, bilateral, Kuwahara, and anisotropic diffusion. The Random Forest algorithm used 200 trees with 2 features randomly selected per node. The optimized auto-segmentation algorithm resulted in 16 image features including features derived from maximum, mean, variance Gaussian and Kuwahara filters. Dice similarity coefficient (DSC) calculations between manually segmented and Random Forest algorithm segmented images from 21 patient image sections, were analyzed. The automated algorithm produced segmentation of seven material classes with a median DSC of 0.86 ± 0.03 for pediatric patient protocols, and 0.85 ± 0.04 for adult patient protocols. Additionally, 100 randomly selected patient examinations were segmented and analyzed, and a mean sensitivity of 0.91 (range: 0.82-0.98), specificity of 0.89 (range: 0.70-0.98), and accuracy of 0.90 (range: 0.76-0.98) were demonstrated. In this study, we demonstrate that this fully automated segmentation tool was able to produce fast and accurate segmentation of the neck and trunk of the body over a wide range of patient habitus and scan parameters.
Galy, O; Hue, O; Boussana, A; Le Gallais, D; Prefaut, C
2002-04-01
The aim of this study was to determine the effects of a prior run on the cardiorespiratory responses measured during a subsequent cycle segment. Twelve duathletes underwent three successive laboratory trials at an interval of one week: 1) an incremental cycle test, 2) 20 min of running followed by 20 min of cycling (RC), and 3) 20 min of control cycling (C) at the same intensity as the cycling segment of RC. Ventilatory data were collected every minute using a breath-by-breath automated system. Blood samples were collected to measure venous blood lactate concentration, [La], at rest, after the running and cycling segments of RC and after C. The results showed that the C segment of RC had significantly higher VE, VE/VO2, f and HR than C alone and significantly lower VT (p < 0.05) than C alone. Moreover, steady state during C of RC was reached at the 2nd min for VO2, VE, VCO2, VE/VO2, VE/VCO2, and VdT; at the 4th min for R and HR, and at the 5th min for f. The C of RC induced a significant increase in [La] in comparison with C alone. We concluded that the first minute of cycling after running during an RC trial induced specific metabolic and cardiorespiratory responses.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Sun, Yujie; Wang, Qiao
2018-07-01
In object-based image analysis (OBIA), object classification performance is jointly determined by image segmentation, sample or rule setting, and classifiers. Typically, as a crucial step to obtain object primitives, image segmentation quality significantly influences subsequent feature extraction and analyses. By contrast, template matching extracts specific objects from images and prevents shape defects caused by image segmentation. However, creating or editing templates is tedious and sometimes results in incomplete or inaccurate templates. In this study, we combine OBIA and template matching techniques to address these problems and aim for accurate photovoltaic panel (PVP) extraction from very high-resolution (VHR) aerial imagery. The proposed method is based on the previously proposed region-line primitive association framework, in which complementary information between region (segment) and line (straight line) primitives is utilized to achieve a more powerful performance than routine OBIA. Several novel concepts, including the mutual fitting ratio and best-fitting template based on region-line primitive association analyses, are proposed. Automatic template generation and matching method for PVP extraction from VHR imagery are designed for concept and model validation. Results show that the proposed method can successfully extract PVPs without any user-specified matching template or training sample. High user independency and accuracy are the main characteristics of the proposed method in comparison with routine OBIA and template matching techniques.
Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing
2018-06-01
Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shape-specific perceptual learning in a figure-ground segregation task.
Yi, Do-Joon; Olson, Ingrid R; Chun, Marvin M
2006-03-01
What does perceptual experience contribute to figure-ground segregation? To study this question, we trained observers to search for symmetric dot patterns embedded in random dot backgrounds. Training improved shape segmentation, but learning did not completely transfer either to untrained locations or to untrained shapes. Such partial specificity persisted for a month after training. Interestingly, training on shapes in empty backgrounds did not help segmentation of the trained shapes in noisy backgrounds. Our results suggest that perceptual training increases the involvement of early sensory neurons in the segmentation of trained shapes, and that successful segmentation requires perceptual skills beyond shape recognition alone.
Bister, K; Löliger, H C; Duesberg, P H
1979-01-01
RNA and protein of the defective avian acute leukemia virus CMII, which causes myelocytomas in chickens, and of CMII-associated helper virus (CMIIAV) were investigated. The RNA of CMII measured 6 kilobases (kb) and that of CMIIAV measured 8.5 kb. By comparing more than 20 mapped oligonucleotides of CMII RNA with mapped and nonmapped oligonucleotides of acute leukemia viruses MC29 and MH2 and with mapped oligonucleotides of CMIIAV and other nondefective avian tumor viruses, three segments were distinguished in the oligonucleotide map of CMII RNA: (i) a 5' group-specific segment of 1.5 kb which was conserved among CMII, MC29, and MH2 and also homologous with gag-related oligonucleotides of CMIIAV and other helper viruses (hence, group specific); (ii) an internal segment of 2 kb which was conserved specifically among CMII, MC29, and MH2 and whose presence in CMII lends new support to the view that this class of genetic elements is essential for oncogenicity, because it was absent from an otherwise isogenic, nontransforming helper, CMIIAV; and (iii) a 3' group-specific segment of 2.5 kb which shared 13 of 14 oligonucleotides with CMIIAV and included env oligonucleotides of other nondefective viruses of the avian tumor virus group (hence, group specific). This segment and analogous map segments of MC29 and MH2 were not conserved at the level of shared oligonucleotides. CMII-transformed cells contained a nonstructural, gag gene-related protein of 90,000 daltons, distinguished by its size from 110,000-daltom MC29 and 100,000-dalton MH2 counterparts. The gag relatedness and similarity to the 110,000-dalton MC29 counterpart indicated that the 90,000-dalton CMII protein is translated from the 5' and internal segments of CMII RNA. The existence of conserved 5' and internal RNA segments and conserved nonstructural protein products in CMII, MC29, and MH2 indicates that these viruses belong to a related group, termed here the MC29 group. Viruses of the MC29 group differ from one another mainly in their 3' RNA segments and in minor variations of their conserved RNA segments as well as by strain-specific size markers of their gag-related proteins. Because (i) the conserved 5' gag-related and internal RNA segments and their gag-related, nonvirion protein products correlate with the conserved oncogenic spectra of the MC29 group of viruses and because (ii) the internal RNA sequences and nonvirion proteins are not found in nondefective viruses, we propose that the conserved RNA and protein elements are necessary for oncogenicity and probably are the onc gene products of the MC29 group of viruses. Images PMID:232172
Jiang, Jun; Wu, Yao; Huang, Meiyan; Yang, Wei; Chen, Wufan; Feng, Qianjin
2013-01-01
Brain tumor segmentation is a clinical requirement for brain tumor diagnosis and radiotherapy planning. Automating this process is a challenging task due to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this paper, we propose a method to construct a graph by learning the population- and patient-specific feature sets of multimodal magnetic resonance (MR) images and by utilizing the graph-cut to achieve a final segmentation. The probabilities of each pixel that belongs to the foreground (tumor) and the background are estimated by global and custom classifiers that are trained through learning population- and patient-specific feature sets, respectively. The proposed method is evaluated using 23 glioma image sequences, and the segmentation results are compared with other approaches. The encouraging evaluation results obtained, i.e., DSC (84.5%), Jaccard (74.1%), sensitivity (87.2%), and specificity (83.1%), show that the proposed method can effectively make use of both population- and patient-specific information. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
The open for business model of the bithorax complex in Drosophila.
Maeda, Robert K; Karch, François
2015-09-01
After nearly 30 years of effort, Ed Lewis published his 1978 landmark paper in which he described the analysis of a series of mutations that affect the identity of the segments that form along the anterior-posterior (AP) axis of the fly (Lewis 1978). The mutations behaved in a non-canonical fashion in complementation tests, forming what Ed Lewis called a "pseudo-allelic" series. Because of this, he never thought that the mutations represented segment-specific genes. As all of these mutations were grouped to a particular area of the Drosophila third chromosome, the locus became known of as the bithorax complex (BX-C). One of the key findings of Lewis' article was that it revealed for the first time, to a wide scientific audience, that there was a remarkable correlation between the order of the segment-specific mutations along the chromosome and the order of the segments they affected along the AP axis. In Ed Lewis' eyes, the mutants he discovered affected "segment-specific functions" that were sequentially activated along the chromosome as one moves from anterior to posterior along the body axis (the colinearity concept now cited in elementary biology textbooks). The nature of the "segment-specific functions" started to become clear when the BX-C was cloned through the pioneering chromosomal walk initiated in the mid 1980s by the Hogness and Bender laboratories (Bender et al. 1983a; Karch et al. 1985). Through this molecular biology effort, and along with genetic characterizations performed by Gines Morata's group in Madrid (Sanchez-Herrero et al. 1985) and Robert Whittle's in Sussex (Tiong et al. 1985), it soon became clear that the whole BX-C encoded only three protein-coding genes (Ubx, abd-A, and Abd-B). Later, immunostaining against the Ubx protein hinted that the segment-specific functions could, in fact, be cis-regulatory elements regulating the expression of the three protein-coding genes. In 1987, Peifer, Karch, and Bender proposed a comprehensive model of the functioning of the BX-C, in which the "segment-specific functions" appear as segment-specific enhancers regulating, Ubx, abd-A, or Abd-B (Peifer et al. 1987). Key to their model was that the segmental address of these enhancers was not an inherent ability of the enhancers themselves, but was determined by the chromosomal location in which they lay. In their view, the sequential activation of the segment-specific functions resulted from the sequential opening of chromatin domains along the chromosome as one moves from anterior to posterior. This model soon became known of as the open for business model. While the open for business model is quite easy to visualize at a conceptual level, molecular evidence to validate this model has been missing for almost 30 years. The recent publication describing the outstanding, joint effort from the Bender and Kingston laboratories now provides the missing proof to support this model (Bowman et al. 2014). The purpose of this article is to review the open for business model and take the reader through the genetic arguments that led to its elaboration.
Arizona TeleMedicine Network: System Procurement Specifications.
ERIC Educational Resources Information Center
Atlantic Research Corp., Alexandria, VA.
Providing general specifications and system descriptions for segments within the Arizona TeleMedicine Project (a telecommunication system designed to deliver health services to rurally isolated American Indians in Arizona), this document, when used with the appropriate route segment document, will completely describe the project's required…
Khanal, Laxman; Shah, Sandip; Koirala, Sarun
2017-03-01
Length of long bones is taken as an important contributor for estimating one of the four elements of forensic anthropology i.e., stature of the individual. Since physical characteristics of the individual differ among different groups of population, population specific studies are needed for estimating the total length of femur from its segment measurements. Since femur is not always recovered intact in forensic cases, it was the aim of this study to derive regression equations from measurements of proximal and distal fragments in Nepalese population. A cross-sectional study was done among 60 dry femora (30 from each side) without sex determination in anthropometry laboratory. Along with maximum femoral length, four proximal and four distal segmental measurements were measured following the standard method with the help of osteometric board, measuring tape and digital Vernier's caliper. Bones with gross defects were excluded from the study. Measured values were recorded separately for right and left side. Statistical Package for Social Science (SPSS version 11.5) was used for statistical analysis. The value of segmental measurements were different between right and left side but statistical difference was not significant except for depth of medial condyle (p=0.02). All the measurements were positively correlated and found to have linear relationship with the femoral length. With the help of regression equation, femoral length can be calculated from the segmental measurements; and then femoral length can be used to calculate the stature of the individual. The data collected may contribute in the analysis of forensic bone remains in study population.
Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Yading, E-mail: yading.yuan@mssm.edu; Chao, Ming; Sheu, Ren-Dih
Purpose: This work aims to develop a robust and efficient method to track the fuzzy borders between liver and the abutted organs where automatic liver segmentation usually suffers, and to investigate its applications in automatic liver segmentation on noncontrast-enhanced planning computed tomography (CT) images. Methods: In order to track the fuzzy liver–chestwall and liver–heart borders where oversegmentation is often found, a starting point and an ending point were first identified on the coronal view images; the fuzzy border was then determined as a geodesic curve constructed by minimizing the gradient-weighted path length between these two points near the fuzzy border.more » The minimization of path length was numerically solved by fast-marching method. The resultant fuzzy borders were incorporated into the authors’ automatic segmentation scheme, in which the liver was initially estimated by a patient-specific adaptive thresholding and then refined by a geodesic active contour model. By using planning CT images of 15 liver patients treated with stereotactic body radiation therapy, the liver contours extracted by the proposed computerized scheme were compared with those manually delineated by a radiation oncologist. Results: The proposed automatic liver segmentation method yielded an average Dice similarity coefficient of 0.930 ± 0.015, whereas it was 0.912 ± 0.020 if the fuzzy border tracking was not used. The application of fuzzy border tracking was found to significantly improve the segmentation performance. The mean liver volume obtained by the proposed method was 1727 cm{sup 3}, whereas it was 1719 cm{sup 3} for manual-outlined volumes. The computer-generated liver volumes achieved excellent agreement with manual-outlined volumes with correlation coefficient of 0.98. Conclusions: The proposed method was shown to provide accurate segmentation for liver in the planning CT images where contrast agent is not applied. The authors’ results also clearly demonstrated that the application of tracking the fuzzy borders could significantly reduce contour leakage during active contour evolution.« less
Physiological and transcriptional analyses of developmental stages along sugarcane leaf.
Mattiello, Lucia; Riaño-Pachón, Diego Mauricio; Martins, Marina Camara Mattos; da Cruz, Larissa Prado; Bassi, Denis; Marchiori, Paulo Eduardo Ribeiro; Ribeiro, Rafael Vasconcelos; Labate, Mônica T Veneziano; Labate, Carlos Alberto; Menossi, Marcelo
2015-12-29
Sugarcane is one of the major crops worldwide. It is cultivated in over 100 countries on 22 million ha. The complex genetic architecture and the lack of a complete genomic sequence in sugarcane hamper the adoption of molecular approaches to study its physiology and to develop new varieties. Investments on the development of new sugarcane varieties have been made to maximize sucrose yield, a trait dependent on photosynthetic capacity. However, detailed studies on sugarcane leaves are scarce. In this work, we report the first molecular and physiological characterization of events taking place along a leaf developmental gradient in sugarcane. Photosynthetic response to CO2 indicated divergence in photosynthetic capacity based on PEPcase activity, corroborated by activity quantification (both in vivo and in vitro) and distinct levels of carbon discrimination on different segments along leaf length. Additionally, leaf segments had contrasting amount of chlorophyll, nitrogen and sugars. RNA-Seq data indicated a plethora of biochemical pathways differentially expressed along the leaf. Some transcription factors families were enriched on each segment and their putative functions corroborate with the distinct developmental stages. Several genes with higher expression in the middle segment, the one with the highest photosynthetic rates, were identified and their role in sugarcane productivity is discussed. Interestingly, sugarcane leaf segments had a different transcriptional behavior compared to previously published data from maize. This is the first report of leaf developmental analysis in sugarcane. Our data on sugarcane is another source of information for further studies aiming to understand and/or improve C4 photosynthesis. The segments used in this work were distinct in their physiological status allowing deeper molecular analysis. Although limited in some aspects, the comparison to maize indicates that all data acquired on one C4 species cannot always be easily extrapolated to other species. However, our data indicates that some transcriptional factors were segment-specific and the sugarcane leaf undergoes through the process of suberizarion, photosynthesis establishment and senescence.
Lee, Wonjae; Lee, Yoonje; Kim, Changsun; Choi, Hyuk Joong; Kang, Bossng; Lim, Tae Ho; Oh, Jaehoon; Kang, Hyunggoo; Shin, Junghun
2017-01-01
Objective We aimed to describe electrocardiographic (ECG) findings in spontaneous pneumothorax patients before and after closed thoracostomy. Methods This is a retrospective study which included patients with spontaneous pneumothorax who presented to an emergency department of a tertiary urban hospital from February 2005 to March 2015. The primary outcome was a difference in ECG findings between before and after closed thoracostomy. We specifically investigated the following ECG elements: PR, QRS, QTc, axis, ST segments, and R waves in each lead. The secondary outcomes were change in ST segment in any lead and change in axis after closed thoracostomy. Results There were two ECG elements which showed statistically significant difference after thoracostomy. With right pneumothorax volume of greater than 80%, QTc and the R waves in aVF and V5 significantly changed after thoracostomy. With left pneumothorax volume between 31% and 80%, the ST segment in V2 and the R wave in V1 significantly changed after thoracostomy. However, majority of ECG elements did not show statistically significant alteration after thoracostomy. Conclusion We found only minor changes in ECG after closed thoracostomy in spontaneous pneumothorax patients. PMID:28435901
Scintigraphic assessment of colostomy irrigation.
Christensen, P.; Olsen, N.; Krogh, K.; Laurberg, S.
2002-09-01
OBJECTIVE: This study aims to evaluate colonic transport following colostomy irrigation with a new scintigraphic technique. MATERIALS AND METHODS: To label the bowel contents 19 patients (11 uncomplicated colostomy irrigation, 8 complicated colostomy irrigation) took 111In-labelled polystyrene pellets one and two days before investigation. 99mTc-DTPA was mixed with the irrigation fluid to assess its extent within the bowel. Scintigraphy was performed before and after a standardized washout procedure. The colon was divided into three segments 1: the caecum andascending colon; 2: the transverse colon; 3: the descending and sigmoid colon. Assuming ordered evacuation of the colon, the contribution of each colonic segment to the total evacuation was expressed as a percentage of the original segmental counts. These were added to reach a total defaecation score (range: 0-300). RESULTS: In uncomplicated colostomy irrigation, the median defaecation score was 235 (range: 145-289) corresponding to complete evacuation of the descending and transverse colon and 35% evacuation of the caecum/ascending colon. In complicated colostomy irrigation it was possible to distinguish specific emptying patterns. The retained irrigation fluid reached the caecum in all but one patient. CONCLUSION: Scintigraphy can be used to evaluate colonic emptying following colostomy irrigation.
Kinematics of the field hockey penalty corner push-in.
Kerr, Rebecca; Ness, Kevin
2006-01-01
The aims of the study were to determine those variables that significantly affect push-in execution and thereby formulate coaching recommendations specific to the push-in. Two 50 Hz video cameras recorded transverse and longitudinal views of push-in trials performed by eight experienced and nine inexperienced male push-in performers. Video footage was digitized for data analysis of ball speed, stance width, drag distance, drag time, drag speed, centre of massy displacement and segment and stick displacements and velocities. Experienced push-in performers demonstrated a significantly greater (p < 0.05) stance width, a significantly greater distance between the ball and the front foot at the start of the push-in and a significantly faster ball speed than inexperienced performers. In addition, the experienced performers showed a significant positive correlation between ball speed and playing experience and tended to adopt a combination of simultaneous and sequential segment rotation to achieve accuracy and fast ball speed. The study yielded the following coaching recommendations for enhanced push-in performance: maximize drag distance by maximizing front foot-ball distance at the start of the push-in; use a combination of simultaneous and sequential segment rotations to optimise both accuracy and ball speed and maximize drag speed.
The Influenza A Virus PB2, PA, NP, and M Segments Play a Pivotal Role during Genome Packaging
Gao, Qinshan; Chou, Yi-Ying; Doğanay, Sultan; Vafabakhsh, Reza; Ha, Taekjip
2012-01-01
The genomes of influenza A viruses consist of eight negative-strand RNA segments. Recent studies suggest that influenza viruses are able to specifically package their segmented genomes into the progeny virions. Segment-specific packaging signals of influenza virus RNAs (vRNAs) are located in the 5′ and 3′ noncoding regions, as well as in the terminal regions, of the open reading frames. How these packaging signals function during genome packaging remains unclear. Previously, we generated a 7-segmented virus in which the hemagglutinin (HA) and neuraminidase (NA) segments of the influenza A/Puerto Rico/8/34 virus were replaced by a chimeric influenza C virus hemagglutinin/esterase/fusion (HEF) segment carrying the HA packaging sequences. The robust growth of the HEF virus suggested that the NA segment is not required for the packaging of other segments. In this study, in order to determine the roles of the other seven segments during influenza A virus genome assembly, we continued to use this HEF virus as a tool and analyzed the effects of replacing the packaging sequences of other segments with those of the NA segment. Our results showed that deleting the packaging signals of the PB1, HA, or NS segment had no effect on the growth of the HEF virus, while growth was greatly impaired when the packaging sequence of the PB2, PA, nucleoprotein (NP), or matrix (M) segment was removed. These results indicate that the PB2, PA, NP, and M segments play a more important role than the remaining four vRNAs during the genome-packaging process. PMID:22532680
Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.
2016-01-01
Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444
When seconds count: A study of communication variables in the opening segment of emergency calls.
Penn, Claire; Koole, Tom; Nattrass, Rhona
2017-09-01
The opening sequence of an emergency call influences the efficiency of the ambulance dispatch time. The greeting sequences in 105 calls to a South African emergency service were analysed. Initial results suggested the advantage of a specific two-part opening sequence. An on-site experiment aimed at improving call efficiency was conducted during one shift (1100 calls). Results indicated reduced conversational repairs and a significant reduction of 4 seconds in mean call length. Implications for systems and training are derived.
ERIC Educational Resources Information Center
Polka, Linda; Orena, Adriel John; Sundara, Megha; Worrall, Jennifer
2017-01-01
Previous research shows that word segmentation is a language-specific skill. Here, we tested segmentation of bi-syllabic words in two languages (French; English) within the same infants in a single test session. In Experiment 1, monolingual 8-month-olds (French; English) segmented bi-syllabic words in their native language, but not in an…
Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-10-01
The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.
Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-01-01
Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070
Structural analysis of vibroacoustical processes
NASA Technical Reports Server (NTRS)
Gromov, A. P.; Myasnikov, L. L.; Myasnikova, Y. N.; Finagin, B. A.
1973-01-01
The method of automatic identification of acoustical signals, by means of the segmentation was used to investigate noises and vibrations in machines and mechanisms, for cybernetic diagnostics. The structural analysis consists of presentation of a noise or vibroacoustical signal as a sequence of segments, determined by the time quantization, in which each segment is characterized by specific spectral characteristics. The structural spectrum is plotted as a histogram of the segments, also as a relation of the probability density of appearance of a segment to the segment type. It is assumed that the conditions of ergodic processes are maintained.
Effects of the removal of vision on body sway during different postures in elite gymnasts.
Asseman, F; Caron, O; Crémieux, J
2005-03-01
The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role.
Byrne, N; Velasco Forte, M; Tandon, A; Valverde, I; Hussain, T
2016-01-01
Shortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes. A systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ) and segmentation software were recorded. Totally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports). The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992-2015). The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced. Predominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods.
Contreras-Gutiérrez, María Angélica; Nunes, Marcio R.T.; Guzman, Hilda; Uribe, Sandra; Gómez, Juan Carlos Gallego; Vasco, Juan David Suaza; Cardoso, Jedson F.; Popov, Vsevolod L.; Widen, Steven G.; Wood, Thomas G.; Vasilakis, Nikos; Tesh, Robert B.
2016-01-01
The genome and structural organization of a novel insect-specific orthomyxovirus, designated Sinu virus, is described. Sinu virus (SINUV) was isolated in cultures of C6/36 cells from a pool of mosquitoes collected in northwestern Colombia. The virus has six negative-sense ssRNA segments. Genetic analysis of each segment demonstrated the presence of six distinct ORFs encoding the following genes: PB2 (Segment 1), PB1, (Segment 2), PA protein (Segment 3), envelope GP gene (Segment 4), the NP (Segment 5), and M-like gene (Segment 6). Phylogenetically, SINUV appears to be most closed related to viruses in the genus Thogotovirus. PMID:27936462
A low-cost three-dimensional laser surface scanning approach for defining body segment parameters.
Pandis, Petros; Bull, Anthony Mj
2017-11-01
Body segment parameters are used in many different applications in ergonomics as well as in dynamic modelling of the musculoskeletal system. Body segment parameters can be defined using different methods, including techniques that involve time-consuming manual measurements of the human body, used in conjunction with models or equations. In this study, a scanning technique for measuring subject-specific body segment parameters in an easy, fast, accurate and low-cost way was developed and validated. The scanner can obtain the body segment parameters in a single scanning operation, which takes between 8 and 10 s. The results obtained with the system show a standard deviation of 2.5% in volumetric measurements of the upper limb of a mannequin and 3.1% difference between scanning volume and actual volume. Finally, the maximum mean error for the moment of inertia by scanning a standard-sized homogeneous object was 2.2%. This study shows that a low-cost system can provide quick and accurate subject-specific body segment parameter estimates.
Gap-free segmentation of vascular networks with automatic image processing pipeline.
Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas
2017-03-01
Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Xiubin; Gao, Yaozong; Shen, Dinggang, E-mail: dgshen@med.unc.edu
2015-05-15
Purpose: In image guided radiation therapy, it is crucial to fast and accurately localize the prostate in the daily treatment images. To this end, the authors propose an online update scheme for landmark-guided prostate segmentation, which can fully exploit valuable patient-specific information contained in the previous treatment images and can achieve improved performance in landmark detection and prostate segmentation. Methods: To localize the prostate in the daily treatment images, the authors first automatically detect six anatomical landmarks on the prostate boundary by adopting a context-aware landmark detection method. Specifically, in this method, a two-layer regression forest is trained as amore » detector for each target landmark. Once all the newly detected landmarks from new treatment images are reviewed or adjusted (if necessary) by clinicians, they are further included into the training pool as new patient-specific information to update all the two-layer regression forests for the next treatment day. As more and more treatment images of the current patient are acquired, the two-layer regression forests can be continually updated by incorporating the patient-specific information into the training procedure. After all target landmarks are detected, a multiatlas random sample consensus (multiatlas RANSAC) method is used to segment the entire prostate by fusing multiple previously segmented prostates of the current patient after they are aligned to the current treatment image. Subsequently, the segmented prostate of the current treatment image is again reviewed (or even adjusted if needed) by clinicians before including it as a new shape example into the prostate shape dataset for helping localize the entire prostate in the next treatment image. Results: The experimental results on 330 images of 24 patients show the effectiveness of the authors’ proposed online update scheme in improving the accuracies of both landmark detection and prostate segmentation. Besides, compared to the other state-of-the-art prostate segmentation methods, the authors’ method achieves the best performance. Conclusions: By appropriate use of valuable patient-specific information contained in the previous treatment images, the authors’ proposed online update scheme can obtain satisfactory results for both landmark detection and prostate segmentation.« less
Two-stage atlas subset selection in multi-atlas based image segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu
2015-06-15
Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stagemore » atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors have developed a novel two-stage atlas subset selection scheme for multi-atlas based segmentation. It achieves good segmentation accuracy with significantly reduced computation cost, making it a suitable configuration in the presence of extensive heterogeneous atlases.« less
Image Segmentation Using Minimum Spanning Tree
NASA Astrophysics Data System (ADS)
Dewi, M. P.; Armiati, A.; Alvini, S.
2018-04-01
This research aim to segmented the digital image. The process of segmentation is to separate the object from the background. So the main object can be processed for the other purposes. Along with the development of technology in digital image processing application, the segmentation process becomes increasingly necessary. The segmented image which is the result of the segmentation process should accurate due to the next process need the interpretation of the information on the image. This article discussed the application of minimum spanning tree on graph in segmentation process of digital image. This method is able to separate an object from the background and the image will change to be the binary images. In this case, the object that being the focus is set in white, while the background is black or otherwise.
De Cobelli, Francesco; Esposito, Antonio; Belloni, Elena; Pieroni, Maurizio; Perseghin, Gianluca; Chimenti, Cristina; Frustaci, Andrea; Del Maschio, Alessandro
2009-03-01
Fabry's disease may be difficult to differentiate from symmetric hypertrophic cardiomyopathy. Our aim was to compare the myocardial location and distribution patterns of delayed enhancement between patients with Fabry's disease who are affected by symmetric myocardial hypertrophy and patients with symmetric hypertrophic cardiomyopathy in order to identify a specific sign to best differentiate the two diseases. Patients with Fabry's disease-related hypertrophy showed left ventricular (LV) delayed enhancement with a typical and consistently found pattern characterized by the involvement of the inferolateral basal or mid basal segments and a mesocardial distribution that spared the subendocardium. This pattern seems to be specific to Fabry's disease; in fact, patients with symmetric hypertrophic cardiomyopathy had variable locations and distributions of delayed enhancement. These observations may contribute to identifying Fabry's disease as a specific cause of symmetric hypertrophy.
Choice-Based Segmentation as an Enrollment Management Tool
ERIC Educational Resources Information Center
Young, Mark R.
2002-01-01
This article presents an approach to enrollment management based on target marketing strategies developed from a choice-based segmentation methodology. Students are classified into "switchable" or "non-switchable" segments based on their probability of selecting specific majors. A modified multinomial logit choice model is used to identify…
NASA Astrophysics Data System (ADS)
Garg, Ishita; Karwoski, Ronald A.; Camp, Jon J.; Bartholmai, Brian J.; Robb, Richard A.
2005-04-01
Chronic obstructive pulmonary diseases (COPD) are debilitating conditions of the lung and are the fourth leading cause of death in the United States. Early diagnosis is critical for timely intervention and effective treatment. The ability to quantify particular imaging features of specific pathology and accurately assess progression or response to treatment with current imaging tools is relatively poor. The goal of this project was to develop automated segmentation techniques that would be clinically useful as computer assisted diagnostic tools for COPD. The lungs were segmented using an optimized segmentation threshold and the trachea was segmented using a fixed threshold characteristic of air. The segmented images were smoothed by a morphological close operation using spherical elements of different sizes. The results were compared to other segmentation approaches using an optimized threshold to segment the trachea. Comparison of the segmentation results from 10 datasets showed that the method of trachea segmentation using a fixed air threshold followed by morphological closing with spherical element of size 23x23x5 yielded the best results. Inclusion of greater number of pulmonary vessels in the lung volume is important for the development of computer assisted diagnostic tools because the physiological changes of COPD can result in quantifiable anatomic changes in pulmonary vessels. Using a fixed threshold to segment the trachea removed airways from the lungs to a better extent as compared to using an optimized threshold. Preliminary measurements gathered from patient"s CT scans suggest that segmented images can be used for accurate analysis of total lung volume and volumes of regional lung parenchyma. Additionally, reproducible segmentation allows for quantification of specific pathologic features, such as lower intensity pixels, which are characteristic of abnormal air spaces in diseases like emphysema.
Kitamura, Kaoru; Shimizu, Takashi
2002-04-15
During embryogenesis of the oligochaete annelid Tubifex, segments VII and VIII specifically express mesodermal alkaline phosphatase (ALP) activity in the ventrolateral region. In this study, using specific inhibitors, we examined whether this segment-specific expression of ALP activity depends on DNA replication and RNA transcription. BrdU-incorporation experiments showed that presumptive ALP-expressing cells undergo the last round of DNA replication at 12-24 hr prior to emergence of ALP activity. When this DNA replication was inhibited by aphidicolin, ALP development was completely abrogated in the ventrolateral mesoderm. Similar inhibition of ALP development was also observed in alpha-amanitin-injected embryos. While injection of alpha-amanitin at 24 hr prior to the emergence of ALP activity exerted inhibitory effects on ALP development, injection at 14 hr was no longer effective. In contrast, ALP activity developed normally in cytochalasin-D-treated embryos in which cytokinesis was prevented from occurring for 36 hs prior to appearance of ALP activity. These results suggest that the segment-specific development of ALP activity in the Tubifex embryo depends on DNA replication and mRNA transcription, both of which occur long before the emergence of ALP activity. Copyright 2002 Wiley-Liss, Inc.
Finding a good segmentation strategy for tree crown transparency estimation
Neil A. Clark; Sang-Mook Lee; Philip A. Araman
2003-01-01
Image segmentation is a general term for delineating image areas into informational categories. A wide variety of general techniques exist depending on application and the image data specifications. Specialized algorithms, utilizing components of several techniques, usually are needed to meet the rigors for a specific application. This paper considers automated color...
NASA Technical Reports Server (NTRS)
1974-01-01
The specifications for the Earth Observatory Satellite (EOS) general purpose aircraft segment are presented. The satellite is designed to provide attitude stabilization, electrical power, and a communications data handling subsystem which can support various mission peculiar subsystems. The various specifications considered include the following: (1) structures subsystem, (2) thermal control subsystem, (3) communications and data handling subsystem module, (4) attitude control subsystem module, (5) power subsystem module, and (6) electrical integration subsystem.
Segmentation of nuclear images in automated cervical cancer screening
NASA Astrophysics Data System (ADS)
Dadeshidze, Vladimir; Olsson, Lars J.; Domanik, Richard A.
1995-08-01
This paper describes an efficient method of segmenting cell nuclei from complex scenes based upon the use of adaptive region growing in conjuction with nucleus-specific filters. Results of segmenting potentially abnormal (cancer or neoplastic) cell nuclei in Papanicolaou smears from 0.8 square micrometers resolution images are also presented.
Probabilistic atlas based labeling of the cerebral vessel tree
NASA Astrophysics Data System (ADS)
Van de Giessen, Martijn; Janssen, Jasper P.; Brouwer, Patrick A.; Reiber, Johan H. C.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke
2015-03-01
Preoperative imaging of the cerebral vessel tree is essential for planning therapy on intracranial stenoses and aneurysms. Usually, a magnetic resonance angiography (MRA) or computed tomography angiography (CTA) is acquired from which the cerebral vessel tree is segmented. Accurate analysis is helped by the labeling of the cerebral vessels, but labeling is non-trivial due to anatomical topological variability and missing branches due to acquisition issues. In recent literature, labeling the cerebral vasculature around the Circle of Willis has mainly been approached as a graph-based problem. The most successful method, however, requires the definition of all possible permutations of missing vessels, which limits application to subsets of the tree and ignores spatial information about the vessel locations. This research aims to perform labeling using probabilistic atlases that model spatial vessel and label likelihoods. A cerebral vessel tree is aligned to a probabilistic atlas and subsequently each vessel is labeled by computing the maximum label likelihood per segment from label-specific atlases. The proposed method was validated on 25 segmented cerebral vessel trees. Labeling accuracies were close to 100% for large vessels, but dropped to 50-60% for small vessels that were only present in less than 50% of the set. With this work we showed that using solely spatial information of the vessel labels, vessel segments from stable vessels (>50% presence) were reliably classified. This spatial information will form the basis for a future labeling strategy with a very loose topological model.
Osteoimmune Mechanisms of Segmental Bone Fracture Healing and Therapy
2016-09-01
to civilians. Despite efforts involving allografts , surgery and fixators, intramedullary nailing and invasive plate fixing to heal segmental...efforts are focused on: tissue engineering approaches aimed at developing osteoconductive scaffolds, better quality synthetic bone grafts, and use of
Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography
Saxena, Sandeep; Srivastav, Khushboo; Cheung, Chui M; Ng, Joanne YW; Lai, Timothy YY
2014-01-01
Spectral domain optical coherence tomography cross-sectional imaging of the macula has conventionally been resolved into four bands. However, some doubts were raised regarding authentication of the existence of these bands. Recently, a number of studies have suggested that the second band appeared to originate from the inner segment ellipsoids of the foveal cone photoreceptors, and therefore the previously called inner segment-outer segment junction is now referred to as inner segment ellipsoidband. Photoreceptor dysfunction may be a significant predictor of visual acuity in a spectrum of surgical and medical retinal diseases. This review aims to provide an overview and summarizes the role of the photoreceptor inner segment ellipsoid band in the management and prognostication of various vitreoretinal diseases. PMID:25525329
Multi-Atlas Segmentation of Biomedical Images: A Survey
Iglesias, Juan Eugenio; Sabuncu, Mert R.
2015-01-01
Multi-atlas segmentation (MAS), first introduced and popularized by the pioneering work of Rohlfing, Brandt, Menzel and Maurer Jr (2004), Klein, Mensh, Ghosh, Tourville and Hirsch (2005), and Heckemann, Hajnal, Aljabar, Rueckert and Hammers (2006), is becoming one of the most widely-used and successful image segmentation techniques in biomedical applications. By manipulating and utilizing the entire dataset of “atlases” (training images that have been previously labeled, e.g., manually by an expert), rather than some model-based average representation, MAS has the flexibility to better capture anatomical variation, thus offering superior segmentation accuracy. This benefit, however, typically comes at a high computational cost. Recent advancements in computer hardware and image processing software have been instrumental in addressing this challenge and facilitated the wide adoption of MAS. Today, MAS has come a long way and the approach includes a wide array of sophisticated algorithms that employ ideas from machine learning, probabilistic modeling, optimization, and computer vision, among other fields. This paper presents a survey of published MAS algorithms and studies that have applied these methods to various biomedical problems. In writing this survey, we have three distinct aims. Our primary goal is to document how MAS was originally conceived, later evolved, and now relates to alternative methods. Second, this paper is intended to be a detailed reference of past research activity in MAS, which now spans over a decade (2003 – 2014) and entails novel methodological developments and application-specific solutions. Finally, our goal is to also present a perspective on the future of MAS, which, we believe, will be one of the dominant approaches in biomedical image segmentation. PMID:26201875
Oder, Bernhard; Loewe, Maria; Reisegger, Michael; Lang, Wilfried; Ilias, Wilfried; Thurnher, Siegfried A
2008-09-01
Oxygen-ozone nucleolysis (ONL) is a new, minimally invasive procedure for the treatment of discogenic low back pain with or without radicular symptoms. The aim of the present study was to determine associations between the morphology of the basic disease, patient-specific factors and the outcome of the treatment. Six hundred and twelve patients not responding to conservative therapy were divided into five groups (disc bulging, disc herniation, postoperative patients, osteochondrosis, others) and subjected to nucleolysis with ozone and to periradicular infiltration with steroids and local anaesthesia. The success of treatment was assessed by means of a visual analog pain scale (VAS) and the Oswestry Disability Index (ODI). A significant reduction in the VAS was registered after 2 and 6 months (from 8.6 to 5.4 and 6.0; p < 0.001) in all patient groups; an excellent therapy response (VAS below 3.0) was achieved by about a third of the patients. A significant improvement in ODI was registered in all patients (46 to 31; p < 0.001), most pronounced in the herniation group (25.5, p = 0.015). Patients below 50 years had significantly better values in the VAS and ODI score 6 months after treatment. Final VAS and ODI scores for patients with a single diseased segment were 4.2 and 28.0, in two affected segments 6.5 and 32 and in three segments 6.7 and 38.5 (p < 0.001 and p = 0.051). ONL with periradicular steroid therapy might exert a functional and sustained analgesic effect in patients with degenerative changes in the lumbar spine not responding to conservative therapy and was most effective below 50 years with disc herniation in one segment.
Gadzijev, E M; Ravnik, D; Stanisavljevic, D; Trotovsek, B
1997-01-01
The aim of this study was to determine the venous drainage of the dorsal sector of the liver in order to define the differences between segments I and IX and their implications for sectorially and segmentally oriented hepatic surgery. The study was based on corrosion casts of 61 macroscopically healthy livers. The drainage pathways of veins at least 10 mm long and 1 mm wide were evaluated and statistically analysed. On average, 9 veins drained the two segments and three veins from both segments entered the inferior vena cava. In 95% of cases the veins from segment I drained predominantly into the inferior vena cava, whereas in segment IX this pathway was dominant in only 30% of cases. In 64% of cases a vein originating in segment IX entered the right hepatic v. The difference in the venous drainage of the two segments suggests that segment IX partly belongs to the neighbouring segments and may thus be only a paracaval region of the right liver.
Ramsey, David J; Sunness, Janet S; Malviya, Poorva; Applegate, Carol; Hager, Gregory D; Handa, James T
2014-07-01
To develop a computer-based image segmentation method for standardizing the quantification of geographic atrophy (GA). The authors present an automated image segmentation method based on the fuzzy c-means clustering algorithm for the detection of GA lesions. The method is evaluated by comparing computerized segmentation against outlines of GA drawn by an expert grader for a longitudinal series of fundus autofluorescence images with paired 30° color fundus photographs for 10 patients. The automated segmentation method showed excellent agreement with an expert grader for fundus autofluorescence images, achieving a performance level of 94 ± 5% sensitivity and 98 ± 2% specificity on a per-pixel basis for the detection of GA area, but performed less well on color fundus photographs with a sensitivity of 47 ± 26% and specificity of 98 ± 2%. The segmentation algorithm identified 75 ± 16% of the GA border correctly in fundus autofluorescence images compared with just 42 ± 25% for color fundus photographs. The results of this study demonstrate a promising computerized segmentation method that may enhance the reproducibility of GA measurement and provide an objective strategy to assist an expert in the grading of images.
Vessel discoloration detection in malarial retinopathy
NASA Astrophysics Data System (ADS)
Agurto, C.; Nemeth, S.; Barriga, S.; Soliz, P.; MacCormick, I.; Taylor, T.; Harding, S.; Lewallen, S.; Joshi, V.
2016-03-01
Cerebral malaria (CM) is a life-threatening clinical syndrome associated with malarial infection. It affects approximately 200 million people, mostly sub-Saharan African children under five years of age. Malarial retinopathy (MR) is a condition in which lesions such as whitening and vessel discoloration that are highly specific to CM appear in the retina. Other unrelated diseases can present with symptoms similar to CM, therefore the exact nature of the clinical symptoms must be ascertained in order to avoid misdiagnosis, which can lead to inappropriate treatment and, potentially, death. In this paper we outline the first system to detect the presence of discolored vessels associated with MR as a means to improve the CM diagnosis. We modified and improved our previous vessel segmentation algorithm by incorporating the `a' channel of the CIELab color space and noise reduction. We then divided the segmented vasculature into vessel segments and extracted features at the wall and in the centerline of the segment. Finally, we used a regression classifier to sort the segments into discolored and not-discolored vessel classes. By counting the abnormal vessel segments in each image, we were able to divide the analyzed images into two groups: normal and presence of vessel discoloration due to MR. We achieved an accuracy of 85% with sensitivity of 94% and specificity of 67%. In clinical practice, this algorithm would be combined with other MR retinal pathology detection algorithms. Therefore, a high specificity can be achieved. By choosing a different operating point in the ROC curve, our system achieved sensitivity of 67% with specificity of 100%.
NASA Astrophysics Data System (ADS)
Wei, Xuefeng F.; Grill, Warren M.
2005-12-01
Deep brain stimulation (DBS) electrodes are designed to stimulate specific areas of the brain. The most widely used DBS electrode has a linear array of 4 cylindrical contacts that can be selectively turned on depending on the placement of the electrode and the specific area of the brain to be stimulated. The efficacy of DBS therapy can be improved by localizing the current delivery into specific populations of neurons and by increasing the power efficiency through a suitable choice of electrode geometrical characteristics. We investigated segmented electrode designs created by sectioning each cylindrical contact into multiple rings. Prototypes of these designs, made with different materials and larger dimensions than those of clinical DBS electrodes, were evaluated in vitro and in simulation. A finite element model was developed to study the effects of varying the electrode characteristics on the current density and field distributions in an idealized electrolytic medium and in vitro experiments were conducted to measure the electrode impedance. The current density over the electrode surface increased towards the edges of the electrode, and multiple edges increased the non-uniformity of the current density profile. The edge effects were more pronounced over the end segments than over the central segments. Segmented electrodes generated larger magnitudes of the second spatial difference of the extracellular potentials, and thus required lower stimulation intensities to achieve the same level of neuronal activation as solid electrodes. For a fixed electrode conductive area, increasing the number of segments (edges) decreased the impedance compared to a single solid electrode, because the average current density over the segments increased. Edge effects played a critical role in determining the current density distributions, neuronal excitation patterns, and impedance of cylindrical electrodes, and segmented electrodes provide a means to increase the efficiency of DBS.
On the Importance of Polar Interactions for Complexes Containing Intrinsically Disordered Proteins
Wong, Eric T. C.; Na, Dokyun; Gsponer, Jörg
2013-01-01
There is a growing recognition for the importance of proteins with large intrinsically disordered (ID) segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions. PMID:23990768
Clonal expansion of T-cell receptor beta gene segment in the retrocochlear lesions of EAE mice.
Cheng, K C; Lee, K M; Yoo, T J
1998-01-01
It has been reported that the T cell receptor V beta 8.2 (TcrbV8.2) gene segment is predominantly expressed in encephalomyelitic T cells responding to myelin basic protein (MBP) in experimental allergic encephalomyelitis (EAE) mice. We have demonstrated retrocochlear hearing loss in EAE mice in previous studies. Administration of a monoclonal antibody specific to the T cell receptor V beta 8 (TcrbV8) subfamily prevented both this type of hearing loss and the central nerve disease. In this study, we examined the role of the TcrbV8.2 gene segment in the retrocochlear lesions of EAE mice. A clonal expression of T cell receptor beta chain gene segment (TcrbV8.2-TcrbD2-TcrbJ2.7) was identified in the retrocochlear lesions. The TcrbV8.2 gene segment appears to recombine only with TcrbJ2.1 (32.1%) and TcrbJ2.7 (67.9%) gene segments. The TcrbJ2.7 gene segment has also been previously identified as the dominant TcrbJ gene in the lymph nodes of EAE mice. Only TcrbD2, with a length of 4 amino acids, was observed recombining with these TcrbV8.2 sequences. G and C nucleotides are predominantly expressed at the N regions between the V-D and D-J junctions. This dominant TcrbV gene segment (TcrbV8.2-TcrbD2-TcrbJ2.7) observed in the retrocochlear lesions has been identified in the MBP-specific T cells from the lymph nodes of EAE mice. These results suggest that a small subset of antigen-specific T cells migrate to, and expand at, the retrocochlear lesions, which leads to hearing loss.
2014-01-01
Background Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage. Methods A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm’s robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods. Results Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage. Conclusions Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues. PMID:24521154
Metric Learning to Enhance Hyperspectral Image Segmentation
NASA Technical Reports Server (NTRS)
Thompson, David R.; Castano, Rebecca; Bue, Brian; Gilmore, Martha S.
2013-01-01
Unsupervised hyperspectral image segmentation can reveal spatial trends that show the physical structure of the scene to an analyst. They highlight borders and reveal areas of homogeneity and change. Segmentations are independently helpful for object recognition, and assist with automated production of symbolic maps. Additionally, a good segmentation can dramatically reduce the number of effective spectra in an image, enabling analyses that would otherwise be computationally prohibitive. Specifically, using an over-segmentation of the image instead of individual pixels can reduce noise and potentially improve the results of statistical post-analysis. In this innovation, a metric learning approach is presented to improve the performance of unsupervised hyperspectral image segmentation. The prototype demonstrations attempt a superpixel segmentation in which the image is conservatively over-segmented; that is, the single surface features may be split into multiple segments, but each individual segment, or superpixel, is ensured to have homogenous mineralogy.
ST segment elevation in lead aVR: what to expect from this orphan?
Iskandar, Said B; Fahrig, Stephen A
2008-12-01
Standard 12-lead electrocardiography is used to diagnose acute myocardial infarctions in patient presenting with ST elevation. The specificity of ST segment elevation for the corresponding area is more than 90 percent. It has been suggested that ST-segment elevation in lead aVR may indicate left main disease. We will present a patient who had an ST segment elevation in this lead. We will review the current data about this finding, as well as the significance of ST segment elevation in other leads.
Vallon, Volker; Edwards, Aurélie
2016-01-01
Diabetes increases the reabsorption of Na+ (TNa) and glucose via the sodium-glucose cotransporter SGLT2 in the early proximal tubule (S1-S2 segments) of the renal cortex. SGLT2 inhibitors enhance glucose excretion and lower hyperglycemia in diabetes. We aimed to investigate how diabetes and SGLT2 inhibition affect TNa and sodium transport-dependent oxygen consumption QO2active along the whole nephron. To do so, we developed a mathematical model of water and solute transport from the Bowman space to the papillary tip of a superficial nephron of the rat kidney. Model simulations indicate that, in the nondiabetic kidney, acute and chronic SGLT2 inhibition enhances active TNa in all nephron segments, thereby raising QO2active by 5–12% in the cortex and medulla. Diabetes increases overall TNa and QO2active by ∼50 and 100%, mainly because it enhances glomerular filtration rate (GFR) and transport load. In diabetes, acute and chronic SGLT2 inhibition lowers QO2active in the cortex by ∼30%, due to GFR reduction that lowers proximal tubule active TNa, but raises QO2active in the medulla by ∼7%. In the medulla specifically, chronic SGLT2 inhibition is predicted to increase QO2active by 26% in late proximal tubules (S3 segments), by 2% in medullary thick ascending limbs (mTAL), and by 9 and 21% in outer and inner medullary collecting ducts (OMCD and IMCD), respectively. Additional blockade of SGLT1 in S3 segments enhances glucose excretion, reduces QO2active by 33% in S3 segments, and raises QO2active by <1% in mTAL, OMCD, and IMCD. In summary, the model predicts that SGLT2 blockade in diabetes lowers cortical QO2active and raises medullary QO2active, particularly in S3 segments. PMID:26764207
Morphological patterns of lip prints in Mangaloreans based on Suzuki and Tsuchihashi classification
Jeergal, Prabhakar A; Pandit, Siddharth; Desai, Dinkar; Surekha, R; Jeergal, Vasanti A
2016-01-01
Introduction: Cheiloscopy is the study of the furrows or grooves present on the red part or vermilion border of the human lips. The present study aims to classify the characteristics of lip prints and to know the most common morphological pattern specific to Mangalorean people of Southern India. For the first time, this study also assesses the association between gender and different lip segments within a population. Materials and Methods: A total of 200 residents of Mangalore (100 males and 100 females) were included of age ranging from 18 years to 60 years. Materials used to take the impression of lips included red lipstick, A4 size white bond paper and cellophane tape. The prints obtained were scanned using a Canon Image Scanner and stored in a folder on a personal computer. The images were cropped and inverted in gray scale using Adobe Photoshop software. Each lip print was divided into eight segments and was examined. Suzuki and Tsuchihashi's classification (1970) was used to classify the types of grooves, and the results were statistically analyzed. Six types of grooves were recorded in the Mangalorean's lips. Statistical Analysis: Association between gender and different lip segments was tested using Chi-square analysis in the given population. Results: In males, the groove Type I' was the highest recorded followed by Type III, Type II, Type I, Type IV and Type V in descending order. In females, Type I' was the highest recorded followed by Type II, Type III, Type IV, Type I and Type V in descending order. Conclusion: Males and females displayed statistically significant differences in lip print patterns for different lip sites: lower medial lip, as well as upper and lower lateral segments. Only the upper medial lip segment displayed no statistically significant difference in lip print pattern between males and females. This shows that the distribution of lip prints is generally dissimilar for males and females, with varying predominance according to lip segment. PMID:27601831
Tsiflikas, Ilias; Drosch, Tanja; Brodoefel, Harald; Thomas, Christoph; Reimann, Anja; Till, Alexander; Nittka, Daniel; Kopp, Andreas F; Schroeder, Stephen; Heuschmid, Martin; Burgstahler, Christof
2010-08-06
Cardiac multi-detector computed tomography (MDCT) permits accurate visualization of high-grade coronary artery stenosis. However, in patients with heart rate irregularities, MDCT was found to have limitations. Thus, the aim of the present study was to evaluate the diagnostic accuracy of a new dual-source computed tomography (DSCT) scanner generation with 83 ms temporal resolution in patients without stable sinus rhythm. 44 patients (31 men, mean age 67.5+/-9.2 years) without stable sinus rhythm and scheduled for invasive coronary angiography (ICA) because of suspected (n=17) or known coronary artery disease (CAD, n=27) were included in this study. All patients were examined with DSCT (Somatom Definition, Siemens). Besides assessment of total calcium score, all coronary segments were analyzed with regard to the presence of significant coronary artery lesions (>50%). The findings were compared to ICA in a blinded fashion. During CT examination, heart rhythm was as follows: 25 patients (57%) atrial fibrillation, 7 patients (16%) ventricular extrasystoles (two of them with atrial fibrillation), 4 patients (9%) supraventricular extrasystoles, 10 patients (23%) sinus arrhythmia (heart rate variability>10 bpm). Mean heart rate was 69+/-14 bpm, median 65 bpm. Mean Agatston score equivalent (ASE) was 762, ranging from 0 to 4949.7 ASE. Prevalence of CAD was 68% (30/44). 155 segments (27%) showed "step-ladder" artifacts and 28 segments (5%) could not be visualized by DSCT. Only 70 segments (12%) were completely imaged without any artifacts. Based on a coronary segment model, sensitivity was 73%, specificity 91%, positive predictive value 63%, and negative predictive value 94% for the detection of significant lesions (>or=50% diameter stenosis). Overall accuracy was 88%. In patients with heart rate irregularities, including patients with atrial fibrillation and a high prevalence of coronary artery disease, the diagnostic yield of dual-source computed tomography is still hampered due to a high number of segments with "step-ladder" artifacts. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Gilmore, Anna B; Tavakoly, Behrooz; Taylor, Gordon; Reed, Howard
2013-01-01
Aims Tobacco tax increases are the most effective means of reducing tobacco use and inequalities in smoking, but effectiveness depends on transnational tobacco company (TTC) pricing strategies, specifically whether TTCs overshift tax increases (increase prices on top of the tax increase) or undershift the taxes (absorb the tax increases so they are not passed onto consumers), about which little is known. Design Review of literature on brand segmentation. Analysis of 1999–2009 data to explore the extent to which tax increases are shifted to consumers, if this differs by brand segment and whether cigarette price indices accurately reflect cigarette prices. Setting UK. Participants UK smokers. Measurements Real cigarette prices, volumes and net-of-tax- revenue by price segment. Findings TTCs categorise brands into four price segments: premium, economy, mid and ‘ultra-low price’ (ULP). TTCs have sold ULP brands since 2006; since then, their real price has remained virtually static and market share doubled. The price gap between premium and ULP brands is increasing because the industry differentially shifts tax increases between brand segments; while, on average, taxes are overshifted, taxes on ULP brands are not always fully passed onto consumers (being absorbed at the point each year when tobacco taxes increase). Price indices reflect the price of premium brands only and fail to detect these problems. Conclusions Industry-initiated cigarette price changes in the UK appear timed to accentuate the price gap between premium and ULP brands. Increasing the prices of more expensive cigarettes on top of tobacco tax increases should benefit public health, but the growing price gap enables smokers to downtrade to cheaper tobacco products and may explain smoking-related inequalities. Governments must monitor cigarette prices by price segment and consider industry pricing strategies in setting tobacco tax policies. PMID:23445255
Kim, Ho-Joong; Kang, Kyoung-Tak; Park, Sung-Cheol; Kwon, Oh-Hyo; Son, Juhyun; Chang, Bong-Soon; Lee, Choon-Ki; Yeom, Jin S; Lenke, Lawrence G
2017-05-01
There have been conflicting results on the surgical outcome of lumbar fusion surgery using two different techniques: robot-assisted pedicle screw fixation and conventional freehand technique. In addition, there have been no studies about the biomechanical issues between both techniques. This study aimed to investigate the biomechanical properties in terms of stress at adjacent segments using robot-assisted pedicle screw insertion technique (robot-assisted, minimally invasive posterior lumbar interbody fusion, Rom-PLIF) and freehand technique (conventional, freehand, open approach, posterior lumbar interbody fusion, Cop-PLIF) for instrumented lumbar fusion surgery. This is an additional post-hoc analysis for patient-specific finite element (FE) model. The sample is composed of patients with degenerative lumbar disease. Intradiscal pressure and facet contact force are the outcome measures. Patients were randomly assigned to undergo an instrumented PLIF procedure using a Rom-PLIF (37 patients) or a Cop-PLIF (41), respectively. Five patients in each group were selected using a simple random sampling method after operation, and 10 preoperative and postoperative lumbar spines were modeled from preoperative high-resolution computed tomography of 10 patients using the same method for a validated lumbar spine model. Under four pure moments of 7.5 Nm, the changes in intradiscal pressure and facet joint contact force at the proximal adjacent segment following fusion surgery were analyzed and compared with preoperative states. The representativeness of random samples was verified. Both groups showed significant increases in postoperative intradiscal pressure at the proximal adjacent segment under four moments, compared with the preoperative state. The Cop-PLIF models demonstrated significantly higher percent increments of intradiscal pressure at proximal adjacent segments under extension, lateral bending, and torsion moments than the Rom-PLIF models (p=.032, p=.008, and p=.016, respectively). Furthermore, the percent increment of facet contact force was significantly higher in the Cop-PLIF models under extension and torsion moments than in the Rom-PLIF models (p=.016 under both extension and torsion moments). The present study showed the clinical application of subject-specific FE analysis in the spine. Even though there was biomechanical superiority of the robot-assisted insertions in terms of alleviation of stress increments at adjacent segments after fusion, cautious interpretation is needed because of the small sample size. Copyright © 2016 Elsevier Inc. All rights reserved.
Segmentation and Representation of Consonant Blends in Kindergarten Children's Spellings
ERIC Educational Resources Information Center
Werfel, Krystal L.; Schuele, C. Melanie
2012-01-01
Purpose: The purpose of this study was to describe the growth of children's segmentation and representation of consonant blends in the kindergarten year and to evaluate the extent to which linguistic features influence segmentation and representation of consonant blends. Specifically, the roles of word position (initial blends, final blends),…
Purchase decision involvement: Event management segments and related event behavior
Rodney B. Warnick; David C. Bojanic
2012-01-01
The goal of this research was to examine the relationships between different levels of event purchase decision involvement (PDI) segments and their respective event behaviors (e.g., expenditures, travel behavior, event consumption and satisfaction). The specific purpose was to answer two major research questions: 1) Can PDI identify different levels or segments of...
Unsupervised object segmentation with a hybrid graph model (HGM).
Liu, Guangcan; Lin, Zhouchen; Yu, Yong; Tang, Xiaoou
2010-05-01
In this work, we address the problem of performing class-specific unsupervised object segmentation, i.e., automatic segmentation without annotated training images. Object segmentation can be regarded as a special data clustering problem where both class-specific information and local texture/color similarities have to be considered. To this end, we propose a hybrid graph model (HGM) that can make effective use of both symmetric and asymmetric relationship among samples. The vertices of a hybrid graph represent the samples and are connected by directed edges and/or undirected ones, which represent the asymmetric and/or symmetric relationship between them, respectively. When applied to object segmentation, vertices are superpixels, the asymmetric relationship is the conditional dependence of occurrence, and the symmetric relationship is the color/texture similarity. By combining the Markov chain formed by the directed subgraph and the minimal cut of the undirected subgraph, the object boundaries can be determined for each image. Using the HGM, we can conveniently achieve simultaneous segmentation and recognition by integrating both top-down and bottom-up information into a unified process. Experiments on 42 object classes (9,415 images in total) show promising results.
Non-arbitrage in financial markets: A Bayesian approach for verification
NASA Astrophysics Data System (ADS)
Cerezetti, F. V.; Stern, Julio Michael
2012-10-01
The concept of non-arbitrage plays an essential role in finance theory. Under certain regularity conditions, the Fundamental Theorem of Asset Pricing states that, in non-arbitrage markets, prices of financial instruments are martingale processes. In this theoretical framework, the analysis of the statistical distributions of financial assets can assist in understanding how participants behave in the markets, and may or may not engender arbitrage conditions. Assuming an underlying Variance Gamma statistical model, this study aims to test, using the FBST - Full Bayesian Significance Test, if there is a relevant price difference between essentially the same financial asset traded at two distinct locations. Specifically, we investigate and compare the behavior of call options on the BOVESPA Index traded at (a) the Equities Segment and (b) the Derivatives Segment of BM&FBovespa. Our results seem to point out significant statistical differences. To what extent this evidence is actually the expression of perennial arbitrage opportunities is still an open question.
Demonstration of a Conduction Cooled React and Wind MgB2 Coil Segment for MRI Applications
Kim, H. S.; Kovacs, C.; Rindfleisch, M.; Yue, J.; Doll, D.; Tomsic, M.; Sumption, M. D.; Collings, E. W.
2016-01-01
This study is a contribution to the development of technology for an MgB2-based, cryogen-free, superconducting magnet for an MRI system. Specifically, we aim to demonstrate that a react and wind coil can be made using high performance in-situ route MgB2 conductor, and that the conductor could be operated in conduction mode with low levels of temperature gradient. In this work, an MgB2 conductor was used for the winding of a sub-size, MRI-like coil segment. The MgB2 coil was wound on a 457 mm ID 101 OFE copper former using a react-and-wind approach. The total length of conductor used was 330 m. The coil was epoxy impregnated and then instrumented for low temperature testing. After the initial cool down (conduction cooling) the coil Ic was measured as a function of temperature (15-30 K), and an Ic of 200 A at 15 K was measured. PMID:27857508
Droplet microfluidics with magnetic beads: a new tool to investigate drug-protein interactions.
Lombardi, Dario; Dittrich, Petra S
2011-01-01
In this study, we give the proof of concept for a method to determine binding constants of compounds in solution. By implementing a technique based on magnetic beads with a microfluidic device for segmented flow generation, we demonstrate, for individual droplets, fast, robust and complete separation of the magnetic beads. The beads are used as a carrier for one binding partner and hence, any bound molecule is separated likewise, while the segmentation into small microdroplets ensures fast mixing, and opens future prospects for droplet-wise analysis of drug candidate libraries. We employ the method for characterization of drug-protein binding, here warfarin to human serum albumin. The approach lays the basis for a microfluidic droplet-based screening device aimed at investigating the interactions of drugs with specific targets including enzymes and cells. Furthermore, the continuous method could be employed for various applications, such as binding assays, kinetic studies, and single cell analysis, in which rapid removal of a reactive component is required.
Karnowski, Thomas P; Govindasamy, V; Tobin, Kenneth W; Chaum, Edward; Abramoff, M D
2008-01-01
In this work we report on a method for lesion segmentation based on the morphological reconstruction methods of Sbeh et. al. We adapt the method to include segmentation of dark lesions with a given vasculature segmentation. The segmentation is performed at a variety of scales determined using ground-truth data. Since the method tends to over-segment imagery, ground-truth data was used to create post-processing filters to separate nuisance blobs from true lesions. A sensitivity and specificity of 90% of classification of blobs into nuisance and actual lesion was achieved on two data sets of 86 images and 1296 images.
Metric Learning for Hyperspectral Image Segmentation
NASA Technical Reports Server (NTRS)
Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca
2011-01-01
We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.
Grill, Warren M; Cantrell, Meredith B; Robertson, Matthew S
2008-02-01
Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.
Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly
2015-01-01
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity. PMID:26646790
Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly
2015-12-01
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity.
Johnson, Eileanoir B.; Gregory, Sarah; Johnson, Hans J.; Durr, Alexandra; Leavitt, Blair R.; Roos, Raymund A.; Rees, Geraint; Tabrizi, Sarah J.; Scahill, Rachael I.
2017-01-01
The selection of an appropriate segmentation tool is a challenge facing any researcher aiming to measure gray matter (GM) volume. Many tools have been compared, yet there is currently no method that can be recommended above all others; in particular, there is a lack of validation in disease cohorts. This work utilizes a clinical dataset to conduct an extensive comparison of segmentation tools. Our results confirm that all tools have advantages and disadvantages, and we present a series of considerations that may be of use when selecting a GM segmentation method, rather than a ranking of these tools. Seven segmentation tools were compared using 3 T MRI data from 20 controls, 40 premanifest Huntington’s disease (HD), and 40 early HD participants. Segmented volumes underwent detailed visual quality control. Reliability and repeatability of total, cortical, and lobular GM were investigated in repeated baseline scans. The relationship between each tool was also examined. Longitudinal within-group change over 3 years was assessed via generalized least squares regression to determine sensitivity of each tool to disease effects. Visual quality control and raw volumes highlighted large variability between tools, especially in occipital and temporal regions. Most tools showed reliable performance and the volumes were generally correlated. Results for longitudinal within-group change varied between tools, especially within lobular regions. These differences highlight the need for careful selection of segmentation methods in clinical neuroimaging studies. This guide acts as a primer aimed at the novice or non-technical imaging scientist providing recommendations for the selection of cohort-appropriate GM segmentation software. PMID:29066997
Johnson, Eileanoir B; Gregory, Sarah; Johnson, Hans J; Durr, Alexandra; Leavitt, Blair R; Roos, Raymund A; Rees, Geraint; Tabrizi, Sarah J; Scahill, Rachael I
2017-01-01
The selection of an appropriate segmentation tool is a challenge facing any researcher aiming to measure gray matter (GM) volume. Many tools have been compared, yet there is currently no method that can be recommended above all others; in particular, there is a lack of validation in disease cohorts. This work utilizes a clinical dataset to conduct an extensive comparison of segmentation tools. Our results confirm that all tools have advantages and disadvantages, and we present a series of considerations that may be of use when selecting a GM segmentation method, rather than a ranking of these tools. Seven segmentation tools were compared using 3 T MRI data from 20 controls, 40 premanifest Huntington's disease (HD), and 40 early HD participants. Segmented volumes underwent detailed visual quality control. Reliability and repeatability of total, cortical, and lobular GM were investigated in repeated baseline scans. The relationship between each tool was also examined. Longitudinal within-group change over 3 years was assessed via generalized least squares regression to determine sensitivity of each tool to disease effects. Visual quality control and raw volumes highlighted large variability between tools, especially in occipital and temporal regions. Most tools showed reliable performance and the volumes were generally correlated. Results for longitudinal within-group change varied between tools, especially within lobular regions. These differences highlight the need for careful selection of segmentation methods in clinical neuroimaging studies. This guide acts as a primer aimed at the novice or non-technical imaging scientist providing recommendations for the selection of cohort-appropriate GM segmentation software.
Buisson, Anthony; Pereira, Bruno; Goutte, Marion; Reymond, Maud; Allimant, Christophe; Obritin-Guilhen, Hélène; Bommelaer, Gilles; Hordonneau, Constance
2017-11-01
Magnetic resonance index of activity (MaRIA) and Clermont score are currently the two main MRI indices that have been validated compared to endoscopy in Crohn's disease (CD). To compare the accuracy of MaRIA and Clermont score in assessing CD mucosal healing. Fourty-four CD patients underwent prospectively and consecutively MRI and colonoscopy. Considering 207 segments, MaRIA>7 and Clermont score>8.4 demonstrated substantial accuracy to detect endoscopic ulcerations (73.9% and 74.0%, respectively) and presented with high specificity (82.1% and 81.3%) and high negative predictive value (NPV) (82.1% and 82.4%) for MaRIA and Clermont score, respectively. The sensitivity for detecting deep ulcerations was 90.9% for both MaRIA>11 and Clermont score>12.5, with a specificity of 82.0% and 80.0%, respectively. Among 44 patients, deep MRI remission predicted mucosal healing with specificity=85.3% and NPV=85.3% according to Barcelona criteria (no segmental MaRIA>7), and specificity=88.2% and NPV=85.7% according to Clermont criteria (no segmental Clermont score>8.4). In addition, MRI remission predicted mucosal healing with specificity=76.5% and NPV=86.7% according to Barcelona criteria (no segmental MaRIA>11), and specificity=79.4% and NPV=84.4% according to Clermont criteria (no segmental Clermont score>12.5). MaRIA and Clermont score are equally effective in detecting CD endoscopic ulcerations supporting their use as therapeutic endpoints. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Segmented inlet nozzle for gas turbine, and methods of installation
Klompas, Nicholas
1985-01-01
A gas turbine nozzle guide vane assembly is formed of individual arcuate nozzle segments. The arcuate nozzle segments are elastically joined to each other to form a complete ring, with edges abutted to prevent leakage. The resultant nozzle ring is included within the overall gas turbine stationary structure and secured by a mounting arrangement which permits relative radial movement at both the inner and outer mountings. A spline-type outer mounting provides circumferential retention. A complete rigid nozzle ring with freedom to "float" radially results. Specific structures are disclosed for the inner and outer mounting arrangements. A specific tie-rod structure is also disclosed for elastically joining the individual nozzle segments. Also disclosed is a method of assembling the nozzle ring subassembly-by-subassembly into a gas turbine employing temporary jacks.
Review methods for image segmentation from computed tomography images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik
Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affectmore » the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan.« less
Burton, Rebecca A.B.; Lee, Peter; Casero, Ramón; Garny, Alan; Siedlecka, Urszula; Schneider, Jürgen E.; Kohl, Peter; Grau, Vicente
2014-01-01
Aims Cardiac histo-anatomical organization is a major determinant of function. Changes in tissue structure are a relevant factor in normal and disease development, and form targets of therapeutic interventions. The purpose of this study was to test tools aimed to allow quantitative assessment of cell-type distribution from large histology and magnetic resonance imaging- (MRI) based datasets. Methods and results Rabbit heart fixation during cardioplegic arrest and MRI were followed by serial sectioning of the whole heart and light-microscopic imaging of trichrome-stained tissue. Segmentation techniques developed specifically for this project were applied to segment myocardial tissue in the MRI and histology datasets. In addition, histology slices were segmented into myocytes, connective tissue, and undefined. A bounding surface, containing the whole heart, was established for both MRI and histology. Volumes contained in the bounding surface (called ‘anatomical volume’), as well as that identified as containing any of the above tissue categories (called ‘morphological volume’), were calculated. The anatomical volume was 7.8 cm3 in MRI, and this reduced to 4.9 cm3 after histological processing, representing an ‘anatomical’ shrinkage by 37.2%. The morphological volume decreased by 48% between MRI and histology, highlighting the presence of additional tissue-level shrinkage (e.g. an increase in interstitial cleft space). The ratio of pixels classified as containing myocytes to pixels identified as non-myocytes was roughly 6:1 (61.6 vs. 9.8%; the remaining fraction of 28.6% was ‘undefined’). Conclusion Qualitative and quantitative differentiation between myocytes and connective tissue, using state-of-the-art high-resolution serial histology techniques, allows identification of cell-type distribution in whole-heart datasets. Comparison with MRI illustrates a pronounced reduction in anatomical and morphological volumes during histology processing. PMID:25362175
NASA Astrophysics Data System (ADS)
Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-03-01
The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.
Meckelin 3 Is Necessary for Photoreceptor Outer Segment Development in Rat Meckel Syndrome
Tiwari, Sarika; Hudson, Scott; Gattone, Vincent H.; Miller, Caroline; Chernoff, Ellen A. G.; Belecky-Adams, Teri L.
2013-01-01
Ciliopathies lead to multiorgan pathologies that include renal cysts, deafness, obesity and retinal degeneration. Retinal photoreceptors have connecting cilia joining the inner and outer segment that are responsible for transport of molecules to develop and maintain the outer segment process. The present study evaluated meckelin (MKS3) expression during outer segment genesis and determined the consequences of mutant meckelin on photoreceptor development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using immunohistochemistry, analysis of cell death and electron microscopy. MKS3 was ubiquitously expressed throughout the retina at postnatal day 10 (P10) and P21. However, in the mature retina, MKS3 expression was restricted to photoreceptors and the retinal ganglion cell layer. At P10, both the wild type and homozygous Wpk mutant retina had all retinal cell types. In contrast, by P21, cells expressing rod- and cone-specific markers were fewer in number and expression of opsins appeared to be abnormally localized to the cell body. Cell death analyses were consistent with the disappearance of photoreceptor-specific markers and showed that the cells were undergoing caspase-dependent cell death. By electron microscopy, P10 photoreceptors showed rudimentary outer segments with an axoneme, but did not develop outer segment discs that were clearly present in the wild type counterpart. At p21 the mutant outer segments appeared much the same as the P10 mutant outer segments with only a short axoneme, while the wild-type controls had developed outer segments with many well-organized discs. We conclude that MKS3 is not important for formation of connecting cilium and rudimentary outer segments, but is critical for the maturation of outer segment processes. PMID:23516626
Social discourses of healthy eating. A market segmentation approach.
Chrysochou, Polymeros; Askegaard, Søren; Grunert, Klaus G; Kristensen, Dorthe Brogård
2010-10-01
This paper proposes a framework of discourses regarding consumers' healthy eating as a useful conceptual scheme for market segmentation purposes. The objectives are: (a) to identify the appropriate number of health-related segments based on the underlying discursive subject positions of the framework, (b) to validate and further describe the segments based on their socio-demographic characteristics and attitudes towards healthy eating, and (c) to explore differences across segments in types of associations with food and health, as well as perceptions of food healthfulness.316 Danish consumers participated in a survey that included measures of the underlying subject positions of the proposed framework, followed by a word association task that aimed to explore types of associations with food and health, and perceptions of food healthfulness. A latent class clustering approach revealed three consumer segments: the Common, the Idealists and the Pragmatists. Based on the addressed objectives, differences across the segments are described and implications of findings are discussed.
HealthStyles: a new psychographic segmentation system for health care marketers.
Endresen, K W; Wintz, J C
1988-01-01
HealthStyles is a new psychographic segmentation system specifically designed for the health care industry. This segmentation system goes beyond traditional geographic and demographic analysis and examines health-related consumer attitudes and behaviors. Four statistically distinct "styles" of consumer health care preferences have been identified. The profiles of the four groups have substantial marketing implications in terms of design and promotion of products and services. Each segment of consumers also has differing expectations of physician behavior.
NASA Astrophysics Data System (ADS)
Kaftan, Jens N.; Tek, Hüseyin; Aach, Til
2009-02-01
The segmentation of the hepatic vascular tree in computed tomography (CT) images is important for many applications such as surgical planning of oncological resections and living liver donations. In surgical planning, vessel segmentation is often used as basis to support the surgeon in the decision about the location of the cut to be performed and the extent of the liver to be removed, respectively. We present a novel approach to hepatic vessel segmentation that can be divided into two stages. First, we detect and delineate the core vessel components efficiently with a high specificity. Second, smaller vessel branches are segmented by a robust vessel tracking technique based on a medialness filter response, which starts from the terminal points of the previously segmented vessels. Specifically, in the first phase major vessels are segmented using the globally optimal graphcuts algorithm in combination with foreground and background seed detection, while the computationally more demanding tracking approach needs to be applied only locally in areas of smaller vessels within the second stage. The method has been evaluated on contrast-enhanced liver CT scans from clinical routine showing promising results. In addition to the fully-automatic instance of this method, the vessel tracking technique can also be used to easily add missing branches/sub-trees to an already existing segmentation result by adding single seed-points.
Delfino, Ralph J.; Gillen, Daniel L.; Tjoa, Thomas; Staimer, Norbert; Polidori, Andrea; Arhami, Mohammad; Sioutas, Constantinos; Longhurst, John
2011-01-01
Background Air pollutants have not been associated with ambulatory electrocardiographic evidence of ST-segment depression ≥ 1 mm (probable cardiac ischemia). We previously found that markers of primary (combustion-related) organic aerosols and gases were positively associated with circulating biomarkers of inflammation and ambulatory blood pressure in the present cohort panel study of elderly subjects with coronary artery disease. Objectives We specifically aimed to evaluate whether exposure markers of primary organic aerosols and ultrafine particles were more strongly associated with ST-segment depression of ≥ 1 mm than were secondary organic aerosols or PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) mass. Methods We evaluated relations of air pollutants to ambulatory electrocardiographic evidence of cardiac ischemia over 10 days in 38 subjects without ST depression on baseline electrocardiographs. Exposures were measured outdoors in retirement communities in the Los Angeles basin, including daily size-fractionated particle mass and hourly markers of primary and secondary organic aerosols and gases. Generalized estimating equations were used to estimate odds of hourly ST-segment depression (≥ 1 mm) from hourly air pollution exposures and to estimate relative rates of daily counts of ST-segment depression from daily average exposures, controlling for potential confounders. Results We found significant positive associations of hourly ST-segment depression with markers of combustion-related aerosols and gases averaged 1-hr through 3–4 days, but not secondary (photochemically aged) organic aerosols or ozone. The odds ratio per interquartile increase in 2-day average primary organic carbon (5.2 μg/m3) was 15.4 (95% confidence interval, 3.5–68.2). Daily counts of ST-segment depression were consistently associated with primary combustion markers and 2-day average quasi-ultrafine particles < 0.25 μm. Conclusions Results suggest that exposure to quasi-ultrafine particles and combustion-related pollutants (predominantly from traffic) increase the risk of myocardial ischemia, coherent with our previous findings for systemic inflammation and blood pressure. PMID:20965803
Patient-specific lean body mass can be estimated from limited-coverage computed tomography images.
Devriese, Joke; Beels, Laurence; Maes, Alex; van de Wiele, Christophe; Pottel, Hans
2018-06-01
In PET/CT, quantitative evaluation of tumour metabolic activity is possible through standardized uptake values, usually normalized for body weight (BW) or lean body mass (LBM). Patient-specific LBM can be estimated from whole-body (WB) CT images. As most clinical indications only warrant PET/CT examinations covering head to midthigh, the aim of this study was to develop a simple and reliable method to estimate LBM from limited-coverage (LC) CT images and test its validity. Head-to-toe PET/CT examinations were retrospectively retrieved and semiautomatically segmented into tissue types based on thresholding of CT Hounsfield units. LC was obtained by omitting image slices. Image segmentation was validated on the WB CT examinations by comparing CT-estimated BW with actual BW, and LBM estimated from LC images were compared with LBM estimated from WB images. A direct method and an indirect method were developed and validated on an independent data set. Comparing LBM estimated from LC examinations with estimates from WB examinations (LBMWB) showed a significant but limited bias of 1.2 kg (direct method) and nonsignificant bias of 0.05 kg (indirect method). This study demonstrates that LBM can be estimated from LC CT images with no significant difference from LBMWB.
Pharyngeal Dystonia Mimicking Spasmodic Dysphonia.
Shi, Lucy L; Simpson, C Blake; Hapner, Edie R; Jinnah, Hyder A; Johns, Michael M
2018-03-01
The aim of this study was to describe the presentation of pharyngeal dystonia (PD), which can occur as a focal or segmental dystonia with a primarily pharyngeal involvement for the discussion of treatment methods for controlling consequent symptoms. PD is specific to speech-related tasks. A retrospective medical record review of four patients with PD was performed. All patients were initially misdiagnosed with adductor spasmodic dysphonia and failed standard treatment with botulinum toxin type A (BTX). On laryngoscopy, the patients were discovered to have segmental or focal dystonia primarily affecting the pharyngeal musculature contributing to their vocal manifestations. A novel treatment regimen was designed, which involved directing BTX injections into the muscles involved in spasmodic valving at the oropharyngeal level. After titrating to an optimal dose, all patients showed improvement in their voice and speech with only mild dysphagia. These patients have maintained favorable results with repeat injections at 6- to 12-week intervals. PD, or dystonia with predominant pharyngeal involvement, is a rare entity with vocal manifestations that are not well described. It can be easily mistaken for spasmodic dysphonia. PD is specific to speech-related tasks. A novel method of BTX injections into the involved muscles results in a significant improvement in voice without significant dysphagia. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... Contracts, to reflect the difference in the daily return between two market segments. Although each Index is... specific market segments. By rebalancing each Index on a daily basis as of the Index Calculation Time, each... return, on a leveraged basis, between two predetermined market segments. Each Fund will represent a...
[Evaluation of myocardial ischemia using Holter monitoring].
Kodama, Y
1995-07-01
To establish the diagnostic criteria for myocardial ischemia, Holter monitoring and coronary angiography were performed on 46 cases (24 males (51.8 +/- 9.3 years), 22 females (47.5 +/- 10.5 years)). These patients were retrospectively selected from about 12000 patients who had the Holter monitorings from 1980 to 1993. The criteria for the entry were 1) reliable trend recordings of heart rate and 2) reliable recording of ST trend with accurate 1 mV calibration. The coronary stenosis greater than 75% in diameter was considered to be significant. Results were as follows: 1) ST trend pattern was classified into typical type, atypical type and box type. There were no significant differences in the incidence of typical and atypical types between ischemic and nonischemic groups, 2) Diagnostic accuracy of the criteria for myocardial ischemia, that is, the horizontal or downsloping ST segment depression with 0.1 mV at the point of 80 msec from the J point lasting for 1 minute, was higher in male than in female: the sensitivity was 93.3% and the specificity was 55.6% for men respectively, whereas the sensitivity was 66.7% and the specificity was 37.5% for women respectively, 3) Diagnostic accuracy of the ST/Heart rate ratio was 80.0% for the sensitivity and 64.7% for the specificity, indicating an improvement of specificity, 4) Maximal ST segment depression was accompanied by pain by 88.8% in true positive group (significant ST segment depression with significant coronary stenosis), whereas that was 28.6% in false positive group (significant ST segment depression without significant coronary stenosis), 5) Comparison of the degree of maximal ST segment depression, duration and frequency between computer and manual measurement showed a good correlation for the degree of maximal ST segment depression, whereas the duration and the frequency showed no significant correlations. The above results suggest that combined evaluation of the ST segment depression criteria (downsloping or horizontal ST segment depression greater than 1 mm at the point of 80 msec from the J point) and the ST/Heart rate criteria (1.4 microV/beats/min) is useful for the diagnosis of myocardial ischemia using Holter monitoring.
A general framework to learn surrogate relevance criterion for atlas based image segmentation
NASA Astrophysics Data System (ADS)
Zhao, Tingting; Ruan, Dan
2016-09-01
Multi-atlas based image segmentation sees great opportunities in the big data era but also faces unprecedented challenges in identifying positive contributors from extensive heterogeneous data. To assess data relevance, image similarity criteria based on various image features widely serve as surrogates for the inaccessible geometric agreement criteria. This paper proposes a general framework to learn image based surrogate relevance criteria to better mimic the behaviors of segmentation based oracle geometric relevance. The validity of its general rationale is verified in the specific context of fusion set selection for image segmentation. More specifically, we first present a unified formulation for surrogate relevance criteria and model the neighborhood relationship among atlases based on the oracle relevance knowledge. Surrogates are then trained to be small for geometrically relevant neighbors and large for irrelevant remotes to the given targets. The proposed surrogate learning framework is verified in corpus callosum segmentation. The learned surrogates demonstrate superiority in inferring the underlying oracle value and selecting relevant fusion set, compared to benchmark surrogates.
Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras
Morris, Mark; Sellers, William I.
2015-01-01
Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints. PMID:25780778
Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras.
Peyer, Kathrin E; Morris, Mark; Sellers, William I
2015-01-01
Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints.
Integrated circuit layer image segmentation
NASA Astrophysics Data System (ADS)
Masalskis, Giedrius; Petrauskas, Romas
2010-09-01
In this paper we present IC layer image segmentation techniques which are specifically created for precise metal layer feature extraction. During our research we used many samples of real-life de-processed IC metal layer images which were obtained using optical light microscope. We have created sequence of various image processing filters which provides segmentation results of good enough precision for our application. Filter sequences were fine tuned to provide best possible results depending on properties of IC manufacturing process and imaging technology. Proposed IC image segmentation filter sequences were experimentally tested and compared with conventional direct segmentation algorithms.
NASA Astrophysics Data System (ADS)
Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas
1996-04-01
The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.
Optical transmission testing based on asynchronous sampling techniques
NASA Astrophysics Data System (ADS)
Mrozek, T.; Perlicki, K.; Wilczewski, G.
2016-09-01
This paper presents a method of analysis of images obtained with the Asynchronous Delay Tap Sampling technique, which is used for simultaneous monitoring of a number of phenomena in the physical layer of an optical network. This method allows visualization of results in a form of an optical signal's waveform (characteristics depicting phase portraits). Depending on a specific phenomenon being observed (i.e.: chromatic dispersion, polarization mode dispersion and ASE noise), the shape of the waveform changes. Herein presented original waveforms were acquired utilizing the OptSim 4.0 simulation package. After specific simulation testing, the obtained numerical data was transformed into an image form, that was further subjected to the analysis using authors' custom algorithms. These algorithms utilize various pixel operations and creation of reports each image might be characterized with. Each individual report shows the number of black pixels being present in the specific image segment. Afterwards, generated reports are compared with each other, across the original-impaired relationship. The differential report is created which consists of a "binary key" that shows the increase in the number of pixels in each particular segment. The ultimate aim of this work is to find the correlation between the generated binary keys and the analyzed common phenomenon being observed, allowing identification of the type of interference occurring. In the further course of the work it is evitable to determine their respective values. The presented work delivers the first objective - the ability to recognize interference.
Tian, Ying; Nie, Wen-Hui; Wang, Jin-Huan; Yang, Yun-Fei; Yang, Feng-Tang
2002-02-01
We have established a comparative chromosome map between red panda (Ailurus fulgens, 2n = 36) and dog by chromosome painting with biotin-labelled chromosome-specific probes of the dog. Dog probes specific for the 38 automates delineated 71 homologous segments in the metaphase chromosomes of red panda. Of the 38 autosomal paints, 18 probes each delineated one homologous segment in red panda genome, while the other 20 ones each detected two to five homologous segments. The dog X chromosome-specific paint delineated the whole X chromosome of the red panda. The results indicate that at least 28 fissions (breaks), 49 fusions and 4 inversions were needed to "convert" the dog karyotype to that of the red panda, suggesting that extensive chromosome rearrangements differentiate the karyotypes of red panda and dog. Based on the established comparative chromosome homologies of dog and domestic cat, we could infer that there were 26 segments of conserved synteny between red panda and domestic cat. Comparative analysis of the distribution patterns of conserved segments defined by dog paints in red panda and domestic cat genomes revealed at least 2 cryptic inversions in two large chromosomal regions of conserved synteny between red panda and domestic cat. The karyotype of red panda shows high degree of homology with that of domestic cat.
Sierad, Leslie Neil; Shaw, Eliza Laine; Bina, Alexander; Brazile, Bryn; Rierson, Nicholas; Patnaik, Sourav S.; Kennamer, Allison; Odum, Rebekah; Cotoi, Ovidiu; Terezia, Preda; Branzaniuc, Klara; Smallwood, Harrison; Deac, Radu; Egyed, Imre; Pavai, Zoltan; Szanto, Annamaria; Harceaga, Lucian; Suciu, Horatiu; Raicea, Victor; Olah, Peter; Simionescu, Agneta; Liao, Jun; Movileanu, Ionela
2015-01-01
There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open–close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing of valve functionality. PMID:26467108
Castro, Mariana M; Kim, Bongki; Hill, Eric; Fialho, Maria C Q; Puga, Luciano C H P; Freitas, Mariella B; Breton, Sylvie; Machado-Neves, Mariana
2017-01-01
Desmodus rotundus is a vampire bat species that inhabits Latin America. Some basic aspects of this species' biology are still unknown, as the histophysiological characteristics of the male reproductive tract. Our study has focused on its epididymis, which is an important organ for performing a variety of functions, especially the sperm maturation and storage. The aim of this study was to identify principal, narrow, clear, and basal cells using cell-specific markers such as aquaporin 9 (AQP9), vacuolar H + -ATPase (V-ATPase), and cytokeratin 5 (KRT5). Principal cells were labeled by AQP9 from initial segment to cauda region in their stereocilia. They were shown with a columnar shape, whereas V-ATPase-rich cells were identified with a goblet-shaped body along the entire epididymis, including the initial segment, which were named as clear cells. Pencil-shaped V-ATPase-rich cells (narrow cells) were not detected in the initial segment of the bat epididymis, unlike in the rodent. Basal cells were labeled by KRT5 and were located at the basal portion of the epithelium forming a dense network. However, no basal cells with a luminal-reaching body extension were observed in the bat epididymis. In summary, epithelial cells were identified by their specific markers in the vampire bat epididymis. Principal and basal cells were labeled by AQP9 and KRT5, respectively. Narrow cells were not observed in the vampire bat epididymis, whereas clear cells were identified by V-ATPase labeling along the entire duct in a goblet-shaped body. In addition, no luminal-reaching basal cells were observed in the vampire bat epididymis.
Okur, Aylin; Kantarcı, Mecit; Kızrak, Yeşim; Yıldız, Sema; Pirimoğlu, Berhan; Karaca, Leyla; Oğul, Hayri; Sevimli, Serdar
2014-01-01
PURPOSE We aimed to use a noninvasive method for quantifying T1 values of chronic myocardial infarction scar by cardiac magnetic resonance imaging (MRI), and determine its diagnostic performance. MATERIALS AND METHODS We performed cardiac MRI on 29 consecutive patients with known coronary artery disease (CAD) on 3.0 Tesla MRI scanner. An unenhanced T1 mapping technique was used to calculate T1 relaxation time of myocardial scar tissue, and its diagnostic performance was evaluated. Chronic scar tissue was identified by delayed contrast-enhancement (DE) MRI and T2-weighted images. Sensitivity, specificity, and accuracy values were calculated for T1 mapping using DE images as the gold standard. RESULTS Four hundred and forty-two segments were analyzed in 26 patients. While myocardial chronic scar was demonstrated in 45 segments on DE images, T1 mapping MRI showed a chronic scar area in 54 segments. T1 relaxation time was higher in chronic scar tissue, compared with remote areas (1314±98 ms vs. 1099±90 ms, P < 0.001). Therefore, increased T1 values were shown in areas of myocardium colocalized with areas of DE and normal signal on T2-weighted images. There was a significant correlation between T1 mapping and DE images in evaluation of myocardial wall injury extent (P < 0.05). We calculated sensitivity, specificity, and accuracy as 95.5%, 97%, and 96%, respectively. CONCLUSION The results of the present study reveal that T1 mapping MRI combined with T2-weighted images might be a feasible imaging modality for detecting chronic myocardial infarction scar tissue. PMID:25010366
Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control.
Féraille, E; Doucet, A
2001-01-01
Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years, most of the renal sodium transport systems (Na(+)-K(+)-ATPase, channels, cotransporters, and exchangers) have been characterized at a molecular level. Coupled to the methods developed during the 1965-1985 decades to circumvent kidney heterogeneity and analyze sodium transport at the level of single nephron segments, cloning of the transporters allowed us to move our understanding of hormone regulation of sodium transport from a cellular to a molecular level. The main purpose of this review is to analyze how molecular events at the transporter level account for the physiological changes in tubular handling of sodium promoted by hormones. In recent years, it also became obvious that intracellular signaling pathways interacted with each other, leading to synergisms or antagonisms. A second aim of this review is therefore to analyze the integrated network of signaling pathways underlying hormone action. Given the central role of Na(+)-K(+)-ATPase in sodium reabsorption, the first part of this review focuses on its structural and functional properties, with a special mention of the specificity of Na(+)-K(+)-ATPase expressed in renal tubule. In a second part, the general mechanisms of hormone signaling are briefly introduced before a more detailed discussion of the nephron segment-specific expression of hormone receptors and signaling pathways. The three following parts integrate the molecular and physiological aspects of the hormonal regulation of sodium transport processes in three nephron segments: the proximal tubule, the thick ascending limb of Henle's loop, and the collecting duct.
Glaveckaite, Sigita; Uzdavinyte-Gateliene, Egle; Petrulioniene, Zaneta; Palionis, Darius; Valeviciene, Nomeda; Kalinauskas, Gintaras; Serpytis, Pranas; Laucevicius, Aleksandras
2018-03-09
We aimed to evaluate (i) the effectiveness of combined surgery (coronary artery bypass grafting with restrictive mitral valve annuloplasty) and (ii) the late gadolinium enhancement cardiovascular magnetic resonance-based predictors of ischaemic mitral regurgitation (IMR) recurrence. The prospective analysis included 40 patients with multivessel coronary artery disease, IMR >II° and left ventricular (LV) dysfunction undergoing combined surgery. The degree of IMR and LV parameters were assessed preoperatively by transthoracic echocardiography, 3D transoesophageal echocardiography and cardiovascular magnetic resonance and postoperatively by transthoracic echocardiography. The effective mitral valve repair group (n = 30) was defined as having recurrent ischaemic mitral regurgitation (RIMR) ≤II° at the end of follow-up (25 ± 11 months). The surgery was effective: freedom from RIMR >II° at 1 and 2 years after surgery was 80% and 75%, respectively. Using multivariable logistic regression, 2 independent predictors of RIMR >II° were identified: ≥3 non-viable LV segments (odds ratio 22, P = 0.027) and ≥1 non-viable segment in the LV posterior wall (odds ratio 11, P = 0.026). Using classification trees, the best combinations of cardiovascular magnetic resonance-based and 3D transoesophageal echocardiography-based predictors for RIMR >II° were (i) posterior mitral valve leaflet angle >40° and LV end-systolic volume index >45 ml/m2 (sensitivity 100%, specificity 89%) and (ii) scar transmurality >68% in the inferior LV wall and EuroSCORE II >8 (sensitivity 83%, specificity 78%). There is a clear relationship between the amount of non-viable LV segments, especially in the LV posterior and inferior walls, and the recurrence of IMR after the combined surgery.
SEGMENTING CT PROSTATE IMAGES USING POPULATION AND PATIENT-SPECIFIC STATISTICS FOR RADIOTHERAPY.
Feng, Qianjin; Foskey, Mark; Tang, Songyuan; Chen, Wufan; Shen, Dinggang
2009-08-07
This paper presents a new deformable model using both population and patient-specific statistics to segment the prostate from CT images. There are two novelties in the proposed method. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than general intensity and gradient features, is used to characterize the image features. Second, an online training approach is used to build the shape statistics for accurately capturing intra-patient variation, which is more important than inter-patient variation for prostate segmentation in clinical radiotherapy. Experimental results show that the proposed method is robust and accurate, suitable for clinical application.
SEGMENTING CT PROSTATE IMAGES USING POPULATION AND PATIENT-SPECIFIC STATISTICS FOR RADIOTHERAPY
Feng, Qianjin; Foskey, Mark; Tang, Songyuan; Chen, Wufan; Shen, Dinggang
2010-01-01
This paper presents a new deformable model using both population and patient-specific statistics to segment the prostate from CT images. There are two novelties in the proposed method. First, a modified scale invariant feature transform (SIFT) local descriptor, which is more distinctive than general intensity and gradient features, is used to characterize the image features. Second, an online training approach is used to build the shape statistics for accurately capturing intra-patient variation, which is more important than inter-patient variation for prostate segmentation in clinical radiotherapy. Experimental results show that the proposed method is robust and accurate, suitable for clinical application. PMID:21197416
Rodríguez, Erika E.; Hernández-Lemus, Enrique; Itzá-Ortiz, Benjamín A.; Jiménez, Ismael; Rudomín, Pablo
2011-01-01
The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from time series analysis. This method together with the classical detrended fluctuation analysis (DFA) were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs) recorded either from one lumbar segment (DFA- mean = 1.040.09) or simultaneously from several lumbar segments (mDFA- mean = 1.010.06), where = 0.5 indicates randomness while 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA- = 0.992 as compared to initial conditions mDFA- = 1.186). The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA- = 0.924). In contrast to the classical methods, such as correlation and coherence quantification that define a relation between two sets of data, the mDFA method properly reveals the synchronization of multiple groups of neurons in several segments of the spinal cord. This method is envisaged as a useful tool to characterize the structure of higher order ensembles of cord dorsum spontaneous potentials after spinal cord or peripheral nerve lesions. PMID:22046288
Manavalan, Mary Ann; Gaziova, Ivana; Bhat, Krishna Moorthi
2013-01-01
Guiding axon growth cones towards their targets is a fundamental process that occurs in a developing nervous system. Several major signaling systems are involved in axon-guidance, and disruption of these systems causes axon-guidance defects. However, the specific role of the environment in which axons navigate in regulating axon-guidance has not been examined in detail. In Drosophila, the ventral nerve cord is divided into segments, and half-segments and the precursor neuroblasts are formed in rows and columns in individual half-segments. The row-wise expression of segment-polarity genes within the neuroectoderm provides the initial row-wise identity to neuroblasts. Here, we show that in embryos mutant for the gene midline, which encodes a T-box DNA binding protein, row-2 neuroblasts and their neuroectoderm adopt a row-5 identity. This reiteration of row-5 ultimately creates a non-permissive zone or a barrier, which prevents the extension of interneuronal longitudinal tracts along their normal anterior-posterior path. While we do not know the nature of the barrier, the axon tracts either stall when they reach this region or project across the midline or towards the periphery along this zone. Previously, we had shown that midline ensures ancestry-dependent fate specification in a neuronal lineage. These results provide the molecular basis for the axon guidance defects in midline mutants and the significance of proper specification of the environment to axon-guidance. These results also reveal the importance of segmental polarity in guiding axons from one segment to the next, and a link between establishment of broad segmental identity and axon guidance. PMID:24385932
Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente
2016-05-01
Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.
NASA Technical Reports Server (NTRS)
Piper, William S.; Mick, Mark W.
1994-01-01
Findings and results from a marketing research study are presented. The report identifies market segments and the product types to satisfy demand in each. An estimate of market size is based on the specific industries in each segment. A sample of ten industries was used in the study. The scientific study covered U.S. firms only.
Lee, Hansang; Hong, Helen; Kim, Junmo
2014-12-01
We propose a graph-cut-based segmentation method for the anterior cruciate ligament (ACL) in knee MRI with a novel shape prior and label refinement. As the initial seeds for graph cuts, candidates for the ACL and the background are extracted from knee MRI roughly by means of adaptive thresholding with Gaussian mixture model fitting. The extracted ACL candidate is segmented iteratively by graph cuts with patient-specific shape constraints. Two shape constraints termed fence and neighbor costs are suggested such that the graph cuts prevent any leakage into adjacent regions with similar intensity. The segmented ACL label is refined by means of superpixel classification. Superpixel classification makes the segmented label propagate into missing inhomogeneous regions inside the ACL. In the experiments, the proposed method segmented the ACL with Dice similarity coefficient of 66.47±7.97%, average surface distance of 2.247±0.869, and root mean squared error of 3.538±1.633, which increased the accuracy by 14.8%, 40.3%, and 37.6% from the Boykov model, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kłeczek, Paweł; Dyduch, Grzegorz; Jaworek-Korjakowska, Joanna; Tadeusiewicz, Ryszard
2017-03-01
Background: Epidermis area is an important observation area for the diagnosis of inflammatory skin diseases and skin cancers. Therefore, in order to develop a computer-aided diagnosis system, segmentation of the epidermis area is usually an essential, initial step. This study presents an automated and robust method for epidermis segmentation in whole slide histopathological images of human skin, stained with hematoxylin and eosin. Methods: The proposed method performs epidermis segmentation based on the information about shape and distribution of transparent regions in a slide image and information about distribution and concentration of hematoxylin and eosin stains. It utilizes domain-specific knowledge of morphometric and biochemical properties of skin tissue elements to segment the relevant histopathological structures in human skin. Results: Experimental results on 88 skin histopathological images from three different sources show that the proposed method segments the epidermis with a mean sensitivity of 87 %, a mean specificity of 95% and a mean precision of 57%. It is robust to inter- and intra-image variations in both staining and illumination, and makes no assumptions about the type of skin disorder. The proposed method provides a superior performance compared to the existing techniques.
Gupta, Manoj; Gupta, T C
2017-10-01
The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.
A new software tool for 3D motion analyses of the musculo-skeletal system.
Leardini, A; Belvedere, C; Astolfi, L; Fantozzi, S; Viceconti, M; Taddei, F; Ensini, A; Benedetti, M G; Catani, F
2006-10-01
Many clinical and biomechanical research studies, particularly in orthopaedics, nowadays involve forms of movement analysis. Gait analysis, video-fluoroscopy of joint replacement, pre-operative planning, surgical navigation, and standard radiostereometry would require tools for easy access to three-dimensional graphical representations of rigid segment motion. Relevant data from this variety of sources need to be organised in structured forms. Registration, integration, and synchronisation of segment position data are additional necessities. With this aim, the present work exploits the features of a software tool recently developed within a EU-funded project ('Multimod') in a series of different research studies. Standard and advanced gait analysis on a normal subject, in vivo fluoroscopy-based three-dimensional motion of a replaced knee joint, patellar and ligament tracking on a knee specimen by a surgical navigation system, stem-to-femur migration pattern on a patient operated on total hip replacement, were analysed with standard techniques and all represented by this innovative software tool. Segment pose data were eventually obtained from these different techniques, and were successfully imported and organised in a hierarchical tree within the tool. Skeletal bony segments, prosthesis component models and ligament links were registered successfully to corresponding marker position data for effective three-dimensional animations. These were shown in various combinations, in different views, from different perspectives, according to possible specific research interests. Bioengineering and medical professionals would be much facilitated in the interpretation of the motion analysis measurements necessary in their research fields, and would benefit therefore from this software tool.
Low-dose adenosine stress echocardiography: detection of myocardial viability.
Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav
2003-06-03
The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of >or= 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 +/- 2 months) were available in 24 revascularized patients. Wall motion score index improved from rest 1.55 +/- 0.30 to 1.33 +/- 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 +/- 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability.
Spatially adapted augmentation of age-specific atlas-based segmentation using patch-based priors
NASA Astrophysics Data System (ADS)
Liu, Mengyuan; Seshamani, Sharmishtaa; Harrylock, Lisa; Kitsch, Averi; Miller, Steven; Chau, Van; Poskitt, Kenneth; Rousseau, Francois; Studholme, Colin
2014-03-01
One of the most common approaches to MRI brain tissue segmentation is to employ an atlas prior to initialize an Expectation- Maximization (EM) image labeling scheme using a statistical model of MRI intensities. This prior is commonly derived from a set of manually segmented training data from the population of interest. However, in cases where subject anatomy varies significantly from the prior anatomical average model (for example in the case where extreme developmental abnormalities or brain injuries occur), the prior tissue map does not provide adequate information about the observed MRI intensities to ensure the EM algorithm converges to an anatomically accurate labeling of the MRI. In this paper, we present a novel approach for automatic segmentation of such cases. This approach augments the atlas-based EM segmentation by exploring methods to build a hybrid tissue segmentation scheme that seeks to learn where an atlas prior fails (due to inadequate representation of anatomical variation in the statistical atlas) and utilize an alternative prior derived from a patch driven search of the atlas data. We describe a framework for incorporating this patch-based augmentation of EM (PBAEM) into a 4D age-specific atlas-based segmentation of developing brain anatomy. The proposed approach was evaluated on a set of MRI brain scans of premature neonates with ages ranging from 27.29 to 46.43 gestational weeks (GWs). Results indicated superior performance compared to the conventional atlas-based segmentation method, providing improved segmentation accuracy for gray matter, white matter, ventricles and sulcal CSF regions.
Song, Youyi; Zhang, Ling; Chen, Siping; Ni, Dong; Lei, Baiying; Wang, Tianfu
2015-10-01
In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.
The segment polarity network is a robust developmental module
NASA Astrophysics Data System (ADS)
von Dassow, George; Meir, Eli; Munro, Edwin M.; Odell, Garrett M.
2000-07-01
All insects possess homologous segments, but segment specification differs radically among insect orders. In Drosophila, maternal morphogens control the patterned activation of gap genes, which encode transcriptional regulators that shape the patterned expression of pair-rule genes. This patterning cascade takes place before cellularization. Pair-rule gene products subsequently `imprint' segment polarity genes with reiterated patterns, thus defining the primordial segments. This mechanism must be greatly modified in insect groups in which many segments emerge only after cellularization. In beetles and parasitic wasps, for instance, pair-rule homologues are expressed in patterns consistent with roles during segmentation, but these patterns emerge within cellular fields. In contrast, although in locusts pair-rule homologues may not control segmentation, some segment polarity genes and their interactions are conserved. Perhaps segmentation is modular, with each module autonomously expressing a characteristic intrinsic behaviour in response to transient stimuli. If so, evolution could rearrange inputs to modules without changing their intrinsic behaviours. Here we suggest, using computer simulations, that the Drosophila segment polarity genes constitute such a module, and that this module is resistant to variations in the kinetic constants that govern its behaviour.
Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish
NASA Astrophysics Data System (ADS)
Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy
2013-11-01
Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03210h
The Internet and the Banks' Strategic Distribution Channel Decisions.
ERIC Educational Resources Information Center
Mols, Niels Peter
1998-01-01
Discusses two strategic distribution channel decisions facing banks, one regarding whether to target the Internet banking segment of customers versus the branch banking segment, and the other regarding the geographical area banks aim to serve. Future distribution channels, the change process, and local, national, and international strategies are…
Mouillon, Jean-Marie; Gustafsson, Petter; Harryson, Pia
2006-01-01
Dehydrins constitute a class of intrinsically disordered proteins that are expressed under conditions of water-related stress. Characteristic of the dehydrins are some highly conserved stretches of seven to 17 residues that are repetitively scattered in their sequences, the K-, S-, Y-, and Lys-rich segments. In this study, we investigate the putative role of these segments in promoting structure. The analysis is based on comparative analysis of four full-length dehydrins from Arabidopsis (Arabidopsis thaliana; Cor47, Lti29, Lti30, and Rab18) and isolated peptide mimics of the K-, Y-, and Lys-rich segments. In physiological buffer, the circular dichroism spectra of the full-length dehydrins reveal overall disordered structures with a variable content of poly-Pro helices, a type of elongated secondary structure relying on bridging water molecules. Similar disordered structures are observed for the isolated peptides of the conserved segments. Interestingly, neither the full-length dehydrins nor their conserved segments are able to adopt specific structure in response to altered temperature, one of the factors that regulate their expression in vivo. There is also no structural response to the addition of metal ions, increased protein concentration, or the protein-stabilizing salt Na2SO4. Taken together, these observations indicate that the dehydrins are not in equilibrium with high-energy folded structures. The result suggests that the dehydrins are highly evolved proteins, selected to maintain high configurational flexibility and to resist unspecific collapse and aggregation. The role of the conserved segments is thus not to promote tertiary structure, but to exert their biological function more locally upon interaction with specific biological targets, for example, by acting as beads on a string for specific recognition, interaction with membranes, or intermolecular scaffolding. In this perspective, it is notable that the Lys-rich segment in Cor47 and Lti29 shows sequence similarity with the animal chaperone HSP90. PMID:16565295
Yi, Sunghwan; Kanetkar, Vinay; Brauer, Paula
2015-10-01
While vegetables are often studied as one food group, global measures may mask variation in the types and forms of vegetables preferred by different individuals. To explore preferences for and perceptions of vegetables, we assessed main food preparers based on their preparation of eight specific vegetables and mushrooms. An online self-report survey. Ontario, Canada. Measures included perceived benefits and obstacles of vegetables, convenience orientation and variety seeking in meal preparation. Of the 4517 randomly selected consumers who received the invitation, 1013 responded to the survey (22·4 % response). Data from the main food preparers were analysed (n 756). Latent profile analysis indicated three segments of food preparers. More open to new recipes, the 'crucifer lover' segment (13 %) prepared and consumed substantially more Brussels sprouts, broccoli and asparagus than the other segments. Although similar to the 'average consumer' segment (54 %) in many ways, the 'frozen vegetable user' segment (33 %) used significantly more frozen vegetables than the other segments due to higher prioritization of time and convenience in meal preparation and stronger 'healthy=not tasty' perception. Perception of specific vegetables on taste, healthiness, ease of preparation and cost varied significantly across the three consumer segments. Crucifer lovers also differed with respect to shopping and cooking habits compared with the frozen vegetable users. The substantial heterogeneity in the types of vegetables consumed and perceptions across the three consumer segments has implications for the development of new approaches to promoting these foods.
Chiu, Stephanie J; Toth, Cynthia A; Bowes Rickman, Catherine; Izatt, Joseph A; Farsiu, Sina
2012-05-01
This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique.
Segmentation of medical images using explicit anatomical knowledge
NASA Astrophysics Data System (ADS)
Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee
1999-07-01
Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.
Chiu, Stephanie J.; Toth, Cynthia A.; Bowes Rickman, Catherine; Izatt, Joseph A.; Farsiu, Sina
2012-01-01
This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique. PMID:22567602
Figure-ground segmentation based on class-independent shape priors
NASA Astrophysics Data System (ADS)
Li, Yang; Liu, Yang; Liu, Guojun; Guo, Maozu
2018-01-01
We propose a method to generate figure-ground segmentation by incorporating shape priors into the graph-cuts algorithm. Given an image, we first obtain a linear representation of an image and then apply directional chamfer matching to generate class-independent, nonparametric shape priors, which provide shape clues for the graph-cuts algorithm. We then enforce shape priors in a graph-cuts energy function to produce object segmentation. In contrast to previous segmentation methods, the proposed method shares shape knowledge for different semantic classes and does not require class-specific model training. Therefore, the approach obtains high-quality segmentation for objects. We experimentally validate that the proposed method outperforms previous approaches using the challenging PASCAL VOC 2010/2012 and Berkeley (BSD300) segmentation datasets.
Woodside, A G; Nielsen, R L; Walters, F; Muller, G D
1988-06-01
The results of a national segmentation study are reported. The findings extend the empirical work of Finn and Lamb and the benefit-seeking conjectures by Kotler and Clarke that consumers with preferences toward specific hospitals can be segmented into a few distinct groups. The groups described in the findings are identified as the value conscious, the affluents, the old-fashioneds, and the professional want-it-alls. Each segment has a unique demographic profile. The substantial importance of doctors' recommendations in influencing hospital choice is supported for all four consumer segments. Suggestions for additional research and hospital marketing strategies are provided.
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Miller, S. A.
2001-12-01
We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity catalogs, stress orientation, surface strain, triggering, etc.), which may allow inferences on the stress state of fault systems.
Posnien, Nico; Bucher, Gregor
2010-02-01
The insect head is composed of several segments. During embryonic development, the segments fuse to form a rigid head capsule where obvious segmental boundaries are lacking. Hence, the assignment of regions of the insect head to specific segments is hampered, especially with respect to dorsal (vertex) and lateral (gena) parts. We show that upon Tribolium labial (Tc-lab) knock down, the intercalary segment is deleted but not transformed. Furthermore, we find that the intercalary segment contributes to lateral parts of the head cuticle in Tribolium. Based on several additional mutant and RNAi phenotypes that interfere with gnathal segment development, we show that these segments do not contribute to the dorsal head capsule apart from the dorsal ridge. Opposing the classical view but in line with findings in the vinegar fly Drosophila melanogaster and the milkweed bug Oncopeltus fasciatus, we propose a "bend and zipper" model for insect head capsule formation.
Research on Method of Interactive Segmentation Based on Remote Sensing Images
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, H.; Han, Y.; Yu, F.
2017-09-01
In this paper, we aim to solve the object extraction problem in remote sensing images using interactive segmentation tools. Firstly, an overview of the interactive segmentation algorithm is proposed. Then, our detailed implementation of intelligent scissors and GrabCut for remote sensing images is described. Finally, several experiments on different typical features (water area, vegetation) in remote sensing images are performed respectively. Compared with the manual result, it indicates that our tools maintain good feature boundaries and show good performance.
Improved segmentation of abnormal cervical nuclei using a graph-search based approach
NASA Astrophysics Data System (ADS)
Zhang, Ling; Liu, Shaoxiong; Wang, Tianfu; Chen, Siping; Sonka, Milan
2015-03-01
Reliable segmentation of abnormal nuclei in cervical cytology is of paramount importance in automation-assisted screening techniques. This paper presents a general method for improving the segmentation of abnormal nuclei using a graph-search based approach. More specifically, the proposed method focuses on the improvement of coarse (initial) segmentation. The improvement relies on a transform that maps round-like border in the Cartesian coordinate system into lines in the polar coordinate system. The costs consisting of nucleus-specific edge and region information are assigned to the nodes. The globally optimal path in the constructed graph is then identified by dynamic programming. We have tested the proposed method on abnormal nuclei from two cervical cell image datasets, Herlev and H and E stained liquid-based cytology (HELBC), and the comparative experiments with recent state-of-the-art approaches demonstrate the superior performance of the proposed method.
Intentional forgetting diminishes memory for continuous events.
Fawcett, Jonathan M; Taylor, Tracy L; Nadel, Lynn
2013-01-01
In a novel event method directed forgetting task, instructions to Remember (R) or Forget (F) were integrated throughout the presentation of four videos depicting common events (e.g., baking cookies). Participants responded more accurately to cued recall questions (E1) and true/false statements (E2-4) regarding R segments than F segments. This was true even when forced to attend to F segments by virtue of having to perform concurrent discrimination (E2) or conceptual segmentation (E3) tasks. The final experiment (E5) demonstrated a larger R >F difference for specific true/false statements (the woman added three cups of flour) than for general true/false statements (the woman added flour) suggesting that participants likely encoded and retained at least a general representation of the events they had intended to forget, even though this representation was not as specific as the representation of events they had intended to remember.
Interactive experimenters' planning procedures and mission control
NASA Technical Reports Server (NTRS)
Desjardins, R. L.
1973-01-01
The computerized mission control and planning system routinely generates a 24-hour schedule in one hour of operator time by including time dimensions into experimental planning procedures. Planning is validated interactively as it is being generated segment by segment in the frame of specific event times. The planner simply points a light pen at the time mark of interest on the time line for entering specific event times into the schedule.
On a methodology for robust segmentation of nonideal iris images.
Schmid, Natalia A; Zuo, Jinyu
2010-06-01
Iris biometric is one of the most reliable biometrics with respect to performance. However, this reliability is a function of the ideality of the data. One of the most important steps in processing nonideal data is reliable and precise segmentation of the iris pattern from remaining background. In this paper, a segmentation methodology that aims at compensating various nonidealities contained in iris images during segmentation is proposed. The virtue of this methodology lies in its capability to reliably segment nonideal imagery that is simultaneously affected with such factors as specular reflection, blur, lighting variation, occlusion, and off-angle images. We demonstrate the robustness of our segmentation methodology by evaluating ideal and nonideal data sets, namely, the Chinese Academy of Sciences iris data version 3 interval subdirectory, the iris challenge evaluation data, the West Virginia University (WVU) data, and the WVU off-angle data. Furthermore, we compare our performance to that of our implementation of Camus and Wildes's algorithm and Masek's algorithm. We demonstrate considerable improvement in segmentation performance over the formerly mentioned algorithms.
Crowdsourcing for identification of polyp-free segments in virtual colonoscopy videos
NASA Astrophysics Data System (ADS)
Park, Ji Hwan; Mirhosseini, Seyedkoosha; Nadeem, Saad; Marino, Joseph; Kaufman, Arie; Baker, Kevin; Barish, Matthew
2017-03-01
Virtual colonoscopy (VC) allows a physician to virtually navigate within a reconstructed 3D colon model searching for colorectal polyps. Though VC is widely recognized as a highly sensitive and specific test for identifying polyps, one limitation is the reading time, which can take over 30 minutes per patient. Large amounts of the colon are often devoid of polyps, and a way of identifying these polyp-free segments could be of valuable use in reducing the required reading time for the interrogating radiologist. To this end, we have tested the ability of the collective crowd intelligence of non-expert workers to identify polyp candidates and polyp-free regions. We presented twenty short videos flying through a segment of a virtual colon to each worker, and the crowd was asked to determine whether or not a possible polyp was observed within that video segment. We evaluated our framework on Amazon Mechanical Turk and found that the crowd was able to achieve a sensitivity of 80.0% and specificity of 86.5% in identifying video segments which contained a clinically proven polyp. Since each polyp appeared in multiple consecutive segments, all polyps were in fact identified. Using the crowd results as a first pass, 80% of the video segments could in theory be skipped by the radiologist, equating to a significant time savings and enabling more VC examinations to be performed.
spiel ohne grenzen/pou2 is required for zebrafish hindbrain segmentation.
Hauptmann, Giselbert; Belting, Heinz-Georg; Wolke, Uta; Lunde, Karen; Söll, Iris; Abdelilah-Seyfried, Salim; Prince, Victoria; Driever, Wolfgang
2002-04-01
Segmentation of the vertebrate hindbrain leads to the formation of a series of rhombomeres with distinct identities. In mouse, Krox20 and kreisler play important roles in specifying distinct rhombomeres and in controlling segmental identity by directly regulating rhombomere-specific expression of Hox genes. We show that spiel ohne grenzen (spg) zebrafish mutants develop rhombomeric territories that are abnormal in both size and shape. Rhombomere boundaries are malpositioned or absent and the segmental pattern of neuronal differentiation is perturbed. Segment-specific expression of hoxa2, hoxb2 and hoxb3 is severely affected during initial stages of hindbrain development in spg mutants and the establishment of krx20 (Krox20 ortholog) and valentino (val; kreisler ortholog) expression is impaired. spg mutants carry loss-of-function mutations in the pou2 gene. pou2 is expressed at high levels in the hindbrain primordium of wild-type embryos prior to activation of krx20 and val. Widespread overexpression of Pou2 can rescue the segmental krx20 and val domains in spg mutants, but does not induce ectopic expression of these genes. This suggests that spg/pou2 acts in a permissive manner and is essential for normal expression of krx20 and val. We propose that spg/pou2 is an essential component of the regulatory cascade controlling hindbrain segmentation and acts before krx20 and val in the establishment of rhombomere precursor territories.
Hannibal, Roberta L; Patel, Nipam H
2013-12-17
Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that 'segmentation' be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures.
Segment phasing experiments on the High Order Test bench
NASA Astrophysics Data System (ADS)
Aller-Carpentier, E.; Kasper, M.; Martinez, P.
The segmented primary mirror of the E-ELT imposes particular requirements on an Extreme Adaptive Optics (XAO) system. At present, there are already several AO systems working on segmented telescopes but the achieved performances are too low to draw conclusions for XAO systems aiming at some 90% Strehl ratio in the NIR. On other hand, several analytical studies and simulations were done, but laboratory studies are required to confirm the corrections expected. The goal of the present study is to determina the capability of XAO systems to deal with segmentation piston errors. In particular, the effects on the AO performance and the ability of the AO system to correct the segmentation piston errors were studied. The experiments were carried out on the High Order Test Bench at ESO (Munich) using a Shack-Hartmann wave front sensor and under most realistic conditions with phase screens simulating atmospheric turbulence and segmentation piston errors. Segment geometry was chosen such that about 6 actuators of the XAO DM cover one segment representing the design of EPICS at the EELT.
A power function profile of a ski jumping in-run hill.
Zanevskyy, Ihor
2011-01-01
The aim of the research was to find a function of the curvilinear segment profile which could make possible to avoid an instantaneous increasing of a curvature and to replace a circle arc segment on the in-run of a ski jump without any correction of the angles of inclination and the length of the straight-line segments. The methods of analytical geometry and trigonometry were used to calculate an optimal in-run hill profile. There were two fundamental conditions of the model: smooth borders between a curvilinear segment and straight-line segments of an in-run hill and concave of the curvilinear segment. Within the framework of this model, the problem has been solved with a reasonable precision. Four functions of a curvilinear segment profile of the in-run hill were investigated: circle arc, inclined quadratic parabola, inclined cubic parabola, and power function. The application of a power function to the in-run profile satisfies equal conditions for replacing a circle arc segment. Geometrical parameters of 38 modern ski jumps were investigated using the methods proposed.
Wang, Chunmei; Zhang, Shuaishuai; Li, Donglin; Wang, Jimeng; Cao, Tianqing; Bi, Long; Pei, Guoxian
2018-01-01
Background and aim As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Methods Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. Results The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. Conclusion These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects. PMID:29416332
NASA Technical Reports Server (NTRS)
Brophy, John R. (Inventor)
1993-01-01
Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.
NASA Technical Reports Server (NTRS)
Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.
1988-01-01
The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.
Korotkova, Ekaterina; Laassri, Majid; Zagorodnyaya, Tatiana; Petrovskaya, Svetlana; Rodionova, Elvira; Cherkasova, Elena; Gmyl, Anatoly; Ivanova, Olga E; Eremeeva, Tatyana P; Lipskaya, Galina Y; Agol, Vadim I; Chumakov, Konstantin
2017-11-22
Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing) of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These "weak" segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination.
Long-range strategic planning: a case study.
Moller-Tiger, D
1999-05-01
In highly competitive healthcare markets, integrated delivery systems (IDSs) that have exhausted traditional means of maintaining market competitiveness are challenged to identify effective new strategies that will ensure market success in an uncertain future. Finding itself facing this challenge, Legacy Health System, a Portland, Oregon-based IDS, undertook an innovative, long-range, strategic-planning initiative based on an evaluation of key market trends. Legacy discovered that it might benefit from making some changes in the way it approached its mission. These changes included focusing on specific customer segments, developing products and services aimed at those customers, and broadening physician and insurer relationships to enhance service and improve customers' access to health care.
Unraveling Pancreatic Segmentation.
Renard, Yohann; de Mestier, Louis; Perez, Manuela; Avisse, Claude; Lévy, Philippe; Kianmanesh, Reza
2018-04-01
Limited pancreatic resections are increasingly performed, but the rate of postoperative fistula is higher than after classical resections. Pancreatic segmentation, anatomically and radiologically identifiable, may theoretically help the surgeon removing selected anatomical portions with their own segmental pancreatic duct and thus might decrease the postoperative fistula rate. We aimed at systematically and comprehensively reviewing the previously proposed pancreatic segmentations and discuss their relevance and limitations. PubMed database was searched for articles investigating pancreatic segmentation, including human or animal anatomy, and cadaveric or surgical studies. Overall, 47/99 articles were selected and grouped into 4 main hypotheses of pancreatic segmentation methodology: anatomic, vascular, embryologic and lymphatic. The head, body and tail segments are gross description without distinct borders. The arterial territories defined vascular segments and isolate an isthmic paucivascular area. The embryological theory relied on the fusion plans of the embryological buds. The lymphatic drainage pathways defined the lymphatic segmentation. These theories had differences, but converged toward separating the head and body/tail parts, and the anterior from posterior and inferior parts of the pancreatic head. The rate of postoperative fistula was not decreased when surgical resection was performed following any of these segmentation theories; hence, none of them appeared relevant enough to guide pancreatic transections. Current pancreatic segmentation theories do not enable defining anatomical-surgical pancreatic segments. Other approaches should be explored, in particular focusing on pancreatic ducts, through pancreatic ducts reconstructions and embryologic 3D modelization.
Smith, Frank W; Jockusch, Elizabeth L
2014-11-01
The establishment of segment identity is a key developmental process that allows for divergence along the anteroposterior body axis in arthropods. In Drosophila, the identity of a segment is determined by the complement of Hox genes it expresses. In many contexts, Hox transcription factors require the protein products of extradenticle (exd) and homothorax (hth) as cofactors to perform their identity specification functions. In holometabolous insects, segment identity may be specified twice, during embryogenesis and metamorphosis. To glean insight into the relationship between embryonic and metamorphic segmental identity specification, we have compared these processes in the flour beetle Tribolium castaneum, which develops ventral appendages during embryogenesis that later metamorphose into adult appendages with distinct morphologies. At metamorphosis, comparisons of RNAi phenotypes indicate that Hox genes function jointly with Tc-hth and Tc-exd to specify several region-specific aspects of the adult body wall. On the other hand, Hox genes specify appendage identities along the anteroposterior axis independently of Tc-hth/Tc-exd and Tc-hth/Tc-exd specify proximal vs. distal identity within appendages independently of Hox genes during this stage. During embryogenesis, Tc-hth and Tc-exd play a broad role in the segmentation process and are required for specification of body wall identities in the thorax; however, contrasting with results from other species, we did not obtain homeotic transformations of embryonic appendages in response to Tc-hth or Tc-exd RNAi. In general, the homeotic effects of interference with the function of Hox genes and Tc-hth/Tc-exd during metamorphosis did not match predictions based on embryonic roles of these genes. Comparing metamorphic patterning in T. castaneum to embryonic and post-embryonic development in hemimetabolous insects suggests that holometabolous metamorphosis combines patterning processes of both late embryogenesis and metamorphosis of the hemimetabolous life cycle. Copyright © 2014 Elsevier Inc. All rights reserved.
Kim, Won; Chivukula, Srinivas; Hauptman, Jason; Pouratian, Nader
2016-01-01
Background/Aims Thalamic deep brain stimulation (DBS) for the treatment of medically refractory pain has largely been abandoned on account of its inconsistent and oftentimes poor efficacy. Our aim here was to use diffusion tensor imaging (DTI)-based segmentation to assess the internal thalamic nuclei of patients who have undergone thalamic DBS for intractable pain and retrospectively correlate lead position with clinical outcome. Methods DTI-based segmentation was performed on 5 patients who underwent sensory thalamus DBS for chronic pain. Postoperative computed tomography (CT) images obtained for electrode placement were fused with preoperative MRIs that had undergone DTI-based thalamic segmentation. Sensory thalamus maps of 4 patients were analyzed for lead positioning and interpatient variability. Results Four patients who experienced significant pain relief following DBS demonstrated contact positions within the DTI-determined sensory thalamus or in its vicinity, whereas one who did not respond to stimulation did not. Only four voxels (2%) within the sensory thalamus were mutually shared among patients; 108 voxels (58%) were uniquely represented. Conclusions DTI-based segmentation of the thalamus can be used to confirm thalamic lead placement relative to the sensory thalamus, and may serve as a useful tool to guide thalamic DBS electrode implantation in the future. PMID:27537848
Echocardiogram video summarization
NASA Astrophysics Data System (ADS)
Ebadollahi, Shahram; Chang, Shih-Fu; Wu, Henry D.; Takoma, Shin
2001-05-01
This work aims at developing innovative algorithms and tools for summarizing echocardiogram videos. Specifically, we summarize the digital echocardiogram videos by temporally segmenting them into the constituent views and representing each view by the most informative frame. For the segmentation we take advantage of the well-defined spatio- temporal structure of the echocardiogram videos. Two different criteria are used: presence/absence of color and the shape of the region of interest (ROI) in each frame of the video. The change in the ROI is due to different modes of echocardiograms present in one study. The representative frame is defined to be the frame corresponding to the end- diastole of the heart cycle. To locate the end-diastole we track the ECG of each frame to find the exact time the time- marker on the ECG crosses the peak of the end-diastole we track the ECG of each frame to find the exact time the time- marker on the ECG crosses the peak of the R-wave. The corresponding frame is chosen to be the key-frame. The entire echocardiogram video can be summarized into either a static summary, which is a storyboard type of summary and a dynamic summary, which is a concatenation of the selected segments of the echocardiogram video. To the best of our knowledge, this if the first automated system for summarizing the echocardiogram videos base don visual content.
Chen, Shuo-Tsung; Wang, Tzung-Dau; Lee, Wen-Jeng; Huang, Tsai-Wei; Hung, Pei-Kai; Wei, Cheng-Yu; Chen, Chung-Ming; Kung, Woon-Man
2015-01-01
Most applications in the field of medical image processing require precise estimation. To improve the accuracy of segmentation, this study aimed to propose a novel segmentation method for coronary arteries to allow for the automatic and accurate detection of coronary pathologies. The proposed segmentation method included 2 parts. First, 3D region growing was applied to give the initial segmentation of coronary arteries. Next, the location of vessel information, HHH subband coefficients of the 3D DWT, was detected by the proposed vessel-texture discrimination algorithm. Based on the initial segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately detect the coronary arteries. Each subbranch of the segmented coronary arteries was segmented correctly by the proposed method. The obtained results are compared with those ground truth values obtained from the commercial software from GE Healthcare and the level-set method proposed by Yang et al., 2007. Results indicate that the proposed method is better in terms of efficiency analyzed. Based on the initial segmentation of coronary arteries obtained from 3D region growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect coronary pathologies accurately.
MathBrowser: Web-Enabled Mathematical Software with Application to the Chemistry Curriculum, v 1.0
NASA Astrophysics Data System (ADS)
Goldsmith, Jack G.
1997-10-01
MathSoft: Cambridge, MA, 1996; free via ftp from www.mathsoft.com. The movement to provide computer-based applications in chemistry has come to focus on three main areas: software aimed at specific applications (drawing, simulation, data analysis, etc.), multimedia applications designed to assist in the presentation of conceptual information, and packages to be used in conjunction with a particular textbook at a specific point in the chemistry curriculum. The result is a situation where no single software package devoted to problem solving can be used across a large segment of the curriculum. Adoption of World Wide Web (WWW) technology by a manufacturer of mathematical software, however, has produced software that provides an attractive means of providing a problem-solving resource to students in courses from freshman through senior level.
Technology Readiness of School Teachers: An Empirical Study of Measurement and Segmentation
ERIC Educational Resources Information Center
Badri, Masood; Al Rashedi, Asma; Yang, Guang; Mohaidat, Jihad; Al Hammadi, Arif
2014-01-01
The Technology Readiness Index (TRI) developed by Parasuraman (2000) was adapted to measure the technology readiness of public school teachers in Abu Dhabi, United Arab Emirates. The study aims at better understanding the factors (mostly demographics) that affect such readiness levels. In addition, Abu Dhabi teachers are segmented into five main…
Healthcare costs and obesity prevention: drug costs and other sector-specific consequences.
Rappange, David R; Brouwer, Werner B F; Hoogenveen, Rudolf T; Van Baal, Pieter H M
2009-01-01
Obesity is a major contributor to the overall burden of disease (also reducing life expectancy) and associated with high medical costs due to obesity-related diseases. However, obesity prevention, while reducing obesity-related morbidity and mortality, may not result in overall healthcare cost savings because of additional costs in life-years gained. Sector-specific financial consequences of preventing obesity are less well documented, for pharmaceutical spending as well as for other healthcare segments. To estimate the effect of obesity prevention on annual and lifetime drug spending as well as other sector-specific expenditures, i.e. the hospital segment, long-term care segment and primary healthcare. The RIVM (Dutch National Institute for Public Health and the Environment) Chronic Disease Model and Dutch cost of illness data were used to simulate, using a Markov-type model approach, the lifetime expenditures in the pharmaceutical segment and three other healthcare segments for a hypothetical cohort of obese (body mass index [BMI] >or=30 kg/m2), non-smoking people with a starting age of 20 years. In order to assess the sector-specific consequences of obesity prevention, these costs were compared with the costs of two other similar cohorts, i.e. a 'healthy-living' cohort (non-smoking and a BMI >or=18.5 and <25 kg/m2) and a smoking cohort. To assert whether preventing obesity results in cost savings in any of the segments, net present values were estimated using different discount rates. Sensitivity analyses were conducted across key input values and using a broader definition of healthcare. Lifetime drug expenditures are higher for obese people than for 'healthy-living' people, despite shorter life expectancy for the obese. Obesity prevention results in savings on drugs for obesity-related diseases until the age of 74 years, which outweigh additional drug costs for diseases unrelated to obesity in life-years gained. Furthermore, obesity prevention will increase long-term care expenditures substantially, while savings in the other healthcare segments are small or non-existent. Discounting costs more heavily or using lower relative mortality risks for obesity would make obesity prevention a relatively more attractive strategy in terms of healthcare costs, especially for the long-term care segment. Application of a broader definition of healthcare costs has the opposite effect. Obesity prevention will likely result in savings in the pharmaceutical segment, but substantial additional costs for long-term care. These are important considerations for policy makers concerned with the future sustainability of the healthcare system.
Momonoi, Kazumi; Tsuji, Toshiaki; Kazuma, Kohei; Yoshida, Kumi
2012-01-01
Several flowers of Tulipa gesneriana exhibit a blue color in the bottom segments of the inner perianth. We have previously reported the inner-bottom tissue-specific iron accumulation and expression of the vacuolar iron transporter, TgVit1, in tulip cv. Murasakizuisho. To clarify whether the TgVit1-dependent iron accumulation and blue-color development in tulip petals are universal, we analyzed anthocyanin, its co-pigment components, iron contents and the expression of TgVit1 mRNA in 13 cultivars which show a blue color in the bottom segments of the inner perianth accompanying yellow- and white-colored inner-bottom petals. All of the blue bottom segments contained the same anthocyanin component, delphinidin 3-rutinoside. The flavonol composition varied with cultivar and tissue part. The major flavonol in the bottom segments of the inner perianth was rutin. The iron content in the upper part was less than that in the bottom segments of the inner perianth. The iron content in the yellow and white petals was higher in the bottom segment of the inner perianth than in the upper tissues. TgVit1 mRNA expression was apparent in all of the bottom tissues of the inner perianth. The result of a reproduction experiment by mixing the constituents suggests that the blue coloration in tulip petals is generally caused by iron complexation to delphinidin 3-rutinoside and that the iron complex is solubilized and stabilized by flavonol glycosides. TgVit1-dependent iron accumulation in the bottom segments of the inner perianth might be controlled by an unknown system that differentiated the upper parts and bottom segments of the inner perianth.
Asamitsu, Sefan; Obata, Shunsuke; Phan, Anh Tuân; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2018-03-20
A G-quadruplex (quadruplex) is a nucleic acid secondary structure adopted by guanine-rich sequences and is considered to be relevant to various pharmacological and biological contexts. Although a number of researchers have endeavored to discover and develop quadruplex-interactive molecules, poor ligand designability originating from topological similarity of the skeleton of diverse quadruplexes has remained a bottleneck for gaining specificity for individual quadruplexes. This work reports on hybrid molecules that were constructed with dual DNA-binding components, a cyclic imidazole/lysine polyamide (cIKP), and a hairpin pyrrole/imidazole polyamide (hPIP), with the aim toward specific quadruplex targeting by reading out the local duplex DNA sequence adjacent to designated quadruplexes in the genome. By means of circular dichroism (CD), fluorescence resonance energy transfer (FRET), surface plasmon resonance (SPR), and NMR techniques, we showed the dual and simultaneous recognition of the respective segment via hybrid molecules, and the synergistic and mutual effect of each binding component that was appropriately linked on higher binding affinity and modest sequence specificity. Monitoring quadruplex and duplex imino protons of the quadruplex/duplex motif titrated with hybrid molecules clearly revealed distinct features of the binding of hybrid molecules to the respective segments upon their simultaneous recognition. A series of the systematic and detailed binding assays described here showed that the concept of simultaneous recognition of quadruplex and its proximal duplex by hybrid molecules constructed with the dual DNA-binding components may provide a new strategy for ligand design, enabling targeting of a large variety of designated quadruplexes at specific genome locations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Gang; Xie, Ruyi; Zhang, Xiaoli; Morelli, John; Yan, Xu; Zhu, Xiaolei; Li, Xiaoming
2017-12-01
The aim of this study was to evaluate the diagnostic performance of noncontrast magnetic resonance imaging utilizing sampling perfection with application optimized contrasts using different flip angle evolutions (SPACE) in detecting deep venous thrombus (DVT) of the lower extremity and evaluating clot burden. This prospective study was approved by the institutional review board. Ninety-four consecutive patients (42 men, 52 women; age range, 14-87 years; average age, 52.7 years) suspected of lower extremity DVT underwent ultrasound (US) and SPACE. The venous visualization score for SPACE was determined by 2 radiologists independently according to a 4-point scale (1-4, poor to excellent). The sensitivity and specificity of SPACE in detecting DVT were calculated based on segment, limb, and patient, with US serving as the reference standard. The clot burden for each segment was scored (0-3, patent to entire segment occlusion). The clot burden score obtained with SPACE was compared with US using a Wilcoxon test based on region, limb, and patient. Interobserver agreement in assessing DVT (absent, nonocclusive, or occlusive) with SPACE was determined by calculating Cohen kappa coefficients. The mean venous visualization score for SPACE was 3.82 ± 0.50 for reader 1 and 3.81 ± 0.50 for reader 2. For reader 1, sensitivity/specificity values of SPACE in detecting DVT were 96.53%/99.90% (segment), 95.24%/99.04% (limb), and 95.89%/95.24% (patient). For reader 2, corresponding values were 97.20%/99.90%, 96.39%/99.05%, and 97.22%/95.45%. The clot burden assessed with SPACE was not significantly different from US (P > 0.05 for region, limb, patient). Interobserver agreement of SPACE in assessing thrombosis was excellent (kappa = 0.894 ± 0.014). Non-contrast-enhanced 3-dimensional SPACE magnetic resonance imaging is highly accurate in detecting lower extremity DVT and reliable in the evaluation of clot burden. SPACE could serve as an important alternative for patients in whom US cannot be performed.
Stand-alone lumbar cage subsidence: A biomechanical sensitivity study of cage design and placement.
Calvo-Echenique, Andrea; Cegoñino, José; Chueca, Raúl; Pérez-Del Palomar, Amaya
2018-08-01
Spinal degeneration and instability are commonly treated with interbody fusion cages either alone or supplemented with posterior instrumentation with the aim to immobilise the segment and restore intervertebral height. The purpose of this work is to establish a tool which may help to understand the effects of intervertebral cage design and placement on the biomechanical response of a patient-specific model to help reducing post-surgical complications such as subsidence and segment instability. A 3D lumbar functional spinal unit (FSU) finite element model was created and a parametric model of an interbody cage was designed and introduced in the FSU. A Drucker-Prager Cap plasticity formulation was used to predict plastic strains and bone failure in the vertebrae. The effect of varying cage size, cross-sectional area, apparent stiffness and positioning was evaluated under 500 N preload followed by 7.5 Nm multidirectional rotation and the results were compared with the intact model. The most influential cage parameters on the FSU were size, curvature congruence with the endplates and cage placement. Segmental stiffness was higher when increasing the cross-sectional cage area in all loading directions and when the cage was anteriorly placed in all directions but extension. In general, the facet joint forces were reduced by increasing segmental stiffness. However, these forces were higher than in the intact model in most of the cases due to the displacement of the instantaneous centre of rotation. The highest plastic deformations took place at the caudal vertebra under flexion and increased for cages with greater stiffness. Thus, wider cages and a more anteriorly placement would increase the volume of failed bone and, therefore, the risk of subsidence. Cage geometry plays a crucial role in the success of lumbar surgery. General considerations such as larger cages may be applied as a guideline, but parameters such as curvature or cage placement should be determined for each specific patient. This model provides a proof-of-concept of a tool for the preoperative evaluation of lumbar surgical outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.
Medical image segmentation using 3D MRI data
NASA Astrophysics Data System (ADS)
Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.
2017-05-01
Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.
Albà, Xènia; Figueras I Ventura, Rosa M; Lekadir, Karim; Tobon-Gomez, Catalina; Hoogendoorn, Corné; Frangi, Alejandro F
2014-12-01
Magnetic resonance imaging (MRI), specifically late-enhanced MRI, is the standard clinical imaging protocol to assess cardiac viability. Segmentation of myocardial walls is a prerequisite for this assessment. Automatic and robust multisequence segmentation is required to support processing massive quantities of data. A generic rule-based framework to automatically segment the left ventricle myocardium is presented here. We use intensity information, and include shape and interslice smoothness constraints, providing robustness to subject- and study-specific changes. Our automatic initialization considers the geometrical and appearance properties of the left ventricle, as well as interslice information. The segmentation algorithm uses a decoupled, modified graph cut approach with control points, providing a good balance between flexibility and robustness. The method was evaluated on late-enhanced MRI images from a 20-patient in-house database, and on cine-MRI images from a 15-patient open access database, both using as reference manually delineated contours. Segmentation agreement, measured using the Dice coefficient, was 0.81±0.05 and 0.92±0.04 for late-enhanced MRI and cine-MRI, respectively. The method was also compared favorably to a three-dimensional Active Shape Model approach. The experimental validation with two magnetic resonance sequences demonstrates increased accuracy and versatility. © 2013 Wiley Periodicals, Inc.
Figure-Ground Segmentation Using Factor Graphs
Shen, Huiying; Coughlan, James; Ivanchenko, Volodymyr
2009-01-01
Foreground-background segmentation has recently been applied [26,12] to the detection and segmentation of specific objects or structures of interest from the background as an efficient alternative to techniques such as deformable templates [27]. We introduce a graphical model (i.e. Markov random field)-based formulation of structure-specific figure-ground segmentation based on simple geometric features extracted from an image, such as local configurations of linear features, that are characteristic of the desired figure structure. Our formulation is novel in that it is based on factor graphs, which are graphical models that encode interactions among arbitrary numbers of random variables. The ability of factor graphs to express interactions higher than pairwise order (the highest order encountered in most graphical models used in computer vision) is useful for modeling a variety of pattern recognition problems. In particular, we show how this property makes factor graphs a natural framework for performing grouping and segmentation, and demonstrate that the factor graph framework emerges naturally from a simple maximum entropy model of figure-ground segmentation. We cast our approach in a learning framework, in which the contributions of multiple grouping cues are learned from training data, and apply our framework to the problem of finding printed text in natural scenes. Experimental results are described, including a performance analysis that demonstrates the feasibility of the approach. PMID:20160994
2013-01-01
Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that ‘segmentation’ be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures. PMID:24345042
Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope
NASA Astrophysics Data System (ADS)
Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.
2000-07-01
A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.
Jung, Chanho; Kim, Changick
2014-08-01
Automatic segmentation of cell nuclei clusters is a key building block in systems for quantitative analysis of microscopy cell images. For that reason, it has received a great attention over the last decade, and diverse automatic approaches to segment clustered nuclei with varying levels of performance under different test conditions have been proposed in literature. To the best of our knowledge, however, so far there is no comparative study on the methods. This study is a first attempt to fill this research gap. More precisely, the purpose of this study is to present an objective performance comparison of existing state-of-the-art segmentation methods. Particularly, the impact of their accuracy on classification of thyroid follicular lesions is also investigated "quantitatively" under the same experimental condition, to evaluate the applicability of the methods. Thirteen different segmentation approaches are compared in terms of not only errors in nuclei segmentation and delineation, but also their impact on the performance of system to classify thyroid follicular lesions using different metrics (e.g., diagnostic accuracy, sensitivity, specificity, etc.). Extensive experiments have been conducted on a total of 204 digitized thyroid biopsy specimens. Our study demonstrates that significant diagnostic errors can be avoided using more advanced segmentation approaches. We believe that this comprehensive comparative study serves as a reference point and guide for developers and practitioners in choosing an appropriate automatic segmentation technique adopted for building automated systems for specifically classifying follicular thyroid lesions. © 2014 International Society for Advancement of Cytometry.
On the importance of FIB-SEM specific segmentation algorithms for porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzer, Martin, E-mail: martin.salzer@uni-ulm.de; Thiele, Simon, E-mail: simon.thiele@imtek.uni-freiburg.de; Zengerle, Roland, E-mail: zengerle@imtek.uni-freiburg.de
2014-09-15
A new algorithmic approach to segmentation of highly porous three dimensional image data gained by focused ion beam tomography is described which extends the key-principle of local threshold backpropagation described in Salzer et al. (2012). The technique of focused ion beam tomography has shown to be capable of imaging the microstructure of functional materials. In order to perform a quantitative analysis on the corresponding microstructure a segmentation task needs to be performed. However, algorithmic segmentation of images obtained with focused ion beam tomography is a challenging problem for highly porous materials if filling the pore phase, e.g. with epoxy resin,more » is difficult. The gray intensities of individual voxels are not sufficient to determine the phase represented by them and usual thresholding methods are not applicable. We thus propose a new approach to segmentation that pays respect to the specifics of the imaging process of focused ion beam tomography. As an application of our approach, the segmentation of three dimensional images for a cathode material used in polymer electrolyte membrane fuel cells is discussed. We show that our approach preserves significantly more of the original nanostructure than a thresholding approach. - Highlights: • We describe a new approach to the segmentation of FIB-SEM images of porous media. • The first and last occurrences of structures are detected by analysing the z-profiles. • The algorithm is validated by comparing it to a manual segmentation. • The new approach shows significantly less artifacts than a thresholding approach. • A structural analysis also shows improved results for the obtained microstructure.« less
NASA Astrophysics Data System (ADS)
Agn, Mikael; Law, Ian; Munck af Rosenschöld, Per; Van Leemput, Koen
2016-03-01
We present a fully automated generative method for simultaneous brain tumor and organs-at-risk segmentation in multi-modal magnetic resonance images. The method combines an existing whole-brain segmentation technique with a spatial tumor prior, which uses convolutional restricted Boltzmann machines to model tumor shape. The method is not tuned to any specific imaging protocol and can simultaneously segment the gross tumor volume, peritumoral edema and healthy tissue structures relevant for radiotherapy planning. We validate the method on a manually delineated clinical data set of glioblastoma patients by comparing segmentations of gross tumor volume, brainstem and hippocampus. The preliminary results demonstrate the feasibility of the method.
Nielsen, Marie Katrine Klose; Johansen, Sys Stybe; Linnet, Kristian
2014-01-01
Assessment of total uncertainty of analytical methods for the measurements of drugs in human hair has mainly been derived from the analytical variation. However, in hair analysis several other sources of uncertainty will contribute to the total uncertainty. Particularly, in segmental hair analysis pre-analytical variations associated with the sampling and segmentation may be significant factors in the assessment of the total uncertainty budget. The aim of this study was to develop and validate a method for the analysis of 31 common drugs in hair using ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with focus on the assessment of both the analytical and pre-analytical sampling variations. The validated method was specific, accurate (80-120%), and precise (CV≤20%) across a wide linear concentration range from 0.025-25 ng/mg for most compounds. The analytical variation was estimated to be less than 15% for almost all compounds. The method was successfully applied to 25 segmented hair specimens from deceased drug addicts showing a broad pattern of poly-drug use. The pre-analytical sampling variation was estimated from the genuine duplicate measurements of two bundles of hair collected from each subject after subtraction of the analytical component. For the most frequently detected analytes, the pre-analytical variation was estimated to be 26-69%. Thus, the pre-analytical variation was 3-7 folds larger than the analytical variation (7-13%) and hence the dominant component in the total variation (29-70%). The present study demonstrated the importance of including the pre-analytical variation in the assessment of the total uncertainty budget and in the setting of the 95%-uncertainty interval (±2CVT). Excluding the pre-analytical sampling variation could significantly affect the interpretation of results from segmental hair analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
SU-E-J-128: Two-Stage Atlas Selection in Multi-Atlas-Based Image Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, T; Ruan, D
2015-06-15
Purpose: In the new era of big data, multi-atlas-based image segmentation is challenged by heterogeneous atlas quality and high computation burden from extensive atlas collection, demanding efficient identification of the most relevant atlases. This study aims to develop a two-stage atlas selection scheme to achieve computational economy with performance guarantee. Methods: We develop a low-cost fusion set selection scheme by introducing a preliminary selection to trim full atlas collection into an augmented subset, alleviating the need for extensive full-fledged registrations. More specifically, fusion set selection is performed in two successive steps: preliminary selection and refinement. An augmented subset is firstmore » roughly selected from the whole atlas collection with a simple registration scheme and the corresponding preliminary relevance metric; the augmented subset is further refined into the desired fusion set size, using full-fledged registration and the associated relevance metric. The main novelty of this work is the introduction of an inference model to relate the preliminary and refined relevance metrics, based on which the augmented subset size is rigorously derived to ensure the desired atlases survive the preliminary selection with high probability. Results: The performance and complexity of the proposed two-stage atlas selection method were assessed using a collection of 30 prostate MR images. It achieved comparable segmentation accuracy as the conventional one-stage method with full-fledged registration, but significantly reduced computation time to 1/3 (from 30.82 to 11.04 min per segmentation). Compared with alternative one-stage cost-saving approach, the proposed scheme yielded superior performance with mean and medium DSC of (0.83, 0.85) compared to (0.74, 0.78). Conclusion: This work has developed a model-guided two-stage atlas selection scheme to achieve significant cost reduction while guaranteeing high segmentation accuracy. The benefit in both complexity and performance is expected to be most pronounced with large-scale heterogeneous data.« less
Canclini, S; Terzi, A; Rossini, P; Vignati, A; La Canna, G; Magri, G C; Pizzocaro, C; Giubbini, R
2001-01-01
Multigated radionuclide ventriculography (MUGA) is a simple and reliable tool for the assessment of global systolic and diastolic function and in several studies it is still considered a standard for the assessment of left ventricular ejection fraction. However the evaluation of regional wall motion by MUGA is critical due to two-dimensional imaging and its clinical use is progressively declining in favor of echocardiography. Tomographic MUGA (T-MUGA) is not widely adopted in clinical practice. The aim of this study was to compare T-MUGA to planar MUGA (P-MUGA) for the assessment of global ejection fraction and to transthoracic echocardiography for the evaluation of regional wall motion. A 16-segment model was adopted for the comparison with echo regional wall motion. For each one of the 16 segments the normal range of T-MUGA ejection fraction was quantified and a normal data file was defined; the average value -2.5 SD was used as the lower threshold to identify abnormal segments. In addition, amplitude images from Fourier analysis were quantified and considered abnormal according to three different thresholds (25, 50 and 75% of the maximum). In a study group of 33 consecutive patients the ejection fraction values of T-MUGA highly correlated with those of P-MUGA (r = 0.93). The regional ejection fraction (according to the normal database) and the amplitude analysis (50% threshold) allowed for the correct identification of 203/226 and 167/226 asynergic segments by echocardiography, and of 269/302 and 244/302 normal segments, respectively. Therefore sensitivity, specificity and overall accuracy to detect regional wall motion abnormalities were 90, 89, 89% and 74, 81, 79% for regional ejection fraction and amplitude analysis, respectively. T-MUGA is a reliable tool for regional wall motion evaluation, well correlated with echocardiography, less subjective and able to provide quantitative data.
Localizing Tortoise Nests by Neural Networks.
Barbuti, Roberto; Chessa, Stefano; Micheli, Alessio; Pucci, Rita
2016-01-01
The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.
Anatomic assessment of sympathetic peri-arterial renal nerves in man.
Sakakura, Kenichi; Ladich, Elena; Cheng, Qi; Otsuka, Fumiyuki; Yahagi, Kazuyuki; Fowler, David R; Kolodgie, Frank D; Virmani, Renu; Joner, Michael
2014-08-19
Although renal sympathetic denervation therapy has shown promising results in patients with resistant hypertension, the human anatomy of peri-arterial renal nerves is poorly understood. The aim of our study was to investigate the anatomic distribution of peri-arterial sympathetic nerves around human renal arteries. Bilateral renal arteries were collected from human autopsy subjects, and peri-arterial renal nerve anatomy was examined by using morphometric software. The ratio of afferent to efferent nerve fibers was investigated by dual immunofluorescence staining using antibodies targeted for anti-tyrosine hydroxylase and anti-calcitonin gene-related peptide. A total of 10,329 nerves were identified from 20 (12 hypertensive and 8 nonhypertensive) patients. The mean individual number of nerves in the proximal and middle segments was similar (39.6 ± 16.7 per section and 39.9 ± 1 3.9 per section), whereas the distal segment showed fewer nerves (33.6 ± 13.1 per section) (p = 0.01). Mean subject-specific nerve distance to arterial lumen was greatest in proximal segments (3.40 ± 0.78 mm), followed by middle segments (3.10 ± 0.69 mm), and least in distal segments (2.60 ± 0.77 mm) (p < 0.001). The mean number of nerves in the ventral region (11.0 ± 3.5 per section) was greater compared with the dorsal region (6.2 ± 3.0 per section) (p < 0.001). Efferent nerve fibers were predominant (tyrosine hydroxylase/calcitonin gene-related peptide ratio 25.1 ± 33.4; p < 0.0001). Nerve anatomy in hypertensive patients was not considerably different compared with nonhypertensive patients. The density of peri-arterial renal sympathetic nerve fibers is lower in distal segments and dorsal locations. There is a clear predominance of efferent nerve fibers, with decreasing prevalence of afferent nerves from proximal to distal peri-arterial and renal parenchyma. Understanding these anatomic patterns is important for refinement of renal denervation procedures. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Van Nostrand, D; Janowitz, W R; Holmes, D R; Cohen, H A
1979-01-01
The ability of equilibrium gated radionuclide ventriculography to detect segmental left ventricular (LV) wall motion abnormalities was determined in 26 patients undergoing cardiac catheterization. Multiple gated studies obtained in 30 degrees right anterior oblique and 45 degrees left anterior oblique projections, played back in a movie format, were compared to the corresponding LV ventriculograms. The LV wall in the two projections was divided into eight segments. Each segment was graded as normal, hypokinetic, akinetic, dyskinetic, or indeterminate. Thirteen percent of the segments in the gated images were indeterminate; 24 out of 27 of these were proximal or distal inferior wall segments. There was exact agreement in 86% of the remaining segments. The sensitivity of the radionuclide technique for detecting normal versus any abnormal wall motion was 71%, with a specificity of 99%. Equilibrium gated ventriculography is an excellent noninvasive technique for evaluating segmental LV wall motion. It is least reliable in assessing the proximal inferior wall and interventricular septum.
Image Mosaic Method Based on SIFT Features of Line Segment
Zhu, Jun; Ren, Mingwu
2014-01-01
This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform) feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling. PMID:24511326
A hybrid algorithm for the segmentation of books in libraries
NASA Astrophysics Data System (ADS)
Hu, Zilong; Tang, Jinshan; Lei, Liang
2016-05-01
This paper proposes an algorithm for book segmentation based on bookshelves images. The algorithm can be separated into three parts. The first part is pre-processing, aiming at eliminating or decreasing the effect of image noise and illumination conditions. The second part is near-horizontal line detection based on Canny edge detector, and separating a bookshelves image into multiple sub-images so that each sub-image contains an individual shelf. The last part is book segmentation. In each shelf image, near-vertical line is detected, and obtained lines are used for book segmentation. The proposed algorithm was tested with the bookshelf images taken from OPIE library in MTU, and the experimental results demonstrate good performance.
A new method of cardiographic image segmentation based on grammar
NASA Astrophysics Data System (ADS)
Hamdi, Salah; Ben Abdallah, Asma; Bedoui, Mohamed H.; Alimi, Adel M.
2011-10-01
The measurement of the most common ultrasound parameters, such as aortic area, mitral area and left ventricle (LV) volume, requires the delineation of the organ in order to estimate the area. In terms of medical image processing this translates into the need to segment the image and define the contours as accurately as possible. The aim of this work is to segment an image and make an automated area estimation based on grammar. The entity "language" will be projected to the entity "image" to perform structural analysis and parsing of the image. We will show how the idea of segmentation and grammar-based area estimation is applied to real problems of cardio-graphic image processing.
Nguyen, Hung P; Ayachi, Fouaz; Lavigne-Pelletier, Catherine; Blamoutier, Margaux; Rahimi, Fariborz; Boissy, Patrick; Jog, Mandar; Duval, Christian
2015-04-11
Recently, much attention has been given to the use of inertial sensors for remote monitoring of individuals with limited mobility. However, the focus has been mostly on the detection of symptoms, not specific activities. The objective of the present study was to develop an automated recognition and segmentation algorithm based on inertial sensor data to identify common gross motor patterns during activity of daily living. A modified Time-Up-And-Go (TUG) task was used since it is comprised of four common daily living activities; Standing, Walking, Turning, and Sitting, all performed in a continuous fashion resulting in six different segments during the task. Sixteen healthy older adults performed two trials of a 5 and 10 meter TUG task. They were outfitted with 17 inertial motion sensors covering each body segment. Data from the 10 meter TUG were used to identify pertinent sensors on the trunk, head, hip, knee, and thigh that provided suitable data for detecting and segmenting activities associated with the TUG. Raw data from sensors were detrended to remove sensor drift, normalized, and band pass filtered with optimal frequencies to reveal kinematic peaks that corresponded to different activities. Segmentation was accomplished by identifying the time stamps of the first minimum or maximum to the right and the left of these peaks. Segmentation time stamps were compared to results from two examiners visually segmenting the activities of the TUG. We were able to detect these activities in a TUG with 100% sensitivity and specificity (n = 192) during the 10 meter TUG. The rate of success was subsequently confirmed in the 5 meter TUG (n = 192) without altering the parameters of the algorithm. When applying the segmentation algorithms to the 10 meter TUG, we were able to parse 100% of the transition points (n = 224) between different segments that were as reliable and less variable than visual segmentation performed by two independent examiners. The present study lays the foundation for the development of a comprehensive algorithm to detect and segment naturalistic activities using inertial sensors, in hope of evaluating automatically motor performance within the detected tasks.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.
Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J
2017-08-01
Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.
Smoke regions extraction based on two steps segmentation and motion detection in early fire
NASA Astrophysics Data System (ADS)
Jian, Wenlin; Wu, Kaizhi; Yu, Zirong; Chen, Lijuan
2018-03-01
Aiming at the early problems of video-based smoke detection in fire video, this paper proposes a method to extract smoke suspected regions by combining two steps segmentation and motion characteristics. Early smoldering smoke can be seen as gray or gray-white regions. In the first stage, regions of interests (ROIs) with smoke are obtained by using two step segmentation methods. Then, suspected smoke regions are detected by combining the two step segmentation and motion detection. Finally, morphological processing is used for smoke regions extracting. The Otsu algorithm is used as segmentation method and the ViBe algorithm is used to detect the motion of smoke. The proposed method was tested on 6 test videos with smoke. The experimental results show the effectiveness of our proposed method over visual observation.
NASA Astrophysics Data System (ADS)
Varo-Martínez, Mª Ángeles; Navarro-Cerrillo, Rafael M.; Hernández-Clemente, Rocío; Duque-Lazo, Joaquín
2017-04-01
Traditionally, forest-stand delineation has been assessed based on orthophotography. The application of LiDAR has improved forest management by providing high-spatial-resolution data on the vertical structure of the forest. The aim of this study was to develop and test a semi-automated algorithm for stands delineation in a plantation of Pinus sylvestris L. using LiDAR data. Three specific objectives were evaluated, i) to assess two complementary LiDAR metrics, Assmann dominant height and basal area, for the characterization of the structure of P. sylvestris Mediterranean forests based on object-oriented segmentation, ii) to evaluate the influence of the LiDAR pulse density on forest-stand delineation accuracy, and iii) to investigate the algorithmś effectiveness in the delineation of P. sylvestris stands for map prediction of Assmann dominant height and basal area. Our results show that it is possible to generate accurate P. sylvestris forest-stand segmentations using multiresolution or mean shift segmentation methods, even with low-pulse-density LiDAR - which is an important economic advantage for forest management. However, eCognition multiresolution methods provided better results than the OTB (Orfeo Tool Box) for stand delineation based on dominant height and basal area estimations. Furthermore, the influence of pulse density on the results was not statistically significant in the basal area calculations. However, there was a significant effect of pulse density on Assmann dominant height [F2,9595 = 5.69, p = 0.003].for low pulse density. We propose that the approach shown here should be considered for stand delineation in other large Pinus plantations in Mediterranean regions with similar characteristics.
NASA Astrophysics Data System (ADS)
Lescoutre, Rodolphe; Tugend, Julie; Brune, Sascha; Manatschal, Gianreto
2017-04-01
Mid-Cretaceous rift basins are exposed in the Pyrenees providing key information on rifted domain formation that is not available at present-day rift system. Substantial paleotemperature and thermochronological data have been collected and published in numerous recent papers. These data show a strong heterogeneity in the distribution of peak temperatures within the Cretaceous rift basins. Locations that experienced relatively high or low temperatures appear to cluster in specific areas along strike. These areas have been interpreted as either reflecting hot and cold conditions during rifting, or alternatively, a change in the polarity of a strongly asymmetric rift systems. In this study, we test if the observed variability of peak temperatures can be explained by segmentation and a change in polarity of an asymmetrical upper/lower plate rift model. To this aim we restore the observed syn- to early post-rift peak temperatures to their paleo-location within sections across the evolving rift system. In the meantime, we conduct numerical models of rift migration leading to asymmetrical extension that are benchmarked with geological and geophysical observations from the Pyrenees. From the models, we extract thermal information at different stages of rifting that are finally compared to the thermal data from the Pyrenean Cretaceous rift basins. This work employs a novel approach by comparing thermal output from numerical modelling with the distribution of peak temperatures and thermal gradient from field data. As such, these results may have substantial implications to further understand the pre-orogenic thermal evolution of the Pyrenean rift system and the role of segmentation. More generally, the results of this work may unravel the role of rift asymmetry and segmentation on the thermal architecture of hyperextended rift basins and margins.
Pereira, Raquel Tatiane; de Freitas, Thaiza Rodrigues; de Oliveira, Izabela Regina Cardoso; Costa, Leandro Santos; Vigliano, Fabricio Andrés; Rosa, Priscila Vieira
2017-10-01
Endocrine cells (ECs) act as a luminal surveillance system responding to either the presence or absence of food in the gut through the secretion of peptide hormones. The aim of this study was to analyze the effects of feeding and fasting on the EC peptide-specific distribution along the intestine of Nile tilapia. We assessed the density of ECs producing gastrin (GAS), cholecystokinin-8 (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in nine segments of the intestine using immunohistochemistry. Our results show that ECs immunoreactive to CCK-8, GAS, NPY, and CGRP can be found along all the intestinal segments sampled, from the midgut to hindgut, although differences in their distribution along the gut were observed. Regarding nutrient status, we found that the anterior segments of the midgut seem to be the main site responding to luminal changes in Nile tilapia. The NPY+ and CGRP+ EC densities increased in the fasted group, while the amount of CCK-8+ ECs were higher in the fed group. No effects of fasting or feeding were found in the GAS+ EC densities. Changes in ECs density were found only at the anterior segments of the intestine which may be due to the correlation between vagus nerve anatomy, EC location, and peptide turnover. Lastly, ECs may need to be considered an active cell subpopulation that may adapt and respond to different nutrient status as stimuli. Due to the complexity of the enteroendocrine system and its importance in fish nutrition, much remains to be elucidated and it deserves closer attention.
Low-dose adenosine stress echocardiography: Detection of myocardial viability
Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav
2003-01-01
Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months) were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 ± 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability. PMID:12812523
Fagundes, Theara C; Mafra, Arnoldo; Silva, Rodrigo G; Castro, Ana C G; Silva, Luciana C; Aguiar, Priscilla T; Silva, Josiane A; P Junior, Eduardo; Machado, Alexei M; Mamede, Marcelo
2018-02-01
The standard treatment for locally advanced rectal cancer (RC) consists of neoadjuvant chemoradiation followed by radical surgery. Regardless the extensive use of SUVmax in 18F-FDG PET tumor uptake as representation of tumor glycolytic consumption, there is a trend to apply metabolic volume instead. Thus, the aim of the present study was to evaluate a noninvasive method for tumor segmentation using the 18F-FDG PET imaging in order to predict response to neoadjuvant chemoradiation therapy in patients with rectal cancer. The sample consisted of stage II and III rectal cancer patients undergoing 18F-FDG PET/CT examination before and eight weeks after neoadjuvant therapy. An individualized tumor segmentation methodology was applied to generate tumor volumes (SUV2SD) and compare with standard SUVmax and fixed threshold (SUV40%, SUV50% and SUV60%) pre- and post-therapy. Therapeutic response was assessed in the resected specimens using Dworak's protocol recommendations. Several variables were generated and compared with the histopathological results. Seventeen (17) patients were included and analyzed. Significant differences were observed between responders (Dworak 3 and 4) and non-responders for SUVmax-2 (p<0.01), SUV2SD-2 (p<0.05), SUV40%-2 (p<0.05), SUV50%-2 (p<0.05) and SUV60%-2 (p<0.05). ROC analyses showed significant areas under the curve (p<0.01) for the proposed methodology with sensitivity and specificity varying from 60% to 83% and 73% to 82%, respectively. The present study confirmed the predictive power of the variables using a noninvasive individualized methodology for tumor segmentation based on 18F-FDG PET/CT imaging for response evaluation in patients with rectal cancer after neoadjuvant chemoradiation therapy.
Do Chinese Readers Follow the National Standard Rules for Word Segmentation during Reading?
Liu, Ping-Ping; Li, Wei-Jun; Lin, Nan; Li, Xing-Shan
2013-01-01
We conducted a preliminary study to examine whether Chinese readers’ spontaneous word segmentation processing is consistent with the national standard rules of word segmentation based on the Contemporary Chinese language word segmentation specification for information processing (CCLWSSIP). Participants were asked to segment Chinese sentences into individual words according to their prior knowledge of words. The results showed that Chinese readers did not follow the segmentation rules of the CCLWSSIP, and their word segmentation processing was influenced by the syntactic categories of consecutive words. In many cases, the participants did not consider the auxiliary words, adverbs, adjectives, nouns, verbs, numerals and quantifiers as single word units. Generally, Chinese readers tended to combine function words with content words to form single word units, indicating they were inclined to chunk single words into large information units during word segmentation. Additionally, the “overextension of monosyllable words” hypothesis was tested and it might need to be corrected to some degree, implying that word length have an implicit influence on Chinese readers’ segmentation processing. Implications of these results for models of word recognition and eye movement control are discussed. PMID:23408981
Radio Frequency Ablation Registration, Segmentation, and Fusion Tool
McCreedy, Evan S.; Cheng, Ruida; Hemler, Paul F.; Viswanathan, Anand; Wood, Bradford J.; McAuliffe, Matthew J.
2008-01-01
The Radio Frequency Ablation Segmentation Tool (RFAST) is a software application developed using NIH's Medical Image Processing Analysis and Visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented 3D surface models enables the physician to interactively position the ablation probe to simulate burns and to semi-manually simulate sphere packing in an attempt to optimize probe placement. PMID:16871716
Improve threshold segmentation using features extraction to automatic lung delimitation.
França, Cleunio; Vasconcelos, Germano; Diniz, Paula; Melo, Pedro; Diniz, Jéssica; Novaes, Magdala
2013-01-01
With the consolidation of PACS and RIS systems, the development of algorithms for tissue segmentation and diseases detection have intensely evolved in recent years. These algorithms have advanced to improve its accuracy and specificity, however, there is still some way until these algorithms achieved satisfactory error rates and reduced processing time to be used in daily diagnosis. The objective of this study is to propose a algorithm for lung segmentation in x-ray computed tomography images using features extraction, as Centroid and orientation measures, to improve the basic threshold segmentation. As result we found a accuracy of 85.5%.
A web-based procedure for liver segmentation in CT images
NASA Astrophysics Data System (ADS)
Yuan, Rong; Luo, Ming; Wang, Luyao; Xie, Qingguo
2015-03-01
Liver segmentation in CT images has been acknowledged as a basic and indispensable part in systems of computer aided liver surgery for operation design and risk evaluation. In this paper, we will introduce and implement a web-based procedure for liver segmentation to help radiologists and surgeons get an accurate result efficiently and expediently. Several clinical datasets are used to evaluate the accessibility and the accuracy. This procedure seems a promising approach for extraction of liver volumetry of various shapes. Moreover, it is possible for user to access the segmentation wherever the Internet is available without any specific machine.
Removal of the intestinal mucosa: photochemical approach in bladder augmentation
NASA Astrophysics Data System (ADS)
Haselhuhn, Gregory D.; Kropp, Kenneth A.; Keck, Rick W.; Selman, Steven H.
1995-03-01
Experiments were undertaken to determine whether 5-aminoleuvinic acid in combination with light could be used as an adjunct to intestinal bladder augmentation with the aim of removing intestinal mucosa with subsequent re-epithelialization of the treated segment with urothelium. Histopathologic studies of so-treated intestinal segments used in bladder augmentation demonstrate the feasibility of this approach.
Modeling the Contribution of Phonotactic Cues to the Problem of Word Segmentation
ERIC Educational Resources Information Center
Blanchard, Daniel; Heinz, Jeffrey; Golinkoff, Roberta
2010-01-01
How do infants find the words in the speech stream? Computational models help us understand this feat by revealing the advantages and disadvantages of different strategies that infants might use. Here, we outline a computational model of word segmentation that aims both to incorporate cues proposed by language acquisition researchers and to…
ERIC Educational Resources Information Center
Hodges, Michael G.; Kulinna, Pamela Hodges; van der Mars, Hans; Lee, Chong
2016-01-01
The purpose of this study was to determine students' health-related fitness knowledge (HRFK) and physical activity levels after the implementation of a series of fitness lessons segments called Knowledge in Action (KIA). KIA aims to teach health-related fitness knowledge (HRFK) during short episodes of the physical education lesson. Teacher…
Fourth Graders and Non-Routine Problems: Are Strategies Decisive for Success?
ERIC Educational Resources Information Center
Yazgan, Yeliz
2016-01-01
This study aims to determine the explanatory and discriminative powers of non-routine problem solving strategies used by fourth graders. Six problems were asked to 240 pupils. After scoring answers between 0 and 10, bottom and top segments of 27% were determined based on total scores. Lastly, all scripts of students in these segments were…
Leveraging Automatic Speech Recognition Errors to Detect Challenging Speech Segments in TED Talks
ERIC Educational Resources Information Center
Mirzaei, Maryam Sadat; Meshgi, Kourosh; Kawahara, Tatsuya
2016-01-01
This study investigates the use of Automatic Speech Recognition (ASR) systems to epitomize second language (L2) listeners' problems in perception of TED talks. ASR-generated transcripts of videos often involve recognition errors, which may indicate difficult segments for L2 listeners. This paper aims to discover the root-causes of the ASR errors…
NASA Technical Reports Server (NTRS)
1979-01-01
The functions performed by the systems management (SM) application software are described along with the design employed to accomplish these functions. The operational sequences (OPS) control segments and the cyclic processes they control are defined. The SM specialist function control (SPEC) segments and the display controlled 'on-demand' processes that are invoked by either an OPS or SPEC control segment as a direct result of an item entry to a display are included. Each processing element in the SM application is described including an input/output table and a structured control flow diagram. The flow through the module and other information pertinent to that process and its interfaces to other processes are included.
Automatic segmentation of bones from digital hand radiographs
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Taira, Ricky K.; Shim, Hyeonjoon; Keaton, Patricia
1995-05-01
The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The algorithm uses an object-oriented approach comprising several stages beginning with the most general objects to be segmented, such as the outline of the hand from background, and proceeding in a succession of stages to the most specific object, such as a specific phalangeal bone from a digit of the hand. Each stage carries custom operators unique to the needs of that specific stage which will aid in more accurate results. The method is further aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. Shape models, 1-D wrist profiles, as well as an interpretation tree are used to map model and data contour segments. Shape analysis is performed using an arc-length orientation transform. The method is tested on close to 340 phalangeal and epiphyseal objects to be segmented from 17 cases of pediatric hand images obtained from our clinical PACS. Patient age ranges from 2 - 16 years. A pediatric radiologist preliminarily assessed the results of the object contours and were found to be accurate to within 95% for cases with non-fused bones and to within 85% for cases with fused bones. With accurate and robust results, the method can be applied toward areas such as the determination of bone age, the development of a normal hand atlas, and the characterization of many congenital and acquired growth diseases. Furthermore, this method's architecture can be applied to other image segmentation problems.
Novel techniques for enhancement and segmentation of acne vulgaris lesions.
Malik, A S; Humayun, J; Kamel, N; Yap, F B-B
2014-08-01
More than 99% acne patients suffer from acne vulgaris. While diagnosing the severity of acne vulgaris lesions, dermatologists have observed inter-rater and intra-rater variability in diagnosis results. This is because during assessment, identifying lesion types and their counting is a tedious job for dermatologists. To make the assessment job objective and easier for dermatologists, an automated system based on image processing methods is proposed in this study. There are two main objectives: (i) to develop an algorithm for the enhancement of various acne vulgaris lesions; and (ii) to develop a method for the segmentation of enhanced acne vulgaris lesions. For the first objective, an algorithm is developed based on the theory of high dynamic range (HDR) images. The proposed algorithm uses local rank transform to generate the HDR images from a single acne image followed by the log transformation. Then, segmentation is performed by clustering the pixels based on Mahalanobis distance of each pixel from spectral models of acne vulgaris lesions. Two metrics are used to evaluate the enhancement of acne vulgaris lesions, i.e., contrast improvement factor (CIF) and image contrast normalization (ICN). The proposed algorithm is compared with two other methods. The proposed enhancement algorithm shows better result than both the other methods based on CIF and ICN. In addition, sensitivity and specificity are calculated for the segmentation results. The proposed segmentation method shows higher sensitivity and specificity than other methods. This article specifically discusses the contrast enhancement and segmentation for automated diagnosis system of acne vulgaris lesions. The results are promising that can be used for further classification of acne vulgaris lesions for final grading of the lesions. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Litjens, G. J. S.; Barentsz, J. O.; Karssemeijer, N.; Huisman, H. J.
2012-03-01
MRI has shown to have great potential in prostate cancer localization and grading, but interpreting those exams requires expertise that is not widely available. Therefore, CAD applications are being developed to aid radiologists in detecting prostate cancer. Existing CAD applications focus on the prostate as a whole. However, in clinical practice transition zone cancer and peripheral zone cancer are considered to have different appearances. In this paper we present zone-specific CAD, in addition to an atlas based segmentation technique which includes zonal segmentation. Our CAD system consists of a detection and a classification stage. Prior to the detection stage the prostate is segmented into two zones. After segmentation features are extracted. Subsequently a likelihood map is generated on which local maxima detection is performed. For each local maximum a region is segmented. In the classification stage additional shape features are calculated, after which the regions are classified. Validation was performed on 288 data sets with MR-guided biopsy results as ground truth. Freeresponse Receiver Operating Characteristic (FROC) analysis was used for statistical evaluation. The difference between whole-prostate and zone-specific CAD was assessed using the difference between the FROCs. Our results show that evaluating the two zones separately results in an increase in performance compared to whole-prostate CAD. The FROC curves at .1, 1 and 3 false positives have a sensitivity of 0.0, 0.55 and 0.72 for whole-prostate and 0.08, 0.57 and 0.80 for zone-specific CAD. The FROC curve of the zone-specific CAD also showed significantly better performance overall (p < 0.05).
Blessy, S A Praylin Selva; Sulochana, C Helen
2015-01-01
Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.
Efficient threshold for volumetric segmentation
NASA Astrophysics Data System (ADS)
Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel
2015-07-01
Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.
NASA Astrophysics Data System (ADS)
Amanda, A. R.; Widita, R.
2016-03-01
The aim of this research is to compare some image segmentation methods for lungs based on performance evaluation parameter (Mean Square Error (MSE) and Peak Signal Noise to Ratio (PSNR)). In this study, the methods compared were connected threshold, neighborhood connected, and the threshold level set segmentation on the image of the lungs. These three methods require one important parameter, i.e the threshold. The threshold interval was obtained from the histogram of the original image. The software used to segment the image here was InsightToolkit-4.7.0 (ITK). This research used 5 lung images to be analyzed. Then, the results were compared using the performance evaluation parameter determined by using MATLAB. The segmentation method is said to have a good quality if it has the smallest MSE value and the highest PSNR. The results show that four sample images match the criteria of connected threshold, while one sample refers to the threshold level set segmentation. Therefore, it can be concluded that connected threshold method is better than the other two methods for these cases.
Lung tumor segmentation in PET images using graph cuts.
Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan
2013-03-01
The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Dietary Behaviours, Impulsivity and Food Involvement: Identification of Three Consumer Segments
Sarmugam, Rani; Worsley, Anthony
2015-01-01
This study aims to (1) identify consumer segments based on consumers’ impulsivity and level of food involvement, and (2) examine the dietary behaviours of each consumer segment. An Internet-based cross-sectional survey was conducted among 530 respondents. The mean age of the participants was 49.2 ± 16.6 years, and 27% were tertiary educated. Two-stage cluster analysis revealed three distinct segments; “impulsive, involved” (33.4%), “rational, health conscious” (39.2%), and “uninvolved” (27.4%). The “impulsive, involved” segment was characterised by higher levels of impulsivity and food involvement (importance of food) compared to the other two segments. This segment also reported significantly more frequent consumption of fast foods, takeaways, convenience meals, salted snacks and use of ready-made sauces and mixes in cooking compared to the “rational, health conscious” consumers. They also reported higher frequency of preparing meals at home, cooking from scratch, using ready-made sauces and mixes in cooking and higher vegetable consumption compared to the “uninvolved” consumers. The findings show the need for customised approaches to the communication and promotion of healthy eating habits. PMID:26393649
Dietary Behaviours, Impulsivity and Food Involvement: Identification of Three Consumer Segments.
Sarmugam, Rani; Worsley, Anthony
2015-09-18
This study aims to (1) identify consumer segments based on consumers' impulsivity and level of food involvement, and (2) examine the dietary behaviours of each consumer segment. An Internet-based cross-sectional survey was conducted among 530 respondents. The mean age of the participants was 49.2 ± 16.6 years, and 27% were tertiary educated. Two-stage cluster analysis revealed three distinct segments; "impulsive, involved" (33.4%), "rational, health conscious" (39.2%), and "uninvolved" (27.4%). The "impulsive, involved" segment was characterised by higher levels of impulsivity and food involvement (importance of food) compared to the other two segments. This segment also reported significantly more frequent consumption of fast foods, takeaways, convenience meals, salted snacks and use of ready-made sauces and mixes in cooking compared to the "rational, health conscious" consumers. They also reported higher frequency of preparing meals at home, cooking from scratch, using ready-made sauces and mixes in cooking and higher vegetable consumption compared to the "uninvolved" consumers. The findings show the need for customised approaches to the communication and promotion of healthy eating habits.
A Unified Framework for Brain Segmentation in MR Images
Yazdani, S.; Yusof, R.; Karimian, A.; Riazi, A. H.; Bennamoun, M.
2015-01-01
Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI). We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM) method and the spatial information combined with support vector machine (SVM). The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR) and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets. PMID:26089978
Ukwatta, Eranga; Arevalo, Hermenegild; Rajchl, Martin; White, James; Pashakhanloo, Farhad; Prakosa, Adityo; Herzka, Daniel A.; McVeigh, Elliot; Lardo, Albert C.; Trayanova, Natalia A.; Vadakkumpadan, Fijoy
2015-01-01
Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. Conclusions: The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations. PMID:26233186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad
Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitlymore » represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. Conclusions: The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations.« less
Segmental volvulus in the neonate: A particular clinical entity.
Khen-Dunlop, Naziha; Beaudoin, Sylvie; Marion, Blandine; Rousseau, Véronique; Giuseppi, Agnes; Nicloux, Muriel; Grevent, David; Salomon, Laurent J; Aigrain, Yves; Lapillonne, Alexandre; Sarnacki, Sabine
2017-03-01
Complete intestinal volvulus is mainly related to congenital anomalies of the so-called intestinal malrotation, whereas segmental volvulus appears as a distinct entity, mostly observed during the perinatal period. Because these two situations are still lumped together, the aim of this study was to describe the particular condition of neonatal segmental volvulus. We analyzed the circumstances of diagnosis and management of 17 consecutives neonates operated for segmental volvulus more than a 10-year period in a single institution. During the same period, 19 cases of neonatal complete midgut volvulus were operated. Prenatal US exam anomalies were observed in 16/17 (94%) of segmental volvulus, significantly more frequently than in complete volvulus (p=0.003). Intestinal malposition was described peroperatively in all cases of complete volvulus, but also in 4/17 segmental volvulus (23%). Intestinal resection was performed in 88% of segmental volvulus when only one extensive intestinal necrosis was observed in complete volvulus. Parenteral nutrition was required in all patients with segmental volvulus with a median duration of 50days (range 5-251). Segmental volvulus occurs mainly prenatally and leads to fetal ultrasound anomalies. This situation, despite a limited length of intestinal loss, is associated to significant postnatal morbidity. Treatment study. Level IV. Copyright © 2016 Elsevier Inc. All rights reserved.
A Multi-Objective Decision Making Approach for Solving the Image Segmentation Fusion Problem.
Khelifi, Lazhar; Mignotte, Max
2017-08-01
Image segmentation fusion is defined as the set of methods which aim at merging several image segmentations, in a manner that takes full advantage of the complementarity of each one. Previous relevant researches in this field have been impeded by the difficulty in identifying an appropriate single segmentation fusion criterion, providing the best possible, i.e., the more informative, result of fusion. In this paper, we propose a new model of image segmentation fusion based on multi-objective optimization which can mitigate this problem, to obtain a final improved result of segmentation. Our fusion framework incorporates the dominance concept in order to efficiently combine and optimize two complementary segmentation criteria, namely, the global consistency error and the F-measure (precision-recall) criterion. To this end, we present a hierarchical and efficient way to optimize the multi-objective consensus energy function related to this fusion model, which exploits a simple and deterministic iterative relaxation strategy combining the different image segments. This step is followed by a decision making task based on the so-called "technique for order performance by similarity to ideal solution". Results obtained on two publicly available databases with manual ground truth segmentations clearly show that our multi-objective energy-based model gives better results than the classical mono-objective one.
Zhu, Chengcheng; Patterson, Andrew J; Thomas, Owen M; Sadat, Umar; Graves, Martin J; Gillard, Jonathan H
2013-04-01
Luminal stenosis is used for selecting the optimal management strategy for patients with carotid artery disease. The aim of this study is to evaluate the reproducibility of carotid stenosis quantification using manual and automated segmentation methods using submillimeter through-plane resolution Multi-Detector CT angiography (MDCTA). 35 patients having carotid artery disease with >30 % luminal stenosis as identified by carotid duplex imaging underwent contrast enhanced MDCTA. Two experienced CT readers quantified carotid stenosis from axial source images, reconstructed maximum intensity projection (MIP) and 3D-carotid geometry which was automatically segmented by an open-source toolkit (Vascular Modelling Toolkit, VMTK) using NASCET criteria. Good agreement among the measurement using axial images, MIP and automatic segmentation was observed. Automatic segmentation methods show better inter-observer agreement between the readers (intra-class correlation coefficient (ICC): 0.99 for diameter stenosis measurement) than manual measurement of axial (ICC = 0.82) and MIP (ICC = 0.86) images. Carotid stenosis quantification using an automatic segmentation method has higher reproducibility compared with manual methods.
Juneja, Prabhjot; Evans, Philp M; Harris, Emma J
2013-08-01
Validation is required to ensure automated segmentation algorithms are suitable for radiotherapy target definition. In the absence of true segmentation, algorithmic segmentation is validated against expert outlining of the region of interest. Multiple experts are used to overcome inter-expert variability. Several approaches have been studied in the literature, but the most appropriate approach to combine the information from multiple expert outlines, to give a single metric for validation, is unclear. None consider a metric that can be tailored to case-specific requirements in radiotherapy planning. Validation index (VI), a new validation metric which uses experts' level of agreement was developed. A control parameter was introduced for the validation of segmentations required for different radiotherapy scenarios: for targets close to organs-at-risk and for difficult to discern targets, where large variation between experts is expected. VI was evaluated using two simulated idealized cases and data from two clinical studies. VI was compared with the commonly used Dice similarity coefficient (DSCpair - wise) and found to be more sensitive than the DSCpair - wise to the changes in agreement between experts. VI was shown to be adaptable to specific radiotherapy planning scenarios.
Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun
2018-05-01
Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.
Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.
Roy, Snehashis; He, Qing; Sweeney, Elizabeth; Carass, Aaron; Reich, Daniel S; Prince, Jerry L; Pham, Dzung L
2015-09-01
Quantitative measurements from segmentations of human brain magnetic resonance (MR) images provide important biomarkers for normal aging and disease progression. In this paper, we propose a patch-based tissue classification method from MR images that uses a sparse dictionary learning approach and atlas priors. Training data for the method consists of an atlas MR image, prior information maps depicting where different tissues are expected to be located, and a hard segmentation. Unlike most atlas-based classification methods that require deformable registration of the atlas priors to the subject, only affine registration is required between the subject and training atlas. A subject-specific patch dictionary is created by learning relevant patches from the atlas. Then the subject patches are modeled as sparse combinations of learned atlas patches leading to tissue memberships at each voxel. The combination of prior information in an example-based framework enables us to distinguish tissues having similar intensities but different spatial locations. We demonstrate the efficacy of the approach on the application of whole-brain tissue segmentation in subjects with healthy anatomy and normal pressure hydrocephalus, as well as lesion segmentation in multiple sclerosis patients. For each application, quantitative comparisons are made against publicly available state-of-the art approaches.
3D knee segmentation based on three MRI sequences from different planes.
Zhou, L; Chav, R; Cresson, T; Chartrand, G; de Guise, J
2016-08-01
In clinical practice, knee MRI sequences with 3.5~5 mm slice distance in sagittal, coronal, and axial planes are often requested for the knee examination since its acquisition is faster than high-resolution MRI sequence in a single plane, thereby reducing the probability of motion artifact. In order to take advantage of the three sequences from different planes, a 3D segmentation method based on the combination of three knee models obtained from the three sequences is proposed in this paper. In the method, the sub-segmentation is respectively performed with sagittal, coronal, and axial MRI sequence in the image coordinate system. With each sequence, an initial knee model is hierarchically deformed, and then the three deformed models are mapped to reference coordinate system defined by the DICOM standard and combined to obtain a patient-specific model. The experimental results verified that the three sub-segmentation results can complement each other, and their integration can compensate for the insufficiency of boundary information caused by 3.5~5 mm gap between consecutive slices. Therefore, the obtained patient-specific model is substantially more accurate than each sub-segmentation results.
Vitiligo: An Update on Pathophysiology and Treatment Options.
Speeckaert, Reinhart; van Geel, Nanja
2017-12-01
The pathophysiology of vitiligo is becoming increasingly clarified. In non-segmental vitiligo, early factors include activation of innate immunity, inflammasome activation, oxidative stress, and loss of melanocyte adhesion. Nonetheless, the main mechanism leading to non-segmental vitiligo involves an immune-mediated destruction of melanocytes. Anti-melanocyte-specific cytotoxic T cells exert a central role in the final effector stage. Genetic research revealed a multi-genetic inheritance displaying an overlap with other autoimmune disorders. However, some melanocyte-specific genes were also affected. Segmental vitiligo carries a different pathogenesis with most evidence indicating a mosaic skin disorder. Current management includes topical corticosteroids and immunomodulators. Narrow-band ultraviolet B can be used in patients not responding to topical treatment or in patients with extensive disease. Pigment cell transplantation offers an alternative for the treatment of segmental vitiligo or stable non-segmental lesions. Recent findings have revealed new targets for treatment that could lead to more efficient therapies. Targeted immunotherapy may halt the active immune pathways, although combination therapy may still be required to induce satisfying repigmentation. A recently established core set of outcome measures, new measurement instruments, and biomarker research pave the way for future standardized clinical trials.
Optimal Dynamic Advertising Strategy Under Age-Specific Market Segmentation
NASA Astrophysics Data System (ADS)
Krastev, Vladimir
2011-12-01
We consider the model proposed by Faggian and Grosset for determining the advertising efforts and goodwill in the long run of a company under age segmentation of consumers. Reducing this model to optimal control sub problems we find the optimal advertising strategy and goodwill.
NASA Astrophysics Data System (ADS)
Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.
2014-11-01
Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.
Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish.
Lee, Kerry J; Browning, Lauren M; Nallathamby, Prakash D; Osgood, Christopher J; Xu, Xiao-Hong Nancy
2013-12-07
Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c < 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.
2010-01-01
Background It is universally acknowledged that genome segment 4 of group A rotavirus, the major etiologic agent of severe diarrhea in infants and neonatal farm animals, encodes outer capsid neutralization and protective antigen VP4. Results To determine which genome segment of three group A equine rotavirus strains (H-2, FI-14 and FI-23) with P[12] specificity encodes the VP4, we analyzed dsRNAs of strains H-2, FI-14 and FI-23 as well as their reassortants by polyacrylamide gel electrophoresis (PAGE) at varying concentrations of acrylamide. The relative position of the VP4 gene of the three equine P[12] strains varied (either genome segment 3 or 4) depending upon the concentration of acrylamide. The VP4 gene bearing P[3], P[4], P[6], P[7], P[8] or P[18] specificity did not exhibit this phenomenon when the PAGE running conditions were varied. Conclusions The concentration of acrylamide in a PAGE gel affected VP4 gene coding assignment of equine rotavirus strains bearing P[12] specificity. PMID:20573245
NASA Astrophysics Data System (ADS)
Mohammadi Nasrabadi, Ali; Hosseinpour, Mohammad Hossein; Ebrahimnejad, Sadoullah
2013-05-01
In competitive markets, market segmentation is a critical point of business, and it can be used as a generic strategy. In each segment, strategies lead companies to their targets; thus, segment selection and the application of the appropriate strategies over time are very important to achieve successful business. This paper aims to model a strategy-aligned fuzzy approach to market segment evaluation and selection. A modular decision support system (DSS) is developed to select an optimum segment with its appropriate strategies. The suggested DSS has two main modules. The first one is SPACE matrix which indicates the risk of each segment. Also, it determines the long-term strategies. The second module finds the most preferred segment-strategies over time. Dynamic network process is applied to prioritize segment-strategies according to five competitive force factors. There is vagueness in pairwise comparisons, and this vagueness has been modeled using fuzzy concepts. To clarify, an example is illustrated by a case study in Iran's coffee market. The results show that success possibility of segments could be different, and choosing the best ones could help companies to be sure in developing their business. Moreover, changing the priority of strategies over time indicates the importance of long-term planning. This fact has been supported by a case study on strategic priority difference in short- and long-term consideration.
A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.
Mignotte, Max
2010-06-01
This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.
Patterns of care for clinically distinct segments of high cost Medicare beneficiaries.
Clough, Jeffrey D; Riley, Gerald F; Cohen, Melissa; Hanley, Sheila M; Sanghavi, Darshak; DeWalt, Darren A; Rajkumar, Rahul; Conway, Patrick H
2016-09-01
Efforts to improve the efficiency of care for the Medicare population commonly target high cost beneficiaries. We describe and evaluate a novel management approach, population segmentation, for identifying and managing high cost beneficiaries. A retrospective cross-sectional analysis of 6,919,439 Medicare fee-for-service beneficiaries in 2012. We defined and characterized eight distinct clinical population segments, and assessed heterogeneity in managing practitioners. The eight segments comprised 9.8% of the population and 47.6% of annual Medicare payments. The eight segments included 61% and 69% of the population in the top decile and top 5% of annual Medicare payments. The positive-predictive values within each segment for meeting thresholds of Medicare payments ranged from 72% to 100%, 30% to 83%, and 14% to 56% for the upper quartile, upper decile, and upper 5% of Medicare payments respectively. Sensitivity and positive-predictive values were substantially improved over predictive algorithms based on historical utilization patterns and comorbidities. The mean [95% confidence interval] number of unique practitioners and practices delivering E&M services ranged from 1.82 [1.79-1.84] to 6.94 [6.91-6.98] and 1.48 [1.46-1.50] to 4.98 [4.95-5.00] respectively. The percentage of cognitive services delivered by primary care practitioners ranged from 23.8% to 67.9% across segments, with significant variability among specialty types. Most high cost Medicare beneficiaries can be identified based on a single clinical reason and are managed by different practitioners. Population segmentation holds potential to improve efficiency in the Medicare population by identifying opportunities to improve care for specific populations and managing clinicians, and forecasting and evaluating the impact of specific interventions. Copyright © 2015 Elsevier Inc. All rights reserved.
Sivakamasundari, J; Kavitha, G; Sujatha, C M; Ramakrishnan, S
2014-01-01
Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Real-Time mass screening system for DR is vital for timely diagnosis and periodic screening to prevent the patient from severe visual loss. Human retinal fundus images are widely used for an automated segmentation of blood vessel and diagnosis of various blood vessel disorders. In this work, an attempt has been made to perform hardware synthesis of Kirsch template based edge detection for segmentation of blood vessels. This method is implemented using LabVIEW software and is synthesized in field programmable gate array board to yield results in real-time application. The segmentation of blood vessels using Kirsch based edge detection is compared with other edge detection methods such as Sobel, Prewitt and Canny. The texture features such as energy, entropy, contrast, mean, homogeneity and structural feature namely ratio of vessel to vessel free area are obtained from the segmented images. The performance of segmentation is analysed in terms of sensitivity, specificity and accuracy. It is observed from the results that the Kirsch based edge detection technique segmented the edges of blood vessels better than other edge detection techniques. The ratio of vessel to vessel free area classified the normal and DR affected retinal images more significantly than other texture based features. FPGA based hardware synthesis of Kirsch edge detection method is able to differentiate normal and diseased images with high specificity (93%). This automated segmentation of retinal blood vessels system could be used in computer-assisted diagnosis for diabetic retinopathy screening in real-time application.
Segmental Bile Duct-Targeted Liver Resection for Right-Sided Intrahepatic Stones.
Li, Shao-Qiang; Hua, Yun-Peng; Shen, Shun-Li; Hu, Wen-Jie; Peng, Bao-Gang; Liang, Li-Jian
2015-07-01
Hepatectomy is a safe and effective treatment for intrahepatic stones (IHSs). However, the resection plane for right-sided stones distributed within 2 segments is obstacle because of atrophy-hypertrophy complex formation of the liver and difficult dissection of segmental pedicle within the Glissonean plate by conventional approach. Thus, we devised segmental bile duct-targeted liver resection (SBDLR) for IHS, which aimed at completely resection of diseased bile ducts. This study aimed to evaluate the outcomes of SBDLR for right-sided IHSs. From January 2009 to December 2013, 107 patients with IHS treated by SBDLR in our center were reviewed in a prospective database. Patients' intermediate and long-term outcomes after SBDLR were analyzed. A total of 40 (37.4%) patients with localized right-sided stone and 67 (62.7%) patients with bilateral stones underwent SBDLR alone and SBDLR combined with left-sided hepatectomy, respectively. There was no hospital mortality of this cohort of patients. The postoperative morbidity was 35.5%. The mean intraoperative blood loss was 414 mL (range: 100-2500). Twenty-one (19.6%) patients needed red blood cells transfusion. The intermediate stone clearance rate was 94.4%; the final clearance rate reached 100% after subsequent postoperative cholangioscopic lithotomy. Only 2.8% patients developed stone recurrence in a median follow-up period of 38.3 months. SBDLR is a safe and effective treatment for right-sided IHS distributed within 2 segments. It is especially suitable for a subgroup of patients with bilateral stones whose right-sided stones are within 2 segments and bilateral liver resection is needed.
Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification.
Williams, B A; Ordahl, C P
1994-04-01
Specification of the myogenic lineage begins prior to gastrulation and culminates in the emergence of determined myogenic precursor cells from the somites. The myoD family (MDF) of transcriptional activators controls late step(s) in myogenic specification that are closely followed by terminal muscle differentiation. Genes expressed in myogenic specification at stages earlier than MDFs are unknown. The Pax-3 gene is expressed in all the cells of the caudal segmental plate, the early mesoderm compartment that contains the precursors of skeletal muscle. As somites form from the segmental plate and mature, Pax-3 expression is progressively modulated. Beginning at the time of segmentation, Pax-3 becomes repressed in the ventral half of the somite, leaving Pax-3 expression only in the dermomyotome. Subsequently, differential modulation of Pax-3 expression levels delineates the medial and lateral halves of the dermomyotome, which contain precursors of axial (back) muscle and limb muscle, respectively. Pax-3 expression is then repressed as dermomyotome-derived cells activate MDFs. Quail-chick chimera and ablation experiments confirmed that the migratory precursors of limb muscle continue to express Pax-3 during migration. Since limb muscle precursors do not activate MDFs until 2 days after they leave the somite, Pax-3 represents the first molecular marker for this migratory cell population. A null mutation of the mouse Pax-3 gene, Splotch, produces major disruptions in early limb muscle development (Franz, T., Kothary, R., Surani, M. A. H., Halata, Z. and Grim, M. (1993) Anat. Embryol. 187, 153-160; Goulding, M., Lumsden, A. and Paquette, A. (1994) Development 120, 957-971). We conclude, therefore, that Pax-3 gene expression in the paraxial mesoderm marks earlier stages in myogenic specification than MDFs and plays a crucial role in the specification and/or migration of limb myogenic precursors.
Tissues segmentation based on multi spectral medical images
NASA Astrophysics Data System (ADS)
Li, Ya; Wang, Ying
2017-11-01
Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.
Stability of local secondary structure determines selectivity of viral RNA chaperones.
Bravo, Jack P K; Borodavka, Alexander; Barth, Anders; Calabrese, Antonio N; Mojzes, Peter; Cockburn, Joseph J B; Lamb, Don C; Tuma, Roman
2018-05-18
To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.
Xie, Weiguo; Franke, Jochen; Chen, Cheng; Grützner, Paul A; Schumann, Steffen; Nolte, Lutz-P; Zheng, Guoyan
2015-06-01
Complete-pelvis segmentation in antero-posterior pelvic radiographs is required to create a patient-specific three-dimensional pelvis model for surgical planning and postoperative assessment in image-free navigation of total hip arthroplasty. A fast and robust framework for accurately segmenting the complete pelvis is presented, consisting of two consecutive modules. In the first module, a three-stage method was developed to delineate the left hemi-pelvis based on statistical appearance and shape models. To handle complex pelvic structures, anatomy-specific information processing techniques were employed. As the input to the second module, the delineated left hemi-pelvis was then reflected about an estimated symmetry line of the radiograph to initialize the right hemi-pelvis segmentation. The right hemi-pelvis was segmented by the same three-stage method, Two experiments conducted on respectively 143 and 40 AP radiographs demonstrated a mean segmentation accuracy of 1.61±0.68 mm. A clinical study to investigate the postoperative assessment of acetabular cup orientations based on the proposed framework revealed an average accuracy of 1.2°±0.9° and 1.6°±1.4° for anteversion and inclination, respectively. Delineation of each radiograph costs less than one minute. Despite further validation needed, the preliminary results implied the underlying clinical applicability of the proposed framework for image-free THA. Copyright © 2014 John Wiley & Sons, Ltd.
A model to identify high crash road segments with the dynamic segmentation method.
Boroujerdian, Amin Mirza; Saffarzadeh, Mahmoud; Yousefi, Hassan; Ghassemian, Hassan
2014-12-01
Currently, high social and economic costs in addition to physical and mental consequences put road safety among most important issues. This paper aims at presenting a novel approach, capable of identifying the location as well as the length of high crash road segments. It focuses on the location of accidents occurred along the road and their effective regions. In other words, due to applicability and budget limitations in improving safety of road segments, it is not possible to recognize all high crash road segments. Therefore, it is of utmost importance to identify high crash road segments and their real length to be able to prioritize the safety improvement in roads. In this paper, after evaluating deficiencies of the current road segmentation models, different kinds of errors caused by these methods are addressed. One of the main deficiencies of these models is that they can not identify the length of high crash road segments. In this paper, identifying the length of high crash road segments (corresponding to the arrangement of accidents along the road) is achieved by converting accident data to the road response signal of through traffic with a dynamic model based on the wavelet theory. The significant advantage of the presented method is multi-scale segmentation. In other words, this model identifies high crash road segments with different lengths and also it can recognize small segments within long segments. Applying the presented model into a real case for identifying 10-20 percent of high crash road segment showed an improvement of 25-38 percent in relative to the existing methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Academic Information Management--A New Synthesis.
ERIC Educational Resources Information Center
Drummond, Marshall Edward
The design concept and initial development phases of academic information management (AIM) are discussed. The AIM concept is an attempt to serve three segments of academic management with data and models to support decision making. AIM is concerned with management and evaluation of instructional computing in areas other than direct computing (data…
Joint tumor segmentation and dense deformable registration of brain MR images.
Parisot, Sarah; Duffau, Hugues; Chemouny, Stéphane; Paragios, Nikos
2012-01-01
In this paper we propose a novel graph-based concurrent registration and segmentation framework. Registration is modeled with a pairwise graphical model formulation that is modular with respect to the data and regularization term. Segmentation is addressed by adopting a similar graphical model, using image-based classification techniques while producing a smooth solution. The two problems are coupled via a relaxation of the registration criterion in the presence of tumors as well as a segmentation through a registration term aiming the separation between healthy and diseased tissues. Efficient linear programming is used to solve both problems simultaneously. State of the art results demonstrate the potential of our method on a large and challenging low-grade glioma data set.
2009-05-01
demonstrated to degrade a specific kidney segment (proximal tubule and glomerulus, respectively). In this study a total of seventeen protein biomarkers were...exposure. Two experimental nephrotoxins were interrogated, D-serine and puromycin, each previously demonstrated to degrade a specific kidney segment...to degradation during isolation from sample render it unlikely to develop into a fieldable, self-contained assay system within the near future
NASA Technical Reports Server (NTRS)
Dewitt, Richard L.
1978-01-01
The preliminary concept, specifications, and requirements of a reusable zero gravity combustion facility (0-GCF) for use by experimenters aboard the spacelab payload of the space transportation system (STS) orbiter are described. The facility will be amenable to any mission of the STS orbiter in which a spacelab habitable segment and pallet segment are integral and for which orbital mission plans specify induced accelerations of 0.0001 g or less for sufficiently long periods so as not to impact experiment performance.
Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals
Baker, Steven F.; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M.; Domm, William; Perez, Daniel R.; Topham, David J.
2014-01-01
ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or gene exchange between influenza A and B viruses is not well understood. Nucleotides comprising the coding termini of each influenza A virus gene segment are required for specific segment incorporation during budding. Whether influenza B virus shares a similar selective packaging strategy or if packaging signals prevent intertypic reassortment remains unknown. Here, we provide evidence suggesting a similar mechanism of influenza B virus genome packaging. Furthermore, by appending influenza A virus packaging signals onto influenza B virus segments, we rescued recombinant influenza A/B viruses that could reassort in vitro with another influenza A virus. These findings suggest that the divergent evolution of packaging signals aids with the speciation of influenza A and B viruses and is in part responsible for the lack of intertypic viral reassortment. PMID:25008914
Aprigliano, Federica; Martelli, Dario; Tropea, Peppino; Pasquini, Guido; Micera, Silvestro; Monaco, Vito
2017-09-01
This study was aimed at verifying whether aging modifies intralimb coordination strategy during corrective responses elicited by unexpected slip-like perturbations delivered during steady walking on a treadmill. To this end, 10 young and 10 elderly subjects were asked to manage unexpected slippages of different intensities. We analyzed the planar covariation law of the lower limb segments, using the principal component analysis, to verify whether elevation angles of older subjects covaried along a plan before and after the perturbation. Results showed that segments related to the perturbed limbs of both younger and older people do not covary after all perturbations. Conversely, the planar covariation law of the unperturbed limb was systematically held for younger and older subjects. These results occurred despite differences in spatio-temporal and kinematic parameters being observed among groups and perturbation intensities. Overall, our analysis revealed that aging does not affect intralimb coordination during corrective responses induced by slip-like perturbation, suggesting that both younger and older subjects adopt this control strategy while managing sudden and unexpected postural transitions of increasing intensities. Accordingly, results corroborate the hypothesis that balance control emerges from a governing set of biomechanical invariants, that is, suitable control schemes (e.g., planar covariation law) shared across voluntary and corrective motor behaviors, and across different sensory contexts due to different perturbation intensities, in both younger and older subjects. In this respect, our findings provide further support to investigate the effects of specific task training programs to counteract the risk of fall. NEW & NOTEWORTHY This study was aimed at investigating how aging affects the intralimb coordination of lower limb segments, described by the planar covariation law, during unexpected slip-like perturbations of increasing intensity. Results revealed that neither the aging nor the perturbation intensity affects this coordination strategy. Accordingly, we proposed that the balance control emerges from an invariant set of control schemes shared across different sensory motor contexts and despite age-related neuromuscular adaptations. Copyright © 2017 the American Physiological Society.
Automatic segmentation of trees in dynamic outdoor environments
USDA-ARS?s Scientific Manuscript database
Segmentation in dynamic outdoor environments can be difficult when the illumination levels and other aspects of the scene cannot be controlled. Specifically in agricultural contexts, a background material is often used to shield a camera's field of view from other rows of crops. In this paper, we ...
As-built design specification for segment map (Sgmap) program
NASA Technical Reports Server (NTRS)
Tompkins, M. A. (Principal Investigator)
1981-01-01
The segment map program (SGMAP), which is part of the CLASFYT package, is described in detail. This program is designed to output symbolic maps or numerical dumps from LANDSAT cluster/classification files or aircraft ground truth/processed ground truth files which are in 'universal' format.
ERIC Educational Resources Information Center
Ruiz-Felter, Roxanna; Cooperson, Solaman J.; Bedore, Lisa M.; Peña, Elizabeth D.
2016-01-01
Background: Although some investigations of phonological development have found that segmental accuracy is comparable in monolingual children and their bilingual peers, there is evidence that language use affects segmental accuracy in both languages. Aims: To investigate the influence of age of first exposure to English and the amount of current…
ERIC Educational Resources Information Center
Arenas-Gaitán, Jorge; Rondán-Cataluña, Francisco Javier; Ramírez-Correa, Patricio E.
2018-01-01
There is not a unique attitude towards the implementation of digital technology in educational sceneries. This paper aims to validate an adaptation of the DeLone and McLean information systems success model in the context of a learning management system. Furthermore, this study means to prove (1) the necessity of segmenting students in order to…
NASA's mobile satellite communications program; ground and space segment technologies
NASA Technical Reports Server (NTRS)
Naderi, F.; Weber, W. J.; Knouse, G. H.
1984-01-01
This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.
Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.
Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi
2015-01-15
A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.
Automated tumor volumetry using computer-aided image segmentation.
Gaonkar, Bilwaj; Macyszyn, Luke; Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A; Ali, Zarina S; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M; Davatzikos, Christos
2015-05-01
Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0-5 rating scale where 5 indicated perfect segmentation. The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Automated Tumor Volumetry Using Computer-Aided Image Segmentation
Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A.; Ali, Zarina S.; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M.; Davatzikos, Christos
2015-01-01
Rationale and Objectives Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. Materials and Methods A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Results Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0–5 rating scale where 5 indicated perfect segmentation. Conclusions The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. PMID:25770633
Management of Cavoatrial Deep Venous Thrombosis: Incorporating New Strategies
Zayed, Mohamed A.; De Silva, Gayan S.; Ramaswamy, Raja S.; Sanchez, Luis A.
2017-01-01
Cavoatrial deep venous thrombosis (DVT) is diagnosed with increasing prevalence. It can be managed medically with anticoagulation or with directed interventions aimed to efficiently reduce the thrombus burden within the target venous segment. The type of management chosen depends greatly on the etiology and chronicity of the thrombosis, existing patient comorbidities, and the patient's tolerance to anticoagulants and thrombolytic agents. In addition to traditional percutaneous catheter-based pharmacomechanical thrombolysis, other catheter-based suction thrombectomy techniques have emerged in recent years. Each therapeutic modality requires operator expertise and a coordinated care paradigm to facilitate successful outcomes. Open surgical thrombectomy is alternatively reserved for specific patient conditions, including intolerance of anticoagulation, failed catheter-based interventions, or acute emergencies. PMID:28265127
Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho
2016-02-01
The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.
Undoing an epidemiological paradox: the tobacco industry's targeting of US Immigrants.
Acevedo-Garcia, Dolores; Barbeau, Elizabeth; Bishop, Jennifer Anne; Pan, Jocelyn; Emmons, Karen M
2004-12-01
We sought to ascertain whether the tobacco industry has conceptualized the US immigrant population as a separate market. We conducted a content analysis of major tobacco industry documents. The tobacco industry has engaged in 3 distinct marketing strategies aimed at US immigrants: geographically based marketing directed toward immigrant communities, segmentation based on immigrants' assimilation status, and coordinated marketing focusing on US immigrant groups and their countries of origin. Public health researchers should investigate further the tobacco industry's characterization of the assimilated and non-assimilated immigrant markets, and its specific strategies for targeting these groups, in order to develop informed national and international tobacco control countermarketing strategies designed to protect immigrant populations and their countries of origin.
NASA Astrophysics Data System (ADS)
Candela, L.; Ruggieri, G.; Giancaspro, A.
2004-09-01
In the sphere of "Multi-Mission Ground Segment" Italian Space Agency project, some innovative technologies such as CORBA[1], Z39.50[2], XML[3], Java[4], Java server Pages[4] and C++ has been experimented. The SSPI system (Space Service Provider Infrastructure) is the prototype of a distributed environment aimed to facilitate the access to Earth Observation (EO) data. SSPI allows to ingests, archive, consolidate, visualize and evaluate these data. Hence, SSPI is not just a database of or a data repository, but an application that by means of a set of protocols, standards and specifications provides a unified access to multi-mission EO data.
Meteorological buoy measurements in the Iceland Sea, 2007-2009
NASA Astrophysics Data System (ADS)
Nína Petersen, Guðrún
2017-10-01
The Icelandic Meteorological Office (IMO) conducted meteorological buoy measurements in the central Iceland Sea in the time period 2007-2009, specifically in the northern Dreki area on the southern segment of the Jan Mayen Ridge. Due to difficulties in deployment and operations, in situ measurements in this region are sparse. Here the buoy, deployment and measurements are described with the aim of giving a future user of the data set information that is as comprehensive as possible. The data set has been quality-checked, suspect data removed and the data set made publicly available from PANGAEA Data Publisher (https://doi.org/10.1594/PANGAEA.876206).
NASA Technical Reports Server (NTRS)
Tilton, James C.; Lawrence, William T.; Plaza, Antonio J.
2006-01-01
The hierarchical segmentation (HSEG) algorithm is a hybrid of hierarchical step-wise optimization and constrained spectral clustering that produces a hierarchical set of image segmentations. This segmentation hierarchy organizes image data in a manner that makes the image's information content more accessible for analysis by enabling region-based analysis. This paper discusses data analysis with HSEG and describes several measures of region characteristics that may be useful analyzing segmentation hierarchies for various applications. Segmentation hierarchy analysis for generating landwater and snow/ice masks from MODIS (Moderate Resolution Imaging Spectroradiometer) data was demonstrated and compared with the corresponding MODIS standard products. The masks based on HSEG segmentation hierarchies compare very favorably to the MODIS standard products. Further, the HSEG based landwater mask was specifically tailored to the MODIS data and the HSEG snow/ice mask did not require the setting of a critical threshold as required in the production of the corresponding MODIS standard product.
Yancopoulos, G D; Blackwell, T K; Suh, H; Hood, L; Alt, F W
1986-01-31
We have recently proposed that a common recombinase performs all of the many variable region gene assembly events in B and T cells, and that the specificity of these joining events is mediated by regulating the "accessibility" of the involved gene segments. To test this possibility, we have introduced "accessible" T cell receptor (TCR) variable region gene segments into a pre-B cell line capable of recombining endogenous and transfected immunoglobulin (Ig) variable region gene segments. Although the corresponding "inaccessible" endogenous TCR gene segments do not rearrange in this line or in B cells in general, the introduced TCR gene segments join very frequently and, in fact, closely resemble introduced Ig gene segments in their recombination characteristics. These observations suggest a new role for conventional Ig transcriptional enhancers--recombinational enhancement. Our studies provide insight into additional aspects of the joining mechanism such as N region insertion, aberrant joining, and recombination-recognition sequence requirements for joining.
Discriminative parameter estimation for random walks segmentation.
Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan
2013-01-01
The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
Semi-automatic segmentation of brain tumors using population and individual information.
Wu, Yao; Yang, Wei; Jiang, Jun; Li, Shuanqian; Feng, Qianjin; Chen, Wufan
2013-08-01
Efficient segmentation of tumors in medical images is of great practical importance in early diagnosis and radiation plan. This paper proposes a novel semi-automatic segmentation method based on population and individual statistical information to segment brain tumors in magnetic resonance (MR) images. First, high-dimensional image features are extracted. Neighborhood components analysis is proposed to learn two optimal distance metrics, which contain population and patient-specific information, respectively. The probability of each pixel belonging to the foreground (tumor) and the background is estimated by the k-nearest neighborhood classifier under the learned optimal distance metrics. A cost function for segmentation is constructed through these probabilities and is optimized using graph cuts. Finally, some morphological operations are performed to improve the achieved segmentation results. Our dataset consists of 137 brain MR images, including 68 for training and 69 for testing. The proposed method overcomes segmentation difficulties caused by the uneven gray level distribution of the tumors and even can get satisfactory results if the tumors have fuzzy edges. Experimental results demonstrate that the proposed method is robust to brain tumor segmentation.
Discriminative dictionary learning for abdominal multi-organ segmentation.
Tong, Tong; Wolz, Robin; Wang, Zehan; Gao, Qinquan; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku; Hajnal, Joseph V; Rueckert, Daniel
2015-07-01
An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error
Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong
2013-01-01
A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526
Bakas, Spyridon; Zeng, Ke; Sotiras, Aristeidis; Rathore, Saima; Akbari, Hamed; Gaonkar, Bilwaj; Rozycki, Martin; Pati, Sarthak; Davatzikos, Christos
2016-01-01
We present an approach for segmenting low- and high-grade gliomas in multimodal magnetic resonance imaging volumes. The proposed approach is based on a hybrid generative-discriminative model. Firstly, a generative approach based on an Expectation-Maximization framework that incorporates a glioma growth model is used to segment the brain scans into tumor, as well as healthy tissue labels. Secondly, a gradient boosting multi-class classification scheme is used to refine tumor labels based on information from multiple patients. Lastly, a probabilistic Bayesian strategy is employed to further refine and finalize the tumor segmentation based on patient-specific intensity statistics from the multiple modalities. We evaluated our approach in 186 cases during the training phase of the BRAin Tumor Segmentation (BRATS) 2015 challenge and report promising results. During the testing phase, the algorithm was additionally evaluated in 53 unseen cases, achieving the best performance among the competing methods.
Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread
Dall’Ara, Mattia; Ratti, Claudio; Bouzoubaa, Salah E.; Gilmer, David
2016-01-01
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the “life aspects” of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant. PMID:27548199
Spine Patterning Is Guided by Segmentation of the Notochord Sheath.
Wopat, Susan; Bagwell, Jennifer; Sumigray, Kaelyn D; Dickson, Amy L; Huitema, Leonie F A; Poss, Kenneth D; Schulte-Merker, Stefan; Bagnat, Michel
2018-02-20
The spine is a segmented axial structure made of alternating vertebral bodies (centra) and intervertebral discs (IVDs) assembled around the notochord. Here, we show that, prior to centra formation, the outer epithelial cell layer of the zebrafish notochord, the sheath, segments into alternating domains corresponding to the prospective centra and IVD areas. This process occurs sequentially in an anteroposterior direction via the activation of Notch signaling in alternating segments of the sheath, which transition from cartilaginous to mineralizing domains. Subsequently, osteoblasts are recruited to the mineralized domains of the notochord sheath to form mature centra. Tissue-specific manipulation of Notch signaling in sheath cells produces notochord segmentation defects that are mirrored in the spine. Together, our findings demonstrate that notochord sheath segmentation provides a template for vertebral patterning in the zebrafish spine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
A general system for automatic biomedical image segmentation using intensity neighborhoods.
Chen, Cheng; Ozolek, John A; Wang, Wei; Rohde, Gustavo K
2011-01-01
Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.
Milne, Marjorie E; Steward, Christopher; Firestone, Simon M; Long, Sam N; O'Brien, Terrence J; Moffat, Bradford A
2016-04-01
To develop representative MRI atlases of the canine brain and to evaluate 3 methods of atlas-based segmentation (ABS). 62 dogs without clinical signs of epilepsy and without MRI evidence of structural brain disease. The MRI scans from 44 dogs were used to develop 4 templates on the basis of brain shape (brachycephalic, mesaticephalic, dolichocephalic, and combined mesaticephalic and dolichocephalic). Atlas labels were generated by segmenting the brain, ventricular system, hippocampal formation, and caudate nuclei. The MRI scans from the remaining 18 dogs were used to evaluate 3 methods of ABS (manual brain extraction and application of a brain shape-specific template [A], automatic brain extraction and application of a brain shape-specific template [B], and manual brain extraction and application of a combined template [C]). The performance of each ABS method was compared by calculation of the Dice and Jaccard coefficients, with manual segmentation used as the gold standard. Method A had the highest mean Jaccard coefficient and was the most accurate ABS method assessed. Measures of overlap for ABS methods that used manual brain extraction (A and C) ranged from 0.75 to 0.95 and compared favorably with repeated measures of overlap for manual extraction, which ranged from 0.88 to 0.97. Atlas-based segmentation was an accurate and repeatable method for segmentation of canine brain structures. It could be performed more rapidly than manual segmentation, which should allow the application of computer-assisted volumetry to large data sets and clinical cases and facilitate neuroimaging research and disease diagnosis.
Healy, Sinead; McMahon, Jill; Owens, Peter; Dockery, Peter; FitzGerald, Una
2018-02-01
Image segmentation is often imperfect, particularly in complex image sets such z-stack micrographs of slice cultures and there is a need for sufficient details of parameters used in quantitative image analysis to allow independent repeatability and appraisal. For the first time, we have critically evaluated, quantified and validated the performance of different segmentation methodologies using z-stack images of ex vivo glial cells. The BioVoxxel toolbox plugin, available in FIJI, was used to measure the relative quality, accuracy, specificity and sensitivity of 16 global and 9 local threshold automatic thresholding algorithms. Automatic thresholding yields improved binary representation of glial cells compared with the conventional user-chosen single threshold approach for confocal z-stacks acquired from ex vivo slice cultures. The performance of threshold algorithms varies considerably in quality, specificity, accuracy and sensitivity with entropy-based thresholds scoring highest for fluorescent staining. We have used the BioVoxxel toolbox to correctly and consistently select the best automated threshold algorithm to segment z-projected images of ex vivo glial cells for downstream digital image analysis and to define segmentation quality. The automated OLIG2 cell count was validated using stereology. As image segmentation and feature extraction can quite critically affect the performance of successive steps in the image analysis workflow, it is becoming increasingly necessary to consider the quality of digital segmenting methodologies. Here, we have applied, validated and extended an existing performance-check methodology in the BioVoxxel toolbox to z-projected images of ex vivo glia cells. Copyright © 2017 Elsevier B.V. All rights reserved.
The use of atlas registration and graph cuts for prostate segmentation in magnetic resonance images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsager, Anne Sofie, E-mail: asko@hst.aau.dk; Østergaard, Lasse Riis; Fortunati, Valerio
2015-04-15
Purpose: An automatic method for 3D prostate segmentation in magnetic resonance (MR) images is presented for planning image-guided radiotherapy treatment of prostate cancer. Methods: A spatial prior based on intersubject atlas registration is combined with organ-specific intensity information in a graph cut segmentation framework. The segmentation is tested on 67 axial T{sub 2}-weighted MR images in a leave-one-out cross validation experiment and compared with both manual reference segmentations and with multiatlas-based segmentations using majority voting atlas fusion. The impact of atlas selection is investigated in both the traditional atlas-based segmentation and the new graph cut method that combines atlas andmore » intensity information in order to improve the segmentation accuracy. Best results were achieved using the method that combines intensity information, shape information, and atlas selection in the graph cut framework. Results: A mean Dice similarity coefficient (DSC) of 0.88 and a mean surface distance (MSD) of 1.45 mm with respect to the manual delineation were achieved. Conclusions: This approaches the interobserver DSC of 0.90 and interobserver MSD 0f 1.15 mm and is comparable to other studies performing prostate segmentation in MR.« less
Muraru, Denisa; Onciul, Sebastian; Peluso, Diletta; Soriani, Nicola; Cucchini, Umberto; Aruta, Patrizia; Romeo, Gabriella; Cavalli, Giacomo; Iliceto, Sabino; Badano, Luigi P
2016-02-01
Despite the fact that assessment of right ventricular longitudinal strain (RVLS) carries important implications for patient diagnosis, prognosis, and treatment, its implementation in clinical settings has been hampered by the limited reference values and the lack of uniformity in software, method, and definition used for measuring RVLS. Accordingly, this study was designed to establish (1) the reference values for RVLS by 2-dimensional speckle-tracking echocardiography; and (2) their relationship with demographic, hemodynamic, and cardiac factors. In 276 healthy volunteers (55% women; age, 18-76 years), free wall and septum RVLS (6 segments) and free wall RVLS (3 segments) using both 6- and 3-segment regions of interest were obtained. Feasibility of 6-segment RVLS was 92%. Free wall RVLS from 3- versus 6-segment regions of interest had similar values, yet 6-segment region of interest was more feasible (86% versus 73%; P<0.001) and reproducible. Reference values (lower limits of normality) were as follows: 6-segment RVLS, -24.7±2.6% (-20.0%) for men and -26.7±3.1% (-20.3%) for women; 3-segment RVLS, -29.3±3.4% (-22.5%) for men and -31.6±4.0% (-23.3%) for women (P<0.001). Free wall RVLS was 5±2 strain units (%) larger in magnitude than 6-segment RVLS, 10±4% larger than septal RVLS, and 2±4% larger in women than in men (P<0.001). At multivariable analysis, age, sex, pulmonary systolic pressure, right atrial minimal volume, as well as right atrial and left ventricular longitudinal strain resulted as correlates of RVLS values. This is the largest study providing sex- and method-specific reference values for RVLS. Our data may foster the implementation of 2-dimensional speckle-tracking echocardiography-derived RV analysis in clinical practice. © 2016 American Heart Association, Inc.
Efficient patient modeling for visuo-haptic VR simulation using a generic patient atlas.
Mastmeyer, Andre; Fortmeier, Dirk; Handels, Heinz
2016-08-01
This work presents a new time-saving virtual patient modeling system by way of example for an existing visuo-haptic training and planning virtual reality (VR) system for percutaneous transhepatic cholangio-drainage (PTCD). Our modeling process is based on a generic patient atlas to start with. It is defined by organ-specific optimized models, method modules and parameters, i.e. mainly individual segmentation masks, transfer functions to fill the gaps between the masks and intensity image data. In this contribution, we show how generic patient atlases can be generalized to new patient data. The methodology consists of patient-specific, locally-adaptive transfer functions and dedicated modeling methods such as multi-atlas segmentation, vessel filtering and spline-modeling. Our full image volume segmentation algorithm yields median DICE coefficients of 0.98, 0.93, 0.82, 0.74, 0.51 and 0.48 regarding soft-tissue, liver, bone, skin, blood and bile vessels for ten test patients and three selected reference patients. Compared to standard slice-wise manual contouring time saving is remarkable. Our segmentation process shows out efficiency and robustness for upper abdominal puncture simulation systems. This marks a significant step toward establishing patient-specific training and hands-on planning systems in a clinical environment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Within-brain classification for brain tumor segmentation.
Havaei, Mohammad; Larochelle, Hugo; Poulin, Philippe; Jodoin, Pierre-Marc
2016-05-01
In this paper, we investigate a framework for interactive brain tumor segmentation which, at its core, treats the problem of interactive brain tumor segmentation as a machine learning problem. This method has an advantage over typical machine learning methods for this task where generalization is made across brains. The problem with these methods is that they need to deal with intensity bias correction and other MRI-specific noise. In this paper, we avoid these issues by approaching the problem as one of within brain generalization. Specifically, we propose a semi-automatic method that segments a brain tumor by training and generalizing within that brain only, based on some minimum user interaction. We investigate how adding spatial feature coordinates (i.e., i, j, k) to the intensity features can significantly improve the performance of different classification methods such as SVM, kNN and random forests. This would only be possible within an interactive framework. We also investigate the use of a more appropriate kernel and the adaptation of hyper-parameters specifically for each brain. As a result of these experiments, we obtain an interactive method whose results reported on the MICCAI-BRATS 2013 dataset are the second most accurate compared to published methods, while using significantly less memory and processing power than most state-of-the-art methods.
Hox gene control of segment-specific bristle patterns in Drosophila
Rozowski, Marion; Akam, Michael
2002-01-01
Hox genes specify the different morphologies of segments along the anteroposterior axis of animals. How they control complex segment morphologies is not well understood. We have studied how the Hox gene Ultrabithorax (Ubx) controls specific differences between the bristle patterns of the second and third thoracic segments (T2 and T3) of Drosophila melanogaster. We find that Ubx blocks the development of two particular bristles on T3 at different points in sensory organ development. For the apical bristle, a precursor is singled out and undergoes a first division in both the second and third legs, but in the third leg further differentiation of the second-order precursors is blocked. For the posterior sternopleural bristle, development on T3 ceases after proneural cluster initiation. Analysis of the temporal requirement for Ubx shows that in both cases Ubx function is required shortly before bristle development is blocked. We suggest that interactions between Ubx and the bristle patterning hierarchy have evolved independently on many occasions, affecting different molecular steps. The effects of Ubx on bristle development are highly dependent on the context of other patterning information. Suppression of bristle development or changes in bristle morphology in response to endogenous and ectopic Ubx expression are limited to bristles at specific locations. PMID:12000797
Military display market segment: avionics (Invited Paper)
NASA Astrophysics Data System (ADS)
Desjardins, Daniel D.; Hopper, Darrel G.
2005-05-01
The military display market is analyzed in terms of one of its segments: avionics. Requirements are summarized for 13 technology-driving parameters for direct-view and virtual-view displays in cockpits and cabins. Technical specifications are discussed for selected programs. Avionics stresses available technology and usually requires custom display designs.
40 CFR 86.1380-2004 - Load response test.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) The test has 5 separate measurement segments, each identified by a specific engine speed. At each of the following speeds, beginning with the lowest torque point at that engine speed within the NTE.... Prior to the beginning of each measurement segment, the engine shall be warmed up at the supplemental...
40 CFR 86.1380-2004 - Load response test.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) The test has 5 separate measurement segments, each identified by a specific engine speed. At each of the following speeds, beginning with the lowest torque point at that engine speed within the NTE.... Prior to the beginning of each measurement segment, the engine shall be warmed up at the supplemental...
40 CFR 86.1380-2004 - Load response test.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The test has 5 separate measurement segments, each identified by a specific engine speed. At each of the following speeds, beginning with the lowest torque point at that engine speed within the NTE.... Prior to the beginning of each measurement segment, the engine shall be warmed up at the supplemental...
40 CFR 86.1380-2004 - Load response test.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) The test has 5 separate measurement segments, each identified by a specific engine speed. At each of the following speeds, beginning with the lowest torque point at that engine speed within the NTE.... Prior to the beginning of each measurement segment, the engine shall be warmed up at the supplemental...
Validation of an algorithm to predict reulceration in amputation patients with diabetes.
Molines-Barroso, Raúl J; Lázaro-Martínez, José L; Álvaro-Afonso, Francisco J; Sanz-Corbalán, Irene; García-Klepzig, José L; Aragón-Sánchez, Javier
2017-06-01
The aim of this article was to assess the ability to predict reulceration in people with diabetes and a history of minor amputation according to the formula proposed by Miller et al. A retrospective study was performed on 156 consecutive records of patients with a recent history of simple or multiple forefoot amputation. The sample was divided according to Miller's formula into patients at low risk of reulceration and those at high risk; those were further divided into two subgroups according to whether or not the first segment of the forefoot had been amputated. Forty-eight (47·1%) individuals suffered forefoot reulceration, showing a median reulceration-free survival time of 8 months [interquartile range (IR) 3·6-14·8]. Nephropathy (P = 0.005) and Miller's formula (P = 0.028) were risk factors for reulceration-free survival time in the univariate analysis. The pattern relating to the first segment amputated [hazard ratio (HR) 2·853; P = 0·004; 95% confidence interval (CI) 1·391-5·849] and nephropathy (HR 2·468; P = 0.004; 95% CI 1.328-4.587) showed a significant hazard ratio in the multivariate Cox model. Participants with first segment amputation and one other amputation showed an association with the probability of reulceration in comparison with any other specific type of minor amputation. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Implementing clinical protocols in oncology: quality gaps and the learning curve phenomenon.
Kedikoglou, Simos; Syrigos, Konstantinos; Skalkidis, Yannis; Ploiarchopoulou, Fani; Dessypris, Nick; Petridou, Eleni
2005-08-01
The quality improvement effort in clinical practice has focused mostly on 'performance quality', i.e. on the development of comprehensive, evidence-based guidelines. This study aimed to assess the 'conformance quality', i.e. the extent to which guidelines once developed are correctly and consistently applied. It also aimed to assess the existence of quality gaps in the treatment of certain patient segments as defined by age or gender and to investigate methods to improve overall conformance quality. A retrospective audit of clinical practice in a well-defined oncology setting was undertaken and the results compared to those obtained from prospectively applying an internally developed clinical protocol in the same setting and using specific tools to increase conformance quality. All indicators showed improvement after the implementation of the protocol that in many cases reached statistical significance, while in the entire cohort advanced age was associated (although not significantly) with sub-optimal delivery of care. A 'learning curve' phenomenon in the implementation of quality initiatives was detected, with all indicators improving substantially in the second part of the prospective study. Clinicians should pay separate attention to the implementation of chosen protocols and employ specific tools to increase conformance quality in patient care.
Local site preference rationalizes disentangling by DNA topoisomerases
NASA Astrophysics Data System (ADS)
Liu, Zhirong; Zechiedrich, Lynn; Chan, Hue Sun
2010-03-01
To rationalize the disentangling action of type II topoisomerases, an improved wormlike DNA model was used to delineate the degree of unknotting and decatenating achievable by selective segment passage at specific juxtaposition geometries and to determine how these activities were affected by DNA circle size and solution ionic strength. We found that segment passage at hooked geometries can reduce knot populations as dramatically as seen in experiments. Selective segment passage also provided theoretical underpinning for an intriguing empirical scaling relation between unknotting and decatenating potentials.
RNA secondary structures of the bacteriophage phi6 packaging regions.
Pirttimaa, M J; Bamford, D H
2000-06-01
Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.
Active appearance model and deep learning for more accurate prostate segmentation on MRI
NASA Astrophysics Data System (ADS)
Cheng, Ruida; Roth, Holger R.; Lu, Le; Wang, Shijun; Turkbey, Baris; Gandler, William; McCreedy, Evan S.; Agarwal, Harsh K.; Choyke, Peter; Summers, Ronald M.; McAuliffe, Matthew J.
2016-03-01
Prostate segmentation on 3D MR images is a challenging task due to image artifacts, large inter-patient prostate shape and texture variability, and lack of a clear prostate boundary specifically at apex and base levels. We propose a supervised machine learning model that combines atlas based Active Appearance Model (AAM) with a Deep Learning model to segment the prostate on MR images. The performance of the segmentation method is evaluated on 20 unseen MR image datasets. The proposed method combining AAM and Deep Learning achieves a mean Dice Similarity Coefficient (DSC) of 0.925 for whole 3D MR images of the prostate using axial cross-sections. The proposed model utilizes the adaptive atlas-based AAM model and Deep Learning to achieve significant segmentation accuracy.
Hess, M A; Duncan, R F
1996-01-01
Preferential translation of Drosophila heat shock protein 70 (Hsp70) mRNA requires only the 5'-untranslated region (5'-UTR). The sequence of this region suggests that it has relatively little secondary structure, which may facilitate efficient protein synthesis initiation. To determine whether minimal 5'-UTR secondary structure is required for preferential translation during heat shock, the effect of introducing stem-loops into the Hsp70 mRNA 5'-UTR was measured. Stem-loops of -11 kcal/mol abolished translation during heat shock, but did not reduce translation in non-heat shocked cells. A -22 kcal/mol stem-loop was required to comparably inhibit translation during growth at normal temperatures. To investigate whether specific sequence elements are also required for efficient preferential translation, deletion and mutation analyses were conducted in a truncated Hsp70 5'-UTR containing only the cap-proximal and AUG-proximal segments. Linker-scanner mutations in the cap-proximal segment (+1 to +37) did not impair translation. Re-ordering the segments reduced mRNA translational efficiency by 50%. Deleting the AUG-proximal segment severely inhibited translation. A 5-extension of the full-length leader specifically impaired heat shock translation. These results indicate that heat shock reduces the capacity to unwind 5-UTR secondary structure, allowing only mRNAs with minimal 5'-UTR secondary structure to be efficiently translated. A function for specific sequences is also suggested. PMID:8710519
Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections
NASA Astrophysics Data System (ADS)
Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.
2017-02-01
Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.
Freiman, Moti; Nickisch, Hannes; Prevrhal, Sven; Schmitt, Holger; Vembar, Mani; Maurovich-Horvat, Pál; Donnelly, Patrick; Goshen, Liran
2017-03-01
The goal of this study was to assess the potential added benefit of accounting for partial volume effects (PVE) in an automatic coronary lumen segmentation algorithm that is used to determine the hemodynamic significance of a coronary artery stenosis from coronary computed tomography angiography (CCTA). Two sets of data were used in our work: (a) multivendor CCTA datasets of 18 subjects from the MICCAI 2012 challenge with automatically generated centerlines and 3 reference segmentations of 78 coronary segments and (b) additional CCTA datasets of 97 subjects with 132 coronary lesions that had invasive reference standard FFR measurements. We extracted the coronary artery centerlines for the 97 datasets by an automated software program followed by manual correction if required. An automatic machine-learning-based algorithm segmented the coronary tree with and without accounting for the PVE. We obtained CCTA-based FFR measurements using a flow simulation in the coronary trees that were generated by the automatic algorithm with and without accounting for PVE. We assessed the potential added value of PVE integration as a part of the automatic coronary lumen segmentation algorithm by means of segmentation accuracy using the MICCAI 2012 challenge framework and by means of flow simulation overall accuracy, sensitivity, specificity, negative and positive predictive values, and the receiver operated characteristic (ROC) area under the curve. We also evaluated the potential benefit of accounting for PVE in automatic segmentation for flow simulation for lesions that were diagnosed as obstructive based on CCTA which could have indicated a need for an invasive exam and revascularization. Our segmentation algorithm improves the maximal surface distance error by ~39% compared to previously published method on the 18 datasets from the MICCAI 2012 challenge with comparable Dice and mean surface distance. Results with and without accounting for PVE were comparable. In contrast, integrating PVE analysis into an automatic coronary lumen segmentation algorithm improved the flow simulation specificity from 0.6 to 0.68 with the same sensitivity of 0.83. Also, accounting for PVE improved the area under the ROC curve for detecting hemodynamically significant CAD from 0.76 to 0.8 compared to automatic segmentation without PVE analysis with invasive FFR threshold of 0.8 as the reference standard. Accounting for PVE in flow simulation to support the detection of hemodynamic significant disease in CCTA-based obstructive lesions improved specificity from 0.51 to 0.73 with same sensitivity of 0.83 and the area under the curve from 0.69 to 0.79. The improvement in the AUC was statistically significant (N = 76, Delong's test, P = 0.012). Accounting for the partial volume effects in automatic coronary lumen segmentation algorithms has the potential to improve the accuracy of CCTA-based hemodynamic assessment of coronary artery lesions. © 2017 American Association of Physicists in Medicine.
An ablative pulsed plasma thruster with a segmented anode
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Ren, Junxue; Tang, Haibin; Ling, William Yeong Liang; York, Thomas M.
2018-01-01
An ablative pulsed plasma thruster (APPT) design with a ‘segmented anode’ is proposed in this paper. We aim to examine the effect that this asymmetric electrode configuration (a normal cathode and a segmented anode) has on the performance of an APPT. The magnetic field of the discharge arc, plasma density in the exit plume, impulse bit, and thrust efficiency were studied using a magnetic probe, Langmuir probe, thrust stand, and mass bit measurements, respectively. When compared with conventional symmetric parallel electrodes, the segmented anode APPT shows an improvement in the impulse bit of up to 28%. The thrust efficiency is also improved by 49% (from 5.3% to 7.9% for conventional and segmented designs, respectively). Long-exposure broadband emission images of the discharge morphology show that compared with a normal anode, a segmented anode results in clear differences in the luminous discharge morphology and better collimation of the plasma. The magnetic probe data indicate that the segmented anode APPT exhibits a higher current density in the discharge arc. Furthermore, Langmuir probe data collected from the central exit plane show that the peak electron density is 75% higher than with conventional parallel electrodes. These results are believed to be fundamental to the physical mechanisms behind the increased impulse bit of an APPT with a segmented electrode.
van der Zanden, Lotte D T; van Kleef, Ellen; de Wijk, René A; van Trijp, Hans C M
2014-06-01
It is beneficial for both the public health community and the food industry to meet nutritional needs of elderly consumers through product formats that they want. The heterogeneity of the elderly market poses a challenge, however, and calls for market segmentation. Although many researchers have proposed ways to segment the elderly consumer population, the elderly food market has received surprisingly little attention in this respect. Therefore, the present paper reviewed eight potential segmentation bases on their appropriateness in the context of functional foods aimed at the elderly: cognitive age, life course, time perspective, demographics, general food beliefs, food choice motives, product attributes and benefits sought, and past purchase. Each of the segmentation bases had strengths as well as weaknesses regarding seven evaluation criteria. Given that both product design and communication are useful tools to increase the appeal of functional foods, we argue that elderly consumers in this market may best be segmented using a preference-based segmentation base that is predictive of behaviour (for example, attributes and benefits sought), combined with a characteristics-based segmentation base that describes consumer characteristics (for example, demographics). In the end, the effectiveness of (combinations of) segmentation bases for elderly consumers in the functional food market remains an empirical matter. We hope that the present review stimulates further empirical research that substantiates the ideas presented in this paper.
Luo, Hong-Ji; Lin, Shi-Xiang; Wu, Shyi-Kuen; Tsai, Mei-Wun; Lee, Shwn-Jen
2017-01-01
Postural rehabilitation emphasizing on motor control training of segmental spinal movements has been proposed to effectively reduce the scoliotic spinal deformities in adolescent idiopathic scoliosis (AIS). However, information regarding the impairments of segmental spinal movement control involving segmental spinal stabilizers in adolescent idiopathic scoliosis remains limited. Examination of segmental spinal movement control may provide a window for investigating the features of impaired movement control specific to spinal segments that may assist in the development of physiotherapeutic management of AIS. To compare segmental spinal movement control in adolescents with and without idiopathic scoliosis using modified pressure biofeedback unit. Segmental spinal movement control was assessed in twenty adolescents with idiopathic scoliosis (AISG) and twenty healthy adolescents (CG) using a modified pressure biofeedback unit. Participants performed segmental spinal movements that primarily involved segmental spinal stabilizing muscles with graded and sustained muscle contraction against/off a pressure cuff from baseline to target pressures and then maintained for 1 min. Pressure data during the 1-minute maintenance phase were collected for further analysis. Pressure deviation were calculated and compared between groups. The AISG had significantly greater pressure deviations for all segmental spinal movements of cervical, thoracic, and lumbar spine than the CG. Pressure biofeedback unit was feasible for assessing segmental spinal movement control in AIS. AISG exhibited poorer ability to grade and sustain muscle activities for local movements of cervical, thoracic, and lumbar spine, suggesting motor control training of segmental spinal movements involving segmental spinal stabilizing muscles on frontal, sagittal, and transverse planes were required.
A two-view ultrasound CAD system for spina bifida detection using Zernike features
NASA Astrophysics Data System (ADS)
Konur, Umut; Gürgen, Fikret; Varol, Füsun
2011-03-01
In this work, we address a very specific CAD (Computer Aided Detection/Diagnosis) problem and try to detect one of the relatively common birth defects - spina bifida, in the prenatal period. To do this, fetal ultrasound images are used as the input imaging modality, which is the most convenient so far. Our approach is to decide using two particular types of views of the fetal neural tube. Transcerebellar head (i.e. brain) and transverse (axial) spine images are processed to extract features which are then used to classify healthy (normal), suspicious (probably defective) and non-decidable cases. Decisions raised by two independent classifiers may be individually treated, or if desired and data related to both modalities are available, those decisions can be combined to keep matters more secure. Even more security can be attained by using more than two modalities and base the final decision on all those potential classifiers. Our current system relies on feature extraction from images for cases (for particular patients). The first step is image preprocessing and segmentation to get rid of useless image pixels and represent the input in a more compact domain, which is hopefully more representative for good classification performance. Next, a particular type of feature extraction, which uses Zernike moments computed on either B/W or gray-scale image segments, is performed. The aim here is to obtain values for indicative markers that signal the presence of spina bifida. Markers differ depending on the image modality being used. Either shape or texture information captured by moments may propose useful features. Finally, SVM is used to train classifiers to be used as decision makers. Our experimental results show that a promising CAD system can be actualized for the specific purpose. On the other hand, the performance of such a system would highly depend on the qualities of image preprocessing, segmentation, feature extraction and comprehensiveness of image data.
WE-H-207A-07: Image-Based Versus Atlas-Based Internal Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallahpoor, M; Abbasi, M; Parach, A
Purpose: Monte Carlo (MC) simulation is known as the gold standard method for internal dosimetry. It requires radionuclide distribution from PET or SPECT and body structure from CT for accurate dose calculation. The manual or semi-automatic segmentation of organs from CT images is a major obstacle. The aim of this study is to compare the dosimetry results based on patient’s own CT and a digital humanoid phantom as an atlas with pre-specified organs. Methods: SPECT-CT images of a 50 year old woman who underwent bone pain palliation with Samarium-153 EDTMP for osseous metastases from breast cancer were used. The anatomicalmore » date and attenuation map were extracted from SPECT/CT and three XCAT digital phantoms with different BMIs (i.e. matched (38.8) and unmatched (35.5 and 36.7) with patient’s BMI that was 38.3). Segmentation of patient’s organs in CT image was performed using itk-SNAP software. GATE MC Simulator was used for dose calculation. Specific absorbed fractions (SAFs) and S-values were calculated for the segmented organs. Results: The differences between SAFs and S-values are high using different anatomical data and range from −13% to 39% for SAF values and −109% to 79% for S-values in different organs. In the spine, the clinically important target organ for Samarium Therapy, the differences in the S-values and SAF values are higher between XCAT phantom and CT when the phantom with identical BMI is employed (53.8% relative difference in S-value and 26.8% difference in SAF). However, the whole body dose values were the same between the calculations based on the CT and XCAT with different BMIs. Conclusion: The results indicated that atlas-based dosimetry using XCAT phantom even with matched BMI for patient leads to considerable errors as compared to image-based dosimetry that uses the patient’s own CT Patient-specific dosimetry using CT image is essential for accurate results.« less
Feature extraction for change analysis in SAR time series
NASA Astrophysics Data System (ADS)
Boldt, Markus; Thiele, Antje; Schulz, Karsten; Hinz, Stefan
2015-10-01
In remote sensing, the change detection topic represents a broad field of research. If time series data is available, change detection can be used for monitoring applications. These applications require regular image acquisitions at identical time of day along a defined period. Focusing on remote sensing sensors, radar is especially well-capable for applications requiring regularity, since it is independent from most weather and atmospheric influences. Furthermore, regarding the image acquisitions, the time of day plays no role due to the independence from daylight. Since 2007, the German SAR (Synthetic Aperture Radar) satellite TerraSAR-X (TSX) permits the acquisition of high resolution radar images capable for the analysis of dense built-up areas. In a former study, we presented the change analysis of the Stuttgart (Germany) airport. The aim of this study is the categorization of detected changes in the time series. This categorization is motivated by the fact that it is a poor statement only to describe where and when a specific area has changed. At least as important is the statement about what has caused the change. The focus is set on the analysis of so-called high activity areas (HAA) representing areas changing at least four times along the investigated period. As first step for categorizing these HAAs, the matching HAA changes (blobs) have to be identified. Afterwards, operating in this object-based blob level, several features are extracted which comprise shape-based, radiometric, statistic, morphological values and one context feature basing on a segmentation of the HAAs. This segmentation builds on the morphological differential attribute profiles (DAPs). Seven context classes are established: Urban, infrastructure, rural stable, rural unstable, natural, water and unclassified. A specific HA blob is assigned to one of these classes analyzing the CovAmCoh time series signature of the surrounding segments. In combination, also surrounding GIS information is included to verify the CovAmCoh based context assignment. In this paper, the focus is set on the features extracted for a later change categorization procedure.
Malcolm, Philippe; Galle, Samuel; Derave, Wim; De Clercq, Dirk
2018-01-01
The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition . Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions . Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments.
Malcolm, Philippe; Galle, Samuel; Derave, Wim; De Clercq, Dirk
2018-01-01
The bi-articular m. gastrocnemius and the mono-articular m. soleus have different and complementary functions during walking. Several groups are starting to use these biological functions as inspiration to design prostheses with bi-articular actuation components to replace the function of the m. gastrocnemius. Simulation studies indicate that a bi-articular configuration and spring that mimic the m. gastrocnemius could be beneficial for orthoses or exoskeletons. Our aim was to test the effect of a bi-articular and spring configuration that mimics the m. gastrocnemius and compare this to a no-spring and mono-articular configuration. We tested nine participants during walking with knee-ankle-foot exoskeletons with dorsally mounted pneumatic muscle actuators. In the bi-articular plus spring condition the pneumatic muscles were attached to the thigh segment with an elastic cord. In the bi-articular no-spring condition the pneumatic muscles were also attached to the thigh segment but with a non-elastic cord. In the mono-articular condition the pneumatic muscles were attached to the shank segment. We found the highest reduction in metabolic cost of 13% compared to walking with the exoskeleton powered-off in the bi-articular plus spring condition. Possible explanations for this could be that the exoskeleton delivered the highest total positive work in this condition at the ankle and the knee and provided more assistance during the isometric phase of the biological plantarflexors. As expected we found that the bi-articular conditions reduced m. gastrocnemius EMG more than the mono-articular condition but this difference was not significant. We did not find that the mono-articular condition reduces the m. soleus EMG more than the bi-articular conditions. Knowledge of specific effects of different exoskeleton configurations on metabolic cost and muscle activation could be useful for providing customized assistance for specific gait impairments. PMID:29551959
Ran, Hong; Zhang, Ping-Yang; Zhang, You-Xiang; Zhang, Jian-Xin; Wu, Wen-Fang; Dong, Jing; Ma, Xiao-Wu
2016-08-01
To determine whether 3-dimensional (3D) speckle-tracking echocardiography could provide a new way to assess myocardial viability in patients with myocardial infarction (MI). Forty-five patients with MI underwent routine echocardiography, 2-dimensional (2D) speckle-tracking echocardiography, and 3D speckle-tracking echocardiography. Radionuclide myocardial perfusion/metabolic imaging was used as a reference standard to define viable and nonviable myocardia. Among 720 myocardial segments in 45 patients, 368 showed abnormal motion on routine echocardiography; 204 of 368 were categorized as viable on single-photon emission computed tomography/positron emission tomography (SPECT/PET), whereas 164 were defined as nonviable; 300 normal segments on SPECT/PET among 352 segments without abnormal motion on routine echocardiography were categorized as a control group. The radial, longitudinal, 3D, and area strain on 3D speckle-tracking echocardiography had significant differences between control and nonviable groups (P < .001), whereas none of the parameters had significant differences between control and viable groups. There were no significant differences in circumferential, radial, and longitudinal peak systolic strain from 2D speckle-tracking echocardiography between viable and nonviable groups. Although there was no significant difference in circumferential strain between the groups, radial and longitudinal strain from 3D speckle-tracking echocardiography decreased significantly in the nonviable group. Moreover, 3D and area strain values were lower in the nonviable segments than the viable segments. By receiver operating characteristic analysis, radial strain from 3D speckle-tracking echocardiography with a cutoff of 11.1% had sensitivity of 95.1% and specificity of 53.4% for viable segments; longitudinal strain with a cutoff of 14.3% had sensitivity of 65.2% and specificity of 65.7%; 3D strain with a cutoff of 17.4% had sensitivity of 70.6% and specificity of 77.2%; and area strain with a cutoff of 23.2% had sensitivity of 91.5% and specificity of 82.8%. Three-dimensional speckle-tracking echocardiography might have potential for detection of myocardial viability in patients with cardiac dysfunction due to MI.
Palmer, Thomas; Uhl, Timothy L.; Howell, Dana; Hewett, Timothy E.; Viele, Kert; Mattacola, Carl G.
2015-01-01
Context The ability to generate, absorb, and transmit forces through the proximal segments of the pelvis, spine, and trunk has been proposed to influence sport performance, yet traditional training techniques targeting the proximal segments have had limited success improving sport-specific performance. Objective To investigate the effects of a traditional endurance-training program and a sport-specific power-training program targeting the muscles that support the proximal segments and throwing velocity. Design Randomized controlled clinical trial. Setting University research laboratory and gymnasium. Patients or Other Participants A total of 46 (age = 20 ± 1.3 years, height = 175.7 ± 8.7 cm) healthy National Collegiate Athletic Association Division III female softball (n = 17) and male baseball (n = 29) players. Intervention(s) Blocked stratification for sex and position was used to randomly assign participants to 1 of 2 training groups for 7 weeks: a traditional endurance-training group (ET group; n = 21) or a power-stability–training group (PS group; n = 25). Mean Outcome Measure(s) The change score in peak throwing velocity (km/h) normalized for body weight (BW; kilograms) and change score in tests that challenge the muscles of the proximal segments normalized for BW (kilograms). We used 2-tailed independent-samples t tests to compare differences between the change scores. Results The peak throwing velocity (ET group = 0.01 ± 0.1 km/h/kg of BW, PS group = 0.08 ± 0.03 km/h/kg of BW; P < .001) and muscle power outputs for the chop (ET group = 0.22 ± 0.91 W/kg of BW, PS group = 1.3 ± 0.91 W/kg of BW; P < .001) and lift (ET group = 0.59 ± 0.67 W/kg of BW, PS group = 1.4 ± 0.87 W/kg of BW; P < .001) tests were higher at postintervention in the PT than in the ET group. Conclusions An improvement in throwing velocity occurred simultaneously with measures of muscular endurance and power after a sport-specific training regimen targeting the proximal segments. PMID:25844854
Assessment of Multiresolution Segmentation for Extracting Greenhouses from WORLDVIEW-2 Imagery
NASA Astrophysics Data System (ADS)
Aguilar, M. A.; Aguilar, F. J.; García Lorca, A.; Guirado, E.; Betlej, M.; Cichon, P.; Nemmaoui, A.; Vallario, A.; Parente, C.
2016-06-01
The latest breed of very high resolution (VHR) commercial satellites opens new possibilities for cartographic and remote sensing applications. In this way, object based image analysis (OBIA) approach has been proved as the best option when working with VHR satellite imagery. OBIA considers spectral, geometric, textural and topological attributes associated with meaningful image objects. Thus, the first step of OBIA, referred to as segmentation, is to delineate objects of interest. Determination of an optimal segmentation is crucial for a good performance of the second stage in OBIA, the classification process. The main goal of this work is to assess the multiresolution segmentation algorithm provided by eCognition software for delineating greenhouses from WorldView- 2 multispectral orthoimages. Specifically, the focus is on finding the optimal parameters of the multiresolution segmentation approach (i.e., Scale, Shape and Compactness) for plastic greenhouses. The optimum Scale parameter estimation was based on the idea of local variance of object heterogeneity within a scene (ESP2 tool). Moreover, different segmentation results were attained by using different combinations of Shape and Compactness values. Assessment of segmentation quality based on the discrepancy between reference polygons and corresponding image segments was carried out to identify the optimal setting of multiresolution segmentation parameters. Three discrepancy indices were used: Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR) and Euclidean Distance 2 (ED2).
SVM Pixel Classification on Colour Image Segmentation
NASA Astrophysics Data System (ADS)
Barui, Subhrajit; Latha, S.; Samiappan, Dhanalakshmi; Muthu, P.
2018-04-01
The aim of image segmentation is to simplify the representation of an image with the help of cluster pixels into something meaningful to analyze. Segmentation is typically used to locate boundaries and curves in an image, precisely to label every pixel in an image to give each pixel an independent identity. SVM pixel classification on colour image segmentation is the topic highlighted in this paper. It holds useful application in the field of concept based image retrieval, machine vision, medical imaging and object detection. The process is accomplished step by step. At first we need to recognize the type of colour and the texture used as an input to the SVM classifier. These inputs are extracted via local spatial similarity measure model and Steerable filter also known as Gabon Filter. It is then trained by using FCM (Fuzzy C-Means). Both the pixel level information of the image and the ability of the SVM Classifier undergoes some sophisticated algorithm to form the final image. The method has a well developed segmented image and efficiency with respect to increased quality and faster processing of the segmented image compared with the other segmentation methods proposed earlier. One of the latest application result is the Light L16 camera.
3D geometric split-merge segmentation of brain MRI datasets.
Marras, Ioannis; Nikolaidis, Nikolaos; Pitas, Ioannis
2014-05-01
In this paper, a novel method for MRI volume segmentation based on region adaptive splitting and merging is proposed. The method, called Adaptive Geometric Split Merge (AGSM) segmentation, aims at finding complex geometrical shapes that consist of homogeneous geometrical 3D regions. In each volume splitting step, several splitting strategies are examined and the most appropriate is activated. A way to find the maximal homogeneity axis of the volume is also introduced. Along this axis, the volume splitting technique divides the entire volume in a number of large homogeneous 3D regions, while at the same time, it defines more clearly small homogeneous regions within the volume in such a way that they have greater probabilities of survival at the subsequent merging step. Region merging criteria are proposed to this end. The presented segmentation method has been applied to brain MRI medical datasets to provide segmentation results when each voxel is composed of one tissue type (hard segmentation). The volume splitting procedure does not require training data, while it demonstrates improved segmentation performance in noisy brain MRI datasets, when compared to the state of the art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multi-Atlas Segmentation using Partially Annotated Data: Methods and Annotation Strategies.
Koch, Lisa M; Rajchl, Martin; Bai, Wenjia; Baumgartner, Christian F; Tong, Tong; Passerat-Palmbach, Jonathan; Aljabar, Paul; Rueckert, Daniel
2017-08-22
Multi-atlas segmentation is a widely used tool in medical image analysis, providing robust and accurate results by learning from annotated atlas datasets. However, the availability of fully annotated atlas images for training is limited due to the time required for the labelling task. Segmentation methods requiring only a proportion of each atlas image to be labelled could therefore reduce the workload on expert raters tasked with annotating atlas images. To address this issue, we first re-examine the labelling problem common in many existing approaches and formulate its solution in terms of a Markov Random Field energy minimisation problem on a graph connecting atlases and the target image. This provides a unifying framework for multi-atlas segmentation. We then show how modifications in the graph configuration of the proposed framework enable the use of partially annotated atlas images and investigate different partial annotation strategies. The proposed method was evaluated on two Magnetic Resonance Imaging (MRI) datasets for hippocampal and cardiac segmentation. Experiments were performed aimed at (1) recreating existing segmentation techniques with the proposed framework and (2) demonstrating the potential of employing sparsely annotated atlas data for multi-atlas segmentation.
Quantifying coordination among the rearfoot, midfoot, and forefoot segments during running.
Takabayashi, Tomoya; Edama, Mutsuaki; Yokoyama, Erika; Kanaya, Chiaki; Kubo, Masayoshi
2018-03-01
Because previous studies have suggested that there is a relationship between injury risk and inter-segment coordination, quantifying coordination between the segments is essential. Even though the midfoot and forefoot segments play important roles in dynamic tasks, previous studies have mostly focused on coordination between the shank and rearfoot segments. This study aimed to quantify coordination among rearfoot, midfoot, and forefoot segments during running. Eleven healthy young men ran on a treadmill. The coupling angle, representing inter-segment coordination, was calculated using a modified vector coding technique. The coupling angle was categorised into four coordination patterns. During the absorption phase, rearfoot-midfoot coordination in the frontal planes was mostly in-phase (rearfoot and midfoot eversion with similar amplitudes). The present study found that the eversion of the midfoot with respect to the rearfoot was comparable in magnitude to the eversion of the rearfoot with respect to the shank. A previous study has suggested that disruption of the coordination between the internal rotation of the shank and eversion of the rearfoot leads to running injuries such as anterior knee pain. Thus, these data might be used in the future to compare to individuals with foot deformities or running injuries.
2003-05-01
Students at Williams Technology Middle School in Huntsville were featured in a new segment of NASA CONNECT, a video series aimed to enhance the teaching of math, science, and technology to middle school students. The segment premiered nationwide May 15, 2003, and helped viewers understand Sir Isaac Newton's first, second, and third laws of gravity and how they relate to NASA's efforts in developing the next generation of space transportation.
Ferris, Abbie E; Smith, Jeremy D; Heise, Gary D; Hinrichs, Richard N; Martin, Philip E
2017-03-21
Lower extremity joint moment magnitudes during swing are dependent on the inertial properties of the prosthesis and residual limb of individuals with transtibial amputation (TTA). Often, intact limb inertial properties (INTACT) are used for prosthetic limb values in an inverse dynamics model even though these values overestimate the amputated limb's inertial properties. The purpose of this study was to use subject-specific (SPECIFIC) measures of prosthesis inertial properties to generate a general model (GENERAL) for estimating TTA prosthesis inertial properties. Subject-specific mass, center of mass, and moment of inertia were determined for the shank and foot segments of the prosthesis (n=11) using an oscillation technique and reaction board. The GENERAL model was derived from the means of the SPECIFIC model. Mass and segment lengths are required GENERAL model inputs. Comparisons of segment inertial properties and joint moments during walking were made using three inertial models (unique sample; n=9): (1) SPECIFIC, (2) GENERAL, and (3) INTACT. Prosthetic shank inertial properties were significantly smaller with the SPECIFIC and GENERAL model than the INTACT model, but the SPECIFIC and GENERAL model did not statistically differ. Peak knee and hip joint moments during swing were significantly smaller for the SPECIFIC and GENERAL model compared with the INTACT model and were not significantly different between SPECIFIC and GENERAL models. When subject-specific measures are unavailable, using the GENERAL model produces a better estimate of prosthetic side inertial properties resulting in more accurate joint moment measurements for individuals with TTA than the INTACT model. Copyright © 2017 Elsevier Ltd. All rights reserved.
Patient-specific finite element modeling of bones.
Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A
2013-04-01
Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.
Computer-aided diagnostic approach of dermoscopy images acquiring relevant features
NASA Astrophysics Data System (ADS)
Castillejos-Fernández, H.; Franco-Arcega, A.; López-Ortega, O.
2016-09-01
In skin cancer detection, automated analysis of borders, colors, and structures of a lesion relies upon an accurate segmentation process and it is an important first step in any Computer-Aided Diagnosis (CAD) system. However, irregular and disperse lesion borders, low contrast, artifacts in images and variety of colors within the interest region make the problem difficult. In this paper, we propose an efficient approach of automatic classification which considers specific lesion features. First, for the selection of lesion skin we employ the segmentation algorithm W-FCM.1 Then, in the feature extraction stage we consider several aspects: the area of the lesion, which is calculated by correlating axes and we calculate the specific the value of asymmetry in both axes. For color analysis we employ an ensemble of clusterers including K-Means, Fuzzy K-Means and Kohonep maps, all of which estimate the presence of one or more colors defined in ABCD rule and the values for each of the segmented colors. Another aspect to consider is the type of structures that appear in the lesion Those are defined by using the ell-known GLCM method. During the classification stage we compare several methods in order to define if the lesion is benign or malignant. An important contribution of the current approach in segmentation-classification problem resides in the use of information from all color channels together, as well as the measure of each color in the lesion and the axes correlation. The segmentation and classification measures have been performed using sensibility, specificity, accuracy and AUC metric over a set of dermoscopy images from ISDIS data set
Segmentation of British Sign Language (BSL): mind the gap!
Orfanidou, Eleni; McQueen, James M; Adam, Robert; Morgan, Gary
2015-01-01
This study asks how users of British Sign Language (BSL) recognize individual signs in connected sign sequences. We examined whether this is achieved through modality-specific or modality-general segmentation procedures. A modality-specific feature of signed languages is that, during continuous signing, there are salient transitions between sign locations. We used the sign-spotting task to ask if and how BSL signers use these transitions in segmentation. A total of 96 real BSL signs were preceded by nonsense signs which were produced in either the target location or another location (with a small or large transition). Half of the transitions were within the same major body area (e.g., head) and half were across body areas (e.g., chest to hand). Deaf adult BSL users (a group of natives and early learners, and a group of late learners) spotted target signs best when there was a minimal transition and worst when there was a large transition. When location changes were present, both groups performed better when transitions were to a different body area than when they were within the same area. These findings suggest that transitions do not provide explicit sign-boundary cues in a modality-specific fashion. Instead, we argue that smaller transitions help recognition in a modality-general way by limiting lexical search to signs within location neighbourhoods, and that transitions across body areas also aid segmentation in a modality-general way, by providing a phonotactic cue to a sign boundary. We propose that sign segmentation is based on modality-general procedures which are core language-processing mechanisms.
A lane line segmentation algorithm based on adaptive threshold and connected domain theory
NASA Astrophysics Data System (ADS)
Feng, Hui; Xu, Guo-sheng; Han, Yi; Liu, Yang
2018-04-01
Before detecting cracks and repairs on road lanes, it's necessary to eliminate the influence of lane lines on the recognition result in road lane images. Aiming at the problems caused by lane lines, an image segmentation algorithm based on adaptive threshold and connected domain is proposed. First, by analyzing features like grey level distribution and the illumination of the images, the algorithm uses Hough transform to divide the images into different sections and convert them into binary images separately. It then uses the connected domain theory to amend the outcome of segmentation, remove noises and fill the interior zone of lane lines. Experiments have proved that this method could eliminate the influence of illumination and lane line abrasion, removing noises thoroughly while maintaining high segmentation precision.
Qazi, Arish A; Pekar, Vladimir; Kim, John; Xie, Jason; Breen, Stephen L; Jaffray, David A
2011-11-01
Intensity modulated radiation therapy (IMRT) allows greater control over dose distribution, which leads to a decrease in radiation related toxicity. IMRT, however, requires precise and accurate delineation of the organs at risk and target volumes. Manual delineation is tedious and suffers from both interobserver and intraobserver variability. State of the art auto-segmentation methods are either atlas-based, model-based or hybrid however, robust fully automated segmentation is often difficult due to the insufficient discriminative information provided by standard medical imaging modalities for certain tissue types. In this paper, the authors present a fully automated hybrid approach which combines deformable registration with the model-based approach to accurately segment normal and target tissues from head and neck CT images. The segmentation process starts by using an average atlas to reliably identify salient landmarks in the patient image. The relationship between these landmarks and the reference dataset serves to guide a deformable registration algorithm, which allows for a close initialization of a set of organ-specific deformable models in the patient image, ensuring their robust adaptation to the boundaries of the structures. Finally, the models are automatically fine adjusted by our boundary refinement approach which attempts to model the uncertainty in model adaptation using a probabilistic mask. This uncertainty is subsequently resolved by voxel classification based on local low-level organ-specific features. To quantitatively evaluate the method, they auto-segment several organs at risk and target tissues from 10 head and neck CT images. They compare the segmentations to the manual delineations outlined by the expert. The evaluation is carried out by estimating two common quantitative measures on 10 datasets: volume overlap fraction or the Dice similarity coefficient (DSC), and a geometrical metric, the median symmetric Hausdorff distance (HD), which is evaluated slice-wise. They achieve an average overlap of 93% for the mandible, 91% for the brainstem, 83% for the parotids, 83% for the submandibular glands, and 74% for the lymph node levels. Our automated segmentation framework is able to segment anatomy in the head and neck region with high accuracy within a clinically-acceptable segmentation time.
Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire
2017-12-01
Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.
Differential changes in the spinal segmental locomotor output in Hereditary Spastic Paraplegia.
Martino, G; Ivanenko, Y; Serrao, M; Ranavolo, A; Draicchio, F; Rinaldi, M; Casali, C; Lacquaniti, F
2018-03-01
A comprehensive treatment of Hereditary Spastic Paraplegia (HSP) should consider the specific pathophysiological changes in the spinal cord. Here we reported a detailed characterization of the spinal motoneuronal output in HSP during locomotion. We recorded kinematics and electromyographic (EMG) activity of 12 leg muscles in 29 patients with pure forms of HSP and compared them with 30 controls while walking at matched speeds. We assessed the spinal locomotor output by evaluating EMG patterns and by mapping them onto the rostrocaudal location of the spinal motoneuron pools. The activity profiles of muscles innervated from the sacral segments were significantly wider in patients. Similarly, spinal maps revealed a tendency for spreading the main loci of activation, involving initially the sacral segments and, at more severe stages, the lumbar segments. The degeneration of the corticospinal tract in HSP is associated with a widening of spinal locomotor output spreading from caudal to rostral segments. The findings highlight pathophysiologically relevant differential changes in the spinal locomotor output in HSP related to the specific innervation of muscles in the spinal cord, and might be helpful for developing future therapeutic strategies and identifying physiological markers of the disease. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Memory and subjective workload assessment
NASA Technical Reports Server (NTRS)
Staveland, L.; Hart, S.; Yeh, Y. Y.
1986-01-01
Recent research suggested subjective introspection of workload is not based upon specific retrieval of information from long term memory, and only reflects the average workload that is imposed upon the human operator by a particular task. These findings are based upon global ratings of workload for the overall task, suggesting that subjective ratings are limited in ability to retrieve specific details of a task from long term memory. To clarify the limits memory imposes on subjective workload assessment, the difficulty of task segments was varied and the workload of specified segments was retrospectively rated. The ratings were retrospectively collected on the manipulations of three levels of segment difficulty. Subjects were assigned to one of two memory groups. In the Before group, subjects knew before performing a block of trials which segment to rate. In the After group, subjects did not know which segment to rate until after performing the block of trials. The subjective ratings, RTs (reaction times) and MTs (movement times) were compared within group, and between group differences. Performance measures and subjective evaluations of workload reflected the experimental manipulations. Subjects were sensitive to different difficulty levels, and recalled the average workload of task components. Cueing did not appear to help recall, and memory group differences possibly reflected variations in the groups of subjects, or an additional memory task.
Pirlich, M; Schütz, T; Ockenga, J; Biering, H; Gerl, H; Schmidt, B; Ertl, S; Plauth, M; Lochs, H
2003-04-01
Estimation of body cell mass (BCM) has been regarded valuable for the assessment of malnutrition. To investigate the value of segmental bioelectrical impedance analysis (BIA) for BCM estimation in malnourished subjects and acromegaly. Nineteen controls and 63 patients with either reduced (liver cirrhosis without and with ascites, Cushing's disease) or increased BCM (acromegaly) were included. Whole-body and segmental BIA (separately measuring arm, trunk, leg) at 50 kHz was compared with BCM measured by total-body potassium. Multiple regression analysis was used to develop specific equations for BCM in each subgroup. Compared to whole-body BIA equations, the inclusion of arm resistance improved the specific equation in cirrhotic patients without ascites and in Cushing's disease resulting in excellent prediction of BCM (R(2) = 0.93 and 0.92, respectively; both P<0.001). In acromegaly, inclusion of resistance and reactance of the trunk best described BCM (R(2) = 0.94, P<0.001). In controls and in cirrhotic patients with ascites, segmental impedance parameters did not improve BCM prediction (best values obtained by whole-body measurements: R(2)=0.88 and 0.60; P<0.001 and <0.003, respectively). Segmental BIA improves the assessment of BCM in malnourished patients and acromegaly, but not in patients with severe fluid overload. Copyright 2003 Elsevier Science Ltd.
Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly
2013-01-01
High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652
Quantitative assessment of 12-lead ECG synthesis using CAVIAR.
Scherer, J A; Rubel, P; Fayn, J; Willems, J L
1992-01-01
The objective of this study is to assess the performance of patient-specific segment-specific (PSSS) synthesis in QRST complexes using CAVIAR, a new method of the serial comparison for electrocardiograms and vectorcardiograms. A collection of 250 multi-lead recordings from the Common Standards for Quantitative Electrocardiography (CSE) diagnostic pilot study is employed. QRS and ST-T segments are independently synthesized using the PSSS algorithm so that the mean-squared error between the original and estimated waveforms is minimized. CAVIAR compares the recorded and synthesized QRS and ST-T segments and calculates the mean-quadratic deviation as a measure of error. The results of this study indicate that estimated QRS complexes are good representatives of their recorded counterparts, and the integrity of the spatial information is maintained by the PSSS synthesis process. Analysis of the ST-T segments suggests that the deviations between recorded and synthesized waveforms are considerably greater than those associated with the QRS complexes. The poorer performance of the ST-T segments is attributed to magnitude normalization of the spatial loops, low-voltage passages, and noise interference. Using the mean-quadratic deviation and CAVIAR as methods of performance assessment, this study indicates that the PSSS-synthesis algorithm accurately maintains the signal information within the 12-lead electrocardiogram.
Breast mass segmentation in mammography using plane fitting and dynamic programming.
Song, Enmin; Jiang, Luan; Jin, Renchao; Zhang, Lin; Yuan, Yuan; Li, Qiang
2009-07-01
Segmentation is an important and challenging task in a computer-aided diagnosis (CAD) system. Accurate segmentation could improve the accuracy in lesion detection and characterization. The objective of this study is to develop and test a new segmentation method that aims at improving the performance level of breast mass segmentation in mammography, which could be used to provide accurate features for classification. This automated segmentation method consists of two main steps and combines the edge gradient, the pixel intensity, as well as the shape characteristics of the lesions to achieve good segmentation results. First, a plane fitting method was applied to a background-trend corrected region-of-interest (ROI) of a mass to obtain the edge candidate points. Second, dynamic programming technique was used to find the "optimal" contour of the mass from the edge candidate points. Area-based similarity measures based on the radiologist's manually marked annotation and the segmented region were employed as criteria to evaluate the performance level of the segmentation method. With the evaluation criteria, the new method was compared with 1) the dynamic programming method developed by Timp and Karssemeijer, and 2) the normalized cut segmentation method, based on 337 ROIs extracted from a publicly available image database. The experimental results indicate that our segmentation method can achieve a higher performance level than the other two methods, and the improvements in segmentation performance level were statistically significant. For instance, the mean overlap percentage for the new algorithm was 0.71, whereas those for Timp's dynamic programming method and the normalized cut segmentation method were 0.63 (P < .001) and 0.61 (P < .001), respectively. We developed a new segmentation method by use of plane fitting and dynamic programming, which achieved a relatively high performance level. The new segmentation method would be useful for improving the accuracy of computerized detection and classification of breast cancer in mammography.
Boccardi, Marina; Bocchetta, Martina; Apostolova, Liana G.; Barnes, Josephine; Bartzokis, George; Corbetta, Gabriele; DeCarli, Charles; deToledo-Morrell, Leyla; Firbank, Michael; Ganzola, Rossana; Gerritsen, Lotte; Henneman, Wouter; Killiany, Ronald J.; Malykhin, Nikolai; Pasqualetti, Patrizio; Pruessner, Jens C.; Redolfi, Alberto; Robitaille, Nicolas; Soininen, Hilkka; Tolomeo, Daniele; Wang, Lei; Watson, Craig; Wolf, Henrike; Duvernoy, Henri; Duchesne, Simon; Jack, Clifford R.; Frisoni, Giovanni B.
2015-01-01
Background This study aimed to have international experts converge on a harmonized definition of whole hippocampus boundaries and segmentation procedures, to define standard operating procedures for magnetic resonance (MR)-based manual hippocampal segmentation. Methods The panel received a questionnaire regarding whole hippocampus boundaries and segmentation procedures. Quantitative information was supplied to allow evidence-based answers. A recursive and anonymous Delphi procedure was used to achieve convergence. Significance of agreement among panelists was assessed by exact probability on Fisher’s and binomial tests. Results Agreement was significant on the inclusion of alveus/fimbria (P =.021), whole hippocampal tail (P =.013), medial border of the body according to visible morphology (P =.0006), and on this combined set of features (P =.001). This definition captures 100% of hippocampal tissue, 100% of Alzheimer’s disease-related atrophy, and demonstrated good reliability on preliminary intrarater (0.98) and inter-rater (0.94) estimates. Discussion Consensus was achieved among international experts with respect to hippocampal segmentation using MR resulting in a harmonized segmentation protocol. PMID:25130658
A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images.
Vázquez, David; Bernal, Jorge; Sánchez, F Javier; Fernández-Esparrach, Gloria; López, Antonio M; Romero, Adriana; Drozdzal, Michal; Courville, Aaron
2017-01-01
Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss rate and the inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing decision support systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endoluminal scene, targeting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCNs). We perform a comparative study to show that FCNs significantly outperform, without any further postprocessing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.
Excluded segmental duct bile leakage: the case for bilio-enteric anastomosis.
Patrono, Damiano; Tandoi, Francesco; Romagnoli, Renato; Salizzoni, Mauro
2014-06-01
Excluded segmental duct bile leak is the rarest type of post-hepatectomy bile leak and presents unique diagnostic and management features. Classical management strategies invariably entail a significant loss of functioning hepatic parenchyma. The aim of this study is to report a new liver-sparing technique to handle excluded segmental duct bile leakage. Two cases of excluded segmental duct bile leak occurring after major hepatic resection were managed by a Roux-en-Y hepatico-jejunostomy on the excluded segmental duct, avoiding the sacrifice of the liver parenchyma origin of the fistula. In both cases, classical management strategies would have led to the functional loss of roughly 50 % of the liver remnant. Diagnostic and management implications are thoroughly discussed. Both cases had an uneventful postoperative course. The timing of repair was associated with a different outcome: the patient who underwent surgical repair in the acute phase developed no long-term complications, whereas the patient who underwent delayed repair developed a late stenosis requiring percutaneous dilatation. Roux-en-Y hepatico-jejunostomy on the excluded bile duct is a valuable technique in selected cases of excluded segmental duct bile leakage.
Boccardi, Marina; Bocchetta, Martina; Apostolova, Liana G; Barnes, Josephine; Bartzokis, George; Corbetta, Gabriele; DeCarli, Charles; deToledo-Morrell, Leyla; Firbank, Michael; Ganzola, Rossana; Gerritsen, Lotte; Henneman, Wouter; Killiany, Ronald J; Malykhin, Nikolai; Pasqualetti, Patrizio; Pruessner, Jens C; Redolfi, Alberto; Robitaille, Nicolas; Soininen, Hilkka; Tolomeo, Daniele; Wang, Lei; Watson, Craig; Wolf, Henrike; Duvernoy, Henri; Duchesne, Simon; Jack, Clifford R; Frisoni, Giovanni B
2015-02-01
This study aimed to have international experts converge on a harmonized definition of whole hippocampus boundaries and segmentation procedures, to define standard operating procedures for magnetic resonance (MR)-based manual hippocampal segmentation. The panel received a questionnaire regarding whole hippocampus boundaries and segmentation procedures. Quantitative information was supplied to allow evidence-based answers. A recursive and anonymous Delphi procedure was used to achieve convergence. Significance of agreement among panelists was assessed by exact probability on Fisher's and binomial tests. Agreement was significant on the inclusion of alveus/fimbria (P = .021), whole hippocampal tail (P = .013), medial border of the body according to visible morphology (P = .0006), and on this combined set of features (P = .001). This definition captures 100% of hippocampal tissue, 100% of Alzheimer's disease-related atrophy, and demonstrated good reliability on preliminary intrarater (0.98) and inter-rater (0.94) estimates. Consensus was achieved among international experts with respect to hippocampal segmentation using MR resulting in a harmonized segmentation protocol. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Patient Segmentation Analysis Offers Significant Benefits For Integrated Care And Support.
Vuik, Sabine I; Mayer, Erik K; Darzi, Ara
2016-05-01
Integrated care aims to organize care around the patient instead of the provider. It is therefore crucial to understand differences across patients and their needs. Segmentation analysis that uses big data can help divide a patient population into distinct groups, which can then be targeted with care models and intervention programs tailored to their needs. In this article we explore the potential applications of patient segmentation in integrated care. We propose a framework for population strategies in integrated care-whole populations, subpopulations, and high-risk populations-and show how patient segmentation can support these strategies. Through international case examples, we illustrate practical considerations such as choosing a segmentation logic, accessing data, and tailoring care models. Important issues for policy makers to consider are trade-offs between simplicity and precision, trade-offs between customized and off-the-shelf solutions, and the availability of linked data sets. We conclude that segmentation can provide many benefits to integrated care, and we encourage policy makers to support its use. Project HOPE—The People-to-People Health Foundation, Inc.
Automatic 3D segmentation of multiphoton images: a key step for the quantification of human skin.
Decencière, Etienne; Tancrède-Bohin, Emmanuelle; Dokládal, Petr; Koudoro, Serge; Pena, Ana-Maria; Baldeweck, Thérèse
2013-05-01
Multiphoton microscopy has emerged in the past decade as a useful noninvasive imaging technique for in vivo human skin characterization. However, it has not been used until now in evaluation clinical trials, mainly because of the lack of specific image processing tools that would allow the investigator to extract pertinent quantitative three-dimensional (3D) information from the different skin components. We propose a 3D automatic segmentation method of multiphoton images which is a key step for epidermis and dermis quantification. This method, based on the morphological watershed and graph cuts algorithms, takes into account the real shape of the skin surface and of the dermal-epidermal junction, and allows separating in 3D the epidermis and the superficial dermis. The automatic segmentation method and the associated quantitative measurements have been developed and validated on a clinical database designed for aging characterization. The segmentation achieves its goals for epidermis-dermis separation and allows quantitative measurements inside the different skin compartments with sufficient relevance. This study shows that multiphoton microscopy associated with specific image processing tools provides access to new quantitative measurements on the various skin components. The proposed 3D automatic segmentation method will contribute to build a powerful tool for characterizing human skin condition. To our knowledge, this is the first 3D approach to the segmentation and quantification of these original images. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Consumer understanding and use of health claims: the case of functional foods.
Annunziata, Azzurra; Mariani, Angela; Vecchio, Riccardo
2014-01-01
As widely acknowledged functional foods (FFs) may contribute to improve human health due to the presence of specific components useful for their protective action against several diseases. However it is essential that consumers are able to comprehend and assess the properties of FFs health claims play a central role in helping consumers to select among food alternatives, beyond providing protection against unsupported or misleading statements about foods properties. At the same time health claims are the main marketing tool that the food industry could use to differentiate FFs from other products. Clearly, massive investments in research and development are necessary to enter the FF market segment, together with the possibility to protect innovation through patents. Current paper aims to examine factors influencing consumer understanding and use of food health claims on FFs, as well as providing several indications for developers, marketers and policy makers. After a brief review of the literature the results of a quantitative survey conducted online on 650 Italian consumers are presented. Results show that consumer use and understanding of health claims on FFs depend on different variables such as socio-demographic characteristics, knowledge and confidence with nutrition information but also wording and variables related specifically to the product. Furthermore, different segments with a diverse degree of use and understanding of health claims have been identified. Therefore, to boost market growth, more efforts are needed by policy makers and marketers to provide better information on nutrition and health aspects of FF using an approach capable to ensure truthful, significant and clear information. Finally some recent patents related to the FFs market with specific regard to components and/or functionality investigated in the current paper are reviewed.
Gordaliza, P M; Muñoz-Barrutia, A; Via, L E; Sharpe, S; Desco, M; Vaquero, J J
2018-05-29
Computed tomography (CT) images enable capturing specific manifestations of tuberculosis (TB) that are undetectable using common diagnostic tests, which suffer from limited specificity. In this study, we aimed to automatically quantify the burden of Mycobacterium tuberculosis (Mtb) using biomarkers extracted from x-ray CT images. Nine macaques were aerosol-infected with Mtb and treated with various antibiotic cocktails. Chest CT scans were acquired in all animals at specific times independently of disease progression. First, a fully automatic segmentation of the healthy lungs from the acquired chest CT volumes was performed and air-like structures were extracted. Next, unsegmented pulmonary regions corresponding to damaged parenchymal tissue and TB lesions were included. CT biomarkers were extracted by classification of the probability distribution of the intensity of the segmented images into three tissue types: (1) Healthy tissue, parenchyma free from infection; (2) soft diseased tissue, and (3) hard diseased tissue. The probability distribution of tissue intensities was assumed to follow a Gaussian mixture model. The thresholds identifying each region were automatically computed using an expectation-maximization algorithm. The estimated longitudinal course of TB infection shows that subjects that have followed the same antibiotic treatment present a similar response (relative change in the diseased volume) with respect to baseline. More interestingly, the correlation between the diseased volume (soft tissue + hard tissue), which was manually delineated by an expert, and the automatically extracted volume with the proposed method was very strong (R 2 ≈ 0.8). We present a methodology that is suitable for automatic extraction of a radiological biomarker from CT images for TB disease burden. The method could be used to describe the longitudinal evolution of Mtb infection in a clinical trial devoted to the design of new drugs.
Reliability of Semi-Automated Segmentations in Glioblastoma.
Huber, T; Alber, G; Bette, S; Boeckh-Behrens, T; Gempt, J; Ringel, F; Alberts, E; Zimmer, C; Bauer, J S
2017-06-01
In glioblastoma, quantitative volumetric measurements of contrast-enhancing or fluid-attenuated inversion recovery (FLAIR) hyperintense tumor compartments are needed for an objective assessment of therapy response. The aim of this study was to evaluate the reliability of a semi-automated, region-growing segmentation tool for determining tumor volume in patients with glioblastoma among different users of the software. A total of 320 segmentations of tumor-associated FLAIR changes and contrast-enhancing tumor tissue were performed by different raters (neuroradiologists, medical students, and volunteers). All patients underwent high-resolution magnetic resonance imaging including a 3D-FLAIR and a 3D-MPRage sequence. Segmentations were done using a semi-automated, region-growing segmentation tool. Intra- and inter-rater-reliability were addressed by intra-class-correlation (ICC). Root-mean-square error (RMSE) was used to determine the precision error. Dice score was calculated to measure the overlap between segmentations. Semi-automated segmentation showed a high ICC (> 0.985) for all groups indicating an excellent intra- and inter-rater-reliability. Significant smaller precision errors and higher Dice scores were observed for FLAIR segmentations compared with segmentations of contrast-enhancement. Single rater segmentations showed the lowest RMSE for FLAIR of 3.3 % (MPRage: 8.2 %). Both, single raters and neuroradiologists had the lowest precision error for longitudinal evaluation of FLAIR changes. Semi-automated volumetry of glioblastoma was reliably performed by all groups of raters, even without neuroradiologic expertise. Interestingly, segmentations of tumor-associated FLAIR changes were more reliable than segmentations of contrast enhancement. In longitudinal evaluations, an experienced rater can detect progressive FLAIR changes of less than 15 % reliably in a quantitative way which could help to detect progressive disease earlier.
Harringe, M L; Nordgren, J S; Arvidsson, I; Werner, S
2007-10-01
Prospective controlled intervention study. To evaluate a specific segmental muscle training program of the lumbar spine in order to prevent and reduce low back pain in young female teamgym gymnasts. Teamgym is a team sport comprising three events: trampette, tumbling and floor programme. In a recent study, it was found that teamgym gymnasts practice and compete despite suffering from back pain. Specific muscle control exercises of the lumbar spine have shown good results in reducing pain intensity and functional disability levels in patients with low back pain. To our knowledge, this type of training has not been studied in an adolescent athletic population before. Fifty-one gymnasts, with and without LBP, 11-16 years old, from three top-level gymnastics team participated in the study comprising 12 weeks. Every day the gymnasts answered a questionnaire regarding low back pain. After baseline (4 weeks) the intervention group performed a specific segmental muscle training program. Twenty-four gymnasts (47%) reported low back pain during baseline. Nine gymnasts failed to answer the questionnaire every day and the following results are based on 42 gymnasts (intervention group, n = 30, and control group, n=12). Gymnasts in the intervention group reported significantly less number of days with low back pain at completion compared to baseline (P=0.02). Gymnasts in the control group showed no difference in terms of days with low back pain or intensity of low back pain between baseline and completion. Eight gymnasts (out of 15) with LBP in the intervention group became pain free. Specific segmental muscle control exercises of the lumbar spine may be of value in preventing and reducing low back pain in young teamgym gymnasts.
ERIC Educational Resources Information Center
Tucci, Stacey L.; Easterbrooks, Susan R.
2015-01-01
This study investigated children's acquisition of three aspects of an early literacy curriculum, "Foundations for Literacy" ("Foundations"), designed specifically for prekindergarten students who are deaf or hard of hearing (DHH): syllable segmentation, identification of letter-sound correspondences, and initial-sound…
Targeting Political Communications: A Problem in Market Segmentation.
ERIC Educational Resources Information Center
Markwart, Richard I.
Political campaigns are major, high-budget marketing efforts, but because they are usually managed by people with little training in either marketing or communications, they fail to persuade voters to vote in the desired way. Political targeting can be treated as a segmentation problem, one of identifying and responding to the specific qualities…
Frequency Allocation; The Radio Spectrum.
ERIC Educational Resources Information Center
Federal Communications Commission, Washington, DC.
The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…
Catavitello, Giovanna; Ivanenko, Yuri P.; Lacquaniti, Francesco
2015-01-01
The rich repertoire of locomotor behaviors in quadrupedal animals requires flexible inter-limb and inter-segmental coordination. Here we studied the kinematic coordination of different gaits (walk, trot, gallop, and swim) of six dogs (Canis lupus familiaris) and, in particular, the planar covariation of limb segment elevation angles. The results showed significant variations in the relative duration of rearward limb movement, amplitude of angular motion, and inter-limb coordination, with gait patterns ranging from a lateral sequence of footfalls during walking to a diagonal sequence in swimming. Despite these differences, the planar law of inter-segmental coordination was maintained across different gaits in both forelimbs and hindlimbs. Notably, phase relationships and orientation of the covariation plane were highly limb specific, consistent with the functional differences in their neural control. Factor analysis of published muscle activity data also demonstrated differences in the characteristic timing of basic activation patterns of the forelimbs and hindlimbs. Overall, the results demonstrate that the planar covariation of inter-segmental coordination has emerged for both fore- and hindlimbs and all gaits, although in a limb-specific manner. PMID:26218076
Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning.
Kupriyanova, Natalia S; Netchvolodov, Kirill K; Sadova, Anastasia A; Cherepanova, Marina D; Ryskov, Alexei P
2015-11-10
Ribosomal DNA (rDNA) in the human genome is represented by tandem repeats of 43 kb nucleotide sequences that form nucleoli organizers (NORs) on each of five pairs of acrocentric chromosomes. RDNA-similar segments of different lengths are also present on (NOR)(-) chromosomes. Many of these segments contain nucleotide substitutions, supplementary microsatellite clusters, and extended deletions. Recently, it was shown that, in addition to ribosome biogenesis, nucleoli exhibit additional functions, such as cell-cycle regulation and response to stresses. In particular, several stress-inducible loci located in the ribosomal intergenic spacer (rIGS) produce stimuli-specific noncoding nucleolus RNAs. By mapping the 5'/3' ends of the rIGS segments scattered throughout (NOR)(-) chromosomes, we discovered that the bonds in the rIGS that were most often susceptible to disruption in the rIGS were adjacent to, or overlapped with stimuli-specific inducible loci. This suggests the interconnection of the two phenomena - nucleoli functioning and the scattering of rDNA-like sequences on (NOR)(-) chromosomes. Copyright © 2015 Elsevier B.V. All rights reserved.
A neural network approach to lung nodule segmentation
NASA Astrophysics Data System (ADS)
Hu, Yaoxiu; Menon, Prahlad G.
2016-03-01
Computed tomography (CT) imaging is a sensitive and specific lung cancer screening tool for the high-risk population and shown to be promising for detection of lung cancer. This study proposes an automatic methodology for detecting and segmenting lung nodules from CT images. The proposed methods begin with thorax segmentation, lung extraction and reconstruction of the original shape of the parenchyma using morphology operations. Next, a multi-scale hessian-based vesselness filter is applied to extract lung vasculature in lung. The lung vasculature mask is subtracted from the lung region segmentation mask to extract 3D regions representing candidate pulmonary nodules. Finally, the remaining structures are classified as nodules through shape and intensity features which are together used to train an artificial neural network. Up to 75% sensitivity and 98% specificity was achieved for detection of lung nodules in our testing dataset, with an overall accuracy of 97.62%+/-0.72% using 11 selected features as input to the neural network classifier, based on 4-fold cross-validation studies. Receiver operator characteristics for identifying nodules revealed an area under curve of 0.9476.
The larval abdomen of the enigmatic Nannochoristidae (Mecoptera, Insecta).
Fraulob, Maximilian; Wipfler, Benjamin; Hünefeld, Frank; Pohl, Hans; Beutel, Rolf G
2012-03-01
External and internal structures of the larval abdomen of Nannochorista are described in detail, with emphasis on the posterior segments. The results are compared with conditions found in other groups of Antliophora, especially the mecopteran subgroups Boreidae and Pistillifera. Like the entire postcephalic body, the larval abdomen of Nannochorista is extremely slender and nearly cylindrical. The anterior segments are largely unmodified. The surface is smooth and lacks any protuberances or prolegs. The term "cloaca" for the posterior membranous pouch of Nannochorista sp. is morphologically unjustified. A list of muscles of segments IX and X is presented. The abdominal musculature was partly homologized following Snodgrass. The muscles of segment X are highly modified. They move the membranous pouch, the anal papillae, and the terminal lobes. The presence of these structures is likely an adaptation to the specific aquatic life style of nannochoristid larvae. The anal papillae are possibly homologous to the 4-lobed terminal attachment apparatus of larvae of Caurinus (Boreidae) and Pistillifera (Panorpidae, Bittacidae, Choristidae) but this is uncertain. The specific condition in both groups, i.e. two retractile papillae with tracheae and Malpighian tubules in Nannochoristidae, and a 4-lobed exposed attachment device in Pistillifera + Boreidae (groundplan) are very likely autapomorphic for both groups, respectively. A slender abdomen with smooth surface is very likely plesiomorphic within Antliophora and Mecopterida. This condition is found in Trichoptera (partim), Nannochoristidae, Siphonaptera, and many basal groups of Diptera. An eruciform or scarabaeiform body shape with a soft, largely unsclerotised cuticle is probably a synapomorphy of Boreidae and Pistillifera. The presence of ventral protuberances resembling prolegs on the anterior segments is an autapomorphy of the latter group. The homology of paired or unpaired terminal appendages of segment X is uncertain. However, the specific condition of paired and 3-segmented appendages with hooks in Nannochoristidae is almost certainly autapomorphic for this family. The protracted opening of the hind gut on the membranous pouch is another potential autapomorphy of Nannochoristidae. Aquatic habits of larvae, also very likely an apomorphic condition, have likely evolved several times independently in Antliophora. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gimble, F S; Thorner, J
1993-10-15
The 119-kDa primary translation product of the VMA1 gene of Saccharomyces cerevisiae undergoes a self-catalyzed rearrangement ("protein splicing") that excises an internal 50-kDa segment of the polypeptide and joins the amino-terminal and carboxyl-terminal segments to generate the 69-kDa subunit of the vacuolar membrane-associated H(+)-ATPase. We have shown previously that the internal segment is a site-specific endonuclease (Gimble, F. S., and Thorner, J. (1992) Nature 357, 301-306). Here we describe methods for the high level expression and purification to near homogeneity of both the authentic VMA1-derived endonuclease (or VDE) from yeast (yield 18%) and a recombinant form of VDE made in bacteria (yield 29%). Detailed characterization of these preparations demonstrated that the yeast-derived and bacterially produced enzymes were indistinguishable, as judged by: (a) behavior during purification; (b) apparent native molecular mass (50 kDa); (c) immunological reactivity; and (d) catalytic properties (specific activity; cleavage site recognition; and optima for pH, temperature, divalent cation and ionic strength). The minimal site required for VDE cleavage was delimited to a 30-base pair sequence within its specific substrate (the VMA1 delta vde allele).
Guerra, Jorge; Uddin, Jasim; Nilsen, Dawn; Mclnerney, James; Fadoo, Ammarah; Omofuma, Isirame B.; Hughes, Shatif; Agrawal, Sunil; Allen, Peter; Schambra, Heidi M.
2017-01-01
There currently exist no practical tools to identify functional movements in the upper extremities (UEs). This absence has limited the precise therapeutic dosing of patients recovering from stroke. In this proof-of-principle study, we aimed to develop an accurate approach for classifying UE functional movement primitives, which comprise functional movements. Data were generated from inertial measurement units (IMUs) placed on upper body segments of older healthy individuals and chronic stroke patients. Subjects performed activities commonly trained during rehabilitation after stroke. Data processing involved the use of a sliding window to obtain statistical descriptors, and resulting features were processed by a Hidden Markov Model (HMM). The likelihoods of the states, resulting from the HMM, were segmented by a second sliding window and their averages were calculated. The final predictions were mapped to human functional movement primitives using a Logistic Regression algorithm. Algorithm performance was assessed with a leave-one-out analysis, which determined its sensitivity, specificity, and positive and negative predictive values for all classified primitives. In healthy control and stroke participants, our approach identified functional movement primitives embedded in training activities with, on average, 80% precision. This approach may support functional movement dosing in stroke rehabilitation. PMID:28813877
Chain and mirophase-separated structures of ultrathin polyurethane films
NASA Astrophysics Data System (ADS)
Kojio, Ken; Uchiba, Yusuke; Yamamoto, Yasunori; Motokucho, Suguru; Furukawa, Mutsuhisa
2009-08-01
Measurements are presented how chain and microphase-separated structures of ultrathin polyurethane (PU) films are controlled by the thickness. The film thickness is varied by a solution concentration for spin coating. The systems are PUs prepared from commercial raw materials. Fourier-transform infrared spectroscopic measurement revealed that the degree of hydrogen bonding among hard segment chains decreased and increased with decreasing film thickness for strong and weak microphase separation systems, respectively. The microphase-separated structure, which is formed from hard segment domains and a surrounding soft segment matrix, were observed by atomic force microscopy. The size of hard segment domains decreased with decreasing film thickness, and possibility of specific orientation of the hard segment chains was exhibited for both systems. These results are due to decreasing space for the formation of the microphase-separated structure.
NASA Astrophysics Data System (ADS)
Chen, Cheng; Jin, Dakai; Zhang, Xiaoliu; Levy, Steven M.; Saha, Punam K.
2017-03-01
Osteoporosis is associated with an increased risk of low-trauma fractures. Segmentation of trabecular bone (TB) is essential to assess TB microstructure, which is a key determinant of bone strength and fracture risk. Here, we present a new method for TB segmentation for in vivo CT imaging. The method uses Hessian matrix-guided anisotropic diffusion to improve local separability of trabecular structures, followed by a new multi-scale morphological reconstruction algorithm for TB segmentation. High sensitivity (0.93), specificity (0.93), and accuracy (0.92) were observed for the new method based on regional manual thresholding on in vivo CT images. Mechanical tests have shown that TB segmentation using the new method improved the ability of derived TB spacing measure for predicting actual bone strength (R2=0.83).
Fast and robust brain tumor segmentation using level set method with multiple image information.
Lok, Ka Hei; Shi, Lin; Zhu, Xianlun; Wang, Defeng
2017-01-01
Brain tumor segmentation is a challenging task for its variation in intensity. The phenomenon is caused by the inhomogeneous content of tumor tissue and the choice of imaging modality. In 2010 Zhang developed the Selective Binary Gaussian Filtering Regularizing Level Set (SBGFRLS) model that combined the merits of edge-based and region-based segmentation. To improve the SBGFRLS method by modifying the singed pressure force (SPF) term with multiple image information and demonstrate effectiveness of proposed method on clinical images. In original SBGFRLS model, the contour evolution direction mainly depends on the SPF. By introducing a directional term in SPF, the metric could control the evolution direction. The SPF is altered by statistic values enclosed by the contour. This concept can be extended to jointly incorporate multiple image information. The new SPF term is expected to bring a solution for blur edge problem in brain tumor segmentation. The proposed method is validated with clinical images including pre- and post-contrast magnetic resonance images. The accuracy and robustness is compared with sensitivity, specificity, DICE similarity coefficient and Jaccard similarity index. Experimental results show improvement, in particular the increase of sensitivity at the same specificity, in segmenting all types of tumors except for the diffused tumor. The novel brain tumor segmentation method is clinical-oriented with fast, robust and accurate implementation and a minimal user interaction. The method effectively segmented homogeneously enhanced, non-enhanced, heterogeneously-enhanced, and ring-enhanced tumor under MR imaging. Though the method is limited by identifying edema and diffuse tumor, several possible solutions are suggested to turn the curve evolution into a fully functional clinical diagnosis tool.
Transient ST segment depression during Holter monitoring: how to avoid false positive findings.
Völler, H; Andresen, D; Brüggemann, T; Jereczek, M; Becker, B; Schröder, R
1992-09-01
To increase the specificity of 24-hour Holter monitoring in detecting transient myocardial ischemia, we separated genuine ST deviations from those dependent on artifacts by adding a detailed shape analysis of real-time printouts to the usual criteria of significant ST segment depression. We screened 116 apparently healthy subjects; 31 had to be excluded, because of pathologic findings in preliminary examinations. The remaining 85 (49 women and 36 men; mean age, 43.1 years) underwent Holter monitoring for assessment of the extent, frequency, and duration of episodes of horizontal and descending ST segment depression of at least 0.1 mV that persisted for at least 60 msec after the J point and that were at least 1 minute apart. On the basis of these criteria, six subjects (7.1%) showed 24 episodes of horizontal or descending ST segment depression with a mean of 0.2 mV (range, 0.15 to 0.25 mV), a frequency of four episodes per 24 hours (one to nine), and a duration of 12.2 minutes (range 3-range 41 minutes). Supplementary criteria--e.g., sudden onset of ST segment depression, identical orientation of PQ and ST segments, or simultaneous increase in R and P wave amplitude--made it possible to identify ST changes caused by artifacts in four volunteers. In only two subjects (2.4%) could true silent ischemia not be differentiated from false positive results. Thus consideration of only the extent, frequency, and duration of episodes does not permit a differentiation between true silent ischemia and false positive results. A supplementary shape analysis increases the specificity of ST segment analysis in detecting transient myocardial ischemia during 24-hour Holter monitoring.
Establishment of segment polarity in the ectoderm of the leech Helobdella
NASA Technical Reports Server (NTRS)
Seaver, E. C.; Shankland, M.
2001-01-01
The segmented ectoderm and mesoderm of the leech arise via a stereotyped cell lineage from embryonic stem cells called teloblasts. Each teloblast gives rise to a column of primary blast cell daughters, and the blast cells generate descendant clones that serve as the segmental repeats of their particular teloblast lineage. We have examined the mechanism by which the leech primary blast cell clones acquire segment polarity - i.e. a fixed sequence of positional values ordered along the anteroposterior axis of the segmental repeat. In the O and P teloblast lineages, the earliest divisions of the primary blast cell segregate anterior and posterior cell fates along the anteroposterior axis. Using a laser microbeam, we ablated single cells from both o and p blast cell clones at stages when the clone was two to four cells in length. The developmental fate of the remaining cells was characterized with rhodamine-dextran lineage tracer. Twelve different progeny cells were ablated, and in every case the ablation eliminated the normal descendants of the ablated cell while having little or no detectable effect on the developmental fate of the remaining cells. This included experiments in which we specifically ablated those blast cell progeny that are known to express the engrailed gene, or their lineal precursors. These findings confirm and extend a previous study by showing that the establishment of segment polarity in the leech ectoderm is largely independent of cell interactions conveyed along the anteroposterior axis. Both intercellular signaling and engrailed expression play an important role in the segment polarity specification of the Drosophila embryo, and our findings suggest that there may be little or no conservation of this developmental mechanism between those two organisms.
Relaxation dynamics of internal segments of DNA chains in nanochannels
NASA Astrophysics Data System (ADS)
Jain, Aashish; Muralidhar, Abhiram; Dorfman, Kevin; Dorfman Group Team
We will present relaxation dynamics of internal segments of a DNA chain confined in nanochannel. The results have direct application in genome mapping technology, where long DNA molecules containing sequence-specific fluorescent probes are passed through an array of nanochannels to linearize them, and then the distances between these probes (the so-called ``DNA barcode'') are measured. The relaxation dynamics of internal segments set the experimental error due to dynamic fluctuations. We developed a multi-scale simulation algorithm, combining a Pruned-Enriched Rosenbluth Method (PERM) simulation of a discrete wormlike chain model with hard spheres with Brownian dynamics (BD) simulations of a bead-spring chain. Realistic parameters such as the bead friction coefficient and spring force law parameters are obtained from PERM simulations and then mapped onto the bead-spring model. The BD simulations are carried out to obtain the extension autocorrelation functions of various segments, which furnish their relaxation times. Interestingly, we find that (i) corner segments relax faster than the center segments and (ii) relaxation times of corner segments do not depend on the contour length of DNA chain, whereas the relaxation times of center segments increase linearly with DNA chain size.
Romeo, August; Arall, Marina; Supèr, Hans
2012-01-01
Figure-ground (FG) segmentation is the separation of visual information into background and foreground objects. In the visual cortex, FG responses are observed in the late stimulus response period, when neurons fire in tonic mode, and are accompanied by a switch in cortical state. When such a switch does not occur, FG segmentation fails. Currently, it is not known what happens in the brain on such occasions. A biologically plausible feedforward spiking neuron model was previously devised that performed FG segmentation successfully. After incorporating feedback the FG signal was enhanced, which was accompanied by a change in spiking regime. In a feedforward model neurons respond in a bursting mode whereas in the feedback model neurons fired in tonic mode. It is known that bursts can overcome noise, while tonic firing appears to be much more sensitive to noise. In the present study, we try to elucidate how the presence of noise can impair FG segmentation, and to what extent the feedforward and feedback pathways can overcome noise. We show that noise specifically destroys the feedback enhanced FG segmentation and leaves the feedforward FG segmentation largely intact. Our results predict that noise produces failure in FG perception.
Romeo, August; Arall, Marina; Supèr, Hans
2012-01-01
Figure-ground (FG) segmentation is the separation of visual information into background and foreground objects. In the visual cortex, FG responses are observed in the late stimulus response period, when neurons fire in tonic mode, and are accompanied by a switch in cortical state. When such a switch does not occur, FG segmentation fails. Currently, it is not known what happens in the brain on such occasions. A biologically plausible feedforward spiking neuron model was previously devised that performed FG segmentation successfully. After incorporating feedback the FG signal was enhanced, which was accompanied by a change in spiking regime. In a feedforward model neurons respond in a bursting mode whereas in the feedback model neurons fired in tonic mode. It is known that bursts can overcome noise, while tonic firing appears to be much more sensitive to noise. In the present study, we try to elucidate how the presence of noise can impair FG segmentation, and to what extent the feedforward and feedback pathways can overcome noise. We show that noise specifically destroys the feedback enhanced FG segmentation and leaves the feedforward FG segmentation largely intact. Our results predict that noise produces failure in FG perception. PMID:22934028
2011-01-01
Background Image segmentation is a crucial step in quantitative microscopy that helps to define regions of tissues, cells or subcellular compartments. Depending on the degree of user interactions, segmentation methods can be divided into manual, automated or semi-automated approaches. 3D image stacks usually require automated methods due to their large number of optical sections. However, certain applications benefit from manual or semi-automated approaches. Scenarios include the quantification of 3D images with poor signal-to-noise ratios or the generation of so-called ground truth segmentations that are used to evaluate the accuracy of automated segmentation methods. Results We have developed Gebiss; an ImageJ plugin for the interactive segmentation, visualisation and quantification of 3D microscopic image stacks. We integrated a variety of existing plugins for threshold-based segmentation and volume visualisation. Conclusions We demonstrate the application of Gebiss to the segmentation of nuclei in live Drosophila embryos and the quantification of neurodegeneration in Drosophila larval brains. Gebiss was developed as a cross-platform ImageJ plugin and is freely available on the web at http://imaging.bii.a-star.edu.sg/projects/gebiss/. PMID:21668958
Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.
2015-01-01
Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131
Bates, Russell; Irving, Benjamin; Markelc, Bostjan; Kaeppler, Jakob; Brown, Graham; Muschel, Ruth J; Brady, Sir Michael; Grau, Vicente; Schnabel, Julia A
2017-08-09
Vasculature is known to be of key biological significance, especially in the study of tumors. As such, considerable effort has been focused on the automated segmentation of vasculature in medical and pre-clinical images. The majority of vascular segmentation methods focus on bloodpool labeling methods, however, particularly in the study of tumors it is of particular interest to be able to visualize both perfused and non-perfused vasculature. Imaging vasculature by highlighting the endothelium provides a way to separate the morphology of vasculature from the potentially confounding factor of perfusion. Here we present a method for the segmentation of tumor vasculature in 3D fluorescence microscopy images using signals from the endothelial and surrounding cells. We show that our method can provide complete and semantically meaningful segmentations of complex vasculature using a supervoxel-Markov Random Field approach. We show that in terms of extracting meaningful segmentations of the vasculature, our method out-performs both a state-ofthe- art method, specific to these data, as well as more classical vasculature segmentation methods.
NASA Technical Reports Server (NTRS)
Farrell, E. R.; Keshishian, H.
1999-01-01
In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.
Veeraraghavan, Harini; Dashevsky, Brittany Z; Onishi, Natsuko; Sadinski, Meredith; Morris, Elizabeth; Deasy, Joseph O; Sutton, Elizabeth J
2018-03-19
We present a segmentation approach that combines GrowCut (GC) with cancer-specific multi-parametric Gaussian Mixture Model (GCGMM) to produce accurate and reproducible segmentations. We evaluated GCGMM using a retrospectively collected 75 invasive ductal carcinoma with ERPR+ HER2- (n = 15), triple negative (TN) (n = 9), and ER-HER2+ (n = 57) cancers with variable presentation (mass and non-mass enhancement) and background parenchymal enhancement (mild and marked). Expert delineated manual contours were used to assess the segmentation performance using Dice coefficient (DSC), mean surface distance (mSD), Hausdorff distance, and volume ratio (VR). GCGMM segmentations were significantly more accurate than GrowCut (GC) and fuzzy c-means clustering (FCM). GCGMM's segmentations and the texture features computed from those segmentations were the most reproducible compared with manual delineations and other analyzed segmentation methods. Finally, random forest (RF) classifier trained with leave-one-out cross-validation using features extracted from GCGMM segmentation resulted in the best accuracy for ER-HER2+ vs. ERPR+/TN (GCGMM 0.95, expert 0.95, GC 0.90, FCM 0.92) and for ERPR + HER2- vs. TN (GCGMM 0.92, expert 0.91, GC 0.77, FCM 0.83).
Kuwayama, Kenji; Nariai, Maika; Miyaguchi, Hajime; Iwata, Yuko T; Kanamori, Tatsuyuki; Tsujikawa, Kenji; Yamamuro, Tadashi; Segawa, Hiroki; Abe, Hiroko; Iwase, Hirotaro; Inoue, Hiroyuki
2018-07-01
Sleeping aids are often abused in the commission of drug-facilitated crimes. Generally, there is little evidence that a victim ingested a spiked drink unknowingly because the unconscious victim cannot report the situation to the police immediately after the crime occurred. Although conventional segmental hair analysis can estimate the number of months since a targeted drug was ingested, this analysis cannot determine the specific day of ingestion. We recently developed a method of micro-segmental hair analysis using internal temporal markers (ITMs) to estimate the day of drug ingestion. This method was based on volunteer ingestion of ITMs to determine a timescale within individual hair strands, by segmenting a single hair strand at 0.4-mm intervals, corresponding to daily hair growth. This study assessed the ability of this method to estimate the day of ingestion of an over-the-counter sleeping aid, diphenhydramine, which can be easily abused. To model ingestion of a diphenhydramine-spiked drink unknowingly, each subject ingested a dose of diphenhydramine, followed by ingestion of two doses of the ITM, chlorpheniramine, 14days apart. Several hair strands were collected from each subject's scalp several weeks after the second ITM ingestion. Diphenhydramine and ITM were detected at specific regions within individual hair strands. The day of diphenhydramine ingestion was estimated from the distances between the regions and the days of ITM ingestion. The error between estimated and actual ingestion day ranged from -0.1 to 1.9days regardless of subjects and hair collection times. The total time required for micro-segmental analysis of 96 hair segments (hair length: 3.84cm) was approximately 2days and the cost was almost the same as in general drug analysis. This procedure may be applicable to the investigation of crimes facilitated by various drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pipaud, Isabel; Lehmkuhl, Frank
2017-09-01
In the field of geomorphology, automated extraction and classification of landforms is one of the most active research areas. Until the late 2000s, this task has primarily been tackled using pixel-based approaches. As these methods consider pixels and pixel neighborhoods as the sole basic entities for analysis, they cannot account for the irregular boundaries of real-world objects. Object-based analysis frameworks emerging from the field of remote sensing have been proposed as an alternative approach, and were successfully applied in case studies falling in the domains of both general and specific geomorphology. In this context, the a-priori selection of scale parameters or bandwidths is crucial for the segmentation result, because inappropriate parametrization will either result in over-segmentation or insufficient segmentation. In this study, we describe a novel supervised method for delineation and classification of alluvial fans, and assess its applicability using a SRTM 1‧‧ DEM scene depicting a section of the north-eastern Mongolian Altai, located in northwest Mongolia. The approach is premised on the application of mean-shift segmentation and the use of a one-class support vector machine (SVM) for classification. To consider variability in terms of alluvial fan dimension and shape, segmentation is performed repeatedly for different weightings of the incorporated morphometric parameters as well as different segmentation bandwidths. The final classification layer is obtained by selecting, for each real-world object, the most appropriate segmentation result according to fuzzy membership values derived from the SVM classification. Our results show that mean-shift segmentation and SVM-based classification provide an effective framework for delineation and classification of a particular landform. Variable bandwidths and terrain parameter weightings were identified as being crucial for consideration of intra-class variability, and, in turn, for a constantly high segmentation quality. Our analysis further reveals that incorporation of morphometric parameters quantifying specific morphological aspects of a landform is indispensable for developing an accurate classification scheme. Alluvial fans exhibiting accentuated composite morphologies were identified as a major challenge for automatic delineation, as they cannot be fully captured by a single segmentation run. There is, however, a high probability that this shortcoming can be overcome by enhancing the presented approach with a routine merging fan sub-entities based on their spatial relationships.
2013-01-01
Background The Drosophila larval head is evolutionarily derived at the genetic and morphological level. In the beetle Tribolium castaneum, development of the larval head more closely resembles the ancestral arthropod condition. Unlike in Drosophila, a knirps homologue (Tc-kni) is required for development of the antennae and mandibles. However, published Tc-kni data are restricted to cuticle phenotypes and Tc-even-skipped and Tc-wingless stainings in knockdown embryos. Hence, it has remained unclear whether the entire antennal and mandibular segments depend on Tc-kni function, and whether the intervening intercalary segment is formed completely. We address these questions with a detailed examination of Tc-kni function. Results By examining the expression of marker genes in RNAi embryos, we show that Tc-kni is required only for the formation of the posterior parts of the antennal and mandibular segments (i.e. the parasegmental boundaries). Moreover, we find that the role of Tc-kni is distinct in these segments: Tc-kni is required for the initiation of the antennal parasegment boundary, but only for the maintenance of the mandibular parasegmental boundary. Surprisingly, Tc-kni controls the timing of expression of the Hox gene Tc-labial in the intercalary segment, although this segment does form in the absence of Tc-kni function. Unexpectedly, we find that the pair-rule gene Tc-even-skipped helps set the posterior boundary of Tc-kni expression in the mandible. Using the mutant antennaless, a likely regulatory Null mutation at the Tc-kni locus, we provide evidence that our RNAi studies represent a Null situation. Conclusions Tc-kni is required for the initiation of the antennal and the maintenance of the mandibular parasegmental boundaries. Tc-kni is not required for specification of the anterior regions of these segments, nor the intervening intercalary segment, confirming that Tc-kni is not a canonical ‘gap-gene’. Our finding that a gap gene orthologue is regulated by a pair rule gene adds to the view that the segmentation gene hierarchies differ between Tribolium and Drosophila upstream of the pair rule gene level. In Tribolium, as in Drosophila, head and trunk segmentation gene networks cooperate to pattern the mandibular segment, albeit involving Tc-kni as novel component. PMID:23777260
Huntsville Area Students Appear in Episode of NASA CONNECT
NASA Technical Reports Server (NTRS)
2003-01-01
Students at Williams Technology Middle School in Huntsville were featured in a new segment of NASA CONNECT, a video series aimed to enhance the teaching of math, science, and technology to middle school students. The segment premiered nationwide May 15, 2003, and helped viewers understand Sir Isaac Newton's first, second, and third laws of gravity and how they relate to NASA's efforts in developing the next generation of space transportation.
Application of an enhanced fuzzy algorithm for MR brain tumor image segmentation
NASA Astrophysics Data System (ADS)
Hemanth, D. Jude; Vijila, C. Kezi Selva; Anitha, J.
2010-02-01
Image segmentation is one of the significant digital image processing techniques commonly used in the medical field. One of the specific applications is tumor detection in abnormal Magnetic Resonance (MR) brain images. Fuzzy approaches are widely preferred for tumor segmentation which generally yields superior results in terms of accuracy. But most of the fuzzy algorithms suffer from the drawback of slow convergence rate which makes the system practically non-feasible. In this work, the application of modified Fuzzy C-means (FCM) algorithm to tackle the convergence problem is explored in the context of brain image segmentation. This modified FCM algorithm employs the concept of quantization to improve the convergence rate besides yielding excellent segmentation efficiency. This algorithm is experimented on real time abnormal MR brain images collected from the radiologists. A comprehensive feature vector is extracted from these images and used for the segmentation technique. An extensive feature selection process is performed which reduces the convergence time period and improve the segmentation efficiency. After segmentation, the tumor portion is extracted from the segmented image. Comparative analysis in terms of segmentation efficiency and convergence rate is performed between the conventional FCM and the modified FCM. Experimental results show superior results for the modified FCM algorithm in terms of the performance measures. Thus, this work highlights the application of the modified algorithm for brain tumor detection in abnormal MR brain images.
Automatic segmentation of vessels in in-vivo ultrasound scans
NASA Astrophysics Data System (ADS)
Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen
2017-03-01
Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.
Optical mass memory system (AMM-13). AMM-13 system segment specification
NASA Technical Reports Server (NTRS)
Bailey, G. A.
1980-01-01
The performance, design, development, and test requirements for an optical mass data storage and retrieval system prototype (AMM-13) are established. This system interfaces to other system segments of the NASA End-to-End Data System via the Data Base Management System segment and is designed to have a storage capacity of 10 to the 13th power bits (10 to the 12th power bits on line). The major functions of the system include control, input and output, recording of ingested data, fiche processing/replication and storage and retrieval.
Method of making a scintillator waveguide
Bliss, Mary; Craig, Richard A.; Reeder, Paul L.
2000-01-01
The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.
Scintillator Waveguide For Sensing Radiation
Bliss, Mary; Craig, Richard A.; Reeder; Paul L.
2003-04-22
The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.
2000-01-01
organization with cell phenotype. (In manuscript form) C Ortiz de Solorzano, R . Malladi , SA Leli~vre, and SJ Lockett. Segmentation of nuclei and cells...Ortiz de Solorzano, R . Malladi , SA Leli~vre, and SJ Lockett. "Segmentation of nuclei and cells using membrane related protein markers." (Submitted) 6...specificity Segmentation of Nuclei and Cells using Membrane Related Protein Markers C. Ortiz de Solorzano, R . Malladi , S!/•Lelievre, S.J. Lockett Lawrence
Antman, Elliott M
2003-10-01
In 2002, the American College of Cardiology and the American Heart Association published an update to their guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction. These revised guidelines make specific recommendations regarding the use of glycoprotein IIb/IIIa inhibitors. This article briefly reviews the evidence supporting the use of glycoprotein IIb/IIIa inhibitors in unstable angina and non-ST-segment elevation myocardial infarction, before moving on to discuss interpretation of these new guidelines.
The Contribution of Segmental and Suprasegmental Phonology to Reading Comprehension
Veenendaal, Nathalie J.; Groen, Margriet A.; Verhoeven, Ludo
2016-01-01
The aim of the present study was to examine the relation between decoding and segmental and suprasegmental phonology, and their contribution to reading comprehension, in the upper primary grades. Following a longitudinal design, the performance of 99 Dutch primary school children on phonological awareness (segmental phonology) and text reading prosody (suprasegmental phonology) in fourth-grade and fifth-grade, and reading comprehension in sixth-grade were examined. In addition, decoding efficiency as a general assessment of reading was examined. Structural path modeling firstly showed that the relation between decoding efficiency and both measures of phonology from fourth- to fifth grade was unidirectional. Secondly, the relation between decoding in fourth- and fifth-grade and reading comprehension in sixth-grade became indirect when segmental and suprasegmental phonology were added to the model. Both factors independently exerted influence on later reading comprehension. This leads to the conclusion that not only segmental, but also suprasegmental phonology, contributes substantially to children's reading development. PMID:27551159
Automatic comic page image understanding based on edge segment analysis
NASA Astrophysics Data System (ADS)
Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai
2013-12-01
Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.
File-Based Operations and CFDP On-Board Implementation
NASA Astrophysics Data System (ADS)
Herrera Alzu, Ignacio; Peran Mazon, Francisco; Gonzalo Palomo, Alfonso
2014-08-01
Since several years ago, there is an increasing interest among the space agencies, ESA in particular, in deploying File-based Operations (FbO) for Space missions. This aims at simplifying, from the Ground Segment's perspective, the access to the Space Segment and ultimately the overall operations. This is particularly important for deep Space missions, where the Ground-Space interaction can become too complex to handle just with traditional packet-based services. The use of a robust protocol for transferring files between Ground and Space is a key for the FbO approach, and the CCSDS File Delivery Protocol (CFDP) is nowadays the main candidate for doing this job. Both Ground and Space Segments need to be adapted for FbO, being the Ground Segment naturally closer to this concept. This paper focusses on the Space Segment. The main implications related to FbO/CFDP, the possible on-board implementations and the foreseen operations are described. The case of Euclid, the first ESA mission to be file-based operated with CFDP, is also analysed.
Pre-operative segmentation of neck CT datasets for the planning of neck dissections
NASA Astrophysics Data System (ADS)
Cordes, Jeanette; Dornheim, Jana; Preim, Bernhard; Hertel, Ilka; Strauss, Gero
2006-03-01
For the pre-operative segmentation of CT neck datasets, we developed the software assistant NeckVision. The relevant anatomical structures for neck dissection planning can be segmented and the resulting patient-specific 3D-models are visualized afterwards in another software system for intervention planning. As a first step, we examined the appropriateness of elementary segmentation techniques based on gray values and contour information to extract the structures in the neck region from CT data. Region growing, interactive watershed transformation and live-wire are employed for segmentation of different target structures. It is also examined, which of the segmentation tasks can be automated. Based on this analysis, the software assistant NeckVision was developed to optimally support the workflow of image analysis for clinicians. The usability of NeckVision was tested within a first evaluation with four otorhinolaryngologists from the university hospital of Leipzig, four computer scientists from the university of Magdeburg and two laymen in both fields.
Research on segmentation based on multi-atlas in brain MR image
NASA Astrophysics Data System (ADS)
Qian, Yuejing
2018-03-01
Accurate segmentation of specific tissues in brain MR image can be effectively achieved with the multi-atlas-based segmentation method, and the accuracy mainly depends on the image registration accuracy and fusion scheme. This paper proposes an automatic segmentation method based on the multi-atlas for brain MR image. Firstly, to improve the registration accuracy in the area to be segmented, we employ a target-oriented image registration method for the refinement. Then In the label fusion, we proposed a new algorithm to detect the abnormal sparse patch and simultaneously abandon the corresponding abnormal sparse coefficients, this method is made based on the remaining sparse coefficients combined with the multipoint label estimator strategy. The performance of the proposed method was compared with those of the nonlocal patch-based label fusion method (Nonlocal-PBM), the sparse patch-based label fusion method (Sparse-PBM) and majority voting method (MV). Based on our experimental results, the proposed method is efficient in the brain MR images segmentation compared with MV, Nonlocal-PBM, and Sparse-PBM methods.
TuMore: generation of synthetic brain tumor MRI data for deep learning based segmentation approaches
NASA Astrophysics Data System (ADS)
Lindner, Lydia; Pfarrkirchner, Birgit; Gsaxner, Christina; Schmalstieg, Dieter; Egger, Jan
2018-03-01
Accurate segmentation and measurement of brain tumors plays an important role in clinical practice and research, as it is critical for treatment planning and monitoring of tumor growth. However, brain tumor segmentation is one of the most challenging tasks in medical image analysis. Since manual segmentations are subjective, time consuming and neither accurate nor reliable, there exists a need for objective, robust and fast automated segmentation methods that provide competitive performance. Therefore, deep learning based approaches are gaining interest in the field of medical image segmentation. When the training data set is large enough, deep learning approaches can be extremely effective, but in domains like medicine, only limited data is available in the majority of cases. Due to this reason, we propose a method that allows to create a large dataset of brain MRI (Magnetic Resonance Imaging) images containing synthetic brain tumors - glioblastomas more specifically - and the corresponding ground truth, that can be subsequently used to train deep neural networks.
Panda, Rashmi; Puhan, N B; Panda, Ganapati
2018-02-01
Accurate optic disc (OD) segmentation is an important step in obtaining cup-to-disc ratio-based glaucoma screening using fundus imaging. It is a challenging task because of the subtle OD boundary, blood vessel occlusion and intensity inhomogeneity. In this Letter, the authors propose an improved version of the random walk algorithm for OD segmentation to tackle such challenges. The algorithm incorporates the mean curvature and Gabor texture energy features to define the new composite weight function to compute the edge weights. Unlike the deformable model-based OD segmentation techniques, the proposed algorithm remains unaffected by curve initialisation and local energy minima problem. The effectiveness of the proposed method is verified with DRIVE, DIARETDB1, DRISHTI-GS and MESSIDOR database images using the performance measures such as mean absolute distance, overlapping ratio, dice coefficient, sensitivity, specificity and precision. The obtained OD segmentation results and quantitative performance measures show robustness and superiority of the proposed algorithm in handling the complex challenges in OD segmentation.
NASA Astrophysics Data System (ADS)
Kesiman, Made Windu Antara; Valy, Dona; Burie, Jean-Christophe; Paulus, Erick; Sunarya, I. Made Gede; Hadi, Setiawan; Sok, Kim Heng; Ogier, Jean-Marc
2017-01-01
Due to their specific characteristics, palm leaf manuscripts provide new challenges for text line segmentation tasks in document analysis. We investigated the performance of six text line segmentation methods by conducting comparative experimental studies for the collection of palm leaf manuscript images. The image corpus used in this study comes from the sample images of palm leaf manuscripts of three different Southeast Asian scripts: Balinese script from Bali and Sundanese script from West Java, both from Indonesia, and Khmer script from Cambodia. For the experiments, four text line segmentation methods that work on binary images are tested: the adaptive partial projection line segmentation approach, the A* path planning approach, the shredding method, and our proposed energy function for shredding method. Two other methods that can be directly applied on grayscale images are also investigated: the adaptive local connectivity map method and the seam carving-based method. The evaluation criteria and tool provided by ICDAR2013 Handwriting Segmentation Contest were used in this experiment.
Nervous systems in 3D: a comparison of Caridean, anomuran, and brachyuran zoea-I (Decapoda).
Geiselbrecht, Hannes; Melzer, Roland R
2013-12-01
Using serial semi-thin sections and digital 3D-reconstructions we studied the nervous systems of zoea-I larvae in three decapod species, Hippolyte inermis (Leach, 1815), Porcellana platycheles (Pennant, 1777), and Pachygrapsus marmoratus (Fabricius, 1787). These taxa represent three decapod lineages, that is, Caridea, Anomura, and Brachyura, each characterized by specific zoea-I morphology. Special attention was paid to development of ganglia, neuropil composition, and segmental nerves. In all zoeae studied, the overall elements, for example, the segmental ganglia, their neuropils and most of the nerves of the adult decapod nervous system are present. Ongoing differentiation processes are observable as well, most obvious in segments with well-developed limbs the ganglia are in a more advanced stage of differentiation and more voluminous compared to segments with only limb buds or without externally visible limb anlagen. Intra- and interspecific comparisons indicate that neuromere differentiation thus deviates from a simple anterior-posterior gradient as, for example, posterior thoracic neuromeres are less developed than those of the pleon. In addition, the differences in the progress of the development of ganglia between the studied taxa can best be attributed to heterochronic mechanisms. Taxon and stage-specific morphologies indicate that neuronal architecture reflects both, morphogenesis to the adult stage and specific larval adaptions, and provides sets of characters relevant to understanding the corresponding phylogeny. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Feng, Shuo; Liu, Dejun; Cheng, Xing; Fang, Huafeng; Li, Caifang
2017-04-01
Magnetic anomalies produced by underground ferromagnetic pipelines because of the polarization of earth's magnetic field are used to obtain the information on the location, buried depth and other parameters of pipelines. In order to achieve a fast inversion and interpretation of measured data, it is necessary to develop a fast and stable forward method. Magnetic dipole reconstruction (MDR), as a kind of integration numerical method, is well suited for simulating a thin pipeline anomaly. In MDR the pipeline model must be cut into small magnetic dipoles through different segmentation methods. The segmentation method has an impact on the stability and speed of forward calculation. Rapid and accurate simulation of deep-buried pipelines has been achieved by exciting segmentation method. However, in practical measurement, the depth of underground pipe is uncertain. When it comes to the shallow-buried pipeline, the present segmentation may generate significant errors. This paper aims at solving this problem in three stages. First, the cause of inaccuracy is analyzed by simulation experiment. Secondly, new variable interval section segmentation is proposed based on the existing segmentation. It can help MDR method to obtain simulation results in a fast way under the premise of ensuring the accuracy of different depth models. Finally, the measured data is inversed based on new segmentation method. The result proves that the inversion based on the new segmentation can achieve fast and accurate inversion of depth parameters of underground pipes without being limited by pipeline depth.
Estevan, Isaac; Falco, Coral; Silvernail, Julia Freedman; Jandacka, Daniel
2015-01-01
In taekwondo, there is a lack of consensus about how the kick sequence occurs. The aim of this study was to analyse the peak velocity (resultant and value in each plane) of lower limb segments (thigh, shank and foot), and the time to reach this peak velocity in the kicking lower limb during the execution of the roundhouse kick technique. Ten experienced taekwondo athletes (five males and five females; mean age of 25.3 ±5.1 years; mean experience of 12.9 ±5.3 years) participated voluntarily in this study performing consecutive kicking trials to a target located at their sternum height. Measurements for the kinematic analysis were performed using two 3D force plates and an eight camera motion capture system. The results showed that the proximal segment reached a lower peak velocity (resultant and in each plane) than distal segments (except the peak velocity in the frontal plane where the thigh and shank presented similar values), with the distal segment taking the longest to reach this peak velocity (p < 0.01). Also, at the instant every segment reached the peak velocity, the velocity of the distal segment was higher than the proximal one (p < 0.01). It provides evidence about the sequential movement of the kicking lower limb segments. In conclusion, during the roundhouse kick in taekwondo inter-segment motion seems to be based on a proximo-distal pattern. PMID:26557189
Estevan, Isaac; Falco, Coral; Silvernail, Julia Freedman; Jandacka, Daniel
2015-09-29
In taekwondo, there is a lack of consensus about how the kick sequence occurs. The aim of this study was to analyse the peak velocity (resultant and value in each plane) of lower limb segments (thigh, shank and foot), and the time to reach this peak velocity in the kicking lower limb during the execution of the roundhouse kick technique. Ten experienced taekwondo athletes (five males and five females; mean age of 25.3 ±5.1 years; mean experience of 12.9 ±5.3 years) participated voluntarily in this study performing consecutive kicking trials to a target located at their sternum height. Measurements for the kinematic analysis were performed using two 3D force plates and an eight camera motion capture system. The results showed that the proximal segment reached a lower peak velocity (resultant and in each plane) than distal segments (except the peak velocity in the frontal plane where the thigh and shank presented similar values), with the distal segment taking the longest to reach this peak velocity (p < 0.01). Also, at the instant every segment reached the peak velocity, the velocity of the distal segment was higher than the proximal one (p < 0.01). It provides evidence about the sequential movement of the kicking lower limb segments. In conclusion, during the roundhouse kick in taekwondo inter-segment motion seems to be based on a proximo-distal pattern.
Damaskos, Spyros; da Silveira, Heraldo L D; Berkhout, Erwin W R
2016-07-01
This study aims to assess with cone-beam computed tomography the distribution and interrelation of the presence of calcifications along the course of the internal carotid artery and to associate their severity with their allocation within the segments of internal carotid artery, gender, and age. Using a documented visual scale, 161 cone-beam computed tomography scans were evaluated on the allocation and severity of intracranial calcifications within the segments of the internal carotid artery. Calcifications were detected along the petrous (C2: 11.8%), lacerum (C3: 23.6%), cavernous (C4: 92.5%), and ophthalmic-clinoid (C5/C6: 65.8%) segments. The Friedman test showed significant differences in severity distribution among these segments; the highest degree was found in the C4 segment (P < .05). The Wilcoxon signed-rank test showed no significant differences between calcifications on the right or left side or between severities within the C1 (extracranial) and C5/C6 segments. The Chi-square test showed that the severity and allocation of calcifications are not influenced by gender; it also showed that their severity increases with age (P < .05). In the cohort studied, the incidence of calcifications increased throughout the C1, C5/C6, and C4 segments. More severe calcifications were found at the C4, C1, and C5/C6 segments in decreasing order but increased with age, regardless of gender. Copyright © 2016 Elsevier Inc. All rights reserved.
Uz, Aysun; Tekdemir, Ibrahim
2006-12-01
The aim of this study was to evaluate the relationship between the cisternal segment of the oculomotor nerve and the posterior cerebral artery and its branches. The oculomotor nerve and the posterior cerebral artery of 15 cadaver brains (30 hemispheres) were examined using a surgical microscope. The dorsal portion of the cisternal segment of the oculomotor nerve had a close relationship with the P(1) and P(2) segments of the posterior cerebral artery in 100% of cases, the thalamoperforating arteries in 97%, the collicular arteries in 97%, the short circumferential arteries in 33% and the posterior medial choroidal arteries in 20%. The proximal portion of the nerve had a close relationship with the P(1) segment of the posterior cerebral artery, the thalamoperforating arteries, the collicular arteries and the short circumferential arteries, whereas the distal portion had a close relationship with the P(2) segment of the posterior cerebral artery and the posterior medial choroidal arteries. The oculomotor nerve was perforated by various arteries in different portions. These arteries were the thalamoperforating arteries in 10% of the hemispheres, the collicular arteries in 16% and the short circumferential arteries in 11%. It can be concluded that the dorsal portion of the cisternal segment of the oculomotor nerve has a close relationship with the branches arising from the P(1) and P(2) segments of the posterior cerebral artery. These arteries supply the cisternal segment of the oculomotor nerve.
Ali, Mohammad Javed; Baig, Farhana; Lakshman, Mekala; Naik, Milind N
2015-01-01
The aims of this study were to examine the presence of biofilms and physical deposits on ocular and nasal segments of silastic nasolacrimal duct stents inserted after dacryocystorhinostomy and to document any differences. A prospective interventional study was performed on a series of patients undergoing dacryocystorhinostomy with Crawford stent insertion. All the patient samples were retrieved 4 weeks after an endoscopic dacryocystorhinostomy. None of the patients had any evidence of postoperative infection. The ocular and nasal segments were separated during retrieval. After removal, the stent segments were subjected to biofilm and physical deposit analysis using standard protocols of scanning electron microscopy. These stent segments were compared against sterile stents which acted as controls. A total of 11 stents were studied. Nine were consecutive patient samples and 2 were sterile stents. The ocular and nasal segments of all the stents demonstrated evidence of biofilm formation and physical deposits. However, the deposits and biofilms were thicker and extensive in the ocular segment, although more focal in nature. In contrast, the nasal segments showed thinner biofilms and sparser deposits but were more diffuse in nature. The presence of different-sized organisms within the exopolysaccharide matrix and in between the deposits suggests the existence of polymicrobial communities. This is the first study to report the differences between ocular and nasal segments of lacrimal stents. These differences could propel further studies on stent biomechanics and their interactions with ocular and nasal tissues, following a dacryocystorhinostomy.
Daisne, Jean-François; Blumhofer, Andreas
2013-06-26
Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for "manual to automatic" and "manual to corrected" volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert.
NASA Astrophysics Data System (ADS)
Luiza Bondar, M.; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben
2013-08-01
For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.
Bondar, M Luiza; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben
2013-08-07
For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.
Expression and Significance of Neuroligins in Myenteric Cells of Cajal in Hirschsprung's Disease
Wang, Jian; Mou, Yaru; Zhang, Qiangye; Zhang, Fan; Yang, Hongchao; Zhang, Wentong; Li, Aiwu
2013-01-01
Purpose The aim of this study was to investigate the expression and significance of neuroligins in myenteric cells of Cajal (ICC-MY) in Hirschsprung’s disease (HSCR). Methods Longitudinal muscle with adherent myenteric plexus (LMMP) from surgical excision waste colon of HSCR children were prepared by peeling off the mucous layer, sub-mucosal layer and circular muscle. Neuroligins, c-Kit (c-Kit-immunoreactivity representing ICC) and their relationship were assessed by double labeling immunofluorescence staining. ICC-MY were dissociated and cultured from LMMP by enzymolysis method, and were purified and analyzed using a combination of magnetic-activated cell sorting (MACS) and flow cytometry (FCM). Western-blot analysis was applied to compare and evaluate the expression levels of neuroligins in ICC-MY which were dissociated from different segments of HSCR (ganglionic colonic segment, transitional colonic segment and aganglionic colonic segment). Results Neuroligins and c-Kit were expressed on the same cells (ICC-MY); ICC-MY were dissociated, cultured and purified. For HSCR, neuroligins were expressed significantly in ICC-MY from ganglionic colonic segments, moderately in those from transitional colonic segments and down-regulated significantly in those from aganglionic colonic segments. Conclusions Neuroligins were expressed in ICC-MY of human beings, and the expression varies from different segments of HSCR. This abnormal expression might play an important role in the pathogenesis of this disease through affecting the synaptic function of ICC-MY. PMID:23840625
NASA Astrophysics Data System (ADS)
Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart
2015-02-01
This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51 ± 1.92) to (97.27 ± 0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.
Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L; Beauchemin, Steven S; Rodrigues, George; Gaede, Stewart
2015-02-21
This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51 ± 1.92) to (97.27 ± 0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.
Characterization of the L4-L5-S1 motion segment using the stepwise reduction method.
Jaramillo, Héctor Enrique; Puttlitz, Christian M; McGilvray, Kirk; García, José J
2016-05-03
The two aims of this study were to generate data for a more accurate calibration of finite element models including the L5-S1 segment, and to find mechanical differences between the L4-L5 and L5-S1 segments. Then, the range of motion (ROM) and facet forces for the L4-S1 segment were measured using the stepwise reduction method. This consists of sequentially testing and reducing each segment in nine stages by cutting the ligaments, facet capsules, and removing the nucleus. Five L4-S1 human segments (median: 65 years, range: 53-84 years, SD=11.0 years) were loaded under a maximum pure moment of 8Nm. The ROM was measured using stereo-photogrammetry via tracking of three markers and the facet contact forces (CF) were measured using a Tekscan system. The ROM for the L4-L5 segment and all stages showed good agreement with published data. The major differences in ROM between the L4-L5 and L5-S1 segments were found for lateral bending and all stages, for which the L4-L5 ROM was about 1.5-3 times higher than that of the L5-S1 segment, consistent with L5-S1 facet CF about 1.3 to 4 times higher than those measured for the L4-L5 segment. For the other movements and few stages, the L4-L5 ROM was significantly lower that of the L5-S1 segment. ROM and CF provide important baseline data for more accurate calibration of FE models and to understand the role that their structures play in lower lumbar spine mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Lei; Schnurr, Alena-Kathrin; Zidowitz, Stephan; Georgii, Joachim; Zhao, Yue; Razavi, Mohammad; Schwier, Michael; Hahn, Horst K.; Hansen, Christian
2016-03-01
Segmentation of hepatic arteries in multi-phase computed tomography (CT) images is indispensable in liver surgery planning. During image acquisition, the hepatic artery is enhanced by the injection of contrast agent. The enhanced signals are often not stably acquired due to non-optimal contrast timing. Other vascular structure, such as hepatic vein or portal vein, can be enhanced as well in the arterial phase, which can adversely affect the segmentation results. Furthermore, the arteries might suffer from partial volume effects due to their small diameter. To overcome these difficulties, we propose a framework for robust hepatic artery segmentation requiring a minimal amount of user interaction. First, an efficient multi-scale Hessian-based vesselness filter is applied on the artery phase CT image, aiming to enhance vessel structures with specified diameter range. Second, the vesselness response is processed using a Bayesian classifier to identify the most probable vessel structures. Considering the vesselness filter normally performs not ideally on the vessel bifurcations or the segments corrupted by noise, two vessel-reconnection techniques are proposed. The first technique uses a directional morphological operator to dilate vessel segments along their centerline directions, attempting to fill the gap between broken vascular segments. The second technique analyzes the connectivity of vessel segments and reconnects disconnected segments and branches. Finally, a 3D vessel tree is reconstructed. The algorithm has been evaluated using 18 CT images of the liver. To quantitatively measure the similarities between segmented and reference vessel trees, the skeleton coverage and mean symmetric distance are calculated to quantify the agreement between reference and segmented vessel skeletons, resulting in an average of 0:55+/-0:27 and 12:7+/-7:9 mm (mean standard deviation), respectively.
Kim, Eun Young; Magnotta, Vincent A; Liu, Dawei; Johnson, Hans J
2014-09-01
Machine learning (ML)-based segmentation methods are a common technique in the medical image processing field. In spite of numerous research groups that have investigated ML-based segmentation frameworks, there remains unanswered aspects of performance variability for the choice of two key components: ML algorithm and intensity normalization. This investigation reveals that the choice of those elements plays a major part in determining segmentation accuracy and generalizability. The approach we have used in this study aims to evaluate relative benefits of the two elements within a subcortical MRI segmentation framework. Experiments were conducted to contrast eight machine-learning algorithm configurations and 11 normalization strategies for our brain MR segmentation framework. For the intensity normalization, a Stable Atlas-based Mapped Prior (STAMP) was utilized to take better account of contrast along boundaries of structures. Comparing eight machine learning algorithms on down-sampled segmentation MR data, it was obvious that a significant improvement was obtained using ensemble-based ML algorithms (i.e., random forest) or ANN algorithms. Further investigation between these two algorithms also revealed that the random forest results provided exceptionally good agreement with manual delineations by experts. Additional experiments showed that the effect of STAMP-based intensity normalization also improved the robustness of segmentation for multicenter data sets. The constructed framework obtained good multicenter reliability and was successfully applied on a large multicenter MR data set (n>3000). Less than 10% of automated segmentations were recommended for minimal expert intervention. These results demonstrate the feasibility of using the ML-based segmentation tools for processing large amount of multicenter MR images. We demonstrated dramatically different result profiles in segmentation accuracy according to the choice of ML algorithm and intensity normalization chosen. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of penetrating traumatic brain injury on event segmentation and memory.
Zacks, Jeffrey M; Kurby, Christopher A; Landazabal, Claudia S; Krueger, Frank; Grafman, Jordan
2016-01-01
Penetrating traumatic brain injury (pTBI) is associated with deficits in cognitive tasks including comprehension and memory, and also with impairments in tasks of daily living. In naturalistic settings, one important component of cognitive task performance is event segmentation, the ability to parse the ongoing stream of behavior into meaningful units. Event segmentation ability is associated with memory performance and with action control, but is not well assessed by standard neuropsychological assessments or laboratory tasks. Here, we measured event segmentation and memory in a sample of 123 male military veterans aged 59-81 who had suffered a traumatic brain injury as young men, and 34 demographically similar controls. Participants watched movies of everyday activities and segmented them to identify fine-grained or coarse-grained events, and then completed tests of recognition memory for pictures from the movies and of memory for the temporal order of actions in the movies. Lesion location and volume were assessed with computed tomography (CT) imaging. Patients with traumatic brain injury were impaired on event segmentation. Those with larger lesions had larger impairments for fine segmentation and also impairments for both memory measures. Further, the degree of memory impairment was statistically mediated by the degree of event segmentation impairment. There was some evidence that lesions to the ventromedial prefrontal cortex (vmPFC) selectively impaired coarse segmentation; however, lesions outside of a priori regions of interest also were associated with impaired segmentation. One possibility is that the effect of vmPFC damage reflects the role of prefrontal event knowledge representations in ongoing comprehension. These results suggest that assessment of naturalistic event comprehension can be a valuable component of cognitive assessment in cases of traumatic brain injury, and that interventions aimed at event segmentation could be clinically helpful. Copyright © 2015 Elsevier Ltd. All rights reserved.
Undoing an Epidemiological Paradox: The Tobacco Industry’s Targeting of US Immigrants
Acevedo-Garcia, Dolores; Barbeau, Elizabeth; Bishop, Jennifer Anne; Pan, Jocelyn; Emmons, Karen M.
2004-01-01
Objectives. We sought to ascertain whether the tobacco industry has conceptualized the US immigrant population as a separate market. Methods. We conducted a content analysis of major tobacco industry documents. Results. The tobacco industry has engaged in 3 distinct marketing strategies aimed at US immigrants: geographically based marketing directed toward immigrant communities, segmentation based on immigrants’ assimilation status, and coordinated marketing focusing on US immigrant groups and their countries of origin. Conclusions. Public health researchers should investigate further the tobacco industry’s characterization of the assimilated and non-assimilated immigrant markets, and its specific strategies for targeting these groups, in order to develop informed national and international tobacco control countermarketing strategies designed to protect immigrant populations and their countries of origin. PMID:15569972