Science.gov

Sample records for segmental jumping translocation

  1. Jumping translocation in a newborn boy with dup(4q) and severe hydrops fetalis

    SciTech Connect

    Duval, E.; Enden, A. van den; Vanhaesebrouck, P.; Speleman, F.

    1994-08-15

    We report on the unusual cytogenetic findings in a newborn boy with severe hydrops fetalis. He has a mosaic for 2 unbalanced chromosome rearrangements: a der(18)t(4;18)(q31;q23) and a der(18)t(4;18)(q31;p11). As a result, this patient had a duplication of 4q31-qter in cells, and was possibly monosomic for the distal ends of 18p and 18q, respectively in the 2 cell lines. Sine in both rearrangements the same chromosome 4 segment was translocated to 2 different chromosome regions, we consider the present finding as a peculiar type of jumping translocation. 32 refs., 3 figs., 1 tab.

  2. Jumping Translocations in Myeloid Malignancies Associated With Treatment Resistance and Poor Survival.

    PubMed

    Sanford, David; DiNardo, Courtney D; Tang, Guilin; Cortes, Jorge E; Verstovsek, Srdan; Jabbour, Elias; Ravandi, Farhad; Kantarjian, Hagop; Garcia-Manero, Guillermo

    2015-09-01

    Jumping translocations (JT) are uncommon cytogenetic abnormalities involving nonreciprocal translocations of a single donor chromosome onto 2 or more chromosomes. The clinical characteristics and prognosis of JTs in patients with myeloid malignancies are not well described. We searched our cytogenetic database from 2003 to 2014 to identify cases of myeloid malignancies associated with a JT. These cases were cross-referenced with our clinical databases to determine patient characteristics, response to treatment and overall survival. We identified 10 patients with myeloid malignancies and a JT: 4 cases of acute myeloid leukemia with myelodysplastic syndrome-related changes, 4 cases of myelodysplastic syndrome, and 2 cases of postpolycythemia myelofibrosis. The donor segment was derived from chromosome 1 in every case. The acquisition of a JT was a late occurrence, with a median time to JT development of 24.9 months (range, 0-248 months) from diagnosis. The overall response to treatment was poor, with no patients experiencing a response to conventional chemotherapy or hypomethylating agents. The median overall survival for the group was 9 months (95% confidence interval, 2.5-15.5) after identification of a JT. The acquisition of a JT in patients with myeloid malignancies appears to be a late event and is associated with myelodysplasia. In our series, this was associated with a poor prognosis with a poor response to treatment, disease transformation to acute myeloid leukemia, and short overall survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Jumping translocations in myeloid malignancies associated with treatment resistance and poor survival

    PubMed Central

    Sanford, David; DiNardo, Courtney D.; Tang, Guilin; Cortes, Jorge E.; Verstovek, Srdan; Jabbour, Elias; Ravandi, Farhad; Kantarjian, Hagop; Garcia-Manero, Guillermo

    2016-01-01

    Background Jumping translocations (JT) are uncommon cytogenetic abnormalities involving non-reciprocal translocations of a single donor chromosome onto two or more chromosomes. The clinical characteristics and prognosis of JTs in patients with myeloid malignancies are not well described. Materials and Methods We searched our cytogenetic database from 2003 to 2014 to identify cases of myeloid malignancies associated with a JT. These cases were cross-referenced with our clinical databases to determine patient characteristics, response to treatment and overall survival. Results We identified 10 patients with myeloid malignancies and a JT: 4 cases of acute myeloid leukemia (AML) with MDS-related changes, 4 cases of myelodysplastic syndrome (MDS) and 2 cases of post-polycythemia myelofibrosis. The donor segment was derived from chromosome 1 in every case. The acquisition of a JT was a late ocurrence, with a median time to JT development of 24.9 months (range 0-248 months) from diagnosis. The overall response to treatment was poor, with no patients achieving a response to conventional chemotherapy or hypomethylating agents. The median overall survival for the group was 9 months (95% CI 2.5-15.5) after identification of a JT. Conclusion The acquisition of a JT in patients with myeloid malignancies appears to be a late event and is associated with myelodysplasia. In our series, this was associated with a poor prognosis with patients having a poor response to treatment, disease transformation to AML and short overall survival. PMID:26141213

  4. Chromosomal Translocation and Segmental Duplication in Cryptococcus neoformans†

    PubMed Central

    Fraser, James A.; Huang, Johnny C.; Pukkila-Worley, Read; Alspaugh, J. Andrew; Mitchell, Thomas G.; Heitman, Joseph

    2005-01-01

    Large chromosomal events such as translocations and segmental duplications enable rapid adaptation to new environments. Here we marshal genomic, genetic, meiotic mapping, and physical evidence to demonstrate that a chromosomal translocation and segmental duplication occurred during construction of a congenic strain pair in the fungal human pathogen Cryptococcus neoformans. Two chromosomes underwent telomere-telomere fusion, generating a dicentric chromosome that broke to produce a chromosomal translocation, forming two novel chromosomes sharing a large segmental duplication. The duplication spans 62,872 identical nucleotides and generated a second copy of 22 predicted genes, and we hypothesize that this event may have occurred during meiosis. Gene disruption studies of one embedded gene (SMG1) corroborate that this region is duplicated in an otherwise haploid genome. These findings resolve a genome project assembly anomaly and illustrate an example of rapid genome evolution in a fungal genome rich in repetitive elements. PMID:15701802

  5. Jumping translocation involving 11q13 in a patient with primitive neuroectodermal tumor (PNET)

    SciTech Connect

    Nemana, L.; Fung, I.; Sun, G.

    1994-09-01

    Multiple translocations between a donor chromosome at a common breakpoint site with different recipient chromosomes (jumping translocation) have been rarely described in the same patient with hematological malignancies. Here we present a case of a two-year-old male with therapy-related acute non-lymphocytic leukemia (t-ANLL) secondary to treatment of PNET of mandible. The initial chromosome analysis revealed clonal hyperdiploidy with a mainline of 47,XY,+11. Follow-up study revealed no hyperdiploidy, a partial deletion of 7q22 to 7q36 (in four cells), as well as a jumping translocation between 11q13 and seven different chromosomes in seven different cells. The recipient chromosomes and their breakpoints were 4q35, 5p15.3, 11q13, 13q23, 14q32, 17p13 and 20q13.3. Multiple chromosomal rearrangements are usually associated with a poor prognosis. However, the significance of different translocations involving the same donor chromosome with a constant breakpoint in this patient is not determined. It has been proposed that the sites of recurrent translocations or fragile sites may harbor or be in close proximity to proto-oncogenes. Molecular studies are required to elucidate the relationship between these breakpoints and the disease progression in our patient.

  6. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    ERIC Educational Resources Information Center

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  7. Segmental and Kinetic Contributions in Vertical Jumps Performed with and without an Arm Swing

    ERIC Educational Resources Information Center

    Feltner, Michael E.; Bishop, Elijah J.; Perez, Cassandra M.

    2004-01-01

    To determine the contributions of the motions of the body segments to the vertical ground reaction force ([F.sub.z]), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm…

  8. Expression of engrailed-family genes in the jumping bristletail and discussion on the primitive pattern of insect segmentation.

    PubMed

    Nakagaki, Yasutaka; Sakuma, Masashi; Machida, Ryuichiro

    2015-09-01

    It has been shown that segmentation in the short-germ insects proceeds by a two-step mechanism. The anterior region is simultaneously segmented in a manner similar to that in Drosophila, which is apparently unique to insects, and the rest of the posterior region is segmented sequentially by a mechanism involving a segmentation clock, which is derived from the common ancestor of arthropods. In order to propose the evolutionary scenario of insect segmentation, we examined segmentation in the jumping bristletail, the basalmost extant insect. Using probes for engrailed-family genes for in situ hybridization, we found no sign of simultaneous segmentation in the anterior region of the jumping bristletail embryos. All segments except the anteriormost segment are formed sequentially. This condition shown in the jumping bristletail embryos may represent the primitive pattern of insect segmentation. The intercalating formation of the intercalary segment is assumed to be a synapomorphic trait shared among all insects after the branching of the jumping bristletail.

  9. The correlation of segment accelerations and impact forces with knee angle in jump landing.

    PubMed

    Elvin, Niell G; Elvin, Alex A; Arnoczky, Steven P; Torry, Michael R

    2007-08-01

    Impact forces and shock deceleration during jumping and running have been associated with various knee injury etiologies. This study investigates the influence of jump height and knee contact angle on peak ground reaction force and segment axial accelerations. Ground reaction force, segment axial acceleration, and knee angles were measured for 6 male subjects during vertical jumping. A simple spring-mass model is used to predict the landing stiffness at impact as a function of (1) jump height, (2) peak impact force, (3) peak tibial axial acceleration, (4) peak thigh axial acceleration, and (5) peak trunk axial acceleration. Using a nonlinear least square fit, a strong (r = 0.86) and significant (p < or = 0.05) correlation was found between knee contact angle and stiffness calculated using the peak impact force and jump height. The same model also showed that the correlation was strong (r = 0.81) and significant (p < or = 0.05) between knee contact angle and stiffness calculated from the peak trunk axial accelerations. The correlation was weaker for the peak thigh (r = 0.71) and tibial (r = 0.45) axial accelerations. Using the peak force but neglecting jump height in the model, produces significantly worse correlation (r = 0.58). It was concluded that knee contact angle significantly influences both peak ground reaction forces and segment accelerations. However, owing to the nonlinear relationship, peak forces and segment accelerations change more rapidly at smaller knee flexion angles (i.e., close to full extension) than at greater knee flexion angles.

  10. Jump transition observed in translocation time for ideal poly-X proteinogenic chains as a result of competing folding and anchoraging contributions.

    PubMed

    Vélez-Pérez, José Antonio; Olivares-Quiroz, Luis

    2017-01-01

    In this work we analyze the translocation of homopolymer chains poly-X, where X represents any of the 20 naturally occurring amino acid residues, in terms of size N and single-helical propensity ω. We provide an analytical framework to calculate both the free energy F of translocation and the translocation time τ as a function of chain size N, energies U and ε of the unfolded and folded states, respectively. Our results show that free energy F has a characteristic bell-shaped barrier as function of the percentage of monomers translocated. Inclusion of single-helical propensity ω associated to monomer X and chain's native energy ε in the translocation model increases the energy barrier ΔF up to one order of magnitude as compared with the well-known Gaussian chain model. Computation of the mean first-passage time as function of chain size N shows that the translocation time τ exhibits a significant jump of several orders of magnitude at a critical chain size N. This jump markedly slows down translocation of chains larger than N. Existence of the transition jump of τ has been observed experimentally at least in poly(ethylene oxide) chains [R. P. Choudhury, P. Galvosas, and M. Schönhoff, J. Phys. Chem. B 112, 13245 (2008)]JPCBFK1520-610610.1021/jp804680q. Our results suggest the transition jump of τ as a function of N may be a very well spread feature throughout translocation of poly-X chains.

  11. Jump transition observed in translocation time for ideal poly-X proteinogenic chains as a result of competing folding and anchoraging contributions

    NASA Astrophysics Data System (ADS)

    Vélez-Pérez, José Antonio; Olivares-Quiroz, Luis

    2017-01-01

    In this work we analyze the translocation of homopolymer chains poly-X , where X represents any of the 20 naturally occurring amino acid residues, in terms of size N and single-helical propensity ω . We provide an analytical framework to calculate both the free energy F of translocation and the translocation time τ as a function of chain size N , energies U and ɛ of the unfolded and folded states, respectively. Our results show that free energy F has a characteristic bell-shaped barrier as function of the percentage of monomers translocated. Inclusion of single-helical propensity ω associated to monomer X and chain's native energy ɛ in the translocation model increases the energy barrier Δ F up to one order of magnitude as compared with the well-known Gaussian chain model. Computation of the mean first-passage time as function of chain size N shows that the translocation time τ exhibits a significant jump of several orders of magnitude at a critical chain size N . This jump markedly slows down translocation of chains larger than N . Existence of the transition jump of τ has been observed experimentally at least in poly(ethylene oxide) chains [R. P. Choudhury, P. Galvosas, and M. Schönhoff, J. Phys. Chem. B 112, 13245 (2008)], 10.1021/jp804680q. Our results suggest the transition jump of τ as a function of N may be a very well spread feature throughout translocation of poly-X chains.

  12. Induction of small-segment-translocation between wheat and rye chromosomes.

    PubMed

    Ren, Z; Zhang, H

    1997-06-01

    A new approach to produce wheat-rye translocation, based on the genetic instability caused by monosomic addition of rye chromosome in wheat, is described. 1 283 plants from the selfed progenies of monosomic addition lines with single chromosome of inbred rye line R12 and complete chromosome complement of wheat cultivar Mianyang 11 were cytologically analyzed on a plant-by-plant basis by the improved C-banding technique. 63 of the plants, with 2n = 42, were found containing wheat-rye translocation or substitution, with a frequency of 4.91%. Compared with the wheat parent, other 32 plants with 2n = 42 exhibited obvious phenotypic variation, but their component of rye chromosome could not be detected using the C-banding technique.In situ hybridization with a biotin-la-beled DNA probe was used to detect rye chromatin and to determine the insertion sites of rye segments in the wheat chromosomes. In 20 out of the 32 variant wheat plants, small segments of rye chromosomes were found being inserted into different wheat chromosomes and form small-segment-translocation (SS translocation). The physical mapping of the translocated small segments of rye chromosomes indicated that alien insertion could occur in both the terminal and intermediate regions of wheat chromosomes. The technique described appeared to be an effective means to induce SS translocation. The wide application of SS translocation in the study of molecular cytogenetics and plant breeding is also discussed.

  13. Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin.

    PubMed

    Sawyer, J R; Tricot, G; Mattox, S; Jagannath, S; Barlogie, B

    1998-03-01

    Karyotypes in multiple myeloma (MM) are complex and exhibit numerous structural and numerical aberrations. The largest subset of structural chromosome anomalies in clinical specimens and cell lines involves aberrations of chromosome 1. Unbalanced translocations and duplications involving all or part of the whole long arm of chromosome 1 presumably occur as secondary aberrations and are associated with tumor progression and advanced disease. Unfortunately, cytogenetic evidence is scarce as to how these unstable whole-arm rearrangements may take place. We report nonrandom, unbalanced whole-arm translocations of 1q in the cytogenetic evolution of patients with aggressive MM. Whole-arm or "jumping translocations" of 1q were found in 36 of 158 successive patients with abnormal karyotypes. Recurring whole-arm translocations of 1q involved chromosomes 5,8,12,14,15,16,17,19,21, and 22. A newly delineated breakpoint present in three patients involved a whole-arm translocation of 1q to band 5q15. Three recurrent translocations of 1q10 to the short arms of different acrocentric chromosomes have also been identified, including three patients with der(15)t(1;15)(q10;p10) and two patients each with der(21)t(1;21)(q10;p13) and der(22)t(1;22) (q10;p10). Whole-arm translocations of 1q10 to telomeric regions of nonacrocentric chromosomes included der(12)t(1;12) (q10;q24.3) and der(19)t(1;19)(q10;q13.4) in three and two patients, respectively. Recurrent whole-arm translocations of 1q to centromeric regions included der(16)t(1;16)(q10;q10) and der(19)t(1;19)(q10;p10). The mechanisms involved in the 1q instability in MM may be associated with highly decondensed pericentromeric heterochromatin, which may permit recombination and formation of unstable translocations of chromosome 1q. The clonal evolution of cells with extra copies of 1q suggests that this aberration directly or indirectly provides a proliferative advantage.

  14. Change of apocytochrome c translocation across membrane in consequence of hydrophobic segment deletion.

    PubMed

    Wang, Xiaoping; Han, Xuehai; Jia, Songtao; Yang, Fuyu

    2002-04-01

    Wild-type apocytochrome c and its hydrophobic segment deleted mutants, named delta28-39, delta72-86 and delta28-29/72-86 were constructed, expressed and highly purified respectively. Insertion ability into phospholipid monolayer, inducing leakage of entrapped fluorescent dye fluorescein sulfonate (FS) from liposomes, and translocation across model membrane system showed that the wild-type apoprotein and delta28-39 almost exhibited the same characteristics, while mutants with segment 72-86 deletion did not. Furthermore, CD spectra, intrinsic fluorescence emission spectra, and the accessibility of the protein to the fluorescence quenchers: KI, acrylamide and HB demonstrated that the segment 72-86 deletion has a significant effect on the conformational changes of apocytochrome c following its interaction with phospholipid. On the basis of these results it is postulated that the C-terminal hydrophobic segment 72-86 plays an important role in the translocation of apocytochrome c across membrane.

  15. The structure of the extracellular domain of the jumping translocation breakpoint protein reveals a variation of the midkine fold.

    PubMed

    Rousseau, Francois; Pan, Borlan; Fairbrother, Wayne J; Bazan, J Fernando; Lingel, Andreas

    2012-01-06

    Jumping Translocation Breakpoint (JTB) is an orphan receptor that is conserved from nematodes to humans and whose gene expression in humans is strikingly upregulated in diverse types of cancers. Translocations occur frequently at the hJTB genomic locus, leading to multiple copies of a truncated JTB gene, which potentially encodes a soluble secreted ectodomain. In addition, JTB and its orthologs likely represent a unique and ancient protein family since homologs could not be identified by direct sequence comparison. In the present study, we have determined the NMR solution structure of the N-terminal ectodomain of human JTB, showing that its fold architecture is a new variant of a three-β-strand antiparallel β-meander. The JTB structure has a distant relationship to the midkine/pleiotrophin fold, particularly in the conservation of distinctive disulfide bridge patterns. The structure of this newly characterized small cysteine-rich domain suggests potential involvement of JTB in interactions with proteins or extracellular matrix and may help to uncover the elusive biological functions of this protein. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Evidence that translocation of collagen fibril segments plays a role in early intrinsic tendon repair.

    PubMed

    Gunn, J Stephen; Ehrlich, H Paul

    2012-02-01

    Severed tendon repair advances with either a scar through extrinsic repair or regeneration through intrinsic repair. The authors examined whether intrinsic tendon repair reintroduces embryonic fibrillogenesis, whereby preformed collagen fibril segments are incorporated into growing collagen fibers at wound edges. Isolated tendons from 10-day-old chicken embryos were suspended in 1 mg/ml of the antibiotic gentamicin for 90 days, which released fibril segments that were fluorescently tagged with rhodamine. Tendons isolated from 14-day-old chicken embryos were wounded to half their diameter and then maintained as explants in stationary organ culture. Fluorescent-tagged fibril segments were introduced to wounded tendon explants in the presence of high concentrations of neomycin, an antibiotic; cycloheximide, a protein synthesis inhibitor; cytochalasin D, a disruptor of microfilaments; and colchicine, a disruptor of microtubules. At 24 hours, explants were viewed by means of fluorescent microscopy. Untreated, wounded tendon explants showed the translocation of fluorescent-tagged fibril segments from the explant surface to accumulation at wound edges. In the presence of high concentrations of neomycin, cytochalasin D, or colchicine, fluorescent-tagged fibril segments failed to accumulate at wound edges and were retained on the explant surface. Inhibition of protein synthesis by cycloheximide did not alter the accumulation of fluorescent-tagged fibril segments at wound edges. Inhibiting fluorescent-tagged fibril segment accumulation by antibiotics is consistent with their role in releasing fibril segments. Experimental findings show fibril segment translocation and accumulation at wound edges involves microfilaments and microtubules, but not protein synthesis. The experiments support the hypothesis that intrinsic tendon repair advances through the incorporation of fibril segments at wound edges.

  17. Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses[W][OPEN

    PubMed Central

    Golczyk, Hieronim; Massouh, Amid; Greiner, Stephan

    2014-01-01

    Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories. PMID:24681616

  18. Positive Charges of Translocating Polypeptide Chain Retrieve an Upstream Marginal Hydrophobic Segment from the Endoplasmic Reticulum Lumen to the Translocon

    PubMed Central

    Fujita, Hidenobu; Kida, Yuichiro; Hagiwara, Masatoshi; Morimoto, Fumiko

    2010-01-01

    Positively charged amino acid residues are well recognized topology determinants of membrane proteins. They contribute to the stop-translocation of a polypeptide translocating through the translocon and to determine the orientation of signal sequences penetrating the membrane. Here we analyzed the function of these positively charged residues during stop-translocation in vitro. Surprisingly, the positive charges facilitated membrane spanning of a marginally hydrophobic segment, even when separated from the hydrophobic segment by 70 residues. In this case, the hydrophobic segment was exposed to the lumen, and then the downstream positive charges triggered the segment to slide back into the membrane. The marginally hydrophobic segment spanned the membrane, but maintained access to the water environment. The positive charges not only fix the hydrophobic segment in the membrane at its flanking position, but also have a much more dynamic action than previously realized. PMID:20427573

  19. Inter-segmental moment analysis characterises the partial correspondence of jumping and jerking

    PubMed Central

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ

    2014-01-01

    The aim of this study was to quantify internal joint moments of the lower limb during vertical jumping and the weightlifting jerk in order to improve awareness of the control strategies and correspondence between these activities, and to facilitate understanding of the likely transfer of training effects. Athletic males completed maximal unloaded vertical jumps (n=12) and explosive push jerks at 40 kg (n=9). Kinematic data were collected using optical motion tracking and kinetic data via a force plate, both at 200 Hz. Joint moments were calculated using a previously described biomechanical model of the right lower limb. Peak moment results highlighted that sagittal plane control strategies differed between jumping and jerking (p<0.05) with jerking being a knee dominant task in terms of peak moments as opposed to a more balanced knee and hip strategy in jumping and landing. Jumping and jerking exhibited proximal to distal joint involvement and landing was typically reversed. High variability was seen in non-sagittal moments at the hip and knee. Significant correlations were seen between jump height and hip and knee moments in jumping (p<0.05). Whilst hip and knee moments were correlated between jumping and jerking (p<0.05), joint moments in the jerk were not significantly correlated to jump height (p>0.05) possibly indicating a limit to the direct transferability of jerk performance to jumping. Ankle joint moments were poorly related to jump performance (p>0.05). Peak knee and hip moment generating capacity are important to vertical jump performance. The jerk appears to offer an effective strategy to overload joint moment generation in the knee relative to jumping. However, an absence of hip involvement would appear to make it a general, rather than specific, training modality in relation to jumping. PMID:22362089

  20. Characterization of thigh and shank segment angular velocity during jump landing tasks commonly used to evaluate risk for ACL injury.

    PubMed

    Dowling, Ariel V; Favre, Julien; Andriacchi, Thomas P

    2012-09-01

    The dynamic movements associated with anterior cruciate ligament (ACL) injury during jump landing suggest that limb segment angular velocity can provide important information for understanding the conditions that lead to an injury. Angular velocity measures could provide a quick and simple method of assessing injury risk without the constraints of a laboratory. The objective of this study was to assess the inter-subject variations and the sensitivity of the thigh and shank segment angular velocity in order to determine if these measures could be used to characterize jump landing mechanisms. Additionally, this study tested the correlation between angular velocity and the knee abduction moment. Thirty-six healthy participants (18 male) performed drop jumps with bilateral and unilateral landing. Thigh and shank angular velocities were measured by a wearable inertial-based system, and external knee moments were measured using a marker-based system. Discrete parameters were extracted from the data and compared between systems. For both jumping tasks, the angular velocity curves were well defined movement patterns with high inter-subject similarity in the sagittal plane and moderate to good similarity in the coronal and transverse planes. The angular velocity parameters were also able to detect differences between the two jumping tasks that were consistent across subjects. Furthermore, the coronal angular velocities were significantly correlated with the knee abduction moment (R of 0.28-0.51), which is a strong indicator of ACL injury risk. This study suggested that the thigh and shank angular velocities, which describe the angular dynamics of the movement, should be considered in future studies about ACL injury mechanisms.

  1. Jumping translocations of 1q12 in multiple myeloma: a novel mechanism for deletion of 17p in cytogenetically defined high-risk disease

    PubMed Central

    Tian, Erming; Heuck, Christoph J.; Epstein, Joshua; Johann, Donald J.; Swanson, Charles M.; Lukacs, Janet L.; Johnson, Marian; Binz, Regina; Boast, Angela; Sammartino, Gael; Usmani, Saad; Zangari, Maurizio; Waheed, Sarah; van Rhee, Frits; Barlogie, Bart

    2014-01-01

    Multiple myeloma (MM) is a B-cell malignancy driven in part by increasing copy number alterations (CNAs) during disease progression. Prognostically significant CNAs accumulate during clonal evolution and include gains of 1q21 and deletions of 17p, among others. Unfortunately, the mechanisms underlying the accumulation of CNAs and resulting subclonal heterogeneity in high-risk MM are poorly understood. To investigate the impact of jumping translocations of 1q12 (JT1q12) on receptor chromosomes (RCs) and subsequent clonal evolution, we analyzed specimens from 86 patients selected for unbalanced 1q12 aberrations by G-banding. Utilizing spectral karyotyping and locus-specific fluorescence in situ hybridization, we identified 10 patients with unexpected focal amplifications of an RC that subsequently translocated as part of a sequential JT1q12 to one or more additional RCs. Four patients exhibited amplification and translocation of 8q24 (MYC), 3 showed amplification of 16q11, and 1 each displayed amplification of 18q21.3 (BCL2), 18q23, or 4p16 (FGFR3). Unexpectedly, in 6 of 14 patients with the combination of the t(4;14) and deletion of 17p, we identified the loss of 17p as resulting from a JT1q12. Here, we provide evidence that the JT1q12 is a mechanism for the simultaneous gain of 1q21 and deletion of 17p in cytogenetically defined high-risk disease. PMID:24497533

  2. NBCe1-A Transmembrane Segment 1 Lines the Ion Translocation Pathway.

    PubMed

    Zhu, Quansheng; Azimov, Rustam; Kao, Liyo; Newman, Debra; Liu, Weixin; Abuladze, Natalia; Pushkin, Alexander; Kurtz, Ira

    2009-03-27

    The electrogenic Na(+)/HCO(3)(-) cotransporter (NBCe1-A) transports sodium and bicarbonate across the basolateral membrane of the renal proximal tubule. In this study the structural requirement of transmembrane segment 1 (TM1) residues in mediating NBCe1-A transport was investigated. Twenty-five introduced cysteine mutants at positions Gln-424 to Gly-448 were tested for their sensitivity to the methanethiosulfonate reagents (2-sulfonatoethyl) methanethiosulfonate (MTSES), [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET), and (2-aminoethyl) methanethiosulfonate (MTSEA). Two mutants, T442C and A435C, showed 100 and 70% sensitivity, respectively, to inhibition by all the three methanethiosulfonate (MTS) reagents, I441C had >50% sensitivity to MTSET and MTSEA, and A428C had 50% sensitivity to MTSEA inhibition. A helical wheel plot showed that mutants T442C, A435C, and A428C are clustered on one face of TM1 within a 100 degrees arc. Topology analysis of TM1 with biotin maleimide and 2-((5(6)-tetramethylrhodamine)carboxylamino) ethyl methanethiosulfonate (MTS-TAMRA) revealed Thr-442 marks the C-terminal end of TM1 and that extracellular FGGLLG stretch is in a small aqueous-accessible cavity. Functional studies indicated that Thr-442 resides in a narrow region of the ion translocation pore with strong delta(-) helical dipole influence. Analysis of the corresponding residue of NBCe1-A-Thr-442 in AE1 (Thr-422) shows it is functionally insensitive to MTSES and unlabeled with MTS-TAMRA, indicating that AE1-TM1 is oriented differently from NBCe1-A. In summary, we have identified residues Thr-442, Ala-435, and Ala-428 in TM1 lining the ion translocation pore of NBCe1-A. Our findings are suggestive of a delta(-) helical dipole at the C-terminal end of TM1 involving Thr-442 that plays a critical role in the function of the cotransporter.

  3. NBCe1-A Transmembrane Segment 1 Lines the Ion Translocation Pathway*

    PubMed Central

    Zhu, Quansheng; Azimov, Rustam; Kao, Liyo; Newman, Debra; Liu, Weixin; Abuladze, Natalia; Pushkin, Alexander; Kurtz, Ira

    2009-01-01

    The electrogenic Na+/\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{HCO}}_{3}^{-}\\end{equation*}\\end{document} cotransporter (NBCe1-A) transports sodium and bicarbonate across the basolateral membrane of the renal proximal tubule. In this study the structural requirement of transmembrane segment 1 (TM1) residues in mediating NBCe1-A transport was investigated. Twenty-five introduced cysteine mutants at positions Gln-424 to Gly-448 were tested for their sensitivity to the methanethiosulfonate reagents (2-sulfonatoethyl) methanethiosulfonate (MTSES), [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET), and (2-aminoethyl) methanethiosulfonate (MTSEA). Two mutants, T442C and A435C, showed 100 and 70% sensitivity, respectively, to inhibition by all the three methanethiosulfonate (MTS) reagents, I441C had >50% sensitivity to MTSET and MTSEA, and A428C had 50% sensitivity to MTSEA inhibition. A helical wheel plot showed that mutants T442C, A435C, and A428C are clustered on one face of TM1 within a 100° arc. Topology analysis of TM1 with biotin maleimide and 2-((5(6)-tetramethylrhodamine)carboxylamino) ethyl methanethiosulfonate (MTS-TAMRA) revealed Thr-442 marks the C-terminal end of TM1 and that extracellular FGGLLG stretch is in a small aqueous-accessible cavity. Functional studies indicated that Thr-442 resides in a narrow region of the ion translocation pore with strong δ- helical dipole influence. Analysis of the corresponding residue of NBCe1-A-Thr-442 in AE1 (Thr-422) shows it is functionally insensitive to MTSES and unlabeled with MTS-TAMRA, indicating that AE1-TM1 is oriented differently from NBCe1-A. In summary, we have identified residues Thr-442, Ala-435, and Ala-428 in TM1 lining the ion translocation

  4. Jumping translocation in acute monocytic leukemia (M5b) with alternative breakpoint sites in the long arm of donor chromosome 3.

    PubMed

    McGrattan, Peter; Logan, Amy; Humphreys, Mervyn; Bowers, Margaret

    2010-09-01

    An 86-year-old man presented with acute hepatic failure, worsening thrombocytopenia, and anemia having been diagnosed and managed expectantly with cytogenetically normal RAEB-1. After 20 months a diagnosis of disease transformation to acute monocytic leukemia (M5b) was made. Conventional G-banded analysis of unstimulated bone marrow cultures demonstrated a jumping translocation (JT) involving proximal and distal breakpoints on donor chromosome 3 at bands 3q1?2 and 3q21, respectively. Recipient chromosomes included the long-arm telomeric regions of chromosomes 5, 10, 14, 16, and 19. A low-level trisomy 8 clone was also found in association with both proximal and distal JT clones. Conventional G-banded analysis of unstimulated peripheral blood cultures detected the proximal 3q1?2 JT clone involving recipient chromosome 10 several weeks after transformation to acute monocytic leukemia. Interestingly, JTs involving recipient chromosomes 5, 14, 16, and 19 were not detected in this peripheral blood sample. Palliative care was administered until his demise 2.2 months after disease transformation. There have been fewer than 70 cases of acquired JTs reported in the literature, including one myeloproliferative neoplasm and five acute myeloid leukemias involving a single breakpoint site on donor chromosome 3. Our case is unique as it is the first acquired case to demonstrate a JT involving alternative pericentromeric breakpoint sites on a single donor chromosome consisting of a proximal breakpoint at 3q1?2 and a more distal breakpoint at 3q21.

  5. A Segment of 97 Amino Acids within the Translocation Domain of Clostridium difficile Toxin B Is Essential for Toxicity

    PubMed Central

    Zhang, Yongrong; Shi, Lianfa; Li, Shan; Yang, Zhiyong; Standley, Clive; Yang, Zhong; ZhuGe, Ronghua; Savidge, Tor; Wang, Xiaoning; Feng, Hanping

    2013-01-01

    Clostridium difficile toxin B (TcdB) intoxicates target cells by glucosylating Rho GTPases. TcdB (269 kDa) consists of at least 4 functional domains including a glucosyltransferase domain (GTD), a cysteine protease domain (CPD), a translocation domain (TD), and a receptor binding domain (RBD). The function and molecular mode of action of the TD, which is the largest segment of TcdB and comprises nearly 50% of the protein, remain largely unknown. Here we show that a 97-amino-acid segment (AA1756 – 1852, designated as ?97 or D97), located in the C-terminus of the TD and adjacent to the RBD, is essential for the cellular activity of TcdB. Deletion of this segment in TcdB (designated as TxB-D97), did not adversely alter toxin enzymatic activities or its cellular binding and uptake capacity. TxB-D97 bound to and entered cells in a manner similar to TcdB holotoxin. Both wild type and mutant toxins released their GTDs similarly in the presence of inositol hexakisphosphate (InsP6), and showed a similar glucosyltransferase activity in a cell-free glucosylating assay. Despite these similarities, the cytotoxic activity of TxB-D97 was reduced by more than 5 logs compared to wild type toxin, supported by the inability of TxB-D97 to glucosylate Rac1 of target cells. Moreover, the mutant toxin failed to elicit tumor necrosis factor alpha (TNF-α) in macrophages, a process dependent on the glucosyltransferase activity of the toxin. Cellular fractionation of toxin-exposed cells revealed that TxB-D97 was unable to efficiently release the GTD into cytosol. Thereby, we conclude the 97-amino-acid region of the TD C-terminus of TcdB adjacent to the RBD, is essential for the toxicity of TcdB. PMID:23484044

  6. Transmembrane segment 5 of the dipeptide transporter hPepT1 forms a part of the substrate translocation pathway.

    PubMed

    Kulkarni, Ashutosh A; Haworth, Ian S; Lee, Vincent H L

    2003-06-20

    This study is the first systematic attempt to investigate the role of transmembrane segment 5 of hPepT1, the most conserved segment across different species, in forming a part of the aqueous substrate translocation pathway. We used cysteine-scanning mutagenesis in conjunction with the sulfhydryl-specific reagents, MTSEA and MTSET. Neither of these reagents reduced wild-type-hPepT1 transport activity in HEK293 cells and Xenopus oocytes. Twenty-one single cysteine mutations in hPepT1 were created by replacing each residue within TMS5 with a cysteine. HEK293 cells were then transfected with each mutated protein and the steady-state protein level, [3H]Gly-Sar uptake activity, and sensitivity to the MTS reagents were measured. S164C-, L168C-, G173C-, and I179C-hPepT1 were not expressed on the plasma membrane. Y167C-, N171C-, and S174C-hPepT1 showed

  7. A Comparison of Body Segment Inertial Parameter Estimation Methods and Joint Moment and Power Calculations During a Drop Vertical Jump in Collegiate Female Soccer Players.

    PubMed

    Arena, Sara L; McLaughlin, Kelsey; Nguyen, Anh-Dung; Smoliga, James M; Ford, Kevin R

    2017-02-01

    Athletic individuals may differ in body segment inertial parameter (BSIP) estimates due to differences in body composition, and this may influence calculation of joint kinetics. The purposes of this study were to (1) compare BSIPs predicted by the method introduced by de Leva(1) with DXA-derived BSIPs in collegiate female soccer players, and (2) examine the effects of these BSIP estimation methods on joint moment and power calculations during a drop vertical jump (DVJ). Twenty female NCAA Division I soccer players were recruited. BSIPs of the shank and thigh (mass, COM location, and radius of gyration) were determined using de Leva's method and analysis of whole-body DXA scans. These estimates were used to determine peak knee joint moments and power during the DVJ. Compared with DXA, de Leva's method located the COM more distally in the shank (P = .008) and more proximally in the thigh (P < .001), and the radius of gyration of the thigh to be further from the thigh COM (P < .001). All knee joint moment and power measures were similar between methods. These findings suggest that BSIP estimation may vary between methods, but the impact on joint moment calculations during a dynamic task is negligible.

  8. Translocation 4;13 with adjacent 1 and 3-1 segregations leading to complementary segmental trisomies 13.

    PubMed

    Barros-Nuñez, P; Higareda, O; Cantu, J M

    1993-01-01

    A familial 4;13 translocation showed three different segregations and two kinds of imbalances: two brothers had a distal trisomy 13 [46,XY,-4,+der 4, t(4;13)(q35;q14)mat] and their maternal uncle had a proximal trisomy 13 [47, XY,+der13,t(4;13)(q35;q14)mat]. A relative excess of abortions was observed in this family, probably related to a lethal variety of segregation.

  9. Natural translocation of a large segment of chromosome III to chromosome I in a laboratory strain of Saccharomyces cerevisiae.

    PubMed

    Camasses, A

    1996-08-01

    We have investigated chromosomal segregation during meiosis in a cross between two polymorphic haploid laboratory strains of Saccharomyces cerevisiae, FL100 and GRF18. These two strains have large chromosome-length polymorphisms for chromosomes I and III allowing for easy scoring of parental chromosomes after meiotic segregation. Chromosome III in the FL100 strain was 35 kb shorter than chromosome III in GRF18, while FL100 chromosome I was 40 kb larger than chromosome I in GRF18. Segregation analysis of chromosomes I and III in 50 tetrads showed an apparent association between chromosomes I and III, whereas only the original parental association of chromosomes I and III was found in the spores. By hybridization with chromosome-specific probes we have shown that the polymorphisms are due to a large translocation from chromosome III onto chromosome I in FL100. The translocated fragment is larger than 80 kb and was mapped between Ty and HML. In nine tetrads analyzed, chromosome-length polymorphisms which did not segregate according to Mendelian law were observed.

  10. Jumping hoops

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Kim, Ho-Young

    2012-01-01

    We investigate the dynamics of an elastic hoop as a model of the jumps of small insects. During a jump the initial elastic strain energy is converted to translational, gravitational, and vibrational energy, and is dissipated by interaction with the floor and the ambient air. We show that the strain energy is initially divided into translational, vibrational, and dissipation energies with a ratio that is constant regardless of the dimension, initial deflection, and the properties of a hoop. This novel result enables us to accurately predict the maximum jump height of a hoop with known initial conditions and drag coefficient without resorting to a numerical computation. Our model reduces the optimization of the hoop geometry for maximizing the jump height to a simple algebraic problem.

  11. Complete mapping of substrate translocation highlights the role of LeuT N-terminal segment in regulating transport cycle.

    PubMed

    Cheng, Mary Hongying; Bahar, Ivet

    2014-10-01

    Neurotransmitter: sodium symporters (NSSs) regulate neuronal signal transmission by clearing excess neurotransmitters from the synapse, assisted by the co-transport of sodium ions. Extensive structural data have been collected in recent years for several members of the NSS family, which opened the way to structure-based studies for a mechanistic understanding of substrate transport. Leucine transporter (LeuT), a bacterial orthologue, has been broadly adopted as a prototype in these studies. This goal has been elusive, however, due to the complex interplay of global and local events as well as missing structural data on LeuT N-terminal segment. We provide here for the first time a comprehensive description of the molecular events leading to substrate/Na+ release to the postsynaptic cell, including the structure and dynamics of the N-terminal segment using a combination of molecular simulations. Substrate and Na+-release follows an influx of water molecules into the substrate/Na+-binding pocket accompanied by concerted rearrangements of transmembrane helices. A redistribution of salt bridges and cation-π interactions at the N-terminal segment prompts substrate release. Significantly, substrate release is followed by the closure of the intracellular gate and a global reconfiguration back to outward-facing state to resume the transport cycle. Two minimally hydrated intermediates, not structurally resolved to date, are identified: one, substrate-bound, stabilized during the passage from outward- to inward-facing state (holo-occluded), and another, substrate-free, along the reverse transition (apo-occluded).

  12. Reciprocal translocations

    SciTech Connect

    1993-12-31

    Chapter 26, describes reciprocal translocations of chromosomes: their occurrence, breakpoints, and multiple rearrangements. In addition, phenotypes of balanced and unbalanced translocation carriers and fetal death are discussed. Examples of translocation families are given. Meiosis and genetic risk in translocation carriers is presented. Finally, sperm chromosomes in meiotic segregation analysis is mentioned. 39 refs., 3 figs., 1 tab.

  13. Segments.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Presents a market taxonomy for higher education, including what it reveals about the structure of the market, the model's technical attributes, and its capacity to explain pricing behavior. Details the identification of the principle seams separating one market segment from another and how student aspirations help to organize the market, making…

  14. Supersonic Jump

    ERIC Educational Resources Information Center

    Muller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why…

  15. Supersonic Jump

    ERIC Educational Resources Information Center

    Muller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why…

  16. Vertical jump coordination: fatigue effects.

    PubMed

    Rodacki, André Luiz Felix; Fowler, Neil E; Bennett, Simon J

    2002-01-01

    The aim of this study was to investigate the segmental coordination of vertical jumps under fatigue of the knee extensor and flexor muscles. Eleven healthy and active subjects performed maximal vertical jumps with and without fatigue, which was imposed by requesting the subjects to extend/flex their knees continuously in a weight machine, until they could not lift a load corresponding to approximately 50% of their body weight. Knee extensor and flexor isokinetic peak torques were also measured before and after fatigue. Video, ground reaction forces, and electromyographic data were collected simultaneously and used to provide several variables of the jumps. Fatiguing the knee flexor muscles did not reduce the height of the jumps or induce changes in the kinematic, kinetic, and electromyographic profiles. Knee extensor fatigue caused the subjects to adjust several variables of the movement, in which the peak joint angular velocity, peak joint net moment, and power around the knee were reduced and occurred earlier in comparison with the nonfatigued jumps. The electromyographic data analyses indicated that the countermovement jumps were performed similarly, i.e., a single strategy was used, irrespective of which muscle group (extensor or flexors) or the changes imposed on the muscle force-generating characteristics (fatigue or nonfatigue). The subjects executed the movements as if they scaled a robust template motor program, which guided the movement execution in all jump conditions. It was speculated that training programs designed to improve jump height performance should avoid severe fatigue levels, which may cause the subjects to learn and adopt a nonoptimal and nonspecific coordination solution. It was suggested that the neural input used in the fatigued condition did not constitute an optimal solution and may have played a role in decreasing maximal jump height achievement.

  17. Distinct karyotypes in two offspring of a man with jumping translocation karyotype 45,XY,der(16)t(16;22)(q24;q11.2), -22 [59]/45,XY,der(1)t(1;22)(p36;q11.2), -22 [11]/45,XY,der(22)t(22;22)(p13;q11.2), -22 [10].

    PubMed

    Hu, Hua; Yao, Hong; Dong, Yanlin; Long, Yang; Xu, Liang; Hu, Bing; Xu, Gang; Liang, Zhiqing

    2014-08-01

    We examined a man and his daughter, who both had different jumping translocation karyotypes. The man's wife was pregnant and had been referred for prenatal diagnosis of the fetus. The karyotype of the husband's peripheral blood lymphocytes was 45,XY,der(16)t(16;22)(q24;q11.2), -22 [59]/45,XY,der(1)t(1;22)(p36;q11.2), -22 [11]/45,XY,der(22)t(22;22)(p13;q11.2), -22 [10]. The karyotype of the daughter's peripheral blood lymphocytes was 45,XX,der(16)t(16;22)(q24;q11.2), -22 [45]/45,XX,der(9)t(9;22)(q34;q11.2), -22 [30]/45,XX,der(5)t(5;22)(q35;q11.2), -22 [25]. The wife and the fetus both had a normal karyotype. To the best of our knowledge, the present familial transmitted jumping translocation has not been previously described and the jumping translocation in the husband and daughter did not cause any phenotypic abnormalities.

  18. Puddle Jumping

    NASA Astrophysics Data System (ADS)

    Wollman, Andrew; Snyder, Trevor; Weislogel, Mark

    2014-11-01

    Rebounding droplets from superhydrophobic surfaces have attracted significant public and scientific attention because they are both enjoyable as well as industrially relevant. Demonstrations of bouncing droplets with volumes between 0.003 and 0.03 ml are common in the literature and limited primarily by gravity. In this presentation we demonstrate large droplet ``rebounds'' made possible by low-gravity testing in a drop tower. The up to 300 ml drops are best described as puddles that launch in a nearly identical manner to rebounding drops 4 orders of magnitude smaller in volume. A variety of jumping liquid and gas puddles are shown including puddles of highly specified and unusual initial geometry. The large length sales of the capillary fluidic surfaces ~ O (10 cm) enable 3D printing of all superhydrophobic surface topologies demonstrated. In addition, we demonstrate such puddle jumping as a passive drop-on-demand technique for large low-gravity drop dynamics investigations; such as collisions, rebounds, heat and mass transfer, and containerless possessing.

  19. Supersonic Jump

    NASA Astrophysics Data System (ADS)

    Müller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why his start height had to be that high (when the tremendous effort that was necessary for leaping from such a height required 50 million, as reported in the press). More precisely, can you give an estimate for the minimal start height—which we will call the Baumgartner limit, zB—of a sky diver who wants to break the sound barrier in free fall?

  20. Electrostatic control of DNA intersegmental translocation by the ETS transcription factor ETV6.

    PubMed

    Vo, Tam; Wang, Shuo; Poon, Gregory M K; Wilson, W David

    2017-08-11

    To find their DNA target sites in complex solution environments containing excess heterogeneous DNA, sequence-specific DNA-binding proteins execute various translocation mechanisms known collectively as facilitated diffusion. For proteins harboring a single DNA contact surface, long-range translocation occurs by jumping between widely spaced DNA segments. We have configured biosensor-based surface plasmon resonance to directly measure the affinity and kinetics of this intersegmental jumping by the ETS-family transcription factor ETS variant 6 (ETV6). To isolate intersegmental target binding in a functionally defined manner, we pre-equilibrated ETV6 with excess salmon sperm DNA, a heterogeneous polymer, before exposing the nonspecifically bound protein to immobilized oligomeric DNA harboring a high-affinity ETV6 site. In this way, the mechanism of ETV6-target association could be toggled electrostatically through varying NaCl concentration in the bulk solution. Direct measurements of association and dissociation kinetics of the site-specific complex indicated that 1) freely diffusive binding by ETV6 proceeds through a nonspecific-like intermediate, 2) intersegmental jumping is rate-limited by dissociation from the nonspecific polymer, and 3) dissociation of the specific complex is independent of the history of complex formation. These results show that target searches by proteins with an ETS domain, such as ETV6, whose single DNA-binding domain cannot contact both source and destination sites simultaneously, are nonetheless strongly modulated by intersegmental jumping in heterogeneous site environments. Our findings establish biosensors as a general technique for directly and specifically measuring target site search by DNA-binding proteins via intersegmental translocation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Simulations of Polymer Translocation

    NASA Astrophysics Data System (ADS)

    Vocks, H.

    2008-07-01

    Transport of molecules across membranes is an essential mechanism for life processes. These molecules are often long, and the pores in the membranes are too narrow for the molecules to pass through as a single unit. In such circumstances, the molecules have to squeeze -- i.e., translocate -- themselves through the pores. DNA, RNA and proteins are such naturally occuring long molecules in a variety of biological processes. Understandably, the process of translocation has been an active topic of current research: not only because it is a cornerstone of many biological processes, but also due to its relevance for practical applications. Translocation is a complicated process in living organisms -- the presence of chaperone molecules, pH, chemical potential gradients, and assisting molecular motors strongly influence its dynamics. Consequently, the translocation process has been empirically studied in great variety in biological literature. Study of translocation as a biophysical process is more recent. Herein, the polymer is simplified to a sequentially connected string of N monomers as it passes through a narrow pore on a membrane. The quantities of interest are the typical time scale for the polymer to leave a confining cell (the ``escape of a polymer from a vesicle'' time scale), and the typical time scale the polymer spends in the pore (the ``dwell'' time scale) as a function of N and other parameters like membrane thickness, membrane adsorption, electrochemical potential gradient, etc. Our research is focused on computer simulations of translocation. Since our main interest is in the scaling properties, we use a highly simplified description of the translocation process. The polymer is described as a self-avoiding walk on a lattice, and its dynamics consists of single-monomer jumps from one lattice site to another neighboring one. Since we have a very efficient program to simulate such polymer dynamics, which we decribe in Chapter 2, we can perform long

  2. Polymer translocation through a cylindrical channel

    NASA Astrophysics Data System (ADS)

    Wong, Chiu Tai Andrew; Muthukumar, M.

    2008-04-01

    A formalism of polymer translocation through a cylindrical channel of finite diameter and length between two spherical compartments is developed. Unlike previous simplified systems, the finite diameter of the channel allows the number of polymer segments inside the channel to be adjusted during translocation according to the free energy of possible conformations. The translocation process of a Gaussian chain without excluded volume and hydrodynamic interactions is studied using exact formulas of confinement free energy under this formalism. The free energy landscape for the translocation process, the distribution of the translocation time, and the average translocation time are presented. The complex dependencies of the average translocation time on the length and diameter of the channel, the sizes of the donor and receptor compartments, and the chain length are illustrated.

  3. Robertsonian translocations

    SciTech Connect

    1993-12-31

    Chapter 27, describes the occurrence of Robertsonian translocations (RTs), which refer to the recombination of whole chromosome arms, in both monocentric and dicentric chromosomes. The nonrandom participation of acrocentric chromosomes in RTs is documented by various methods, including unbiased ascertainment and ascertainment through trisomy, infertility, unspecified mental retardation, and Prader-Willi syndrome. Causes of nonrandom participation of chromosomes in RTs is presented, as are the following topics: segregation in carriers of RTs and segregation in sperm cells of RT carriers, interchromosomal effects and conclusions. 48 refs., 3 figs., 2 tabs.

  4. Jumping Good Fun

    ERIC Educational Resources Information Center

    Nye, Susan B.

    2010-01-01

    Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…

  5. Optimal Ski Jump

    ERIC Educational Resources Information Center

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  6. Optimal Ski Jump

    ERIC Educational Resources Information Center

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  7. Jumping for Joy.

    ERIC Educational Resources Information Center

    Whiting, Donna L.

    1996-01-01

    Presents an activity from the track and field unit of the Science of Sporting Events program in which teachers and students experiment with four broad jump techniques in order to determine which method will allow them to jump the farthest. Enables students to use a variety of math and science skills including observing, predicting, measuring, and…

  8. Jumping Good Fun

    ERIC Educational Resources Information Center

    Nye, Susan B.

    2010-01-01

    Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…

  9. Jump for the Moon

    NASA Image and Video Library

    Increase bone strength and improve heart and other muscle endurance by performing jump training with a rope, both while stationary and moving. The Train Like an Astronaut project uses the excitemen...

  10. Suicide by jumping.

    PubMed

    Gunnell, D; Nowers, M

    1997-07-01

    This review summarizes the published literature on suicide by jumping, in particular focusing on the social and psychological characteristics of people who have chosen this method of suicide, and the opportunities for prevention. Suicide by jumping accounts for 5% of suicides in England and Wales, and there are marked variations in the use of this method world-wide. A number of locations have gained notoriety as popular places from which to jump. Such sites include The Golden Gate Bridge and Niagara Falls in the USA, and Beachy Head and the Clifton Suspension Bridge in the UK. There is no consistent evidence that those who commit suicide by jumping differ sociodemographically or in their psychopathology from those who use other methods of suicide, although this method is more often used for in-patient suicides, possibly due to lack of access to other means. Survivors of suicidal jumps experience higher subsequent rates of suicide and mental ill health, but the majority do not go on to kill themselves, suggesting that preventive efforts may be worthwhile. This view is supported by other evidence that restricting access to the means of suicide may prevent some would-be suicides. Such measures may also reduce the emotional trauma suffered by those who witness these acts. Health authorities and coroners should consider reviewing local patterns of suicide by jumping, and if necessary institute preventive measures.

  11. Jumping on water

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  12. Spinning hydraulic jump

    NASA Astrophysics Data System (ADS)

    Abderrahmane, Hamid; Kasimov, Aslan

    2013-11-01

    We report an experimental observation of a new symmetry breaking of circular hydraulic jump into a self-organized structure that consists of a spinning polygonal jump and logarithmic-spiral waves of fluid elevation downstream. The waves are strikingly similar to spiral density waves in galaxies. The fluid flow exhibits counterparts of salient morphological features of galactic flows, in particular the outflow from the center, jets, circum-nuclear rings, gas inflows toward the galactic center, and vortices. The hydrodynamic instability revealed here may have a counterpart that plays a role in the formation and sustainability of spiral arms in galaxies.

  13. Kinematic analysis of volleyball spike jump.

    PubMed

    Wagner, H; Tilp, M; von Duvillard, S P; Mueller, E

    2009-10-01

    The purpose of this study was to determine the influence of upper and lower extremity movements on the volleyball spike jump (SJ) and how this movement may differ from the standing vertical jumps due to its asymmetry. The 3-D kinematics of body segments were measured in 16 experienced volleyball players with a VICON motion capture system. The jump heights (JH) of counter-movement (CM) and SJ were determined utilizing a force platform. A significant correlation was found between the JH during the SPJ and the maximal horizontal velocity of the center of mass (CoM) (r=0.71, p=0.002), the minimum height of the CoM (r=-0.68, p=0.004), the JH during CMJ (r=0.66, p=0.006) and SJ (r=0.74, p=0.001), the range of movement of right knee flexion-extension (r=0.76, p=0.001) and the angular velocity of left shoulder hyperextension (r=0.72, p=0.002). The asymmetry of the SJ revealed differences in angles, angular velocities of the right and left legs and arms, and a significant difference (p=0.001) between the distances of the left and right foot center to the CoM. Results of our study suggest the importance of optimal approach technique to reach a maximal JH in the volleyball SJ. The SJ movement is influenced by general jumping ability. Georg Thieme Verlag KG Stuttgart New York.

  14. Effect of orientation in translocation of polymers through nanopores

    NASA Astrophysics Data System (ADS)

    Kotsev, Stanislav; Kolomeisky, Anatoly B.

    2006-08-01

    The motion of polymers with inhomogeneous structure through nanopores is discussed theoretically. Specifically, we consider the translocation dynamics of polymers consisting of double-stranded and single-stranded blocks. Since only the single-stranded chain can go through the nanopore the double-stranded segment has to unzip before the translocation. Utilizing a simple analytical model, translocation times are calculated explicitly for different polymer orientations, i.e., when the single-stranded block enters the pore first and when the double-stranded segment is a leading one. The dependence of the translocation dynamics on external fields, energy of interaction in the double-stranded segment, size of the polymer, and the fraction of double-stranded monomers is analyzed. It is found that the order of entrance into the pore has a significant effect on the translocation dynamics. The theoretical results are discussed using free-energy landscape arguments.

  15. Jump into Action

    ERIC Educational Resources Information Center

    Ball, Stephen; Cohen, Ann; Meyer, Margaret

    2012-01-01

    Jump Into Action (JIA) is a school-based team-taught program to help fifth-grade students make healthy food choices and be more active. The JIA team (physical education teacher, classroom teacher, school nurse, and parent) work together to provide a supportive environment as students set goals to improve food choices and increase activity.…

  16. Jump with Jill

    ERIC Educational Resources Information Center

    Henderson, Nancy

    2010-01-01

    This article profiles Jill Jayne, who was working as a registered nutritionist in the New York City public school system when she was assigned to a group of 25 urban students in an after-school program in East Harlem. In the spring of 2006, Jayne took her "Jump With Jill" show to the streets outside Central Park, collected tips in a tin…

  17. Egg Bungee Jump!

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an egg bungee jumping activity. This activity introduces students to ways that engineers might apply calculations of failure to meet a challenge. Students are required to use common, everyday materials such as rubber bands, string, plastic bags, and eggs. They will apply technological problem solving, material…

  18. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  19. Viscous Puddle Jump

    NASA Astrophysics Data System (ADS)

    Al Jubaree, Taif; Weislogel, Mark; Hua, Tan

    2016-11-01

    The phenomena of spontaneous droplet jump from hydrophobic surfaces during low-g drop tower tests was recently reviewed. Such drops may be over 10,000 times larger than typical terrestrial drops and are more akin to puddles than drops. In this work we investigate the effect of viscosity on the puddle jump process for drop/puddle volumes up to 100 mL and dynamic viscosities up to 950 cSt. The large low-cost hydrophobic surfaces are created using PTFE-coated 320 grit sand paper. We adopt a scaling approach to evaluate the relevant terms of the momentum equation before performing an energy balance for both driving and dissipation terms. A scaling law is corroborated by the experimental data for viscous puddle jump time and puddle recoil velocity. Numerical solutions are also conducted for comparisons. We demonstrate highly damped puddle jumps which may be exploited in turn to study further drop dynamics phenomena such as vanishingly small Weber number drop-wall impacts, over-damped oblique impacts and rebounds, and viscous wall-bound droplet boiling in low-gravity environments.

  20. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  1. Jump into Action

    ERIC Educational Resources Information Center

    Ball, Stephen; Cohen, Ann; Meyer, Margaret

    2012-01-01

    Jump Into Action (JIA) is a school-based team-taught program to help fifth-grade students make healthy food choices and be more active. The JIA team (physical education teacher, classroom teacher, school nurse, and parent) work together to provide a supportive environment as students set goals to improve food choices and increase activity.…

  2. Jump with Jill

    ERIC Educational Resources Information Center

    Henderson, Nancy

    2010-01-01

    This article profiles Jill Jayne, who was working as a registered nutritionist in the New York City public school system when she was assigned to a group of 25 urban students in an after-school program in East Harlem. In the spring of 2006, Jayne took her "Jump With Jill" show to the streets outside Central Park, collected tips in a tin…

  3. Egg Bungee Jump!

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an egg bungee jumping activity. This activity introduces students to ways that engineers might apply calculations of failure to meet a challenge. Students are required to use common, everyday materials such as rubber bands, string, plastic bags, and eggs. They will apply technological problem solving, material…

  4. DC-Powered Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Farhang, Amiri

    2016-01-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…

  5. DC-Powered Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Farhang, Amiri

    2016-01-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…

  6. Effects of assisted jumping on vertical jump parameters.

    PubMed

    Tran, Tai T; Brown, Lee E; Coburn, Jared W; Lynn, Scott K; Dabbs, Nicole C

    2012-01-01

    Vertical jumping ability is a critical skill for success in many sports. Previous studies have reported conflicting results on the effects of heavy-load, light-load, contrast, or plyometric training to improve vertical jump height. A novel jump training method, using assistance via elastic cords or an absolute weight, has received little attention. These studies, using an overspeed paradigm, support assistance as an effective training method compared with free or overload jump training. However, there is a lack of investigation and standardization related to the critical assisted jump training variables of frequency, intensity (assistance level), volume, and rest. Therefore, the purpose of this review was to provide an overview of assisted jump training, associated variables, and potential benefits to enhance vertical jump height.

  7. Drop jumping as a training method for jumping ability.

    PubMed

    Bobbert, M F

    1990-01-01

    Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players' jumping ability, without involving a high risk of injury. Drop jumping is assumed to satisfy these requirements. This assumption is supported by a review of results of training studies. However, it appears that regular jumping exercises can be just as helpful. The same holds for exercises with weights, provided the subjects have no weight-training history. In fact, for unskilled jumpers who have no weight-training history, the effects of training programmes utilising these different exercises are additive. The most effective, efficient and safe way for a coach to improve the jumping achievement of his athletes may well be to submit them first to a training programme utilising regular jumps, then to a weight-training programme and finally to a drop jump training programme. In drop jump training programmes themselves, the improvement in jumping height varies greatly among studies. This variation cannot be explained satisfactorily with the information available on subjects and training programmes. Given the current state of knowledge, coaches seem to have no other option than to strictly copy a programme which has proved to be very effective. Obviously there is a need for more systematic research of the relationship between design and effect of drop jump training programmes. The most important variable to be controlled is drop jumping technique. From a review of biomechanical studies of drop jumping, it becomes clear that jumping technique strongly affects the mechanical output of muscles. The biomechanics of 2 techniques are discussed. In the bounce drop jump the downward movement after the drop is reversed as soon as possible into an upward push-off, while in the countermovement drop jump this is done more gradually by increasing the amplitude of the

  8. Injuries and bungee jumping.

    PubMed

    Vanderford, L; Meyers, M

    1995-12-01

    Bungee jumping is a recreational sport that has gained world-wide popularity since its inception in 1955. Over 2 million individuals have performed bungee jumps since that time. The injuries and deaths which have occurred have made safety an integral issue in the practice of the sport. Although early reports of significant injuries are infrequent, more recent investigations have indicated severe sequelae, including ocular haemorrhage, peroneal nerve palsy and quadriplegia. Reports of minor trauma have also been numerous. Aetiology includes natural forces, impact, technician error, equipment failure and repetitive stress. Free-falling approximately 60 to 120m (200 to 400ft) and then being jerked to safety at the last minute creates a certain amount of unavoidable, and almost desired risk. A reduction in acute trauma may be possible with immediate changes in equipment, technique and regulations. Further studies are warranted to determine the future direction and safety of this recreational sport.

  9. Optimal Ski Jump

    NASA Astrophysics Data System (ADS)

    Rebilas, Krzysztof

    2013-02-01

    Consider a skier who goes down a takeoff ramp, attains a speed V, and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is α. What is the optimal angle α that makes the jump the longest possible for the fixed magnitude of the velocity V? Of course, in practice, this is a very sophisticated problem; the skier's range depends on a variety of complex factors in addition to V and α. However, if we ignore these and assume the jumper is in free fall between the takeoff ramp and the landing point below, the problem becomes an exercise in kinematics that is suitable for introductory-level students. The solution is presented here.

  10. Jumping number in the droplet jumping by resonant AC electrowetting

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Lee, Seung Jun; Kang, Kwang Hyoung

    2010-11-01

    The droplet jumping by resonant AC electrowetting (DJ-RACE) is recently introduced to transport droplets to vertical direction, whereby three-dimensional digital microfluidics are envisioned. In DJ-RACE, the central mechanism of the droplet jumping is the conversion of the surface energy stored by resonant AC electrowetting to the kinetic energy for jumping. Here, we newly introduce the jumping number (Ju=γ/ρgR^2), measuring the energy conversion in the jumping process and, thus, the feasibility of droplet jumping. Ju interprets that droplets having higher Ju can make higher and easier jumping, and smaller and lighter droplets with higher surface tension can have higher Ju. Practically, Ju should be greater than 1.5 for the droplet jumping, and active jumping was observed when Ju is greater than 5. In addition, Ju can predict the effect of diverse physicochemical changes in a system such as enzymatic additives or impurities on jumping, where it can also provide diverse strategies to compensate these changes. The newly introduced Ju could be the fundamental and useful parameter in the three-dimensional digital microfluidic devices based on DJ-RACE.

  11. Jumping hoops on water

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Kim, Ho-Young

    2015-11-01

    Small aquatic arthropods, such as water striders and fishing spiders, are able to jump off water to a height several times their body length. Inspired by the unique biological motility on water, we study a simple model using a flexible hoop to provide fundamental understanding and a mimicking principle of small jumpers on water. Behavior of a hoop on water, which is coated with superhydrophobic particles and initially bent into an ellipse from an equilibrium circular shape, is visualized with a high speed camera upon launching it into air by releasing its initial elastic strain energy. We observe that jumping of our hoops is dominated by the dynamic pressure of water rather than surface tension, and thus it corresponds to the dynamic condition experienced by fishing spiders. We calculate the reaction forces provided by water adopting the unsteady Bernoulli equation as well as the momentum loss into liquid inertia and viscous friction. Our analysis allows us to predict the jumping efficiency of the hoop on water in comparison to that on ground, and to discuss the evolutionary pressure rendering fishing spiders select such dynamic behavior.

  12. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    PubMed

    Wong, Jeremy D; Bobbert, Maarten F; van Soest, Arthur J; Gribble, Paul L; Kistemaker, Dinant A

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  13. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    PubMed Central

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  14. The mystery of chromosomal translocations in cancer.

    PubMed

    Koss, L G

    2007-01-01

    Chromosomal translocations in human cancer may result in products that can be suppressed by targeting drugs. An example is bcr-abl tyrosine kinase in chronic myelogenous leukemia that can be treated with imatinib mesylate. However, the mechanisms of translocations or exchanges of chromosomal segments are virtually unknown. In this summary, chromosomal translocations in human cancer are compared with 'crossing over' of chromosomal segments occurring during the first meiotic division. Several proposed mechanisms of the exchange of DNA between and among chromosomes are discussed. The conditions that appear essential for these events to occur are listed. Among them are proximity of the involved DNA segments, mechanisms of excising the target DNA, its transport to the new location, and integration into the pre-existing chromosome. The conclusion based on extensive review of the literature is that practically nothing is known about the mechanism of 'crossing over' or translocation. Based on prior work on normal human cells, it is suggested that only one of the two autosomes participates in these events that may include loss of heterozygozity, another common abnormality in human cancer.

  15. Translocation of a Polymer through a Crowded Channel under Electrical Force

    PubMed Central

    Gen, Yunxin; Xie, Hujun; Jiang, Zhouting; Yang, Zhiyong

    2017-01-01

    The translocation of a polymer chain through a crowded cylindrical channel is studied using the Langevin dynamics simulations. The influences of the field strength F, the chain length N, and the crowding extent ρ on the translocation time are evaluated, respectively. Scaling relation τ ~ F−α is observed. With the crowding extent ρ increasing, the scaling exponent α becomes large. It is found that, for noncrowded channel, translocation probability drops when the field strength becomes large. However, for high-crowded channel, it is the opposite. Moreover, the translocation time and the average translocation time for all segments both have exponential growth with the crowding extent. The investigation of shape factor 〈δ〉 shows maximum value with increasing of the number of segments outside s. At last, the number of segments inside channel Nin in the process of translocation is calculated and a peak is observed. All the information from the study may benefit protein translocation. PMID:28459062

  16. Kinematics of the long jump

    NASA Astrophysics Data System (ADS)

    Tan, Ajun; Zumerchik, John

    2000-03-01

    The long jump is one of the most natural events in track and field athletics. The jumper is allowed to run a 40-m runway at top speed and jump as far as possible from a takeoff board. It is an event in which the natural ability of the athlete plays a large role and technique is of secondary importance. The two most important factors in the long jump are speed and elevation.

  17. Macular translocation: histopathologic findings in swine eyes.

    PubMed

    Roig-Melo, E A; Afaro, D V; Heredia-Elizondo, M L; Yarbrough, L M; Game, A B; Apple, D J; Quirol, H M

    2000-01-01

    Macular translocation has been proposed as an alternative technique in the treatment of some cases of choroidal neovascularization. The purpose of the paper is to report the histopathologic findings in the retina of swine eyes undergone macular translocation. Ten eyes of ten Yucatan pigs underwent posterior pars plana vitrectomy and scleral imbrication to achieve macular translocation. Mattress sutures were preplaced at the equator of the eyes. After a pars plana vitrectomy, balanced saline solution was injected under the temporal retina to produce a retinal detachment. Scleral imbrication was achieved by tightening the mattress sutures. An air-fluid exchange was performed and the eye was filled with sulfur hexafluoride 18%. The eyes were enucleated 2, 4, 8 and 12 weeks after surgery and analyzed under light and electron microscopy. Macular translocation was achieved in all cases. The major findings consist of a minimal decrease in the number of photoreceptors outer segments; also a change in the morphology was noted. This included some degree of loss of vertical alignment and an increase in the interphotoreceptor space. There was a recovery in the morphology of the photoreceptors over time. Minimal changes in the photoreceptors and retinal pigment epithelium are observed when macular translocation is performed with recovery of these changes over time. Scleral imbrication is an effective technique to achieve translocation of the fovea.

  18. Driven Polymer Translocation into a Crosslinked Gel

    NASA Astrophysics Data System (ADS)

    Sean, David; Slater, Gary

    2015-03-01

    In a typical polymer translocation setup, a thin membrane is used to separate two chambers and a polyelectrolyte is driven by an electric field to translocate from one side of the membrane to the other via a small nanopore. However, the high translocation rate that results from the forces required to drive this process makes optical and/or electrical analysis of the translocating polymer challenging. Using coarse-grained Langevin Dynamics simulations we investigate how the translocation process can be slowed down by placing a crosslinked gel on the trans-side of the membrane. Since the driving electric field is localized in the neighborhood of the nanopore, electrophoretic migration is only achieved by a ``pushing'' action from the polymer segment residing in the nanopore. For the case of a flexible polymer we find that the polymer fills the gel pores via multiple ``herniation'' processes, whereas for a semi-flexible chain in a tight gel there are no hernias and the polymer follows a smooth curvilinear path. Moreover, for the case of a semi-flexible polymer the gel makes the translocation process more uniform by reducing the acceleration at the end of the process.

  19. Phase jump method for efficiency enhancement in free-electron lasers

    NASA Astrophysics Data System (ADS)

    Mak, Alan; Curbis, Francesca; Werin, Sverker

    2017-06-01

    The efficiency of a free-electron laser can be enhanced by the phase jump method. The method utilizes the phase-shifting chicanes in the drift sections between the undulator segments. By applying appropriate phase jumps, the microbunched electron beam can decelerate and radiate coherently beyond the initial saturation, enabling further energy transfer to the optical beam. This article presents a new physics model for the phase jump method, and supports it with numerical simulations. Based on the electron dynamics in the longitudinal phase space, the model describes the energy extraction mechanism, and addresses the selection criteria for the phase jump magnitude. While the ponderomotive bucket is stationary, energy can be extracted from electrons outside the bucket. With the aid of the new model, a comparison is made between the phase jump method and undulator tapering. The model also explores the potential of the phase jump method to suppress the growth of synchrotron sidebands in the optical spectrum.

  20. Pure 9p trisomy derived from a terminal balanced unreciprocal translocation.

    PubMed

    Brambila-Tapia, A J L; Neira, V A; Vásquez-Velásquez, A I; Jimenez-Arredondo, R E; Chávez-González, E L; Picos-Cárdenas, V J; Fletes-Rayas, A L; Figuera, L E

    2014-01-01

    The 9p trisomy is a relatively frequent disorder, while pure 9p trisomies are less frequent and usually derived from 9;22 translocations, duplications or 9p extra chromosomes. Here we report a patient with pure trisomy 9p derived from a terminal balanced unreciprocal translocation. The patient derived to the genetic service by psychomotor delay, presented at 2 years and 11 months: short stature, open anterior fontanelle, dysplastic ears, facial dysmorphisms, long and broad first toes with hypoplastic nails, central nervous system and skeletal alterations. The patient karyotype was: 46,XY,der(10)t(9;10) (p13.1;qter)mat while the mother karyotype was: 46,XX,t(9;10)(p13.1;qter). The presence of the subtelomeric region of 10q showed by FISH as well as the duplication of 9p subtelomere was further confirmed with multiplex ligation dependent probe amplification (MLPA) for the subtelomeric region of all chromosomes. The mechanism of formation seems to be due to a telomere break in 10q leading to loss of telomeric functions, permitting the 9p fusion; this has been supported with molecular probes showing telomere shortening in interstitial telomeric repeats, which are unable to prevent chromosome fusion. This is one of the few cases reported with terminal translocations (not jumping) preserving the subtelomeric region and highlights the importance of subtelomeric probes in terminal arrangements, and the utility of molecular probes, such as MLPA in defining this kind of abnormalities. In the clinical context, the patient presented a high proportion of 9p trisomy features which is expected considering the large 9p segment involved and the presence of the critical region 9p22.

  1. More Puddle Jumping

    NASA Astrophysics Data System (ADS)

    Attari, Babak; Weislogel, Mark; Wollman, Andrew; Chen, Yongkang; Snyder, Trevor

    2016-11-01

    Large droplets and puddles jump spontaneously from sufficiently hydrophobic surfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 10,000 times larger than their normal terrestrial counterparts. We provide or confirm quick and qualitative design guides for such 'drop shooters' as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, drop volume, and fluid properties including contact angle. The latter are determined via profile image comparisons with numerical equilibrium interface computations. Water drop volumes of 0.04 to 400 mL at ejection speeds of -0.007 to 0.12 m/s are demonstrated. An example application of the puddle jump method is made to the classic problem of regime mapping for low-gravity phase change heat transfer for large impinging drops. Many other candidate problems might be identified.

  2. Exploring Lightning Jump Characteristics

    NASA Technical Reports Server (NTRS)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  3. Are there quantum jumps

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.

    2014-09-01

    Generally, one thinks of a “quantum jump” as the process in which an electron “jumps” between a pair of quantum states, even as the process is treated within perturbation theory. This jump of an electron has remained a key point of conservative (i.e., traditional) quantum mechanics. But, the question of the time dependence of such a transition, e.g. the time for an atom to be ionized by radiation, is somewhat different than this view. A detailed approach in which an incoming wave first polarizes the quantum states and then completes the transition has allowed for a detailed discussion of the smooth transition of the electron from one state to the next. Here, we will discuss the history of the process, and illustrate the approach with the question of “how long does it take for an electron to emit a phonon?” The entire process arises from the proper application of wave mechanics and obviates the need to even consider a discussion of quantum jumps.

  4. Determination of RNA orientation during translocation through a biological nanopore.

    PubMed

    Butler, Tom Z; Gundlach, Jens H; Troll, Mark A

    2006-01-01

    We investigate single-molecule electrophoretic translocation of A(50), C(50), A(25)C(50), and C(50)A(25) RNA molecules through the alpha-hemolysin transmembrane protein pore. We observe pronounced bilevel current blockages during translocation of A(25)C(50) and C(50)A(25) molecules. The two current levels observed during these bilevel blockages are very similar to the characteristic current levels observed during A(50) and C(50) translocation. From the temporal ordering of the two levels within the bilevel current blockages, we infer whether individual A(25)C(50) and C(50)A(25) molecules pass through the pore in a 3'-->5' or 5'-->3' orientation. Correlation between the level of current obstruction and the inferred A(25)C(50) or C(50)A(25) orientation indicates that 3'-->5' translocation of a poly C segment causes a significantly deeper current obstruction than 5'-->3' translocation. Our analysis also suggests that the 3' ends of C(50) and A(25)C(50) RNA molecules are more likely to initiate translocation than the 5' ends. Orientation dependent differences in a smaller current blockage that immediately precedes many translocation events suggest that this blockage also contains information about RNA orientation during translocation. These findings emphasize that the directionality of polynucleotide molecules is an important factor in translocation and demonstrate how structure within ionic current signals can give new insights into the translocation process.

  5. Construction and Uses of New Compound B-A-A Maize Chromosome Translocations

    PubMed Central

    Sheridan, William F.; Auger, Donald L.

    2006-01-01

    Maize B-A translocations result from reciprocal interchanges between a supernumerary B chromosome and an arm of an essential A chromosome. Because of the frequent nondisjunction of the B centromere at the second pollen mitosis, B-A translocations have been used to locate genes to chromosome arms and to study the dosage effects of specific A segments. Compound B-A translocations (B-A-A translocations) are created by bringing together a simple B-A translocation with an A-A translocation in which breakpoints in the A-A and B-A translocations are in the same arm. Recombination in the region of shared homology of these A chromosome segments creates a B-A-A translocation. Success in creating and testing for a new B-A-A translocation requires that the B-A translocation be proximal to the A-A translocation and that the A-A translocation be proximal to the tester locus. The breakpoints of most of the A-A translocations have been cytologically defined by earlier investigators. Previous investigators have produced 16 B-A-A translocations and one B-A-A-A translocation, which collectively define 35 A chromosome breakpoints. We have enlarged this group by creating 64 new B-A-A translocations. We present a summary of the total of 81 B-A-A translocations showing their distribution among the chromosome arms and the 163 cytologically defined chromosome segments delimited by them. We also illustrate the method of construction of these B-A-A stocks and their uses. PMID:17057247

  6. Physics and the Vertical Jump

    ERIC Educational Resources Information Center

    Offenbacher, Elmer L.

    1970-01-01

    The physics of vertical jumping is described as an interesting illustration for motivating students in a general physics course to master the kinematics and dynamics of one dimensional motion. The author suggests that mastery of the physical principles of the jump may promote understanding of certain biological phenomena, aspects of physical…

  7. Physiology in conservation translocations

    PubMed Central

    Tarszisz, Esther; Dickman, Christopher R.; Munn, Adam J.

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining ‘success’ as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall

  8. DC-Powered Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2016-02-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.

  9. [Anxiety associated with parachute jumping].

    PubMed

    Kowalczyk, Edward; Kura, Marcin; Ciećwierz, Julita

    2012-08-01

    The aim of the study was to estimate an influence of parachute jumps on anxiety among professional soldiers from air-borne forces. The investigation was carried out on 46 professional soldiers from 16 Air-Borne Battalion, patients of outpatient department of 4495 Military Unit, men at 20 to 45 age, healthy--admitted to parachute jumping in air-borne forces. They were divided on groups according to a knowledge and an experience in parachuting. In order to estimate the level of nervous tension and mental stress, personal questionnaires in accordance with STAI were carried out on free day, day of parachute jump and 24h after jump. The results show the influence of parachute jumps on the parameters of psychological stress.

  10. [Pneumothorax after "reversed" bungee jump].

    PubMed

    Pedersen, M N; Jensen, B N

    1999-10-04

    We here present a case of pneumothorax in a 24 year-old previously healthy man who had performed an uncomplicated "reversed" bungee jump a few hours before. A high resolution CT scan of the thorax taken three weeks later was normal. The high energy produced during a "reversed" bungee jump, up to 7-8 g corresponds to the threshold value for NASA astronauts, and can cause injuries in healthy persons. In this case we believe that there is a correlation between the pneumothorax and the high energy jump. Bungee jumping is a very popular amusement, millions of jumps have been carried out since 1979, when the sport was introduced. No register and therefore no ratio of risk exists.

  11. Electrostatic charging of jumping droplets

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Preston, Daniel J.; Enright, Ryan; Wang, Evelyn N.

    2013-09-01

    With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet-surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.

  12. Electrostatic charging of jumping droplets.

    PubMed

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-01-01

    With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet-surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.

  13. Thersites: a `jumping' Trojan?

    NASA Astrophysics Data System (ADS)

    Tsiganis, K.; Dvorak, R.; Pilat-Lohinger, E.

    2000-02-01

    In this paper, we examine the dynamical evolution of the asteroid (1868) Thersites, a member of the Trojan belt. Thersites is librating around the Lagrangian point L_4, following, however, a chaotic orbit. The equations of motion for Thersites as well as for a distribution of neighboring initial conditions are integrated numerically for 50 million years in the Outer Solar System model (OSS), which consists of the Sun and the four giant planets. Our results indicate that the probability that this asteroid will eventually escape from the Trojan swarm is rather high. In fact, 20% from our initial distribution escaped within the integration time. Many of the remaining ones also show characteristic `jumps' in the orbital elements, especially the inclination. Secular resonances involving the nodes of the outer planets are found to be responsible for this chaotic behavior. The width of libration and eccentricity values that lead to grossly unstable orbits are calculated and compared with previously known results on the stability of the Trojans. Finally, a very interesting behavior has been observed for one of the escaping asteroids as he `jumped' from L_4 to L_5 where he remained performing a highly inclined libration for ~ 2 Myrs before escaping from the Trojan swarm. According to Homer, Thersites was not only the ugliest of all Greeks that took part in the Trojan war, but also had the most intolerable personality. His nasty habit of making fun of everybody cost him his life, as the last person for whom he spoke ironically about was Achilles, the mightiest warrior of all Greeks, who killed Thersites with just one punch!

  14. Energy jump during bond breaking

    NASA Astrophysics Data System (ADS)

    Miyazawa, Naoki; Hakamada, Masataka; Mabuchi, Mamoru

    2017-07-01

    In current fracture theory, the fracture stress is related to the surface energy on the basis of linear elastic theory. However, the fracture stress does not necessarily exceed the stress required to break atomic bonds. Here, we show that a jump in the inelastic separation energy is generated by fracture, where the inelastic separation energy is the energy between the separation planes measured by excluding the contribution of elastic relaxation, and the stress at the onset of the energy jump is the fracture stress. Analysis of the electronic states of β -SiC (cubic SiC), Ge, and Cu by first-principles tensile tests shows that the electrons redistribute during surface formation in the transition from the onset to the end of the energy jump. Therefore, it is suggested that the inelastic separation energy at the end of the energy jump can be identified with the fracture energy. Also, first-principles shear tests show that an energy jump occurs during shearing for β -SiC , but not for Ge and Cu. Thus, an energy jump is a sign of fracture (bond breaking), and an energy jump during shearing is a good indicator estimating the ductile and brittle character. These principles can hold for any solid and will therefore be beneficial for the fundamental understanding of the mechanical properties of solids and for their industrial applications.

  15. Chaperone-assisted translocation of flexible polymers in three dimensions

    NASA Astrophysics Data System (ADS)

    Suhonen, P. M.; Linna, R. P.

    2016-01-01

    Polymer translocation through a nanometer-scale pore assisted by chaperones binding to the polymer is a process encountered in vivo for proteins. Studying the relevant models by computer simulations is computationally demanding. Accordingly, previous studies are either for stiff polymers in three dimensions or flexible polymers in two dimensions. Here, we study chaperone-assisted translocation of flexible polymers in three dimensions using Langevin dynamics. We show that differences in binding mechanisms, more specifically, whether a chaperone can bind to a single site or multiple sites on the polymer, lead to substantial differences in translocation dynamics in three dimensions. We show that the single-binding mode leads to dynamics that is very much like that in the constant-force driven translocation and accordingly mainly determined by tension propagation on the cis side. We obtain β ≈1.26 for the exponent for the scaling of the translocation time with polymer length. This fairly low value can be explained by the additional friction due to binding particles. The multiple-site binding leads to translocation the dynamics of which is mainly determined by the trans side. For this process we obtain β ≈1.36 . This value can be explained by our derivation of β =4 /3 for constant-bias translocation, where translocated polymer segments form a globule on the trans side. Our results pave the way for understanding and utilizing chaperone-assisted translocation where variations in microscopic details lead to rich variations in the emerging dynamics.

  16. Transmission of a cyclical translocation in two cranberry cultivars.

    PubMed

    Ortiz, R; Vorsa, N

    2004-01-01

    The occurrence of cyclical translocation involving three non-homologous chromosomes and affecting pollen stainability has been observed in two cranberry cultivars: Howes, and Wilcox, a progeny of Howes. These cultivars were crossed with six normal cranberry cultivars to study the transmission of the cyclical translocation to their progeny. The translocational progeny were determined by pollen tetrad analysis. A total of 102 individuals (6 crosses) were analyzed in the progeny of Wilcox and 116 individuals (5 crosses) in the progeny of Howes. The ratios observed in the progeny of Wilcox and Howes were 71 translocated: 31 normal, and 79 translocated: 37 normal, respectively. The segregations deviated from the expected 1 translocated: 1 normal progeny ratio, but fit either a 3:1 or 2:1 ratio. The altered segregations may indicate the presence of a balanced lethal system located in the translocated segments of both Howes and Wilcox. Sterile individuals were found in the progeny of WilcoxxHowes, which could indicate that the two parents have non-identical translocations. The translocated progeny of both cultivars had a normal distribution for pollen stainability, which indicated that both the occurrence of crossing over in the interstitial region and the segregation of chromosomes are under polygenic control.

  17. Archer fish jumping prey capture: kinematics and hydrodynamics.

    PubMed

    Shih, Anna M; Mendelson, Leah; Techet, Alexandra H

    2017-04-15

    Smallscale archer fish, Toxotes microlepis, are best known for spitting jets of water to capture prey, but also hunt by jumping out of the water to heights of up to 2.5 body lengths. In this study, high-speed imaging and particle image velocimetry were used to characterize the kinematics and hydrodynamics of this jumping behavior. Jumping used a set of kinematics distinct from those of in-water feeding strikes and was segmented into three phases: (1) hovering to sight prey at the surface, (2) rapid upward thrust production and (3) gliding to the prey once out of the water. The number of propulsive tail strokes positively correlated with the height of the bait, as did the peak body velocity observed during a jump. During the gliding stage, the fish traveled ballistically; the kinetic energy when the fish left the water balanced with the change in potential energy from water exit to the maximum jump height. The ballistic estimate of the mechanical energy required to jump was comparable with the estimated mechanical energy requirements of spitting a jet with sufficient momentum to down prey and subsequently pursuing the prey in water. Particle image velocimetry showed that, in addition to the caudal fin, the wakes of the anal, pectoral and dorsal fins were of nontrivial strength, especially at the onset of thrust production. During jump initiation, these fins were used to produce as much vertical acceleration as possible given the spatial constraint of starting directly at the water's surface to aim. © 2017. Published by The Company of Biologists Ltd.

  18. Fluctuations in polymer translocation

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.; Mallick, K.

    2010-07-01

    We investigate a model of chaperone-assisted polymer translocation through a nanopore in a membrane. Translocation is driven by irreversible random sequential absorption of chaperone proteins that bind to the polymer on one side of the membrane. The proteins are larger than the pore and hence the backward motion of the polymer is inhibited. This mechanism rectifies Brownian fluctuations and results in an effective force that drags the polymer in a preferred direction. The translocated polymer undergoes an effective biased random walk and we compute the corresponding diffusion constant. Our methods allow us to determine the large deviation function which, in addition to velocity and diffusion constant, contains the entire statistics of the translocated length.

  19. Proximal-to-distal sequencing in vertical jumping with and without arm swing.

    PubMed

    Chiu, Loren Z F; Bryanton, Megan A; Moolyk, Amy N

    2014-05-01

    Vertical jumping performance is dependent on muscle strength and motor skill. An understanding of motor skill strategies and their influence on jumping mechanics provides insight into how to improve performance. This study aimed to determine whether kinematic sequencing strategy influenced jump height, the effect of sequencing on jumping mechanics, and whether arm swing influences sequencing strategy. Women volleyball players (n = 16) performed vertical jumps with and without arm swing on force platforms while recorded with a 6-camera motion capture system. Sequencing strategy was determined as the relative time delay between pelvis and knee extension. A long time delay indicated a proximal-to-distal strategy, whereas no time delay represented a simultaneous strategy. Longer relative time delay was correlated with higher jump height in jumps with (r = 0.82, p < 0.001) and without arm swing (r = 0.58, p = 0.02). Longer relative time delay and higher jump height were associated with greater hip extensor and ankle plantar flexor net joint moments (NJM), and greater ratio of concentric to eccentric knee extensor NJM (p ≤ 0.05). Longer relative time delay and higher jump height were correlated with greater thigh and leg angular accelerations (p ≤ 0.05). These kinetic and kinematic variables, along with relative time delay and jump height were greater in jumps with arm swing than without (p ≤ 0.05), indicating arm swing promotes use of a proximal-to-distal strategy. Use of a proximal-to-distal strategy is associated with greater NJM and segment accelerations, which may contribute to better vertical jump performance.

  20. The Jumps: Contemporary Theory, Technique and Training.

    ERIC Educational Resources Information Center

    Wilt, Fred, Ed.

    This collection of essays offers a cross section of modern theory and progress in the training of the four "jumping" events in track and field athletics--pole vault, high jump, long jump, and triple jump. It is written for athletic coaches in these specialties. Articles range from general and historical reviews of technique and training…

  1. Gas Transfer in Hydraulic Jumps.

    DTIC Science & Technology

    1981-07-01

    gas transfer based on measurements made in a hydraulic model. 5. Hydraulic jumps are flow phenomena that are part of the energy dissipation design at...gas transfer to energy dissipation. In a hydraulic jump, the energy loss is related to the Froude number of incoming flow. Fig- ures 15, 16, and 17...number in a similar manner for each of the unit discharges tested. As energy dissipation and Froude number in- creased, gas loss increased for a

  2. The Effect of Depth Jumps and Weight Training on Leg Strength and Vertical Jump.

    ERIC Educational Resources Information Center

    Clutch, David; And Others

    1983-01-01

    Two experiments examined the results of depth jumping programs to determine: (1) whether certain depth jumping routines, when combined with weight training, are better than others; and (2) the effect of depth jumping on athletes already in training. Results indicated that depth jumping is effective, but no more so than regular jumping routines.…

  3. Kinematic Chains in Ski Jumping In-run Posture.

    PubMed

    Janurová, Eva; Janura, Miroslav; Cabell, Lee; Svoboda, Zdeněk; Vařeka, Ivan; Elfmark, Milan

    2013-12-18

    The concept of kinematic chains has been systematically applied to biological systems since the 1950s. The course of a ski jump can be characterized as a change between closed and open kinematic chains. The purpose of this study was to determine a relationship between adjacent segments within the ski jumper's body's kinematic chain during the in-run phase of the ski jump. The in-run positions of 267 elite male ski jumpers who participated in the FIS World Cup events in Innsbruck, Austria, between 1992 and 2001 were analyzed (656 jumps). Two-dimensional (2-D) kinematic data were collected from the bodies of the subjects. Relationships between adjacent segments of the kinematic chain in the ski jumper's body at the in-run position are greater nearer the chain's ground contact. The coefficient of determination between the ankle and knee joint angles is 0.67. Changes in the segments' positions in the kinematic chain of the ski jumper's body are stable during longitudinal assessment. Changes in shank and thigh positions, in the sense of increase or decrease, are the same.

  4. Polymer translocation through a nanopore: DPD study.

    PubMed

    Yang, Kan; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-04-04

    Translocation of a polymer chain through a narrow pore is explored using 3D explicit solvent dissipative particle dynamics simulation. We study the dependence of the translocation dynamics and translocation time τ on the chain length N, driving force magnitude E, and solvent quality. Two types of driving forces are considered: uniform hydrostatic force, which is applied equally to the chain and solvent particles, and uniform electrostatic force, which is applied selectively to the charged particles in the chain and oppositely charged counterions in the solvent. We concluded that the scaling correlations τ ~ E(-ξ) and τ ~ N(β) are valid only for coil-like chains. For globular chains, the exponents ξ and β could not be identified with a reasonable accuracy. While the found value of ξ agrees with published experimental results and does not depend on the driving force type, the exponent β depends on the driving force and solvent quality. This is explained by nonequilibrium effects, as in the systems considered, the time of translocation is comparable with the time of chain relaxation. These effects, manifested in the changes of chain conformation in the process of translocation, were analyzed on the basis of the variation of the gyration radii of cis and trans segments of the chain in normal and lateral directions. A prominent chain expansion was observed for coils and was insignificant for globules. This work demonstrates the feasibility of the 3D dissipative particle dynamics modeling of translocation phenomena and accounting for the electrostatic interactions with explicit counterions, as well as for the solvent quality, in a computationally efficient manner.

  5. Test-retest reliability of jump execution variables using mechanography: A comparison of jump protocols

    USDA-ARS?s Scientific Manuscript database

    Mechanography during the vertical jump test allows for evaluation of force-time variables reflecting jump execution, which may enhance screening for functional deficits that reduce physical performance and determining mechanistic causes underlying performance changes. However, utility of jump mechan...

  6. Translocated effectors of Yersinia

    PubMed Central

    Matsumoto, Hiroyuki; Young, Glenn M.

    2009-01-01

    Summary Currently, all known translocated effectors of Yersinia are delivered into host cells by type III secretion systems (T3SSs). Pathogenic Yersinia maintain the plasmid-encoded Ysc T3SS for the specific delivery of the well-studied Yop effectors. New horizons for effector biology have opened with the discovery of the Ysps of Y. enterocolitica Biovar 1B, which are translocated into host cells by the chromosome-endoded Ysa T3SS. The reported arsenal of effectors is likely to expand since genomic analysis has revealed gene-clusters in some Yersinia that code for other T3SSs. These efforts also revealed possible type VI secretion (T6S) systems, which may indicate translocation of effectors occurs by multiple mechanisms. PMID:19185531

  7. EFFECTS OF ORTHOKINETIC SEGMENTS UPON MOTOR RESPONSES OF NORMAL MALE COLLEGE STUDENTS.

    ERIC Educational Resources Information Center

    CRENSHAW, WILLIAM A.

    THIS STUDY ASSESSES THE EFFECTS OF ORTHOKINETIC SEGMENTS UPON THE MOTOR RESPONSES OF NORMAL MALE COLLEGE STUDENTS PERFORMING THE VERTICAL JUMP AND THE STANDING BROAD JUMP. THE VARIOUS PLACINGS OF THE ELASTIC AND INELASTIC FIELDS OF THE SEGMENTS UPON THE AGONIST AND ANTAGONIST THIGH MUSCLES OF STUDENTS WERE NOTED AND COMPARED WITH PERFORMANCE…

  8. Coalescence-induced nanodroplet jumping

    NASA Astrophysics Data System (ADS)

    Cha, Hyeongyun; Xu, Chenyu; Sotelo, Jesus; Chun, Jae Min; Yokoyama, Yukihiro; Enright, Ryan; Miljkovic, Nenad

    2016-10-01

    Water vapor condensation on superhydrophobic surfaces has received much attention in recent years due to the ability of such surfaces to shed microscale water droplets via coalescence-induced droplet jumping, resulting in heat transfer, anti-icing, and self-cleaning performance enhancement. Here we report the coalescence-induced removal of water nanodroplets (R ≈500 nm ) from superhydrophobic carbon nanotube (CNT) surfaces. The two-droplet coalescence time is measured for varying droplet Ohnesorge numbers, confirming that coalescence prior to jumping is governed by capillary-inertial dynamics. By varying the conformal hydrophobic coating thickness on the CNT surface, the minimum jumping droplet radius is shown to increase with increasing solid fraction and decreasing apparent advancing contact angle, allowing us to explore both hydrodynamic limitations stemming from viscous dissipation and surface adhesion limitations. We find that, even for the smallest nanostructure length scale (≤100 nm) and lowest surface adhesions, nonideal surface interactions and the evolved droplet morphology play defining roles in limiting the minimum size for jumping on real surfaces. The outcomes of this work demonstrate the ability to passively shed nanometric water droplets, which has the potential to further increase the efficiency of systems that can harness jumping droplets for a wide range of energy and water applications.

  9. Gravity current jump conditions, revisited

    NASA Astrophysics Data System (ADS)

    Ungarish, Marius; Hogg, Andrew J.

    2016-11-01

    Consider the flow of a high-Reynolds-number gravity current of density ρc in an ambient fluid of density ρa in a horizontal channel z ∈ [ 0 , H ] , with gravity in - z direction. The motion is often modeled by a two-layer formulation which displays jumps (shocks) in the height of the interface, in particular at the leading front of the dense layer. Various theoretical models have been advanced to predict the dimensionless speed of the jump, Fr = U /√{g' h } ; g' , h are reduced gravity and jump height. We revisit this problem and using the Navier-Stokes equations, integrated over a control volume embedding the jump, derive balances of mass and momentum fluxes. We focus on understanding the closures needed to complete this model and we show the vital need to understand the pressure head losses over the jump, which we show can be related to the vorticity fluxes at the boundaries of the control volume. Our formulation leads to two governing equations for three dimensionless quantities. Closure requires one further assumption, depending on which we demonstrate that previous models for gravity current fronts and internal bores can be recovered. This analysis yield new insights into existing results, and also provides constraints for potential new formulae.

  10. Problem-Elephant Translocation: Translocating the Problem and the Elephant?

    PubMed Central

    Fernando, Prithiviraj; Leimgruber, Peter; Prasad, Tharaka; Pastorini, Jennifer

    2012-01-01

    Human-elephant conflict (HEC) threatens the survival of endangered Asian elephants (Elephas maximus). Translocating “problem-elephants” is an important HEC mitigation and elephant conservation strategy across elephant range, with hundreds translocated annually. In the first comprehensive assessment of elephant translocation, we monitored 16 translocations in Sri Lanka with GPS collars. All translocated elephants were released into national parks. Two were killed within the parks where they were released, while all the others left those parks. Translocated elephants showed variable responses: “homers” returned to the capture site, “wanderers” ranged widely, and “settlers” established home ranges in new areas soon after release. Translocation caused wider propagation and intensification of HEC, and increased elephant mortality. We conclude that translocation defeats both HEC mitigation and elephant conservation goals. PMID:23236404

  11. How far can Tarzan jump?

    NASA Astrophysics Data System (ADS)

    Shima, Hiroyuki

    2012-11-01

    The tree-based rope swing is a popular recreational facility, often installed in outdoor areas. Hanging from a rope, users drop from a high platform and then swing at great speed like ‘Tarzan’, finally jumping ahead to land on the ground. The question naturally arises, how far can Tarzan jump using the swing? In this paper, I present an introductory analysis of the mechanics of the Tarzan swing, a large pendulum-like swing with Tarzan himself attached as weight. This enables determination of how much further forward Tarzan can jump using a given swing apparatus. The discussion is based on elementary mechanics and is, therefore, expected to provide rich opportunities for investigations using analytic and numerical methods.

  12. Oncogene Translocations and NHL

    Cancer.gov

    A colloboration with several large population-based cohorts to determine whether the prevalence or level of t14;18 is associated with risk of NHL and to investigate the clonal relationship between translocation-bearing cells and subsequent tumors

  13. [Hearing disorders after Bungee jumping?].

    PubMed

    Mees, K

    1994-03-01

    Acceleration forces in bungee jumping acting on the head are different in nature and extent from those in merry-go-round, looping and scooter rides. They act mainly in the vertical plane, horizontal accelerations may develop only during uncontrollable vibrations in different directions after slowing down. According to our present knowledge the risks for injuries of the cervical spine and functional disorders of the inner ear in bungee jumping are lower than in merry-go-round, looping and scooter rides. They seem to be enhanced, however, in individuals suffering from diseases of the cervical spine and disorders of the heart and the blood circulation.

  14. Influence of lumbar spine extension on vertical jump height during maximal squat jumping.

    PubMed

    Blache, Yoann; Monteil, Karine

    2014-01-01

    The purpose of this study was to determine the influence of lumbar spine extension and erector spinae muscle activation on vertical jump height during maximal squat jumping. Eight male athletes performed maximal squat jumps. Electromyograms of the erector spinae were recorded during these jumps. A simulation model of the musculoskeletal system was used to simulate maximal squat jumping with and without spine extension. The effect on vertical jump height of changing erector spinae strength was also tested through the simulated jumps. Concerning the participant jumps, the kinematics indicated a spine extension and erector spinae activation. Concerning the simulated jumps, vertical jump height was about 5.4 cm lower during squat jump without trunk extension compared to squat jump. These results were explained by greater total muscle work during squat jump, more especially by the erector spinae work (+119.5 J). The erector spinae may contribute to spine extension during maximal squat jumping. The simulated jumps confirmed this hypothesis showing that vertical jumping was decreased if this muscle was not taken into consideration in the model. Therefore it is concluded that the erector spinae should be considered as a trunk extensor, which enables to enhance total muscle work and consequently vertical jump height.

  15. International Toys in Space: Jump Rope

    NASA Image and Video Library

    Cosmonaut Valery Korzun attempts jumping rope in microgravity. He decides to adapt the activity by taking out the "jumping part," but the act of spinning the rope around him still proves difficult....

  16. Alzheimer's Deaths Jump 55 Percent: CDC

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_165941.html Alzheimer's Deaths Jump 55 Percent: CDC More patients also ... News) -- As more baby boomers age, deaths from Alzheimer's disease have jumped 55 percent, and in a ...

  17. Revival of the Jumping Disc

    ERIC Educational Resources Information Center

    Ucke, C.; Schlichting, H-J.

    2009-01-01

    Snap discs made of bimetal have many technical applications as thermostats. Jumping discs are a toy version of such snap discs. Besides giving technical information, we describe physical investigations. We show especially how, through simple measurements and calculations, you can determine the initial speed ([approximately equal to]3.5 m…

  18. Revival of the Jumping Disc

    ERIC Educational Resources Information Center

    Ucke, C.; Schlichting, H-J.

    2009-01-01

    Snap discs made of bimetal have many technical applications as thermostats. Jumping discs are a toy version of such snap discs. Besides giving technical information, we describe physical investigations. We show especially how, through simple measurements and calculations, you can determine the initial speed ([approximately equal to]3.5 m…

  19. Characteristics of lower extremity work during the impact phase of jumping and weightlifting.

    PubMed

    Moolyk, Amy N; Carey, Jason P; Chiu, Loren Z F

    2013-12-01

    Jumping and weightlifting tasks involve impact phases, where work is performed by the lower extremity to absorb energies present at contact. This study compared the lower extremity kinematic and kinetic strategies to absorb energy during the impact phase of jumping and weightlifting activities. Ten women experienced in jumping and weightlifting performed 4 tasks (landing from a jump, drop landing, clean, and power clean) in a motion analysis laboratory. Work performed at the hip, knee, and ankle were calculated during the landing and receiving phases of jumping and weightlifting tasks, respectively. Additionally, segment and joint kinematics and net joint moments were determined. The most lower extremity work was performed in the clean and drop landing, followed by landing from a jump, and the least work was performed in the power clean (p < 0.05). For all tasks, work performed by the knee extensors was the greatest contributor to lower extremity work. Knee extensor net joint moment was greater in the power clean than jump and drop landings, and greater in the clean than all other tasks (p < 0.05). Knee flexion angle was not different between the power clean and jump landing (p > 0.05) but greater in the drop landing and clean (p < 0.05). A common characteristic of the impact phase of jumping and weightlifting tasks is a large contribution of knee extensor work. Further, the correspondence in kinematics between impact phases of jumping and weightlifting tasks suggests that similar muscular strategies are used to perform both types of activities. Weightlifting tasks, particularly the clean, may be important exercises to develop the muscular strength required for impact actions due to their large knee extensor net joint moments.

  20. Effects of fatigue of plantarflexors on control and performance in vertical jumping.

    PubMed

    Bobbert, Maarten F; van der Krogt, Marjolein M; van Doorn, Hemke; de Ruiter, Cornelis J

    2011-04-01

    We investigated the effects of a mismatch between control and musculoskeletal properties on performance in vertical jumping. Six subjects performed maximum-effort vertical squat jumps before (REF) and after the plantarflexors of the right leg had been fatigued (FAT) while kinematic data, ground reaction forces, and EMG of leg muscles were collected. Inverse dynamics was used to calculate the net work at joints, and EMG was rectified and smoothed to obtain the smoothed rectified EMG (SREMG). The jumps of the subjects were also simulated with a musculoskeletal model comprising seven body segments and 12 Hill-type muscles, and having as only input muscle stimulation. Jump height was approximately 6 cm less in FAT jumps than in REF jumps. In FAT jumps, peak SREMG level was reduced by more than 35% in the right plantarflexors and by approximately 20% in the right hamstrings but not in any other muscles. In FAT jumps, the net joint work was reduced not only at the right ankle (by 70%) but also at the right hip (by 40%). Because the right hip was not spanned by fatigued muscles and the reduction in SREMG of the right hamstrings was relatively small, this indicated that the reduction in performance was partly due to a mismatch between control and musculoskeletal properties. The differences between REF and FAT jumps of the subjects were confirmed and explained by the simulation model. Reoptimization of control for the FAT model caused performance to be partly restored by approximately 2.5 cm. The reduction in performance in FAT jumps was partly due to a mismatch between control and musculoskeletal properties.

  1. Strawberry Shortcake and Other Jumping Rope Ideas.

    ERIC Educational Resources Information Center

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  2. The Physics of Equestrian Show Jumping

    ERIC Educational Resources Information Center

    Stinner, Art

    2014-01-01

    This article discusses the kinematics and dynamics of equestrian show jumping. For some time I have attended a series of show jumping events at Spruce Meadows, an international equestrian center near Calgary, Alberta, often referred to as the "Wimbledon of equestrian jumping." I have always had a desire to write an article such as this…

  3. Strawberry Shortcake and Other Jumping Rope Ideas.

    ERIC Educational Resources Information Center

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  4. The Physics of Equestrian Show Jumping

    ERIC Educational Resources Information Center

    Stinner, Art

    2014-01-01

    This article discusses the kinematics and dynamics of equestrian show jumping. For some time I have attended a series of show jumping events at Spruce Meadows, an international equestrian center near Calgary, Alberta, often referred to as the "Wimbledon of equestrian jumping." I have always had a desire to write an article such as this…

  5. Mesopause jumps at Antarctic latitudes

    NASA Astrophysics Data System (ADS)

    Lübken, Franz-Josef; Höffner, Josef; Becker, Erich; Latteck, Ralph; Murphy, Damian

    2016-04-01

    Recent high resolution temperature measurements by resonance lidar at Davis (69°S) occasionally showed a sudden mesopause altitude increase by ˜5 km and an associated mesopause temperature decrease by ˜10 K. We present further observations which are closely related to this 'mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We compare to similar observations in the Northern Hemisphere, namely at ALOMAR (69°N) where such mesopause jumps have never been observed. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are very large (westward). Under these conditions, gravity waves with comparatively large eastward phase Speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies reduced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex. Mesopause jumps are primarily, but not only, observed prior and close to solstice. We also show that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30 m/s), and that the onset is not closely related to the Transition of the stratospheric circulation.

  6. Gender bias in the effect of dropping height on jumping performance in volleyball players.

    PubMed

    Laffaye, Guillaume; Choukou, Mohamed A

    2010-08-01

    The goal of the present study is to investigate in skilled volleyball players (a) the effect of dropping height on women's and men's performance and (b) the drop jump technique with regard to gender. Nine male and 9 female skilled volleyball players were instructed to jump as high as they could, using a drop jump, from a box of 30 cm or from 2 boxes (60 cm). Kinematic and kinetic data were collected using 6 cameras and a force plate. The human body was summarized by using a 4-segment model (foot, shank, thigh, head-arms-trunk). Males performed higher jumps than females (46.6 +/- 7.5 cm vs. 36 +/- 5.4 cm; p < 0.05). This could be explained by higher mean power (56.9 +/- 26 W/kg vs. 42.4 +/- 19 W/kg; p < 0.05) and shorter eccentric time (-46.3%), both of which allowed a better stretch-shortening cycle. This study shows that women and men have different jump techniques when they drop from a higher position but without increasing the vertical performance. Women increase the values of force and stiffness (respectively +21.4% and +17.9%) without changing the temporal structure of the jump. Men reduce the eccentric time of the jump (41% vs. 31.8%) and keep the force parameters constant. The study findings indicate that it is necessary to find an optimal height for plyometric training for each athlete, allowing enhancement.

  7. Effects of spine flexion and erector spinae maximal force on vertical squat jump height: a computational simulation study.

    PubMed

    Blache, Yoann; Monteil, Karine

    2015-03-01

    The purpose of this study was to evaluate the single and combined effects of initial spine flexion and maximal isometric force of the erector spinae on maximal vertical jump height during maximal squat jumping. Seven initial flexions of the 'thorax-head-arm' segment (between 20.1° and 71.6°) and five maximal isometric forces of the erector spinae (between 5600 and 8600 N) were tested. Thus, 35 squat jumps were simulated using a 2D simulation model of the musculoskeletal system. Vertical jump height varied at most about 0.094 and 0.021 m when the initial flexion of the 'thorax-head-arm' segment and the maximal force of the erector spinae were, respectively, maximal. These results were explained for the most part by the variation of total muscle work. The latter was mainly influenced by the work produced by the erector spinae which increased at most about 57 and 110 J when the initial flexion of the 'thorax-head-arm' segment and the maximal force of the erector spinae were, respectively, maximal. It was concluded that the increase in the initial flexion of the 'thorax-head-arm' segment and in the maximal isometric force of the erector spinae enables an increase in maximal vertical jump height during maximal squat jumping.

  8. Is energy expenditure taken into account in human sub-maximal jumping?--A simulation study.

    PubMed

    Vanrenterghem, Jos; Bobbert, Maarten F; Casius, L J Richard; De Clercq, Dirk

    2008-02-01

    This paper presents a simulation study that was conducted to investigate whether the stereotyped motion pattern observed in human sub-maximal jumping can be interpreted from the perspective of energy expenditure. Human sub-maximal vertical countermovement jumps were compared to jumps simulated with a forward dynamic musculo-skeletal model. This model consisted of four interconnected rigid segments, actuated by six Hill-type muscle actuators. The only independent input of the model was the stimulation of muscles as a function of time. This input was optimized using an objective function, in which targeting a specific sub-maximal height value was combined with minimizing the amount of muscle work produced. The characteristic changes in motion pattern observed in humans jumping to different target heights were reproduced by the model. As the target height was lowered, two major changes occurred in the motion pattern. First, the countermovement amplitude was reduced; this helped to save energy because of reduced dissipation and regeneration of energy in the contractile elements. Second, the contribution of rotation of the heavy proximal segments of the lower limbs to the vertical velocity of the centre of gravity at take-off was less; this helped to save energy because of reduced ineffective rotational energies at take-off. The simulations also revealed that, with the observed movement adaptations, muscle work was reduced through improved relative use of the muscle's elastic properties in sub-maximal jumping. According to the results of the simulations, the stereotyped motion pattern observed in sub-maximal jumping is consistent with the idea that in sub-maximal jumping, subjects are trying to achieve the targeted jump height with minimal energy expenditure.

  9. The Hydraulic Jump in Liquid Helium

    SciTech Connect

    Rolley, Etienne; Guthmann, Claude; Chevallier, Christophe; Pettersen, Michael S.

    2006-09-07

    We present the results of some experiments on the circular hydraulic jump in normal and superfluid liquid helium. The radius of the jump and the depth of the liquid outside the jump are measured through optical means. Although the scale of the apparatus is rather small, the location of the jump is found to be consistent with the assumption that the jump can be treated as a shock, if the surface tension is taken into account. The radius of the jump does not change when going down in temperature through the lambda point; we think that the flow is supercritical. A remarkable feature of the experiment is the observation of stationary ripples within the jump when the liquid is superfluid.

  10. Retinal complications after bungee jumping.

    PubMed

    Filipe, J A; Pinto, A M; Rosas, V; Castro-Correia, J

    Bungee jumping is becoming a popular sport in the Western world with some cases of ophthalmic complications being reported in recent literature. The authors reported a case of a 23-year-old healthy female who presented retinal complications following a bungee jumping. Her fundi showed superficial retinal hemorrhages in the right eye and a sub-internal limiting membrane hemorrhage affecting the left eye. A general examination, including a full neurological examination, was normal and laboratorial investigations were all within normal values. More studies are necessary to identify risk factors and the true incidence of related ocular lesions, but until then, we think this sport activity should be desencouraged, especially to those that are not psychological and physically fit.

  11. The perils of bungee jumping.

    PubMed

    Shapiro, M J; Marts, B; Berni, A; Keegan, M J

    1995-01-01

    Bungee jumping is a relatively new recreational sport. Most emergency physicians and trauma surgeons have limited experience with its associated injuries. We report the case of a bungee cord attachment apparatus malfunctioning, resulting in a free fall of the jumper of approximately 240 feet. The presence of an air cushion on the ground prevented significant injury. Knowledge of the potential injuries of this new sport is crucial for effective management.

  12. Model for polygonal hydraulic jumps.

    PubMed

    Martens, Erik A; Watanabe, Shinya; Bohr, Tomas

    2012-03-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy) near the free surface in the jump region. The model consists of mass conservation and radial force balance between hydrostatic pressure and viscous stresses on the roller surface. In addition, we consider the azimuthal force balance, primarily between pressure and viscosity, but also including nonhydrostatic pressure contributions from surface tension in light of recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal states. A truncated but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a polygon with N corners depends only on a single dimensionless number φ. Finally, we include time-dependent terms in the model and study linear stability of the circular state. Instability occurs for sufficiently small Bond number and the most unstable wavelength is expected to be roughly proportional to the width of the roller as in the Rayleigh-Plateau instability.

  13. Mechanisms of Sec61/SecY-mediated protein translocation across membranes.

    PubMed

    Park, Eunyong; Rapoport, Tom A

    2012-01-01

    The Sec61 or SecY channel, a universally conserved protein-conducting channel, translocates proteins across and integrates proteins into the eukaryotic endoplasmic reticulum (ER) membrane and the prokaryotic plasma membrane. Depending on channel-binding partners, polypeptides are moved by different mechanisms. In cotranslational translocation, the ribosome feeds the polypeptide chain directly into the channel. In posttranslational translocation, a ratcheting mechanism is used by the ER-lumenal chaperone BiP in eukaryotes, and a pushing mechanism is utilized by the SecA ATPase in bacteria. In prokaryotes, posttranslational translocation is facilitated through the function of the SecD/F protein. Recent structural and biochemical data show how the channel opens during translocation, translocates soluble proteins, releases hydrophobic segments of membrane proteins into the lipid phase, and maintains the barrier for small molecules.

  14. Spatially constrained propulsion in jumping archer fish

    NASA Astrophysics Data System (ADS)

    Mendelson, Leah; Techet, Alexandra

    2016-11-01

    Archer fish jump multiple body lengths out of the water for prey capture with impressive accuracy. Their remarkable aim is facilitated by jumping from a stationary position directly below the free surface. As a result of this starting position, rapid acceleration to a velocity sufficient for reaching the target occurs with only a body length to travel before the fish leaves the water. Three-dimensional measurements of jumping kinematics and volumetric velocimetry using Synthetic Aperture PIV highlight multiple strategies for such spatially constrained acceleration. Archer fish rapidly extend fins at jump onset to increase added mass forces and modulate their swimming kinematics to minimize wasted energy when the body is partially out of the water. Volumetric measurements also enable assessment of efficiency during a jump, which is crucial to understanding jumping's role as an energetically viable hunting strategy for the fish.

  15. Ocular injury due to bungee jumping.

    PubMed

    Curtis, Edward B; Collin, H Barry

    1999-01-01

    BACKGROUND: Bungee jumping is a well-established recreational activity in New Zealand and Australia which may be associated with injuries to the eyes and other tissues. CASE HISTORY: A patient with a retinal haemorrhage which resulted from bungee jumping is reported and the clinical characteristics described. DISCUSSION: There have been several reports of injury due to bungee jumping. The types of ocular injury are reviewed and the aetiological theories discussed.

  16. Psychophysiological response in parachute jumps, the effect of experience and type of jump.

    PubMed

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Fernández-Lucas, Jesús

    2017-10-01

    We aimed to analyse the effect of experience and type of parachute jump on the psychophysiological responses of jumpers. We analysed blood oxygen saturation, heart rate, blood glucose, lactate and creatinkinase, leg strength, isometric hand strength, cortical arousal, specific fine motor skills, self-confidence and cognition, and somatic and state anxiety, before and after four different parachute jumps: a sport parachute jump, a manual tactical parachute jump, tandem pilots, and tandem passengers. Independently of the parachute jump, the psychophysiological responses of experienced paratroopers were not affected by the jumps, except for an increase in anaerobic metabolism. Novice parachute jumpers presented a higher psychophysiological stress response than the experienced jumpers, together with a large anticipatory anxiety response before the jump; however, this decreased after the jump, although the high physiological activation was maintained. This information could be used by civil and military paratroopers' instructors to improve their training programmes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Efficient induction of Wheat-agropyron cristatum 6P translocation lines and GISH detection.

    PubMed

    Song, Liqiang; Jiang, Lili; Han, Haiming; Gao, Ainong; Yang, Xinming; Li, Lihui; Liu, Weihua

    2013-01-01

    The narrow genetic background restricts wheat yield and quality improvement. The wild relatives of wheat are the huge gene pools for wheat improvement and can broaden its genetic basis. Production of wheat-alien translocation lines can transfer alien genes to wheat. So it is important to develop an efficient method to induce wheat-alien chromosome translocation. Agropyroncristatum (P genome) carries many potential genes beneficial to disease resistance, stress tolerance and high yield. Chromosome 6P possesses the desirable genes exhibiting good agronomic traits, such as high grain number per spike, powdery mildew resistance and stress tolerance. In this study, the wheat-A. cristatum disomic addition was used as bridge material to produce wheat-A. cristatum translocation lines induced by (60)Co-γirradiation. The results of genomic in situ hybridization showed that 216 plants contained alien chromosome translocation among 571 self-pollinated progenies. The frequency of translocation was 37.83%, much higher than previous reports. Moreover, various alien translocation types were identified. The analysis of M2 showed that 62.5% of intergeneric translocation lines grew normally without losing the translocated chromosomes. The paper reported a high efficient technical method for inducing alien translocation between wheat and Agropyroncristatum. Additionally, these translocation lines will be valuable for not only basic research on genetic balance, interaction and expression of different chromosome segments of wheat and alien species, but also wheat breeding programs to utilize superior agronomic traits and good compensation effect from alien chromosomes.

  18. Efficient Induction of Wheat-Agropyron cristatum 6P Translocation Lines and GISH Detection

    PubMed Central

    Song, Liqiang; Jiang, Lili; Han, Haiming; Gao, Ainong; Yang, Xinming; Li, Lihui; Liu, Weihua

    2013-01-01

    The narrow genetic background restricts wheat yield and quality improvement. The wild relatives of wheat are the huge gene pools for wheat improvement and can broaden its genetic basis. Production of wheat-alien translocation lines can transfer alien genes to wheat. So it is important to develop an efficient method to induce wheat-alien chromosome translocation. Agropyroncristatum (P genome) carries many potential genes beneficial to disease resistance, stress tolerance and high yield. Chromosome 6P possesses the desirable genes exhibiting good agronomic traits, such as high grain number per spike, powdery mildew resistance and stress tolerance. In this study, the wheat-A. cristatum disomic addition was used as bridge material to produce wheat-A. cristatum translocation lines induced by 60Co-γirradiation. The results of genomic in situ hybridization showed that 216 plants contained alien chromosome translocation among 571 self-pollinated progenies. The frequency of translocation was 37.83%, much higher than previous reports. Moreover, various alien translocation types were identified. The analysis of M2 showed that 62.5% of intergeneric translocation lines grew normally without losing the translocated chromosomes. The paper reported a high efficient technical method for inducing alien translocation between wheat and Agropyroncristatum. Additionally, these translocation lines will be valuable for not only basic research on genetic balance, interaction and expression of different chromosome segments of wheat and alien species, but also wheat breeding programs to utilize superior agronomic traits and good compensation effect from alien chromosomes. PMID:23874966

  19. Observation of ultrasharp metamagnetic jumps in polycrystalline Er2Cu2O5

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Sannigrahi, J.; Giri, S.; Majumdar, S.

    2017-03-01

    The observation of ultrasharp metamagnetic jumps in the field variation of magnetization (M versus H) data for the highly insulating metal oxide Er2Cu2O5 is investigated. The compound orders antiferromagnetically below about T N1  =  28 K and shows conventional ‘not-so-sharp’ metamagnetism around 13 kOe on the field-increasing leg in the polycrystalline sample. The uniqueness of the ultrasharp jumps in Er2Cu2O5 resides in the fact that they are only observed in the field-decreasing segment of the magnetization curve. We observe that the jumps are affected by the sweep rate of the magnetic field, similarly to several other systems that show such ultrasharp jumps. Er2Cu2O5 shows a considerable amount of thermo-remanent magnetization when it is cooled in a field that is higher than the critical field of 13 kOe. Our analysis indicates that above 13 kOe the system remains phase separated, with the coexistence of antiferromagnetic and field-induced ferromagnetic-like phases. The jumps in the return leg occur because of the shear-dominated martensitic-like phase transition of the ferromagnetic-like phase to an antiferromagnetic phase, and interfacial strain plays a major role in the observed jumps.

  20. Fluidodynamical Representation and Quantum Jumps

    NASA Astrophysics Data System (ADS)

    Chiatti, Leonardo; Licata, Ignazio

    The sophistication of recent experimental procedures has made it possible to detect experimentally the so-called Quantum Jumps (QJ), i.e. the stop and restart of the wave function as a real phenomenon. In this work, we connect this experimental evidence to a foundational interpretation of QM, based on an a-temporal vacuum. In that picture, the QJ is a localization process, defined as the time-symmetric action of a self-conjugate projection operator. The compatibility of these discontinuous processes with the Theory of Relativity is demonstrated using the Bohm representation of quantum mechanics.

  1. Vertical jumping and signaled avoidance

    PubMed Central

    Cándido, Antonio; Maldonado, Antonio; Vila, Jaime

    1988-01-01

    This paper reports an experiment intended to demonstrate that the vertical jumping response can be learned using a signaled-avoidance technique. A photoelectric cell system was used to record the response. Twenty female rats, divided equally into two groups, were exposed to intertrial intervals of either 15 or 40 s. Subjects had to achieve three successive criteria of acquisition: 3, 5, and 10 consecutive avoidance responses. Results showed that both groups learned the avoidance response, requiring increasingly larger numbers of trials as the acquisition criteria increased. No significant effect of intertrial interval was observed. PMID:16812559

  2. Ocular complications of bungee jumping

    PubMed Central

    Hassan, H Mohammed J; Mariatos, Georgios; Papanikolaou, Theocharis; Ranganath, Akshatha; Hassan, Hala

    2012-01-01

    Aim In this paper, we will try to highlight the importance of various investigations and their crucial role in identifying whether the defect is structural or functional. Case history A 24-year-old woman presented with ocular complications after bungee jumping. Subsequently, although all ophthalmic signs resolved, she complained of decreased vision in her left eye. Conclusion Initial ophthalmic injury was detected by optical coherence tomography scan showing a neurosensory detachment of the fovea. This was not initially detected on slit-lamp examination or fluorescein angiography. On later examination, although the optical coherence tomography scan showed no structural damage, electrodiagnostic tests showed a functional defect at the fovea. PMID:23055687

  3. The aerodynamics of jumping rope

    NASA Astrophysics Data System (ADS)

    Aristoff, Jeffrey; Stone, Howard

    2010-11-01

    We present the results of a combined theoretical and experimental investigation of the motion of a rotating string that is held at both ends (i.e. a jump rope). In particular, we determine how the surrounding fluid affects the shape of the string at high Reynolds numbers. We derive a pair of coupled non-linear differential equations that describe the shape, the numerical solution of which compares well with asymptotic approximations and experiments. Implications for successful skipping will be discussed, and a demonstration is possible.

  4. The aerodynamics of jumping rope

    NASA Astrophysics Data System (ADS)

    Aristoff, Jeffrey; Stone, Howard

    2011-03-01

    We present the results of a combined theoretical and experimental investigation of the motion of a rotating string that is held at both ends (i.e. a jump rope). In particular, we determine how the surrounding fluid affects the shape of the string at high Reynolds numbers: the string bends toward the axis of rotation, thereby reducing its total drag. We derive a pair of coupled non-linear differential equations that describe the shape, the numerical solution of which compares well with asymptotic approximations and experiments. Implications for successful skipping will be discussed.

  5. Blunt facial trauma from a bungee jump.

    PubMed

    Kmucha, S T

    1996-05-01

    A 28-year-old man was brought to the emergency department for severe facial swelling the morning after a bungee jumping accident. The patient had been making jumps nearly every weekend for the past 3 years without injury. This time, he had performed a nighttime jump from a railroad trestle over the gorge of a small river. The height of the bridge at the center of the gorge was about 200 ft, and the river was about 12 ft deep. When the patient jumped, he hit the water face first, plunging under the surface to his waist. The cause of the accident was thought to be a miscalculation of the bridge height.

  6. Neuromechanical simulation of the locust jump

    PubMed Central

    Cofer, D.; Cymbalyuk, G.; Heitler, W. J.; Edwards, D. H.

    2010-01-01

    The neural circuitry and biomechanics of kicking in locusts have been studied to understand their roles in the control of both kicking and jumping. It has been hypothesized that the same neural circuit and biomechanics governed both behaviors but this hypothesis was not testable with current technology. We built a neuromechanical model to test this and to gain a better understanding of the role of the semi-lunar process (SLP) in jump dynamics. The jumping and kicking behaviors of the model were tested by comparing them with a variety of published data, and were found to reproduce the results from live animals. This confirmed that the kick neural circuitry can produce the jump behavior. The SLP is a set of highly sclerotized bands of cuticle that can be bent to store energy for use during kicking and jumping. It has not been possible to directly test the effects of the SLP on jump performance because it is an integral part of the joint, and attempts to remove its influence prevent the locust from being able to jump. Simulations demonstrated that the SLP can significantly increase jump distance, power, total energy and duration of the jump impulse. In addition, the geometry of the joint enables the SLP force to assist leg flexion when the leg is flexed, and to assist extension once the leg has begun to extend. PMID:20228342

  7. Balanced translocations in mental retardation.

    PubMed

    Vandeweyer, Geert; Kooy, R Frank

    2009-07-01

    Over the past few decades, the knowledge on genetic defects causing mental retardation has dramatically increased. In this review, we discuss the importance of balanced chromosomal translocations in the identification of genes responsible for mental retardation. We present a database-search guided overview of balanced translocations identified in patients with mental retardation. We divide those in four categories: (1) balanced translocations that helped to identify a causative gene within a contiguous gene syndrome, (2) balanced translocations that led to the identification of a mental retardation gene confirmed by independent methods, (3) balanced translocations disrupting candidate genes that have not been confirmed by independent methods and (4) balanced translocations not reported to disrupt protein coding sequences. It can safely be concluded that balanced translocations have been instrumental in the identification of multiple genes that are involved in mental retardation. In addition, many more candidate genes were identified with a suspected but (as yet?) unconfirmed role in mental retardation. Some balanced translocations do not disrupt a protein coding gene and it can be speculated that in the light of recent findings concerning ncRNA's and ultra-conserved regions, such findings are worth further investigation as these potentially may lead us to the discovery of novel disease mechanisms.

  8. The effect of assisted jumping on vertical jump height in high-performance volleyball players.

    PubMed

    Sheppard, Jeremy M; Dingley, Andrew A; Janssen, Ina; Spratford, Wayne; Chapman, Dale W; Newton, Robert U

    2011-01-01

    Assisted jumping may be useful in training higher concentric movement speed in jumping, thereby potentially increasing the jumping abilities of athletes. The purpose of this study was to evaluate the effects of assisted jump training on counter-movement vertical jump (CMVJ) and spike jump (SPJ) ability in a group of elite male volleyball players. Seven junior national team volleyball players (18.0±1.0 yrs, 200.4±6.7 cm, and 84.0±7.2 kg) participated in this within-subjects cross-over counter-balanced training study. Assisted training involved 3 sessions per week of CMVJ training with 10 kg of assistance, applied through use of a bungee system, whilst normal jump training involved equated volume of unassisted counter-movement vertical jumps. Training periods were 5 weeks duration, with a 3-week wash-out separating them. Prior to and at the conclusion of each training period jump testing for CMVJ and SPJ height was conducted. Assisted jump training resulted in gains of 2.7±0.7 cm (p<0.01, ES=0.21) and 4.6±2.6 cm (p<0.01, ES=0.32) for the CMVJ and SPJ respectively, whilst normal jump training did not result in significant gains for either CMVJ or SPJ (p=0.09 and p=0.51 respectively). The changes associated with normal jump training and assisted jump training revealed significant differences in both CMVJ and SPJ (p=<0.03) in favour of the assisted jump condition, with large effect (CMVJ, ES=1.22; SPJ, ES=1.31). Assisted jumping may promote the leg extensor musculature to undergo a more rapid rate of shortening, and chronic exposure appears to improve jumping ability. Copyright © 2010 Sports Medicine Australia. All rights reserved.

  9. A power function profile of a ski jumping in-run hill.

    PubMed

    Zanevskyy, Ihor

    2011-01-01

    The aim of the research was to find a function of the curvilinear segment profile which could make possible to avoid an instantaneous increasing of a curvature and to replace a circle arc segment on the in-run of a ski jump without any correction of the angles of inclination and the length of the straight-line segments. The methods of analytical geometry and trigonometry were used to calculate an optimal in-run hill profile. There were two fundamental conditions of the model: smooth borders between a curvilinear segment and straight-line segments of an in-run hill and concave of the curvilinear segment. Within the framework of this model, the problem has been solved with a reasonable precision. Four functions of a curvilinear segment profile of the in-run hill were investigated: circle arc, inclined quadratic parabola, inclined cubic parabola, and power function. The application of a power function to the in-run profile satisfies equal conditions for replacing a circle arc segment. Geometrical parameters of 38 modern ski jumps were investigated using the methods proposed.

  10. Mitotic Crossing over and Nondisjunction in Translocation Heterozygotes of Aspergillus

    PubMed Central

    Käfer, Etta

    1976-01-01

    To analyze mitotic recombination in translocation heterozygotes of A. nidulans two sets of well-marked diploids were constructed, homo- or heterozygous for the reciprocal translocations T1(IL;VIIR) or T2(IL;VIIIR) and heterozygous for selective markers on IL. It was found that from all translocation heterozygotes some of the expected mitotic crossover types could be selected. Such crossovers are monosomic for one translocated segment and trisomic for the other and recovery depends on the relative viabilities of these unbalanced types. The obtained segregants show characteristically reduced growth rates and conidiation dependent on sizes and types of mono- and trisomic segments, and all spontaneously produce normal diploid sectors. Such secondary diploid types either arose in one step of compensating crossing over in the other involved arm, or—more conspicuously—in two steps of nondisjunction via a trisomic intermediate.—In both of the analyzed translocations the segments translocated to IL were extremely long, while those translocated from IL were relatively short. The break in I for T1(I;VII) was located distal to the main selective marker in IL, while that of T2(I;VIII) had been mapped proximal but closely linked to it. Therefore, as expected, the selected primary crossover from the two diploids with T2( I;VIII) in coupling or in repulsion to the selective marker, showed the same chromosomal imbalance and poor growth. These could however be distinguished visually because they spontaneously produced different trisomic intermediates in the next step, in accordance with the different arrangement of the aneuploid segments. On the other hand, from diploids heterozygous for T1( I;VII) mitotic crossovers could only be selected when the selective markers were in coupling with the translocation; these crossovers were relatively well-growing and produced frequent secondary segregants of the expected trisomic, 2n+VII, type. For both translocations it was impossible to

  11. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    PubMed

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  12. Kinematic control of extreme jump angles in the red leg running frog (Kassina maculata).

    PubMed

    Richards, Christopher Thomas; Porro, Laura Beatriz; Collings, Amber Jade

    2017-03-08

    The kinematic flexibility of frog hindlimbs enables multiple locomotor modes within a single species. Prior work has extensively explored maximum performance capacity in frogs; however, the mechanisms by which anurans modulate performance within locomotor modes remain unclear. We explored how Kassina maculata, a species known for both running and jumping abilities, modulates takeoff angle from horizontal to nearly vertical. Specifically, how do 3D motions of leg segments coordinate to move the center of mass (COM) upwards and forwards? How do joint rotations modulate jump angle? High-speed video was used to quantify 3D joint angles and their respective rotation axis vectors. Inverse kinematics was used to determine how hip, knee and ankle rotations contribute to components of COM motion. Independent of takeoff angle, leg segment retraction (rearward rotation) was twofold greater than adduction (downward rotation). Additionally, the joint rotation axis vectors reoriented through time suggesting dynamic shifts in relative roles of joints. We found two hypothetical mechanisms for increasing takeoff angle: Firstly, greater knee and ankle excursion increased shank adduction, elevating the COM. Secondly, during the steepest jumps the body rotated rapidly backwards to redirect the COM velocity. This rotation was not caused by pelvic angle extension, but rather by kinematic transmission from leg segments via reorientation of the joint rotation axes. We propose that K. maculata uses proximal leg retraction as the principal kinematic drive while dynamically tuning jump trajectory by knee and ankle joint modulation.

  13. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line.

    PubMed

    Qi, Zengjun; Du, Pei; Qian, Baoli; Zhuang, Lifang; Chen, Huafeng; Chen, Tingting; Shen, Jian; Guo, Jie; Feng, Yigao; Pei, Ziyou

    2010-08-01

    Thinopyrum bessarabicum (2n = 2x = 14, JJ or E(b)E(b)) is an important genetic resource for wheat improvement due to its salinity tolerance and disease resistance. Development of wheat-Th. bessarabicum translocation lines will facilitate its practical utilization in wheat improvement. In this study, a novel wheat-Th. bessarabicum translocation line T2JS-2BS.2BL, which carries a segment of Th. bessarabicum chromosome arm 2JS was identified and further characterized using sequential chromosome C-banding, genomic in situ hybridization (GISH), dual-color fluorescent in situ hybridization (FISH) and DNA markers. The translocation breakpoint was mapped within bin C-2BS1-0.53 of chromosome 2B through marker analysis. Compared to the Chinese Spring (CS) parent and to CS-type lines, the translocation line has more fertile spikes per plant, longer spikes, more grains per spike and higher yield per plant, which suggests that the alien segment carries yield-related genes. However, plants with the translocation are also taller, head later and have lower 1,000-kernel weight than CS or CS-type lines. By using markers specific to the barley photoperiod response gene Ppd-H1, it was determined that the late heading date was conferred by a recessive allele located on the 2JS segment. In addition, four markers specific for the translocated segment were identified, which can be used for marker-aided screening.

  14. Leg stiffness and expertise in men jumping.

    PubMed

    Laffaye, Guillaume; Bardy, Benoît G; Durey, Alain

    2005-04-01

    The aim of the present study is to investigate: a) the leg spring behavior in the one-leg vertical jump, b) the contribution of impulse parameters to this behavior, and c) the effect of jumping expertise on leg stiffness. Four categories of experts (handball, basketball, volleyball players, and Fosbury athletes), as well as novice subjects performed a run-and-jump test to touch a ball with the head. Five experimental conditions were tested from 55 to 95% of the maximum jump height. Kinematic and kinetic data were collected using six cameras and a force plate. The mechanical behavior of the musculoskeleton component of the human body can be modeled as a simple mass-spring system, from which leg stiffness values can be extracted to better understand energy transfer during running or jumping. The results indicate that leg stiffness (mean value of 11.5 kN.m) decreased with jumping height. Leg shortening at takeoff also increased with jumping height, whereas contact time decreased (-18%). No difference was found between experts and novices for leg stiffness. However, a principal components analysis (PCA) indicated the contribution of two main factors to the performance. The first factor emerged out of vertical force, stiffness, and duration of impulse. The second factor included leg shortening and jumping height. Differences between experts and novices were observed in terms of the contribution of leg stiffness to jump height, and more importantly, clear differences existed between experts in jumping parameters. The analysis performed on the sport categories indeed revealed different jumping profiles, characterized by specific, sport-related impulse parameters.

  15. Electroencephalographic recordings during parachute jump sessions.

    PubMed

    Gauthier, P; Jouffray, L; Rodi, M; Gottesmann, C

    1980-04-01

    Electroencephalographic (EEG) recordings of experienced parachutists were done by means of telemetry before, during, and after jumps of up to 3500m. During free-fall and after stabilization, alpha rhythm was recorded from several alpha reactive subjects when they closed their eyes. No pathological EEG recordings were obtained during the different phases of the jump.

  16. The Phase Shift in the Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Amiri, Farhang

    2008-01-01

    The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation.…

  17. Natural and systematic polar motion jumps

    NASA Astrophysics Data System (ADS)

    Chapanov, Y.; Vondrak, J.; Ron, C.; Pachalieva, R.

    2014-12-01

    Polar motion consists mainly of two harmonic oscillations with variable phases and amplitudes and small irregular variations. The small irregular variations may be due to various geophysical excitations and observation inaccuracy (mostly in the first half of the last century). A part of irregular polar motion variations consists of fast jumps of the mean values of polar motion coordinates. The direct determination of the polar motion jumps is difficult, because the jump values are very small relative to the seasonal and Chandler amplitudes. A useful high sensitive method of data jumps determination is proposed. The method consists of data integration and piecewise linear or parabolic trends determina- tion. This method is applied to determine the natural and systematic polar motion jumps existing in pole coordinates from the solutions OA10 for the period 1899.7ñ1962.0 and C04 for the period 1962.0- 2013.5. Only a few of the determined polar motion jumps can be interpreted as systematic biases due to observational errors. The major part of the detected polar motion jumps occurs almost regularly near the epochs of minimum amplitude (due to the beat of seasonal and Chandler wobbles), so the natural origin of these jumps is supposed.

  18. Orientation Dependence of Jumping Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Berrier, Austin; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    On nanostructured superhydrophobic surfaces, microscopic condensate exhibits out-of-plane jumping that minimizes the average droplet size for maximal phase-change heat transfer. This jumping-droplet phenomenon occurs independently of gravity and is due to surface energy being partially converted to kinetic energy upon coalescence events. Although the initial departure of the jumping droplets is independent of gravity, the subsequent trajectories exhibit a dependence upon the orientation of the substrate. The drop size distribution of jumping-droplet condensation growing on a superhydrophobic substrate was characterized for both horizontal and vertical surface orientations. With the horizontal orientation, jumping condensate returns to the substrate by gravity. While this can result in chain reactions with other droplets to trigger further jumping events, eventually the rebounding droplets become too large to jump and are stuck on the surface. In contrast, droplets jumping off a vertically oriented surface do not return to the substrate. For this reason, the maximum droplet diameters during condensation growth were found to be significantly larger on the horizontally oriented superhydrophobic surface than on the vertical orientation.

  19. Internal hydraulic jumps with large upstream shear

    NASA Astrophysics Data System (ADS)

    Ogden, Kelly; Helfrich, Karl

    2015-11-01

    Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.

  20. The Locust Jump: An Integrated Laboratory Investigation

    ERIC Educational Resources Information Center

    Scott, Jon

    2005-01-01

    The locust is well known for its ability to jump large distances to avoid predation. This class sets out a series of investigations into the mechanisms underlying the jump enabling students to bring together information from biomechanics, muscle physiology, and anatomy. The nature of the investigation allows it to be undertaken at a number of…

  1. A subdural haematoma following 'reverse' bungee jumping.

    PubMed

    FitzGerald, J J; Bassi, S; White, B D

    2002-06-01

    Bungee jumping has been exploited commercially for 13 years and proprietors claim a good safety record. However, published case reports document a wide variety of possible injuries. To this list, we add a report of a subdural haematoma sustained during a variant of the sport, the 'reverse' bungee jump.

  2. The Phase Shift in the Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Amiri, Farhang

    2008-01-01

    The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation.…

  3. JumpStart III Final Report.

    ERIC Educational Resources Information Center

    Cohen, Arthur M.; Brawer, Florence B.; Kozeracki, Carol A.

    This final report for the JumpStart III program presents a summary of the entrepreneurship training programs developed by each of the four JumpStart III partners selected in March 1997. Grants for the colleges totaled $354,546 over 2 years. The Jumpstart funding has been only a starting point for these and the other 12 Jumpstart partners in…

  4. The Locust Jump: An Integrated Laboratory Investigation

    ERIC Educational Resources Information Center

    Scott, Jon

    2005-01-01

    The locust is well known for its ability to jump large distances to avoid predation. This class sets out a series of investigations into the mechanisms underlying the jump enabling students to bring together information from biomechanics, muscle physiology, and anatomy. The nature of the investigation allows it to be undertaken at a number of…

  5. Rope Jumping: A Preliminary Developmental Study.

    ERIC Educational Resources Information Center

    Wickstrom, Ralph L.

    The basic movement pattern used in skilled individual rope jumping performance was determined and used as a model against which to evaluate the rope jumping form used by children at various levels of skills development. The techniques of adults and nursery school children were filmed and analyzed. The specific causes of unsuccessful attempts were…

  6. Transsonic accretion modes with density jumps

    NASA Astrophysics Data System (ADS)

    Adarchenko, V. A.; Voronin, S. M.

    2015-08-01

    In this study, a class of steady-state solutions of the problem of matter incidence on a gravitating center (accretion), in which the matter jump through a sound barrier is performed at the discontinuity (density jump), is proposed. Substantiation of such solutions is given based on the theory of fast—slow systems. Certain partial solutions are presented as an example.

  7. A Comparison of Mechanical Parameters Between the Counter Movement Jump and Drop Jump in Biathletes

    PubMed Central

    Król, Henryk; Mynarski, Władysław

    2012-01-01

    The main objective of the study was to determine to what degree higher muscular activity, achieved by increased load in the extension phase (eccentric muscle action) of the vertical jump, affects the efficiency of the vertical jump. Sixteen elite biathletes participated in this investigation. The biathletes performed tests that consisted of five, single “maximal” vertical jumps (counter movement jump – CMJ) and five, single vertical jumps, in which the task was to touch a bar placed over the jumping biathletes (specific task counter movement jump – SCMJ). Then, they performed five, single drop jumps from an elevation of 0.4m (DJ). Ground reaction forces were registered using the KISTLER 9182C force platform. MVJ software was used for signal processing (Król, 1999) and enabling calculations for kinematic and kinetic parameters of the subject’s jump movements (on-line system). The results indicate that only height of the jump (h) and mean power (Pmean) during the takeoff are statistically significant. Both h and Pmean are higher in the DJ. The results of this study may indicate that elite biathletes are well adapted to eccentric work of the lower limbs, thus reaching greater values of power during the drop jump. These neuromuscular adaptive changes may allow for a more dynamic and efficient running technique. PMID:23487157

  8. Stochastic stability properties of jump linear systems

    NASA Technical Reports Server (NTRS)

    Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.

    1992-01-01

    Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.

  9. Usefulness of the jump-and-reach test in assessment of vertical jump performance.

    PubMed

    Menzel, Hans-Joachim; Chagas, Mauro H; Szmuchrowski, Leszek A; Araujo, Silvia R; Campos, Carlos E; Giannetti, Marcus R

    2010-02-01

    The objective was to estimate the reliability and criterion-related validity of the Jump-and-Reach Test for the assessment of squat, countermovement, and drop jump performance of 32 male Brazilian professional volleyball players. Performance of squat, countermovement, and drop jumps with different dropping heights was assessed on the Jump-and-Reach Test and the measurement of flight time, then compared across different jump trials. The very high reliability coefficients of both assessment methods and the lower correlation coefficients between scores on the assessments indicate a very high consistency of each method but only moderate covariation, which means that they measure partly different items. As a consequence, the Jump-and-Reach Test has good ecological validity in situations when reaching height during the flight phase is critical for performance (e.g., basketball and volleyball) but only limited accuracy for the assessment of vertical impulse production with different jump techniques and conditions.

  10. Electrostatics of polymer translocation events in electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  11. Electrostatics of polymer translocation events in electrolyte solutions.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-07

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  12. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers

    PubMed Central

    Pauli, Carole A.; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R.

    2016-01-01

    Abstract Pauli, CA, Keller, M, Ammann, F, Hübner, K, Lindorfer, J, Taylor, WR, and Lorenzetti, S. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. J Strength Cond Res 30(3): 643–652, 2016—Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370

  13. Jumping from the Brooklyn Bridge.

    PubMed

    Kurtz, R J; Pizzi, W F; Richman, H; Tiefenbrun, J

    1987-07-01

    In an attempt to identify factors contributing to survival of free fall and impact, we evaluated the records of four patients who survived a jump from the Brooklyn Bridge into the East River in New York Harbor between 1977 and 1985. All four patients were male and ranged in age from 22 to 67 years. They had free falls of between 41.0 and 48.8 meters. All of the patients were brought to the hospital within 24 minutes of entering the water. Three of the four had emergency surgical treatment and the fourth patient had only minor injuries. All four patients survived the suicide attempts. The length of the hospital stay ranged from two to 26 days.

  14. Mobile Jump Assessment (mJump): A Descriptive and Inferential Study.

    PubMed

    Mateos-Angulo, Alvaro; Galán-Mercant, Alejandro; Cuesta-Vargas, Antonio

    2015-08-26

    Vertical jump tests are used in athletics and rehabilitation to measure physical performance in people of different age ranges and fitness. Jumping ability can be analyzed through different variables, and the most commonly used are fly time and jump height. They can be obtained by a variety of measuring devices, but most are limited to laboratory use only. The current generation of smartphones contains inertial sensors that are able to record kinematic variables for human motion analysis, since they are tools for easy access and portability for clinical use. The aim of this study was to describe and analyze the kinematics characteristics using the inertial sensor incorporated in the iPhone 4S, the lower limbs strength through a manual dynamometer, and the jump variables obtained with a contact mat in the squat jump and countermovement jump tests (fly time and jump height) from a cohort of healthy people. A cross sectional study was conducted on a population of healthy young adults. Twenty-seven participants performed three trials (n=81 jumps) of squat jump and countermovement jump tests. Acceleration variables were measured through a smartphone's inertial sensor. Additionally, jump variables from a contact mat and lower limbs dynamometry were collected. In the present study, the kinematic variables derived from acceleration through the inertial sensor of a smartphone iPhone 4S, dynamometry of lower limbs with a handheld dynamometer, and the height and flight time with a contact mat have been described in vertical jump tests from a cohort of young healthy subjects. The development of the execution has been described, examined and identified in a squat jump test and countermovement jump test under acceleration variables that were obtained with the smartphone. The built-in iPhone 4S inertial sensor is able to measure acceleration variables while performing vertical jump tests for the squat jump and countermovement jump in healthy young adults. The acceleration

  15. A model of anomalous chain translocation dynamics.

    PubMed

    Chaudhury, Srabanti; Cherayil, Binny J

    2008-12-18

    A model of polymer translocation based on the stochastic dynamics of the number of monomers on one side of a pore-containing surface is formulated in terms of a one-dimensional generalized Langevin equation, in which the random force is assumed to be characterized by long-ranged temporal correlations. The model is introduced to rationalize anomalies in measured and simulated values of the average time of passage through the pore, which in general cannot be satisfactorily accounted for by simple Brownian diffusion mechanisms. Calculations are presented of the mean first passage time for barrier crossing and of the mean square displacement of a monomeric segment, in the limits of strong and weak diffusive bias. The calculations produce estimates of the exponents in various scaling relations that are in satisfactory agreement with available data.

  16. Abdominal radiation causes bacterial translocation

    SciTech Connect

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-02-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa.

  17. Kinematic characteristics of the ski jump inrun: a 10-year longitudinal study.

    PubMed

    Janura, Miroslav; Cabell, Lee; Elfmark, Milan; Vaverka, Frantisek

    2010-05-01

    The athlete's inrun position affects the outcome for take-off in ski jumping. The purpose of this study was to examine the kinematic parameters between skiers' adjacent body segments during their first straight path of the inrun. Elite ski jumpers participated in the study at the World Cup events in Innsbruck, Austria, during the years 1992 through 2001. A video image was taken at a right angle to the tracks of the K-110 (meter) jumping hill. Kinematic data were collected from the lower extremities and trunk of the athletes. Findings indicated that jumpers had diminished ankle and knee joint angles and increased trunk and hip angles over the 10 years. In recent years, the best athletes achieved a further length of their jumps, while they experienced slower inrun average velocity. These results are perhaps explained by several possible contributing factors, such as new technique of the jumper's body kinematics, advancements in equipment technology, and somatotype of the jumpers.

  18. Structural insights into ribosome translocation

    PubMed Central

    Ling, Clarence

    2016-01-01

    During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF‐G) in bacteria and elongation factor 2 (EF‐2) in eukaryotes. Recent structural and single‐molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the ‘head’ domain of small ribosomal subunit undergoes forward‐ and back‐swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF‐G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF‐G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620–636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website. PMID:27117863

  19. Production and Identification of Wheat-Agropyron cristatum 2P Translocation Lines

    PubMed Central

    Li, Huanhuan; Lv, Mingjie; Song, Liqiang; Zhang, Jinpeng; Gao, Ainong; Li, Lihui; Liu, Weihua

    2016-01-01

    Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, possesses many potentially valuable traits that can be transferred to common wheat through breeding programs. The wheat-A. cristatum disomic addition and translocation lines can be used as bridge materials to introduce alien chromosomal segments to wheat. Wheat-A. cristatum 2P disomic addition line II-9-3 was highly resistant to powdery mildew and leaf rust, which was reported in our previous study. However, some translocation lines induced from II-9-3 have not been reported. In this study, some translocation lines were induced from II-9-3 by 60Co-γ irradiation and gametocidal chromosome 2C and then identified by cytological methods. Forty-nine wheat-A. cristatum translocation lines were obtained and various translcoation types were identified by GISH (genomic in situ hybridization), such as whole-arm, segmental and intercalary translocations. Dual-color FISH (fluorescent in situ hybridization) was applied to identify the wheat chromosomes involved in the translocations, and the results showed that A. cristatum 2P chromosome segments were translocated to the different wheat chromosomes, including 1A, 2A, 3A, 4A, 5A, 6A, 7A, 3B, 5B, 7B, 1D, 4D and 6D. Many different types of wheat-A. cristatum alien translocation lines would be valuable for not only identifying and cloning A. cristatum 2P-related genes and understanding the genetics and breeding effects of the translocation between A. cristatum chromosome 2P and wheat chromosomes, but also providing new germplasm resources for the wheat genetic improvement. PMID:26731742

  20. Achilles tendon material properties are greater in the jump leg of jumping athletes

    PubMed Central

    Bayliss, A.J.; Weatherholt, A.M.; Crandall, T.T.; Farmer, D.L.; McConnell, J.C.; Crossley, K.M.; Warden, S.J.

    2016-01-01

    Purpose: The Achilles tendon (AT) must adapt to meet changes in demands. This study explored AT adaptation by comparing properties within the jump and non-jump legs of jumping athletes. Non-jumping control athletes were included to control limb dominance effects. Methods: AT properties were assessed in the preferred (jump) and non-preferred (lead) jumping legs of male collegiate-level long and/or high jump (jumpers; n=10) and cross-country (controls; n=10) athletes. Cross-sectional area (CSA), elongation, and force during isometric contractions were used to estimate the morphological, mechanical and material properties of the ATs bilaterally. Results: Jumpers exposed their ATs to more force and stress than controls (all p≤0.03). AT force and stress were also greater in the jump leg of both jumpers and controls than in the lead leg (all p<0.05). Jumpers had 17.8% greater AT stiffness and 24.4% greater Young’s modulus in their jump leg compared to lead leg (all p<0.05). There were no jump versus lead leg differences in AT stiffness or Young’s modulus within controls (all p>0.05). Conclusion: ATs chronically exposed to elevated mechanical loading were found to exhibit greater mechanical (stiffness) and material (Young’s modulus) properties. PMID:27282454

  1. Influence of dorsiflexion shoes on jump performance.

    PubMed

    Salinero, Juan J; González-Millán, Cristina; Abián-Vicén, Javier; Del Coso Garrigós, Juan

    2014-04-01

    The goal of dorsiflexion sports shoes is to increase jumping capacity by means of a lower position of the heel in relation to the forefoot which results in additional stretching of the ankle plantar flexors. The aim of this study was to compare a dorsiflexion sports shoe model with two conventional sports shoe models in a countermovement jump test. The sample consisted of 35 participants who performed a countermovement jump test on a force platform wearing the three models of shoes. There were significant differences in the way force was manifested (P<0.05) in the countermovement jump test, with a decrease in the velocity of the center of gravity and an increase in force at peak power and mean force in the concentric phase. Moreover, peak power was reached earlier with the dorsiflexion sports shoe model. The drop of the center of gravity was increased in CS1 in contrast to the dorsiflexion sports shoe model (P<.05). However, the dorsiflexion sports shoes were not effective for improving either peak power or jump height (P>.05). Although force manifestation and jump kinetics differ between dorsiflexion shoes and conventional sports shoes, jump performance was similar.

  2. Condensation-induced jumping water drops

    NASA Astrophysics Data System (ADS)

    Narhe, R. D.; Khandkar, M. D.; Shelke, P. B.; Limaye, A. V.; Beysens, D. A.

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length ˜1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  3. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  4. Predicting vertical jump height from bar velocity.

    PubMed

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  5. Predicting Vertical Jump Height from Bar Velocity

    PubMed Central

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-01-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key points Vertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer. The relationship between the point at which bar acceleration is less than -9.81 m·s-2 and the real take-off is affected by the velocity of movement. Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance. PMID:25983572

  6. Humans adjust control to initial squat depth in vertical squat jumping.

    PubMed

    Bobbert, Maarten F; Casius, L J Richard; Sijpkens, Igor W T; Jaspers, Richard T

    2008-11-01

    The purpose of this study was to gain insight into the control strategy that humans use in jumping. Eight male gymnasts performed vertical squat jumps from five initial postures that differed in squat depth (P1-P5) while kinematic data, ground reaction forces, and electromyograms (EMGs) of leg muscles were collected; the latter were rectified and smoothed to obtain SREMGs. P3 was the preferred initial posture; in P1, P2, P4, and P5 height of the mass center was +13, +7, -7 and -14 cm, respectively, relative to that in P3. Furthermore, maximum-height jumps from the initial postures observed in the subjects were simulated with a model comprising four body segments and six Hill-type muscles. The only input was the onset of stimulation of each of the muscles (Stim). The subjects were able to perform well-coordinated squat jumps from all postures. Peak SREMG levels did not vary among P1-P5, but SREMG onset of plantarflexors occurred before that of gluteus maximus in P1 and > 90 ms after that in P5 (P < 0.05). In the simulation study, similar systematic shifts occurred in Stim onsets across the optimal control solutions for jumps from P1-P5. Because the adjustments in SREMG onsets to initial posture observed in the subjects were very similar to the adjustments in optimal Stim onsets of the model, it was concluded that the SREMG adjustments were functional, in the sense that they contributed to achieving the greatest jump height possible from each initial posture. For the model, we were able to develop a mapping from initial posture to Stim onsets that generated successful jumps from P1-P5. It appears that to explain how subjects adjust their control to initial posture there is no need to assume that the brain contains an internal dynamics model of the musculoskeletal system.

  7. Humans make near-optimal adjustments of control to initial body configuration in vertical squat jumping.

    PubMed

    Bobbert, Maarten F; Richard Casius, L J; Kistemaker, Dinant A

    2013-05-01

    We investigated adjustments of control to initial posture in squat jumping. Eleven male subjects jumped from three initial postures: preferred initial posture (PP), a posture in which the trunk was rotated 18° more backward (BP) and a posture in which it was rotated 15° more forward (FP) than in PP. Kinematics, ground reaction forces and electromyograms (EMG) were collected. EMG was rectified and smoothed to obtain smoothed rectified EMG (srEMG). Subjects showed adjustments in srEMG histories, most conspicuously a shift in srEMG-onset of rectus femoris (REC): from early in BP to late in FP. Jumps from the subjects' initial postures were simulated with a musculoskeletal model comprising four segments and six Hill-type muscles, which had muscle stimulation (STIM) over time as input. STIM of each muscle changed from initial to maximal at STIM-onset, and STIM-onsets were optimized using jump height as criterion. Optimal simulated jumps from BP, PP and FP were similar to jumps of the subjects. Optimal solutions primarily differed in STIM-onset of REC: from early in BP to late in FP. Because the subjects' adjustments in srEMG-onsets were similar to adjustments of the model's optimal STIM-onsets, it was concluded that the former were near-optimal. With the model we also showed that near-maximum jumps from BP, PP and FP could be achieved when STIM-onset of REC depended on initial hip joint angle and STIM-onsets of the other muscles were posture-independent. A control theory that relies on a mapping from initial posture to STIM-onsets seems a parsimonious alternative to theories relying on internal optimal control models. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Is the effect of a countermovement on jump height due to active state development?

    PubMed

    Bobbert, Maarten F; Casius, L J Richard

    2005-03-01

    To investigate whether the difference in jump height between countermovement jumps (CMJ) and squat jumps (SJ) could be explained by a difference in active state during propulsion. Simulations were performed with a model of the human musculoskeletal system comprising four body segments and six muscles. The model's only input was STIM, the stimulation of muscles, which could be switched "off" or "on." After switching "on," STIM increased to its maximum at a fixed rate of change (dSTIM/dt). For various values of dSTIM/dt, stimulation switch times were optimized to produce a maximum height CMJ. From this CMJ, the configuration at the lowest height of the center of gravity (CG) was selected and used as static starting configuration for simulation of SJ. Next, STIM-switch times were optimized to find the maximum height SJ. Simulated CMJ and SJ closely resembled jumps of human subjects. Maximum jump height of the model was greater in CMJ than in SJ, with the difference ranging from 0.4 cm at infinitely high dSTIM/dt to about 2.5 cm at the lowest dSTIM/dt investigated. The greater jump height in CMJ was due to a greater work output of the hip extensor muscles. These muscles could produce more force and work over the first 30% of their shortening range in CMJ, due to the fact that they had a higher active state in CMJ than in SJ. The greater jump height in CMJ than in SJ could be explained by the fact that in CMJ active state developed during the preparatory countermovement, whereas in SJ it inevitably developed during the propulsion phase, so that the muscles could produce more force and work during shortening in CMJ.

  9. Optimum take-off techniques and muscle design for long jump.

    PubMed

    Seyfarth, A; Blickhan, R; Van Leeuwen, J L

    2000-02-01

    A two-segment model based on Alexander (1990; Phil. Trans. R. Soc. Lond. B 329, 3-10) was used to investigate the action of knee extensor muscles during long jumps. A more realistic representation of the muscle and tendon properties than implemented previously was necessary to demonstrate the advantages of eccentric force enhancement and non-linear tendon properties. During the take-off phase of the long jump, highly stretched leg extensor muscles are able to generate the required vertical momentum. Thereby, serially arranged elastic structures may increase the duration of muscle lengthening and dissipative operation, resulting in an enhanced force generation of the muscle-tendon complex. To obtain maximum performance, athletes run at maximum speed and have a net loss in mechanical energy during the take-off phase. The positive work done by the concentrically operating muscle is clearly less than the work done by the surrounding system on the muscle during the eccentric phase. Jumping performance was insensitive to changes in tendon compliance and muscle speed, but was greatly influenced by muscle strength and eccentric force enhancement. In agreement with a variety of experimental jumping performances, the optimal jumping technique (angle of attack) was insensitive to the approach speed and to muscle properties (muscle mass, the ratio of muscle fibre to tendon cross-sectional area, relative length of fibres and tendon). The muscle properties also restrict the predicted range of the angle of the velocity vector at take-off.

  10. How do elite ski jumpers handle the dynamic conditions in imitation jumps?

    PubMed

    Ettema, Gertjan; Hooiveld, Jo; Braaten, Steinar; Bobbert, Maarten

    2016-01-01

    We examined the effect of boundary conditions in imitation ski jumping on movement dynamics and coordination. We compared imitation ski jumps with--and without--the possibility to generate shear propulsion forces. Six elite ski jumpers performed imitation jumps by jumping from a fixed surface and from a rolling platform. The ground reaction force vector, kinematics of body segments, and EMG of eight lower limb muscles were recorded. Net joint dynamics were calculated using inverse dynamics. The two imitation jumps differed considerably from each other with regard to the dynamics (moments, forces), whereas the kinematics were very similar. Knee power was higher and hip power was lower on the rolling platform than on the fixed surface. Mean EMG levels were very similar for both conditions, but differences in the development of muscle activity were indicated for seven of eight muscles. These differences are reflected in a subtle difference of the alignment of ground reaction force with centre of mass: the ground reaction force runs continuously close to but behind the centre of mass on the rolling platform and fluctuates around it on the fixed surface. This likely reflects a different strategy for controlling angular momentum.

  11. TALEN-Induced Translocations in Human Cells.

    PubMed

    Piganeau, Marion; Renouf, Benjamin; Ghezraoui, Hind; Brunet, Erika

    2016-01-01

    Induction of chromosomal translocations in human cells is of a great interest to study tumorigenesis and genome instability. Here, we explain in detail a method to induce translocations using the transcription activator-like effector nucleases (TALENs). We describe how to detect translocation formation by PCR, calculate translocation frequency by 96-well PCR screen, and analyze breakpoint junctions. When inducing cancer translocations, it is also possible to detect the fusion gene by FISH analysis or western blot.

  12. Prenatal diagnosis and carrier detection of a cryptic translocation by using DNA markers from the short arm of chromosome 5.

    PubMed Central

    Overhauser, J; Bengtsson, U; McMahon, J; Ulm, J; Butler, M G; Santiago, L; Wasmuth, J J

    1989-01-01

    DNA markers from the short arm of chromosome 5 were used to examine a large family in which a microscopically undetectable translocation was segregating. In addition to confirming that three retarded children were hemizygous for loci distal to 5p14, these analyses identified five individuals as being carriers of the balanced translocation. The use of molecular probes provided informed genetic counseling to the family for the first time. With the DNA markers from 5p, prenatal diagnosis was performed on two fetal chorionic villus samples, both of which were found to have unbalanced karyotypes. The identification of translocation carriers was complicated by recombination between the small translocated segment of 5p and the corresponding region on the normal homologue, which changed the haplotype of the translocated 5p segment. Images Figure 6 Figure 2 Figure 4 PMID:2667351

  13. Computer simulation of viral-assembly and translocation

    NASA Astrophysics Data System (ADS)

    Mahalik, Jyoti Prakash

    We investigated four different problems using coarse grained computational models : self-assembly of single stranded (ss) DNA virus, ejection dynamics of double stranded(ds) DNA from phages, translocation of ssDNA through MspA protein pore, and segmental dynamics of a polymer translocating through a synthetic nanopore. In the first part of the project, we investigated the self-assembly of a virus with and without its genome. A coarse-grained model was proposed for the viral subunit proteins and its genome (ssDNA). Langevin dynamics simulation, and replica exchange method were used to determine the kinetics and energetics of the self-assembly process, respectively. The self-assembly follows a nucleation-growth kind of mechanism. The ssDNA plays a crucial role in the self-assembly by acting as a template and enhancing the local concentration of the subunits. The presence of the genome does not changes the mechanism of the self-assembly but it reduces the nucleation time and enhances the growth rate by almost an order of magnitude. The second part of the project involves the investigation of the dynamics of the ejection of dsDNA from phages. A coarse-grained model was used for the phage and dsDNA. Langevin dynamics simulation was used to investigate the kinetics of the ejection. The ejection is a stochastic process and a slow intermediate rate kinetics was observed for most ejection trajectories. We discovered that the jamming of the DNA at the pore mouth at high packing fraction and for a disordered system is the reason for the intermediate slow kinetics. The third part of the project involves translocation of ssDNA through MspA protein pore. MspA protein pore has the potential for genome sequencing because of its ability to clearly distinguish the four different nucleotides based on their blockade current, but it is a challenge to use this pore for any practical application because of the very fast traslocation time. We resolved the state of DNA translocation

  14. The Crown Bite Jumping Herbst.

    PubMed

    Owen, Reuel

    2003-01-01

    The Crown Bite Jumping Herbst Appliance is evaluated and combined with Straight Wire Arch Fixed Orthodontics in treatment of Class II, Division I malocclusions. This article will evaluate a combined orthodontic approach of "straightening teeth" and an orthognathic approach of "moving jaws or making skeletal changes." Orthodontic treatment cannot be accomplished well without establishing a healthy temporomandibular joint. This is defined by Keller as a joint that is "noiseless, painless and has a normal range of motion without deviation and deflection." It is not prudent to separate orthodontic treatment as its own entity without being aware of the changes in the temporomandibular joint before, during and after treatment. In other words, "If you're doing orthodontics you're doing TMJ treatment." One should treat toward a healthy, beautiful face asking, "Will proposed treatment achieve this goal?" Treatment should be able to be carried out in an efficient manner, minimizing treatment time, be comfortable and affordable for the patient, and profitable for the dentist. The finished treatment should meet Andrews' Six Keys of Occlusion, or Loudon's Twelve Commandments. Above all, do no harm to the patient. We think that a specific treatment plan can embrace these tenets. The focus will be to show Class II treatment using a modified Herbst Appliance and fixed straight wire orthodontics.

  15. Mechanical jumping power in athletes.

    PubMed

    Kirkendall, D T; Street, G M

    1986-12-01

    The Wingate cycle ergometer test is a widely used test of sustained muscular power. A limitation of the test is the lack of development and retrieval of stored elastic energy due to a lack of an eccentric phase. To measure mechanical power output of the entire stretch-shortening cycle, the test of Bosco et al (1983) was administered to 119 male athletes in 7 different activities during their pre-participation evaluations. The sports tested were indoor soccer, American football and ballet (professionals), outdoor soccer, basketball and wrestling (collegiate) and amateur bobsled. Results showed the overall average power output to be 20.37 W.kg-1 for the 60s reciprocal jumping test. Ballet dancers generated significantly less mechanical power than indoor soccer, basketball and bobsled athletes, while wrestlers generated significantly less power than indoor soccer and basketball athletes (all p less than 0.05). No other between-sport differences were seen. A subset of indoor soccer players (n = 10) were retested after 4 months of training. Power improved from 20.8 to 24.3 W.kg-1 (p less than 0.05). While between sport differences were limited, training differences in one subset of athletes were readily identified.

  16. Jumping to conclusions in schizophrenia

    PubMed Central

    Evans, Simon L; Averbeck, Bruno B; Furl, Nicholas

    2015-01-01

    Schizophrenia is a mental disorder associated with a variety of symptoms, including hallucinations, delusions, social withdrawal, and cognitive dysfunction. Impairments on decision-making tasks are routinely reported: evidence points to a particular deficit in learning from and revising behavior following feedback. In addition, patients tend to make hasty decisions when probabilistic judgments are required. This is known as “jumping to conclusions” (JTC) and has typically been demonstrated by presenting participants with colored beads drawn from one of two “urns” until they claim to be sure which urn the beads are being drawn from (the proportions of colors vary in each urn). Patients tend to make early decisions on this task, and there is evidence to suggest that a hasty decision-making style might be linked to delusion formation and thus be of clinical relevance. Various accounts have been proposed regarding what underlies this behavior. In this review, we briefly introduce the disorder and the decision-making deficits associated with it. We then explore the evidence for each account of JTC in the context of a wider decision-making deficit and then go on to summarize work exploring JTC in healthy controls using pharmacological manipulations and functional imaging. Finally, we assess whether JTC might have a role in therapy. PMID:26170674

  17. Motor Control of Landing from a Jump in Simulated Hypergravity.

    PubMed

    Gambelli, Clément N; Theisen, Daniel; Willems, Patrick A; Schepens, Bénédicte

    2015-01-01

    On Earth, when landing from a counter-movement jump, muscles contract before touchdown to anticipate imminent collision with the ground and place the limbs in a proper position. This study assesses how the control of landing is modified when gravity is increased above 1 g. Hypergravity was simulated in two different ways: (1) by generating centrifugal forces during turns of an aircraft (A300) and (2) by pulling the subject downwards in the laboratory with a Subject Loading System (SLS). Eight subjects were asked to perform counter-movement jumps at 1 g on Earth and at 3 hypergravity levels (1.2, 1.4 and 1.6 g) both in A300 and with SLS. External forces applied to the body, movements of the lower limb segments and muscular activity of 6 lower limb muscles were recorded. Our results show that both in A300 and with SLS, as in 1 g: (1) the anticipation phase is present; (2) during the loading phase (from touchdown until the peak of vertical ground reaction force), lower limb muscles act like a stiff spring, whereas during the second part (from the peak of vertical ground reaction force until the return to the standing position), they act like a compliant spring associated with a damper. (3) With increasing gravity, the preparatory adjustments and the loading phase are modified whereas the second part does not change drastically. (4) The modifications are similar in A300 and with SLS, however the effect of hypergravity is accentuated in A300, probably due to altered sensory inputs. This observation suggests that otolithic information plays an important role in the control of the landing from a jump.

  18. Motor Control of Landing from a Jump in Simulated Hypergravity

    PubMed Central

    Gambelli, Clément N.; Theisen, Daniel; Willems, Patrick A.; Schepens, Bénédicte

    2015-01-01

    On Earth, when landing from a counter-movement jump, muscles contract before touchdown to anticipate imminent collision with the ground and place the limbs in a proper position. This study assesses how the control of landing is modified when gravity is increased above 1 g. Hypergravity was simulated in two different ways: (1) by generating centrifugal forces during turns of an aircraft (A300) and (2) by pulling the subject downwards in the laboratory with a Subject Loading System (SLS). Eight subjects were asked to perform counter-movement jumps at 1 g on Earth and at 3 hypergravity levels (1.2, 1.4 and 1.6 g) both in A300 and with SLS. External forces applied to the body, movements of the lower limb segments and muscular activity of 6 lower limb muscles were recorded. Our results show that both in A300 and with SLS, as in 1 g: (1) the anticipation phase is present; (2) during the loading phase (from touchdown until the peak of vertical ground reaction force), lower limb muscles act like a stiff spring, whereas during the second part (from the peak of vertical ground reaction force until the return to the standing position), they act like a compliant spring associated with a damper. (3) With increasing gravity, the preparatory adjustments and the loading phase are modified whereas the second part does not change drastically. (4) The modifications are similar in A300 and with SLS, however the effect of hypergravity is accentuated in A300, probably due to altered sensory inputs. This observation suggests that otolithic information plays an important role in the control of the landing from a jump. PMID:26505472

  19. PERFORMANCE OF THE AGS TRANSITION JUMP SYSTEM.

    SciTech Connect

    AHRENS,L.A.; BRENNAN,J.M.; GLENN,J.W.; ROSER,T.; VAN ASSELT,W.K.

    1999-03-29

    The transition jump system has been indispensable to the high intensity proton operation of the AGS complex. Nevertheless, transition crossing remains one of the major hurdles as the accelerator complex intensity is pushed upward. To enhance the performance of the system ''quadrupole pumping'' in the Booster is used to minimize the necessary longitudinal dilution of the beam on the AGS injection porch. During the transition jump sextupole correctors at strategic locations are pulsed to minimize the effects of the chromatic non-linearity of the jump system. The available instrumentation for diagnosing the performance of the system will be described, along with installed hardware to counter the non-linear effects of the transition jump system.

  20. Active Segmentation

    PubMed Central

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary. We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach. PMID:20686671

  1. Internal Hydraulic Jumps in Shallow Flows over Topography

    NASA Astrophysics Data System (ADS)

    Ogden, Kelly

    2016-11-01

    A barotropically forced stratified flow over topography can generate an internal hydraulic jump with upstream shear. The structure and mixing of these jumps are investigated theoretically and numerically. The effect of upstream shear on simplified jumps in two-layer flows without topography results in jump types such as undular bores, smooth front turbulent jumps, and fully turbulent jumps (Ogden and Helfrich, 2016). Increased shear results in entrainment across the jump with jump structures that resemble expanding shear layers. The addition of topography increases the number of qualitative jump types. Idealized simulations are conducted to characterize the types of jumps that can occur under various parameter regimes. The effect of parameters such as the volume flow rate and topographic height are considered. Flow structures including first-mode jumps with wave overturning and higher-mode jumps with wedges of homogeneous stagnant fluid are found. The degree of mixing and the mass budget of the developing stagnant wedge illuminate the important physical characteristics of each jump type. Existing hydraulic jumps in the environment are compared to the parameter regimes the identified jump types. The applicability of two-layered theories for studying these jumps is also considered.

  2. Downside risk of wildlife translocation.

    PubMed

    Chipman, R; Slate, D; Rupprecht, C; Mendoza, M

    2008-01-01

    Translocation has been used successfully by wildlife professionals to enhance or reintroduce populations of rare or extirpated wildlife, provide hunting or wildlife viewing opportunities, farm wild game, and reduce local human-wildlife conflicts. However, accidental and intentional translocations may have multiple unintended negative consequences, including increased stress and mortality of relocated animals, negative impacts on resident animals at release sites, increased conflicts with human interests, and the spread of diseases. Many wildlife professionals now question the practice of translocation, particularly in light of the need to contain or eliminate high profile, economically important wildlife diseases and because using this technique may jeopardize international wildlife disease management initiatives to control rabies in raccoons, coyotes, and foxes in North America. Incidents have been documented where specific rabies variants (Texas gray fox, canine variant in coyotes, and raccoon) have been moved well beyond their current range as a result of translocation, including the emergence of raccoon rabies in the eastern United States. Here, we review and discuss the substantial challenges of curtailing translocation in the USA, focusing on movement of animals by the public, nuisance wildlife control operators, and wildlife rehabilitators.

  3. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012-2014.

    PubMed

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-10-22

    Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  4. EVENT SEGMENTATION

    PubMed Central

    Zacks, Jeffrey M.; Swallow, Khena M.

    2012-01-01

    One way to understand something is to break it up into parts. New research indicates that segmenting ongoing activity into meaningful events is a core component of ongoing perception, with consequences for memory and learning. Behavioral and neuroimaging data suggest that event segmentation is automatic and that people spontaneously segment activity into hierarchically organized parts and sub-parts. This segmentation depends on the bottom-up processing of sensory features such as movement, and on the top-down processing of conceptual features such as actors’ goals. How people segment activity affects what they remember later; as a result, those who identify appropriate event boundaries during perception tend to remember more and learn more proficiently. PMID:22468032

  5. Jumping mechanisms in dictyopharid planthoppers (Hemiptera, Dicytyopharidae).

    PubMed

    Burrows, Malcolm

    2014-02-01

    The jumping performance of four species of hemipterans belonging to the family Dictyopharidae, from Europe, South Africa and Australia, were analysed from high-speed images. The body shape in all was characterised by an elongated and tapering head that gave a streamlined appearance. The body size ranged from 6 to 9 mm in length and from 6 to 23 mg in mass. The hind legs were 80-90% of body length and 30-50% longer than the front legs, except in one species in which the front legs were particularly large so that all legs were of similar length. Jumping was propelled by rapid and simultaneous depression of the trochantera of both hind legs, powered by large muscles in the thorax, and was accompanied by extension of the tibiae. In the best jumps, defined as those with the fastest take-off velocity, Engela minuta accelerated in 1.2 ms to a take-off velocity of 5.8 m s(-1), which is the fastest achieved by any insect described to date. During such a jump, E. minuta experienced an acceleration of 4830 m s(-2) or 490 g, while other species in the same family experienced 225-375 g. The best jumps in all species required an energy expenditure of 76-225 μJ, a power output of 12-80 mW and exerted a force of 12-29 mN. The required power output per mass of jumping muscle ranged from 28,000 to 140,200 W kg(-1) muscle and thus greatly exceeded the maximum active contractile limit of normal muscle. To achieve such a jumping performance, these insects must be using a power amplification mechanism in a catapult-like action. It is suggested that their streamlined body shape improves jumping performance by reducing drag, which, for a small insect, can substantially affect forward momentum.

  6. Pulmonary hemorrhage resulting from bungee jumping.

    PubMed

    Manos, Daria; Hamer, Okka; Müller, Nestor L

    2007-11-01

    Pulmonary hemorrhage is a relatively common complication of blunt chest trauma. Occasionally, it may result from pulmonary barotrauma after scuba diving or from sports activities not associated with barotrauma such as long breath-hold diving. We report a case of symmetric diffuse upper lobe hemorrhage resulting from a bungee jump in a previously healthy man. Bungee jumping is an increasingly popular sport with relatively few reported injuries. To our knowledge pulmonary hemorrhage in this setting has not yet been described.

  7. Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump.

    PubMed

    Ong, Carmichael F; Hicks, Jennifer L; Delp, Scott L

    2016-05-01

    Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human-robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135, 365, and 297 Nm to the ankle, knee, and hip, respectively. Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Simulation can aid in the design of performance-enhancing technologies.

  8. Velocity-jump models with crowding effects

    NASA Astrophysics Data System (ADS)

    Treloar, Katrina K.; Simpson, Matthew J.; McCue, Scott W.

    2011-12-01

    Velocity-jump processes are discrete random-walk models that have many applications including the study of biological and ecological collective motion. In particular, velocity-jump models are often used to represent a type of persistent motion, known as a run and tumble, that is exhibited by some isolated bacteria cells. All previous velocity-jump processes are noninteracting, which means that crowding effects and agent-to-agent interactions are neglected. By neglecting these agent-to-agent interactions, traditional velocity-jump models are only applicable to very dilute systems. Our work is motivated by the fact that many applications in cell biology, such as wound healing, cancer invasion, and development, often involve tissues that are densely packed with cells where cell-to-cell contact and crowding effects can be important. To describe these kinds of high-cell-density problems using a velocity-jump process we introduce three different classes of crowding interactions into a one-dimensional model. Simulation data and averaging arguments lead to a suite of continuum descriptions of the interacting velocity-jump processes. We show that the resulting systems of hyperbolic partial differential equations predict the mean behavior of the stochastic simulations very well.

  9. Velocity-jump models with crowding effects.

    PubMed

    Treloar, Katrina K; Simpson, Matthew J; McCue, Scott W

    2011-12-01

    Velocity-jump processes are discrete random-walk models that have many applications including the study of biological and ecological collective motion. In particular, velocity-jump models are often used to represent a type of persistent motion, known as a run and tumble, that is exhibited by some isolated bacteria cells. All previous velocity-jump processes are noninteracting, which means that crowding effects and agent-to-agent interactions are neglected. By neglecting these agent-to-agent interactions, traditional velocity-jump models are only applicable to very dilute systems. Our work is motivated by the fact that many applications in cell biology, such as wound healing, cancer invasion, and development, often involve tissues that are densely packed with cells where cell-to-cell contact and crowding effects can be important. To describe these kinds of high-cell-density problems using a velocity-jump process we introduce three different classes of crowding interactions into a one-dimensional model. Simulation data and averaging arguments lead to a suite of continuum descriptions of the interacting velocity-jump processes. We show that the resulting systems of hyperbolic partial differential equations predict the mean behavior of the stochastic simulations very well.

  10. Stochastic approach to modelling of near-periodic jumping loads

    NASA Astrophysics Data System (ADS)

    Racic, V.; Pavic, A.

    2010-11-01

    A mathematical model has been developed to generate stochastic synthetic vertical force signals induced by a single person jumping. The model is based on a unique database of experimentally measured individual jumping loads which has the most extensive range of possible jumping frequencies. The ability to replicate many of the temporal and spectral features of real jumping loads gives this model a definite advantage over the conventional half-sine models coupled with Fourier series analysis. This includes modelling of the omnipresent lack of symmetry of individual jumping pulses and jump-by-jump variations in amplitudes and timing. The model therefore belongs to a new generation of synthetic narrow band jumping loads which simulate reality better. The proposed mathematical concept for characterisation of near-periodic jumping pulses may be utilised in vibration serviceability assessment of civil engineering assembly structures, such as grandstands, spectator galleries, footbridges and concert or gym floors, to estimate more realistically dynamic structural response due to people jumping.

  11. Standing jumps in shallow granular flows down smooth inclines

    NASA Astrophysics Data System (ADS)

    Faug, Thierry; Childs, Philippa; Wyburn, Edward; Einav, Itai

    2015-07-01

    The shapes of standing jumps formed in shallow granular flows down an inclined smooth-based chute are analysed in detail, by varying both the slope and mass discharge. Laboratory tests and analytic jump solutions highlight two important transitions. First, for dense flows at high mass discharge, we observe a transition between steep jumps and more diffuse jumps. The traditional shallow-water equation offers a valid prediction for the thickness of the steep water-like jumps. Diffuse frictional jumps require a more general equation accounting for the forces acting inside the jump volume. Second, moving from dense to dilute flows produces another transition between incompressible and compressible jumps. The observed jump height decrease may be reproduced for a more dilute incoming flow by including experimentally measured density variation in the jump equation. Finally, we briefly discuss the likely relevance to avalanche protection dam design that currently utilises traditional shock equations for incompressible frictionless fluids.

  12. Dendritic oligoguanidines as intracellular translocators.

    PubMed

    Chung, Hyun-Ho; Harms, Guido; Seong, Churl Min; Choi, Byung Hyune; Min, Changhee; Taulane, Joseph P; Goodman, Murray

    2004-01-01

    A series of polyguanidylated dendritic structures that can be used as molecular translocators have been designed and synthesized based on nonpeptide units. The dendritic oligoguanidines conjugated with fluorescein or with a green fluorescent protein (GFP) mutant as cargos were isolated and characterized. Quantification and time-course analyses of the cellular uptake of the conjugates using HeLa S3 and human cervical carcinoma cells reveal that the polyguanidylated dendrimers have comparable translocation efficiency to the Tat(49-57) peptide. Furthermore, the deconvolution microscopy image analysis shows that they are located inside the cells. These results clearly show that nonlinear, branched dendritic oligoguanidines are capable of translocation through the cell membrane. This work also demonstrates the potential of these nonpeptidic dendritic oligoguanidines as carriers for intracellular delivery of small molecule drugs, bioactive peptides, and proteins. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  13. [Gut translocation septicemia in infant].

    PubMed

    Jeziorski, E; Ludwig, C; Rodière, M; Marchandin, H; Vande Perre, P

    2010-09-01

    Intestinal microbiotype necessary for life is a source of complications in childhood. Bacterial translocation is responsible of endogenous septicaemia and invasive complications. We report five cases of severe invasive infections associated with diarrhoea, digestive bleeding or sepsis. Biological parameters for inflammation are highly positive, and blood cultures reveal bacterial identification: salmonella enteridis, enterobacter cloacae, campylobacter jejuni, escherichia coli or clostridium difficile. We describe the predisposing factors and susceptibility status to develop translocation: invasive diarrhoea, asplenia, gasto-intestinal disease… All invasive infections in children require etiological approach with the possibility of an endogenous septicaemia (bacterial translocation). This approach minimises the nosocomial features undercurrent in these invasive infections, and leads also to other alternative preventive measures: antibiotic association, maintaining an enteral nutrition, pre or probiotic use, specific digestive decontamination. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  14. The Effects of Arms and Countermovement on Vertical Jumping

    DTIC Science & Technology

    1989-04-28

    Vertical jumping is an integral part of the high jump track-and-field event and sports such as volleyball , diving and basketball. Some form of...countermovement. Often, in basketball, volleyball , or other team sport in which jumping plays a major part, it is well worth sacrificing 2 cm in jump height in...is)(is not) attached. Title The Effects of Arms and Countermovement on Vertical Jumping Author(s) Everett A. Harman, Michael T. Rosenstein, Peter N

  15. Performance analysis of jump-gliding locomotion for miniature robotics.

    PubMed

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  16. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    PubMed Central

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-01-01

    Simple Summary This paper documents the dynamics of Australian thoroughbred jump racing in the 2012, 2013, and 2014 seasons with the aim of informing debate about risks to horses and the future of this activity. We conclude that the safety of Australian jump racing has improved in recent years but that steeplechases are considerably riskier for horses than hurdle races. Abstract Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these data in light of public controversy, political debate, and industry regulation related to jump horse safety. PMID:26506396

  17. Understanding Vertical Jump Potentiation: A Deterministic Model.

    PubMed

    Suchomel, Timothy J; Lamont, Hugh S; Moir, Gavin L

    2016-06-01

    This review article discusses previous postactivation potentiation (PAP) literature and provides a deterministic model for vertical jump (i.e., squat jump, countermovement jump, and drop/depth jump) potentiation. There are a number of factors that must be considered when designing an effective strength-power potentiation complex (SPPC) focused on vertical jump potentiation. Sport scientists and practitioners must consider the characteristics of the subject being tested and the design of the SPPC itself. Subject characteristics that must be considered when designing an SPPC focused on vertical jump potentiation include the individual's relative strength, sex, muscle characteristics, neuromuscular characteristics, current fatigue state, and training background. Aspects of the SPPC that must be considered for vertical jump potentiation include the potentiating exercise, level and rate of muscle activation, volume load completed, the ballistic or non-ballistic nature of the potentiating exercise, and the rest interval(s) used following the potentiating exercise. Sport scientists and practitioners should design and seek SPPCs that are practical in nature regarding the equipment needed and the rest interval required for a potentiated performance. If practitioners would like to incorporate PAP as a training tool, they must take the athlete training time restrictions into account as a number of previous SPPCs have been shown to require long rest periods before potentiation can be realized. Thus, practitioners should seek SPPCs that may be effectively implemented in training and that do not require excessive rest intervals that may take away from valuable training time. Practitioners may decrease the necessary time needed to realize potentiation by improving their subject's relative strength.

  18. Jump locations of jump-diffusion processes with state-dependent rates

    NASA Astrophysics Data System (ADS)

    Miles, Christopher E.; Keener, James P.

    2017-10-01

    We propose a general framework for studying statistics of jump-diffusion systems driven by both Brownian noise (diffusion) and a jump process with state-dependent intensity. Of particular natural interest in many physical systems are the jump locations: the system evaluated at the jump times. As an example, this could be the voltage at which a neuron fires, or the so-called ‘threshold voltage’. However, the state-dependence of the jump rate provides direct coupling between the diffusion and jump components, making it difficult to disentangle the two to study individually. In this work, we provide an iterative map formulation of the sequence of distributions of jump locations. The distributions computed by this map can be used to elucidate other interesting quantities about the process, including statistics of the interjump times. Ultimately, the limit of the map reveals that knowledge of the stationary distribution of the full process is sufficient to recover (but not necessarily equal to) the distribution of jump locations. We propose two biophysical examples to illustrate the use of this framework to provide insight about a system. We find that a sharp threshold voltage emerges robustly in a simple stochastic integrate-and-fire neuronal model. The interplay between the two sources of noise is also investigated in a stepping model of molecular motor in intracellular transport pulling a diffusive cargo.

  19. Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.

    ERIC Educational Resources Information Center

    Bedi, John F.; And Others

    1987-01-01

    In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)

  20. Comparing Fast Pressure Jump and Temperature Jump Protein Folding Experiments and Simulations

    PubMed Central

    Prigozhin, Maxim B.; Schulten, Klaus; Gruebele, Martin

    2016-01-01

    The unimolecular folding reaction of small proteins is now amenable to a very direct mechanistic comparison between experiment and simulation. We present such a comparison of microsecond pressure and temperature jump refolding kinetics of the engineered WW domain FiP35, a model system for beta sheet folding. Both perturbations produce experimentally a faster and a slower kinetic phase, the “slow” microsecond phase being activated. The fast phase shows differences between perturbation methods and is closer to the downhill limit by temperature jump, but closer to the transiently populated intermediate limit by pressure jump. These observations make more demands on simulations of the folding process than just a rough comparison of time scales. To complement experiments, we calculated several pressure jump and temperature jump all-atom molecular dynamics trajectories in explicit solvent, where FiP35 folded in five of the six simulations. We analyzed our pressure jump simulations by kinetic modeling and found that the pressure jump experiments and MD simulations are most consistent with a 4-state kinetic mechanism. Together, our experimental and computational data highlight FiP35’s position at the boundary where activated intermediates and downhill folding meet, and we show that this model protein is an excellent candidate for further pressure jump molecular dynamics studies to compare experiment and modeling at the folding mechanism level. PMID:25988868

  1. A biomechanical comparison of the vertical jump, power clean, and jump squat.

    PubMed

    MacKenzie, Sasho James; Lavers, Robert J; Wallace, Brendan B

    2014-01-01

    The purpose of this study was to compare the kinetics, kinematics, and muscle activation patterns of the countermovement jump, the power clean, and the jump squat with the expectation of gaining a better understanding of the mechanism of transfer from the power clean to the vertical jump. Ground reaction forces, electromyography, and joint angle data were collected from 20 trained participants while they performed the three movements. Relative to the power clean, the kinematics of the jump squat were more similar to those of the countermovement jump. The order in which the ankle, knee, and hip began extending, as well as the subsequent pattern of extension, was different between the power clean and countermovement jump. The electromyography data demonstrated significant differences in the relative timing of peak activations in all muscles, the maximum activation of the rectus femoris and biceps femoris, and in the activation/deactivation patterns of the vastus medialis and rectus femoris. The greatest rate of force development during the upward phase of these exercises was generated during the power clean (17,254 [Formula: see text]), which was significantly greater than both the countermovement jump (3836 [Formula: see text]) and jump squat (3517 [Formula: see text]) conditions (P < .001, [Formula: see text]).

  2. Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.

    ERIC Educational Resources Information Center

    Bedi, John F.; And Others

    1987-01-01

    In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)

  3. Determination of the Best Pre-Jump Height for Improvement of Two-Legged Vertical Jump

    PubMed Central

    Jafari, Mahsa; Zolaktaf, Vahid; Marandi, Sayyed M

    2013-01-01

    Background: Athletic performance in many sports depends on two-legged vertical jump. The objective of this study was to examine the effect of different pre-jump height exercises on two-legged vertical jump and to determine the best pre-jump height(s). Methods: Subjects included 35 females and 42 males. By matched randomized sampling, subjects of each sex were assigned into four groups, namely, control, 10-cm hurdle, 20-cm hurdle, and 30-cm hurdle. They participated in the same training program for 6 weeks. Statistical analyses were based on one-way and repeated-measure analysis of variance (ANOVA). Results: Analysis of the data showed that practice over hurdles of 10 cm was better than no hurdle and hurdles of >10 cm. Also, jump attempts over hurdles were efficient for trained athletes, but not for untrained athletes. For both sexes, the rate of spike improvement was much better in the experimental groups than in the control groups; it was independent from the rate of progress in jump, which was relatively less evident. Conclusions: It is likely that rather than increasing jump height, training over hurdle enabled the players to use a higher percent of their jump potentials. PMID:23717758

  4. BIOMECHANICS. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects.

    PubMed

    Koh, Je-Sung; Yang, Eunjin; Jung, Gwang-Pil; Jung, Sun-Pill; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Wood, Robert J; Kim, Ho-Young; Cho, Kyu-Jin

    2015-07-31

    Jumping on water is a unique locomotion mode found in semi-aquatic arthropods, such as water striders. To reproduce this feat in a surface tension-dominant jumping robot, we elucidated the hydrodynamics involved and applied them to develop a bio-inspired impulsive mechanism that maximizes momentum transfer to water. We found that water striders rotate the curved tips of their legs inward at a relatively low descending velocity with a force just below that required to break the water surface (144 millinewtons/meter). We built a 68-milligram at-scale jumping robotic insect and verified that it jumps on water with maximum momentum transfer. The results suggest an understanding of the hydrodynamic phenomena used by semi-aquatic arthropods during water jumping and prescribe a method for reproducing these capabilities in artificial systems. Copyright © 2015, American Association for the Advancement of Science.

  5. Protein translocation by the Sec61/SecY channel.

    PubMed

    Osborne, Andrew R; Rapoport, Tom A; van den Berg, Bert

    2005-01-01

    The conserved protein-conducting channel, referred to as the Sec61 channel in eukaryotes or the SecY channel in eubacteria and archaea, translocates proteins across cellular membranes and integrates proteins containing hydrophobic transmembrane segments into lipid bilayers. Structural studies illustrate how the protein-conducting channel accomplishes these tasks. Three different mechanisms, each requiring a different set of channel binding partners, are employed to move polypeptide substrates: The ribosome feeds the polypeptide chain directly into the channel, a ratcheting mechanism is used by the eukaryotic endoplasmic reticulum chaperone BiP, and a pushing mechanism is utilized by the bacterial ATPase SecA. We review these translocation mechanisms, relating biochemical and genetic observations to the structures of the protein-conducting channel and its binding partners.

  6. Mechanical jumping power in young athletes.

    PubMed

    Viitasalo, J T; Osterback, L; Alen, M; Rahkila, P; Havas, E

    1987-09-01

    Mechanical jumping power was determined for 286 young male athletes representing six sports events and ranging in calendar and skeletal ages from 8.8 to 17.1 and from 7.8 to 18.1 years, respectively. The subjects performed successive maximal vertical jumps on a contact mat for 30 s. The number of jumps and their cumulative flight time after 15 and 30 s were used for calculations of mechanical power. The jumping performances of the young athletes were found to be reproducible from the age of 10-12 years in respect to the angular displacement of the knee and duration of contact. Absolute mechanical power, as well as power related to body weight, increased with calendar and skeletal ages. Of the anthropometric characteristics, the circumference of the thigh and body weight showed the highest correlation with mechanical power; subjects with the greatest thigh circumference and body weight having the lowest mechanical power. The subjects were divided into 'power' (track and field, gymnastics) and 'endurance' (skiing, orienteering) groups. The former reached higher mechanical power values than the latter. Mechanical power for the second 15-s jumping period was on average 4.7% lower than for the first. The events did not differ from each other in respect of the decrease in power.

  7. A locust-inspired miniature jumping robot.

    PubMed

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  8. Fast Regulation of Vertical Squat Jump during Push-Off in Skilled Jumpers

    PubMed Central

    Fargier, Patrick; Massarelli, Raphael; Rabahi, Tahar; Gemignani, Angelo; Fargier, Emile

    2016-01-01

    The height of a maximum Vertical Squat Jump (VSJ) reflects the useful power produced by a jumper during the push-off phase. In turn this partly depends on the coordination of the jumper's segmental rotations at each instant. The physical system constituted by the jumper has been shown to be very sensitive to perturbations and furthermore the movement is realized in a very short time (ca. 300 ms), compared to the timing of known feedback loops. However, the dynamics of the segmental coordination and its efficiency in relation to energetics at each instant of the push-off phase still remained to be clarified. Their study was the main purpose of the present research. Eight young adult volunteers (males) performed maximal VSJ. They were skilled in jumping according to their sport activities (track and field or volleyball). A video analysis on the kinematics of the jump determined the influence of the jumpers' segments rotation on the vertical velocity and acceleration of the body mass center (MC). The efficiency in the production of useful power at the jumpers' MC level, by the rotation of the segments, was measured in consequence. The results showed a great variability in the segmental movements of the eight jumpers, but homogeneity in the overall evolution of these movements with three consecutive types of coordination in the second part of the push-off (lasting roughly 0.16 s). Further analyses gave insights on the regulation of the push-off, suggesting that very fast regulation(s) of the VSJ may be supported by: (a) the adaptation of the motor cerebral programming to the jumper's physical characteristics; (b) the control of the initial posture; and (c) the jumper's perception of the position of his MC relative to the ground reaction force, during push-off, to reduce energetic losses. PMID:27486404

  9. Fast Regulation of Vertical Squat Jump during Push-Off in Skilled Jumpers.

    PubMed

    Fargier, Patrick; Massarelli, Raphael; Rabahi, Tahar; Gemignani, Angelo; Fargier, Emile

    2016-01-01

    The height of a maximum Vertical Squat Jump (VSJ) reflects the useful power produced by a jumper during the push-off phase. In turn this partly depends on the coordination of the jumper's segmental rotations at each instant. The physical system constituted by the jumper has been shown to be very sensitive to perturbations and furthermore the movement is realized in a very short time (ca. 300 ms), compared to the timing of known feedback loops. However, the dynamics of the segmental coordination and its efficiency in relation to energetics at each instant of the push-off phase still remained to be clarified. Their study was the main purpose of the present research. Eight young adult volunteers (males) performed maximal VSJ. They were skilled in jumping according to their sport activities (track and field or volleyball). A video analysis on the kinematics of the jump determined the influence of the jumpers' segments rotation on the vertical velocity and acceleration of the body mass center (MC). The efficiency in the production of useful power at the jumpers' MC level, by the rotation of the segments, was measured in consequence. The results showed a great variability in the segmental movements of the eight jumpers, but homogeneity in the overall evolution of these movements with three consecutive types of coordination in the second part of the push-off (lasting roughly 0.16 s). Further analyses gave insights on the regulation of the push-off, suggesting that very fast regulation(s) of the VSJ may be supported by: (a) the adaptation of the motor cerebral programming to the jumper's physical characteristics; (b) the control of the initial posture; and

  10. Ratcheting in post-translational protein translocation: a mathematical model.

    PubMed

    Liebermeister, W; Rapoport, T A; Heinrich, R

    2001-01-19

    We have developed a non-steady-state mathematical model describing post-translational protein translocation across the endoplasmic reticulum membrane. Movement of the polypeptide chain through the channel in the endoplasmic reticulum membrane is considered to be a stochastic process which is biased at the lumenal side of the channel by the binding of BiP (Kar2p), a member of the Hsp70 family of ATPases (ratcheting model). Assuming that movement of the chain through the channel is caused by passive diffusion (Brownian ratchet), the model describes all available experimental data. The optimum set of model parameters indicates that the ratcheting mechanism functions at near-maximum rate, being relatively insensitive to variations of the association or dissociation rate constants of BiP or its concentration. The estimated rate constant for diffusion of a polypeptide inside the channel indicates that the chain makes contact with the walls of the channel. Since fitting of the model to the data required that the backward rate constant be larger than the forward constant during early diffusion steps, translocation must occur against a force. The latter may arise, for example, from the unfolding of the polypeptide chain in the cytosol. Our results indicate that the ratchet can transport polypeptides against a free energy of about 25 kJ/mol without significant retardation of translocation. The modeling also suggests that the BiP ratchet is optimized, allowing fast translocation to be coupled with minimum consumption of ATP and rapid dissociation of BiP in the lumen of the ER. Finally, we have estimated the maximum hydrophobicity of a polypeptide segment up to which lateral partitioning from the channel into the lipid phase does not result in significant retardation of translocation. Copyright 2001 Academic Press.

  11. Popcorn: critical temperature, jump and sound.

    PubMed

    Virot, Emmanuel; Ponomarenko, Alexandre

    2015-03-06

    Popcorn bursts open, jumps and emits a 'pop' sound in some hundredths of a second. The physical origin of these three observations remains unclear in the literature. We show that the critical temperature 180°C at which almost all of popcorn pops is consistent with an elementary pressure vessel scenario. We observe that popcorn jumps with a 'leg' of starch which is compressed on the ground. As a result, popcorn is midway between two categories of moving systems: explosive plants using fracture mechanisms and jumping animals using muscles. By synchronizing video recordings with acoustic recordings, we propose that the familiar 'pop' sound of the popcorn is caused by the release of water vapour.

  12. Friction through reversible jumps of surface atoms.

    PubMed

    Fajardo, O Y; Barel, Itay; Urbakh, Michael

    2014-08-06

    We propose a microscopic model that incorporates the effect of thermally activated motion of surface atoms on nanoscopic friction. Our calculations demonstrate that the stick-slip motion of the tip is governed by two competing processes: (i) jumps of the surface atoms to the tip which tend to inhibit sliding, and (ii) jumps back to the sample which give rise to sliding. The energy dissipated during the reversible jumps of the surface atoms between the sample and tip contributes significantly to the friction force, and leads to a nonmonotonic dependence of friction on temperature, which has been observed in recent friction force microscopy experiments for different material classes. The proposed model elucidates the physical origin of microscopic instabilities introduced in phenomenological models for the interpretation of the experimental results.

  13. Popcorn: critical temperature, jump and sound

    PubMed Central

    Virot, Emmanuel; Ponomarenko, Alexandre

    2015-01-01

    Popcorn bursts open, jumps and emits a ‘pop’ sound in some hundredths of a second. The physical origin of these three observations remains unclear in the literature. We show that the critical temperature 180°C at which almost all of popcorn pops is consistent with an elementary pressure vessel scenario. We observe that popcorn jumps with a ‘leg’ of starch which is compressed on the ground. As a result, popcorn is midway between two categories of moving systems: explosive plants using fracture mechanisms and jumping animals using muscles. By synchronizing video recordings with acoustic recordings, we propose that the familiar ‘pop’ sound of the popcorn is caused by the release of water vapour. PMID:25673298

  14. Jumping of water striders on water

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jaehak; Jablonski, Piotr; Kim, Ho-Young

    2012-11-01

    Small insects such as water striders, springtails, fishing spiders freely move on water by adopting various modes of locomotion, such as rowing, galloping, jumping and meniscus-climbing. As the physics of jumping have not yet been fully understood among those ways of semi-aquatic propulsion, here we present the results of a combined experimental and theoretical investigation of the dynamics of water striders leaping off water. We first image and analyze the trajectories of the legs and body of jumping water striders of three different species with a high-speed camera. We then theoretically compute the forces acting on the body by considering the capillary interaction between the flexible legs and deforming water meniscus. Our theory enables us to predict the maximum take-off speed for given leg lengths. The experimental measurements suggest that the water striders drive their legs near the optimal speed to gain the maximum take-off speed.

  15. Nonlinear regimes on polygonal hydraulic jumps

    NASA Astrophysics Data System (ADS)

    Rojas, Nicolas

    2016-11-01

    This work extends previous leading and higher order results on the polygonal hydraulic jump in the framework of inertial lubrication theory. The rotation of steady polygonal jumps is observed in the transition from one wavenumber to the next one, induced by a change in height of an external obstacle near the outer edge. In a previous publication, the study of stationary polygons is considered under the assumption that the reference frame rotates with the polygons when the number of corners change, in order to preserve their orientation. In this research work I provide a Hamiltonian approach and the stability analysis of the nonlinear oscillator that describe the polygonal structures at the jump interface, in addition to a perturbation method that enables to explain, for instance, the diversity of patterns found in experiments. GRASP, Institute of Physics, University of Liege, Belgium.

  16. Dynamics of 'jumping' Trojans: Perturbative treatment

    NASA Astrophysics Data System (ADS)

    Sidorenko, V.

    2014-07-01

    The term ''jumping'' Trojan was introduced by Tsiganis et al. (2000) in their studies of long-term dynamics exhibited by the asteroid (1868) Thersites: as it turned out, this asteroid may pass from the librations around L4 to the librations around L5. One more example of a ''jumping'' Trojan was found by Connors et al. (2011): librations of the asteroid 2010 TK_7 around Earth's libration point L4 preceded by its librations around L5. We explore the dynamics of ''jumping'' Trojans under the scope of the restricted planar elliptical three-body problem. Via double numerical averaging, we construct evolutionary equations which describe the long-term behavior of the orbital elements of these asteroids.

  17. Molecular dynamics simulation of ss-DNA translocation between copper nanoelectrodes incorporating electrode charge dynamics.

    PubMed

    Payne, Christina M; Zhao, Xiongce; Vlcek, Lukas; Cummings, Peter T

    2008-02-14

    Molecular dynamics simulations have been performed to study the translocation of single-stranded (ss)-DNA through the nanoscale gap between the nanoscale electrodes of a proposed genomic sequencing device. Using a fixed gap width between the electrodes and a small sample segment of ss-DNA as initial starting points in this project, the effect of applied electric fields on translocation velocity was studied. To describe the electrostatic interactions of the water, ions, and ss-DNA with the nanoscale electrodes, we applied the electrode charge dynamics (ECD) method. Through the density profile and comparison of translocation velocities to extrapolated experimental data, we found the ECD potential to be a better descriptor of the metal/nonmetal electrostatic interactions compared to the commonly used universal force field (UFF). Translocation velocities obtained using the ECD potential were consistent with simulated bulk data.

  18. Recent Advancements in Lightning Jump Algorithm Work

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  19. Driven polymer translocation in good and bad solvent: Effects of hydrodynamics and tension propagation.

    PubMed

    Moisio, J E; Piili, J; Linna, R P

    2016-08-01

    We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics. We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on the motion of individual monomers within the highly correlated globular conformation on the cis side and hence on the entire driven translocation under bad-solvent conditions.

  20. Cytogenetic analysis of malformed mouse fetuses derived from balanced translocation heterozygotes.

    PubMed

    Cacheiro, N L; Rutledge, J C; Cain, K T; Cornett, C V; Generoso, W M

    1994-01-01

    Reciprocal translocations are readily induced by various physical and chemical mutagens in certain germ-cell stages. Carriers of balanced reciprocal translocations generally exhibit no abnormal phenotypes, except for occasional male sterility, but about half (on average) of their progeny carry grossly unbalanced chromosome complements and die prenatally, so that the carriers are said to be 'semisterile'. Since death of such progeny generally occurs in very early embryonic stages, it would be of minor importance in an analogous human situation. Several types of unbalanced segregants, however, survive to late gestational or even to postnatal stages and are often malformed. Recently, it was determined in this laboratory that over one half of the male carriers of methylene-bisacrylamide-induced translocations, sired litters that had late-dying and/or malformed fetuses (Rutledge et al., 1990). Five high-anomaly translocation stocks derived from that study and four derived from studies with other mutagens were analyzed cytogenetically to determine (1) the chromosomes and breakpoints involved, (2) the nature of chromosome imbalance in malformed fetuses, and (3) the types of meiotic segregation that produce late-surviving unbalanced segregants. Cytogenetic analysis of the 9 translocation stocks revealed 18 breakpoints located in 12 chromosomes. Each translocation had at least one breakpoint located near the centromere or the telomere. All translocations produced abnormal fetuses that were partially monosomic for a very short terminal chromosome segment, and partially trisomic for a segment that can be of various lengths, 2-10 times as long as the monosomic segment. In 6 stocks, these abnormal fetuses arose by adjacent-1 or alternate segregation; in the other three they arose by adjacent-2 segregation. In addition, tertiary trisomy by 3-1 missegregation was also observed in two of the stocks.

  1. The epidemiology of injury in bungee jumping, BASE jumping, and skydiving.

    PubMed

    Søreide, Kjetil

    2012-01-01

    Knowledge regarding epidemiology of injury is of benefit to injury prevention of activities associated with high risk. As relatively 'young' activities, the investigation of injuries and deaths related in extreme sports such as bungee jumping and BASE jumping is relatively sparse. Studies evaluating risk in civilian and military skydiving activities have been reported over the past decades, but technique and equipment has changed. Risk with bungee jumping is only sporadically reported in the literature, most often in connection with eye injuries, but also rare events of serious, life-threatening injuries and even death. BASE is an acronym for Building, Antenna, Span, Earth, which represents the fixed objects from which jumps are made. Estimated risk in BASE jumping for any injury (independent of severity grade) is 0.4-0.5%, which as 5- to 8-fold higher than skydiving. Typically, men outnumber women in a ratio of 10:1 in both injuries and case fatality rates. Age is frequently reported to range from 30 to 40 years. Notably, differences in training and environmental locations exist between recreational skydiving and BASE jumping. As BASE jumps are made from lower altitudes than skydives, jumpers generally fall at lower speeds, have far less aerodynamic control, and may lose flying stability. Yet, typical injuries include a bruised or sprained ankle during landing. Protective gear including helmet and pads may help to prevent such injuries, while more complex knowledge of human factors, environment and training are needed to prevent fatal injuries.

  2. Jumping in a winged stick insect.

    PubMed

    Burrows, Malcolm; Morris, Oliver

    2002-08-01

    The Thailand winged stick insect (Sipyloidea sp.) flees rapidly from a disturbance by jumping forwards when stimulated on the abdomen and backwards when stimulated on the head. The mechanisms underlying these fast movements were analysed by measuring movements of the body and legs from images captured at 250 Hz. A forward jump of both adults and nymphs involves movements of the abdomen and the middle and hind pairs of legs. The abdomen is raised and swung forwards by flexion at the joint with the metathorax and at the joint between the meso- and metathorax. At the same time, the tibiae of the hind and middle legs are extended and their femora depressed. The femoro-tibial joints of the legs are not fully flexed before a jump, and no structures in these joints appear to store muscular energy. The whole jumping sequence takes approximately 100 ms and results in take-off angles of 10-35 degrees at velocities of 0.6-0.8 m s(-1) and with an acceleration of 10 m s(-2). The abdominal angular velocity was 2000 degrees s(-1) and the tip of the abdomen moved at linear velocities of some 1 m s(-1), while the maximum rate of tibial extension was 4000 degrees s(-1). Rapid backward movements result either in the collapse of the body onto the ground, with a displacement away from the stimulus of approximately half a body length, or in the propulsion of the insect off its perch. Neither movement involves curling of the abdomen. From a horizontal posture, the forward jumps result in a displacement of a few body lengths. More lift can be generated in adults by elevating the hind wings as the abdomen is swung forwards and depressing them as the legs lose contact with the ground. In this way, jumps can lead directly to flapping flight. Take-off into flight can, however, be achieved without the abdominal movements seen during jumping. From a vertical posture, a forward jump propels the insect upwards and backwards before it falls to the ground horizontally displaced from its perch

  3. Influence of Knee-to-Feet Jump Training on Vertical Jump and Hang Clean Performance.

    PubMed

    Stark, Laura; Pickett, Karla; Bird, Michael; King, Adam C

    2016-11-01

    Stark, L, Pickett, K, Bird, M, and King, AC. Influence of knee-to-feet jump training on vertical jump and hang clean performance. J Strength Cond Res 30(11): 3084-3089, 2016-From a motor learning perspective, the practice/training environment can result in positive, negative, or neutral transfer to the testing conditions. The purpose of this study was to examine the training effect of a novel movement (knee-to-feet [K2F] jumps) and whether a 6-week training program induced a positive transfer effect to other power-related movements (vertical jump and hang clean [HC]). Twenty-six intercollegiate athletes from power-emphasized sports were paired and counter-balanced into a control (i.e., maintained their respective sport-specific lifting regimen) or an experimental group (i.e., completed a 6-week progressive training program of K2F jumps in addition to respective lifting regimen). A pre- and posttest design was used to investigate the effect of training on K2F jump height and transfer effect to vertical jump height (VJH) and 2-repetition maximum (RM) HC performance. A significant increase in K2F jump height was found for the experimental group. Vertical jump height significantly increased from pre- to posttest but no group or interaction (group × time) effect was found, and there were nonsignificant differences for HC. Posttest data showed significant correlations between all pairs of the selected exercises with the highest correlation between K2F jump height and VJ H (R = 0.40) followed by VJH and 2RM HC (R = 0.38) and 2RM HC and K2F jump height (R = 0.23). The results suggest that K2F jump training induced the desired learning effect but was specific to the movement in that no effect of transfer occurred to the other power-related movements. This finding is value for strength and condition professionals who design training programs to enhance athletic performance.

  4. Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Ito, Garrett; van Hunen, Jeroen

    2011-01-01

    Repeated shifts, or jumps, of mid-ocean ridge segments toward nearby hot spots can produce large, long-term changes to the geometry and location of the tectonic plate boundaries. Ridge jumps associated with hot spot-ridge interaction are likely caused by several processes including shear on the base of the plate due to expanding plume material as well as reheating of lithosphere as magma passes through it to feed off-axis volcanism. To study how these processes influence ridge jumps, we use numerical models to simulate 2-D (in cross section) viscous flow of the mantle, viscoplastic deformation of the lithosphere, and melt migration upward from the asthenospheric melting zone, laterally along the base of the lithosphere, and vertically through the lithosphere. The locations and rates that magma penetrates and heats the lithosphere are controlled by the time-varying accumulation of melt beneath the plate and the depth-averaged lithospheric porosity. We examine the effect of four key parameters: magmatic heating rate of the lithosphere, plate spreading rate, age of the seafloor overlying the plume, and the plume-ridge migration rate. Results indicate that the minimum value of the magmatic heating rate needed to initiate a ridge jump increases with plate age and spreading rate. The time required to complete a ridge jump decreases with larger values of magmatic heating rate, younger plate age, and faster spreading rate. For cases with migrating ridges, models predict a range of behaviors including repeating ridge jumps, much like those exhibited on Earth. Repeating ridge jumps occur at moderate magmatic heating rates and are the result of changes in the hot spot magma flux in response to magma migration along the base of an evolving lithosphere. The tendency of slow spreading to promote ridge jumps could help explain the observed clustering of hot spots near the Mid-Atlantic Ridge. Model results also suggest that magmatic heating may significantly thin the lithosphere

  5. Suitability of amphibians and reptiles for translocation.

    PubMed

    Germano, Jennifer M; Bishop, Phillip J

    2009-02-01

    Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole.

  6. Dynamics of polymer translocation through kinked nanopores.

    PubMed

    Wang, Junfang; Wang, Yilin; Luo, Kaifu

    2015-02-28

    Polymer translocation through nanopore has potential technological applications for DNA sequencing, where one challenge problem is to slow down translocation speed. Inspired by experimental findings that kinked nanopores exhibit a large reduction in translocation velocity compared with their straight counterparts, we investigate the dynamics of polymer translocation through kinked nanopores in two dimensions under an applied external field. With increasing the tortuosity of an array of nanopores, our analytical results show that the translocation probability decreases. Langevin dynamics simulation results support this prediction and further indicate that with increasing the tortuosity, translocation time shows a slow increase followed by a rapid increase after a critical tortuosity. This behavior demonstrates that kinked nanopores can effectively reduce translocation speed. These results are interpreted by the roles of the tortuosity for decreasing the effective nanopore diameter, increasing effective nanopore length, and greatly increasing the DNA-pore friction.

  7. Jumping on the Social Media Bandwagon

    ERIC Educational Resources Information Center

    Blakeslee, Lori

    2012-01-01

    Should a school district jump on the social media bandwagon? Yes! Social media provide a low-cost way to communicate school district priorities, influence decision makers, and tell its story without filters. Equally important, social media are where constituents are spending a lot of their time. With more than 800 million members, Facebook is an…

  8. Jumping Rope at Day of Play

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Sarah Dastugue, 11, leaps in the air as Libby Knox, 9, swings a jump rope. The children were participants in Nickelodeon's Worldwide Day of Play celebration at Stennis Space Center (SSC) on Oct. 1. On the day of the event, children all over the world participate in physical activities as part of the celebration.

  9. Jumping the Alligators in the Ditch.

    ERIC Educational Resources Information Center

    Barber, Rims

    Poor black young people in rural Mississippi contemplate their schooling with the same feelings as their friends who dare to jump the local ditches filled with alligators: the odds are against escaping the alligators, and the advantages of getting to the far side are not very apparent. Living in conditions of extreme poverty, these young people…

  10. Jumping Genes: The Transposable DNAs of Bacteria.

    ERIC Educational Resources Information Center

    Berg, Claire M.; Berg, Douglas E.

    1984-01-01

    Transposons are transposable elements that carry genes for antibiotic resistance. Provides background information on the structure and organization of these "jumping genes" in bacteria. Also describes the use of transposons in tagging genes and lists pertinent references and resource materials. (DH)

  11. Injuries resulting from bungee-cord jumping.

    PubMed

    Hite, P R; Greene, K A; Levy, D I; Jackimczyk, K

    1993-06-01

    A 19-year-old woman sustained a nonfatal hanging injury and a 28-year-old man sustained a unilateral locked facet with resultant quadriplegia as a result of bungee jumping. Injuries due to this sport have not been reported previously.

  12. Jumping-droplet electrostatic energy harvesting

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Preston, Daniel J.; Enright, Ryan; Wang, Evelyn N.

    2014-07-01

    Micro- and nanoscale wetting phenomena have been an active area of research due to its potential for improving engineered system performance involving phase change. With the recent advancements in micro/nanofabrication techniques, structured surfaces can now be designed to allow condensing coalesced droplets to spontaneously jump off the surface due to the conversion of excess surface energy into kinetic energy. In addition to being removed at micrometric length scales (˜10 μm), jumping water droplets also attain a positive electrostatic charge (˜10-100 fC) from the hydrophobic coating/condensate interaction. In this work, we take advantage of this droplet charging to demonstrate jumping-droplet electrostatic energy harvesting. The charged droplets jump between superhydrophobic copper oxide and hydrophilic copper surfaces to create an electrostatic potential and generate power during formation of atmospheric dew. We demonstrated power densities of ˜15 pW/cm2, which, in the near term, can be improved to ˜1 μW/cm2. This work demonstrates a surface engineered platform that promises to be low cost and scalable for atmospheric energy harvesting and electric power generation.

  13. Understanding the Physics of Bungee Jumping

    ERIC Educational Resources Information Center

    Heck, Andre; Uylings, Peter; Kedzierska, Ewa

    2010-01-01

    Changing mass phenomena like the motion of a falling chain, the behaviour of a falling elastic bar or spring, and the motion of a bungee jumper surprise many a physicist. In this article we discuss the first phase of bungee jumping, when the bungee jumper falls, but the bungee rope is still slack. In instructional material this phase is often…

  14. Jumping Rope at Day of Play

    NASA Image and Video Library

    2005-10-05

    Sarah Dastugue, 11, leaps in the air as Libby Knox, 9, swings a jump rope. The children were participants in Nickelodeon's Worldwide Day of Play celebration at Stennis Space Center (SSC) on Oct. 1. On the day of the event, children all over the world participate in physical activities as part of the celebration.

  15. Jumping Genes: The Transposable DNAs of Bacteria.

    ERIC Educational Resources Information Center

    Berg, Claire M.; Berg, Douglas E.

    1984-01-01

    Transposons are transposable elements that carry genes for antibiotic resistance. Provides background information on the structure and organization of these "jumping genes" in bacteria. Also describes the use of transposons in tagging genes and lists pertinent references and resource materials. (DH)

  16. Project Broad Jump: A Leap Into Learning

    ERIC Educational Resources Information Center

    Fleming, Douglas

    1972-01-01

    Project Broad Jump is a New York-based education program for some 600 youngsters from urban areas, in the third through tenth grades. The basic concept of the program is that academic opportunities are not accessible to many inner-city youth, whereas Head Start and Follow Through help pre-third graders, and Upward Bound helps high school students.…

  17. Jumping Rope at Day of Play

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Sarah Dastugue, 11, leaps in the air as Libby Knox, 9, swings a jump rope. The children were participants in Nickelodeon's Worldwide Day of Play celebration at Stennis Space Center (SSC) on Oct. 1. On the day of the event, children all over the world participate in physical activities as part of the celebration.

  18. Understanding the Physics of Bungee Jumping

    ERIC Educational Resources Information Center

    Heck, Andre; Uylings, Peter; Kedzierska, Ewa

    2010-01-01

    Changing mass phenomena like the motion of a falling chain, the behaviour of a falling elastic bar or spring, and the motion of a bungee jumper surprise many a physicist. In this article we discuss the first phase of bungee jumping, when the bungee jumper falls, but the bungee rope is still slack. In instructional material this phase is often…

  19. Jumping on the Social Media Bandwagon

    ERIC Educational Resources Information Center

    Blakeslee, Lori

    2012-01-01

    Should a school district jump on the social media bandwagon? Yes! Social media provide a low-cost way to communicate school district priorities, influence decision makers, and tell its story without filters. Equally important, social media are where constituents are spending a lot of their time. With more than 800 million members, Facebook is an…

  20. Safety assessment of jumps in ski racing.

    PubMed

    Schindelwig, K; Reichl, W; Kaps, P; Mössner, M; Nachbauer, W

    2015-12-01

    The influence of important parameters on the flight trajectory for jumps in downhill World Cup races was investigated. To quantify the impact injury risk at landing, the parameter equivalent landing height (ELH) was introduced, which considered a variable slope inclination during the landing movement. Altogether, 145 runs at four different jumps in World Cup races and trainings were recorded and analyzed. A simulation model was developed to predict the flight phase of the skier. Drag and lift areas were selected by parameter identification to fit the simulation trajectory to the two-dimensional data from the video analysis. The maximum values of the ELH which can be absorbed with muscle force was taken from the study of Minetti et al. for elite female and male ski racers. A sensitivity analysis based on the four jumps showed that ELH is mainly influenced by takeoff angle, takeoff speed, and the steepness of the landing surface. With the help of the developed simulation software, it should be possible to predict the ELH for jumps in advance. In case of an excessive ELH, improvements can be made by changing the takeoff inclination or the approach speed.

  1. Nigericin-mediated H+, K+ and Na+ transports across vesicular membrane: T-jump studies.

    PubMed

    Prabhananda, B S; Ugrankar, M M

    1991-12-09

    The decay of delta pH across vesicular membranes by nigericin-mediated H+ and metal ion (M+) transports has been studied at 25 degrees C after creating delta pH by temperature jump (T-jump). In these experiments K+ or Na+ were chosen as M+ for the compensating flux. Theoretical expressions derived to analyse these data suggest a method for estimating the intrinsic rate constants for the translocation of nig-H (k1) and for the translocation of nig-M (k2) across membrane, from the pH dependence of the delta pH decay. The following could be inferred from the analysis of data. (a) At pH approximately 7.5 and 250 mM ion concentrations, nigericin-mediated H+ and M+ transport rates are lower in a medium of K+ than in a medium of Na+, although ionophore selectivity of nigericin towards K+ is 25-45-times higher than that towards Na+. However, at lower [M+] (approximately 50 mM) the transport rates are higher in a medium of K+ than in a medium of Na+. Such behaviours can be understood with the help of parameters determined in this work. (b) The intrinsic rate constants k1 and k2 associated with the translocations of nig-H and nig-K or nig-Na across membrane are similar in magnitude. (c) At pH approximately 7.5 translocation of nig-H is the dominant rate-limiting step in a medium containing K+. In contrast with this, at this pH, translocation of nig-M is the dominant rate-limiting step when metal ion is Na+. (d)k1 approximately k2 approximately 6.10(3) s-1 could be estimated at 25 degrees C in vesicles prepared from soyabean phospholipid, and lipid mixtures of 80% phosphatidylcholine (PC) + 20% phosphatidylethanolamine and 92% PC + 8% phosphatidic acid. (e) The apparent dissociation constants of nig-M in vesicles were estimated to be approximately 1.5.10(-3) M for K+ and 6.4.10(-2) M for Na+ (at 50 mM ion concentrations) using approximately 10(-8.45) M for the apparent dissociation constant of nig-H.

  2. Hypohydration Reduces Vertical Ground Reaction Impulse But Not Jump Height

    DTIC Science & Technology

    2010-01-01

    jumping plays a major role, such as basketball and volleyball (Hoffman et al. 1995). The precise balance between losses in body mass and losses in strength...code) 2010 Journal Article-Eur. Journal of Applied Physiology Hypohydration Reduces Vertical Ground Reaction Impulse But Not Jump Height S.N...study examined vertical jump performance using a force platform and weighted vest to determine why hypohydration (~4% body mass) does not improve jump

  3. X;15 translocation in a retarded girl: X inactivation pattern and attempt to localise the hexosaminidase A and other loci.

    PubMed Central

    Bernstein, R; Dawson, B; Kohl, R; Jenkins, T

    1979-01-01

    Cytogenetic studies on a retarded girl showed a complex S;15 translocation, karyotype 45,X,-15,+t(X15). The translocation X chromosome was non-randomly partially inactivated, the inactivation being mainly confined to the X segment and in some cells only to the X long arm. Gene marker studies failed to show anomalous segregation of the hexosaminidase A gene or any other gene markers tested. Images PMID:290816

  4. Validation and influence of anthropometric and kinematic models of obese teenagers in vertical jump performance and mechanical internal energy expenditure.

    PubMed

    Achard de Leluardière, F; Hajri, L N; Lacouture, P; Duboy, J; Frelut, M L; Peres, G

    2006-02-01

    There may be concerns about the validity of kinetic models when studying locomotion in obese subjects (OS). The aim of the present study was to improve and validate a relevant representation of obese subject from four kinetic models. Fourteen teenagers with severe primary obesity (BMI = 40 +/- 5.2 kg/m(2)), were studied during jumping. The jumps were filmed by six cameras (synchronized, 50 Hz), associated with a force-plate (1,000 Hz). All the tested models were valid; the linear mechanical analysis of the jumps gave similar results (p > 0.05); but there were significantly different segment inertias when considering the subjects' abdomen (p < 0.01), which was associated with a significantly higher mechanical internal energy expenditure (p < 0.01) than that estimated from Dempster's and Hanavan's model, by about 40 and 30%. The validation of a modelling specifically for obese subjects will enable a better understanding of their locomotion.

  5. Vertical Jump and Leg Power Norms for Young Adults

    ERIC Educational Resources Information Center

    Patterson, David D.; Peterson, D. Fred

    2004-01-01

    Medical students and their spouses (N = 724) served as participants to create norm-referenced vertical jump values for active, healthy people ages 21-30. All tests were conducted and measured by the same individual during a campus fitness evaluation using a Vertec[TM] apparatus. Jump height was measured to the nearest 0.5 in. Mean jump height was…

  6. Costs and benefits of larval jumping behaviour of Bathyplectes anurus

    NASA Astrophysics Data System (ADS)

    Saeki, Yoriko; Tani, Soichiro; Fukuda, Katsuto; Iwase, Shun-ichiro; Sugawara, Yuma; Tuda, Midori; Takagi, Masami

    2016-02-01

    Bathyplectes anurus, a parasitoid of the alfalfa weevils, forms a cocoon in the late larval stage and exhibits jumping behaviour. Adaptive significance and costs of the cocoon jumping have not been thoroughly studied. We hypothesised that jumping has the fitness benefits of enabling habitat selection by avoiding unfavourable environments. We conducted laboratory experiments, which demonstrated that jumping frequencies increased in the presence of light, with greater magnitudes of temperature increase and at lower relative humidity. In addition, when B. anurus individuals were allowed to freely jump in an arena with a light gradient, more cocoons were found in the shady area, suggesting microhabitat selection. In a field experiment, mortality of cocoons placed in the sun was significantly higher than for cocoons placed in the shade. B. anurus cocoons respond to environmental stress by jumping, resulting in habitat selection. In the presence of potential predators (ants), jumping frequencies were higher than in the control (no ant) arenas, though jumping frequencies decreased after direct contact with the predators. Body mass of B. anurus cocoons induced to jump significantly decreased over time than cocoons that did not jump, suggesting a cost to jumping. We discuss the benefits and costs of jumping behaviour and potential evolutionary advantages of this peculiar trait, which is present in a limited number of species.

  7. Jumping mechanisms and strategies in moths (Lepidoptera).

    PubMed

    Burrows, Malcolm; Dorosenko, Marina

    2015-06-01

    To test whether jumping launches moths into the air, take-off by 58 species, ranging in mass from 0.1 to 220 mg, was captured in videos at 1000 frames s(-1). Three strategies for jumping were identified. First, rapid movements of both middle and hind legs provided propulsion while the wings remained closed. Second, middle and hind legs again provided propulsion but the wings now opened and flapped after take-off. Third, wing and leg movements both began before take-off and led to an earlier transition to powered flight. The middle and hind legs were of similar lengths and were between 10 and 130% longer than the front legs. The rapid depression of the trochantera and extension of the middle tibiae began some 3 ms before similar movements of the hind legs, but their tarsi lost contact with the ground before take-off. Acceleration times ranged from 10 ms in the lightest moths to 25 ms in the heaviest ones. Peak take-off velocities varied from 0.6 to 0.9 m s(-1) in all moths, with the fastest jump achieving a velocity of 1.2 m s(-1). The energy required to generate the fastest jumps was 1.1 µJ in lighter moths but rose to 62.1 µJ in heavier ones. Mean accelerations ranged from 26 to 90 m s(-2) and a maximum force of 9 G: was experienced. The highest power output was within the capability of normal muscle so that jumps were powered by direct contractions of muscles without catapult mechanisms or energy storage. © 2015. Published by The Company of Biologists Ltd.

  8. Collophore may help direct springtail jump

    USDA-ARS?s Scientific Manuscript database

    The collophore of specimens of Entomobrya multifasciata (Tullberg 1871) is composed of four segments. The third segment telescopes in and out of the second and the fourth is an eversible vesicle that is entirely enclosed in the third when not deployed. The four segments are each likely serial homolo...

  9. The Effects of Aquatic Plyometric Training on Repeated Jumps, Drop Jumps and Muscle Damage.

    PubMed

    Jurado-Lavanant, A; Alvero-Cruz, J R; Pareja-Blanco, F; Melero-Romero, C; Rodríguez-Rosell, D; Fernandez-Garcia, J C

    2015-09-22

    The purpose of this study was to compare the effects of land- vs. aquatic based plyometric training programs on the drop jump, repeated jump performance and muscle damage. Sixty-five male students were randomly assigned to one of 3 groups: aquatic plyometric training group (APT), plyometric training group (PT) and control group (CG). Both experimental groups trained twice a week for 10 weeks performing the same number of sets and total jumps. The following variables were measured prior to, halfway through and after the training programs: creatine kinase (CK) concentration, maximal height during a drop jump from the height of 30 (DJ30) and 50 cm (DJ50), and mean height during a repeated vertical jump test (RJ). The training program resulted in a significant increase (P<0.01-0.001) in RJ, DJ30, and DJ50 for PT, whereas neither APT nor CG reached any significant improvement APT showed likely/possibly improvements on DJ30 and DJ50, respectively. Greater intra-group Effect Size in CK was found for PT when compared to APT. In conclusion, although APT seems to be a safe alternative method for reducing the stress produced on the musculoskeletal system by plyometric training, PT produced greater gains on reactive jumps performance than APT.

  10. Clinical application of next-generation sequencing in preimplantation genetic diagnosis cycles for Robertsonian and reciprocal translocations.

    PubMed

    Zhang, Wenke; Liu, Ying; Wang, Li; Wang, Hui; Ma, Minyue; Xu, Mengnan; Xu, Xiaofei; Gao, ZhiYing; Duan, Jinliang; Cram, David S; Yao, Yuanqing

    2016-07-01

    The purpose of this study was to apply next-generation sequencing (NGS) technology to identify chromosomally normal embryos for transfer in preimplantation genetic diagnosis (PGD) cycles for translocations. A total of 21 translocation couples with a history of infertility and repeated miscarriage presented at our PGD clinic for 24-chromosome embryo testing using copy number variation sequencing (CNV-Seq). Testing of 98 embryo samples identified 68 aneuploid (69.4 %) and 30 (30.6 %) euploid embryos. Among the aneuploid embryos, the most common abnormalities were segmental translocation imbalances, followed by whole autosomal trisomies and monosomies, segmental imbalances of non-translocation chromosomes, and mosaicism. In all unbalanced embryos resulting from reciprocal translocations, CNV-Seq precisely identified both segmental imbalances, extending from the predicted breakpoints to the chromosome termini. From the 21 PGD cycles, eight patients had all abnormal embryos and 13 patients had at least one normal/balanced and euploid embryo available for transfer. In nine intrauterine transfer cycles, seven healthy babies have been born. In four of the seven children tested at 18 weeks gestation, the karyotypes matched with the original PGD results. In clinical PGD translocation cycles, CNV-Seq displayed the hallmarks of a comprehensive diagnostic technology for high-resolution 24-chromosome testing of embryos, capable of identifying true euploid embryos for transfer.

  11. Problems with mitigation translocation of herpetofauna.

    PubMed

    Sullivan, Brian K; Nowak, Erika M; Kwiatkowski, Matthew A

    2015-02-01

    Mitigation translocation of nuisance animals is a commonly used management practice aimed at resolution of human-animal conflict by removal and release of an individual animal. Long considered a reasonable undertaking, especially by the general public, it is now known that translocated subjects are negatively affected by the practice. Mitigation translocation is typically undertaken with individual adult organisms and has a much lower success rate than the more widely practiced conservation translocation of threatened and endangered species. Nonetheless, the public and many conservation practitioners believe that because population-level conservation translocations have been successful that mitigation translocation can be satisfactorily applied to a wide variety of human-wildlife conflict situations. We reviewed mitigation translocations of reptiles, including our own work with 3 long-lived species (Gila monsters [Heloderma suspectum], Sonoran desert tortoises [Gopherus morafkai], and western diamond-backed rattlesnakes [Crotalus atrox]). Overall, mitigation translocation had a low success rate when judged either by effects on individuals (in all studies reviewed they exhibited increased movement or increased mortality) or by the success of the resolution of the human-animal conflict (translocated individuals often returned to the capture site). Careful planning and identification of knowledge gaps are critical to increasing success rates in mitigation translocations in the face of increasing pressure to find solutions for species threatened by diverse anthropogenic factors, including climate change and exurban and energy development.

  12. PREVENTING THE CHROMOSOMAL TRANSLOCATIONS THAT CAUSE CANCER.

    PubMed

    Hromas, Robert; Williamson, Elizabeth; Lee, Suk-Hee; Nickoloff, Jac

    2016-01-01

    Approximately half of all cancers harbor chromosomal translocations that can either contribute to their origin or govern their subsequent behavior. Chromosomal translocations by definition can only occur when there are two DNA double-strand breaks (DSBs) on distinct chromosomes that are repaired heterologously. Thus, chromosomal translocations are by their very nature problems of DNA DSB repair. Such DNA DSBs can be from internal or external sources. Internal sources of DNA DSBs that can lead to translocations can occur are inappropriate immune receptor gene maturation during V(D)J recombination or heavy-chain switching. Other internal DNA DSBs can come from aberrant DNA structures, or are generated at collapsed and reversed replication forks. External sources of DNA DSBs that can generate chromosomal translocations are ionizing radiation and cancer chemotherapy. There are several known nuclear and chromatin properties that enhance translocations over homologous chromosome DSB repair. The proximity of the region of the heterologous chromosomes to each other increases translocation rates. Histone methylation events at the DSB also influence translocation frequencies. There are four DNA DSB repair pathways, but it appears that only one, alternative non-homologous end-joining (a-NHEJ) can mediate chromosomal translocations. The rate-limiting, initial step of a-NHEJ is the binding of poly-adenosine diphosphate ribose polymerase 1 (PARP1) to the DSB. In our investigation of methods for preventing oncogenic translocations, we discovered that PARP1 was required for translocations. Significantly, the clinically approved PARP1 inhibitors can block the formation of chromosomal translocations, raising the possibility for the first time that secondary oncogenic translocations can be reduced in high risk patients.

  13. Lift-Off Dynamics in a Simple Jumping Robot

    NASA Astrophysics Data System (ADS)

    Aguilar, Jeffrey; Lesov, Alex; Wiesenfeld, Kurt; Goldman, Daniel I.

    2012-10-01

    We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot’s resonant frequency f0. Two distinct jumping modes emerge: a simple jump, which is optimal above f0, is achievable with a squat maneuver, and a peculiar stutter jump, which is optimal below f0, is generated with a countermovement. A simple dynamical model reveals how optimal lift-off results from nonresonant transient dynamics.

  14. DESIGN OF A FAST CHROMATICITY JUMP IN RHIC.

    SciTech Connect

    MONTAG,C.KEWISCH,J.BRUNO,D.GANETIS,G.LOUIE, W.

    2003-05-12

    During transition crossing in the .Relativistic Heavy Ion Collider (RHIC), chromaticities have to change sign. This sign change is partially accomplished by the {gamma}{sub t} quadrupole jump; however, the resulting chromaticity jump is only {Delta}{xi}{sub x} = 2.1 in the horizontal and {Delta}{xi}{sub y} = 2.4 in the vertical plane. To increase the jump height, a dedicated chromaticity jump scheme has been designed, consisting of fast power supplies connected to six sextupoles per ring, which is capable of providing a chromaticity jump of {Delta}{xi} = 6.

  15. Jump conditions for Maxwell equations and their consequences

    NASA Astrophysics Data System (ADS)

    Satapathy, Sikhanda; Hsieh, Kuota

    2013-01-01

    We derived the jump conditions for Faraday's induction law at the interface of two contacting bodies in both Eulerian and Lagrangian descriptions. An algorithm to implement the jump conditions in the potential formulation of Maxwell equation is presented. Calculations show that the use of the correct jump conditions leads to good agreement with experimental data, whereas the use of incorrect jump conditions can lead to severe inaccuracies in the computational results. Our derivation resolves the jump condition discrepancy found in the literature and is validated with experimental results.

  16. Simple jumping process with memory: Transport equation and diffusion

    NASA Astrophysics Data System (ADS)

    Kamińska, A.; Srokowski, T.

    2004-06-01

    We present a stochastic jumping process, defined in terms of jump-size probability density and jumping rate, which is a generalization of the well-known kangaroo process. The definition takes into account two process values: after and before the jump. Therefore, the process is able to preserve memory about its previous values. It possesses a simple stationary limit. Its master equation is interpreted as the kinetic equation with variable collision rate. The process can be easily applied to model systems which relax to distributions other than Maxwellian. The case of a constant jumping rate corresponds to the diffusion process, either normal or ballistic.

  17. Deconvoluting chain heterogeneity from driven translocation through a nanopore

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Bhattacharya, Aniket

    2015-02-01

    We study translocation dynamics of a driven compressible semi-flexible chain consisting of alternate blocks of stiff (S) and flexible (F) segments of size m and n, respectively, for different chain length N in two dimensions (2D). The free parameters in the model are the bending rigidity κb which controls the three-body interaction term, the elastic constant kF in the FENE (bond) potential between successive monomers, as well as the segmental lengths m and n and the repeat unit p (N=m_pn_p) and the solvent viscosity γ. We demonstrate that due to the change in entropic barrier and the inhomogeneous viscous drag on the chain backbone a variety of scenarios are possible, amply manifested in the waiting time distribution of the translocating chain. This information can be deconvoluted to extract the mechanical properties of the chain at various length scales and thus can be used to nanopore based methods to probe bio-molecules, such as DNA, RNA and proteins.

  18. Effect of early training on the jumping technique of horses.

    PubMed

    Santamaría, Susana; Bobbert, Maarten F; Back, Willem; Barneveld, Ab; van Weeren, P Rene

    2005-03-01

    To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. 40 Dutch Warmblood horses. The horses were analyzed kinematically during free jumping at 6 months of age. Subsequently, they were allocated into a control group that was raised conventionally and an experimental group that received 30 months of early training starting at 6 months of age. At 4 years of age, after a period of rest in pasture and a short period of training with a rider, both groups were analyzed kinematically during free jumping. Subsequently, both groups started a 1-year intensive training for jumping, and at 5 years of age, they were again analyzed kinematically during free jumping. In addition, the horses competed in a puissance competition to test maximal performance. Whereas there were no differences in jumping technique between experimental and control horses at 6 months of age, at 4 years, the experimental horses jumped in a more effective manner than the control horses; they raised their center of gravity less yet cleared more fences successfully than the control horses. However, at 5 years of age, these differences were not detected. Furthermore, the experimental horses did not perform better than the control horses in the puissance competition. Specific training for jumping of horses at an early age is unnecessary because the effects on jumping technique and jumping capacity are not permanent.

  19. Biomechanical Analysis of the Jump Shot in Basketball

    PubMed Central

    Struzik, Artur; Pietraszewski, Bogdan; Zawadzki, Jerzy

    2014-01-01

    Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability. PMID:25414741

  20. Scaled Jump in Gravity-Reduced Virtual Environments.

    PubMed

    Kim, MyoungGon; Cho, Sunglk; Tran, Tanh Quang; Kim, Seong-Pil; Kwon, Ohung; Han, JungHyun

    2017-04-01

    The reduced gravity experienced in lunar or Martian surfaces can be simulated on the earth using a cable-driven system, where the cable lifts a person to reduce his or her weight. This paper presents a novel cable-driven system designed for the purpose. It is integrated with a head-mounted display and a motion capture system. Focusing on jump motion within the system, this paper proposes to scale the jump and reports the experiments made for quantifying the extent to which a jump can be scaled without the discrepancy between physical and virtual jumps being noticed by the user. With the tolerable range of scaling computed from these experiments, an application named retargeted jump is developed, where a user can jump up onto virtual objects while physically jumping in the real-world flat floor. The core techniques presented in this paper can be extended to develop extreme-sport simulators such as parasailing and skydiving.

  1. Intergenomic translocations in unisexual salamanders of the genus Ambystoma (Amphibia, Caudata).

    PubMed

    Bi, K; Bogart, J P; Fu, J

    2007-01-01

    Intergenomic interactions that include homoeologous recombinations and intergenomic translocations are commonly observed in plant allopolyploids. Homoeologous recombinations have recently been documented in unisexual salamanders in the genus Ambystoma and revealed exchanged chromosomal segments between A. laterale and A.jeffersonianum genomes in individual unisexuals. We discovered intergenomic translocations in two widespread unisexual triploids A.laterale--2 jeffersonianum (or LJJ) and its tetraploid derivative A.laterale--3 jeffersonianum (or LJJJ) by genomic in situ hybridization (GISH). Two different types of intergenomic translocations were observed in two unisexual populations and one contained novel chromosomes generated by an intergenomic reciprocal translocation. We also observed chromosome deletions in several individuals and these chromosome fragmentations were all derived from the A. jeffersonianum genome. These observed intergenomic reciprocal translocations are believed to be caused by non-homologous pairing during meiosis followed by breakage-rejoining events. Genomes of unisexual Ambystoma undergo complicated structural changes that include various intergenomic exchanges that offer unisexuals genetic and phenotypic complexity to escape their evolutionary demise. Unisexual Ambystoma have persisted as natural nuclear genomic hybrids for about four million years. These unisexuals provide a vertebrate model system to examine the interaction of distinct genomes and to evaluate the corresponding genetic, developmental and evolutionary implications of intergenomic exchanges. Intergenomic translocations and homoeologous recombinations appear to be frequent chromosome reconstruction events among unisexual Ambystoma.

  2. Translocation (Y;12) in lipoma.

    PubMed

    Liang, Cher-Wei; Mariño-Enríquez, Adrian; Johannessen, Catherine; Hornick, Jason L; Dal Cin, Paola

    2011-01-01

    Lipomas are the most common benign mesenchymal neoplasm in adults, and have been extensively characterized at the cytogenetic level. Chromosomal aberrations have been observed in the majority of lipomas, two-thirds of which involve chromosomal region 12q14.3. To date, structural rearrangements have been reported affecting every chromosome except chromosome Y. Here we report a case of a lipoma that shows a novel apparently balanced translocation involving chromosomes Y and 12. Fluorescence in situ hybridization using a break-apart HMGA2 in-house probe set detected a single signal on the normal chromosome 12 but not on either the derivative chromosome Y or 12, indicating a cryptic loss of 12q14.3, where HMGA2 is mapped. Immunohistochemical studies, however, revealed overexpression of HMGA2 with nuclear expression in the majority of tumor cells, whereas MDM2 and CDK4 were negative. The overexpression of HMGA2 may be caused by a cryptic chromosomal aberration affecting either the cytogenetically unaltered HMGA2 allele or HMGA2 regulators elsewhere. The current case broadens our knowledge about the translocation partners of HMGA2 in lipomas and highlights the biological complexity in regulating HMGA2 expression.

  3. Partial trisomy 14 (q23 leads to qter) via segregation of a 14/X translocation.

    PubMed Central

    Cohen, M M; Charrow, J; Balkin, N E; Harris, C J

    1983-01-01

    An infant with delayed development and multiple congenital anomalies was found to possess a duplication of 14q23 leads to qter. This imbalance arose through segregation of a maternal 14/X translocation, observed in only 28% of the mother's cells. Although the X-chromosome-derived portion of the translocation was late replicating in the proposita, the autosomal segment was not inactivated, leading to functional trisomy for distal 14q. Phenotypic comparison to cases with similar duplications does not allow the clinical description of a partial trisomy syndrome. Images Fig. 1 Fig. 2 PMID:6881140

  4. Polymer translocation through nanopore into active bath

    NASA Astrophysics Data System (ADS)

    Pu, Mingfeng; Jiang, Huijun; Hou, Zhonghuai

    2016-11-01

    Polymer translocation through nanopores into a crowded environment is of ubiquitous importance in many biological processes. Here we investigate polymer translocation through a nanopore into an active bath of self-propelled particles in two-dimensional space using Langevin dynamics simulations. Interestingly, we find that the mean translocation time <" separators=" τ > can show a bell-shape dependence on the particle activity Fa at a fixed volume fraction ϕ, indicating that the translocation process may become slower for small activity compared to the case of the passive media, and only when the particle activity becomes large enough can the translocation process be accelerated. In addition, we also find that <" separators=" τ > can show a minimum as a function of ϕ if the particle activity is large enough, implying that an intermediate volume fraction of active particles is most favorable for the polymer translocation. Detailed analysis reveals that such nontrivial behaviors result from the two-fold effect of active bath: one that active particles tend to accumulate near the pore, providing an extra pressure hindering the translocation, and the other that they also aggregate along the polymer chain, generating an effective pulling force accelerating the translocation. Such results demonstrate that active bath plays rather subtle roles on the polymer translocation process.

  5. Active Polymer Translocation through Flickering Pores

    NASA Astrophysics Data System (ADS)

    Cohen, Jack A.; Chaudhuri, Abhishek; Golestanian, Ramin

    2011-12-01

    Single file translocation of a homopolymer through an active channel under the presence of a driving force is studied using Langevin dynamics simulation. It is shown that a channel with sticky walls and oscillating width could lead to significantly more efficient translocation as compared to a static channel that has a width equal to the mean width of the oscillating pore. The gain in translocation exhibits a strong dependence on the stickiness of the pore, which could allow the polymer translocation process to be highly selective.

  6. Crystal structure of a substrate-engaged SecY protein-translocation channel.

    PubMed

    Li, Long; Park, Eunyong; Ling, JingJing; Ingram, Jessica; Ploegh, Hidde; Rapoport, Tom A

    2016-03-17

    Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61α, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation. How a translocating polypeptide inserts into the channel is uncertain, as cryo-electron microscopy structures of the active channel have a relatively low resolution (~10 Å) or are of insufficient quality. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The carboxy (C)-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.

  7. An optimization approach to inverse dynamics provides insight as to the function of the biarticular muscles during vertical jumping.

    PubMed

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony M J

    2011-01-01

    Traditional inverse dynamics approaches to calculating the inter-segmental moments are limited in their ability to accurately reflect the function of the biarticular muscles. In particular they are based on the assumption that the net inter-segmental moment is zero and that total joint moments are independent of muscular activity. Traditional approaches to calculating muscular forces from the inter-segmental moments are based on a consideration of joint moments which do not encapsulate the potential moment asymmetry between segments. In addition, traditional approaches may artificially constrain the activity of the biarticular muscles. In this study, an optimization approach to the simultaneous inverse determination of inter-segmental moments and muscle forces (the 1-step method) based on a consideration of segmental rotations was employed to study vertical jumping and contrasted with the more traditional 2-step approach of determining inter-segmental moments from an inverse dynamics analysis then muscle forces using optimization techniques. The 1-step method resulted in significantly greater activation of both the monoarticular and biarticular musculature which was then translated into significantly greater joint contact forces, muscle powers, and inter-segmental moments. The results of this study suggest that traditional conceptions of inter-segmental moments do not completely encapsulate the function of the biarticular muscles and that joint function can be better understood by recognizing the asymmetry in inter-segmental moments.

  8. Noise Induced Jumping Dynamics Between Synchronized Modes

    NASA Astrophysics Data System (ADS)

    Algar, Shannon D.; Stemler, Thomas; de Saedeleer, Bernard

    Synchronization is a common phenomenon whereby a dynamical system follows the pacemaker provided by an external forcing. Often, such systems have multiple synchronization modes, which are equivalent solutions. We investigate the specific case of two to one synchronization produced by the periodic forcing of a van der Pol oscillator where two possible modes, shifted by one period of the modulation, exist. By studying the flow and the local Lyapunov exponents along the orbit we give an explanation of the noise induced jumps observed in a stochastic forced oscillator. While this investigation gives results that are specific to this system, the framework presented is more general and can be applied to any system showing similar jumping dynamics.

  9. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1978-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  10. Highly sensitive microwave temperature-jump apparatus.

    PubMed

    Aubard, J; Nozeran, J M; Levoir, P; Meyer, J J; Dubois, J E

    1979-01-01

    A temperature-jump apparatus with repetitive microwave heating and spectrophotometric detection is described. Temperature jumps of 1.5 degrees C are achieved in a flow microcell within 1.5 mus (two shorter heating times of 0.5 and 0.25 mus are also available) at a repetition rate up to 50 Hz. On-line accumulation of the relaxation signals is performed with a PDP 11 processor, leading to very short recording times (more than 1000 signals accumulated in less than 50 s) and to a sensitivity better than 10(-4) optical density (OD) units. Nonlinear identification treatment permits processing the summed signal even when it is strongly blurred by noise. To demonstrate the capabilities of our apparatus, highly shifted fast prototropic equilibria in aqueous solutions of pyrimidine base have been studied.

  11. Ehrenfest model with large jumps in finance

    NASA Astrophysics Data System (ADS)

    Takahashi, Hisanao

    2004-02-01

    Changes (returns) in stock index prices and exchange rates for currencies are argued, based on empirical data, to obey a stable distribution with characteristic exponent α<2 for short sampling intervals and a Gaussian distribution for long sampling intervals. In order to explain this phenomenon, an Ehrenfest model with large jumps (ELJ) is introduced to explain the empirical density function of price changes for both short and long sampling intervals.

  12. Entropy jump across an inviscid shock wave

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  13. Looking Back on Operation Jump Start

    DTIC Science & Technology

    2009-01-01

    Operation Jump Start Major David M. Church, USARNG, is Plans Officer for the Unmanned Aircraft Systems Training Battalion at Fort Huachuca, Arizona. He...SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18... system would have contributed to a more sound unity of effort by reducing organizational uncertainty. Another measure that could have reduced this

  14. Genetic Analysis of the Reciprocal Translocation T2(I;VIII) of Aspergillus Using the Technique of Mitotic Mapping in Homozygous Translocation Diploids

    PubMed Central

    Ma, Gloria C. L.; Käfer, Etta

    1974-01-01

    A UV-induced sulphite-requiring mutant (sD50) consistently shows mitotic linkage to groups I and VIII in haploids from heterozygous mapping diploids. This linkage was found to be due to a reciprocal translocation T2(I;VIII) which could not be separated from the sulphite requirement in about 100 tested progeny from heterozygous crosses, and both may well have been induced by the same mutational event. T2(I;VIII) is the first case of a reciprocal translocation in Aspergillus which showed meiotic linkages between markers of different linkage groups, and, in addition, involved chromosome arms containing markers suitable for complete mapping by the technique of mitotic recombination in homozygous translocation diploids.—Using various selective markers, haploid segregants and diploid crossovers of all possible types were isolated from homozygous translocation diploids. (1) Haploid segregants showed new linkage relationships in T/T diploids: all available markers of VIII now segregated as a group with the majority of the markers of I, except for the markers of the left tip of I. These formed a separate linkage group and are presumably translocated to VIII. (2) Diploid mitotic crossovers confirmed this information and showed that the orientation of the translocated segments was unchanged. These findings conclusively demonstrate that T2(I;VIII) is a reciprocal translocation due to an exchange of the left tip of group I with the long right arm of group VIII.—Since the position of the break on VIIIR was found to be at sD50 this marker could be used to map the break on IL by meiotic recombination in heterozygous crosses. In addition, such crosses showed reduced recombination around the breaks, so that it was possible to sequence markers which normally are barely linked. PMID:4601437

  15. Haloarchaeal Protein Translocation via the Twin Arginine Translocation Pathway

    SciTech Connect

    Pohlschroder Mechthild

    2009-02-03

    Protein transport across hydrophobic membranes that partition cellular compartments is essential in all cells. The twin arginine translocation (Tat) pathway transports proteins across the prokaryotic cytoplasmic membranes. Distinct from the universally conserved Sec pathway, which secretes unfolded proteins, the Tat machinery is unique in that it secretes proteins in a folded conformation, making it an attractive pathway for the transport and secretion of heterologously expressed proteins that are Sec-incompatible. During the past 7 years, the DOE-supported project has focused on the characterization of the diversity of bacterial and archaeal Tat substrates as well as on the characterization of the Tat pathway of a model archaeon, Haloferax volcanii, a member of the haloarchaea. We have demonstrated that H. volcanii uses this pathway to transport most of its secretome.

  16. Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks

    PubMed Central

    Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San

    2010-01-01

    This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key points The different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height. Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase. Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase. PMID:24149397

  17. Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.

    PubMed

    Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San

    2010-01-01

    This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.

  18. Field measurements in unwadeable natural hydraulic jumps

    NASA Astrophysics Data System (ADS)

    Valle, B.; Pasternack, G.

    2003-04-01

    Recent research in fluvial geomorphology has emphasized the development and application of digital terrain models to better understand process-form relations. However, field measurements in mountain channels have largely been restricted to low velocity or ephemeral flow conditions. To address this problem, a new high-resolution mechanical surveying system was developed at UC Davis and used to measure the 3D bed and water surface topographies of an unwadeable plunging hydraulic jump in the Cache Creek basin, CA. Labeled as the River Truss, the system is capable of making high-resolution form and process measurements over a 30 to 115 m2 area. Bed and water surface DTMs were derived from the field data using AutoCAD. River Truss precision was assessed by DTM differencing the hydraulic jump bed surface topography with a DTM developed from tacheometric survey at low base flows. Bed surface DTMs indicate significant spatial complexity of the underlying bed step in the supercritical flow region and significant downstream bed scour. Water surface DTMs indicate 3D complexity of the plunging flow surface and divergence from 1D free-fall theory. Further study will emphasize the development and deployment of process-based instrumentation such that the complex turbulent air-water flow dynamics associated with natural hydraulic jumps may be better understood. Also, a second generation River Truss that has a larger coverage area and automated data collection has been designed and is now being built.

  19. Quantum jumps of a fluxonium qubit

    NASA Astrophysics Data System (ADS)

    Vool, U.; Pop, I. M.; Sliwa, K.; Abdo, B.; Brecht, T.; Shankar, S.; Hatridge, M.; Schoelkopf, R. J.; Mirrahimi, M.; Glazman, L.; Devoret, M. H.

    2014-03-01

    The fluxonium qubit has recently been shown to have energy relaxation time (T1) of the order of 1 ms, limited by quasiparticle dissipation. With the addition of a Josephson Parametric Converter (JPC) to the experiment, trajectories corresponding to quantum jumps between the ground and 1st excited state can be measured, thus allowing the observation of the qubit decay in real time instead of that of an ensemble average. Our measurement fidelity with the JPC is in excess of 98% for an acquisition time of 5 us and we can thus continuously monitor the quantum jumps of the qubit in equilibrium with its environment in a time much shorter than its average relaxation time. We observe in our sample a jump statistics that varies from being completely Poissonian with a long (500 us) mean time in the ground state to being highly non-Poissonian with short (100 us) mean time in the ground state. The changes between these regimes occur on time scales of seconds, minutes and even hours. We have studied this effect and its relation to quasiparticle dynamics by injecting quasiparticles with a short intense microwave pulse and by seeding quasiparticle-trapping vortices with magnetic field. Work supported by: IARPA, ARO, and NSF.

  20. Jump Squat is More Related to Sprinting and Jumping Abilities than Olympic Push Press.

    PubMed

    Loturco, I; Kobal, R; Maldonado, T; Piazzi, A F; Bottino, A; Kitamura, K; Abad, C C C; Pereira, L A; Nakamura, F Y

    2015-12-14

    The aim of this study was to test the relationships between jump squat (JS) and Olympic push press (OPP) power outputs and performance in sprint, squat jump (SJ), countermovement jump (CMJ) and change of direction (COD) speed tests in elite soccer players. 27 athletes performed a maximum power load test to determine their bar mean propulsive power (MPP) and bar mean propulsive velocity (MPV) in the JS and OPP exercises. Magnitude-based inference was used to compare the exercises. The MPV was almost certainly higher in the OPP than in the JS. The MPP relative to body mass (MPP REL) was possibly higher in the OPP. Only the JS MPP REL presented very large correlations with linear speed (r>0.7, for speed in 5, 10, 20 and 30 m) and vertical jumping abilities (r>0.8, for SJ and CMJ), and moderate correlation with COD speed (r=0.45). Although significant (except for COD), the associations between OPP outcomes and field-based measurements (speed, SJ and CMJ) were all moderate, ranging from 0.40 to 0.48. In a group composed of elite soccer players, the JS exercise is more associated with jumping and sprinting abilities than the OPP. Longitudinal studies are needed to confirm if these strong relationships imply superior training effects in favor of the JS exercise.

  1. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations

    PubMed Central

    Farr, W. M.; Mandel, I.; Stevens, D.

    2015-01-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient ‘global’ proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580

  2. Long memory behavior of returns after intraday financial jumps

    NASA Astrophysics Data System (ADS)

    Behfar, Stefan Kambiz

    2016-11-01

    In this paper, characterization of intraday financial jumps and time dynamics of returns after jumps is investigated, and will be analytically and empirically shown that intraday jumps are power-law distributed with the exponent 1 < μ < 2; in addition, returns after jumps show long-memory behavior. In the theory of finance, it is important to be able to distinguish between jumps and continuous sample path price movements, and this can be achieved by introducing a statistical test via calculating sums of products of returns over small period of time. In the case of having jump, the null hypothesis for normality test is rejected; this is based on the idea that returns are composed of mixture of normally-distributed and power-law distributed data (∼ 1 /r 1 + μ). Probability of rejection of null hypothesis is a function of μ, which is equal to one for 1 < μ < 2 within large intraday sample size M. To test this idea empirically, we downloaded S&P500 index data for both periods of 1997-1998 and 2014-2015, and showed that the Complementary Cumulative Distribution Function of jump return is power-law distributed with the exponent 1 < μ < 2. There are far more jumps in 1997-1998 as compared to 2015-2016; and it represents a power law exponent in 2015-2016 greater than one in 1997-1998. Assuming that i.i.d returns generally follow Poisson distribution, if the jump is a causal factor, high returns after jumps are the effect; we show that returns caused by jump decay as power-law distribution. To test this idea empirically, we average over the time dynamics of all days; therefore the superposed time dynamics after jump represent a power-law, which indicates that there is a long memory with a power-law distribution of return after jump.

  3. Explanation of the bilateral deficit in human vertical squat jumping.

    PubMed

    Bobbert, Maarten F; de Graaf, Wendy W; Jonk, Jan N; Casius, L J Richard

    2006-02-01

    In the literature, it has been reported that the mechanical output per leg is less in two-leg jumps than in one-leg jumps. This so-called bilateral deficit has been attributed to a reduced neural drive to muscles in two-leg jumps. The purpose of the present study was to investigate the possible contribution of nonneural factors to the bilateral deficit in jumping. We collected kinematics, ground reaction forces, and electromyograms of eight human subjects performing two-leg and one-leg (right leg) squat jumps and calculated mechanical output per leg. We also used a model of the human musculoskeletal system to simulate two-leg and one-leg jumps, starting from the initial position observed in the subjects. The model had muscle stimulation as input, which was optimized using jump height as performance criterion. The model did not incorporate a reduced maximal neural drive in the two-leg jump. Both in the subjects and in the model, the work of the right leg was more than 20% less in the two-leg jump than in the one-leg jump. Peak electromyogram levels in the two-leg jump were reduced on average by 5%, but the reduction was only statistically significant in m. rectus femoris. In the model, approximately 75% of the bilateral deficit in work per leg was explained by higher shortening velocities in the two-leg jump, and the remainder was explained by lower active state of muscles. It was concluded that the bilateral deficit in jumping is primarily caused by the force-velocity relationship rather than by a reduction of neural drive.

  4. Structure and Dynamics of Katabatic Flow Jumps: Idealised Simulations

    NASA Astrophysics Data System (ADS)

    Yu, Ye; Cai, Xiao-Ming

    2006-03-01

    For the first time, results from a high-resolution numerical simulation (with horizontal grid spacing of 35m) were used to reveal the detailed structure near an atmospheric katabatic jump over an idealized slope. The simulation represents flow over the slopes of Coats Land, Antarctica for austral winter conditions. The katabatic jump is characterised by an updraft with vertical velocities of order 1ms-1 and serves as a possible forcing mechanism for the gravity waves frequently observed over the ice shelves around the Antarctic. Results also indicate that strong turbulence is generally confined within a mixing zone near the top of the katabatic layer upstream of the jump and extends downstream through the top of the strong updraft associated with the jump. Detailed analyses of momentum and heat budgets across the katabatic jump indicate that, upstream of the jump, turbulent mixing is important in decelerating the upper part of the katabatic layer, while within the jump the upslope pressure gradient force associated with the pool of cold air plays a role in decelerating the flow near the surface. The heat budget near the jump reveals a simple two-term balance: the turbulent heat flux divergence is balanced by the advection. A comparison of model results with available theories indicates that mixing between layers of different potential temperature structure indeed plays some role in the development of katabatic flow jumps, especially for strong jumps. Theories used to study katabatic jumps should include this mixing process, of which the amount depends on the intensity of the jump. A conceptual model of a katabatic jump, including the main dynamical processes, is constructed from these detailed analyses.

  5. Translocator protein: pharmacology and steroidogenesis.

    PubMed

    Midzak, Andrew; Zirkin, Barry; Papadopoulos, Vassilios

    2015-08-01

    The translocator protein (TSPO; 18k Da) is an evolutionarily conserved outer mitochondrial membrane (OMM) protein highly expressed in steroid-synthesizing cells and found to possess a number of physiological and drug-binding partners. Extensive pharmacological, biochemical and cell biological research over the years has led to a model of TSPO involvement in mitochondrial cholesterol transport and promotion of steroid synthesis, a model guiding the design of drugs useful in stimulating neurosteroid synthesis and alleviating psychopathological symptoms. The involvement of TSPO in these processes has been called into question; however, with the publication of TSPO-deletion mouse models which saw no changes in steroid production. Here, we review work characterizing TSPO in steroidogenesis and offer perspective to research into TSPO pharmacology and its involvement in steroid biosynthesis. © 2015 Authors; published by Portland Press Limited.

  6. DNA translocation through graphene nanopores.

    PubMed

    Merchant, Christopher A; Healy, Ken; Wanunu, Meni; Ray, Vishva; Peterman, Neil; Bartel, John; Fischbein, Michael D; Venta, Kimberly; Luo, Zhengtang; Johnson, A T Charlie; Drndić, Marija

    2010-08-11

    We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.

  7. Phosphorus Compounds in Translocating Phloem

    PubMed Central

    Bieleski, R. L.

    1969-01-01

    Phosphate-32P was introduced into a turnip leaf, and 3 hr later, the vascular bundles were stripped from the petiole and their phosphate ester pattern was studied. The pattern did not alter along their length and was like that of other tissues. Pumpkin leaves were painted with phosphate-32P; and later, the petioles were cut, the sieve tube exudates were collected and their phosphate ester patterns were studied. Exudates collected after 10 min had a high proportion of their 32P present in Pi and nucleoside triphosphates, while exudates collected after long translocation times (4-22 hr) had a lower proportion in these, and a higher proportion in hexose monophosphates and UDP glucose. In general, the ester patterns were like those of other tissues. The results indicate that sieve tubes are metabolically active, and that Pi is the primary form in which phosphorus moves in the phloem. Images PMID:16657091

  8. Association between traditional standing vertical jumps and a soccer-specific vertical jump.

    PubMed

    Requena, Bernardo; Garcia, Inmaculada; Requena, Francisco; Bressel, Eadric; Saez-Saez de Villarreal, Eduardo; Cronin, John

    2014-01-01

    The present study aimed to determine the relationships between a soccer-specific vertical jump (ssVJ) test, that included common elements of a soccer VJ (e.g. run-up and intention to head), and three traditional VJ tests using elite soccer players. A secondary purpose of this study was to determine the reliability of the VJs used in the analysis. A randomised order and counterbalanced design was used to assess the relationships between these VJs [countermovement jump (CMJ), drop jump for height (DJh), drop jump for maximum height and minimum ground contact time (DJh/t) and the ssVJ]. Take-off velocity, contact time and flight time were the dependent variables of interest and compared between jumps. Intra-class correlation coefficient (ICC) and coefficient of variation (CV) were used as measures of inter-session reliability. All VJ tests were found to have high ICCs (0.89-0.99) and acceptable within-subject CVs (<7.5%). All the ssVJ dependent variables were not significantly related (r<0.44) with similar variables from the CMJ and DJh tests and only moderately related (r=~0.49) with the DJh/t test variables. In addition, the DJh/t variables were not significantly correlated (r<0.47) with DJh and CMJ test variables. In conclusion, it would seem that the proposed ssVJ test and CMJ or DJh tests assess different leg qualities and thought should be given before using them interchangeably to assess or develop the same performance measures (i.e. velocity at take-off or jump height).

  9. Does performing drop jumps with additional eccentric loading improve jump performance?

    PubMed

    Aboodarda, Saied J; Byrne, Jeannette M; Samson, Michael; Wilson, Barry D; Mokhtar, Abdul H; Behm, David G

    2014-08-01

    Previous investigators have speculated that applying additional external load throughout the eccentric phase of the jumping movement could amplify the stretch-shortening cycle mechanism and modulate jumping performance and jump exercise intensity. The aims of this study, therefore, were to determine the effect of increased eccentric phase loading, as delivered using an elastic device, on drop jumps (DJs) performed from different drop heights. Of specific interest were changes in (a) the kinetics; eccentric and concentric impulse, rate of force development (RFD), concentric velocity and (b) the electromyographic (EMG) activity of leg muscles. In a randomized repeated-measure study, 15 highly resistance trained male subjects performed DJs from 3 heights (20, 35, and 50 cm) under 3 different conditions: body weight only (free DJ) and with elastic bands providing downward force equivalent to 20% (+20% DJ) and 30% (+30% DJ) of body mass. All DJs were recorded using video and force plate data that were synchronized with EMG data. Results demonstrated that using additional tensile load during the airborne and eccentric phases of the DJ could enhance eccentric impulse (p = 0.042) and RFD (p < 0.001) and resulted in small to moderate effect size (ES) increases in quadriceps intergrated EMG across the eccentric phase (0.23 > ES > 0.51). The observed greater eccentric loading, however, did not immediately alter concentric kinetics and jump height nor did it alter muscle activation levels during this phase. The findings indicated that, in addition to the conventional technique of increasing drop height, using a tensile load during the airborne and eccentric phases of the DJ could further improve eccentric loading of DJs. As it has been suggested that eccentric impulse and RFD are indicators of DJ exercise intensity, these findings suggest that the loaded DJs, using additional elastic load, may be an effective technique for improving DJ exercise intensity without acute effects

  10. RNA polymerase stalls in a post-translocated register and can hyper-translocate

    PubMed Central

    Nedialkov, Yuri A.; Nudler, Evgeny; Burton, Zachary F.

    2012-01-01

    Exonuclease (Exo) III was used to probe translocation states of RNA polymerase (RNAP) ternary elongation complexes (TECs). Escherichia coli RNAP stalls primarily in a post-translocation register that makes relatively slow excursions to a hyper-translocated state or to a pre-translocated state. Tagetitoxin (TGT) strongly inhibits hyper-translocation and inhibits backtracking, so, as indicated by Exo III mapping, TGT appears to stabilize both the pre- and probably a partially post-translocation state of RNAP. Because the pre-translocated to post-translocated transition is slow at many template positions, these studies appear inconsistent with a model in which RNAP makes frequent and rapid (i.e., millisecond phase) oscillations between pre- and post-translocation states. Nine nucleotides (9-nt) and 10-nt TECs, and TECs with longer nascent RNAs, have distinct translocation properties consistent with a 9–10 nt RNA/DNA hybrid. RNAP mutant proteins in the bridge helix and trigger loop are identified that inhibit or stimulate forward and backward translocation. PMID:23132506

  11. On the pathway of ribosomal translocation.

    PubMed

    Xie, Ping

    2016-11-01

    The translocation of tRNAs coupled with mRNA in the ribosome is a critical process in the elongation cycle of protein synthesis. The translocation entails large-scale conformational changes of the ribosome and involves several intermediate states with tRNAs in different positions with respect to 30S and 50S ribosomal subunits. However, the detailed role of the intermediate states is unknown and the detailed mechanism and pathway of translocation is unclear. Here based on previous structural, biochemical and single-molecule data we present a translocation pathway by incorporating several intermediate states. With the pathway, we study theoretically (i) the kinetics of 30S head rotation associated with translocation catalyzed by wild-type EF-G, (ii) the dynamics of fluctuations between different tRNA states during translocation interfered with EF-G mutants and translocation-specific antibiotics, (iii) the kinetics of tRNA movement in 50S subunit and mRNA movement in 30S subunit in the presence of wild-type EF-G, EF-G mutants and translocation-specific antibiotics, (iv) the dynamics of EF-G sampling to the ribosome during translocation, etc., providing consistent and quantitative explanations of various available biochemical and single-molecule experimental data published in the literature. Moreover, we study the kinetics of 30S head rotation in the presence of EF-G mutants, providing predicted results. These have significant implications for the molecular mechanism and pathway of ribosomal translocation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Validity and intra-rater reliability of MyJump app on iPhone 6s in jump performance.

    PubMed

    Stanton, Robert; Wintour, Sally-Anne; Kean, Crystal O

    2017-05-01

    Smartphone applications are increasingly used by researchers, coaches, athletes and clinicians. The aim of this study was to examine the concurrent validity and intra-rater reliability of the smartphone-based application, MyJump, against laboratory-based force plate measurements. Cross sectional study. Participants completed counter-movement jumps (CMJ) (n=29) and 30cm drop jumps (DJ) (n=27) on a force plate which were simultaneously recorded using MyJump. To assess concurrent validity, jump height, derived from flight time acquired from each device, was compared for each jump type. Intra-rater reliability was determined by replicating data analysis of MyJump recordings on two occasions separated by seven days. CMJ and DJ heights derived from MyJump showed excellent agreement with the force plate (ICC values range from 0.991 for CMJ to 0.993) However mean DJ height from the force plate was significantly higher than MyJump (mean difference: 0.87cm, 95% CI: 0.69-1.04cm). Intra-rater reliability of MyJump for both CMJ and DJ was almost perfect (ICC values range from 0.997 for CMJ to 0.998 for DJ); however, mean CMJ and DJ jump height for Day 1 was significantly higher than Day 2 (CMJ: 0.43cm, 95% CI: 0.23-0.62cm); (DJ: 0.38cm, 95% CI: 0.23-0.53cm). The present study finds MyJump to be a valid and highly reliable tool for researchers, coaches, athletes and clinicians; however, systematic bias should be considered when comparing MyJump outputs to other testing devices. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Predator Mimicry: Metalmark Moths Mimic Their Jumping Spider Predators

    PubMed Central

    Rota, Jadranka; Wagner, David L.

    2006-01-01

    Cases of mimicry provide many of the nature's most convincing examples of natural selection. Here we report evidence for a case of predator mimicry in which metalmark moths in the genus Brenthia mimic jumping spiders, one of their predators. In controlled trials, Brenthia had higher survival rates than other similarly sized moths in the presence of jumping spiders and jumping spiders responded to Brenthia with territorial displays, indicating that Brenthia were sometimes mistaken for jumping spiders, and not recognized as prey. Our experimental results and a review of wing patterns of other insects indicate that jumping spider mimicry is more widespread than heretofore appreciated, and that jumping spiders are probably an important selective pressure shaping the evolution of diurnal insects that perch on vegetation. PMID:17183674

  14. Orbital emphysema as a complication of bungee jumping.

    PubMed

    Krott, R; Mietz, H; Krieglstein, G K

    1997-07-01

    Bungee jumping is a dangerous sport with increasing popularity in the western world. We report the case of a 28-yr-old man who sustained an orbital emphysema as a result of bungee jumping. He jumped head first from a 160-ft high bridge over a river. At the end of the jump he dived into the water with his head in a reclined position. The sudden dive into the water caused an increase of the air pressure in the nose and paranasal sinuses, which led to an emphysema of the right orbit resulting from a skull fracture not detectable by x-ray. The patient was treated with oral antibiotics. Five days later, he had no clinical complaints and the ophthalmologic examination was normal. This variation of bungee jumping may bear severe risk factors for health in addition to those known from the classic jumps.

  15. Estimation of joint forces and moments for the in-run and take-off in ski jumping based on measurements with wearable inertial sensors.

    PubMed

    Logar, Grega; Munih, Marko

    2015-05-13

    This study uses inertial sensors to measure ski jumper kinematics and joint dynamics, which was until now only a part of simulation studies. For subsequent calculation of dynamics in the joints, a link-segment model was developed. The model relies on the recursive Newton-Euler inverse dynamics. This approach allowed the calculation of the ground reaction force at take-off. For the model validation, four ski jumpers from the National Nordic center performed a simulated jump in a laboratory environment on a force platform; in total, 20 jumps were recorded. The results fit well to the reference system, presenting small errors in the mean and standard deviation and small root-mean-square errors. The error is under 12% of the reference value. For field tests, six jumpers participated in the study; in total, 28 jumps were recorded. All of the measured forces and moments were within the range of prior simulated studies. The proposed system was able to indirectly provide the values of forces and moments in the joints of the ski-jumpers' body segments, as well as the ground reaction force during the in-run and take-off phases in comparison to the force platform installed on the table. Kinematics assessment and estimation of dynamics parameters can be applied to jumps from any ski jumping hill.

  16. The influence of resting period length on jumping performance.

    PubMed

    Pereira, Gleber; Almeida, Alexandre G; Rodacki, André L F; Ugrinowitsch, Carlos; Fowler, Neil E; Kokubun, Eduardo

    2008-07-01

    The purpose of this study was to determine a resting interval between countermovement jumps (i.e., volleyball spikes) that allows the maintenance of maximal jumping performance. Ten male volleyball players (1.85 +/- 0.05 m, 77.2 +/- 10.6 kg, 21.6 +/- 5.3 years) performed 6 experimental jumping sessions. In the first and sixth sessions, maximal countermovement jump height was measured, followed by submaximal countermovement jumps to the point of volitional fatigue. The number of countermovement jumps was used as a reference to test the effect of rest period between volleyball spikes. From the second to fifth experimental sessions, 30 maximal volleyball spikes were performed with different resting periods (i.e., 8, 14, 17, and 20 seconds) followed by countermovement jumps. Between the 15th and 30th spikes, the blood lactate concentration and heart rate were measured. Because the performance on the first and sixth sessions was the same, no training effects were noticed. During the 8-second resting interval set, the lactate concentration increased significantly between the 15th and 30th spikes (i.e., from 3.37 +/- 1.16 mmol to 4.94 +/- 1.49 mmol); the number of countermovement jumps decreased significantly after spikes compared to those performed without a previous effort (i.e., from 23 +/- 7 jumps to 17 +/- 9 jumps); and these variables were significantly correlated (r = -0.7). On the other hand, the lactate concentration and number of countermovement jumps were stable across the other resting intervals, without a heart rate steady state. The results indicate that an adequate resting period between spikes allowed participants to achieve a lactate steady state in which the performance was maintained during the exercise. These findings show that resting intervals between 14 and 17 seconds, typical during volleyball matches, are indicated to use in volleyball spike drills due to their capacity to maintain maximal jumping performance.

  17. Manifestations of Proprioception During Vertical Jumps to Specific Heights

    PubMed Central

    Struzik, Artur; Pietraszewski, Bogdan; Winiarski, Sławomir; Juras, Grzegorz; Rokita, Andrzej

    2017-01-01

    Abstract Artur, S, Bogdan, P, Kawczyński, A, Winiarski, S, Grzegorz, J, and Andrzej, R. Manifestations of proprioception during vertical jumps to specific heights. J Strength Cond Res 31(6): 1694–1701, 2017—Jumping and proprioception are important abilities in many sports. The efficiency of the proprioceptive system is indirectly related to jumps performed at specified heights. Therefore, this study recorded the ability of young athletes who play team sports to jump to a specific height compared with their maximum ability. A total of 154 male (age: 14.8 ± 0.9 years, body height: 181.8 ± 8.9 cm, body weight: 69.8 ± 11.8 kg, training experience: 3.8 ± 1.7 years) and 151 female (age: 14.1 ± 0.8 years, body height: 170.5 ± 6.5 cm, body weight: 60.3 ± 9.4 kg, training experience: 3.7 ± 1.4 years) team games players were recruited for this study. Each participant performed 2 countermovement jumps with arm swing to 25, 50, 75, and 100% of the maximum height. Measurements were performed using a force plate. Jump height and its accuracy with respect to a specified height were calculated. The results revealed no significant differences in jump height and its accuracy to the specified heights between the groups (stratified by age, sex, and sport). Individuals with a higher jumping accuracy also exhibited greater maximum jump heights. Jumps to 25% of the maximum height were approximately 2 times higher than the target height. The decreased jump accuracy to a specific height when attempting to jump to lower heights should be reduced with training, particularly among athletes who play team sports. These findings provide useful information regarding the proprioceptive system for team sport coaches and may shape guidelines for training routines by working with submaximal loads. PMID:28538322

  18. Data reliability from an instrumented vertical jump platform.

    PubMed

    Caruso, John F; Daily, Jeremy S; McLagan, Jessica R; Shepherd, Catherine M; Olson, Nathan M; Marshall, Mallory R; Taylor, Skyler T

    2010-10-01

    A Vertec jump measurement and training system measures vertical jump heights but not additional variables that would reveal how the performance was achieved. Technology advances to equipment now include additional variables that elucidate how jump performance is achieved. However, acceptance of new jump-related equipment is predicated on the reliability of the vertical heights it measures in relation to those assessed by the Vertec. Thus, our study compared vertical jump height reliability data from a newly created instrumented platform to those concurrently derived from the Vertec. Methods required subjects (n = 105) to perform 2 jump trials separated by at least 2 days of rest. Trials began with a warm-up, followed by 3 to 5 maximal-effort jumps. The Vertec was placed directly over the platform so, as jumps occurred, subjects took off and landed on the instrumented device. At the jump apex subjects contacted the highest Vertec slapstick possible to assess maximum height attained. Four height measurements were derived from each jump: 3 platform-based calculations (from subject's take-off, hang time, and landing) and 1 Vertec. The platform-based calculations were compared to Vertec data to assess the reliability of the instrumented device. Intraclass correlation coefficient (0.90), coefficient of variation (17.3%), standard error of measurement (0.9 cm), and smallest real difference (3.7 cm) results showed heights calculated from platform take-offs were most reliable to Vertec values. It was concluded take-off from the platform yielded jump heights that are a viable alternative to those derived from the Vertec. Practical applications suggest coaches may use the platform to derive reliable vertical jump data in addition to other variables to better understand the performance of their athletes.

  19. Hydrodynamics of jumping for prey capture in Archer fish

    NASA Astrophysics Data System (ADS)

    Techet, A. H.; Shih, A. M.

    2010-11-01

    The prey capture behavior by jumping Archer fish (Toxotes microlepisis) was investigated using high speed imaging and particle imaging velocimetry (PIV). Archer fish are renowned for their ability to spit jets of water at insects and also to jump out of the water to capture their prey. Our investigations reveal that the fish typically fail to reach their prey by jumping when the bait is placed at a height above 3.5 body lengths. After jumping and failing, the fish do not typically jump again, only spit. For our experiments bait was placed between 0.5 and 3.5 body lengths (BL) above the free surface, within reach of jumping, and thus the fish rarely spit unless they missed first by jumping. It is observed that the fish typically position their bodies under the bait with a slight angle, hover momentarily, snap in their pectoral fins, and then flap their tail in an "S-start"-type maneuver with a fixed number of cycles, which increases as a function of bait height. High speed imaging, including time-resolved PIV, was used to capture the kinematics of the jumping behavior and compare the fluid impulse generated during the fast start, jump maneuver with the total change in momentum of the fish body. Maximum acceleration was observed in the early stages of the jump maneuver and was often on the order of 5 to 15 times gravity. Correlations between the maximum energy, power in, number of tail beats, jump height and overall jumping kinematics will be discussed.

  20. Jump to contact of hcp nanowires

    NASA Astrophysics Data System (ADS)

    Wakasugi, Shinsaku; Kurokawa, Shu; Sakai, Akira

    2016-12-01

    Exploiting molecular dynamics simulations, we have investigated jump to contact (JC) at the recontact of broken Mg and Cd nanowires. We observed frequent JCs for junctions of these soft hcp metals, as previously reported for soft fcc metals [C. Untiedt et al., Phys. Rev. Lett. 98, 206801 (2007)]. Thus, the crystal structure matters little for JC, and the high rate of JC should be a common characteristic of soft metal junctions. Recontacts of broken nanowires also lead to the frequent formation of single-atom contacts (SACs). For comparison, we have also studied JC and the SAC formation for tip-sample junctions of Pb.

  1. Katabatic jumps over Martian polar terrains

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Smith, Isaac; Holt, Jack

    2015-04-01

    Recent observational and modeling studies have shed light on the key role of mesoscale phenomena in driving the Martian climate and giving rise to remarkable signatures in the temperature, wind, pressure, and aerosol fields of the Martian atmosphere. At the mesoscale, Mars appears as an intense and exotic counterpart to the Earth, mainly as a result of pronounced diurnal and regional contrasts of surface temperature, and the much thinner atmosphere. While observations of clear-cut katabatic events are difficult on Earth, except over vast ice sheets, those intense downslope circulations are widespread on Mars owing to near-surface radiative cooling and uneven topography. Their intensity and regularity can be witnessed through numerous aeolian signatures on the surface, and distinctive thermal signatures in the steepest craters and volcanoes. Several observations (radar observations, frost streaks, spectral analysis of ices, ...) concur to show that aeolian processes play a key role in glacial processes in Martian polar regions over geological timescales. A spectacular manifestation of this resides in elongated clouds that forms at the bottom of polar spiral troughs, which dominates the polar landscape both in the North and South. An analogy with the terrestrial "wall-of-snow" over e.g. Antarctica slopes or coastlines posits that those clouds are caused by local katabatic jumps, also named Loewe phenomena, which can be deemed similar to first order to hydraulic jumps in open channel flow. With mesoscale modeling in polar regions using 5 nested domains operating a model downscaling from horizontal resolutions of about twenty kilometers to 200 meters, we were able 1. to predict the near-surface wind structure over the whole Martian polar caps, with interactions between katabatic acceleration, Coriolis deflection, transient phenomena, and thermally-forced circulations by the ice / bare soil contrast and 2. to show that katabatic jumps form at the bottom of polar troughs

  2. Jumping phase control in interband photonic transition.

    PubMed

    Liu, Ye; Zhu, Jiang; Gao, Zhuoyang; Zhu, Haibin; Jiang, Chun

    2014-03-10

    Indirect interband photonic transition provides a nonmagnetic and linear scheme to achieve optical isolation in integrated photonics. In this paper, we demonstrate that the nonreciprocal transition can be induced through two pathways respectively by different modulation designs. At the end of those pathways, the two final modes have π phaseshift. We call this phenomenon jumping phase control since this approach provides a method to control the mode phase after the conversion. This approach also yields a novel way to generate nonreciprocal phaseshift and may contribute to chip-scale optoelectronic applications.

  3. A Newborn with Genital Ambiguity, 45,X/46,XY Mosaicism, a Jumping Chromosome Y, and Congenital Adrenal Hyperplasia.

    PubMed

    Zhang, Lei; Cooley, Linda D; Chandratre, Sonal R; Ahmed, Atif; Jacobson, Jill D

    2013-01-01

    Disorders of sex development (DSD), formerly termed "intersex" conditions, arise from numerous causes. CAH secondary to 21-hydroxylase deficiency is the most common cause of DSD. Sex chromosome disorders, including sex chromosome mosaicism, are the second most common cause of DSD. We discuss a medically complex neonate with DSD presenting with ambiguous genitalia. Hormone levels suggested 21-hydroxylase deficiency. Molecular analysis revealed compound heterozygous mutations in the 21-hydroxylase gene (CYP21A2), confirming the diagnosis of CAH. Chromosome analysis revealed sex chromosome mosaicism with three cell lines: 45,X[8]/45,X,tas(Y;16)(p11.32;p13.3)[8]/45,X,t(Y;8)(p11.32;p23.3)[4] with the Y chromosome in telomere association with chromosomes 8p and 16p in different cell lines, a "jumping translocation." Histologically, the right gonad had irregular, distended seminiferous tubules with hyperplastic germ cells contiguous with ovarian stroma and primordial follicles. The left gonad had scant ovarian stroma and embryonic remnants. Chromosome analyses showed mosaicism in both gonads: 45,X[17]/45,X,tas(Y;8)(p11.32;p23.3)[3]. This is the first case of coexisting CAH and 45,X/46,XY mosaicism reported in the English literature and the third case of a constitutional chromosome Y "jumping translocation." Our report documents the medical and genetic complexity of children such as this one with ambiguous genitalia and discusses the need for a multidisciplinary team approach.

  4. On the jump behavior of distributions and logarithmic averages

    NASA Astrophysics Data System (ADS)

    Vindas, Jasson; Estrada, Ricardo

    2008-11-01

    The jump behavior and symmetric jump behavior of distributions are studied. We give several formulas for the jump of distributions in terms of logarithmic averages, this is done in terms of Cesàro-logarithmic means of decompositions of the Fourier transform and in terms of logarithmic radial and angular local asymptotic behaviors of harmonic conjugate functions. Application to Fourier series are analyzed. In particular, we give formulas for jumps of periodic distributions in terms of Cesàro-Riesz logarithmic means and Abel-Poisson logarithmic means of conjugate Fourier series.

  5. Patterns of injury in a fatal BASE jumping accident.

    PubMed

    Wolf, Barbara C; Harding, Brett E

    2008-12-01

    Skydiving is a popular and relatively safe sport. The patterns of injury and mechanisms of death in the rare fatalities resulting from skydiving accidents have been well-documented. In contrast, BASE jumping, that is, jumping from a fixed object using a parachute, is a more dangerous and unregulated sport practiced by few individuals. There are no reports in forensic literature documenting the injuries found in deaths occurring in the practice of BASE jumping. We report the case of the death of an experienced BASE jumper who died after jumping from the antenna of a radio broadcast tower in southwest Florida to illustrate the unique hazards inherent in this sport.

  6. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation.

    PubMed

    Mulroe, Megan D; Srijanto, Bernadeta R; Ahmadi, S Farzad; Collier, C Patrick; Boreyko, Jonathan B

    2017-08-22

    It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 μm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, and pitch of the nanopillars: tall and slender nanopillars promoted 2 μm jumping droplets, whereas short and stout nanopillars increased the critical size to over 20 μm. The topology of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. By extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping-droplet condensers for heat transfer, antifogging, and antifrosting applications.

  7. Theory of spacecraft potential jump in geosynchronous plasma

    NASA Astrophysics Data System (ADS)

    Huang, Jianguo; Liu, Guoqing; Jiang, Lixiang

    2015-12-01

    For disturbed geosynchronous plasma, the onset of spacecraft charging and its evolution become more complex than quiet environment. A sudden jump of spacecraft potential can occur in specific environment conditions which can be detrimental to onboard electronics. In this paper, the potential jump for geosynchronous spacecraft charging is theoretically modeled and comprehensively characterized. Two types of potential jump in opposite directions are elucidated, and the threshold conditions for both types of jump are determined. At both thresholds, the spacecraft potentials are semisteady, but in opposite directions, with the possibility of a jump to a stable potential. The polarity of movement across the thresholds from different plasma will cause a spacecraft to experience irreversible charging histories which result in significant hysteresis. Generally, the jump to negative potential occurs with greater magnitude as compared to a potential jump in positive direction. Ion distribution has negligible influence to the threshold condition for jump to negative potential. However, ion distribution significantly affects the threshold for jump to positive potential and subsequently modifies the parametric domains of spacecraft charging.

  8. Distance perception in the spiny mouse Acomys cahirinus: vertical jumping.

    PubMed

    Goldman, M; Skolnick, A J; Hernandez, T P; Tobach, E

    1992-12-01

    Acomys cahirinus, a precocial muroid, that has shown precise jumping in the natural habitat, did not jump from 25 cm in a laboratory situation. To investigate this further, A. cahirinus were observed jumping from platforms at two different heights, onto different sized checkered substrates and from a visual cliff. Adult animals discriminated between platforms that were 6.4 cm and 25.4 cm above the substrate and between small and large checkered patterns on the floor. Most adult animals and neonates jumped down on the shallow side of the visual cliff. Animals developed individual patterns of jumping over a series of trials, with some jumping often, some rarely, and others jumping only from the low platform. Good distance perception was indicated when they did not jump from heights, and by their making appropriate postural adjustment when they did jump from heights and landed without mishap. Different spacing of trials indicated that height was a more effective stimulus for animals which had all four conditions on the same day, while floor pattern was more effective for animals with each of the four conditions on a separate day.

  9. Effect of drop jump technique on the reactive strength index

    PubMed Central

    Juras, Grzegorz; Pietraszewski, Bogdan; Rokita, Andrzej

    2016-01-01

    Abstract The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI) for countermovement drop jumps (CDJs) and bounce drop jumps (BDJs). The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05) between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05) than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05) than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players. PMID:28149403

  10. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation

    DOE PAGES

    Mulroe, Megan D.; Srijanto, Bernadeta R.; Ahmadi, S. Farzad; ...

    2017-07-18

    It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 μm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, andmore » pitch of the nanopillars: tall and slender nanopillars promoted 2 μm jumping droplets while short and stout nanopillars increased the critical size to over 20 μm. The topology of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. Furthermore, by extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping droplet condensers for heat transfer, anti-fogging, and anti-frosting applications.« less

  11. Effect of drop jump technique on the reactive strength index.

    PubMed

    Struzik, Artur; Juras, Grzegorz; Pietraszewski, Bogdan; Rokita, Andrzej

    2016-09-01

    The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI) for countermovement drop jumps (CDJs) and bounce drop jumps (BDJs). The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05) between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05) than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05) than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players.

  12. Comparing jumping ability among athletes of various sports: vertical drop jumping from 60 centimeters.

    PubMed

    Kollias, Iraklis; Panoutsakopoulos, Vassilios; Papaiakovou, Georgios

    2004-08-01

    Drop jumping performance (DJP) is of high importance in order to achieve sporting performance in both team and individual sports. The purpose of the present study was to compare DJP among athletes from various sports. One hundred thirty-eight male athletes (age: 22.3 +/- 3.6 years, body height: 1.87 +/- 0.08 m, body mass: 81.8 +/- 10.8 kg) from 6 different sports performed drop jumps from 60 cm (DJ60) on a force plate. Results revealed that volleyball players jumped higher (p < 0.001) than other athletes. However, track and field athletes produced higher peak force and higher power output using a shorter upward phase (p < 0.001). Further examination using principal components analysis (PCA) revealed that team sport athletes and single scull rowers exhibited DJP utilizing force and time parameters differently than track and field athletes. Conclusively, DJP was different among athletes of various sports. Furthermore, PCA can be a useful method for evaluating the above mentioned differences and for monitoring drop jumping training programs.

  13. Effect of unloading and loading on power in simulated countermovement and squat jumps.

    PubMed

    Bobbert, Maarten F

    2014-06-01

    In the literature, substantial decreases in power output in jumping have been described for both unloading and loading, and these have been attributed to the intrinsic force-velocity-power relationship of muscle. The purpose of this study was to gain a solid understanding of how and why unloading and loading affect power output during jumping. Vertical jumps were simulated with a model of the musculoskeletal system, consisting of four rigid segments actuated by six muscles. Muscle stimulation over time was optimized to ensure maximal performance in each loading condition. It was found that, in contrast to what is reported in the literature, unloading by an extra vertical force of -60% of body weight caused a small increase in the peak of the rate of change of the effective energy of the center of mass (dEeff/dt). Loading by an extra vertical force of +60% of body weight caused a decrease in peak dEeff/dt, but this decrease was much smaller than that described in the literature. The small variations in peak dEeff/dt among loading conditions in the simulated jumps were only in part due to the intrinsic force-velocity-power relationship of muscle. Why did the effects of unloading and loading in the simulation model deviate from effects reported in subjects? One possible explanation is that subjects tend to make a smaller countermovement when loaded; in the simulation model, making a smaller countermovement caused a major reduction in peak dEeff/dt. A second possible explanation is that subjects cannot quickly optimize their control and therefore produce submaximal power output in unfamiliar loading conditions. The effects of unloading and loading are due only in part to the intrinsic force-velocity-power relationship of muscle.

  14. A new case of an inherited reciprocal translocation in cattle: rcp(13;26) (q24;q11).

    PubMed

    Biltueva, Larisa; Kulemzina, Anastasia; Vorobieva, Nadezhda; Perelman, Polina; Kochneva, Marina; Zhidenova, Alexandra; Graphodatsky, Alexander

    2014-01-01

    This study reports on a unique balanced reciprocal chromosome translocation detected in a phenotypically normal cattle dam and her calf. CBG-, GTG-banding and FISH using bovine whole-chromosome and telomere probes were applied. The analyses showed that the breakpoints were located near to the centromere in chromosome 26 (q11) and exceptionally close to the telomere in chromosome 13 (q24). The whole euchromatin segment of chromosome 26 was translocated onto chromosome 13. The distal end of chromosome 13 was translocated to the subcentromeric region of chromosome 26. We describe this aberration as a balanced reciprocal translocation rcp(13;26) (q24;q11). It appears that this aberration was maternally derived and may have originated de novo in the dam. © 2014 S. Karger AG, Basel.

  15. Functional data analysis of joint coordination in the development of vertical jump performance.

    PubMed

    Harrison, A J; Ryan, W; Hayes, K

    2007-05-01

    Mastery of complex motor skills requires effective development of inter-segment coordination patterns. These coordination patterns can be described and quantified using various methods, including descriptive angle-angle diagrams, conjugate cross-correlations, vector coding, normalized root mean squared error techniques and, as in this study, functional data analysis procedures. Lower limb kinematic data were obtained for 49 children performing the vertical jump. Participants were assigned to developmental stages using the criteria of Gallahue and Ozmun . Inter-segment joint coordination data consisting of pairs of joint angle-time data were smoothed using B-splines and the resulting bivariate functions were analysed using functional principal component analysis and stepwise discriminant analysis. The results of the analysis showed that the knee-hip joint coordination pattern was most effective at discriminating between developmental stages. The results provide support for the application of functional data analysis techniques in the analysis of joint coordination or time series type data.

  16. Exploiting knowledge of jump-up and jump-down frequencies to determine the parameters of a Duffing oscillator

    NASA Astrophysics Data System (ADS)

    Ramlan, Roszaidi; Brennan, Michael J.; Kovacic, Ivana; Mace, Brian R.; Burrow, Stephen G.

    2016-08-01

    This work concerns the application of certain non-linear phenomena - jump frequencies in a base-excited Duffing oscillator - to the estimation of the parameters of the system. First, approximate analytical expressions are derived for the relationships between the jump-up and jump-down frequencies, the damping ratio and the cubic stiffness coefficient. Then, experimental results, together with the results of numerical simulations, are presented to show how knowledge of these frequencies can be exploited.

  17. Effects of jump training with negative versus positive loading on jumping mechanics.

    PubMed

    Markovic, G; Vuk, S; Jaric, S

    2011-05-01

    We examined the effects of jump training with negative (-30% of the subject's body weight (BW)) VS. positive loading (+30% BW) on the mechanical behaviour of leg extensor muscles. 32 men were divided into control (CG), negative loading (NLG), or positive loading training group (PLG). Both training groups performed maximal effort countermovement jumps (CMJ) over a 7-week training period. The impact of training on the mechanical behaviour of leg extensor muscles was assessed through CMJ performed with external loads ranging from -30% BW to +30% BW. Both training groups showed significant ( P≤0.013) increase in BW CMJ height (NLG: 9%, effect size (ES)=0.85, VS. PLG: 3.4%, ES=0.31), peak jumping velocity ( V(peak); NLG: 4.1%; ES=0.80, P=0.011, VS. PLG: 1.4%, ES=0.24; P=0.017), and depth of the countermovement (Δ H(ecc); NLG: 20%; ES=-1.64, P=0.004, VS. PLG: 11.4%; ES=-0.86, P=0.015). Although the increase in both the V(peak) and Δ H(ecc) were expected to reduce the recorded ground reaction force, the indices of force- and power-production characteristics of CMJ remained unchanged. Finally, NLG (but not PLG) suggested load-specific improvement in the movement kinematic and kinetic patterns. Overall, the observed results revealed a rather novel finding regarding the effectiveness of negative loading in enhancing CMJ performance which could be of potential importance for further development of routine training protocols. Although the involved biomechanical and neuromuscular mechanisms need further exploration, the improved performance could be partly based on an altered jumping pattern that utilizes an enhanced ability of leg extensors to provide kinetic and power output during the concentric jump phase. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca2+-ATPase

    NASA Astrophysics Data System (ADS)

    Tadini-Buoninsegni, Francesco; Moncelli, Maria Rosa; Peruzzi, Niccolò; Ninham, Barry W.; Dei, Luigi; Nostro, Pierandrea Lo

    2015-10-01

    The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme.

  19. Hofmeister effect of anions on calcium translocation by sarcoplasmic reticulum Ca2+-ATPase

    PubMed Central

    Tadini-Buoninsegni, Francesco; Moncelli, Maria Rosa; Peruzzi, Niccolò; Ninham, Barry W.; Dei, Luigi; Nostro, Pierandrea Lo

    2015-01-01

    The occurrence of Hofmeister (specific ion) effects in various membrane-related physiological processes is well documented. For example the effect of anions on the transport activity of the ion pump Na+, K+-ATPase has been investigated. Here we report on specific anion effects on the ATP-dependent Ca2+ translocation by the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Current measurements following ATP concentration jumps on SERCA-containing vesicles adsorbed on solid supported membranes were carried out in the presence of different potassium salts. We found that monovalent anions strongly interfere with ATP-induced Ca2+ translocation by SERCA, according to their increasing chaotropicity in the Hofmeister series. On the contrary, a significant increase in Ca2+ translocation was observed in the presence of sulphate. We suggest that the anions can affect the conformational transition between the phosphorylated intermediates E1P and E2P of the SERCA cycle. In particular, the stabilization of the E1P conformation by chaotropic anions seems to be related to their adsorption at the enzyme/water and/or at the membrane/water interface, while the more kosmotropic species affect SERCA conformation and functionality by modifying the hydration layers of the enzyme. PMID:26435197

  20. Computer simulations and theory of protein translocation.

    PubMed

    Makarov, Dmitrii E

    2009-02-17

    The translocation of proteins through pores is central to many biological phenomena, such as mitochondrial protein import, protein degradation, and delivery of protein toxins to their cytosolic targets. Because proteins typically have to pass through constrictions that are too narrow to accommodate folded structures, translocation must be coupled to protein unfolding. The simplest model that accounts for such co-translocational unfolding assumes that both translocation and unfolding are accomplished by pulling on the end of the polypeptide chain mechanically. In this Account, we describe theoretical studies and computer simulations of this model and discuss how the time scales of translocation depend on the pulling force and on the protein structure. Computationally, this is a difficult problem because biologically or experimentally relevant time scales of translocation are typically orders of magnitude slower than those accessible by fully atomistic simulations. For this reason, we explore one-dimensional free energy landscapes along suitably defined translocation coordinates and discuss various approaches to their computation. We argue that the free energy landscape of translocation is often bumpy because confinement partitions the protein's configuration space into distinct basins of attraction separated by large entropic barriers. Favorable protein-pore interactions and nonnative interactions within the protein further contribute to the complexity. Computer simulations and simple scaling estimates show that forces of just 2-6 pN are often sufficient to ensure transport of unstructured polypeptides, whereas much higher forces are typically needed to translocate folded protein domains. The unfolding mechanisms found from simulations of translocation are different from those observed in the much better understood case of atomic force microscopy (AFM) pulling studies, in which proteins are unraveled by stretching them between their N- and C-termini. In contrast to

  1. Trisomy 4q32 leads to 4qter due to a maternal 4/21 translocation.

    PubMed Central

    Baccichetti, C; Tenconi, R; Anglani, F; Zacchello, F

    1975-01-01

    The case is described of a malformed girl with partial trisomy for a segment of the long arm of chromsome (4q32 leads to qter) due to an unfavourable segregation of a maternal reciprocal translocation t(4;21) (q32q22). The clinical comparison between the child and patients previously described by other authors does not suggest the existence of a syndrome associated with trisomy 4q+. Images PMID:1219127

  2. Trisomy 4q32 leads to 4qter due to a maternal 4/21 translocation.

    PubMed

    Baccichetti, C; Tenconi, R; Anglani, F; Zacchello, F

    1975-12-01

    The case is described of a malformed girl with partial trisomy for a segment of the long arm of chromsome (4q32 leads to qter) due to an unfavourable segregation of a maternal reciprocal translocation t(4;21) (q32q22). The clinical comparison between the child and patients previously described by other authors does not suggest the existence of a syndrome associated with trisomy 4q+.

  3. A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function

    PubMed Central

    Trueman, Steven F.; Mandon, Elisabet C.

    2012-01-01

    A critical event in protein translocation across the endoplasmic reticulum is the structural transition between the closed and open conformations of Sec61, the eukaryotic translocation channel. Channel opening allows signal sequence insertion into a gap between the N- and C-terminal halves of Sec61. We have identified a gating motif that regulates the transition between the closed and open channel conformations. Polar amino acid substitutions in the gating motif cause a gain-of-function phenotype that permits translocation of precursors with marginally hydrophobic signal sequences. In contrast, hydrophobic substitutions at certain residues in the gating motif cause a protein translocation defect. We conclude that the gating motif establishes the hydrophobicity threshold for functional insertion of a signal sequence into the Sec61 complex, thereby allowing the wild-type translocation channel to discriminate between authentic signal sequences and the less hydrophobic amino acid segments in cytosolic proteins. Bioinformatic analysis indicates that the gating motif is conserved between eubacterial and archaebacterial SecY and eukaryotic Sec61. PMID:23229898

  4. CAPTURE OF TROJANS BY JUMPING JUPITER

    SciTech Connect

    Nesvorny, David; Vokrouhlicky, David; Morbidelli, Alessandro

    2013-05-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to {approx}5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) Multiplication-Sign 10{sup -7} for each particle in the original transplanetary disk, implying that the disk contained (3-4) Multiplication-Sign 10{sup 7} planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M{sub disk} {approx} 14-28 M{sub Earth}, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  5. Spontaneous Droplet Jump with Electro-Bouncing

    NASA Astrophysics Data System (ADS)

    Schmidt, Erin; Weislogel, Mark

    2016-11-01

    We investigate the dynamics of water droplet jumps from superhydrophobic surfaces in the presence of an electric field during a step reduction in gravity level. In the brief free-fall environment of a drop tower, when a strong non-homogeneous electric field (with a measured strength between 0 . 39 and 2 . 36 kV/cm) is imposed, body forces acting on the jumped droplets are primarily supplied by polarization stress and Coulombic attraction instead of gravity. The droplet charge, measured to be on the order of 2 . 3 . (10-11) C, originates by electro-osmosis of charged species at the (PTFE coated) hydrophobic surface interface. This electric body force leads to a droplet bouncing behavior similar to well-known phenomena in 1-g, though occurring for larger drops 0.1 mL for a given range of impact Weber numbers, We < 20 . In 1-g, for We > 0 . 4 , impact recoil behavior on a super-hydrophobic surface is normally dominated by damping from contact line hysteresis and by air-layer interactions. However, in the strong electric field, the droplet bounce dynamics additionally include electrohydrodynamic effects on wettability and Cassie-Wenzel transition. This is qualitatively discussed in terms of coefficients of restitution and trends in contact time. This work was supported primarily by NASA Cooperative Agreement NNX12A047A.

  6. Capture of Trojans by Jumping Jupiter

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro

    2013-05-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ~5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) × 10-7 for each particle in the original transplanetary disk, implying that the disk contained (3-4) × 107 planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M disk ~ 14-28 M Earth, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  7. Understanding the physics of bungee jumping

    NASA Astrophysics Data System (ADS)

    Heck, André; Uylings, Peter; Kędzierska, Ewa

    2010-01-01

    Changing mass phenomena like the motion of a falling chain, the behaviour of a falling elastic bar or spring, and the motion of a bungee jumper surprise many a physicist. In this article we discuss the first phase of bungee jumping, when the bungee jumper falls, but the bungee rope is still slack. In instructional material this phase is often considered a free fall, but when the mass of the bungee rope is taken into account, the bungee jumper reaches acceleration greater than g. This result is contrary to the usual experience with free falling objects and therefore hard to believe for many a person, even an experienced physicist. It is often a starting point for heated discussions about the quality of the experiments and the physics knowledge of the experimentalist, or it may even prompt complaints about the quality of current physics education. But experiments do reveal the truth and students can do them supported by information and communication technology (ICT) tools. We report on a research project done by secondary school students and use their work to discuss how measurements with sensors, video analysis of self-recorded high-speed video clips and computer modelling allow study of the physics of bungee jumping.

  8. Jumping and Landing Techniques in Elite Women's Volleyball.

    PubMed

    Tillman, Mark D; Hass, Chris J; Brunt, Denis; Bennett, Gregg R

    2004-03-01

    Volleyball has become one of the most widely played participant sports in the world. Participation requires expertise in many physical skills and performance is often dependent on an individual's ability to jump and land. The incidence of injury in volleyball is similar to the rates reported for sports that are considered more physical contact sports. Though the most common source of injury in volleyball is the jump landing sequence, little research exists regarding the prevalence of jumping and landing techniques. The purpose of this study was to quantify the number of jumps performed by female volleyball players in competitive matches and to determine the relative frequency of different jump-landing techniques. Videotape recordings of two matches among four volleyball teams were analyzed for this study. Each activity was categorized by jump type (offensive spike or defensive block) and phase (jump or landing). Phase was subcategorized by foot use patterns (right, left, or both). Each of the players averaged nearly 22 jump-landings per game. Foot use patterns occurred in unequal amounts (p < 0.001) with over 50% of defensive landings occurring on one foot. Coaches, physical educators, and recreation providers may utilize the findings of this inquiry to help prevent injuries in volleyball. Key PointsThe incidence of injury in volleyball is nearly equivalent to injury rates reported for ice hockey and soccer.Most injuries in volleyball occur during the jump landing sequence, but few data exist regarding jump landing techniques for elite female players.Our data indicate that the vast majority of jumps utilize two feet, but approximately half of landings occur with only one foot.Coaches, physical educators, and recreation providers may utilize the findings of this inquiry to prevent possible injuries in athletes, students, or those who participate in volleyball for recreational purposes.

  9. Jumping and Landing Techniques in Elite Women’s Volleyball

    PubMed Central

    Tillman, Mark D.; Hass, Chris J.; Brunt, Denis; Bennett, Gregg R.

    2004-01-01

    Volleyball has become one of the most widely played participant sports in the world. Participation requires expertise in many physical skills and performance is often dependent on an individual’s ability to jump and land. The incidence of injury in volleyball is similar to the rates reported for sports that are considered more physical contact sports. Though the most common source of injury in volleyball is the jump landing sequence, little research exists regarding the prevalence of jumping and landing techniques. The purpose of this study was to quantify the number of jumps performed by female volleyball players in competitive matches and to determine the relative frequency of different jump-landing techniques. Videotape recordings of two matches among four volleyball teams were analyzed for this study. Each activity was categorized by jump type (offensive spike or defensive block) and phase (jump or landing). Phase was subcategorized by foot use patterns (right, left, or both). Each of the players averaged nearly 22 jump-landings per game. Foot use patterns occurred in unequal amounts (p < 0.001) with over 50% of defensive landings occurring on one foot. Coaches, physical educators, and recreation providers may utilize the findings of this inquiry to help prevent injuries in volleyball. Key Points The incidence of injury in volleyball is nearly equivalent to injury rates reported for ice hockey and soccer. Most injuries in volleyball occur during the jump landing sequence, but few data exist regarding jump landing techniques for elite female players. Our data indicate that the vast majority of jumps utilize two feet, but approximately half of landings occur with only one foot. Coaches, physical educators, and recreation providers may utilize the findings of this inquiry to prevent possible injuries in athletes, students, or those who participate in volleyball for recreational purposes. PMID:24497818

  10. Manifestations of proprioception during vertical jumps to specific heights.

    PubMed

    Artur, Struzik; Bogdan, Pietraszewski; Adam, Kawczyñski; Sławomir, Winiarski; Grzegorz, Juras; Andrzej, Rokita

    2017-02-23

    Jumping and proprioception are important abilities in many sports. The efficiency of the proprioceptive system is indirectly related to jumps performed at specified heights. Therefore, this study recorded the ability of young athletes who play team sports to jump to a specific height compared to their maximum ability. A total of 154 male (age: 14.8±0.9 years, body height: 181.8±8.9 cm, body weight: 69.8±11.8 kg, training experience: 3.8±1.7 years) and 151 female (age: 14.1±0.8 years, body height: 170.5±6.5 cm, body weight: 60.3±9.4 kg, training experience: 3.7±1.4 years) team games players were recruited for this study. Each participant performed two countermovement jumps with arm swing to 25%, 50%, 75% and 100% of the maximum height. Measurements were performed using a force plate. Jump height and its accuracy with respect to a specified height were calculated. The results revealed no significant differences in jump height and its accuracy to the specified heights between the groups (stratified by age, gender and sport). Individuals with a higher jumping accuracy also exhibited greater maximum jump heights. Jumps to 25% of the maximum height were approximately two times higher than the target height. The decreased jump accuracy to a specific height when attempting to jump to lower heights should be reduced with training, particularly among athletes who play team sports. These findings provide useful information regarding the proprioceptive system for team sport coaches and may shape guidelines for training routines by working with submaximal loads.

  11. The Anomalous Translocation Dynamics of Long-Chain Molecules

    NASA Astrophysics Data System (ADS)

    Chaudhury, Srabanti; Cherayil, Binny J.

    2008-03-01

    Models of translocation based on simple Brownian diffusion mechanisms generally fail to account satisfactorily for anomalies in measured and simulated values of the average time of passage of long chain molecules through narrow pores. In an effort to rationalize these anomalies, we formulate an alternative model in which the time evolution of the number of monomers on one side of the pore is governed by the stochastic dynamics of a particle moving in a linear potential under the action of thermal fluctuations with long-ranged temporal correlations. We use this model in the limits of strong and weak diffusive bias to derive closed form expressions for the mean first passage time for pore crossing and the mean square displacement of a monomeric segment. These expressions, unlike those obtained from fractional Fokker-Planck formulations of the problem, are well-defined everywhere, and are also consistent with available numerical data.

  12. Structural framework for DNA translocation via the viral portal protein

    PubMed Central

    Lebedev, Andrey A; Krause, Margret H; Isidro, Anabela L; Vagin, Alexei A; Orlova, Elena V; Turner, Joanne; Dodson, Eleanor J; Tavares, Paulo; Antson, Alfred A

    2007-01-01

    Tailed bacteriophages and herpesviruses load their capsids with DNA through a tunnel formed by the portal protein assembly. Here we describe the X-ray structure of the bacteriophage SPP1 portal protein in its isolated 13-subunit form and the pseudoatomic structure of a 12-subunit assembly. The first defines the DNA-interacting segments (tunnel loops) that pack tightly against each other forming the most constricted part of the tunnel; the second shows that the functional dodecameric state must induce variability in the loop positions. Structural observations together with geometrical constraints dictate that in the portal–DNA complex, the loops form an undulating belt that fits and tightly embraces the helical DNA, suggesting that DNA translocation is accompanied by a ‘mexican wave' of positional and conformational changes propagating sequentially along this belt. PMID:17363899

  13. Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County.

    PubMed

    Astley, H C; Abbott, E M; Azizi, E; Marsh, R L; Roberts, T J

    2013-11-01

    Maximal performance is an essential metric for understanding many aspects of an organism's biology, but it can be difficult to determine because a measured maximum may reflect only a peak level of effort, not a physiological limit. We used a unique opportunity provided by a frog jumping contest to evaluate the validity of existing laboratory estimates of maximum jumping performance in bullfrogs (Rana catesbeiana). We recorded video of 3124 bullfrog jumps over the course of the 4-day contest at the Calaveras County Jumping Frog Jubilee, and determined jump distance from these images and a calibration of the jump arena. Frogs were divided into two groups: 'rental' frogs collected by fair organizers and jumped by the general public, and frogs collected and jumped by experienced, 'professional' teams. A total of 58% of recorded jumps surpassed the maximum jump distance in the literature (1.295 m), and the longest jump was 2.2 m. Compared with rental frogs, professionally jumped frogs jumped farther, and the distribution of jump distances for this group was skewed towards long jumps. Calculated muscular work, historical records and the skewed distribution of jump distances all suggest that the longest jumps represent the true performance limit for this species. Using resampling, we estimated the probability of observing a given jump distance for various sample sizes, showing that large sample sizes are required to detect rare maximal jumps. These results show the importance of sample size, animal motivation and physiological conditions for accurate maximal performance estimates.

  14. Lift-off dynamics in a simple jumping robot

    NASA Astrophysics Data System (ADS)

    Aguilar, Jeffrey; Lesov, Alex; Wiesenfeld, Kurt; Goldman, Daniel I.

    2013-03-01

    Jumping is an important behavior utilized by animals to escape predation, hunt, reach higher ground, and as a primary mode of locomotion. Many mathematical and physical robot models use numerous parameters and multi-link legs to accurately model jumping dynamics. However, a simple robot model can reveal important principles of high performance jumping. We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot's resonant frequency f0. Two distinct jumping modes emerge: a simple jump which is optimal above f0 is achievable with a squat maneuver, and a peculiar stutter jump which is optimal below f0 is generated with a counter-movement. A simple dynamical model reveals how optimal lift-off results from non-resonant transient dynamics. An expanded explanation of this work is provided at http://crablab.gatech.edu/pages/jumpingrobot/index.html This work was supported by the GEM Consortium, Burroughs Wellcome Fund, ARL MAST CTA, and NSF PoLS.

  15. A Safe and Effective Modification of Thomson's Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Waschke, Felix; Strunz, Andreas; Meyn, Jan-Peter

    2012-01-01

    The electrical circuit of the jumping ring experiment based on discharging a capacitor is optimized. The setup is scoop proof at 46 V and yet the ring jumps more than 9 m high. The setup is suitable for both lectures and student laboratory work in higher education. (Contains 1 table, 8 figures and 3 footnotes.)

  16. Tuning Superhydrophobic Nanostructures to Enhance Jumping-Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Mulroe, Megan; Srijanto, Bernadeta; Collier, Patrick; Boreyko, Jonathan

    2016-11-01

    It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface when two or more droplets coalesce together. The minimum droplet size for jumping to occur is of order 10 microns, but it is unclear whether this is the true lower limit of jumping droplets or simply a limitation of current superhydrophobic surfaces. Here, we analyze the dynamics of jumping droplets on six different superhydrophobic surfaces where the topography of the nanopillars was systematically varied. The critical diameter for jumping to occur was observed to be highly dependent upon the height and diameter of the nanopillars; surfaces with very tall and slender nanopillars enabled jumping droplets at a smaller critical size of order 1 micron. An energetic model of the incipient growth of condensate shows that the nanostructure topology affects the rate of increase of a growing droplet's apparent contact angle, with jumping being enabled at very large angles. These findings indicate that the true upper limit to the performance of jumping-droplet condensers has not yet been reached and can be further improved using advanced nanofabrication techniques.

  17. How Can We Tell if Frogs Jump Further?

    ERIC Educational Resources Information Center

    Drummond, Gordon B.; Tom, Brian D. M.

    2011-01-01

    How effective is training frogs to jump? This is perhaps the most frequent question in biology that is subjected to statistical analysis: does a treatment make a difference? One can examine whether there is indeed a training effect, by first assuming the opposite. That is, the authors assume that training has no effect on the mean distance jumped.…

  18. How Can We Tell if Frogs Jump Further?

    ERIC Educational Resources Information Center

    Drummond, Gordon B.; Tom, Brian D. M.

    2011-01-01

    How effective is training frogs to jump? This is perhaps the most frequent question in biology that is subjected to statistical analysis: does a treatment make a difference? One can examine whether there is indeed a training effect, by first assuming the opposite. That is, the authors assume that training has no effect on the mean distance jumped.…

  19. Could the deep squat jump predict weightlifting performance?

    PubMed

    Vizcaya, Francisco J; Viana, Oscar; del Olmo, Miguel Fernandez; Acero, Rafael Martin

    2009-05-01

    This research was carried out with the aim of describing the deep squat jump (DSJ) and comparing it with the squat (SJ) and countermovement (CMJ) jumps, to introduce it as a strength testing tool in the monitoring and control of training in strength and power sports. Forty-eight male subjects (21 weightlifters, 12 triathletes, and 15 physical education students) performed 3 trials of DSJ, SJ, and CMJ with a 1-minute rest among them. For the weightlifters, snatch and clean and jerk results during the Spanish Championship 2004 and the 35th EU Championships 2007 were collected to study the relationship among vertical jumps and weightlifters' performance. A 1-way analysis of variance (ANOVA) showed significant differences between groups in the vertical jumps, with the highest jumps for the weightlifters and the lowest for the triathletes. An ANOVA for repeated measures (type of jump) showed better results for DSJ and CMJ than SJ in all groups. A linear regression analysis was performed to determine the association between weightlifting and vertical jump performances. Correlations among the weightlifting performance and the vertical jumps were also calculated and determined using Pearson r. Results have shown that both CMJ and DSJ are strongly correlated with weightlifting ability. Therefore, both measures can be useful for coaches as a strength testing tool in the monitoring and control of training in weightlifting.

  20. Teaching Jump Rope to Children with Visual Impairments

    ERIC Educational Resources Information Center

    Lieberman, Lauren J.; Schedlin, Haley; Pierce, Tristan

    2009-01-01

    This article presents strategies for jumping rope for children with visual impairments. Giving choices related to the types of rope and the use of mats is important. In addition, using appropriate instructional strategies and modifications will make jumping rope a skill that the children will enjoy and will lead to their involvement in other…

  1. A Safe and Effective Modification of Thomson's Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Waschke, Felix; Strunz, Andreas; Meyn, Jan-Peter

    2012-01-01

    The electrical circuit of the jumping ring experiment based on discharging a capacitor is optimized. The setup is scoop proof at 46 V and yet the ring jumps more than 9 m high. The setup is suitable for both lectures and student laboratory work in higher education. (Contains 1 table, 8 figures and 3 footnotes.)

  2. A unified model for the long and high jump

    NASA Astrophysics Data System (ADS)

    Helene, O.; Yamashita, M. T.

    2005-10-01

    A simple model based on the maximum energy that an athlete can produce in a small time interval is used to describe the high and long jump. Conservation of angular momentum is used to explain why an athlete should run horizontally to perform a vertical jump. Our results agree with world records.

  3. Teaching Jump Rope to Children with Visual Impairments

    ERIC Educational Resources Information Center

    Lieberman, Lauren J.; Schedlin, Haley; Pierce, Tristan

    2009-01-01

    This article presents strategies for jumping rope for children with visual impairments. Giving choices related to the types of rope and the use of mats is important. In addition, using appropriate instructional strategies and modifications will make jumping rope a skill that the children will enjoy and will lead to their involvement in other…

  4. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height.

    PubMed

    Mandic, Radivoj; Knezevic, Olivera M; Mirkov, Dragan M; Jaric, Slobodan

    2016-09-01

    The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  5. Evaluation of Metabolic Stress between Jumping at Different Cadences on the Digi-Jump Machine.

    PubMed

    Lyons, Thomas S; Navalta, James W; Callahan, Zachary J

    The American College of Sports Medicine (ACSM) recommends that healthy adults achieve a minimum of thirty minutes of moderate intensity aerobic exercise five days per week. While cycling, walking, and jogging are commonly observed methods of achieving these recommendations, another option may be repetitive jumping. The purpose of this study was to examine the metabolic responses between repetitive jumping at a cadence of 120 jumps per minute (JPMs) vs. 100 JPMs when utilizing the Digi-Jump machine. Twenty-eight subjects completed two jumping trials, one at 120 JPMs and one at 100 JPMs. Subjects jumped until volitional exhaustion, or for a maximum of fifteen minutes. Oxygen uptake (VO2), heart rate (HR), respiratory exchange ratio (RER), and rating of perceived exertion (RPE) were assessed each minute of each exercise trial. RPE was differentiated, in that subjects reported perceived exertion of their total body, their upper-leg, and their lower leg. Results of this study indicated that there was no significant difference between the two trials for VO2, HR, or total body RPE. Differences were reported between trials for peak and average RER, with the 120 JPM trial eliciting a lower RER for both (peak: 1.08 ± .087 vs. 1.17 ± .1 p=.000; average: .99 ± .076 vs. 1.04 ± .098 p=.002), peak upper leg RPE (120: 15.29 ± 3.89 vs. 100: 16.75 ± 2.52 p=.022), and average lower leg RPE (120: 15.04 ± 2.55 vs. 100: 13.94 ± 2.02 p=.019). Also, there was a significant difference in exercise duration between the trials, with subjects able to exercise longer during the 120 JPM trial (12.4 ± 3.42 mins vs. 9.68 ± 4.31 mins p=.000). These data indicate that while the physiological stress may not be different between the two trials as indicated by VO2 and HR, the 120 JPM trial appears less strenuous as evidenced by RER values and by subjects' ability to exercise longer at that cadence.

  6. Evaluation of Metabolic Stress between Jumping at Different Cadences on the Digi-Jump Machine

    PubMed Central

    LYONS, THOMAS S.; NAVALTA, JAMES W.; CALLAHAN, ZACHARY J.

    2010-01-01

    The American College of Sports Medicine (ACSM) recommends that healthy adults achieve a minimum of thirty minutes of moderate intensity aerobic exercise five days per week. While cycling, walking, and jogging are commonly observed methods of achieving these recommendations, another option may be repetitive jumping. The purpose of this study was to examine the metabolic responses between repetitive jumping at a cadence of 120 jumps per minute (JPMs) vs. 100 JPMs when utilizing the Digi-Jump machine. Twenty-eight subjects completed two jumping trials, one at 120 JPMs and one at 100 JPMs. Subjects jumped until volitional exhaustion, or for a maximum of fifteen minutes. Oxygen uptake (VO2), heart rate (HR), respiratory exchange ratio (RER), and rating of perceived exertion (RPE) were assessed each minute of each exercise trial. RPE was differentiated, in that subjects reported perceived exertion of their total body, their upper-leg, and their lower leg. Results of this study indicated that there was no significant difference between the two trials for VO2, HR, or total body RPE. Differences were reported between trials for peak and average RER, with the 120 JPM trial eliciting a lower RER for both (peak: 1.08 ± .087 vs. 1.17 ± .1 p=.000; average: .99 ± .076 vs. 1.04 ± .098 p=.002), peak upper leg RPE (120: 15.29 ± 3.89 vs. 100: 16.75 ± 2.52 p=.022), and average lower leg RPE (120: 15.04 ± 2.55 vs. 100: 13.94 ± 2.02 p=.019). Also, there was a significant difference in exercise duration between the trials, with subjects able to exercise longer during the 120 JPM trial (12.4 ± 3.42 mins vs. 9.68 ± 4.31 mins p=.000). These data indicate that while the physiological stress may not be different between the two trials as indicated by VO2 and HR, the 120 JPM trial appears less strenuous as evidenced by RER values and by subjects’ ability to exercise longer at that cadence. PMID:27182351

  7. Stress and translocation: alterations in the stress physiology of translocated birds

    PubMed Central

    Dickens, Molly J.; Delehanty, David J.; Romero, L. Michael

    2009-01-01

    Translocation and reintroduction have become major conservation actions in attempts to create self-sustaining wild populations of threatened species. However, avian translocations have a high failure rate and causes for failure are poorly understood. While ‘stress’ is often cited as an important factor in translocation failure, empirical evidence of physiological stress is lacking. Here we show that experimental translocation leads to changes in the physiological stress response in chukar partridge, Alectoris chukar. We found that capture alone significantly decreased the acute glucocorticoid (corticosterone, CORT) response, but adding exposure to captivity and transport further altered the stress response axis (the hypothalamic–pituitary–adrenal axis) as evident from a decreased sensitivity of the negative feedback system. Animals that were exposed to the entire translocation procedure, in addition to the reduced acute stress response and disrupted negative feedback, had significantly lower baseline CORT concentrations and significantly reduced body weight. These data indicate that translocation alters stress physiology and that chronic stress is potentially a major factor in translocation failure. Under current practices, the restoration of threatened species through translocation may unwittingly depend on the success of chronically stressed individuals. This conclusion emphasizes the need for understanding and alleviating translocation-induced chronic stress in order to use most effectively this important conservation tool. PMID:19324794

  8. Ratcheting up protein translocation with anthrax toxin.

    PubMed

    Feld, Geoffrey K; Brown, Michael J; Krantz, Bryan A

    2012-05-01

    Energy-consuming nanomachines catalyze the directed movement of biopolymers in the cell. They are found both dissolved in the aqueous cytosol as well as embedded in lipid bilayers. Inquiries into the molecular mechanism of nanomachine-catalyzed biopolymer transport have revealed that these machines are equipped with molecular parts, including adjustable clamps, levers, and adaptors, which interact favorably with substrate polypeptides. Biological nanomachines that catalyze protein transport, known as translocases, often require that their substrate proteins unfold before translocation. An unstructured protein chain is likely entropically challenging to bind, push, or pull in a directional manner, especially in a way that produces an unfolding force. A number of ingenious solutions to this problem are now evident in the anthrax toxin system, a model used to study protein translocation. Here we highlight molecular ratchets and current research on anthrax toxin translocation. A picture is emerging of proton-gradient-driven anthrax toxin translocation, and its associated ratchet mechanism likely applies broadly to other systems. We suggest a cyclical thermodynamic order-to-disorder mechanism (akin to a heat-engine cycle) is central to underlying protein translocation: peptide substrates nonspecifically bind to molecular clamps, which possess adjustable affinities; polypeptide substrates compress into helical structures; these clamps undergo proton-gated switching; and the substrate subsequently expands regaining its unfolded state conformational entropy upon translocation. Copyright © 2012 The Protein Society.

  9. Defining chromosomal translocation risks in cancer

    PubMed Central

    Hogenbirk, Marc A.; Heideman, Marinus R.; de Rink, Iris; Velds, Arno; Kerkhoven, Ron M.; Wessels, Lodewyk F. A.; Jacobs, Heinz

    2016-01-01

    Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer. PMID:27303044

  10. Translocation of DNA across bacterial membranes.

    PubMed Central

    Dreiseikelmann, B

    1994-01-01

    DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal gene transfer and transkingdom sex. Analyses of genes and gene products involved in DNA transfer suggest that DNA is transferred through a protein channel spanning the bacterial envelope. No common model exists for DNA translocation during phage infection. Perhaps various mechanisms are necessary as a result of the different morphologies of bacteriophages. The DNA translocation processes during conjugation, T-DNA transfer, and transformation are more consistent and may even be compared to the excretion of some proteins. On the basis of analogies and homologies between the proteins involved in DNA translocation and protein secretion, a common basic model for these processes is presented. PMID:7968916

  11. Ratcheting up protein translocation with anthrax toxin

    PubMed Central

    Feld, Geoffrey K; Brown, Michael J; Krantz, Bryan A

    2012-01-01

    Energy-consuming nanomachines catalyze the directed movement of biopolymers in the cell. They are found both dissolved in the aqueous cytosol as well as embedded in lipid bilayers. Inquiries into the molecular mechanism of nanomachine-catalyzed biopolymer transport have revealed that these machines are equipped with molecular parts, including adjustable clamps, levers, and adaptors, which interact favorably with substrate polypeptides. Biological nanomachines that catalyze protein transport, known as translocases, often require that their substrate proteins unfold before translocation. An unstructured protein chain is likely entropically challenging to bind, push, or pull in a directional manner, especially in a way that produces an unfolding force. A number of ingenious solutions to this problem are now evident in the anthrax toxin system, a model used to study protein translocation. Here we highlight molecular ratchets and current research on anthrax toxin translocation. A picture is emerging of proton-gradient-driven anthrax toxin translocation, and its associated ratchet mechanism likely applies broadly to other systems. We suggest a cyclical thermodynamic order-to-disorder mechanism (akin to a heat-engine cycle) is central to underlying protein translocation: peptide substrates nonspecifically bind to molecular clamps, which possess adjustable affinities; polypeptide substrates compress into helical structures; these clamps undergo proton-gated switching; and the substrate subsequently expands regaining its unfolded state conformational entropy upon translocation. PMID:22374876

  12. Diagnostic studies of ensemble forecast "jumps"

    NASA Astrophysics Data System (ADS)

    Magnusson, Linus; Hewson, Tim; Ferranti, Laura; Rodwell, Mark

    2016-04-01

    During 2015 we saw exceptional consistency in successive seasonal forecasts produced at ECMWF, for the winter period 2015/16, right across the globe. This winter was characterised by a well-predicted and unusually strong El Nino, and some have ascribed the consistency to that. For most of December this consistency was mirrored in the (separate) ECMWF monthly forecast system, which correctly predicted anomalously strong (mild) zonal flow, over the North Atlantic and western Eurasia, even in forecasts for weeks 3 and 4. In monthly forecasts in general these weeks are often devoid of strong signals. However in late December and early January strong signals, even in week 2, proved to be incorrect, most notably over the North Atlantic and Eurasian sectors. Indeed on at least two occasions the outcome was beyond the ensemble forecast range over Scandinavia. In one of these conditions flipped from extreme mild to extreme cold as a high latitude block developed. Temperature prediction is very important to many customers, notably those dealing with renewable energy, because cold weather causes increased demand but also tends to coincide with reduced wind power production. So understandably jumps can cause consternation amongst some customer groups, and are very difficult to handle operationally. This presentation will discuss the results of initial diagnostic investigations into what caused the "ensemble jumps", particularly at the week two lead, though reference will also be made to a related shorter range (day 3) jump that was important for flooding over the UK. Initial results suggest that an inability of the ECMWF model to correctly represent convective outbreaks over North America (that for winter-time were quite extreme) played an important role. Significantly, during this period, an unusually large amount of upper air data over North America was rejected or ascribed low weight. These results bear similarities to previous diagnostic studies at ECMWF, wherein major

  13. Nonstandard jump functions for radially symmetric shock waves

    SciTech Connect

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-10-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals, and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function

  14. Implementation of jump-diffusion algorithms for understanding FLIR scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1995-07-01

    Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.

  15. Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres.

    PubMed

    Ranatunga, K W; Coupland, M E; Pinniger, G J; Roots, H; Offer, G W

    2007-11-15

    We examined the tension change induced by a rapid temperature jump (T-jump) in shortening and lengthening active muscle fibres. Experiments were done on segments of permeabilized single fibres (length (L0) approximately 2 mm, sarcomere length 2.5 microm) from rabbit psoas muscle; [MgATP] was 4.6 mm, pH 7.1, ionic strength 200 mm and temperature approximately 9 degrees C. A fibre was maximally Ca2+-activated in the isometric state and a approximately 3 degrees C, rapid (< 0.2 ms), laser T-jump applied when the tension was approximately steady in the isometric state, or during ramp shortening or ramp lengthening at a limited range of velocities (0-0.2 L0 s(-1)). The tension increased to 2- to 3 x P0 (isometric force) during ramp lengthening at velocities > 0.05 L0 s(-1), whereas the tension decreased to about < 0.5 x P0 during shortening at 0.1-0.2 L0 s(-1); the unloaded shortening velocity was approximately 1 L0 s(-1) and the curvature of the force-shortening velocity relation was high (a/P0 ratio from Hill's equation of approximately 0.05). In isometric state, a T-jump induced a tension rise of 15-20% to a new steady state; by curve fitting, the tension rise could be resolved into a fast (phase 2b, 40-50 s(-1)) and a slow (phase 3, 5-10 s(-1)) exponential component (as previously reported). During steady lengthening, a T-jump induced a small instantaneous drop in tension, followed by recovery, so that the final tension recorded with and without a T-jump was not significantly different; thus, a T-jump did not lead to a net increase of tension. During steady shortening, the T-jump induced a pronounced tension rise and both its amplitude and the rate (from a single exponential fit) increased with shortening velocity; at 0.1-0.2 L0 s(-1), the extent of fibre shortening during the T-jump tension rise was estimated to be approximately 1.2% L(0) and it was shorter at lower velocities. At a given shortening velocity and over the temperature range of 8-30 degrees C, the

  16. Segmentation and segment connection of obstructed colon

    NASA Astrophysics Data System (ADS)

    Medved, Mario; Truyen, Roel; Likar, Bostjan; Pernus, Franjo

    2004-05-01

    Segmentation of colon CT images is the main factor that inhibits automation of virtual colonoscopy. There are two main reasons that make efficient colon segmentation difficult. First, besides the colon, the small bowel, lungs, and stomach are also gas-filled organs in the abdomen. Second, peristalsis or residual feces often obstruct the colon, so that it consists of multiple gas-filled segments. In virtual colonoscopy, it is very useful to automatically connect the centerlines of these segments into a single colon centerline. Unfortunately, in some cases this is a difficult task. In this study a novel method for automated colon segmentation and connection of colon segments' centerlines is proposed. The method successfully combines features of segments, such as centerline and thickness, with information on main colon segments. The results on twenty colon cases show that the method performs well in cases of small obstructions of the colon. Larger obstructions are mostly also resolved properly, especially if they do not appear in the sigmoid part of the colon. Obstructions in the sigmoid part of the colon sometimes cause improper classification of the small bowel segments. If a segment is too small, it is classified as the small bowel segment. However, such misclassifications have little impact on colon analysis.

  17. Dynamics and stability of directional jumps in the desert locust

    PubMed Central

    Gvirsman, Omer

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications. PMID:27703846

  18. Effects of Isometric Scaling on Vertical Jumping Performance

    PubMed Central

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  19. Effects of isometric scaling on vertical jumping performance.

    PubMed

    Bobbert, Maarten F

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  20. Orientational Jumps in (Acetamide + Electrolyte) Deep Eutectics: Anion Dependence.

    PubMed

    Das, Suman; Biswas, Ranjit; Mukherjee, Biswaroop

    2015-08-27

    All-atom molecular dynamics simulations have been carried out to investigate orientation jumps of acetamide molecules in three different ionic deep eutectics made of acetamide (CH3CONH2) and lithium salts of bromide (Br(–)), nitrate (NO3(–)) and perchlorate (ClO4(–)) at approximately 80:20 mole ratio and 303 K. Orientational jumps have been dissected into acetamide–acetamide and acetamide–ion catagories. Simulated jump characteristics register a considerable dependence on the anion identity. For example, large angle jumps are relatively less frequent in the presence of NO3(–) than in the presence of the other two anions. Distribution of jump angles for rotation of acetamide molecules hydrogen bonded (H-bonded) to anions has been found to be bimodal in the presence of Br(–) and is qualitatively different from the other two cases. Estimated energy barrier for orientation jumps of these acetamide molecules (H-bonded to anions) differ by a factor of ∼2 between NO3(–) and ClO4(–), the barrier height for the latter being lower and ∼0.5kBT. Relative radial and angular displacements during jumps describe the sequence ClO(4)– > NO3(–) > Br(–) and follow a reverse viscosity trend. Jump barrier for acetamide–acetamide pairs reflects weak dependence on anion identity and remains closer to the magnitude (∼0.7kBT) found for orientation jumps in molten acetamide. Jump time distributions exhibit a power law dependence of the type, P(tjump) ∝ A(tjump/τ)(−β), with both β and τ showing substantial anion dependence. The latter suggests the presence of dynamic heterogeneity in these systems and supports earlier conclusions from time-resolved fluorescence measurements.

  1. From quantum jumps to quasiparticle population

    NASA Astrophysics Data System (ADS)

    Vool, U.; Pop, I. M.; Sliwa, K.; Abdo, B.; Wang, C.; Gao, Y. Y.; Kou, A.; Smith, W. C.; Brecht, T.; Shankar, S.; Hatridge, M.; Catelani, G.; Frunzio, L.; Schoelkopf, R. J.; Glazman, L.; Mirrahimi, M.; Devoret, M. H.

    2015-03-01

    Superconducting quasiparticles (QP) play a dominant role in the relaxation of the fluxonium qubit in the vicinity of the half-flux-quantum bias point. Recent experiments integrating the fluxonium with a quantum-limited amplifier have measured quantum jump trajectories between the ground state and the first excited state. These trajectories show a change in the characteristic lifetime of the fluxonium qubit as a function of time, arising from a change in the number of QP's in the sample. Using a simple model of QP dynamics and their effect on the fluxonium qubit, we can access the QP population with temporal resolution better than a 100 microsecond. Such rapid monitoring of QP dynamics is essential for understanding the sources of QP's and ultimately suppressing them. Work supported by: IARPA, ARO, and ONR.

  2. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1977-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  3. Polygonal hydraulic jump on microtextured surfaces

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Courbin, Laurent; Crest, Jerome; Stone, Howard A.

    2008-03-01

    Fluid motion can be drastically influenced by the nature of boundaries. For instance, we have shown recently ootnotetextL. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari and H.A. Stone, Nature Mater. 6, 661 (2007) that a substrate with a regular array of micron-size posts can cause partially wetting fluids to take on polygonal shapes. Here, we report on the hydraulic jump that occurs when a water jet impinges a topographically patterned surface, i.e. an array of micron-size posts arranged on square or hexagonal lattice. By varying the topographic features (shape and height of the posts, lattice distance) and the jet properties (size of the nozzle, flow rate), we obtain a variety of stable shapes including hexagons, eight corner stars and circles. We rationalize our results by taking into account a fluid velocity that depends on the orientation of the lattice.

  4. Jump Distance Increases while Carrying Handheld Weights: Impulse, History, and Jump Performance in a Simple Lab Exercise

    ERIC Educational Resources Information Center

    Butcher, Michael T.; Bertram, John E. A.

    2004-01-01

    This laboratory exercise is designed to provide an understanding of the mechanical concept of impulse as it applies to human movement and athletic performance. Students compare jumps performed with and without handheld weights. Contrary to initial expectation, jump distance is increased with moderate additional weights. This was familiar to…

  5. Spatial dynamics of chromosome translocations in living cells.

    PubMed

    Roukos, Vassilis; Voss, Ty C; Schmidt, Christine K; Lee, Seungtaek; Wangsa, Darawalee; Misteli, Tom

    2013-08-09

    Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle-independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.

  6. Generator estimation of Markov jump processes

    NASA Astrophysics Data System (ADS)

    Metzner, P.; Dittmer, E.; Jahnke, T.; Schütte, Ch.

    2007-11-01

    Estimating the generator of a continuous-time Markov jump process based on incomplete data is a problem which arises in various applications ranging from machine learning to molecular dynamics. Several methods have been devised for this purpose: a quadratic programming approach (cf. [D.T. Crommelin, E. Vanden-Eijnden, Fitting timeseries by continuous-time Markov chains: a quadratic programming approach, J. Comp. Phys. 217 (2006) 782-805]), a resolvent method (cf. [T. Müller, Modellierung von Proteinevolution, PhD thesis, Heidelberg, 2001]), and various implementations of an expectation-maximization algorithm ([S. Asmussen, O. Nerman, M. Olsson, Fitting phase-type distributions via the EM algorithm, Scand. J. Stat. 23 (1996) 419-441; I. Holmes, G.M. Rubin, An expectation maximization algorithm for training hidden substitution models, J. Mol. Biol. 317 (2002) 753-764; U. Nodelman, C.R. Shelton, D. Koller, Expectation maximization and complex duration distributions for continuous time Bayesian networks, in: Proceedings of the twenty-first conference on uncertainty in AI (UAI), 2005, pp. 421-430; M. Bladt, M. Sørensen, Statistical inference for discretely observed Markov jump processes, J.R. Statist. Soc. B 67 (2005) 395-410]). Some of these methods, however, seem to be known only in a particular research community, and have later been reinvented in a different context. The purpose of this paper is to compile a catalogue of existing approaches, to compare the strengths and weaknesses, and to test their performance in a series of numerical examples. These examples include carefully chosen model problems and an application to a time series from molecular dynamics.

  7. Gaussian Mixture Model and Rjmcmc Based RS Image Segmentation

    NASA Astrophysics Data System (ADS)

    Shi, X.; Zhao, Q. H.

    2017-09-01

    For the image segmentation method based on Gaussian Mixture Model (GMM), there are some problems: 1) The number of component was usually a fixed number, i.e., fixed class and 2) GMM is sensitive to image noise. This paper proposed a RS image segmentation method that combining GMM with reversible jump Markov Chain Monte Carlo (RJMCMC). In proposed algorithm, GMM was designed to model the distribution of pixel intensity in RS image. Assume that the number of component was a random variable. Respectively build the prior distribution of each parameter. In order to improve noise resistance, used Gibbs function to model the prior distribution of GMM weight coefficient. According to Bayes' theorem, build posterior distribution. RJMCMC was used to simulate the posterior distribution and estimate its parameters. Finally, an optimal segmentation is obtained on RS image. Experimental results show that the proposed algorithm can converge to the optimal number of class and get an ideal segmentation results.

  8. Chemical mutagenesis testing in Drosophila. I. Comparison of positive and negative control data for sex-linked recessive lethal mutations and reciprocal translocations in three laboratories

    SciTech Connect

    Woodruff, R.C.; Mason, J.M.; Valencia, R.; Zimmering, S.

    1984-01-01

    As part of the validation phase of the Drosophila melanogaster segment of the National Toxicology Program, a comparison has been made of positive and negative controls for sex-linked recessive lethal mutations and reciprocal translocations from three laboratories. This comparison involves approximately 700,000 spontaneous recessive lethal mutation tests, 70,000 spontaneous translocation tests, and screens for genetic damage induced by N-nitrosodimethylamine and ..beta..-propiolactone. Spontaneous frequencies for lethal mutations and translocations were homogeneous in the laboratories regardless of solvent or broods sampled. Inhomogeneity was observed in induced frequencies among laboratories, but the variation was no greater than that found within a laboratory.

  9. Raclopride, but not SCH 23,390, induces maldirected jumping in rats trained to perform a run-climb-run behavioral task.

    PubMed

    Senyuz, L; Fowler, S C

    1993-01-01

    In order to explore further the putative differential behavioral consequences of D1 dopamine and D2 dopamine receptor antagonism, SCH 23,390 (0.01-0.12 mg/kg) and raclopride (0.12-1.0 mg/kg) were administered to two separate groups of rats that had been trained in an eight-trial-per-day format to run down an alleyway, climb a vertical rope, and run across a horizontal board to access sweetened milk. Although both drugs dose-dependently reduced the speed of task completion, only raclopride produced vigorous, maldirected jumping behavior in the floor segment of the apparatus. The number of such jumps increased with dose. This raclopride-specific jumping phenomenon may provide a new behavioral arena for investigating the functional differences between D1 and D2 receptor antagonism.

  10. Fetus with two identical reciprocal translocations: description of a rare complication of consanguinity.

    PubMed

    Martinet, Danielle; Vial, Yvan; Thonney, Francine; Beckmann, Jacques S; Meagher-Villemure, Kathleen; Unger, Sheila

    2006-04-01

    We report on a 24-week fetus with multiple organ anomalies secondary to biparental inheritance of an apparently balanced t(17;20) reciprocal translocation. The pregnancy was terminated following the discovery by ultrasound of an abnormal heart and micrognathia. At autopsy, the following anomalies were found: Pierre-Robin sequence, hypoplasia of the right ventricle with muscular hypertrophy, and endocardial fibroelastosis, hypoplastic lungs, dysplastic left kidney, bilateral pelvicalyceal dilatation, central nervous system periventricular heterotopias and right sided club foot. Given the endocardial fibroelastosis and cleft palate, Eastman-Bixler syndrome (Facio-cardio-renal) is a possible diagnosis. The parents were first cousins and each had an identical t(17;20)(q21.1;p11.21) translocation. The fetal karyotype was 46,XX,t(17;20)(q21.1;p11.21)mat,t(17;20)(q21.1;p11.21)pat. While there are a few reports of consanguineous families where both the mother and father had the same reciprocal translocation and offspring with unbalanced karyotypes, we were unable to find any reports of a fetus/child with double identical reciprocal translocations. We propose that although the fetus had an apparently balanced karyotype, inheriting only the translocated chromosomes led to the unmasking of a recessive syndrome. It seems most likely that a gene (or genes) was disrupted by the breaks but the parents might also be heterozygous carriers of a recessive gene mutation since the fetus must be homozygous by descent for many loci on both chromosomes 17 and 20 (as well as on other chromosomal segments). It was not possible to totally exclude segmental uniparental disomy as a cause of the anomalies as no recombinations were detected for chromosome 17. However, there is no evidence to suggest that chromosome 17 is imprinted and UPD 20 was excluded thus making an imprinting error unlikely. Copyright 2006 Wiley-Liss, Inc.

  11. Hydraulic jumps within pyroclastic density currents and their sedimentary record

    NASA Astrophysics Data System (ADS)

    Douillet, G.; Mueller, S.; Kueppers, U.; Dingwell, D. B.

    2013-12-01

    This contribution presents a complete and comprehensive formulation of the hydraulic jump phenomenon and reviews sedimentary structures that may be associated with them. Beginning from the general fluid phenomenon, we then focus on examples from pyroclastic density currents in order to infer dynamic parameters on the parent flows. A hydraulic jump is a fluid dynamics phenomenon that corresponds to the sudden increase of the thickness of a flow accompanied by a decrease of its velocity and/or density. A hydraulic jump is the expression of the transition of the flow from two different flow regimes: supercritical to subcritical. This entrains a change in the energy balance between kinetic energy and gravity potential energy. Recently, the terms of 'pneumatic jumps' have been used for similar phenomenon driven within a gas phase, and granular jumps for dense granular flows. It is thought that such strong changes in the flow conditions may leave characteristic structures in the sedimentary record. Indeed, the main variables influencing the sedimentation rate are the flow velocity, particle concentration and turbulence level, all of them strongly affected by a hydraulic jump. Structures deposited by hydraulic/pneumatic jumps have been called cyclic steps and chute and pool structures. Chute and pools represent the record of a single supercritical to subcritical transition, whereas cyclic steps are produced by stable trains of hydraulic jumps and subsequent re-accelerations. Pyroclastic density currents (PDCs) are gas and pyroclasts flows. As such, they can be subjected to granular and pneumatic jumps and their deposit have often been interpreted as containing records of jumps. Steep sided truncations covered by lensoidal layers have been interpreted as the record of internal jumps within density stratified flows. Fines-depleted breccias at breaks in slope are thought to result from the enhanced turbulence at a jump of the entire flow. Sudden increases in thickness of

  12. Translocation (9;17) a novel translocation in acute myeloid leukaemia.

    PubMed

    Brown, S A; Czepulkowski, B; Ireland, R

    1996-01-01

    We report a case of AML, acute myeloid leukaemia, with a novel translocation involving the short arms of chromosomes 9 and 17. The acute myeloid leukaemia was morphologically classified as FAB subtype M2. A prolonged remission was induced with chemotherapy, followed by a relapse which was associated with the finding of the same translocation.

  13. Translocation and Accumulation of Translocate in the Sugar Beet Petiole 1

    PubMed Central

    Geiger, D. R.; Saunders, M. A.; Cataldo, D. A.

    1969-01-01

    Accumulation of translocate during steady-state labeling of photosynthate was measured in the source leaf petioles of sugar beet (Beta vulgaris L. monogerm hybrid). During an 8-hr period, 2.7% of the translocate or 0.38 μg carbon/min was accumulated per cm petiole. Material was stored mainly as sucrose and as compounds insoluble in 80% ethanol. The minimum peak velocity of translocation approached an average of 54 cm/hr as the specific activity of the 14CO2 pulse was progressively increased. The ratio of cross sectional area required for translocation to actual sieve tube area in the petiole was 1.2. A regression analysis of translocation rate versus sieve tube cross sectional area yielded a coefficient of 0.76. The specific mass transfer rate in the petiole was 1.4 g/hr cm2 phloem or 4.8 g/hr cm2 sieve tube. Histoautoradiographic studies indicated that translocation occurs through the area of phloem occupied by sieve tubes and companion cells while storage occurs in these cells plus cambium and phloem parenchyma cells. The ability of the petiole to act as a sink for translocate is consistent with the concept that storage along path tissue serves to buffer sucrose concentration in the translocate during periods of fluctuating assimilation. Images PMID:16657254

  14. The modification of a common wheat-Thinopyrum distichum translocated chromosome with a locus homoeoallelic to Lr19.

    PubMed

    Marais, G F

    1992-10-01

    The 'Chinese Spring' ph1b and ph2b mutants, as well as the nulli 5B tetra 5D stock were utilized in an attempt to effect homoeologous chromatin exchange between the 'Indis' chromosome translocation [derived from Thinopyrum distichum (Thunb.) Löve] and chromosome arm 7DL of common wheat. A homoeoallele of Lr19 and linked genes for yellow flour-pigmentation were utilized as markers. Seven selections with recombinations involving the foreign, translocated segment were recovered. Four of these had white endosperms and were leaf-rust resistant. The remaining lines were leaf-rust resistant and had levels of endosperm pigmentation intermediate to those of 'Indis' and 'Chinese Spring'. The recombined translocation segments coding for white endosperm are no longer associated with chromosome 7D. The original translocated segment may, therefore, not be fully homoeologous to 7DL. The recombinants with white endosperm also lack the stem-rust resitance gene Sr25, but retained the segregation distorter locus, Sd-1. However, it seems as though an enhancer locus (or loci) of Sd-1 had been lost.

  15. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.

    PubMed

    Reidel, Boris; Goldmann, Tobias; Giessl, Andreas; Wolfrum, Uwe

    2008-10-01

    In vertebrate rod photoreceptor cells, arrestin and the visual G-protein transducin move between the inner segment and outer segment in response to changes in light. This stimulus dependent translocation of signalling molecules is assumed to participate in long term light adaptation of photoreceptors. So far the cellular basis for the transport mechanisms underlying these intracellular movements remains largely elusive. Here we investigated the dependency of these movements on actin filaments and the microtubule cytoskeleton of photoreceptor cells. Co-cultures of mouse retina and retinal pigment epithelium were incubated with drugs stabilizing and destabilizing the cytoskeleton. The actin and microtubule cytoskeleton and the light dependent distribution of signaling molecules were subsequently analyzed by light and electron microscopy. The application of cytoskeletal drugs differentially affected the cytoskeleton in photoreceptor compartments. During dark adaptation the depolymerization of microtubules as well as actin filaments disrupted the translocation of arrestin and transducin in rod photoreceptor cells. During light adaptation only the delivery of arrestin within the outer segment was impaired after destabilization of microtubules. Movements of transducin and arrestin required intact cytoskeletal elements in dark adapting cells. However, diffusion might be sufficient for the fast molecular movements observed as cells adapt to light. These findings indicate that different molecular translocation mechanisms are responsible for the dark and light associated translocations of arrestin and transducin in rod photoreceptor cells.

  16. Aerial jumping in the Trinidadian guppy (Poecilia reticulata).

    PubMed

    Soares, Daphne; Bierman, Hilary S

    2013-01-01

    Many fishes are able to jump out of the water and launch themselves into the air. Such behavior has been connected with prey capture, migration and predator avoidance. We found that jumping behavior of the guppy Poecilia reticulata is not associated with any of the above. The fish jump spontaneously, without being triggered by overt sensory cues, is not migratory and does not attempt to capture aerial food items. Here, we use high speed video imaging to analyze the kinematics of the jumping behavior P. reticulata. Fish jump from a still position by slowly backing up while using its pectoral fins, followed by strong body trusts which lead to launching into the air several body lengths. The liftoff phase of the jump is fast and fish will continue with whole body thrusts and tail beats, even when out of the water. This behavior occurs when fish are in a group or in isolation. Geography has had substantial effects on guppy evolution, with waterfalls reducing gene flow and constraining dispersal. We suggest that jumping has evolved in guppies as a behavioral phenotype for dispersal.

  17. Aerial Jumping in the Trinidadian Guppy (Poecilia reticulata)

    PubMed Central

    Soares, Daphne; Bierman, Hilary S.

    2013-01-01

    Many fishes are able to jump out of the water and launch themselves into the air. Such behavior has been connected with prey capture, migration and predator avoidance. We found that jumping behavior of the guppy Poecilia reticulata is not associated with any of the above. The fish jump spontaneously, without being triggered by overt sensory cues, is not migratory and does not attempt to capture aerial food items. Here, we use high speed video imaging to analyze the kinematics of the jumping behavior P. reticulata. Fish jump from a still position by slowly backing up while using its pectoral fins, followed by strong body trusts which lead to launching into the air several body lengths. The liftoff phase of the jump is fast and fish will continue with whole body thrusts and tail beats, even when out of the water. This behavior occurs when fish are in a group or in isolation. Geography has had substantial effects on guppy evolution, with waterfalls reducing gene flow and constraining dispersal. We suggest that jumping has evolved in guppies as a behavioral phenotype for dispersal. PMID:23613883

  18. Experimental investigation on single person's jumping load model

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Haoqi; Wang, Ling

    2015-12-01

    This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subjects. Threedimensional motion capture technology in conjunction with force plates was employed in the experiment to record jumping loads. The variation range and probability distribution of the controlling parameters for the load model such as the impact factor, jumping frequency and contact ratio, are discussed using the experimental data. Correlation relationships between the three parameters are investigated. The contact ratio and jumping frequency are identified as independent model parameters, and an empirical frequency-dependent function is derived for the impact factor. The feasibility of the proposed load model is established by comparing the simulated load curves with measured ones, and by comparing the acceleration responses of a single-degree-of-freedom system to the simulated and measured jumping loads. The results show that a realistic individual jumping load can be generated by the proposed method. This can then be used to assess the dynamic response of assembly structures.

  19. Influence of Compression and Stiffness Apparel on Vertical Jump Performance.

    PubMed

    Wannop, John W; Worobets, Jay T; Madden, Ryan; Stefanyshyn, Darren J

    2016-04-01

    Compression apparel alters both compression of the soft tissues and the hip joint stiffness of athletes. It is not known whether it is the compression elements, the stiffness elements, or some combination that increases performance. Therefore, the purpose of this study was to determine how systematically increasing upper leg compression and hip joint stiffness independently from one another affects vertical jumping performance. Ten male athletes performed countermovement vertical jumps in 8 concept apparel conditions and 1 control condition (loose fitting shorts). The 8 apparel conditions, 4 that specifically altered the amount of compression exerted on the thigh and 4 that altered the hip joint stiffness by means of elastic thermoplastic polyurethane bands, were tested on 2 separate testing sessions (one testing the compression apparel and the other testing the stiffness apparel). Maximum jump height was measured, while kinematic data of the hip, knee, and ankle joint were recorded with a high-speed camera (480 Hz). Both compression and stiffness apparel can have a positive influence on vertical jumping performance. The increase in jump height for the optimal compression was due to increased hip joint range of motion and a trend of increasing the jump time. Optimal stiffness also increased jump height and had the trend of decreasing the hip joint range of motion and hip joint angular velocity. The exact mechanisms by which apparel interventions alter performance is not clear, but it may be due to alterations to the force-length and force-velocity relationships of muscle.

  20. Acute stress elicited by bungee jumping suppresses human innate immunity.

    PubMed

    van Westerloo, David J; Choi, Goda; Löwenberg, Ester C; Truijen, Jasper; de Vos, Alex F; Endert, Erik; Meijers, Joost C M; Zhou, Lu; Pereira, Manuel P F L; Queiroz, Karla C S; Diks, Sander H; Levi, Marcel; Peppelenbosch, Maikel P; van der Poll, Tom

    2011-01-01

    Although a relation between diminished human immunity and stress is well recognized both within the general public and the scientific literature, the molecular mechanisms by which stress alters immunity remain poorly understood. We explored a novel model for acute human stress involving volunteers performing a first-time bungee jump from an altitude of 60 m and exploited this model to characterize the effects of acute stress in the peripheral blood compartment. Twenty volunteers were included in the study; half of this group was pretreated for 3 d with the β-receptor blocking agent propranolol. Blood was drawn 2 h before, right before, immediately after and 2 h after the jump. Plasma catecholamine and cortisol levels increased significantly during jumping, which was accompanied by significantly reduced ex vivo inducibility of proinflammatory cytokines as well as activation of coagulation and vascular endothelium. Kinome profiles obtained from the peripheral blood leukocyte fraction contained a strong noncanonical glucocorticoid receptor signal transduction signature after jumping. In apparent agreement, jumping down-regulated Lck/Fyn and cellular innate immune effector function (phagocytosis). Pretreatment of volunteers with propranolol abolished the effects of jumping on coagulation and endothelial activation but left the inhibitory effects on innate immune function intact. Taken together, these results indicate that bungee jumping leads to a catecholamine-independent immune suppressive phenotype and implicate noncanonical glucocorticoid receptor signal transduction as a major pathway linking human stress to impaired functioning of the human innate immune system.

  1. Acute Stress Elicited by Bungee Jumping Suppresses Human Innate Immunity

    PubMed Central

    van Westerloo, David J; Choi, Goda; Löwenberg, Ester C; Truijen, Jasper; de Vos, Alex F; Endert, Erik; Meijers, Joost C M; Zhou, Lu; Pereira, Manuel PFL; Queiroz, Karla CS; Diks, Sander H; Levi, Marcel; Peppelenbosch, Maikel P; van der Poll, Tom

    2011-01-01

    Although a relation between diminished human immunity and stress is well recognized both within the general public and the scientific literature, the molecular mechanisms by which stress alters immunity remain poorly understood. We explored a novel model for acute human stress involving volunteers performing a first-time bungee jump from an altitude of 60 m and exploited this model to characterize the effects of acute stress in the peripheral blood compartment. Twenty volunteers were included in the study; half of this group was pretreated for 3 d with the β-receptor blocking agent propranolol. Blood was drawn 2 h before, right before, immediately after and 2 h after the jump. Plasma catecholamine and cortisol levels increased significantly during jumping, which was accompanied by significantly reduced ex vivo inducibility of proinflammatory cytokines as well as activation of coagulation and vascular endothelium. Kinome profiles obtained from the peripheral blood leukocyte fraction contained a strong noncanonical glucocorticoid receptor signal transduction signature after jumping. In apparent agreement, jumping down-regulated Lck/Fyn and cellular innate immune effector function (phagocytosis). Pretreatment of volunteers with propranolol abolished the effects of jumping on coagulation and endothelial activation but left the inhibitory effects on innate immune function intact. Taken together, these results indicate that bungee jumping leads to a catecholamine-independent immune suppressive phenotype and implicate noncanonical glucocorticoid receptor signal transduction as a major pathway linking human stress to impaired functioning of the human innate immune system. PMID:21203694

  2. The fluid dynamics of swimming by jumping in copepods

    PubMed Central

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs, resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic predators. We developed an impulsive stresslet model to quantify the jump-imposed flow disturbance. The predicted flow consists of two counter-rotating viscous vortex rings of similar intensity, one in the wake and one around the body of the copepod. We showed that the entire jumping flow is spatially limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods in jump-swimming are in general much less detectable by rheotactic predators. The present impulsive stresslet model improves a previously published impulsive Stokeslet model that applies only to the wake vortex. PMID:21208972

  3. Which measure of drop jump performance best predicts sprinting speed?

    PubMed

    Barr, Matt J; Nolte, Volker W

    2011-07-01

    The purpose of this study was to evaluate which measure of a drop jump (DJ) has the highest correlation with sprinting speed over 60 m. For use of comparison, maximal leg strengths in a front squat, countermovement jump, and squat jump were also assessed. The subjects in the study were all high-caliber female university rugby players. Subjects did DJs from 0.12, 0.24, 0.36, 0.48, 0.60, 0.72, and 0.84 m. Jump height and reactive strength index (RSI) were calculated at each drop height. Pearson correlations were used to analyze the relationship between the strength and jumping measures with sprinting speed. The DJ height from 0.84 m had the highest negative correlation with 0- to 10-m split (r = -0.66), the 10- to 30-m split (r = -0.86) and 30- to 60-m split (r = -0.86). The use of RSI is questioned as a measurement of DJ performance. It is suggested that maximal height achieved in a DJ is the most important DJ measure. If it is desired to measure ground contact time, then it may be more useful to use a second test where the jump height for the athlete is set by having the athlete jump onto a box or touch a target overhead set at a standard height and measure the ground contact time with a switch mat or force plate.

  4. Condensed droplet jumping: Capillary to inertial energy transfer

    NASA Astrophysics Data System (ADS)

    Enright, Ryan; Miljkovic, Nenad; Morris, Michael; Wang, Evelyn

    2013-03-01

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. This behavior has been shown to follow a simple inertial-capillary scaling. However, questions remain regarding the nature of the energy conversion process linking the excess surface energy of the system before coalescence and the kinetic energy of the jumping droplet. Furthermore, the primary energy dissipation mechanisms limiting this jumping behavior remain relatively unexplored. In this work, we present new experimental data from a two-camera setup capturing the trajectory of jumping droplets on nanostructured surfaces with a characteristic surface roughness length scale on the order of 10 nm. Coupled with a model developed to capture the main details of the bridging flow during coalescence, our findings suggest that: 1. the excess surface energy available for jumping is a fraction of that suggested by simple scaling due to incomplete energy transfer, 2. internal viscous dissipation is not a limiting factor on the jumping process at droplet sizes on the order of 10 μm and 3. jumping performance is strongly affected by forces associated with the external flow and fields around the droplet. This work suggests bounds on the heat transfer performance of superhydrophobic condensation surfaces.

  5. Propulsion efficiency and imposed flow fields of a copepod jump.

    PubMed

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  6. Numerical simulations of katabatic jumps in coats land, Antartica

    NASA Astrophysics Data System (ADS)

    Yu, Ye; Cai, Xiaoming; King, John C.; Renfrew, Ian A.

    A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli''s theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli''s theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.

  7. Stochastic resonance during a polymer translocation process

    NASA Astrophysics Data System (ADS)

    Mondal, Debasish; Muthukumar, M.

    2016-04-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  8. Stochastic resonance during a polymer translocation process.

    PubMed

    Mondal, Debasish; Muthukumar, M

    2016-04-14

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  9. A Mortar Segment-to-Segment Frictional Contact Method for Large Deformations

    SciTech Connect

    Puso, M; Laursen, T

    2003-10-29

    Contact modeling is still one of the most difficult aspects of nonlinear implicit structural analysis. Most 3D contact algorithms employed today use node-on-segment approaches for contacting dissimilar meshes. Two pass node-on-segment contact approaches have the well known deficiency of locking due to over constraint. Furthermore, node-on-segment approaches suffer when individual nodes slide out of contact at contact surface boundaries or when contacting nodes slide from facet to facet. This causes jumps in the contact forces due to the discrete nature of the constraint enforcement and difficulties in convergence for implicit solution techniques. In a previous work, we developed a segment-to-segment contact approach based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the overconstraint which caused ''locking'' and provided smooth force variations in large sliding. Here, we extend this previous approach in to treat frictional contact problems. The proposed approach is then applied to several challenging frictional contact problems which demonstrate its effectiveness.

  10. Quantum jumps: from foundational research to particle physics

    NASA Astrophysics Data System (ADS)

    Licata, Ignazio; Chiatti, Leonardo

    2017-08-01

    Since 1986 a vast body of experimental evidence has been accumulated of direct observation of quantum jumps in many physical systems. We can therefore assume that quantum jumps are genuine physical phenomena. On the other hand, substantial identity of ”quantum jumps” and ”collapses” induced by measurements can be admitted, both being represented by self-conjugate projection operators related to specific non-Hamiltonian aspects of micro-interactions. On this basis a model of quantum jump involving a single particle is discussed, and some consequences concerning hadronic physics (Hagedorn temperature, Regge trajectories) and quantum gravity are briefly sketched.

  11. [Autogenic training in psychophysiological preparation for parachute jumps].

    PubMed

    Reshetnikov, M M

    1978-01-01

    The efficiency of specific psychophysiological preparation--autogenic training--to parachute jumps was measured in two groups of cadets (test subjects and controls). Hetero- and autogenic training was carried out according to a scheme specially developed for this type of activity. The study of questionnaires and physiological data demonstrated that the specific psychophysiological preparation by means of autogenic training for a certain type of activity helped to develop active self-control over one's own state and emotions, alleviated tension, arrested adverse neurotic manifestations (sleep disturbances, depression, anxiety), contributed to the feeling of confidence in the successful completion of the jump and promoted positive tuning towards subsequent jumps.

  12. Jump diffusion models and the evolution of financial prices

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; de Castro, Marcio T.; da Silva, Sergio; Gleria, Iram

    2011-08-01

    We analyze a stochastic model to describe the evolution of financial prices. We consider the stochastic term as a sum of the Wiener noise and a jump process. We point to the effects of the jumps on the return time evolution, a central concern of the econophysics literature. The presence of jumps suggests that the process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. We then extend the De Finetti functions to a generalized nonlinear model and show the model to be capable of explaining return behavior.

  13. Hotspot cooling with jumping-drop vapor chambers

    NASA Astrophysics Data System (ADS)

    Wiedenheft, Kris F.; Guo, H. Alex; Qu, Xiaopeng; Boreyko, Jonathan B.; Liu, Fangjie; Zhang, Kungang; Eid, Feras; Choudhury, Arnab; Li, Zhihua; Chen, Chuan-Hua

    2017-04-01

    Hotspot cooling is critical to the performance and reliability of electronic devices, but existing techniques are not very effective in managing mobile hotspots. We report a hotspot cooling technique based on a jumping-drop vapor chamber consisting of parallel plates of a superhydrophilic evaporator and a superhydrophobic condenser, where the working fluid is returned via the spontaneous out-of-plane jumping of condensate drops. While retaining the passive nature of traditional vapor-chamber heat spreaders (flat-plate heat pipes), the jumping-drop technique offers a mechanism to address mobile hotspots with a pathway toward effective thermal transport in the out-of-plane direction.

  14. Stochastic mutualism model with Lévy jumps

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed

    2017-02-01

    In this paper, we consider a stochastic mutualism model with Lévy jumps. First of all, we show that the positive solution of the system is stochastically ultimate bounded. Then under a simple assumption, we establish sufficient and necessary conditions for the stochastic permanence and extinction of the system. The results show an important property of the Lévy jumps: they are unfavorable for the permanence of the species. Moreover, when there are no Lévy jumps, we show that there is a unique ergodic stationary distribution of the corresponding system under certain conditions. Some numerical simulations are introduced to validate the theoretical results.

  15. Traumatic carotid artery dissection caused by bungee jumping.

    PubMed

    Zhou, Wei; Huynh, Tam T; Kougias, Panagiotis; El Sayed, Hosam F; Lin, Peter H

    2007-11-01

    Bungee jumping is a popular recreational activity in which participant experiences transient freefall while connected to a bungee cord. The rapid freefall and the resultant rebound force created by the bungee cord can result in a variety of bodily injuries. We report herein a case of traumatic carotid artery dissection caused by bungee jumping. The symptoms related to carotid artery dissection were successfully treated with anticoagulation. The etiology of carotid dissection related to bungee jumping is discussed. Physicians should be cognizant of this potential injury due to the force created by the freefall and rebound motion associated in this recreational sport.

  16. Jump-Down Performance Alterations after Space Flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  17. Kinematic And Neuromuscular Measures Of Intensity During Plyometric Jumps.

    PubMed

    Andrade, David Cristóbal; Manzo, Oscar; Beltrán, Ana Rosa; Álvarez, Cristian; Del Rio, Rodrigo; Toledo, Camilo; Moran, Jason; Ramirez-Campillo, Rodrigo

    2017-08-15

    The aim of this study was to assess jumping performance and neuromuscular activity in lower limb muscles after drop jumps (DJ) from different drop heights (intensity) and during continuous jumping (fatigue), using markers such as reactive strength, jump height, mechanical power and surface electromyography (sEMG). The eccentric (EC) and concentric (CON) sEMG from the medial gastrocnemius (MG), biceps femoris (BF) and rectus (R) muscles were assessed during all tests. In a cross-sectional, randomized study, eleven volleyball players (age 24.4±3.2 years) completed 20 to 90-cm (DJ20 to DJ90) drop jumps and a 60-s continuous jump test. A one-way ANOVA test was used for comparisons, with Sidak post-hoc. The α level was <0.05. Reactive strength was greater for DJ40 compared to DJ90 (p<0.05; ES: 1.27). Additionally jump height was greater for DJ40 and DJ60 compared to DJ20 (p<0.05; ES: 1.26 and 1.27, respectively). No clear pattern of neuromuscular activity appeared during DJ20 to DJ90: some muscles showed greater, lower, or no change with increasing heights for both agonist and antagonist muscles, as well as for eccentric and concentric activity. Mechanical power, but not reactive strength, was reduced in the 60-s jump test (p<0.05; ES: 3.46). No changes were observed in sEMG for any muscle during the eccentric phase nor for the R muscle during the concentric phase of the 60-s jump test. However, for both MG and BF, concentric sEMG was reduced during the 60-s jump test (p<0.05; ES: 5.10 and 4.61, respectively). In conclusion, jumping performance and neuromuscular markers are sensitive to DJ height (intensity), although not in a clear dose-response fashion. In addition, markers such as mechanical power and sEMG are especially sensitive to the effects of continuous jumping (fatigue). Therefore, increasing the drop height during DJ does not ensure a greater training intensity and a combination of different drop heights may be required to elicit adaptations.

  18. Detection of weak frequency jumps for GNSS onboard clocks.

    PubMed

    Huang, Xinming; Gong, Hang; Ou, Gang

    2014-05-01

    In this paper, a weak frequency jump detection method is developed for onboard clocks in global navigation satellite systems (GNSS). A Kalman filter is employed to facilitate the onboard real-time processing of atomic clock measurements, whose N-step prediction residuals are used to construct the weak frequency jump detector. Numerical simulations show that the method can successfully detect weak frequency jumps. The detection method proposed in this paper is helpful for autonomous integrity monitoring of GNSS satellite clocks, and can also be applied to other frequency anomalies with an appropriately modified detector.

  19. Nonstandard Analysis and Jump Conditions for Converging Shock Waves

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Tucker, Don H.

    2008-01-01

    Nonstandard analysis is an area of modern mathematics which studies abstract number systems containing both infinitesimal and infinite numbers. This article applies nonstandard analysis to derive jump conditions for one-dimensional, converging shock waves in a compressible, inviscid, perfect gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are introduced to model the flow parameters across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters.

  20. Nonstandard analysis and jump conditions for converging shock waves

    NASA Astrophysics Data System (ADS)

    Baty, Roy S.; Farassat, F.; Tucker, Don H.

    2008-06-01

    Nonstandard analysis is an area of modern mathematics that studies abstract number systems containing both infinitesimal and infinite numbers. This article applies nonstandard analysis to derive jump conditions for one-dimensional, converging shock waves in a compressible, inviscid, perfect gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are introduced to model the flow parameters across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters.

  1. So you think you can jump? A novel long jump assessment to detect deficits in stroked mice

    PubMed Central

    Mittal, Nitish; Pan, Jie; Palmateer, Julie; Martin, Lianna; Pandya, Arushi; Kumar, Sungita; Ofomata, Adaora; Hurn, Patricia D.; Schallert, Timothy

    2015-01-01

    Background Stroke survivors suffer from persistent disability, as well as severe sensorimotor and cognitive deficits. The preclinical assessment of such deficits is important for the development of novel interventions and therapeutics. New Method The aim of this study was to develop a quantitative behavioral measure of hindlimb functionality in rodents, which could be used to assess deficits after a neural injury, such as stroke. Here we introduce a test to measure long jump behavior in mice. Results Using this test we first showed that while male and female mice exhibited no differences in jump success rate, the female mice showed lower baseline jumping latencies. Next we demonstrated that the induction of a cerebral stroke via middle cerebral artery occlusion (MCAO) for 45 minutes did not affect the jump success rate in either group; however, it did significantly increase jump latencies in both male and female mice. Finally, we used therapeutic interventions to explore mechanisms that may be involved in producing this increase in jump latency by administering the anti-depressant fluoxetine prior to the long jump assay, and also tested for potential changes in anxiety levels after stroke. Comparison with Existing Methods Other methods to assess hindlimb functionality are not specific, because they measure behaviors that rely not only on hindlimbs, but also on forelimbs and tail. Conclusions This study introduces a novel assay that can be used to measure a stroke induced behavioral deficit with great sensitivity, and raises interesting questions about potential mechanisms regulating this effect. PMID:26365334

  2. Aeromechanics of the Spider Cricket Jump: How to Jump 60+ Times Your Body Length and Still Land on Your Feet

    NASA Astrophysics Data System (ADS)

    Palmer, Emily; Deshler, Nicolas; Gorman, David; Neves, Catarina; Mittal, Rajat

    2015-11-01

    Flapping, gliding, running, crawling and swimming have all been studied extensively in the past and have served as a source of inspiration for engineering designs. In the current project, we explore a mode of locomotion that straddles ground and air: jumping. The subject of our study is among the most proficient of long-jumpers in Nature: the spider cricket of the family Rhaphidophoridae, which can jump more than 60 times its body length. Despite jumping this immense distance, these crickets usually land on their feet, indicating an ability to control their posture during ``flight.'' We employ high-speed videogrammetry, to examine the jumps and to track the crickets' posture and appendage orientation throughout their jumps. Simple aerodynamic models are developed to predict the aerodynamic forces and moment on the crickets during `flight`. The analysis shows that these wingless insects employ carefully controlled and coordinated positioning of the limbs during flight so as to increase jump distance and to stabilize body posture during flight. The principles distilled from this study could serve as an inspiration for small jumping robots that can traverse complex terrains.

  3. Thermophoretic manipulation of DNA translocation through nanopores.

    PubMed

    He, Yuhui; Tsutsui, Makusu; Scheicher, Ralph H; Bai, Fan; Taniguchi, Masateru; Kawai, Tomoji

    2013-01-22

    Manipulating DNA translocation through nanopore is one crucial requirement for new ultrafast sequencing methods in the sense that the polymers have to be denatured, unraveled, and then propelled through the pore with very low speed. Here we propose and theoretically explore a novel design to fulfill the demands by utilizing cross-pore thermal gradient. The high temperature in the cis reservoir is expected to transform double-stranded DNA into single strands and that temperature would also prevent those single strands from intrastrand base-pairing, thus, achieving favorable polymer conformation for the subsequent translocation and sequencing. Then, the substantial temperature drop across the pore caused by the thermal-insulating membrane separating cis and trans chambers would stimulate thermophoresis of the molecules through nanopores. Our theoretical evaluation shows that the DNA translocation speeds will be orders smaller than the electrophoretic counterpart, while high capture rate of DNA into nanopore is maintained, both of which would greatly benefit the sequencing.

  4. DNA nanopore translocation in glutamate solutions.

    PubMed

    Plesa, C; van Loo, N; Dekker, C

    2015-08-28

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  5. Sorting by reciprocal translocations via reversals theory.

    PubMed

    Ozery-Flato, Michal; Shamir, Ron

    2007-05-01

    The understanding of genome rearrangements is an important endeavor in comparative genomics. A major computational problem in this field is finding a shortest sequence of genome rearrangements that transforms, or sorts, one genome into another. In this paper we focus on sorting a multi-chromosomal genome by translocations. We reveal new relationships between this problem and the well studied problem of sorting by reversals. Based on these relationships, we develop two new algorithms for sorting by reciprocal translocations, which mimic known algorithms for sorting by reversals: a score-based method building on Bergeron's algorithm, and a recursive procedure similar to the Berman-Hannenhalli method. Though their proofs are more involved, our procedures for reciprocal translocations match the complexities of the original ones for reversals.

  6. DNA nanopore translocation in glutamate solutions

    NASA Astrophysics Data System (ADS)

    Plesa, C.; van Loo, N.; Dekker, C.

    2015-08-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  7. Stochastic resonance during a polymer translocation process

    NASA Astrophysics Data System (ADS)

    Mondal, Debasish; Muthukumar, Murugappan

    We study the translocation of a flexible polymer in a confined geometry subjected to a time-periodic external drive to explore stochastic resonance. We describe the equilibrium translocation process in terms of a Fokker-Planck description and use a discrete two-state model to describe the effect of the external driving force on the translocation dynamics. We observe that no stochastic resonance is possible if the associated free-energy barrier is purely entropic in nature. The polymer chain experiences a stochastic resonance effect only in presence of an energy threshold in terms of polymer-pore interaction. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  8. Computational analysis of maltose binding protein translocation

    NASA Astrophysics Data System (ADS)

    Chinappi, Mauro; Cecconi, Fabio; Massimo Casciola, Carlo

    2011-05-01

    We propose a computational model for the study of maltose binding protein translocation across α-hemolysin nanopores. The phenomenological approach simplifies both the pore and the polypeptide chain; however it retains the basic structural protein-like properties of the maltose binding protein by promoting the correct formation of its native key interactions. By considering different observables characterising the channel blockade and molecule transport, we verified that MD simulations reproduce qualitatively the behaviour observed in a recent experiment. Simulations reveal that blockade events consist of a capture stage, to some extent related to the unfolding kinetics, and a single file translocation process in the channel. A threshold mechanics underlies the process activation with a critical force depending on the protein denaturation state. Finally, our results support the simple interpretation of translocation via first-passage statistics of a driven diffusion process of a single reaction coordinate.

  9. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    PubMed

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  10. Usefulness and metabolic implications of a 60-second repeated jumps test as a predictor of acrobatic jumping performance in gymnasts.

    PubMed

    Marina, M; Rodríguez, F A

    2013-03-01

    Gymnastics floor exercises are composed of a set of four to five successive acrobatic jumps usually called a "series". The aims of the study were: 1) to relate the acrobatic gymnastics performance of these series with a repeated jumps test of similar duration (R60), 2) to study the relation between R60 and physiological parameters (heart rate and blood lactate), and the performance obtained in different kinds of jumps, 3) to confirm whether R60, executed without a damped jumping technique, can be considered an anaerobic lactic power test. Twenty male and twenty-four female gymnasts performed three repeated jumps tests for 5 s (R5), 10 s (R10) and 60 s (R60) and vertical jumps, such as drop jumps (DJ), squat jumps (SJ) and countermovement jumps (CMJ). We assessed heart rate (HR) and blood lactate during R10 and R60. The average values of the maximal blood lactate concentration (Lmax) after R10 (males = 2.5±0.6 mmol · l(-1); females = 2.1±0.8 mmol · l(-1)) confirm that anaerobic glycolysis is not activated to a high level. In R60, the Lmax (males = 7.5±1.7 mmol · l(-1) females = 5.9±2.1 mmol · l(-1)) that was recorded does not validate R60 as an anaerobic lactic power test. We confirmed the relation between the average power obtained in R60 (R60Wm) and the acrobatic performance on the floor. The inclusion in the multiple regression equation of the best power in DJ and the best flight-contact ratio (FC) in R5 confirms the influence of other non-metabolic components on the variability in R60 performance, at least in gymnasts.

  11. What drives the translocation of proteins?

    PubMed Central

    Simon, S M; Peskin, C S; Oster, G F

    1992-01-01

    We propose that protein translocation across membranes is driven by biased random thermal motion. This "Brownian ratchet" mechanism depends on chemical asymmetries between the cis and trans sides of the membrane. Several mechanisms could contribute to rectifying the thermal motion of the protein, such as binding and dissociation of chaperonins to the translocating chain, chain coiling induced by pH and/or ionic gradients, glycosylation, and disulfide bond formation. This helps explain the robustness and promiscuity of these transport systems. Images PMID:1349170

  12. Familial translocation t(9;16).

    PubMed Central

    Dowman, C; Lockwood, D; Allanson, J

    1989-01-01

    We report a female with a deletion of 9p and concomitant duplication of 16q [46,XX,-9,+der(9),t(9;16)(p24;q13)]. Parental chromosome analysis showed a balanced maternal translocation [46,XX,t(9;16)(p24;q13)]. Three other cases of translocations involving chromosomes 9 and 16 have been reported, one of them with identical breakpoints. A review of published reports of deletion 9p and duplication 16q is presented, and a comparison is made with previously described cases. Images PMID:2671373

  13. Protein Translocation across the Rough Endoplasmic Reticulum

    PubMed Central

    Mandon, Elisabet C.; Trueman, Steven F.; Gilmore, Reid

    2013-01-01

    The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration. PMID:23251026

  14. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    PubMed

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in

  15. Interfacing solid-state nanopores with gel media to slow DNA translocations.

    PubMed

    Waugh, Matthew; Carlsen, Autumn; Sean, David; Slater, Gary W; Briggs, Kyle; Kwok, Harold; Tabard-Cossa, Vincent

    2015-08-01

    We demonstrate the ability to slow DNA translocations through solid-state nanopores by interfacing the trans side of the membrane with gel media. In this work, we focus on two reptation regimes: when the DNA molecule is flexible on the length scale of a gel pore, and when the DNA behaves as persistent segments in tight gel pores. The first regime is investigated using agarose gels, which produce a very wide distribution of translocation times for 5 kbp dsDNA fragments, spanning over three orders of magnitude. The second regime is attained with polyacrylamide gels, which can maintain a tight spread and produce a shift in the distribution of the translocation times by an order of magnitude for 100 bp dsDNA fragments, if intermolecular crowding on the trans side is avoided. While previous approaches have proven successful at slowing DNA passage, they have generally been detrimental to the S/N, capture rate, or experimental simplicity. These results establish that by controlling the regime of DNA movement exiting a nanopore interfaced with a gel medium, it is possible to address the issue of rapid biomolecule translocations through nanopores-presently one of the largest hurdles facing nanopore-based analysis-without affecting the signal quality or capture efficiency.

  16. X-autosome translocations in amenorrhoea: a report of a three way translocation from Indian population.

    PubMed

    Shetty, Dhanlaxmi L; Kadam, Akshay P; Koppaka, Neeraja T; Dalvi, Rupa C; Chavan, Deepak S; Das, Bibu R; Mandava, Swarna

    2014-04-01

    Chromosomal translocations have been reported in a number of women undergoing cytogenetic studies for amenorrhoea and gonadal dysgenesis. This study was taken up to emphasize the role of X chromosome and to know the frequency of X-autosomal translocations in women with amenorrhoea in Indian population. Cytogenetic analysis was carried out in 1567 subjects referred for amenorrhoea during the period 2002-2012. GTG-banding was performed from peripheral blood lymphocyte cultures to detect the chromosome abnormalities in all the cases. The karyotype results revealed 43.6% cases with chromosomal abnormalities (n = 683 of 1567 cases). The X-autosomal translocations was found in 2.64% (n = 18 of 683 cases). The common chromosomes involved with X were chromosomes 2, 4, 14 and 20. The translocations involved both p and q arms of the X chromosome.The break point "q26" of X was observed in the majority of the cases. Two interesting cases are discussed: one with three way translocation and another with two translocations. A high number of primary amenorrhoea (PA) and secondary amenorrhoea (SA) cases were involved in X-auto translocation which clearly reveals that chromosomal analysis plays an important role in the evaluation of amenorrhoea.

  17. A jumping shape memory alloy under heat

    PubMed Central

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-01-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials. PMID:26880700

  18. Vortex jump behavior in coupled nanomagnetic heterostructures

    DOE PAGES

    Zhang, S.; Petford-Long, A. K.; Heinonen, O.; ...

    2014-11-26

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here in this article, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy termsmore » were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. In conclusion, the work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.« less

  19. A jumping shape memory alloy under heat.

    PubMed

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  20. Vortex jump behavior in coupled nanomagnetic heterostructures

    SciTech Connect

    Zhang, S.; Petford-Long, A. K.; Heinonen, O.; Phatak, C.

    2014-11-26

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here in this article, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. In conclusion, the work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.

  1. A jumping shape memory alloy under heat

    NASA Astrophysics Data System (ADS)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  2. Jump-landing differences between varsity, club, and intramural athletes: the Jump-ACL Study.

    PubMed

    Theiss, Justin L; Gerber, J Parry; Cameron, Kenneth L; Beutler, Anthony I; Marshall, Stephen W; Distefano, Lindsay J; Padua, Darin A; de la Motte, Sarah J; Miller, Joseph M; Yunker, Craig A

    2014-04-01

    Abnormal movement patterns have been identified as important prospective risk factors for lower extremity injury, including anterior cruciate ligament injury. Specifically, poor neuromuscular control during the early landing phase has been associated with increased injury risk. Although it is commonly assumed that higher division collegiate athletes generally exhibit better movement patterns than lower division athletes, few studies compare the biomechanical differences on basic tasks such as jump landing between various levels of athletic groups. The objective of this study was to evaluate jump-landing and fitness differences among college-aged Intramural, Competitive Club, and National Collegiate Athletic Association (NCAA) Division I level athletes. Two hundred seventy-seven student-athletes (222 men, 55 women; age 19.3 ± 0.8 years) categorized as NCAA Division I, Competitive Club, or Intramural level athletes were evaluated during a jump-landing task using the Landing Error Scoring System (LESS), a validated qualitative movement assessment. Fitness was measured using the Army Physical Fitness Test (APFT). Results showed no significant differences in landing errors between the levels of athletic group (F(2,267) = 0.36, p = 0.70). There was a significant difference in landing errors between genders (F(1,268) = 3.99, p = 0.05). Significant differences in APFT scores were observed between level of athletic group (F(2,267) = 11.14, p < 0.001) and gender (F(1,268) = 9.27, p = 0.003). There was no significant correlation between the APFT and LESS scores (p = 0.26). In conclusion, higher level athletes had better physical fitness as measured by the APFT but did not as a group exhibit better landing technique. The implications of this research suggest that "high-risk" movement patterns are prevalent in all levels of athletes.

  3. Swarm algorithms with chaotic jumps for optimization of multimodal functions

    NASA Astrophysics Data System (ADS)

    Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro

    2011-11-01

    In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).

  4. Analysis and Model Tests of Autogiro Jump Take-off

    NASA Technical Reports Server (NTRS)

    Wheatley, John B; Bioletti, Carlton

    1936-01-01

    An analysis is made of the autogiro jump take-off, in which the kinetic energy of the rotor turning at excess speed is used to effect a vertical take-off. By the use of suitable approximations, the differential equation of motion of the rotor during this maneuver is reduced to a form that can be solved. Only the vertical jump was studied; the effect of a forward motion during the jump is discussed briefly. The results of model tests of the jump take-off have been incorporated in the paper and used to establish the relative accuracy of the results predicted from the analysis. Good agreement between calculation and experiment was obtained by making justifiable allowances.

  5. Metatarsal strapping tightness effect to vertical jump performance.

    PubMed

    Zhang, Yan; Baker, Julien S; Ren, Xuejun; Feng, Neng; Gu, Yaodong

    2015-06-01

    The study investigated the effect of metatarsal strapping on vertical jump performance and evaluated the difference in lower limb kinematics and electromyographic signal (EMG) between different strapping force levels. Twelve male callisthenic athletes completed single vertical jump from a squat posture with hands on hips under three conditions as non-strapping (NS), moderate strapping (MS) and high strapping (HS) round metatarsals. Ground reaction force (GRF) was recorded with KISTLER force platform to calculate the vertical jump height. Angles of ankle, knee and hip were measured with VICON motion analysis system and EMG data were recorded with mega6000 system. Data showed that jump height was significantly higher under HS than NS condition. Compared with NS, ankle inversion decreased significantly during take-off and external rotation increased significantly during landing with MS. Significant difference was also found in the muscle activity of tibialis anterior between non-strapping and strapping conditions.

  6. Relative power of the lower limbs in drop jump.

    PubMed

    Pietraszewski, Bogdan; Rutkowska-Kucharska, Alicja

    2011-01-01

    The purpose of this paper was to determine the power produced by the lower limbs in the take-off phase in drop jumps (DJ) and the correlation between the power and load measured by dropping height after take-off. The research group (N = 17) contained students practicing football, volleyball, basketball, athletics, high jump, swimming and fencing. The individual characteristics 'power-load' of the players and the observation of the changes during the training process enable the coaches to choose precise loads and at the same time to improve the training. The criterion of choosing loads in the plyometric training may be relative power output of lower limbs referred to the DJ height. While the condition allowing player to perform this type of training may depend on obtaining greater power in drop jump than in counter movement jump.

  7. Dynamic criteria of plankton jumping out of water

    PubMed Central

    Kim, Seong Jin; Hasanyan, Jalil; Gemmell, Brad J.; Lee, Sungyon; Jung, Sunghwan

    2015-01-01

    In nature, jumping out of water is a behaviour commonly observed in aquatic species to either escape from predators or hunt prey. However, not all aquatic species are capable of jumping out, especially small organisms whose length scales are comparable to the capillary length (approx. 2.7 mm for water). Some aquatic animals smaller than the capillary length are able to jump out while others are not, as observed in some marine copepods. To understand the dynamics of jumping out of the water–air interface, we perform physical experiments by shooting a spherical particle towards the liquid–air interface from below. Experimental results show that the particle either penetrates or bounces back from the interface, depending on the particle and fluid properties, and the impact velocity. The transition from bouncing to penetration regimes, which is theoretically predicted based on a particle force balance, is in good agreement with both physical experiments and plankton behavioural data. PMID:26468066

  8. Dynamic criteria of plankton jumping out of water.

    PubMed

    Kim, Seong Jin; Hasanyan, Jalil; Gemmell, Brad J; Lee, Sungyon; Jung, Sunghwan

    2015-10-06

    In nature, jumping out of water is a behaviour commonly observed in aquatic species to either escape from predators or hunt prey. However, not all aquatic species are capable of jumping out, especially small organisms whose length scales are comparable to the capillary length (approx. 2.7 mm for water). Some aquatic animals smaller than the capillary length are able to jump out while others are not, as observed in some marine copepods. To understand the dynamics of jumping out of the water-air interface, we perform physical experiments by shooting a spherical particle towards the liquid-air interface from below. Experimental results show that the particle either penetrates or bounces back from the interface, depending on the particle and fluid properties, and the impact velocity. The transition from bouncing to penetration regimes, which is theoretically predicted based on a particle force balance, is in good agreement with both physical experiments and plankton behavioural data.

  9. Bird Flu Strain May Have Jumped from Cat to Human

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_162717.html Bird Flu Strain May Have Jumped From Cat to ... would be the first known transmission of this bird flu strain from cat to human, officials said. ...

  10. The exit-time problem for a Markov jump process

    SciTech Connect

    Burch, N.; D'Elia, Marta; Lehoucq, Richard B.

    2014-12-15

    The purpose of our paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. Furthermore, this calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  11. Anticipating Viral Species Jumps: Bioinformatics and Data Needs

    DTIC Science & Technology

    2011-06-01

    identify, plan , and persuasively communicate what is needed in the near term to achieve the longer-term goals inherent in the agency’s mission. OSRD...field sampling plans to detect evolutionary drivers that could precede viral species jumps. These plans can be deployed proactively (at viral...proposed field sampling plans would be to acquire data that are only available from animal and human hosts near the time of a species jump. As such

  12. Temperature Jump Pyrolysis Studies of RP 2 Fuel

    DTIC Science & Technology

    2017-01-09

    Briefing Charts 3. DATES COVERED (From - To) 15 December 2016 – 11 January 2017 4. TITLE AND SUBTITLE Temperature Jump Pyrolysis Studies of RP-2 Fuel...Rev. 8- 98) Prescribed by ANSI Std. 239.18 1 TEMPERATURE JUMP PYROLYSIS STUDIES OF RP-2 FUEL Owen Pryor1, Steven D. Chambreau2, Ghanshyam L...Mixture Distribution A: Approved for public release; distribution unlimited. PA Clearance 17026 4 RP-2 Pyrolysis /Combustion Chemistries? • Recent

  13. Incline plyometrics-induced improvement of jumping performance.

    PubMed

    Kannas, Theodoros M; Kellis, Eleftherios; Amiridis, Ioannis G

    2012-06-01

    The aim of this study was to examine the effects of incline plyometrics training on muscle activation and architecture during vertical jumping and maximum strength. Twenty male participants were divided in two training groups which followed after a 4 week training program. The incline plyometrics group (n = 10) trained by performing consecutive jumps on an inclined surface (15°) while the plane plyometrics (PP) group (n = 10) performed the same jumps on a plane surface. Both groups trained four times per week and performed 8 sets of 10 jumps in each session. Subjects performed squat jumps, counter movement jumps and drop jumps (DJ) prior to and immediately after the training period, while the electromyographic activity of the medial gastrocnemius (MGAS) and tibialis anterior muscles and the architecture of MGAS were recorded. Maximal isokinetic and isometric strength of the plantar flexors were performed. Analysis of variance showed that only the IP group improved fast DJ height performance by 17.4 and 14.4% (20 and 40 cm, p < 0.05). This was accompanied by a significantly higher MGAS activity during the propulsion phase (24% from 20 cm and 50% from 40 cm, p < 0.05) of the DJ and a longer working fascicle length (5.08%, p < 0.05) compared with the PP group. There were no significant changes in isokinetic and isometric strength of the plantar flexors after training for both groups. The increase of jumping performance, after incline plyometrics should be taken into consideration by coaches, when they apply hopping exercise to improve explosiveness of the plantar flexors.

  14. A drop jumps to weightlessness: a lecture demo

    NASA Astrophysics Data System (ADS)

    Mayer, V. V.; Varaksina, E. I.; Saranin, V. A.

    2017-04-01

    The paper discusses the lecture demonstration of the phenomenon in which a drop lying on a solid unwettable substrate jumps when making the transition to weightlessness. An elementary theory of the phenomenon is given. A jump speed estimate is obtained for small and large drops. The natural vibrational frequency of a flying drop is determined. A full-scale model of Einstein’s elevator is described. Experimental and theoretical results are found to agree satisfactorily.

  15. On the stability of jump-diffusions with Markovian switching

    NASA Astrophysics Data System (ADS)

    Xi, Fubao

    2008-05-01

    In this paper we consider the stability for a class of jump-diffusions with Markovian switching. We first construct them successively and show that they can be associated with some appropriate generators and they are non-explosive. We then prove their Feller continuity by the coupling methods. Furthermore, we also prove their strong Feller continuity by making use of the relation between the transition probabilities of jump-diffusions and the corresponding diffusions. Finally, we also investigate their exponential ergodicity.

  16. Automatic Segmentation of Mechanically Inhomogeneous Tissues Based on Deformation Gradient Jump

    PubMed Central

    Witzenburg, Colleen M.; Dhume, Rohit Y.; Lake, Spencer P.

    2016-01-01

    Variations in properties, active behavior, injury, scarring, and/or disease can all cause a tissue’s mechanical behavior to be heterogeneous. Advances in imaging technology allow for accurate full-field displacement tracking of both in vitro and in vivo deformation from an applied load. While detailed strain fields provide some insight into tissue behavior, material properties are usually determined by fitting stress-strain behavior with a constitutive equation. However, the determination of the mechanical behavior of heterogeneous soft tissue requires a spatially varying constitutive equation (i.e. one in which the material parameters vary with position). We present an approach that computationally dissects the sample domain into many homogeneous subdomains, wherein subdomain boundaries are formed by applying a betweenness based graphical analysis to the deformation gradient field to identify locations with large discontinuities. This novel partitioning technique successfully determined the shape, size and location of regions with locally similar material properties for: (1) a series of simulated soft tissue samples prescribed with both abrupt and gradual changes in anisotropy strength, prescribed fiber alignment, stiffness, and nonlinearity, (2) tissue analogs (PDMS and collagen gels) which were tested biaxially and speckle tracked (3) and soft tissues which exhibited a natural variation in properties (cadaveric supraspinatus tendon), a pathologic variation in properties (thoracic aorta containing transmural plaque), and active behavior (contracting cardiac sheet). The routine enables the dissection of samples computationally rather than physically, allowing for the study of small tissues specimens with unknown and irregular inhomogeneity. PMID:26168433

  17. Muscular strength and jumping performance relationships in young women athletes.

    PubMed

    Rousanoglou, Elissavet N; Georgiadis, Georgios V; Boudolos, Konstantinos D

    2008-07-01

    The relationships between muscular strength and vertical jumping performance were examined in young women (14-19 years) track and field jumpers (n = 20) and volleyball players (n = 21). The knee extensor muscular strength measured at 9 knee angles was correlated with jumping height and peak power at the squat (SJ) and the countermovement (CMJ) vertical jump tests. Pearson product coefficient of correlation was used to test the significance of these relationships (p 0.80). Specifically, in the volleyball players, the strong relationships were noted for muscular strength at the knee angle range of 40 degrees to 90 degrees and CMJ jumping height as well as SJ peak power. Results indicate the dissimilarity in the relationships between the knee extensor muscular strength and jumping performance in the young female track and field jumpers and volleyball players. In addition, it appears that the measure selected to evaluate jumping performance alters the correlational results.

  18. Effects of electromyostimulation training and volleyball practice on jumping ability.

    PubMed

    Malatesta, Davide; Cattaneo, Fabio; Dugnani, Sergio; Maffiuletti, Nicola A

    2003-08-01

    The aim of this study was to investigate the influence of a 4-week electromyostimulation (EMS) training program on the vertical jump performance of 12 volleyball players. EMS sessions were incorporated into volleyball sessions 3 times weekly. EMS consisted of 20-22 concomitant stimulations of the knee extensor and plantar flexor muscles and lasted approximately 12 minutes. No significant changes were observed after EMS training for squat jump (SJ) and counter movement jump (CMJ) performance, while the mean height and the mean power maintained during 15 seconds of consecutive CMJs significantly increased by approximately 4% (p < 0.05). Ten days after the end of EMS training, the jumping height significantly (p < 0.05) increased compared with baseline also for single jumps (SJ +6.5%, CMJ +5.4%). When the aim of EMS resistance training is to enhance vertical jump ability, sport-specific workouts following EMS would enable the central nervous system to optimize the control to neuromuscular properties.

  19. Venous blood lactate increase after vertical jumping in volleyball athletes.

    PubMed

    Chamari, K; Ahmaidi, S; Blum, J Y; Hue, O; Temfemo, A; Hertogh, C; Mercier, B; Préfaut, C; Mercier, J

    2001-07-01

    The aim of this study was to test the hypothesis that venous blood lactate concentrations ([La-]) would vary from the beginning of brief exercise. Maximal vertical jumping was used as a model of brief intense exercise. Eleven healthy male volleyball players, aged [mean (SE)] 18.5 (0.7) years, performed three exercise tests with different protocols, each separated by quiet seated recovery periods of 45 min. After the first test, consisting of a single maximal jump [lasting approximately equals 0.6 s for the pushing phase, and in which the subjects jumped 64 (2.2) cm], forearm venous [La-] increased significantly with respect to rest at 1 min (t1), 3 min (t3), and 5 min (t5) of recovery. The second test, comprising six maximal jumps, each separated by 20-s recovery periods, resulted in an unchanged [La-] with respect to the baseline value. After the third test [i.e., six consecutive maximal jumps that lasted a total of 7.36 (0.33) s], [La-] increased significantly at t3 and t5 with respect to the pre-test value (F= 10.3, P < 0.001). We conclude that a significant venous [La-] increase occurs after vertical jumping. This result may be explained by the activation of lactic anaerobic metabolism at the very onset of exercise, which participates in energy production and/or in the resynthesis of the phosphocreatine that was used during such brief exercise.

  20. Factors influencing spike jump height in female college volleyball players.

    PubMed

    Ikeda, Yusuke; Sasaki, Yusuke; Sorimachi, Shingo; Hamano, Rena

    2017-09-06

    The purpose of this study was to examine factors influencing spike jump (SPJ) performance by female competitive volleyball players through comparisons of the kinematic data of SPJ with those of the standing long jump (SLJ) and vertical jump (VJ). Seventeen female competitive volleyball players were asked to perform SPJ, SLJ, and VJ. Motion data of SPJ including the approach phase were recorded. Regarding SLJ and VJ, jumping motion and ground reaction force were recorded during each performance. The results obtained showed that SPJ height correlated with vertical velocity at take-off, horizontal velocity at third step contact, and the deceleration of horizontal velocity from third step contact to take-off. Regarding the relationship among SPJ, SLJ, and VJ, the relationship between SPJ and SLJ was stronger than that with VJ. The contributions of the hip, knee, and ankle muscles to the propulsive phase of SLJ were 39.7%, 21.1%, and 39.2%, respectively, whereas their contributions to VJ were 36.2%, 30.2%, and 33.6%, respectively. The vertical velocity of SPJ at take-off correlated with hip work and ankle peak power in SLJ and knee peak power in VJ. These results suggest the importance of enhancing horizontal and vertical jumping abilities separately to improve the height of SPJ because the primary generator for power production appears to depend on jump direction.

  1. RHIC GAMMA TRANSITION JUMP POWER SUPPLY PROTOTYPE TEST.

    SciTech Connect

    MI,J.; GANETIS,G.; LOUIE,W.; BRUNO,D.; ZAPASEK,R.; SANDBERG,J.; ZHANG,W.

    2001-06-18

    This paper describes the principle and test results of the prototype RHIC Gamma Transition Jump Power Supply. The jump power supply principle is introduced and illustrated along with diagrams in this paper. The prototype is built with Insulated Gate Bipolar Transistors (IGBT) as current direction switch components. Optically coupled IGBT drivers are used for the jump control switch. The jump time among the power supplies is synchronized from 40 to 60 milliseconds to meet the RHIC beam transition-crossing requirement. The short jump time is needed to avoid particle loss and to preserve the initial bunch area during the transition, thus successfully transferring the ion beams from the acceleration RF system to storage system. There are a total of twenty four jump power supplies that will be used. They synchronously switch the direction of the magnets current while the beam is being accelerated through the transition to reach the top storage energy. Each power supply will energize a group of super conducting magnets, which consists of four magnets that are connected in series. At the end, test results are listed, accompanied with the dummy load current waveform and prototype power supply picture.

  2. Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum

    NASA Astrophysics Data System (ADS)

    Hsu, Fu-Yuan

    2016-06-01

    In aluminum gravity casting, as liquid aluminum fell through a vertical sprue and impacted on the horizontal flat surface, a phenomenon known as hydraulic jump ( i.e., flow transition from super-critical to sub-critical flows) was observed. As the jump was transformed, a reverse eddy motion on the surface of the jump was created. This motion entrained aluminum oxide film from the surface into aluminum melt. This folded film (so-called "bifilm" defect) was engulfed by the melt and caused its quality to deteriorate. To understand this phenomenon, aluminum casting experiments and computational modeling were conducted. In the casting experiment, a radius ( R j) to the point where the circular hydraulic jump occurred was measured. This is the circular region of `irregular surface feature', a rough oxidized surface texture near the center area of the castings. To quantify contents of the bifilm defects in the outer region of the jump, the samples in this region were sectioned and re-melted for doing re-melted reduced pressure test (re-melt RPT). An "area-normalized" bifilm index map was plotted to analyze bifilms' population in the samples. The flow transition in the hydraulic jump of liquid aluminum depended on three pressure heads: inertial, gravitational, and surface-tension pressures. A new theoretical equation containing surface tension for describing the flow transition of liquid metal was proposed.

  3. Effects of intensified military field training on jumping performance.

    PubMed

    Welsh, T T; Alemany, J A; Montain, S J; Frykman, P N; Tuckow, A P; Young, A J; Nindl, B C

    2008-01-01

    A sensitive, reliable, field-expedient test may be valuable for monitoring interventions during periods of anticipated physical performance decline. The purpose of this study was to determine the capabilities of unloaded jumping tests for detecting decrements in physical performance following eight days of military sustained operations. Twenty-nine U. S. Marines (24 +/- 1 y; 180 +/- 6 cm; 82.5 +/- 8.2 kg) performed 1, 5 and 30 repetition(s) of unloaded countermovement jumps (UJ) before and after eight days of sustained operations (SUSOPS). Jump performance data was collected simultaneously using a switch mat (SM) and a linear position transducer (LPT). Jump height (m) and power (W) were highest using 1 UJ and declined 4.9 and 8.9%, respectively after SUSOPS. Jump power (JP) declined progressively over 30 UJ (20%). Five UJ offered no advantages over 1 UJ and was inadequate to examine changes in muscle fatigability (pre: 1294 +/- 138 W; post: 1250 +/- 165 W). The SM and a LPT were in agreement and had a high correlation (r = 0.92). One UJ was a sensitive, easy to implement test for monitoring the collective impact of high physical, nutritional, cognitive, and environmental stress on an individuals' physical performance before and after 8 days of SUSOPS, suggesting decrements in physical performance associated with overreaching can be detected by simply administered field-expedient jumping tests.

  4. Electric-Field-Enhanced Jumping-Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Preston, Daniel; Enright, Ryan; Limia, Alexander; Wang, Evelyn

    2013-11-01

    When condensed droplets coalesce on a superhydrophobic surface, the resulting droplet can jump due to the conversion of surface energy into kinetic energy. This frequent out-of-plane droplet jumping has the potential to enhance condensation heat and mass transfer. In this work, we demonstrated that these jumping droplets accumulate positive charge that can be used to further increase condensation heat transfer via electric fields. We studied droplet jumping dynamics on silanized nanostructured copper oxide surfaces. By characterizing the droplet trajectories under various applied external electric fields (0 - 50 V/cm), we show that condensation on superhydrophobic surfaces results in a buildup of negative surface charge (OH-) due to dissociated water ion adsorption on the superhydrophobic coating. Consequently, the opposite charge (H3O +) accumulates on the coalesced jumping droplet. Using this knowledge, we demonstrate electric-field-enhanced jumping droplet condensation whereby an external electric field opposes the droplet vapor flow entrainment towards the condensing surface to increase the droplet removal rate and overall surface heat transfer by 100% when compared to state-of-the-art dropwise condensing surfaces. This work not only shows significant condensation heat transfer enhancement through the passive charging of condensed droplets, but promises a low cost approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification.

  5. Can jumping capacity of adult show jumping horses be predicted on the basis of submaximal free jumps at foal age? A longitudinal study.

    PubMed

    Bobbert, Maarten F; Santamaría, Susana; van Weeren, P René; Back, Wim; Barneveld, Albert

    2005-09-01

    The purpose of this study was to quantify performance characteristics of good jumping horses, and to determine whether these were already detectable at foal age. Kinematic data were collected of horses performing free jumps over a 0.60 m high fence at six months of age and of these same horses jumping with a rider over a 1.15 m high fence at five years of age. At five years of age the horses were divided into three groups on the basis of a puissance competition: a group of seven best jumpers that made no errors and in the end cleared a 1.50 m high fence, a group of nine worst jumpers that were unable to clear a 1.40 m high fence, and an intermediate group of 13 horses. Longitudinal kinematic data was available for all seven best jumpers and for six of the nine worst jumpers. Average values of variables for the best jumpers were compared with those of the worst jumpers for the jumps over 1.15 m. In the group of best jumpers, the forelimbs were shorter at forelimb clearance due to increased elbow flexion, and the hind limbs were further retroflexed at hind limb clearance. The same superior technique in clearing fences with the limbs was also found in this group at six months of age. Nevertheless, for individual horses it turned out to be too far-fetched to predict adult jumping capacity on the basis of kinematic variables collected during submaximal jumps at foal age.

  6. Familial cryptic translocation in Angelman syndrome

    SciTech Connect

    Weyerts, L.K.; Wiley, J.E.; Loud, K.M.

    1994-09-01

    The majority of patients with Angelman syndrome have been shown to have a cytogenetic or molecular deletion on the maternally derived chromosome 15. We report on a case of Angelman syndrome in which this deletion occurs as an unbalanced cryptic translocation involving chromosomes 14 and 15. The proband was diagnosed clinically as having Angelman syndrome. Multiple cytogenetic studies were done without detecting any deletion. When DNA probes (Oncor) specific for the Prader Willi/Angelman locus became available, the patient was restudied and found to be deleted for {open_quotes}region A{close_quotes} (D15S11) but not for {open_quotes}region B{close_quotes} (GABRB3). No other abnormality was detected. The proband`s mother was then studied. The chromosome 15 marker probe and D15S11 were detected on different chromosomes. Using alpha-satellite probes, a cryptic 14;15 translocation was uncovered. This balanced translocation was also found to be carried by the sister of the proband. This case, along with a case presented at the 1993 ASHG meeting, illustrates the need for using acrocentric probes when studying Angelman syndrome patients. The proband was studied using additional probes specific for this region and found to be deleted for SNRPN but not for D15S10. The breakpoint of the translocation in this patient delineates the smallest deletion of the Angelman syndrome region reported to date and therefore may represent the specific gene involved.

  7. Dysbiotic bacteria translocate in progressive SIV infection.

    PubMed

    Klase, Z; Ortiz, A; Deleage, C; Mudd, J C; Quiñones, M; Schwartzman, E; Klatt, N R; Canary, L; Estes, J D; Brenchley, J M

    2015-09-01

    Infection of gut-resident CD4(+) memory T cells during acute human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection is associated with rapid loss of these cells and damage to the epithelial barrier. Damage to the epithelial barrier allows translocation of microbial products from the intestinal lumen into the body. Immune activation caused by these microbial products has been associated with disease progression. Although microbial translocation has been demonstrated in SIV-infected nonhuman primates, the identity of translocating bacteria has not been determined. In this study we examined the communities of bacteria both within the gastrointestinal (GI) tract and systemic tissues of both healthy and experimentally SIV-infected Asian macaques. Although there were only modest changes in the GI tract-associated microbiome resulting from infection, there is substantial dysbiosis after administration of antiretrovirals. Analysis of bacterial DNA isolated from tissues of infected animals revealed a preference for the phylum Proteobacteria, suggesting that they preferentially translocate. Consistent with this finding, we observed increased metabolic activity of Proteobacterial species within the colonic lumen of SIV-infected animals. Overall, these data provide insights into disease progression and suggest that therapies aimed at altering the composition and metabolic activity of the GI tract microbiome could benefit chronically HIV-infected individuals, particularly those on antiretroviral therapies.

  8. Dysbiotic Bacteria Translocate in Progressive SIV Infection

    PubMed Central

    Klase, Zachary; Ortiz, Alexandra; Deleage, Claire; Mudd, Joseph C.; Quiñones, Mariam; Schwartzman, Elias; Klatt, Nichole R.; Canary, Lauren; Estes, Jacob D.; Brenchley, Jason M.

    2014-01-01

    Infection of gut-resident CD4+ memory T-cells during acute HIV and SIV infection is associated with rapid loss of these cells and damage to the epithelial barrier. Damage to the epithelial barrier allows translocation of microbial products from the intestinal lumen into the body. Immune activation caused by these microbial products has been associated with disease progression. Although microbial translocation has been demonstrated in SIV-infected nonhuman primates, the identity of translocating bacteria has not been determined. In this study we examined the communities of bacteria both within the GI tract and systemic tissues of both healthy and experimentally SIV-infected Asian macaques. While there were only modest changes in the GI tract-associated microbiome resulting from infection, there is substantial dysbiosis after administration of antiretrovirals. Analysis of bacterial DNA isolated from tissues of infected animals revealed a preference for the phylum Proteobacteria, suggesting that they preferentially translocate. Consistent with this finding, we observed increased metabolic activity of Proteobacterial species within the colonic lumen of SIV-infected animals. Overall these data provide insights into disease progression and suggest that therapies aimed at altering the composition and metabolic activity of the GI tract microbiome could benefit chronically-HIV infected individuals particularly those on antiretroviral therapies. PMID:25586559

  9. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  10. Station Tour: Russian Segment

    NASA Image and Video Library

    Expedition 33 Commander Suni Williams concludes her tour of the International Space Station with a visit to the Russian segment, which includes Zarya, the first segment of the station launched in 1...

  11. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes.

    PubMed

    Rapoport, Tom A

    2007-11-29

    A decisive step in the biosynthesis of many proteins is their partial or complete translocation across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. Most of these proteins are translocated through a protein-conducting channel that is formed by a conserved, heterotrimeric membrane-protein complex, the Sec61 or SecY complex. Depending on channel binding partners, polypeptides are moved by different mechanisms: the polypeptide chain is transferred directly into the channel by the translating ribosome, a ratcheting mechanism is used by the endoplasmic reticulum chaperone BiP, and a pushing mechanism is used by the bacterial ATPase SecA. Structural, genetic and biochemical data show how the channel opens across the membrane, releases hydrophobic segments of membrane proteins laterally into lipid, and maintains the membrane barrier for small molecules.

  12. The molecular genetic characterization of the 'Bobwhite' bread wheat family using AFLPs and the effect of the T1BL.1RS translocation.

    PubMed

    Warburton, L.; Skovmand, B.; Mujeeb-Kazi, A.

    2002-04-01

    Bobwhite is a generic name that refers to all sister lines derived from the cross CM 33203 with the pedigree Aurora//Kalyan/Bluebird/3/Woodpecker made by the CIMMYT bread wheat program in the early 1970s. Individual sister lines can be distinguished by their unique selection history. One of the parents, Aurora, contains the T1BL.1RS translocation from rye, and approximately 85% of the sister lines have inherited the translocation. The sister lines demonstrate great variability for agronomic traits such as maturity, height, grain color, reaction to leaf rust, stem rust, yellow rust, septoria leaf blotch and powdery mildew. Certain groups of sister lines derived from particular F(1) plants can be distinguished by their phenotype. One hundred and one Bobwhite sister lines were fingerprinted using four AFLP enzyme/primer combinations. Following multivariate analysis, two main and very distinct clusters were found, which reflected the presence or absence of the T1BL.1RS translocation. Within these clusters, lines clustered together, for the most part, with other sister lines sharing a common selection history. Removal of the AFLP markers that were correlated with the presence or absence of the translocation caused lines to cluster based on pedigree alone. Therefore, the presence of translocations in wheat could bias genetic diversity studies using unmapped markers such as AFLPs that are located on the translocated segment(s), with the result that the resulting clusters will not reflect the true degree of relatedness.

  13. The Circular Hydraulic Jump in Microgravity

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1996-01-01

    This report summarizes the key experimental results and observations that were obtained under NASA grant NAG 3-1627 from the Fluid Physics Program. The Principle Investigator was Thomas Avedisian. In addition a half-time post-doctoral associate, Ziqun Zhao, was funded for half year. The project monitor was David Chao of the NASA-Lewis Research Center in Cleveland, Ohio. The grant period was originally for one year at $34K and a no-cost extension was applied for and granted for an additional year. The research consisted of an experimental study of the circular hydraulic jump (CHJ) in microgravity using water as the working fluid. The evolution of the CHJ radius was measured during a sudden transition from normal to microgravity in a drop tower. The downstream height of the CHJ was controlled by submerging the target plate in a tank filled with water to the desired depth, and the measurements are compared with an existing theory for the location of the CHJ. Results show that the CHJ diameter is larger in microgravity than normal gravity. The adjustment of the CHJ diameter to a sudden change in gravity occurs over a period of about 200ms for the conditions of the present study, and remains constant thereafter for most of the flow conditions examined. For flow conditions that a CHJ was not first established at normal gravity but which later appeared during the transition tb microgravity, the CHJ diameter was not constant during the period of microgravity but continually changed. Good agreement between measured and predicted CHJ radii is found for normal gravity CHJ radii, but comparatively poorer agreement is observed for the CHJ radii measurements in microgravity.

  14. Coronavirus diversity, phylogeny and interspecies jumping.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Huang, Yi; Yuen, Kwok-Yung

    2009-10-01

    The SARS epidemic has boosted interest in research on coronavirus biodiversity and genomics. Before 2003, there were only 10 coronaviruses with complete genomes available. After the SARS epidemic, up to December 2008, there was an addition of 16 coronaviruses with complete genomes sequenced. These include two human coronaviruses (human coronavirus NL63 and human coronavirus HKU1), 10 other mammalian coronaviruses [bat SARS coronavirus, bat coronavirus (bat-CoV) HKU2, bat-CoV HKU4, bat-CoV HKU5, bat-CoV HKU8, bat-CoV HKU9, bat-CoV 512/2005, bat-CoV 1A, equine coronavirus, and beluga whale coronavirus] and four avian coronaviruses (turkey coronavirus, bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus HKU13). Two novel subgroups in group 2 coronavirus (groups 2c and 2d) and two novel subgroups in group 3 coronavirus (groups 3b and 3c) have been proposed. The diversity of coronaviruses is a result of the infidelity of RNA-dependent RNA polymerase, high frequency of homologous RNA recombination, and the large genomes of coronaviruses. Among all hosts, the diversity of coronaviruses is most evidenced in bats and birds, which may be a result of their species diversity, ability to fly, environmental pressures, and habits of roosting and flocking. The present evidence supports that bat coronaviruses are the gene pools of group 1 and 2 coronaviruses, whereas bird coronaviruses are the gene pools of group 3 coronaviruses. With the increasing number of coronaviruses, more and more closely related coronaviruses from distantly related animals have been observed, which were results of recent interspecies jumping and may be the cause of disastrous outbreaks of zoonotic diseases.

  15. Annealed Importance Sampling Reversible Jump MCMC algorithms

    SciTech Connect

    Karagiannis, Georgios; Andrieu, Christophe

    2013-03-20

    It will soon be 20 years since reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms have been proposed. They have significantly extended the scope of Markov chain Monte Carlo simulation methods, offering the promise to be able to routinely tackle transdimensional sampling problems, as encountered in Bayesian model selection problems for example, in a principled and flexible fashion. Their practical efficient implementation, however, still remains a challenge. A particular difficulty encountered in practice is in the choice of the dimension matching variables (both their nature and their distribution) and the reversible transformations which allow one to define the one-to-one mappings underpinning the design of these algorithms. Indeed, even seemingly sensible choices can lead to algorithms with very poor performance. The focus of this paper is the development and performance evaluation of a method, annealed importance sampling RJ-MCMC (aisRJ), which addresses this problem by mitigating the sensitivity of RJ-MCMC algorithms to the aforementioned poor design. As we shall see the algorithm can be understood as being an “exact approximation” of an idealized MCMC algorithm that would sample from the model probabilities directly in a model selection set-up. Such an idealized algorithm may have good theoretical convergence properties, but typically cannot be implemented, and our algorithms can approximate the performance of such idealized algorithms to an arbitrary degree while not introducing any bias for any degree of approximation. Our approach combines the dimension matching ideas of RJ-MCMC with annealed importance sampling and its Markov chain Monte Carlo implementation. We illustrate the performance of the algorithm with numerical simulations which indicate that, although the approach may at first appear computationally involved, it is in fact competitive.

  16. A Comparison of Pairs Figure Skaters in Repeated Jumps

    PubMed Central

    Sands, William A.; Kimmel, Wendy L.; McNeal, Jeni R.; Murray, Steven Ross; Stone, Michael H.

    2012-01-01

    Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg) calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA) showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare. Key pointsThe repeated jumps test can account for about 50% of the variance in pairs ranks.Changes in technique are largely due to fatigue, but the athletes were able to maintain a maximum flexion knee angle very close to the desired 90 degrees. Changes in angular velocity and jump heights occurred as expected, again probably due to fatigue.As expected from metabolic information, the athletes' power indexes peak around 20s and decline thereafter. Coaches should be aware of this time as a boundary beyond which fatigue becomes more manifest, and use careful choreographic choices to provide rest periods that are disguised as less demanding skating elements to afford recovery.The repeated jumps test may be a helpful off-ice test of power-endurance for figure skaters. PMID

  17. A comparison of pairs figure skaters in repeated jumps.

    PubMed

    Sands, William A; Kimmel, Wendy L; McNeal, Jeni R; Murray, Steven Ross; Stone, Michael H

    2012-01-01

    Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg) calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA) showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare. Key pointsThe repeated jumps test can account for about 50% of the variance in pairs ranks.Changes in technique are largely due to fatigue, but the athletes were able to maintain a maximum flexion knee angle very close to the desired 90 degrees. Changes in angular velocity and jump heights occurred as expected, again probably due to fatigue.As expected from metabolic information, the athletes' power indexes peak around 20s and decline thereafter. Coaches should be aware of this time as a boundary beyond which fatigue becomes more manifest, and use careful choreographic choices to provide rest periods that are disguised as less demanding skating elements to afford recovery.The repeated jumps test may be a helpful off-ice test of power-endurance for figure skaters.

  18. A Newborn with Genital Ambiguity, 45,X/46,XY Mosaicism, a Jumping Chromosome Y, and Congenital Adrenal Hyperplasia

    PubMed Central

    Cooley, Linda D.; Chandratre, Sonal R.; Ahmed, Atif; Jacobson, Jill D.

    2013-01-01

    Disorders of sex development (DSD), formerly termed “intersex” conditions, arise from numerous causes. CAH secondary to 21-hydroxylase deficiency is the most common cause of DSD. Sex chromosome disorders, including sex chromosome mosaicism, are the second most common cause of DSD. We discuss a medically complex neonate with DSD presenting with ambiguous genitalia. Hormone levels suggested 21-hydroxylase deficiency. Molecular analysis revealed compound heterozygous mutations in the 21-hydroxylase gene (CYP21A2), confirming the diagnosis of CAH. Chromosome analysis revealed sex chromosome mosaicism with three cell lines: 45,X[8]/45,X,tas(Y;16)(p11.32;p13.3)[8]/45,X,t(Y;8)(p11.32;p23.3)[4] with the Y chromosome in telomere association with chromosomes 8p and 16p in different cell lines, a “jumping translocation.” Histologically, the right gonad had irregular, distended seminiferous tubules with hyperplastic germ cells contiguous with ovarian stroma and primordial follicles. The left gonad had scant ovarian stroma and embryonic remnants. Chromosome analyses showed mosaicism in both gonads: 45,X[17]/45,X,tas(Y;8)(p11.32;p23.3)[3]. This is the first case of coexisting CAH and 45,X/46,XY mosaicism reported in the English literature and the third case of a constitutional chromosome Y “jumping translocation.” Our report documents the medical and genetic complexity of children such as this one with ambiguous genitalia and discusses the need for a multidisciplinary team approach. PMID:24251047

  19. Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation.

    PubMed

    Erlandson, Karl J; Or, Eran; Osborne, Andrew R; Rapoport, Tom A

    2008-06-06

    In bacteria most secretory proteins are transported across the plasma membrane by the interplay of the ATPase SecA with the translocation channel formed by the SecY complex; SecA uses cycles of ATP hydrolysis to "push" consecutive segments of a polypeptide substrate through the channel. Here we have addressed the mechanism of this process by following the fate of stalled translocation intermediates. These were generated by using a polypeptide substrate containing a bulky disulfide-bonded loop, thus preventing the final residues from passing through the channel. Protease protection experiments showed that the intermediates were stable in the presence of ATP and could complete translocation once the block was removed. The translocation intermediate was also stable when SecA associated with ATPgammaS, a poorly hydrolyzable ATP analog, or ADP plus AlF(4), which mimics the transition state during ATP hydrolysis. In contrast, when SecA was in its ADP-bound state, the translocating polypeptide moved back into the cytosol, as indicated by the disappearance of the protected fragment. Backsliding was not significantly altered by deletion of the plug domain, a short helix in the center of the SecY channel, but it was slowed down when changes were introduced into the pore ring, the constriction of the hourglass-shaped channel. In all cases, backsliding was significantly slower than forward translocation. Together, these data suggest that SecA binds the polypeptide chain in its ATP state and releases it in the ADP state. The channel itself does not bind the polypeptide chain but provides "friction" that minimizes backsliding when ADP-bound SecA resets to "grab" the next segment of the substrate.

  20. Measurement of three-dimensional posture and trajectory of lower body during standing long jumping utilizing body-mounted sensors.

    PubMed

    Ibata, Yuki; Kitamura, Seiji; Motoi, Kosuke; Sagawa, Koichi

    2013-01-01

    The measurement method of three-dimensional posture and flying trajectory of lower body during jumping motion using body-mounted wireless inertial measurement units (WIMU) is introduced. The WIMU is composed of three-dimensional (3D) accelerometer and gyroscope of two kinds with different dynamic range and one 3D geomagnetic sensor to adapt to quick movement. Three WIMUs are mounted under the chest, right thigh and right shank. Thin film pressure sensors are connected to the shank WIMU and are installed under right heel and tiptoe to distinguish the state of the body motion between grounding and jumping. Initial and final postures of trunk, thigh and shank at standing-still are obtained using gravitational acceleration and geomagnetism. The posture of body is determined using the 3D direction of each segment updated by the numerical integration of angular velocity. Flying motion is detected from pressure sensors and 3D flying trajectory is derived by the double integration of trunk acceleration applying the 3D velocity of trunk at takeoff. Standing long jump experiments are performed and experimental results show that the joint angle and flying trajectory agree with the actual motion measured by the optical motion capture system.

  1. Measurement of pelvic motion is a prerequisite for accurate estimation of hip joint work in maximum height squat jumping.

    PubMed

    Blache, Yoann; Bobbert, Maarten; Argaud, Sebastien; Pairot de Fontenay, Benoit; Monteil, Karine M

    2013-08-01

    In experiments investigating vertical squat jumping, the HAT segment is typically defined as a line drawn from the hip to some point proximally on the upper body (eg, the neck, the acromion), and the hip joint as the angle between this line and the upper legs (θUL-HAT). In reality, the hip joint is the angle between the pelvis and the upper legs (θUL-pelvis). This study aimed to estimate to what extent hip joint definition affects hip joint work in maximal squat jumping. Moreover, the initial pelvic tilt was manipulated to maximize the difference in hip joint work as a function of hip joint definition. Twenty-two male athletes performed maximum effort squat jumps in three different initial pelvic tilt conditions: backward (pelvisB), neutral (pelvisN), and forward (pelvisF). Hip joint work was calculated by integrating the hip net joint torque with respect to θUL-HAT (WUL-HAT) or with respect to θUL-pelvis (WUL-pelvis). θUL-HAT was greater than θUL-pelvis in all conditions. WUL-HAT overestimated WULpelvis by 33%, 39%, and 49% in conditions pelvisF, pelvisN, and pelvisB, respectively. It was concluded that θUL-pelvis should be measured when the mechanical output of hip extensor muscles is estimated.

  2. Effect of Instructions on Selected Jump Squat Variables.

    PubMed

    Talpey, Scott W; Young, Warren B; Beseler, Bradley

    2016-09-01

    Talpey, SW, Young, WB, and Beseler, B. Effect of instructions on selected jump squat variables. J Strength Cond Res 30(9): 2508-2513, 2016-The purpose of this study was to compare 2 instructions on the performance of selected variables in a jump squat (JS) exercise. The second purpose was to determine the relationships between JS variables and sprint performance. Eighteen male subjects with resistance training experience performed 2 sets of 4 JS with no extra load with the instructions to concentrate on (a) jumping for maximum height and (b) extending the legs as fast as possible to maximize explosive force. Sprint performance was assessed at 0- to 10-m and 10- to 20-m distances. From the JS jump height, peak power, relative peak power, peak force, peak velocity, and countermovement distance were measured from a force platform and position transducer system. The JS variables under the 2 instructions were compared with paired t-tests, and the relationships between these variables and sprint performance were determined with Pearson's correlations. The jump height instruction produced greater mean jump height and peak velocity (p < 0.05), but the fast leg extension instruction produced greater (p < 0.05) peak force (3.7%). There was a trivial difference between the instructions for peak power output (p > 0.05). Jump height was the variable that correlated most strongly with 10-m time and 10- to 20-m time under both instructions. The height instruction produced a stronger correlation with 10-m time (r = -0.455), but the fast leg extension JS produced a greater correlation with 10-20 time (r = -0.545). The results indicate that instructions have a meaningful influence on JS variables and therefore need to be taken into consideration when assessing or training athletes.

  3. Scaling and jumping: gravity loses grip on small jumpers.

    PubMed

    Scholz, Melanie N; Bobbert, Maarten F; Knoek van Soest, A J

    2006-06-21

    There are several ways to quantify jumping performance, a common definition being the height gained by the body's centre of mass (CM) in the airborne phase. Under this definition, jump height is determined by take-off velocity. According to the existing literature on jumping and scaling, take-off velocity, and hence jumping performance is independent of size because the energy that differently sized geometrically scaled jumpers can generate with their muscles is proportional to their mass. In this article it is shown, based on a simple energy balance, that it is incorrect to presume that jump height does not depend on size. Contrary to common belief, size as such has does have an effect on take-off velocity, putting small jumpers at a mechanical advantage, as is shown analytically. To quantify the effect of size on take-off velocity, a generic jumper model was scaled geometrically and evaluated numerically. While a 70-kg jumper took off at 2.65 m/s and raised its CM by 0.36 m after take-off, a perfectly geometrically similar jumper of 0.7 g reached a take-off velocity of 3.46 m/s and raised its CM by 0.61 m. The reason for the better performance of small jumpers is their higher efficacy in transforming the energy generated by the actuators into energy due to vertical velocity of the CM. Considering the ecological and evolutionary relevance of different definitions of jump height, size-dependent efficacy might explain why habitual jumping is especially prominent among small animals such as insects.

  4. Kinematic structure at the early flight position in ski jumping.

    PubMed

    Vodičar, Janez; Coh, Milan; Jošt, Bojan

    2012-12-01

    The purpose of our research was to establish the variability of correlation between the length of the jumps and selected multi-item kinematic variables (n=9) in the early flight phase technique of ski jumping. This study was conducted on a sample of elite Slovenian ski jumpers (N=29) who participated in the experiment on a jumping hill in Hinterzarten, Germany (HS95m) on the 20(th) of August, 2008. The highest and most significant correlations (p=0.01) with the length of the ski jump were found in the multi-item variable height of flying, which was also expressed with the highest level of stability of the explained total variance (TV) on the first factor (TV=69.13%). The most important characteristic of the aerodynamic aspect of early flight was the variable angle between the body chord and the horizontal axis with significantly high correlations (p<0.05). The stability of that aerodynamic factor was very high (TV=65.04%). The results were essentially similar for the multi-item variable angle between left leg and the horizontal axis (TV=61.88%). The rest of the multi-item kinematic variables did not have significant correlations with the multi-item variable length of jump. Only two more variables, the angle between the upper body and the horizontal plane (TV=53.69%), and the angle between left ski and left leg (TV=50.13%), had an explained common variance on the first factor greater than 50% of total variance. The results indicated that some kinematic parameters of ski jumping early flight technique were more important for success considering the length of the jump.

  5. Coupled jump rotational dynamics in aqueous nitrate solutions.

    PubMed

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO3(-)) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO3(-) is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  6. Effects of footwear condition on maximal jumping performance.

    PubMed

    Harry, John R; Paquette, Max R; Caia, Johnpaul; Townsend, Robert J; Weiss, Lawrence W; Schilling, Brian K

    2015-06-01

    The purpose of this investigation was to examine the effects of footwear on kinetics and lower extremity electromyographic (EMG) activity during the vertical jump (VJ) and standing long jump. Fifteen men performed the 2 jump types in 3 footwear conditions: barefoot, minimal shoes, and cross-training shoes. Jump displacement and kinetic data were collected, along with EMG activity of the biceps femoris, medial gastrocnemius, peroneus longus, semitendinosus/semimembranosus, soleus (SOL), tibialis anterior, vastus lateralis, and vastus medialis. Subjective footwear performance and comfort were also assessed with a custom survey. No differences were found in jump displacement, peak ground reaction forces (GRF), countermovement and propulsive phase durations, vertical impulse, peak countermovement, or average propulsive EMG activity. Significant differences in peak propulsive root mean square EMG were found between barefoot and minimal shoes (p = 0.030) and minimal shoes and shod (p = 0.031) conditions for the SOL during the VJ, and for average countermovement EMG of the semitendinosus/semimembranosus during the VJ between barefoot and shod (p = 0.039). Moderate-to-large effect sizes (>0.59) were found between conditions for horizontal GRF, propulsive phase duration, average EMG amplitude, and duration of EMG activity during the countermovement. Participants reported higher comfort ratings when shod compared with barefoot and minimal shoes for both jumps. Participants also perceived better performance when shod compared with barefoot and minimal shoes for the VJ only. No acute differences in displacement were observed between barefoot, minimal shoes, and cross-trainer shoes during vertical and horizontal jumps. Some differences in muscle activation and timing seem to be present, and thus, training effects between footwear conditions should be examined. Footwear familiarization may prove beneficial, as acute increases in comfort seem unrelated to performance improvements.

  7. Coupled jump rotational dynamics in aqueous nitrate solutions

    NASA Astrophysics Data System (ADS)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-01

    A nitrate ion (NO3-) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO3- is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the coupled

  8. Investigating binding particles distribution effects on polymer translocation through nanopore

    NASA Astrophysics Data System (ADS)

    Haji Abdolvahab, Rouhollah

    2016-03-01

    Chaperone driven polymer translocation is an important model for biopolymer's translocation in vivo. Binding proteins spatial distribution is a significant factor in calculating the translocation time of the polymer in this type of translocation. Here using a dynamical Monte Carlo simulation we compare the results of the usual uniform distribution with the exponential distribution of different rates for a stiff polymer. Our simulation results show that just by changing the chaperones spatial distribution the translocation time of the biopolymer will change by as large as an order. It can change the translocation regime of the polymer completely from a diffusive to a ballistic one. Although generally increasing the exponential rate and the background concentration will increase the translocation velocity, it is not always true and one should consider both the sequence and the background concentration. We show that the results depend on the sequence and changing the distribution rates for increasing the translocation velocity will change the whole Probability Density Function (PDF) of the polymer translocation time accordance to its sequence. The translocation time sequence dependency will change in the extreme cases e.g. in the high exponential rate. Investigating the binding protein size, λ, also shows the importance of the so called parking lot effect in distribution dependency of the translocation velocity. Although there is not any important dependency for λ = 1, translocation time depends clearly on the chaperone spatial distribution for the case of λ ≥ 2.

  9. Identification of an Essential Region for Translocation of Clostridium difficile Toxin B

    PubMed Central

    Chen, Shuyi; Wang, Haiying; Gu, Huawei; Sun, Chunli; Li, Shan; Feng, Hanping; Wang, Jufang

    2016-01-01

    Clostridium difficile toxin A (TcdA) and toxin B (TcdB) are the major virulence factors involved in C. difficile-associated diarrhea and pseudomembranous colitis. TcdA and TcdB both contain at least four distinct domains: the glucosyltransferase domain, cysteine protease domain, receptor binding domain, and translocation domain. Few studies have investigated the translocation domain and its mechanism of action. Recently, it was demonstrated that a segment of 97 amino acids (AA 1756–1852, designated D97) within the translocation domain of TcdB is essential for the in vitro and in vivo toxicity of TcdB. However, the mechanism by which D97 regulates the action of TcdB in host cells and the important amino acids within this region are unknown. In this study, we discovered that a smaller fragment, amino acids 1756–1780, located in the N-terminus of the D97 fragment, is essential for translocation of the effector glucosyltransferase domain into the host cytosol. A sequence of 25AA within D97 is predicted to form an alpha helical structure and is the critical part of D97. The deletion mutant TcdB∆1756–1780 showed similar glucosyltransferase and cysteine protease activity, cellular binding, and pore formation to wild type TcdB, but it failed to induce the glucosylation of Rho GTPase Rac1 of host cells. Moreover, we found that TcdB∆1756–1780 was rapidly degraded in the endosome of target cells, and therefore its intact glucosyltransferase domain was unable to translocate efficiently into host cytosol. Our finding provides an insight into the molecular mechanisms of action of TcdB in the intoxication of host cells. PMID:27537911

  10. Preimplantation genetic haplotyping a new application for diagnosis of translocation carrier's embryos- preliminary observations of two robertsonian translocation carrier families.

    PubMed

    Shamash, Jana; Rienstein, Shlomit; Wolf-Reznik, Haike; Pras, Elon; Dekel, Michal; Litmanovitch, Talia; Brengauz, Masha; Goldman, Boleslav; Yonath, Hagith; Dor, Jehoshua; Levron, Jacob; Aviram-Goldring, Ayala

    2011-01-01

    Preimplantation genetic diagnosis using fluorescence in-situ hybridization (PGD-FISH) is currently the most common reproductive solution for translocation carriers. However, this technique usually does not differentiate between embryos carrying the balanced form of the translocation and those carrying the homologous normal chromosomes. We developed a new application of preimplantation genetic haplotyping (PGH) that can identify and distinguish between all forms of the translocation status in cleavage stage embryos prior to implantation. Polymorphic markers were used to identify and differentiate between the alleles that carry the translocation and those that are the normal homologous chromosomes. Embryos from two families of robertsonian translocation carriers were successfully analyzed using polymorphic markers haplotyping. Our preliminary results indicate that the PGH is capable of distinguishing between normal, balanced and unbalanced translocation carrier embryos. This method will improve PGD and will enable translocation carriers to avoid transmission of the translocation and the associated medical complications to offspring.

  11. The complete mitogenome of a jumping spider Carrhotus xanthogramma (Araneae: Salticidae) and comparative analysis in four salticid mitogenomes.

    PubMed

    Fang, Wen-Yuan; Wang, Zheng-Liang; Li, Chao; Yang, Xiao-Qing; Yu, Xiao-Ping

    2016-12-01

    The complete mitogenome of the jumping spider Carrhotus xanthogramma was determined and comparative analysis among four salticid mitogenomes was conducted. The circular genome is 14,563 bp in size and contains a complete set of genes that usually present in the metazoa. All of the 13 protein-coding genes begin with a typical ATN codon and stop with the canonical stop codons, except for ND4 and ND4L genes with an incomplete stop codon T. All of the tRNAs cannot be formed the fully paired acceptor stems and seven out of them cannot be folded into the typical cloverleaf-shaped secondary structures. The tRNA (Glu) gene translocates its position as compared to the mitogenomes of other three determined jumping spiders. The A+T content of the majority strand and the A+T-rich region are 75.1 and 80%, respectively. The phylogenetic relationships based on concatenated nucleotide and amino acid sequences of 13 protein-coding genes using Maximum Likelihood and Bayesian Inference methods indicated that mitogenome sequences were useful in resolving higher-level relationship of Araneae.

  12. Tertiary trisomy of 10p15.pter and 14pter.ql3 due to maternal translocation t(10;14)(p15;q13).

    PubMed

    Cetin, Z; Mihci, E; Keser, I; Luleci, G

    2012-01-01

    Double partial trisomy resulting from 3:1 segregation of the respective chromosomal segments of the chromosomes involved in a balanced translocation in meiosis is rarely reported in the literature. We present here a first patient with multiple congenital malformations associated with double partial trisomy of 10pter-p15 and 14pter-q13 resulting from 3:1 segregation of maternal balanced translocation t(10;14)(p15;q13). Proximal partial trisomy of chromosome 14 and subterminal trisomy of the short arm of the chromosome 10 are rare. The present case is the first case with double partial trisomy of these segments resulting from 3:1 segregation of a maternal balanced translocation.

  13. Color image segmentation

    NASA Astrophysics Data System (ADS)

    McCrae, Kimberley A.; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.

    1994-03-01

    The most difficult stage of automated target recognition is segmentation. Current segmentation problems include faces and tactical targets; previous efforts to segment these objects have used intensity and motion cues. This paper develops a color preprocessing scheme to be used with the other segmentation techniques. A neural network is trained to identify the color of a desired object, eliminating all but that color from the scene. Gabor correlations and 2D wavelet transformations will be performed on stationary images; and 3D wavelet transforms on multispectral data will incorporate color and motion detection into the machine visual system. The paper will demonstrate that color and motion cues can enhance a computer segmentation system. Results from segmenting faces both from the AFIT data base and from video taped television are presented; results from tactical targets such as tanks and airplanes are also given. Color preprocessing is shown to greatly improve the segmentation in most cases.

  14. Single-nucleotide polymorphism microarray-based preimplantation genetic diagnosis is likely to improve the clinical outcome for translocation carriers.

    PubMed

    Tan, Y-Q; Tan, K; Zhang, S-P; Gong, F; Cheng, D-H; Xiong, B; Lu, C-F; Tang, X-C; Luo, K-L; Lin, G; Lu, G-X

    2013-09-01

    Is preimplantation genetic diagnosis (PGD) for translocation carriers more effective when done with a single-nucleotide polymorphism (SNP) array using trophectoderm (TE) biopsy and frozen embryo transfer (FET) compared with traditional PGD based on fluorescence in situ hybridization (FISH-PGD) using blastomere biopsy and fresh embryo transfer? The procedure using the SNP array combined with TE biopsy and FET significantly improves the clinical pregnancy rate for translocation carriers. The miscarriage rate also slightly decreases. FISH-PGD has been widely used in translocation carriers but the clinical outcomes have not been ideal. SNP arrays can detect both chromosome segmental imbalances and aneuploidy, and may overcome the limitations of FISH in PGD for translocation carriers. This was a retrospective study of 575 couples with chromosomal translocations, including 169 couples treated by SNP-PGD between October 2011 and August 2012, and 406 couples treated by FISH-PGD between January 2005 and October 2011. The study was set in an IVF center at the Reproductive and Genetic Hospital of CITIC-Xiangya, China. In total, 169 couples underwent SNP analysis, including 52 Robertsonian translocation carriers and 117 carriers of reciprocal translocations. Blastocysts (n = 773) were biopsied and FET was carried out on the balanced embryos. Four hundred and six couples underwent FISH-PGD, including 149 Robertsonian translocation carriers and 257 reciprocal translocation carriers. In total, 3968 embryos were biopsied and balanced embryos were transferred fresh. The SNP-PGD results and clinical outcomes were compared with those of FISH-PGD. Reliable SNP-PGD results were obtained for 717 out of 773 (92.8%) biopsied blastocysts. The proportions of normal/balanced embryos, embryos with translocation-related and translocation-unrelated abnormalities, the median number of embryos per patient, the ongoing pregnancy rate per embryo transfer and the miscarriage rate were 58, 23, 19, 2

  15. Relationship between sprint ability and loaded/unloaded jump tests in elite sprinters.

    PubMed

    Loturco, Irineu; DʼAngelo, Ricardo A; Fernandes, Victor; Gil, Saulo; Kobal, Ronaldo; Cal Abad, Cesar C; Kitamura, Katia; Nakamura, Fabio Y

    2015-03-01

    The neuromechanical determinants of sprint running performance have been investigated in team sports athletes and non-elite sprinters. The aim of this study was to quantify the relationships between kinetic and performance parameters, obtained in loaded and unloaded vertical and horizontal jumps, and sprinting in elite athletes. Twenty-two sprinters performed squat jumps, countermovement jumps, horizontal jumps, and jump squats with different loads on a force platform, in addition to a 50-m sprint. Results indicated that jumping height and distance in vertical and horizontal jumps are more strongly correlated (R ≈ 0.81) to sprinting speed than the respective peak forces (R ≈ 0.36). Furthermore, the optimum load generating the maximum power in the jump squat is also highly correlated to sprint performance (R ≈ 0.72). These results reveal that vertical and horizontal jump tests may be used by coaches for assessing and monitoring qualities related to sprinting performance in elite sprinters.

  16. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation

    SciTech Connect

    Corral, J.; Forster, A.; Thompson, S.; Rabbitts, T.H. ); Lampert, F. ); Kaneko, Y. ); Slater, R.; Kroes, W.G. ); Van Der Schoot, C.E. ); Ludwig, W.D. ); Karpas, A. ); Pocock, C.; Cotter, F. )

    1993-09-15

    The MLL gene, on human chromosome 11q23, undergoes chromosomal translocation in acute leukemias, resulting in gene fusion with AF4 (chromosome 4) and ENL (chromosome 19). The authors report here translocation of MLL with nine different chromosomes and two paracentric chromosome 11 deletions in early B cell, B- or T-cell lineage, or nonlymphocytic acute leukemias. The mRNA translocation junction from 22t(4;11) patients, including six adult leukemias, and nine t(11;19) tumors reveals a remarkable conservation of breakpoints within MLL, AF4, or ENL genes, irrespective of tumor phenotype. Typically, the breakpoints are upstream of the zinc-finger region of MLL, and deletion of this region can accompany translocation, supporting the der(11) chromosome as the important component in leukemogenesis. Partial sequence of a fusion between MLL and the AFX1 gene from chromosome X shows the latter to be rich in Ser/Pro codons, like the ENL mRNA. These data suggest that the heterogeneous 11q23 abnormalities might cause attachment of Ser/Pro-rich segments to the NH[sub 2] terminus of MLL, lacking the zinc-finger region, and that translocation occurs in early hematopoietic cells, before commitment to distinct lineages. 36 refs., 2 figs.

  17. Clustering of breakpoints on chromosome 10 in acute T-cell leukemias with the t(10; 14) chromosome translocation

    SciTech Connect

    Kagan, J.; Finger, L.R.; Letofsky, J.; Finan, J.; Nowell, P.C.; Croce, C.M. )

    1989-06-01

    The T-cell receptor (TCR){alpha}/{delta} chain locus on chromosome 14q11 is nonrandomly involved in translocations and inversions in human T-cell neoplasms. The authors have analyzed three acute T-lymphoblastic leukemia samples carrying a t(10;14)(q24;q11) chromosome translocation by means of somatic cell hybrids and molecular cloning. In all cases studied the translocation splits the TCR {delta} chain locus. Somatic cell hybrids containing the human 10q+ chromosome resulting from the translocation retain the human terminal deoxynucleotidyltransferase gene mapped at 10q23-q24 and the diversity and joining, D{sub {delta}}2-J{sub {delta}}1, regions of the TCR {delta} chain, but not the V{sub {alpha}} region (variable region of the TCR {alpha} chain), demonstrating that the split occurred within the V{sub {alpha}}-D{sub {delta}}2 region. Molecular cloning of the breakpoint junctions revealed that the TCR {delta} chain sequences involved are made from the D{sub {delta}}2 segment. The chromosome breakpoints are clustered within a region of {approx} 263 base pairs of chromosome 10. The results suggest that the translocation of the TCR {delta} chain locus to a locus on 10q, which the authors have designated TCL3, results in deregulation of this putative oncogene, leading to acute T-cell leukemia.

  18. THE EFFECTS OF SINGLE VERSUS REPEATED PLYOMETRICS ON LANDING BIOMECHANICS AND JUMPING PERFORMANCE IN MEN

    PubMed Central

    Czaplicki, A.; Sacewicz, T.; Sadowski, J.

    2014-01-01

    The aim of this study was to examine the chronic effects of single and repeated jumps training on vertical landing force (VGRF) and jump height in untrained men. The VGRF and jump height were compared after a six-week plyometric training programme containing single and repeated jumps, together with two additional parameters: landing time (LT) and range of the knee flexion during landing (KF). Thirty-six untrained physical education students with a plyometric training background were randomly assigned to a single jump group (SJG, n =12), repeated jumps group (RJG, n =12), and control group (CON, n =12). The SJG performed only single jumps, the RJG executed repeated (consecutive) jumps, whereas the CON did not perform any exercises at all. A countermovement jump (CMJ), repeated countermovement jumps (RCMJ), and a drop jump (DJ) were tested before and after the training. Only the RJG showed a significantly reduced VGRF (p < 0.05) in all tests. Both plyometric groups significantly improved (p < 0.05) their jump height in all tests. The LT was significantly greater in the RJG, compared to the SJG, in all tests. The KF was also significantly (p < 0.05) greater in the RJG than in the SJG for CMJ and RCMJ. The results suggest that repeated jumps are beneficial for simultaneous landing force reduction and jumping performance enhancement. PMID:24917684

  19. The effects of single versus repeated plyometrics on landing biomechanics and jumping performance in men.

    PubMed

    Makaruk, H; Czaplicki, A; Sacewicz, T; Sadowski, J

    2014-03-01

    The aim of this study was to examine the chronic effects of single and repeated jumps training on vertical landing force (VGRF) and jump height in untrained men. The VGRF and jump height were compared after a six-week plyometric training programme containing single and repeated jumps, together with two additional parameters: landing time (LT) and range of the knee flexion during landing (KF). Thirty-six untrained physical education students with a plyometric training background were randomly assigned to a single jump group (SJG, n =12), repeated jumps group (RJG, n =12), and control group (CON, n =12). The SJG performed only single jumps, the RJG executed repeated (consecutive) jumps, whereas the CON did not perform any exercises at all. A countermovement jump (CMJ), repeated countermovement jumps (RCMJ), and a drop jump (DJ) were tested before and after the training. Only the RJG showed a significantly reduced VGRF (p < 0.05) in all tests. Both plyometric groups significantly improved (p < 0.05) their jump height in all tests. The LT was significantly greater in the RJG, compared to the SJG, in all tests. The KF was also significantly (p < 0.05) greater in the RJG than in the SJG for CMJ and RCMJ. The results suggest that repeated jumps are beneficial for simultaneous landing force reduction and jumping performance enhancement.

  20. Anticipating the species jump: surveillance for emerging viral threats.

    PubMed

    Flanagan, M L; Parrish, C R; Cobey, S; Glass, G E; Bush, R M; Leighton, T J

    2012-05-01

    Zoonotic disease surveillance is typically triggered after animal pathogens have already infected humans. Are there ways to identify high-risk viruses before they emerge in humans? If so, then how and where can identifications be made and by what methods? These were the fundamental questions driving a workshop to examine the future of predictive surveillance for viruses that might jump from animals to infect humans. Virologists, ecologists and computational biologists from academia, federal government and non-governmental organizations discussed opportunities as well as obstacles to the prediction of species jumps using genetic and ecological data from viruses and their hosts, vectors and reservoirs. This workshop marked an important first step towards envisioning both scientific and organizational frameworks for this future capability. Canine parvoviruses as well as seasonal H3N2 and pandemic H1N1 influenza viruses are discussed as exemplars that suggest what to look for in anticipating species jumps. To answer the question of where to look, prospects for discovering emerging viruses among wildlife, bats, rodents, arthropod vectors and occupationally exposed humans are discussed. Finally, opportunities and obstacles are identified and accompanied by suggestions for how to look for species jumps. Taken together, these findings constitute the beginnings of a conceptual framework for achieving a virus surveillance capability that could predict future species jumps.