Sample records for segmental tubular function

  1. Post-hypoxic cellular disintegration in glycine-preserved renal tubules is attenuated by hydroxyl radical scavengers and iron chelators.

    PubMed

    Moussavian, Mohammed R; Slotta, Jan E; Kollmar, Otto; Menger, Michael D; Gronow, Gernot; Schilling, Martin K

    2008-05-01

    Cellular stress during reoxygenation is a common phenomenon in solid organ transplantation and is characterized by production of reactive oxygen species. Herein, we studied in isolated tubular segments of rat kidney cortex the impact of oxygen radical scavengers and an iron chelator on post-hypoxic recovery. Tubules, suspended in Ringer's solution containing 5 mM glycine, underwent 30 min hypoxia and 60 min reoxygenation. Untreated tubules served as controls. Hypoxia-reoxygenation injury was measured by membrane leakage, lipid peroxidation and cellular functions. In hypoxia-reoxygenated-isolated tubular segments, protective effects of different scavengers and of the iron chelator deferoxamine on hypoxia-reoxygenation injury were analyzed. Scavengers protected isolated tubular segments from hypoxia-reoxygenation-induced cellular disintegration and dysfunction. Deferoxamine was found to exert the most distinct protection. It was further found to exert a dose-dependent protection on hypoxia-reoxygenation damage in isolated tubular segments, which was critically mediated by chelating tissue and bond iron. Our data demonstrate that radical scavengers effectively protect from hypoxia-reoxygenation injury in isolated tubular segments and that the iron chelator deferoxamine is especially a potent inhibitor of iron ion-mediated hypoxia-reoxygenation damage. Thus, inclusion of this iron chelator in organ storage solutions might improve post-transplant organ function and protect from reperfusion injury.

  2. Bio-medical flow sensor. [intrvenous procedures

    NASA Technical Reports Server (NTRS)

    Winkler, H. E. (Inventor)

    1981-01-01

    A bio-medical flow sensor including a packageable unit of a bottle, tubing and hypodermic needle which can be pre-sterilized and is disposable. The tubing has spaced apart tubular metal segments. The temperature of the metal segments and fluid flow therein is sensed by thermistors and at a downstream location heat is input by a resistor to the metal segment by a control electronics. The fluids flow and the electrical power required for the resisto to maintain a constant temperature differential between the tubular metal segments is a measurable function of fluid flow through the tubing. The differential temperature measurement is made in a control electronics and also can be used to control a flow control valve or pump on the tubing to maintain a constant flow in the tubing and to shut off the tubing when air is present in the tubing.

  3. Pulse joining cartridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  4. Pulse joining cartridges

    DOEpatents

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2016-08-23

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  5. Urinary NGAL marks cystic disease in HIV-associated nephropathy.

    PubMed

    Paragas, Neal; Nickolas, Thomas L; Wyatt, Christina; Forster, Catherine S; Sise, Meghan; Morgello, Susan; Jagla, Bernd; Buchen, Charles; Stella, Peter; Sanna-Cherchi, Simone; Carnevali, Maria Luisa; Mattei, Silvia; Bovino, Achiropita; Argentiero, Lucia; Magnano, Andrea; Devarajan, Prasad; Schmidt-Ott, Kai M; Allegri, Landino; Klotman, Paul; D'Agati, Vivette; Gharavi, Ali G; Barasch, Jonathan

    2009-08-01

    Nephrosis and a rapid decline in kidney function characterize HIV-associated nephropathy (HIVAN). Histologically, HIVAN is a collapsing focal segmental glomerulosclerosis with prominent tubular damage. We explored the expression of neutrophil gelatinase-associated lipocalin (NGAL), a marker of tubular injury, to determine whether this protein has the potential to aid in the noninvasive diagnosis of HIVAN. We found that expression of urinary NGAL was much higher in patients with biopsy-proven HIVAN than in HIV-positive and HIV-negative patients with other forms of chronic kidney disease. In the HIV-transgenic mouse model of HIVAN, NGAL mRNA was abundant in dilated, microcystic segments of the nephron. In contrast, urinary NGAL did not correlate with proteinuria in human or in mouse models. These data show that marked upregulation of NGAL accompanies HIVAN and support further study of uNGAL levels in large cohorts to aid in the noninvasive diagnosis of HIVAN and screen for HIVAN-related tubular damage.

  6. Urinary NGAL Marks Cystic Disease in HIV-Associated Nephropathy

    PubMed Central

    Paragas, Neal; Nickolas, Thomas L.; Wyatt, Christina; Forster, Catherine S.; Sise, Meghan; Morgello, Susan; Jagla, Bernd; Buchen, Charles; Stella, Peter; Sanna-Cherchi, Simone; Carnevali, Maria Luisa; Mattei, Silvia; Bovino, Achiropita; Argentiero, Lucia; Magnano, Andrea; Devarajan, Prasad; Schmidt-Ott, Kai M.; Allegri, Landino; Klotman, Paul; D'Agati, Vivette; Gharavi, Ali G.

    2009-01-01

    Nephrosis and a rapid decline in kidney function characterize HIV-associated nephropathy (HIVAN). Histologically, HIVAN is a collapsing focal segmental glomerulosclerosis with prominent tubular damage. We explored the expression of neutrophil gelatinase-associated lipocalin (NGAL), a marker of tubular injury, to determine whether this protein has the potential to aid in the noninvasive diagnosis of HIVAN. We found that expression of urinary NGAL was much higher in patients with biopsy-proven HIVAN than in HIV-positive and HIV-negative patients with other forms of chronic kidney disease. In the HIV-transgenic mouse model of HIVAN, NGAL mRNA was abundant in dilated, microcystic segments of the nephron. In contrast, urinary NGAL did not correlate with proteinuria in human or in mouse models. These data show that marked upregulation of NGAL accompanies HIVAN and support further study of uNGAL levels in large cohorts to aid in the noninvasive diagnosis of HIVAN and screen for HIVAN-related tubular damage. PMID:19628667

  7. A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.; Parrott, T. L.

    2005-01-01

    A 2-D impedance eduction methodology is extended to quasi-3-D sound fields in uniform or shearing mean flow. We introduce a nonlocal, nonreflecting boundary condition to terminate the duct and then educe the impedance by minimizing an objective function. The introduction of a parallel, sparse, equation solver significantly reduces the wall clock time for educing the impedance when compared to that of the sequential band solver used in the 2-D methodology. The accuracy, efficiency, and robustness of the methodology is demonstrated using two examples. In the first example, we show that the method reproduces the known impedance of a ceramic tubular test liner. In the second example, we illustrate that the approach educes the impedance of a four-segment liner where the first, second, and fourth segments consist of a perforated face sheet bonded to honeycomb, and the third segment is a cut from the ceramic tubular test liner. The ability of the method to educe the impedances of multisegmented liners has the potential to significantly reduce the amount of time and cost required to determine the impedance of several uniform liners by allowing them to be placed in series in the test section and to educe the impedance of each segment using a single numerical experiment. Finally, we probe the objective function in great detail and show that it contains a single minimum. Thus, our objective function is ideal for use with local, inexpensive, gradient-based optimizers.

  8. Developmental changes in renal tubular transport - An overview

    PubMed Central

    Gattineni, Jyothsna; Baum, Michel

    2013-01-01

    The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. None the less, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development. PMID:24253590

  9. Developmental changes in renal tubular transport-an overview.

    PubMed

    Gattineni, Jyothsna; Baum, Michel

    2015-12-01

    The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.

  10. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    PubMed

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant differences. There was a higher level of collagenic connective tissue within the scaffold and within the distal nerve stump. Schwann cells migrated into the polyurethane scaffold. There was no statistical difference to the nerve graft group although Schwann cell counts were lower especially within the middle of the polyurethane scaffold. Axon counts showed a trend-wise decrease within the scaffold. These results suggest that biodegradable polyurethane tubular scaffolds coated with diluted fibrin sealant support peripheral nerve regeneration in a standard gap model in the rat up to 3 months. Three months after surgery no sign of degradation could be seen.

  11. Novel Hg2+-Induced Nephropathy in Rats and Mice Lacking Mrp2: Evidence of Axial Heterogeneity in the Handling of Hg2+ Along the Proximal Tubule

    PubMed Central

    Zalups, Rudolfs K.; Joshee, Lucy; Bridges, Christy C.

    2014-01-01

    The role of the multi-resistance protein 2 (Mrp2) in the nephropathy induced by inorganic mercuric mercury (Hg2+) was studied in rats (TR−) and mice (Mrp2−/−), which lack functional Mrp2, and control animals. Animals were exposed to nephrotoxic doses of HgCl2. Forty-eight or 24 hours after exposure, tissues were harvested and analyzed for Hg content and markers of injury. Histological analyses revealed that the proximal tubular segments affected pathologically by Hg2+ were significantly different between Mrp2-deficient animals and controls. In the absence of Mrp2, cellular injury localized almost exclusively in proximal tubular segments in the subcapsular (S1) to midcortical regions (early S2) of the kidney. In control animals, cellular death occurred mainly in the proximal tubular segments in the inner cortex (late S2) and outer stripe of the outer medulla (S3). These differences in renal pathology indicate that axial heterogeneity exists along the proximal tubule with respect to how mercuric ions are handled. Total renal and hepatic accumulation of mercury was also greater in animals lacking Mrp2 than in controls, indicating that Mrp2 normally plays a significant role in eliminating mercuric ions from within proximal tubular cells and hepatocytes. Analyses of plasma creatinine, BUN, and renal expression of Kim-1 and Ngal tend to support the severity of the nephropathies detected histologically. Collectively, our findings indicate that a fraction of mercuric ions is normally secreted by Mrp2 in early portions of proximal tubules into the lumen and then is absorbed downstream in straight portions, where mercuric species typically induce toxic effects. PMID:25145654

  12. Stricture of the afferent isoperistaltic tubular segment: a late and rare cause of bilateral dilation of the upper urinary tract after ileal bladder substitution.

    PubMed

    Kiss, Bernhard; Schöndorf, Daniel; Studer, Urs E; Roth, Beat

    2013-08-01

    To evaluate the etiology and treatment of bilateral hydronephrosis not responding to bladder substitute drainage after ileal bladder substitution using an afferent isoperistaltic tubular segment. A retrospective analysis was performed of a consecutive series of 739 patients who had undergone bladder substitution from April 1985 to August 2012. Of the 739 ileal bladder substitute patients, 10 (1.4%) developed bilateral hydronephrosis unresponsive to complete bladder substitute drainage. The etiology was stenosis of the afferent isoperistaltic tubular segment. The median interval to presentation was 131 months (range 45-192). The incidence of afferent tubular segment stenosis was significantly higher in the 61 ileal bladder substitute patients with recurrent urinary tract infection (9 [15%]) than in the 678 without recurrent urinary tract infection (1 [0.15%]; P <.001). Urine cultures revealed mixed infections (34%), Escherichia coli (18%), Staphylococcus aureus (13%), enterococci (11%), Candida (8%), Klebsiella (8%), and others (8%). Seven patients underwent 10 endourologic interventions, only 1 of which was successful (10%). After failed endourologic treatment, 7 open surgical revisions with resection of the stricture were performed, with all 7 (100%) successful. Bilateral dilation of the upper urinary tract after ileal orthotopic bladder substitution unresponsive to complete bladder substitute drainage is likely to be caused by stenosis of the afferent isoperistaltic tubular segment. The stenosis occurs almost exclusively in patients with long-lasting, recurrent urinary tract infection and can develop many years after the ileal bladder substitution. Minimally invasive endourologic treatment is usually unsuccessful; however, open surgical revision offers excellent results. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Self-assembling segmented coiled tubing

    DOEpatents

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  14. Boundary segmentation for fluorescence microscopy using steerable filters

    NASA Astrophysics Data System (ADS)

    Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2017-02-01

    Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.

  15. Compensatory Renal Hypertrophy and the Uptake of Cysteine S-Conjugates of Hg2+ in Isolated S2 Proximal Tubular Segments.

    PubMed

    Bridges, Christy C; Barfuss, Delon W; Joshee, Lucy; Zalups, Rudolfs K

    2016-12-01

    Chronic kidney disease is characterized by a progressive and permanent loss of functioning nephrons. In order to compensate for this loss, the remaining functional nephrons undergo significant structural and functional changes. We hypothesize that luminal uptake of inorganic mercury (Hg 2+ ), as a conjugate of cysteine (Cys; Cys-S-Hg-S-Cys), is enhanced in S2 segments of proximal tubules from the remnant kidney of uninephrectomized (NPX) rabbits. To test this hypothesis, we measured uptake and accumulation of Cys-S-Hg-S-Cys in isolated perfused S2 segments of proximal tubules from normal (control) and NPX rabbits. The remnant kidney in NPX rabbits undergoes significant hypertrophy during the initial 3 weeks following surgery. Tubules isolated from NPX rabbits were significantly larger in diameter and volume than those from control rabbits. Moreover, real-time PCR analyses of proximal tubules indicated that the expression of selected membrane transporters was greater in kidneys of NPX animals than in kidneys of control animals. When S2 segments from control and NPX rabbits were perfused with cystine or Cys-S-Hg-S-Cys, we found that the rates of luminal disappearance and tubular accumulation of Hg 2+  were greater in tubules from NPX animals. These increases were inhibited by the addition of various amino acids to the perfusate. Taken together, our data suggest that hypertrophic changes in proximal tubules lead to an enhanced ability of these tubules to take up and accumulate Hg 2 . © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Automation of Hessian-Based Tubularity Measure Response Function in 3D Biomedical Images.

    PubMed

    Dzyubak, Oleksandr P; Ritman, Erik L

    2011-01-01

    The blood vessels and nerve trees consist of tubular objects interconnected into a complex tree- or web-like structure that has a range of structural scale 5 μm diameter capillaries to 3 cm aorta. This large-scale range presents two major problems; one is just making the measurements, and the other is the exponential increase of component numbers with decreasing scale. With the remarkable increase in the volume imaged by, and resolution of, modern day 3D imagers, it is almost impossible to make manual tracking of the complex multiscale parameters from those large image data sets. In addition, the manual tracking is quite subjective and unreliable. We propose a solution for automation of an adaptive nonsupervised system for tracking tubular objects based on multiscale framework and use of Hessian-based object shape detector incorporating National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) image processing libraries.

  17. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-01

    A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

  18. Laser beam generating apparatus

    DOEpatents

    Warner, Bruce E.; Duncan, David B.

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  19. Laser beam generating apparatus

    DOEpatents

    Warner, Bruce E.; Duncan, David B.

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  20. Crushing characteristics of composite tubes with 'near-elliptical' cross sections

    NASA Astrophysics Data System (ADS)

    Farley, Gary L.; Jones, Robert M.

    1992-01-01

    An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.

  1. Evolving concepts on regulation and function of renin in distal nephron

    PubMed Central

    Prieto, Minolfa C.; Gonzalez, Alexis A.

    2012-01-01

    Sustained stimulation of the intrarenal/intratubular renin–angiotensin system in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis, and eventual renal injury. Activation of luminal AT1 receptors in proximal and distal nephron segments by local Ang II formation stimulates various transport systems. Augmented angiotensinogen (AGT) production by proximal tubule cells increases AGT secretion contributing to increased proximal Ang II levels and leading to spillover of AGT into the distal nephron segments, as reflected by increased urinary AGT excretion. The increased distal delivery of AGT provides substrate for renin, which is expressed in principal cells of the collecting tubule and collecting ducts, and is also stimulated by AT1 receptor activation. Renin and prorenin are secreted into the tubular lumen and act on the AGT delivered from the proximal tubule to form more Ang I. The catalytic actions of renin and or prorenin may be enhanced by binding to prorenin receptors on the intercalated cells or soluble prorenin receptor secreted into the tubular fluid. There is also increased luminal angiotensin converting enzyme in collecting ducts facilitating Ang II formation leading to stimulation of sodium reabsorption via sodium channel and sodium/chloride co-transporter. Thus, increased collecting duct renin contributes to Ang II-dependent hypertension by augmenting distal nephron intra-tubular Ang II formation leading to sustained stimulation of sodium reabsorption and progression of hypertension. PMID:22990760

  2. The early modern kidney--nephrology in and about the nineteenth century. Part 1.

    PubMed

    Eknoyan, Garabed

    2013-01-01

    The 19th century was a period of momentous scientific discoveries, technological achievements, and societal changes. A beneficiary of these revolutionary upheavals was medical empiricism that supplanted the rationalism of the past giving rise to early modern scientific medicine. Continued reliance on sensory data now magnified by technical advances generated new medical information that could be quantified with increasing precision, verified by repeated experimentation, and validated by statistical analysis. The institutionalization and integration of these methodologies into medical education were a defining step that assured their progress and perpetuation. Major advances were made in the nosography of diseases of the kidney, notably that of the diagnosis of progressive kidney disease from the presence of albuminuria by Richard Bright (1789-1858); and of renal structure and function, notably the demonstration of the continuity of the glomerular capsule with the tubular basement membrane by William Bowman (1816-1892), and the arguments for hemodynamic physical forces mediated glomerular filtration by Carl Ludwig (1816-1895) and for active tubular transport by Rudolf Heidenhain (1834-1897). Improvements in microscopy and tissue processing were instrumental in describing the cellular ultrastructure of the glomerulus and tubular segments, but their integrated function remained to be elucidated. The kidney continued to be considered a tubular secretory organ and its pathology attributed to injury of the interstitium (interstitial nephritis) or tubules (parenchymatous nephritis). © 2012 Wiley Periodicals, Inc.

  3. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  4. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  5. Sodium bicarbonate loading limits tubular cast formation independent of glomerular injury and proteinuria in dahl salt-sensitive rats.

    PubMed

    Ray, S C; Patel, B; Irsik, D L; Sun, J; Ocasio, H; Crislip, G R; Jin, C H; Chen, J K; Baban, B; Polichnowski, A J; O'Connor, P M

    2018-04-12

    Sodium bicarbonate (NaHCO 3 ) slows the decline in kidney function in patients with chronic kidney disease (CKD), yet the mechanisms mediating this effect remain unclear. The Dahl salt-sensitive (SS) rat develops hypertension and progressive renal injury when fed a high salt diet; however, the effect of alkali loading on kidney injury has never been investigated in this model. We hypothesized that 'NaHCO 3 protects from the development of renal injury in Dahl salt-sensitive rats via luminal alkalization which limits the formation of tubular casts, which are a prominent pathological feature in this model. To examine this hypothesis, we determined blood pressure and renal injury responses in Dahl SS rats drinking vehicle (0.1M NaCl) or NaHCO 3 (0.1M) solutions as well as in Dahl SS rats lacking the voltage gated proton channel (Hv1). We found that oral NaHCO 3 reduced tubular NH 4 + production, tubular cast formation and interstitial fibrosis in rats fed a high salt diet for 2 weeks. This effect was independent of changes in blood pressure, glomerular injury or proteinuria and did not associate with changes in renal inflammatory status. We found that null mutation of Hv1 also limited cast formation in Dahl SS rats independent of proteinuria or glomerular injury. As Hv1 is localized to the luminal membrane of TAL, our data, suggest that alkalization of the luminal fluid within this segment limits cast formation in this model. Reduced cast formation, secondary to luminal alkalization within TAL segments may mediate some of the protective effects of alkali loading observed in CKD patients. ©2018 The Author(s).

  6. Deployable and retractable telescoping tubular structure development

    NASA Astrophysics Data System (ADS)

    Thomson, M. W.

    1993-02-01

    The paper describes the design and the structural performance of a new type of deployable and retractable telescoping mast, which can be used for flight systems that require a deployable beam with superaccurate positioning characteristics or for short to medium highly loaded structural applications. The mast employs a Bi-STEM (a two-piece Storable Tubular Extendible Member) boom as an actuator and stabilizer, which alleviates the need for the deployed telescoping mast segments to overlap. Due to this feature and because the segments can be fully overlapped when stowed, the mast enables an unusually lightweight and compact launch configuration.

  7. New robust algorithm for tracking cells in videos of Drosophila morphogenesis based on finding an ideal path in segmented spatio-temporal cellular structures.

    PubMed

    Bellaïche, Yohanns; Bosveld, Floris; Graner, François; Mikula, Karol; Remesíková, Mariana; Smísek, Michal

    2011-01-01

    In this paper, we present a novel algorithm for tracking cells in time lapse confocal microscopy movie of a Drosophila epithelial tissue during pupal morphogenesis. We consider a 2D + time video as a 3D static image, where frames are stacked atop each other, and using a spatio-temporal segmentation algorithm we obtain information about spatio-temporal 3D tubes representing evolutions of cells. The main idea for tracking is the usage of two distance functions--first one from the cells in the initial frame and second one from segmented boundaries. We track the cells backwards in time. The first distance function attracts the subsequently constructed cell trajectories to the cells in the initial frame and the second one forces them to be close to centerlines of the segmented tubular structures. This makes our tracking algorithm robust against noise and missing spatio-temporal boundaries. This approach can be generalized to a 3D + time video analysis, where spatio-temporal tubes are 4D objects.

  8. Segmental heterogeneity in Bcl-2, Bcl-xL and Bax expression in rat tubular epithelium after ischemia-reperfusion.

    PubMed

    Valdés, Francisco; Pásaro, Eduardo; Díaz, Inmaculada; Centeno, Alberto; López, Eduardo; García-Doval, Sandra; González-Roces, Severino; Alba, Alfonso; Laffon, Blanca

    2008-06-01

    Studies in rats with bilateral clamping of renal arteries showed transient Bcl-2, Bcl-xL and Bax expression in renal tubular epithelium following ischemia-reperfusion. However, current data on the preferential localization of specific mRNAs or proteins are limited because gene expression was not analysed at segmental level. This study analyses the mRNA expression of Bcl-2, Bcl-xL and Bax in four segments of proximal and distal tubules localized in the renal cortex and outer medulla in rat kidneys with bilateral renal clamping for 30 min and seven reperfusion times versus control animals without clamp. Proximal convoluted tubule (PCT), distal convoluted tubule (DCT), proximal straight tubule (PST) and medullary thick ascending limb (MTAL) were obtained by manual microdissection. RT-PCR was used to analyse mRNA expression at segmental level. Proximal convoluted tubule and MTAL showed early, persistent and balanced up-regulation of Bcl-2, Bcl-xL and Bax, while PST and DCT revealed only Bcl-2 and Bcl-xL, when only Bax was detected in PST. DCT expressed Bcl-xL initially, and persistent Bcl-2 later. These patterns suggest a heterogeneous apoptosis regulatory response in rat renal tubules after ischemia-reperfusion, independently of cortical or medullary location. This heterogeneity of the expression patterns of Bcl-2 genes could explain the different susceptibility to undergo apoptosis, the different threshold to ischemic damage and the different adaptive capacity to injury among these tubular segments.

  9. Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique.

    PubMed

    Xu, Yong; Li, Dan; Yin, Zongqi; He, Aijuan; Lin, Miaomiao; Jiang, Gening; Song, Xiao; Hu, Xuefei; Liu, Yi; Wang, Jinpeng; Wang, Xiaoyun; Duan, Liang; Zhou, Guangdong

    2017-08-01

    Tissue-engineered trachea provides a promising approach for reconstruction of long segmental tracheal defects. However, a lack of ideal biodegradable scaffolds greatly restricts its clinical translation. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration owing to natural tubular structure, cartilage matrix components, and biodegradability. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. To address these problems, a laser micropore technique (LMT) was applied in the current study to modify trachea sample porosity to facilitate decellular treatment and cell ingrowth. Decellularization processing demonstrated that cells in LMT treated samples were more easily removed compared with untreated native trachea. Furthermore, after optimizing the protocols of LMT and decellular treatments, the LMT-treated DTM (LDTM) could retain their original tubular shape with only mild extracellular matrix damage. After seeding with chondrocytes and culture in vitro for 8 weeks, the cell-LDTM constructs formed tubular cartilage with relatively homogenous cell distribution in both micropores and bilateral surfaces. In vivo results further confirmed that the constructs could form mature tubular cartilage with increased DNA and cartilage matrix contents, as well as enhanced mechanical strength, compared with native trachea. Collectively, these results indicate that LDTM is an ideal scaffold for tubular cartilage regeneration and, thus, provides a promising strategy for functional reconstruction of trachea cartilage. Lacking ideal biodegradable scaffolds greatly restricts development of tissue-engineered trachea. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. By laser micropore technique (LMT), the current study efficiently enhanced the porosity and decellularized efficacy of DTM. The LMT-treated DTM basically retained the original tubular shape with mild matrix damage. After chondrocyte seeding followed by in vitro culture and in vivo implantation, the constructs formed mature tubular cartilage with matrix content and mechanical strength similar to native trachea. The current study provides an ideal scaffold and a promising strategy for cartilage regeneration and functional reconstruction of trachea. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. High-temperature, high-pressure bonding of nested tubular metallic components

    DOEpatents

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  11. Sectional device handling tool

    DOEpatents

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  12. Physiological roles of claudins in kidney tubule paracellular transport.

    PubMed

    Muto, Shigeaki

    2017-01-01

    The paracellular pathways in renal tubular epithelia such as the proximal tubules, which reabsorb the largest fraction of filtered solutes and water and are leaky epithelia, are important routes for transepithelial transport of solutes and water. Movement occurs passively via an extracellular route through the tight junction between cells. The characteristics of paracellular transport vary among different nephron segments with leaky or tighter epithelia. Claudins expressed at tight junctions form pores and barriers for paracellular transport. Claudins are from a multigene family, comprising at least 27 members in mammals. Multiple claudins are expressed at tight junctions of individual nephron segments in a nephron segment-specific manner. Over the last decade, there have been advances in our understanding of the structure and functions of claudins. This paper is a review of our current knowledge of claudins, with special emphasis on their physiological roles in proximal tubule paracellular solute and water transport. Copyright © 2017 the American Physiological Society.

  13. High-temperature, high-pressure bonding of nested tubular metallic components

    DOEpatents

    Quinby, Thomas C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  14. Segmental aplasia of the uterine horn in a cat.

    PubMed

    Marcella, K L; Ramirez, M; Hammerslag, K L

    1985-01-15

    A 4.5-year-old female domestic longhair cat with a history of intermittent abdominal distention following estrus and infertility was admitted for routine vaccinations. Radiographs revealed 2 large blunt-ended tubular structures overlapping each other in the abdomen. Segmental aplasia of the right uterine horn was diagnosed following exploratory laparotomy and ovariohysterectomy.

  15. Impaired Urine Dilution Capability in HIV Stable Patients

    PubMed Central

    Belloso, Waldo H.; de Paz Sierra, Mariana; Navarro, Matilde; Sanchez, Marisa L.; Perelsztein, Ariel G.; Musso, Carlos G.

    2014-01-01

    Renal disease is a well-recognized complication among patients with HIV infection. Viral infection itself and the use of some antiretroviral drugs contribute to this condition. The thick ascending limb of Henle's loop (TALH) is the tubule segment where free water clearance is generated, determining along with glomerular filtration rate the kidney's ability to dilute urine. Objective. We analyzed the function of the proximal tubule and TALH in patients with HIV infection receiving or not tenofovir-containing antiretroviral treatment in comparison with healthy seronegative controls, by applying a tubular physiological test, hyposaline infusion test (Chaimowitz' test). Material & Methods. Chaimowitz' test was performed on 20 HIV positive volunteers who had normal renal functional parameters. The control group included 10 healthy volunteers. Results. After the test, both HIV groups had a significant reduction of serum sodium and osmolarity compared with the control group. Free water clearance was lower and urine osmolarity was higher in both HIV+ groups. Proximal tubular function was normal in both studied groups. Conclusion. The present study documented that proximal tubule sodium reabsorption was preserved while free water clearance and maximal urine dilution capability were reduced in stable HIV patients treated or not with tenofovir. PMID:24800076

  16. Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla.

    PubMed

    Pannabecker, Thomas L

    2013-04-01

    Comparative studies of renal structure and function have potential to provide insights into the urine-concentrating mechanism of the mammalian kidney. This review focuses on the tubular transport pathways for water and urea that play key roles in fluid and solute movements between various compartments of the rodent renal inner medulla. Information on aquaporin water channel and urea transporter expression has increased our understanding of functional segmentation of medullary thin limbs of Henle's loops, collecting ducts, and vasa recta. A more complete understanding of membrane transporters and medullary architecture has identified new and potentially significant interactions between these structures and the interstitium. These interactions are now being introduced into our concept of how the inner medullary urine-concentrating mechanism works. A variety of regulatory pathways lead directly or indirectly to variable patterns of fluid and solute movements among the interstitial and tissue compartments. Animals with the ability to produce highly concentrated urine, such as desert species, are considered to exemplify tubular structure and function that optimize urine concentration. These species may provide unique insights into the urine-concentrating process.(1)

  17. Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla

    PubMed Central

    2013-01-01

    Comparative studies of renal structure and function have potential to provide insights into the urine-concentrating mechanism of the mammalian kidney. This review focuses on the tubular transport pathways for water and urea that play key roles in fluid and solute movements between various compartments of the rodent renal inner medulla. Information on aquaporin water channel and urea transporter expression has increased our understanding of functional segmentation of medullary thin limbs of Henle's loops, collecting ducts, and vasa recta. A more complete understanding of membrane transporters and medullary architecture has identified new and potentially significant interactions between these structures and the interstitium. These interactions are now being introduced into our concept of how the inner medullary urine-concentrating mechanism works. A variety of regulatory pathways lead directly or indirectly to variable patterns of fluid and solute movements among the interstitial and tissue compartments. Animals with the ability to produce highly concentrated urine, such as desert species, are considered to exemplify tubular structure and function that optimize urine concentration. These species may provide unique insights into the urine-concentrating process.1 PMID:23364530

  18. Neurogenic regulation of renal tubular sodium reabsorption.

    PubMed

    DiBona, G F

    1977-08-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies have demonstrated adrenergic nerve terminals in direct contact with basement membranes of mammalian (rat, dog, and monkey) renal tubular epithelial cells. Low-level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. Antinatriuresis was prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Rat kidney micropuncture studies have localized a site of enhanced tubular sodium reabsorption to the proximal tubule. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney on renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. The possible effects of anesthesia and uncertainties about the completeness of surgical renal denervation and other tubular segmental sites of action are critically analyzed. The clinical implications of this mechanism in pathologic conditions of sodium and water retention are discussed and and a prospectus for future work is presented.

  19. Dietary sodium induces a redistribution of the tubular metabolic workload

    PubMed Central

    Udwan, Khalil; Abed, Ahmed; Roth, Isabelle; Dizin, Eva; Maillard, Marc; Bettoni, Carla; Loffing, Johannes; Wagner, Carsten A.; Edwards, Aurélie

    2017-01-01

    Key points Body Na+ content is tightly controlled by regulated urinary Na+ excretion.The intrarenal mechanisms mediating adaptation to variations in dietary Na+ intake are incompletely characterized.We confirmed and expanded observations in mice that variations in dietary Na+ intake do not alter the glomerular filtration rate but alter the total and cell‐surface expression of major Na+ transporters all along the kidney tubule.Low dietary Na+ intake increased Na+ reabsorption in the proximal tubule and decreased it in more distal kidney tubule segments.High dietary Na+ intake decreased Na+ reabsorption in the proximal tubule and increased it in distal segments with lower energetic efficiency.The abundance of apical transporters and Na+ delivery are the main determinants of Na+ reabsorption along the kidney tubule.Tubular O2 consumption and the efficiency of sodium reabsorption are dependent on sodium diet. Abstract Na+ excretion by the kidney varies according to dietary Na+ intake. We undertook a systematic study of the effects of dietary salt intake on glomerular filtration rate (GFR) and tubular Na+ reabsorption. We examined the renal adaptive response in mice subjected to 7 days of a low sodium diet (LSD) containing 0.01% Na+, a normal sodium diet (NSD) containing 0.18% Na+ and a moderately high sodium diet (HSD) containing 1.25% Na+. As expected, LSD did not alter measured GFR and increased the abundance of total and cell‐surface NHE3, NKCC2, NCC, α‐ENaC and cleaved γ‐ENaC compared to NSD. Mathematical modelling predicted that tubular Na+ reabsorption increased in the proximal tubule but decreased in the distal nephron because of diminished Na+ delivery. This prediction was confirmed by the natriuretic response to diuretics targeting the thick ascending limb, the distal convoluted tubule or the collecting system. On the other hand, HSD did not alter measured GFR but decreased the abundance of the aforementioned transporters compared to NSD. Mathematical modelling predicted that tubular Na+ reabsorption decreased in the proximal tubule but increased in distal segments with lower transport efficiency with respect to O2 consumption. This prediction was confirmed by the natriuretic response to diuretics. The activity of the metabolic sensor adenosine monophosphate‐activated protein kinase (AMPK) was related to the changes in tubular Na+ reabsorption. Our data show that fractional Na+ reabsorption is distributed differently according to dietary Na+ intake and induces changes in tubular O2 consumption and sodium transport efficiency. PMID:28940314

  20. Aging and the Disposition and Toxicity of Mercury in Rats

    PubMed Central

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2014-01-01

    Progressive loss of functioning nephrons, secondary to age-related glomerular disease, can impair the ability of the kidneys to effectively clear metabolic wastes and toxicants from blood. Additionally, as renal mass is diminished, cellular hypertrophy occurs in functional nephrons that remain. We hypothesize that these nephrons are exposed to greater levels of nephrotoxicants, such as inorganic mercury (Hg2+), and thus are at an increased risk of becoming intoxicated by these compounds. The purpose of the present study was to characterize the effects of aging on the disposition and renal toxicity of Hg2+ in young adult and aged Wistar rats. Paired groups of animals were injected (i.v.) with either a 0.5 μmol • kg−1 non-nephrotoxic or a 2.5 μmol • kg−1 nephrotoxic dose of mercuric chloride (HgCl2). Plasma creatinine and renal biomarkers of proximal tubular injury were greater in both groups of aged rats than in the corresponding groups of young adult rats. Histologically, evidence of glomerular sclerosis, tubular atrophy, interstitial inflammation and fibrosis were significant features of kidneys from aged animals. In addition, proximal tubular necrosis, especially along the straight segments in the inner cortex and outer stripe of the outer medulla was a prominent feature in the renal sections from both aged and young rats treated with the nephrotoxic dose of HgCl2. Our findings indicate 1) that overall renal function is significantly impaired in aged rats, resulting in chronic renal insufficiency and 2) the disposition of HgCl2 in aging rats is significantly altered compared to that of young rats. PMID:24548775

  1. New methods for the geometrical analysis of tubular organs.

    PubMed

    Grélard, Florent; Baldacci, Fabien; Vialard, Anne; Domenger, Jean-Philippe

    2017-12-01

    This paper presents new methods to study the shape of tubular organs. Determining precise cross-sections is of major importance to perform geometrical measurements, such as diameter, wall-thickness estimation or area measurement. Our first contribution is a robust method to estimate orthogonal planes based on the Voronoi Covariance Measure. Our method is not relying on a curve-skeleton computation beforehand. This means our orthogonal plane estimator can be used either on the skeleton or on the volume. Another important step towards tubular organ characterization is achieved through curve-skeletonization, as skeletons allow to compare two tubular organs, and to perform virtual endoscopy. Our second contribution is dedicated to correcting common defects of the skeleton by new pruning and recentering methods. Finally, we propose a new method for curve-skeleton extraction. Various results are shown on different types of segmented tubular organs, such as neurons, airway-tree and blood vessels. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Large tubular colonic duplication in an adult treated with a small midline incision

    PubMed Central

    Yong, Yuen Geng; Jung, Kyung Uk; Cho, Yong Beom; Yun, Seong Hyeon; Kim, Hee Cheol; Lee, Woo Yong

    2012-01-01

    Tubular colonic duplication presenting in adults is rare and difficult to diagnose preoperatively. Only a few cases have been reported in the literature. We report a case of a 29-year-old lady presenting with a long history of chronic constipation, abdominal mass and repeated episodes of abdominal pain. The abdominal-pelvic computed tomography scan showed segmental bowel wall thickening thought to be small bowel, and dilatation with stasis of intraluminal content. The provisional diagnosis was small bowel duplication. She was scheduled for single port laparoscopic resection. However, a T-shaped tubular colonic duplication at sigmoid colon was found intraoperatively. Resection of the large T-shaped tubular colonic duplication containing multiple impacted large fecaloma and primary anastomosis was performed. There was no perioperative complication. We report, herein, the case of a T-shaped tubular colonic duplication at sigmoid colon in an adult who was successfully treated through mini-laparotomy assisted by single port laparoscopic surgery. PMID:22403754

  3. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1961-01-24

    A core structure for neutronic reactors adapted for the propulsion of aircraft and rockets is offered. The core is designed for cooling by gaseous media, and comprises a plurality of hollow tapered tubular segments of a porous moderating material impregniated with fissionable fuel nested about a common axis. Alternate ends of the segments are joined. In operation a coolant gas passes through the porous structure and is heated.

  4. Adapting Active Shape Models for 3D segmentation of tubular structures in medical images.

    PubMed

    de Bruijne, Marleen; van Ginneken, Bram; Viergever, Max A; Niessen, Wiro J

    2003-07-01

    Active Shape Models (ASM) have proven to be an effective approach for image segmentation. In some applications, however, the linear model of gray level appearance around a contour that is used in ASM is not sufficient for accurate boundary localization. Furthermore, the statistical shape model may be too restricted if the training set is limited. This paper describes modifications to both the shape and the appearance model of the original ASM formulation. Shape model flexibility is increased, for tubular objects, by modeling the axis deformation independent of the cross-sectional deformation, and by adding supplementary cylindrical deformation modes. Furthermore, a novel appearance modeling scheme that effectively deals with a highly varying background is developed. In contrast with the conventional ASM approach, the new appearance model is trained on both boundary and non-boundary points, and the probability that a given point belongs to the boundary is estimated non-parametrically. The methods are evaluated on the complex task of segmenting thrombus in abdominal aortic aneurysms (AAA). Shape approximation errors were successfully reduced using the two shape model extensions. Segmentation using the new appearance model significantly outperformed the original ASM scheme; average volume errors are 5.1% and 45% respectively.

  5. Cutting assembly including expanding wall segments of auger

    DOEpatents

    Treuhaft, Martin B.; Oser, Michael S.

    1983-01-01

    A mining auger comprises a cutting head carried at one end of a tubular shaft and a plurality of wall segments which in a first position thereof are disposed side by side around said shaft and in a second position thereof are disposed oblique to said shaft. A vane projects outwardly from each wall segment. When the wall segments are in their first position, the vanes together form a substantially continuous helical wall. A cutter is mounted on the peripheral edge of each of the vanes. When the wall segments are in their second position, the cutters on the vanes are disposed radially outward from the perimeter of the cutting head.

  6. Tamm-Horsfall Protein Regulates Granulopoiesis and Systemic Neutrophil Homeostasis

    PubMed Central

    Micanovic, Radmila; Chitteti, Brahmananda R.; Dagher, Pierre C.; Srour, Edward F.; Khan, Shehnaz; Hato, Takashi; Lyle, Allison; Tong, Yan; Wu, Xue-Ru

    2015-01-01

    Tamm-Horsfall protein (THP) is a glycoprotein uniquely expressed in the kidney. We recently showed an important role for THP in mediating tubular cross-talk in the outer medulla and in suppressing neutrophil infiltration after kidney injury. However, it remains unclear whether THP has a broader role in neutrophil homeostasis. In this study, we show that THP deficiency in mice increases the number of neutrophils, not only in the kidney but also in the circulation and in the liver, through enhanced granulopoiesis in the bone marrow. Using multiplex ELISA, we identified IL-17 as a key granulopoietic cytokine specifically upregulated in the kidneys but not in the liver of THP−/− mice. Indeed, neutralization of IL-17 in THP−/− mice completely reversed the systemic neutrophilia. Furthermore, IL-23 was also elevated in THP−/− kidneys. We performed real-time PCR on laser microdissected tubular segments and FACS-sorted renal immune cells and identified the S3 proximal segments, but not renal macrophages, as a major source of increased IL-23 synthesis. In conclusion, we show that THP deficiency stimulates proximal epithelial activation of the IL-23/IL-17 axis and systemic neutrophilia. Our findings provide evidence that the kidney epithelium in the outer medulla can regulate granulopoiesis. When this novel function is added to its known role in erythropoiesis, the kidney emerges as an important regulator of the hematopoietic system. PMID:25556169

  7. Reference values of renal tubular function tests are dependent on age and kidney function.

    PubMed

    Bech, Anneke P; Wetzels, Jack F M; Nijenhuis, Tom

    2017-12-01

    Electrolyte disorders due to tubular disorders are rare, and knowledge about validated clinical diagnostic tools such as tubular function tests is sparse. Reference values for tubular function tests are based on studies with small sample size in young healthy volunteers. Patients with tubular disorders, however, frequently are older and can have a compromised renal function. We therefore evaluated four tubular function tests in individuals with different ages and renal function. We performed furosemide, thiazide, furosemide-fludrocortisone, and desmopressin tests in healthy individuals aged 18-50 years, healthy individuals aged more than 50 years and individuals with compromised renal function. For each tubular function test we included 10 individuals per group. The responses in young healthy individuals were in line with previously reported values in literature. The maximal increase in fractional chloride excretion after furosemide was below the lower limit of young healthy individuals in 5/10 older subjects and in 2/10 patients with compromised renal function. The maximal increase in fractional chloride excretion after thiazide was below the lower limit of young healthy individuals in 6/10 older subjects and in 7/10 patients with compromised renal function. Median maximal urine osmolality after desmopressin was 1002 mosmol/kg H 2 O in young healthy individuals, 820 mosmol/kg H 2 O in older subjects and 624 mosmol/kg H 2 O in patients with compromised renal function. Reference values for tubular function tests obtained in young healthy adults thus cannot simply be extrapolated to older patients or patients with compromised kidney function. Larger validation studies are needed to define true reference values in these patient categories. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control.

    PubMed

    Féraille, E; Doucet, A

    2001-01-01

    Tubular reabsorption of filtered sodium is quantitatively the main contribution of kidneys to salt and water homeostasis. The transcellular reabsorption of sodium proceeds by a two-step mechanism: Na(+)-K(+)-ATPase-energized basolateral active extrusion of sodium permits passive apical entry through various sodium transport systems. In the past 15 years, most of the renal sodium transport systems (Na(+)-K(+)-ATPase, channels, cotransporters, and exchangers) have been characterized at a molecular level. Coupled to the methods developed during the 1965-1985 decades to circumvent kidney heterogeneity and analyze sodium transport at the level of single nephron segments, cloning of the transporters allowed us to move our understanding of hormone regulation of sodium transport from a cellular to a molecular level. The main purpose of this review is to analyze how molecular events at the transporter level account for the physiological changes in tubular handling of sodium promoted by hormones. In recent years, it also became obvious that intracellular signaling pathways interacted with each other, leading to synergisms or antagonisms. A second aim of this review is therefore to analyze the integrated network of signaling pathways underlying hormone action. Given the central role of Na(+)-K(+)-ATPase in sodium reabsorption, the first part of this review focuses on its structural and functional properties, with a special mention of the specificity of Na(+)-K(+)-ATPase expressed in renal tubule. In a second part, the general mechanisms of hormone signaling are briefly introduced before a more detailed discussion of the nephron segment-specific expression of hormone receptors and signaling pathways. The three following parts integrate the molecular and physiological aspects of the hormonal regulation of sodium transport processes in three nephron segments: the proximal tubule, the thick ascending limb of Henle's loop, and the collecting duct.

  9. Maturation of the renal response to hypertonic sodium chloride loading in rats: micropuncture and clearance studies.

    PubMed Central

    Baker, J T; Solomon, S

    1976-01-01

    1. The ability of maturing rats to excrete a sodium load was studied by micropuncture and clearance procedures. 2. During control conditions, no change of glomerular filtration rate or sodium excretion was observed for the time period of the entire procedure (P greater than 0-20). During the infusion of hypertonic (4%) sodium chloride, fractional sodium excretion was 0-08 +/- 0-01 in rats 21-30 days old and 0-14 +/- 0-01 (P less than 0-01) in adults. However, the depression of proximal tubular water re-absorption was equal in both groups (P greater than 0-20). 3. Proximal glomerulotubular balance for water re-absorption was similar in all groups (P less than 0-20). Since end proximal tubular water excretion and depression of fractional water excretion were the same in all animals, differences of urinary sodium excretion during development are probably due to differences of function of segments beyond the proximal tubule during development. 4. Fractional potassium excretion was reduced in young rats (0-17 +/- 0-04) during hypertonic sodium chloride infusion, compared to adults (0-24 +/- 0-01, P less than 0-05). 5. Passage time of fast green through cortical segments in seconds is prolonged in young rats during control conditions. Similar decreases of passage time were seen in all groups during hypertonic sodium chloride infusion. No segmental differences of passage time were seen during developmental. 6. No difference in the relationship between fractional sodium and water excretion was seen during development of the renal response to hypertonic sodium chloride infusion. Thus, altered sensitivity to sodium chloride osmotic diuresis does not exist during maturation in rats. PMID:945839

  10. Mixed organic solvents induce renal injury in rats.

    PubMed

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  11. Mixed Organic Solvents Induce Renal Injury in Rats

    PubMed Central

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287

  12. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures.

    PubMed

    Percec, Virgil; Wilson, Daniela A; Leowanawat, Pawaret; Wilson, Christopher J; Hughes, Andrew D; Kaucher, Mark S; Hammer, Daniel A; Levine, Dalia H; Kim, Anthony J; Bates, Frank S; Davis, Kevin P; Lodge, Timothy P; Klein, Michael L; DeVane, Russell H; Aqad, Emad; Rosen, Brad M; Argintaru, Andreea O; Sienkowska, Monika J; Rissanen, Kari; Nummelin, Sami; Ropponen, Jarmo

    2010-05-21

    Self-assembled nanostructures obtained from natural and synthetic amphiphiles serve as mimics of biological membranes and enable the delivery of drugs, proteins, genes, and imaging agents. Yet the precise molecular arrangements demanded by these functions are difficult to achieve. Libraries of amphiphilic Janus dendrimers, prepared by facile coupling of tailored hydrophilic and hydrophobic branched segments, have been screened by cryogenic transmission electron microscopy, revealing a rich palette of morphologies in water, including vesicles, denoted dendrimersomes, cubosomes, disks, tubular vesicles, and helical ribbons. Dendrimersomes marry the stability and mechanical strength obtainable from polymersomes with the biological function of stabilized phospholipid liposomes, plus superior uniformity of size, ease of formation, and chemical functionalization. This modular synthesis strategy provides access to systematic tuning of molecular structure and of self-assembled architecture.

  13. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  14. Boundary fitting based segmentation of fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Lee, Soonam; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2015-03-01

    Segmentation is a fundamental step in quantifying characteristics, such as volume, shape, and orientation of cells and/or tissue. However, quantification of these characteristics still poses a challenge due to the unique properties of microscopy volumes. This paper proposes a 2D segmentation method that utilizes a combination of adaptive and global thresholding, potentials, z direction refinement, branch pruning, end point matching, and boundary fitting methods to delineate tubular objects in microscopy volumes. Experimental results demonstrate that the proposed method achieves better performance than an active contours based scheme.

  15. Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron.

    PubMed

    Horster, M; Gundlach, H

    1979-12-01

    The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.

  16. Hox control of Drosophila larval anatomy; The Alary and Thoracic Alary-Related Muscles.

    PubMed

    Bataillé, Laetitia; Frendo, Jean-Louis; Vincent, Alain

    2015-11-01

    The body plan of arthropods and vertebrates involves the formation of repetitive segments, which subsequently diversify to give rise to different body parts along the antero-posterior/rostro-caudal body axis. Anatomical variations between body segments are crucial for organ function and organismal fitness. Pioneering work in Drosophila has established that Hox transcription factors play key roles both in endowing initially identical segments with distinct identities and organogenesis. The focus of this review is on Alary Muscles (AMs) and the newly discovered Thoracic Alary-Related Muscles (TARMs). AMs and TARMs are thin muscles which together connect the circulatory system and different midgut regions to the exoskeleton, while intertwining with the respiratory tubular network. They were hypothesized to represent a new type of muscles with spring-like properties, maintaining internal organs in proper anatomical positions during larval locomotion. Both the morphology of TARMs relative to AMs, and morphogenesis of connected tissues is under Hox control, emphasizing the key role of Hox proteins in coordinating the anatomical development of the larva. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Automatic detection and segmentation of vascular structures in dermoscopy images using a novel vesselness measure based on pixel redness and tubularness

    NASA Astrophysics Data System (ADS)

    Kharazmi, Pegah; Lui, Harvey; Stoecker, William V.; Lee, Tim

    2015-03-01

    Vascular structures are one of the most important features in the diagnosis and assessment of skin disorders. The presence and clinical appearance of vascular structures in skin lesions is a discriminating factor among different skin diseases. In this paper, we address the problem of segmentation of vascular patterns in dermoscopy images. Our proposed method is composed of three parts. First, based on biological properties of human skin, we decompose the skin to melanin and hemoglobin component using independent component analysis of skin color images. The relative quantities and pure color densities of each component were then estimated. Subsequently, we obtain three reference vectors of the mean RGB values for normal skin, pigmented skin and blood vessels from the hemoglobin component by averaging over 100000 pixels of each group outlined by an expert. Based on the Euclidean distance thresholding, we generate a mask image that extracts the red regions of the skin. Finally, Frangi measure was applied to the extracted red areas to segment the tubular structures. Finally, Otsu's thresholding was applied to segment the vascular structures and get a binary vessel mask image. The algorithm was implemented on a set of 50 dermoscopy images. In order to evaluate the performance of our method, we have artificially extended some of the existing vessels in our dermoscopy data set and evaluated the performance of the algorithm to segment the newly added vessel pixels. A sensitivity of 95% and specificity of 87% were achieved.

  18. Tubular Epithelial NF-κB Activity Regulates Ischemic AKI

    PubMed Central

    Vigolo, Emilia; Hinze, Christian; Park, Joon-Keun; Roël, Giulietta; Balogh, András; Choi, Mira; Wübken, Anne; Cording, Jimmi; Blasig, Ingolf E.; Luft, Friedrich C.; Scheidereit, Claus; Schmidt-Ott, Kai M.; Schmidt-Ullrich, Ruth; Müller, Dominik N.

    2016-01-01

    NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of AKI. The cell type–specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)–induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed that IRI induced widespread NF-κB activation in renal tubular epithelia and in interstitial cells that peaked 2–3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBαΔN in renal proximal, distal, and collecting duct epithelial cells. Compared with control mice, these mice exhibited improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration after IRI-induced AKI. Furthermore, tubular NF-κB–dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBαΔN-expressing mice and exposed to hypoxia-mimetic agent cobalt chloride exhibited less apoptosis and expressed lower levels of chemokines than cells from control mice did. Our results indicate that postischemic NF-κB activation in renal tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response. PMID:26823548

  19. Cholemic nephropathy - Historical notes and novel perspectives.

    PubMed

    Krones, Elisabeth; Pollheimer, Marion J; Rosenkranz, Alexander R; Fickert, Peter

    2018-04-01

    Acute kidney injury is common in patients with liver disease and associated with significant morbidity and mortality. Besides bacterial infections, fluid loss, and use of nephrotoxic drugs AKI in liver disease may be triggered by tubular toxicity of cholephiles. Cholemic nephropathy, also known as bile cast nephropathy, supposedly represents a widely underestimated but important cause of renal dysfunction in cholestasic or advanced liver diseases with jaundice. Cholemic nephropathy describes impaired renal function along with characteristic histomorphological changes consisting of intratubular cast formation and tubular epithelial cell injury directed towards distal nephron segments. The underlying pathophysiologic mechanisms are not entirely understood and clear defined diagnostic criteria are still missing. This review aims to summarize (i) the present knowledge on clinical and morphological characteristics of cholemic nephropathy, (ii) available preclinical models, (iii) potential pathomechanisms especially the potential role of bile acids, and (iv) future diagnostic and therapeutic strategies for cholemic nephropathy. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Electron tomographic characterization of a vacuolar reticulum and of six vesicle types that occupy different cytoplasmic domains in the apex of tip-growing Chara rhizoids.

    PubMed

    Limbach, Christoph; Staehelin, L Andrew; Sievers, Andreas; Braun, Markus

    2008-04-01

    We provide a 3D ultrastructural analysis of the membrane systems involved in tip growth of rhizoids of the green alga Chara. Electron tomography of cells preserved by high-pressure freeze fixation has enabled us to distinguish six different types of vesicles in the apical cytoplasm where the tip growth machinery is accommodated. The vesicle types are: dark and light secretory vesicles, plasma membrane-associated clathrin-coated vesicles (PM-CCVs), Spitzenkoerper-associated clathrin-coated vesicles (Sp-CCVs) and coated vesicles (Sp-CVs), and microvesicles. Each of these vesicle types exhibits a distinct distribution pattern, which provides insights into their possible function for tip growth. The PM-CCVs are confined to the cytoplasm adjacent to the apical plasma membrane. Within this space they are arranged in clusters often surrounding tubular plasma membrane invaginations from which CCVs bud. This suggests that endocytosis and membrane recycling are locally confined to specialized apical endocytosis sites. In contrast, exocytosis of secretory vesicles occurs over the entire membrane area of the apical dome. The Sp-CCVs and the Sp-CVs are associated with the aggregate of endoplasmic reticulum membranes in the center of the growth-organizing Spitzenkoerper complex. Here, Sp-CCVs are seen to bud from undefined tubular membranes. The subapical region of rhizoids contains a vacuolar reticulum that extends along the longitudinal cell axis and consists of large, vesicle-like segments interconnected by thin tubular domains. The tubular domains are encompassed by thin filamentous structures resembling dynamin spirals which could drive peristaltic movements of the vacuolar reticulum similar to those observed in fungal hyphae. The vacuolar reticulum appears to serve as a lytic compartment into which multivesicular bodies deliver their internal vesicles for molecular recycling and degradation.

  1. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis

    PubMed Central

    Atsuta, Yuji; Takahashi, Yoshiko

    2015-01-01

    When a tubular structure forms during early embryogenesis, tubular elongation and lumen formation (epithelialization) proceed simultaneously in a spatiotemporally coordinated manner. We here demonstrate, using the Wolffian duct (WD) of early chicken embryos, that this coordination is regulated by the expression of FGF8, which shifts posteriorly during body axis elongation. FGF8 acts as a chemoattractant on the leader cells of the elongating WD and prevents them from epithelialization, whereas static (‘rear’) cells that receive progressively less FGF8 undergo epithelialization to form a lumen. Thus, FGF8 acts as a binary switch that distinguishes tubular elongation from lumen formation. The posteriorly shifting FGF8 is also known to regulate somite segmentation, suggesting that multiple types of tissue morphogenesis are coordinately regulated by macroscopic changes in body growth. PMID:26130757

  2. Temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles.

  3. Congenital ureteropelvic junction obstruction: physiopathology, decoupling of tout court pelvic dilatation-obstruction semantic connection, biomarkers to predict renal damage evolution.

    PubMed

    Alberti, C

    2012-02-01

    The widespread use of fetal ultrasonography results in a frequent antenatally observation of hydronephrosis, ureteropelvic junction obstruction (UPJO) accounting for the greatest fraction of congenital obstructive nephropathy. UPJO may be considered, in most cases, as a functional obstructive condition, depending on defective fetal smooth muscle/nerve development at this level, with lack of peristaltic wave propagation--aperistaltic segment--and, therefore, poor urine ejection from the renal pelvis into the ureter. The UPJO-related physiopathologic events are, at first, the compliant dilatation of renal pelvis that, acting as hydraulic buffer, protects the renal parenchyma from the rising intrapelvic pressure-related potential damages, and, subsequently, beyond such phase of dynamic balance, the tubular cell stretch-stress induced by increased intratubular pressure and following parenchymal inflammatory lesions: inflammatory infiltrates, fibroblast proliferation, activation of myofibroblasts, tubulo-interstitial fibrosis. Reactive oxygen species (ROS), nitric oxide (NO), several chemo- and cytokines, growth factors, prostaglandins and eicosanoids, angiotensin-II are the main pathogenetic mediators of the obstructive nephropathy. Apoptosis of tubular cells is the major cause of the tubular atrophy, together with epithelial-mesenchymal transdifferentiation. Some criticisms on tout court semantic renal pelvis dilatation-obstruction connection have been raised considering that the renal pelvis expansion isn't, in any case, linked to an ostructive condition, as it may be verified by diuretic (furosemide) renogram together with scintiscan-based evaluation of differential renal function. In this regard, rather than repetitive invasive nuclear procedures that expose the children to ionizing radiations, an intriguing noninvasive strategy, based on the evaluation of urinary biomarkers and urinary proteome, can define the UPJO-related possible progress of parenchymal lesions, thus predicting which patients must require an obstruction correcting surgery and in which patients, instead, the hydronephrosis will spontaneously resolve.

  4. Tubular Recovery after Acute Kidney Injury.

    PubMed

    Fattah, Hadi; Vallon, Volker

    2018-05-31

    A significant portion of patients who are affected by acute kidney injury (AKI) do not fully recover due to largely unclear reasons. Restoration of tubular function has been proposed to be a prerequisite for glomerular filtration rate (GFR) recovery. Proximal tubular cells dedifferentiate during the tubular injury phase, which is required for subsequent cell proliferation and replacement of lost epithelial cells. Experimental studies indicate that some cells fail to redifferentiate and continue to produce growth factors (e.g., transforming growth factor β) that can induce fibrosis. Preclinical studies provide first evidence for beneficial effects of inhibiting glucose transport in the proximal tubule in models of ischemia-reperfusion injury. Comparing renal RNA sequencing data with kidney function during recovery from varying levels of AKI may provide new cues with regard to the sequence of events and help identify key determinants of recovery from AKI. Key Messages: Tubular recovery after AKI is vital for recovery of kidney function including improvement of GFR, and likely determines which patients fully recover from AKI or progress to chronic kidney disease. There is a need to better understand the sequence of events and the processes of tubular cell proliferation and repair, including safe strategies to intervene. The temporary inhibition of selected tubular transport processes, possibly in selected nephron regions, may provide an opportunity to improve tubular cell energetics and facilitate tubular cell recovery with consequences for kidney outcome. © 2018 S. Karger AG, Basel.

  5. Lengths of nephron tubule segments and collecting ducts in the CD-1 mouse kidney: an ontogeny study.

    PubMed

    Walton, Sarah L; Moritz, Karen M; Bertram, John F; Singh, Reetu R

    2016-11-01

    The kidney continues to mature postnatally, with significant elongation of nephron tubules and collecting ducts to maintain fluid/electrolyte homeostasis. The aim of this project was to develop methodology to estimate lengths of specific segments of nephron tubules and collecting ducts in the CD-1 mouse kidney using a combination of immunohistochemistry and design-based stereology (vertical uniform random sections with cycloid arc test system). Lengths of tubules were determined at postnatal day 21 (P21) and 2 and 12 mo of age and also in mice fed a high-salt diet throughout adulthood. Immunohistochemistry was performed to identify individual tubule segments [aquaporin-1, proximal tubules (PT) and thin descending limbs of Henle (TDLH); uromodulin, distal tubules (DT); aquaporin-2, collecting ducts (CD)]. All tubular segments increased significantly in length between P21 and 2 mo of age (PT, 602% increase; DT, 200% increase; TDLH, 35% increase; CD, 53% increase). However, between 2 and 12 mo, a significant increase in length was only observed for PT (76% increase in length). At 12 mo of age, kidneys of mice on a high-salt diet demonstrated a 27% greater length of the TDLH, but no significant change in length was detected for PT, DT, and CD compared with the normal-salt group. Our study demonstrates an efficient method of estimating lengths of specific segments of the renal tubular system. This technique can be applied to examine structure of the renal tubules in combination with the number of glomeruli in the kidney in models of altered renal phenotype. Copyright © 2016 the American Physiological Society.

  6. P1,P4-diadenosine tetraphosphate (Ap4A) inhibits proximal tubular reabsorption of sodium in rats.

    PubMed

    Stiepanow-Trzeciak, Anna; Jankowski, Maciej; Angielski, Stefan; Szczepanska-Konkel, Miroslawa

    2007-01-01

    P1,P4-diadenosine tetraphosphate (Ap4A) is a vasoactive dinucleotide possessing natriuretic activity. It is unclear, however, which part of the nephron is the target site of action for Ap4A. We evaluated the tubular sites of Ap4A action using the lithium clearance technique. Ap4A at a priming dose of 2 micromol/kg with subsequent infusion at 20 nmol/kg/min increased fractional water and sodium excretion 2.5- and 5.6-fold, respectively. Moreover, Ap4A increased lithium clearance 1.9-fold and fractional lithium excretion 2.8-fold. Fractional water and sodium excretion from distal nephron segments was not significantly affected by Ap4A. These results suggest that Ap4A induces natriuresis mainly through inhibition of proximal tubular reabsorption of sodium. Copyright 2007 S. Karger AG, Basel.

  7. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  8. Continuous Polyol Synthesis of Metal and Metal Oxide Nanoparticles Using a Segmented Flow Tubular Reactor (SFTR).

    PubMed

    Testino, Andrea; Pilger, Frank; Lucchini, Mattia Alberto; Quinsaat, Jose Enrico Q; Stähli, Christoph; Bowen, Paul

    2015-06-08

    Over the last years a new type of tubular plug flow reactor, the segmented flow tubular reactor (SFTR), has proven its versatility and robustness through the water-based synthesis of precipitates as varied as CaCO3, BaTiO3, Mn(1-x)NixC2O4·2H2O, YBa oxalates, copper oxalate, ZnS, ZnO, iron oxides, and TiO2 produced with a high powder quality (phase composition, particle size, and shape) and high reproducibility. The SFTR has been developed to overcome the classical problems of powder production scale-up from batch processes, which are mainly linked with mass and heat transfer. Recently, the SFTR concept has been further developed and applied for the synthesis of metals, metal oxides, and salts in form of nano- or micro-particles in organic solvents. This has been done by increasing the working temperature and modifying the particle carrying solvent. In this paper we summarize the experimental results for four materials prepared according to the polyol synthesis route combined with the SFTR. CeO2, Ni, Ag, and Ca3(PO4)2 nanoparticles (NPs) can be obtained with a production rate of about 1-10 g per h. The production was carried out for several hours with constant product quality. These findings further corroborate the reliability and versatility of the SFTR for high throughput powder production.

  9. Proximal Nephron

    PubMed Central

    Zhuo, Jia L.; Li, Xiao C.

    2013-01-01

    The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches. PMID:23897681

  10. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function.

    PubMed

    Perico, Luca; Morigi, Marina; Rota, Cinzia; Breno, Matteo; Mele, Caterina; Noris, Marina; Introna, Martino; Capelli, Chiara; Longaretti, Lorena; Rottoli, Daniela; Conti, Sara; Corna, Daniela; Remuzzi, Giuseppe; Benigni, Ariela

    2017-10-17

    Mesenchymal stromal cells (MSCs) are renoprotective and drive regeneration following injury, although cellular targets of such an effect are still ill-defined. Here, we show that human umbilical cord (UC)-MSCs transplanted into mice stimulate tubular cells to regain mitochondrial mass and function, associated with enhanced microtubule-rich projections that appear to mediate mitochondrial trafficking to create a reparative dialogue among adjacent tubular cells. Treatment with UC-MSCs in mice with cisplatin-induced acute kidney injury (AKI) regulates mitochondrial biogenesis in proximal tubuli by enhancing PGC1α expression, NAD + biosynthesis and Sirtuin 3 (SIRT3) activity, thus fostering antioxidant defenses and ATP production. The functional role of SIRT3 in tubular recovery is highlighted by data that in SIRT3-deficient mice with AKI, UC-MSC treatment fails to induce renoprotection. These data document a previously unrecognized mechanism through which UC-MSCs facilitate renal repair, so as to induce global metabolic reprogramming of damaged tubular cells to sustain energy supply.Mesenchymal stromal cells drive renal regeneration following injury. Here, the authors show that human mesenchymal stromal cells, when transplanted into mice with acute kidney injury, stimulate renal tubular cell growth and enhance mitochondrial function via SIRT3.

  11. The renal response to potassium stress: integrating past with present.

    PubMed

    Boyd-Shiwarski, Cary R; Subramanya, Arohan R

    2017-09-01

    The current review combines past findings with recent advances in our understanding of the homeostatic response to potassium imbalance. Following the ingestion of a dietary potassium load, a combination of extrarenal and renal mechanisms act to maintain extracellular K+ within a tight window. Through hormonal regulation and direct K+ sensing, the nephron is ideally suited to respond to wide shifts in external K+ balance. Current evidence indicates that dietary K+ loading triggers a coordinated kaliuretic response that appears to involve voltage-dependent changes in sodium transport across multiple nephron segments, including the proximal tubule, medullary loop of Henle, and distal tubule. Inhibition of sodium transport in these segments would accomplish the final goal of enhancing distal NaCl delivery, luminal flow, and K+ secretion in the aldosterone sensitive distal nephron (ASDN). Ongoing research seeks to define the relationship between potassium and volume homeostasis by elucidating pathways that couple renal K+ sensing and tubular function during the potassium stress response.

  12. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease.

    PubMed

    Sharoar, M G; Shi, Q; Ge, Y; He, W; Hu, X; Perry, G; Zhu, X; Yan, R

    2016-09-01

    Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.

  13. [Clinical outcomes of single-level lumbar spondylolisthesis by minimally invasive transforaminal lumbar interbody fusion with bilateral tubular channels].

    PubMed

    Zeng, Z L; Jia, L; Yu, Y; Xu, W; Hu, X; Zhan, X H; Jia, Y W; Wang, J J; Cheng, L M

    2017-04-01

    Objective: To evaluate the clinical effectiveness of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) for single-level lumbar spondylolisthesis treatment with bilateral Spotlight tubular channels. Methods: A total of 21 patients with lumbar spondylolisthesis whom underwent MIS-TLIF via bilateral Spotlight tubular channels were retrospectively analyzed from October 2014 to November 2015. The 21 patients included 11 males and 10 females ranged from 35 to 82 years (average aged 60.7 years). In term of spondylolisthesis category, there were 18 cases of degenerative spondylolisthesis and 3 cases of isthmic spondylolisthesis. With respect to spondylolisthesis degree, 17 cases were grade Ⅰ° and 4 cases were grade Ⅱ°. Besides, 17 cases at L(4-5) and 4 cases at L(5)-S(1)were categorized by spondylolisthesis levels. Operation duration, blood loss, postoperative drainage and intraoperative exposure time were recorded, functional improvement was defined as an improvement in the Oswestry Disability Index (ODI), Visual Analog Scale (VAS) was also employed at pre and post-operation (3 months and the last follow-up), to evaluate low back and leg pain. Furthermore, to evaluate the recovery of the intervertebral foramen and of lumbar sagittal curvature, average height of intervertebral space, Cobb angles of lumbar vertebrae and operative segments, spondylolisthesis index were measured. At the last follow-up, intervertebral fusion was assessed using Siepe evaluation criteria and the clinical outcome was assessed using the MacNab scale. Radiographic and functional outcomes were compared pre- and post-operation using the paired T test to determine the effectiveness of MIS-TLIF. Statistical significance was defined as P <0.05. Results: All patients underwent a successful MIS-TLIF surgery. The operation time (235.2±30.2) mins, intraoperative blood loss (238.1±130.3) ml, postoperative drainage (95.7±57.1) ml and intraoperative radiation exposure (47.1±8.8) were recorded. Different significance between 3 months post-operative follow-up and pre-operation was exhibited ( P <0.01) in respects of lumbar VAS ( t =11.1, P <0.01) and leg VAS ( t =17.8, P <0.01). Moreover, final follow-up compared with pre-operation, and final follow-up compared with 3 months post-operative follow-up, VAS scores were also statistical difference ( P <0.01). At the final follow-up, there were significant differences compared with pre-operation in ODI scores ( t =30.1, P <0.01). Comparison between 3 months post-operative follow-up and pre-operation, statistical distinctions were demonstrated ( P <0.05) in terms of mean height of intervertebral space ( t =-10.9, P <0.01), the Cobb angles of lumbar vertebrae ( t =-2.4, P <0.05), operative segments Cobb angles ( t =-5.2, P <0.01) and Lumbar spondylolisthesis incidence ( t =17.1, P <0.01). In addition, there was statistical difference between final follow-up and pre-operation ( P <0.05) as well. For instance, mean height of intervertebral space ( t =-10.5, P <0.01), the Cobb angles of lumbar vertebrae ( t =-2.7, P <0.05), operative segments Cobb angles ( t =-4.2, P <0.01) and Lumbar spondylolisthesis incidence ( t =18.6, P <0.01) were involved. All spondylolisthesis vertebrae were restored completely. Lastly, at the last follow-up, 12 cases of grade 1 and 7 cases of grade 2 fusion were present as determined by the Siepe evaluation criteria. McNab scale assessment classified 17 patients having excellent clinical outcome, 3 patients in good and 1 patient having a better clinical outcome. Conclusion: MIS-TLIF with bilateral Spotlight tubular channels is a safe and effective approach for single segment lumbar spondylolisthesis.

  14. MELAS Syndrome and Kidney Disease Without Fanconi Syndrome or Proteinuria: A Case Report.

    PubMed

    Rudnicki, Michael; Mayr, Johannes A; Zschocke, Johannes; Antretter, Herwig; Regele, Heinz; Feichtinger, René G; Windpessl, Martin; Mayer, Gert; Pölzl, Gerhard

    2016-12-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS syndrome) represents one of the most frequent mitochondrial disorders. The majority of MELAS cases are caused by m.3243A>G mutation in the mitochondrial MT-TL1 gene, which encodes the mitochondrial tRNA Leu(UUR) . Kidney involvement usually manifests as Fanconi syndrome or focal segmental glomerulosclerosis. We describe a patient with MELAS mutation, cardiomyopathy, and chronic kidney disease without Fanconi syndrome, proteinuria, or hematuria. While the patient was waitlisted for heart transplantation, her kidney function deteriorated from an estimated glomerular filtration rate of 33 to 20mL/min/1.73m 2 within several months. Kidney biopsy was performed to distinguish decreased kidney perfusion from intrinsic kidney pathology. Histologic examination of the biopsy specimen showed only a moderate degree of tubular atrophy and interstitial fibrosis, but quantitative analysis of the m.3243A>G mitochondrial DNA mutation revealed high heteroplasmy levels of 89% in the kidney. Functional assessment showed reduced activity of mitochondrial enzymes in kidney tissue, which was confirmed by immunohistology. In conclusion, we describe an unusual case of MELAS syndrome with chronic kidney disease without apparent proteinuria or tubular disorders associated with Fanconi syndrome, but widespread interstitial fibrosis and a high degree of heteroplasmy of the MELAS specific mutation and low mitochondrial activity in the kidney. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. Renal albumin absorption in physiology and pathology.

    PubMed

    Birn, H; Christensen, E I

    2006-02-01

    Albumin is the most abundant plasmaprotein serving multiple functions as a carrier of metabolites, hormones, vitamins, and drugs, as an acid/base buffer, as antioxidant and by supporting the oncotic pressure and volume of the blood. The presence of albumin in urine is considered to be the result of the balance between glomerular filtration and tubular reabsorption. Albuminuria has been accepted as an independent risk factor and a marker for renal as well as cardiovascular disease, and during the past decade, evidence has suggested that albumin itself may cause progression of renal disease. Thus, the reduction of proteinuria and, in particular, albuminuria has become a target in itself to prevent deterioration of renal function. Studies have shown albumin and its ligands to induce expression of inflammatory and fibrogenic mediators, and it has been hypothesized that increased filtration of albumin causes excessive tubular reabsorption, resulting in inflammation and fibrosis, resulting in the loss of renal function. In addition, it is known that tubular dysfunction in itself may cause albuminuria owing to decreased reabsorption of filtered albumin, and, recently, it has been suggested that significant amounts of albumin fragments are excreted in the urine as a result of tubular degradation. Thus, although both tubular and glomerular dysfunction influences renal handling of albumin, it appears that tubular reabsorption plays a central role in mediating the effects of albumin on renal function. The present paper will review the mechanisms for tubular albumin uptake and the possible implications for the development of renal disease.

  16. [One staged laparoscopic surgery of colon cancer with liver metastasis in the Guillermo Almenara Hospital, Lima, Peru].

    PubMed

    Núñez Ju, Juan José; Coronado3, Cesar Carlos; Anchante Castillo, Eduardo; Sandoval Jauregui, Javier; Arenas Gamio, José

    2016-01-01

    We report a patient who was diagnosed sigmoid colon cancer associated with liver metastases in segment III. The patient underwent laparoscopic surgery where the sigmoid colon resection and hepatic metastasectomy were performed in a “one staged” surgical procedure. The pathological results showed moderately differentiated tubular adenocarcinoma in sigmoid colon, tubular adenocarcinoma metastases also in liver. Oncological surgical results were obtained with free edges of neoplasia, R0 Surgery, T3N0M1. After the optimal surgical results, the patient is handled by oncology for adjuvant treatment. We report here the sequence of events and a review of the literature.

  17. Vortex nozzle for segmenting and transporting metal chips from turning operations

    DOEpatents

    Bieg, L.F.

    1993-04-20

    Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.

  18. Polycystin-1 Binds Par3/aPKC and Controls Convergent Extension During Renal Tubular Morphogenesis

    PubMed Central

    Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra

    2013-01-01

    Several organs, including lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintanance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1 (PC-1), a large receptor of unknown function. Here we demonstrate that PC-1 plays an essential role in establishment of correct tubular diameter during nephron development. PC-1 associates with Par3 favoring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a program of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis and in renal cyst formation. Our data define PC-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis. PMID:24153433

  19. Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis

    NASA Astrophysics Data System (ADS)

    Castelli, Maddalena; Boca, Manila; Chiaravalli, Marco; Ramalingam, Harini; Rowe, Isaline; Distefano, Gianfranco; Carroll, Thomas; Boletta, Alessandra

    2013-10-01

    Several organs, including the lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintenance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1, a large receptor of unknown function. Here we demonstrate that PC-1 has an essential role in the establishment of correct tubular diameter during nephron development. Polycystin-1 associates with Par3 favouring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a programme of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis, and in renal cyst formation. Our data define Polycystin-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.

  20. Braided tubular superelastic cables provide improved spinal stability compared to multifilament sublaminar cables.

    PubMed

    Tremblay, Jaëlle; Mac-Thiong, Jean-Marc; Brailovski, Vladimir; Petit, Yvan

    2015-09-01

    This study investigates the use of braided tubular superelastic cables, previously used for sternum closure following sternotomy, as sublaminar fixation method. It compares the biomechanical performance of spinal instrumentation fixation systems with regular sublaminar cables and proprietary superelastic cables. A hybrid experimental protocol was applied to six porcine L1-L4 spinal segments to compare multifilament sublaminar cables (Atlas, Medtronic Sofamor Danek, Memphis, TN) with proprietary superelastic cables. First, intact total range of motion was determined for all specimens using pure moment loading. Second, pure moments were imposed to the instrumented specimens until these intact total ranges of motion were reproduced. Compared to the intact specimens, the use of superelastic cables resulted in stiffer instrumented specimens than the use of multifilament cables for all the loading modes except axial torsion. Consequently, the superelastic cables limited the instrumented segments mobility more than the multifilament cables. Spinal instrumentation fixation systems using superelastic cables could be a good alternative to conventional sublaminar cables as it maintains a constant stabilization of the spine during loading. © IMechE 2015.

  1. Quantifying Glomerular Permeability of Fluorescent Macromolecules Using 2-Photon Microscopy in Munich Wistar Rats

    PubMed Central

    Sandoval, Ruben M.; Molitoris, Bruce A.

    2013-01-01

    Kidney diseases involving urinary loss of large essential macromolecules, such as serum albumin, have long been thought to be caused by alterations in the permeability barrier comprised of podocytes, vascular endothelial cells, and a basement membrane working in unison. Data from our laboratory using intravital 2-photon microscopy revealed a more permeable glomerular filtration barrier (GFB) than previously thought under physiologic conditions, with retrieval of filtered albumin occurring in an early subset of cells called proximal tubule cells (PTC)1,2,3. Previous techniques used to study renal filtration and establishing the characteristic of the filtration barrier involved micropuncture of the lumen of these early tubular segments with sampling of the fluid content and analysis4. These studies determined albumin concentration in the luminal fluid to be virtually non-existent; corresponding closely to what is normally detected in the urine. However, characterization of dextran polymers with defined sizes by this technique revealed those of a size similar to serum albumin had higher levels in the tubular lumen and urine; suggesting increased permeability5. Herein is a detailed outline of the technique used to directly visualize and quantify glomerular fluorescent albumin permeability in vivo. This method allows for detection of filtered albumin across the filtration barrier into Bowman's space (the initial chamber of urinary filtration); and also allows quantification of albumin reabsorption by proximal tubules and visualization of subsequent albumin transcytosis6. The absence of fluorescent albumin along later tubular segments en route to the bladder highlights the efficiency of the retrieval pathway in the earlier proximal tubule segments. Moreover, when this technique was applied to determine permeability of dextrans having a similar size to albumin virtually identical permeability values were reported2. These observations directly support the need to expand the focus of many proteinuric renal diseases to included alterations in proximal tubule cell reclamation. PMID:23628966

  2. Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation.

    PubMed

    Phellan, Renzo; Forkert, Nils D

    2017-11-01

    Vessel enhancement algorithms are often used as a preprocessing step for vessel segmentation in medical images to improve the overall segmentation accuracy. Each algorithm uses different characteristics to enhance vessels, such that the most suitable algorithm may vary for different applications. This paper presents a comparative analysis of the accuracy gains in vessel segmentation generated by the use of nine vessel enhancement algorithms: Multiscale vesselness using the formulas described by Erdt (MSE), Frangi (MSF), and Sato (MSS), optimally oriented flux (OOF), ranking orientations responses path operator (RORPO), the regularized Perona-Malik approach (RPM), vessel enhanced diffusion (VED), hybrid diffusion with continuous switch (HDCS), and the white top hat algorithm (WTH). The filters were evaluated and compared based on time-of-flight MRA datasets and corresponding manual segmentations from 5 healthy subjects and 10 patients with an arteriovenous malformation. Additionally, five synthetic angiographic datasets with corresponding ground truth segmentation were generated with three different noise levels (low, medium, and high) and also used for comparison. The parameters for each algorithm and subsequent segmentation were optimized using leave-one-out cross evaluation. The Dice coefficient, Matthews correlation coefficient, area under the ROC curve, number of connected components, and true positives were used for comparison. The results of this study suggest that vessel enhancement algorithms do not always lead to more accurate segmentation results compared to segmenting nonenhanced images directly. Multiscale vesselness algorithms, such as MSE, MSF, and MSS proved to be robust to noise, while diffusion-based filters, such as RPM, VED, and HDCS ranked in the top of the list in scenarios with medium or no noise. Filters that assume tubular-shapes, such as MSE, MSF, MSS, OOF, RORPO, and VED show a decrease in accuracy when considering patients with an AVM, because vessels may vary from its tubular-shape in this case. Vessel enhancement algorithms can help to improve the accuracy of the segmentation of the vascular system. However, their contribution to accuracy has to be evaluated as it depends on the specific applications, and in some cases it can lead to a reduction of the overall accuracy. No specific filter was suitable for all tested scenarios. © 2017 American Association of Physicists in Medicine.

  3. Retention of differentiated characteristics by cultures of defined rabbit kidney epithelia.

    PubMed

    Wilson, P D; Anderson, R J; Breckon, R D; Nathrath, W; Schrier, R W

    1987-02-01

    Rabbit nephron segments of proximal convoluted tubules (PCT); proximal straight tubules (PST); cortical and medullary thick ascending limbs of Henle's loop (CAL, MAL); and cortical, outer medullary, and inner medullary collecting tubules (CCT, OMCT, IMCT) were individually microdissected and grown in monolayer culture in hormone supplemented, defined media. Factors favoring a rapid onset of proliferation included young donor age, distal tubule origin, and the addition of 3% fetal calf serum to the medium. All primary cultures had polarized morphology with apical microvilli facing the medium and basement membrane-like material adjacent to the dish. Differentiated properties characteristic of the tubular epithelium of origin retained in cultures included ultrastructural characteristics and cytochemically demonstrable marker enzyme proportions. PCT and PST were rich in alkaline phosphatase; CAL stained strongly for NaK-ATPase; CCT contained two cell populations with regard to cytochrome oxidase reaction. A CCT-specific anti-keratin antibody (aLEA) was immunolocalized in CCT cultures, and a PST cytokeratin antibody stained PST cultures. The biochemical response of adenylate cyclase to putative stimulating agents was the same in primary cultures as in freshly isolated tubules. In PCT and PST adenylate cyclase activity was stimulated by parathyroid hormone (PTH) but not by arginine vasopressin (AVP); CAL and MAL adenylate cyclase was stimulated by neither PTH nor AVP; CCT, OMCT, and IMCT adenylate cyclase was stimulated by AVP but not by PTH. NaF stimulated adenylate cyclase activity in every cultured segment. It is concluded that primary cultures of individually microdissected rabbit PCT, PST, CAL, MAL, CCT, OMCT, and IMCT retain differentiated characteristics with regard to ultrastructure, marker enzymes, cytoskeletal proteins, and hormone response of adenylate cyclase and provide a new system for studying normal and abnormal functions of the heterogeneous tubular epithelia in the kidney.

  4. Grouper tshβ Promoter-Driven Transgenic Zebrafish Marks Proximal Kidney Tubule Development

    PubMed Central

    Wang, Yang; Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2014-01-01

    Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ (gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule. PMID:24905828

  5. Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat

    PubMed Central

    Posterino, G S; Lamb, G D; Stephenson, D G

    2000-01-01

    Transverse electrical field stimulation (50 V cm−1, 2 ms duration) of mechanically skinned skeletal muscle fibres of the rat elicited twitch and tetanic force responses (36 ± 4 and 83 ± 4 % of maximum Ca2+-activated force, respectively; n = 23) closely resembling those in intact fibres. The responses were steeply dependent on the field strength and were eliminated by inclusion of 10 μm tetrodotoxin (TTX) in the (sealed) transverse tubular (T-) system of the skinned fibres and by chronic depolarisation of the T-system. Spontaneous twitch-like activity occurred sporadically in many fibres, producing near maximal force in some instances (mean time to peak: 190 ± 40 ms; n = 4). Such responses propagated as a wave of contraction longitudinally along the fibre at a velocity of 13 ± 3 mm s−1 (n = 7). These spontaneous contractions were also inhibited by inclusion of TTX in the T-system and by chronic depolarisation. We examined whether the T-tubular network was interconnected longitudinally using fibre segments that were skinned for only ∼2/3 of their length, leaving the remainder of each segment intact with its T-system open to the bathing solution. After such fibres were exposed to TTX (60 μm), the adjacent skinned region (with its T-system not open to the solution) became unresponsive to subsequent electrical stimulation in ∼50 % of cases (7/15), indicating that TTX was able to diffuse longitudinally inside the fibre via the tubular network over hundreds of sarcomeres. These experiments show that excitation–contraction coupling in mammalian muscle fibres involves action potential propagation both transversally and longitudinally within the tubular system. Longitudinal propagation of action potentials inside skeletal muscle fibres is likely to be an important safety mechanism for reducing conduction failure during fatigue and explains why, in developing skeletal muscle, the T-system first develops as an internal longitudinal network. PMID:10944176

  6. Renal tubular function in children with tyrosinaemia type I treated with nitisinone.

    PubMed

    Santra, S; Preece, M A; Hulton, S-A; McKiernan, P J

    2008-06-01

    Tyrosinaemia type I (TTI) is an inherited deficiency in the enzyme fumarylacetoacetate hydrolase and is frequently complicated by renal tubular dysfunction which may persist in some patients after hepatic transplantation. Nitisinone has revolutionized the management of TTI but its effect on renal tubular dysfunction has not been described in a large cohort of patients. To document the incidence and progression of renal tubular dysfunction in children with TTI treated with nitisinone at a single centre. Twenty-one patients with TTI from a single centre were treated with nitisinone for at least 12 months. Median age at first treatment was 17 weeks (range 1 week to 27 months). Nine patients (43%) presented in acute liver failure, seven (33%) had a chronic presentation and five (24%) were detected pre-clinically. A retrospective case analysis of plasma phosphate, urinary protein/creatinine ratio and tubular reabsorption of phosphate was performed for all patients as markers of tubular function. Renal ultrasounds were examined for evidence of nephrocalcinosis and where available, skeletal radiographs for rickets. All patients had biochemical evidence of renal tubular dysfunction at presentation. After nitisinone and dietary treatment were started, all three markers normalized within one year. Four children had clinical rickets at presentation (which improved), of whom one had nephrocalcinosis, which did not reverse on nitisinone. No child redeveloped tubular dysfunction after commencing nitisinone. All patients with TTI had evidence of tubular dysfunction at presentation and in all cases this resolved with nitisinone and dietary control. The tubulopathy associated with TTI is reversible.

  7. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    PubMed

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  8. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma

    PubMed Central

    Ambrosio, Maria R.; Rocca, Bruno J.; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T.; Tripodi, Sergio A.; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis. PMID:26425551

  9. Development of a Physiologically Based Computational Kidney Model to Describe the Renal Excretion of Hydrophilic Agents in Rats

    PubMed Central

    Niederalt, Christoph; Wendl, Thomas; Kuepfer, Lars; Claassen, Karina; Loosen, Roland; Willmann, Stefan; Lippert, Joerg; Schultze-Mosgau, Marcus; Winkler, Julia; Burghaus, Rolf; Bräutigam, Matthias; Pietsch, Hubertus; Lengsfeld, Philipp

    2013-01-01

    A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption. PMID:23355822

  10. Primary Molecular Disorders and Secondary Biological Adaptations in Bartter Syndrome

    PubMed Central

    Deschênes, Georges; Fila, Marc

    2011-01-01

    Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures. PMID:21941653

  11. Vessel Enhancement and Segmentation of 4D CT Lung Image Using Stick Tensor Voting

    NASA Astrophysics Data System (ADS)

    Cong, Tan; Hao, Yang; Jingli, Shi; Xuan, Yang

    2016-12-01

    Vessel enhancement and segmentation plays a significant role in medical image analysis. This paper proposes a novel vessel enhancement and segmentation method for 4D CT lung image using stick tensor voting algorithm, which focuses on addressing the vessel distortion issue of vessel enhancement diffusion (VED) method. Furthermore, the enhanced results are easily segmented using level-set segmentation. In our method, firstly, vessels are filtered using Frangi's filter to reduce intrapulmonary noises and extract rough blood vessels. Secondly, stick tensor voting algorithm is employed to estimate the correct direction along the vessel. Then the estimated direction along the vessel is used as the anisotropic diffusion direction of vessel in VED algorithm, which makes the intensity diffusion of points locating at the vessel wall be consistent with the directions of vessels and enhance the tubular features of vessels. Finally, vessels can be extracted from the enhanced image by applying level-set segmentation method. A number of experiments results show that our method outperforms traditional VED method in vessel enhancement and results in satisfied segmented vessels.

  12. Acute histopathological changes produced by Penicillium aurantiogriseum nephrotoxin in the rat.

    PubMed Central

    Adatia, R.; Heaton, J. M.; Macgeorge, K. M.; Mantle, P. G.

    1991-01-01

    Shredded wheat moulded by an isolate of Penicillium aurantiogriseum elicited progressive histopathological changes at the rat renal cortico-medullary junction during 5 days of dosing, when incorporated into diet as a 20% component. The changes of acute tubular necrosis and regeneration were seen in the P3 segment of the nephron. In rats exposed to contaminated diet for 5 days the histopathological changes regressed in severity by about one-half within a further 4 days on normal diet and by 7 days the tubular epithelium was nearly normal. A partially purified fraction of an alcohol extract, selected by preparative high-voltage electrophoresis and anion exchange and notably rich in amino-compounds, was typically nephrotoxic when given in diet over 4 days. Acute marked tubular necrosis also occurred when the same fraction was given intraperitoneally over a similar period. The acute histological changes provide a rapid bioassay for this Penicillium nephrotoxicity and facilitate the search for the toxic metabolite(s). The cumulative expression of necrosis and repair over only a few days in tubular epithelium suggests that chronic exposure will elicit a more complex pathology which might serve as an experimental model for the idiopathic Balkan endemic nephropathy. Images Fig. 1 p51-a Fig. 2 PMID:1888665

  13. Optimizing SGLT inhibitor treatment for diabetes with chronic kidney diseases.

    PubMed

    Layton, Anita T

    2018-06-28

    Diabetes induces glomerular hyperfiltration, affects kidney function, and may lead to chronic kidney diseases. A novel therapeutic treatment for diabetic patients targets the sodium-glucose cotransporter isoform 2 (SGLT2) in the kidney. SGLT2 inhibitors enhance urinary glucose, [Formula: see text] and fluid excretion and lower hyperglycemia in diabetes by inhibiting [Formula: see text] and glucose reabsorption along the proximal convoluted tubule. A goal of this study is to predict the effects of SGLT2 inhibitors in diabetic patients with and without chronic kidney diseases. To that end, we applied computational rat kidney models to assess how SGLT2 inhibition affects renal solute transport and metabolism when nephron population are normal or reduced (the latter simulates chronic kidney disease). The model predicts that SGLT2 inhibition induces glucosuria and natriuresis, with those effects enhanced in a remnant kidney. The model also predicts that the [Formula: see text] transport load and thus oxygen consumption of the S3 segment are increased under SGLT2 inhibition, a consequence that may increase the risk of hypoxia for that segment. To protect the vulnerable S3 segment, we explore dual SGLT2/SGLT1 inhibition and seek to determine the optimal combination that would yield sufficient urinary glucose excretion while limiting the metabolic load on the S3 segment. The model predicts that the optimal combination of SGLT2/SGLT1 inhibition lowers the oxygen requirements of key tubular segments, but decreases urine flow and [Formula: see text] excretion; the latter effect may limit the cardiovascular protection of the treatment.

  14. Uromodulin retention in thick ascending limb of Henle's loop affects SCD1 in neighboring proximal tubule: renal transcriptome studies in mouse models of uromodulin-associated kidney disease.

    PubMed

    Horsch, Marion; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Rathkolb, Birgit; Wolf, Eckhard; Aigner, Bernhard; Kemter, Elisabeth

    2014-01-01

    Uromodulin-associated kidney disease (UAKD) is a hereditary progressive renal disease which can lead to renal failure and requires renal replacement therapy. UAKD belongs to the endoplasmic reticulum storage diseases due to maturation defect of mutant uromodulin and its retention in the enlarged endoplasmic reticulum in the cells of the thick ascending limb of Henle's loop (TALH). Dysfunction of TALH represents the key pathogenic mechanism of UAKD causing the clinical symptoms of this disease. However, the molecular alterations underlying UAKD are not well understood. In this study, transcriptome profiling of whole kidneys of two mouse models of UAKD, UmodA227T and UmodC93F, was performed. Genes differentially abundant in UAKD affected kidneys of both Umod mutant lines at different disease stages were identified and verified by RT-qPCR. Additionally, differential protein abundances of SCD1 and ANGPTL7 were validated by immunohistochemistry and Western blot analysis. ANGPTL7 expression was down-regulated in TALH cells of Umod mutant mice which is the site of the mutant uromodulin maturation defect. SCD1 was expressed selectively in the S3 segment of proximal tubule cells, and SCD1 abundance was increased in UAKD affected kidneys. This finding demonstrates that a cross talk between two functionally distinct tubular segments of the kidney, the TALH segment and the S3 segment of proximal tubule, exists.

  15. Combining deep learning with anatomical analysis for segmentation of the portal vein for liver SBRT planning

    NASA Astrophysics Data System (ADS)

    Ibragimov, Bulat; Toesca, Diego; Chang, Daniel; Koong, Albert; Xing, Lei

    2017-12-01

    Automated segmentation of the portal vein (PV) for liver radiotherapy planning is a challenging task due to potentially low vasculature contrast, complex PV anatomy and image artifacts originated from fiducial markers and vasculature stents. In this paper, we propose a novel framework for automated segmentation of the PV from computed tomography (CT) images. We apply convolutional neural networks (CNNs) to learn the consistent appearance patterns of the PV using a training set of CT images with reference annotations and then enhance the PV in previously unseen CT images. Markov random fields (MRFs) were further used to smooth the results of the enhancement of the CNN enhancement and remove isolated mis-segmented regions. Finally, CNN-MRF-based enhancement was augmented with PV centerline detection that relied on PV anatomical properties such as tubularity and branch composition. The framework was validated on a clinical database with 72 CT images of patients scheduled for liver stereotactic body radiation therapy. The obtained accuracy of the segmentation was DSC= 0.83 and \

  16. The kidney in the pathogenesis of hypertension: the role of renal nerves.

    PubMed

    DiBona, G F

    1985-04-01

    The intrinsic efferent innervation of the kidney consists of exclusively noradrenergic fibers that innervate the preglomerular and postgomerular vasculature, all elements of the juxtagomerular apparatus and virtually all segments of the nephron in both cortical and medullo-papillary regions. Increases in efferent renal sympathetic nerve activity produce renal vasoconstriction, release of renin, catecholamines, prostaglandins and other vasoactive substances, and increases in renal tubular sodium reabsorption; these responses are graded and differentiated. The intrinsic afferent innervation of the kidney consists of mechanoreceptors and chemoreceptors which participate in reno-renal and reno-systemic reflexes that modulate sympathetic neural outflow in an organ-specific differentiated pattern. Therefore, alterations in efferent and afferent renal nerve activity produce changes in several important renal functions known to contribute to the development and maintenance of hypertension.

  17. VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo

    PubMed Central

    Johnson, Alyssa E; Shu, Huidy; Hauswirth, Anna G; Tong, Amy; Davis, Graeme W

    2015-01-01

    Lysosomes are classically viewed as vesicular structures to which cargos are delivered for degradation. Here, we identify a network of dynamic, tubular lysosomes that extends throughout Drosophila muscle, in vivo. Live imaging reveals that autophagosomes merge with tubular lysosomes and that lysosomal membranes undergo extension, retraction, fusion and fission. The dynamics and integrity of this tubular lysosomal network requires VCP, an AAA-ATPase that, when mutated, causes degenerative diseases of muscle, bone and neurons. We show that human VCP rescues the defects caused by loss of Drosophila VCP and overexpression of disease relevant VCP transgenes dismantles tubular lysosomes, linking tubular lysosome dysfunction to human VCP-related diseases. Finally, disruption of tubular lysosomes correlates with impaired autophagosome-lysosome fusion, increased cytoplasmic poly-ubiquitin aggregates, lipofuscin material, damaged mitochondria and impaired muscle function. We propose that VCP sustains sarcoplasmic proteostasis, in part, by controlling the integrity of a dynamic tubular lysosomal network. DOI: http://dx.doi.org/10.7554/eLife.07366.001 PMID:26167652

  18. Disruption of estrogen receptor signaling and similar pathways in the efferent ductules and initial segment of the epididymis

    PubMed Central

    Hess, Rex A

    2014-01-01

    Abstract: Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion: The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules. PMID:26413389

  19. Disruption of estrogen receptor signaling and similar pathways in the efferent ductules and initial segment of the epididymis.

    PubMed

    Hess, Rex A

    2014-01-01

    Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion : The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules.

  20. Bottom-up fabrication of artery-mimicking tubular co-cultures in collagen-based microchannel scaffolds.

    PubMed

    Tan, A; Fujisawa, K; Yukawa, Y; Matsunaga, Y T

    2016-10-20

    We developed a robust bottom-up approach to construct open-ended, tubular co-culture constructs that simulate the human vascular morphology and microenvironment. By design, these three-dimensional artificial vessels mimic the basic architecture of an artery: a collagen-rich extracellular matrix (as the tunica externa), smooth muscle cells (SMCs) (as the tunica media), and an endothelial cell (EC) lining (as the tunica interna). A versatile needle-based fabrication technique was employed to achieve controllable arterial layouts within a PDMS-hosted collagen microchannel scaffold (330 ± 10 μm in diameter): (direct co-culture) a SMC/EC bilayer to follow the structure of an arteriole-like segment; and (encapsulated co-culture) a lateral SMC multilayer covered by an EC monolayer lining to simulate the architecture of a larger artery. Optical and fluorescence microscopy images clearly evidenced the progressive cell elongation and sprouting behavior of SMCs and ECs along the collagen gel contour and within the gel matrix under static co-culture conditions. The progressive cell growth patterns effectively led to the formation of a tubular co-culture with an internal endothelial lining expressing prominent CD31 (cluster of differentiation 31) intercellular junction markers. During a 4-day static maturation period, the artery constructs showed modest alteration in the luminal diameters (i.e. less than 10% changes from the initial measurements). This argues in favor of stable and predictable arterial architecture achieved via the proposed fabrication protocols. Both co-culture models showed a high glucose metabolic rate during the initial proliferation phase, followed by a temporary quiescent (and thus, mature) stage. These proof-of-concept models with a controllable architecture create an important foundation for advanced vessel manipulations such as the integration of relevant physiological functionality or remodeling into a vascular disease-mimicking tissue.

  1. Localization of Mg2+-sensing shark kidney calcium receptor SKCaR in kidney of spiny dogfish, Squalus acanthias.

    PubMed

    Hentschel, Hartmut; Nearing, Jacqueline; Harris, H William; Betka, Marlies; Baum, Michelle; Hebert, Steven C; Elger, Marlies

    2003-09-01

    We recently cloned a homologue of the bovine parathyroid calcium receptor from the kidney of a spiny dogfish (Squalus acanthias) and termed this new protein SKCaR. SKCaR senses alterations in extracellular Mg2+ after its expression in human embryonic kidney cells (Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown E, Hebert S, and Harris HW. Proc Natl Acad. Sci USA 99: 9231-9236, 2002). In this report, we used light and electron microscopic immunocytochemical techniques to study the distribution of SKCaR in dogfish kidney. SKCaR antiserum bound to the apical membranes of shark kidney epithelial cells in the following tubular segments: proximal tubules (PIa and PIIb), late distal tubule, and collecting tubule/collecting duct as well as diffusely labeled cells of early distal tubule. The highly specific distribution of SKCaR in mesial tissue as well as lateral countercurrent bundles of dogfish kidney is compatible with a role for SKCaR to sense local tubular Mg2+ concentrations. This highly specific distribution of SKCaR protein in dogfish kidney could possibly work in concert with the powerful Mg2+ secretory system present in the PIIa segment of elasmobranch fish kidney to affect recycling of Mg2+ from putative Mg2+-sensing/Mg2+-reabsorbing segments. These data provide support for the possible existence of Mg2+ cycling in elasmobranch kidney in a manner analogous to that described for mammals.

  2. Alport's syndrome with focal segmental glomerulosclerosis lesion - Pattern to recognize.

    PubMed

    Alsahli, Afnan A; Alshahwan, Sara I; Alotaibi, Amal O; Alsaad, Khaled O; Aloudah, Nourah; Farooqui, Mahfooz; Al Sayyari, Abdullah A

    2018-01-01

    The association between Alport's syndrome (AS) and focal segmental glomerulosclerosis (FSGS) in the same patient is complex and rarely reported. We report a case of a 42-year-old male presenting with proteinuria, microscopic hematuria, elevated serum creatinine and hypertension with unremarkable physical examination apart from obesity. The renal biopsy showed well-established FSGS pattern of injury with mild interstitial fibrosis and tubular atrophy, while the electron microscopic examination demonstrated glomerular basement membranes (GBM) changes compatible with AS. AS can be complicated by segmental glomerular scarring, which can mimic primary FSGS, while familial FSGS can result from mutations in collagen IV network of the GBM. This overlap can complicate histopathological interpretation of renal biopsy, which should be accompanied by mutational analysis for accurate diagnosis and proper therapeutic intervention.

  3. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study

    PubMed Central

    Deeley, M A; Chen, A; Datteri, R; Noble, J; Cmelak, A; Donnelly, E; Malcolm, A; Moretti, L; Jaboin, J; Niermann, K; Yang, Eddy S; Yu, David S; Yei, F; Koyama, T; Ding, G X; Dawant, B M

    2011-01-01

    The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation (STAPLE) algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8–0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4–0.5. Similarly low DSC have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (−4.3, +5.4) mm for the automatic system to (−3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms. PMID:21725140

  4. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study

    NASA Astrophysics Data System (ADS)

    Deeley, M. A.; Chen, A.; Datteri, R.; Noble, J. H.; Cmelak, A. J.; Donnelly, E. F.; Malcolm, A. W.; Moretti, L.; Jaboin, J.; Niermann, K.; Yang, Eddy S.; Yu, David S.; Yei, F.; Koyama, T.; Ding, G. X.; Dawant, B. M.

    2011-07-01

    The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice similarity coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8-0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4-0.5. Similarly low DSCs have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (-4.3, +5.4) mm for the automatic system to (-3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms.

  5. METHOD AND APPARATUS FOR FABRICATING TUBULAR UNITS

    DOEpatents

    Haldeman, G.W.

    1959-02-24

    A method and apparatus are described for fabricating tubular assemblies such as clad fuel elements for nuclear reactors. According to this method, a plurality of relatively short cylindrical slug-shaped members are inserted in an outer protective tubular jacket, and the assembly is passed through a reducing die to draw the outer tubular member into tight contact with the slug members, the slugs being automatically spaced with respect to each other and helium being inserted during the drawing operation to fill the spaces. The apparatus includes a pusher rod which functions to space the slugelements equidistantly by pushing on them in the direction of drawing but traveling at a slower rate than that of the tubular member.

  6. Vascular Reconstruction Technique Using a Tubular Graft for Leiomyosarcoma of the Inferior Vena Cava: A Case Report.

    PubMed

    Higutchi, C; Sarraf, Y S; Nardino, É P; Pereira, W M G; Daboin, B E G; Carvalho, L E W; Correa, J A

    2017-01-01

    This study is a case report that addresses the key aspects of vascular reconstruction, as well as the intraoperative complications, postoperative morbidity, and possibility of adjunctive therapy. This article reports the case of a 46 year old female patient with a leiomyosarcoma located in the middle segment of the inferior vena cava (between the renal and hepatic veins) who underwent surgical resection with vena cava reconstruction and insertion of a tubular graft made of a synthetic material. This case report reveals that surgical resection of the tumor with the insertion of a smaller-caliber tubular graft provide better patency of the vena cava reconstruction, which was maintained for a year after surgery. In addition, the patient was asymptomatic for lower limb edema, despite having a local recurrence after one year. Surgical resection is the treatment of choice for leiomyosarcoma of the inferior vena cava (LIVC) and is the only therapy that offers a chance of cure. Several surgical techniques are used for this condition, especially, reconstruction with a vascular graft using natural or synthetic materials. Due to the aggressiveness of the disease, this study suggests that surgical intervention used may have no influence on a patient's survival outcome. However, vascular reconstruction with a smaller-caliber tubular graft may yield a better prognosis for patients in terms of postoperative symptoms, such as edema and thrombosis.

  7. A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction

    PubMed Central

    Bank, Norman; Yarger, William E.; Aynedjian, Hagop S.

    1971-01-01

    Constriction of the renal vein has been shown to inhibit net sodium and water reabsorption by the rat proximal tubule. The mechanism is unknown but might be the result of inhibition of the active sodium pump induced by changes in the interstitial fluid compartment of the kidney, or to enhanced passive backflux of sodium and water into the cell or directly into the tubular lumen. Since passive movement of solutes across epithelial membranes is determined in part by the permeability characteristics of the epithelium, an increase in the permeability of the proximal tubule during venous constriction would suggest that enhanced passive flux is involved in the inhibition of reabsorption. In the present experiments, isolated segments of rat proximal convoluted tubules were microperfused in vivo with saline while the animals were receiving 14C-labeled sucrose intravenously. In normal control animals, no sucrose was detected in the majority of the collected tubular perfusates. In rats with renal vein constriction (RVC), however, sucrose consistently appeared in the tubular perfusates. The rate of inflow of sucrose correlated with the length of the perfused segment, estimated by fractional water reabsorption. In another group of animals with renal vein constriction, inulin-14C was given intravenously and the proximal tubules similarly microperfused. Inulin did not appear in the majority of collected perfusates in these animals. These observations indicate that a physiological alteration in the permeability of the proximal tubule occurs during RVC. Such an increase in permeability is consistent with the view that enhanced passive extracellular back-flux plays a role in the reduction of net sodium and water reabsorption in this experimental condition. PMID:5540167

  8. Claudins and renal salt transport.

    PubMed

    Muto, Shigeaki; Furuse, Mikio; Kusano, Eiji

    2012-02-01

    Tight junctions (TJs) are the most apical component of junctional complexes and regulate the movement of electrolytes and solutes by the paracellular pathway across epithelia. The defining ultrastructural features of TJs are strands of transmembrane protein particles that adhere to similar strands on adjacent cells. These strands are mainly composed of linearly polymerized integral membrane proteins called claudins. Claudins comprise a multigene family consisting of more than 20 members in mammals. Recent work has shown that claudins form barriers, determined by the paracellular electrical resistance and charge selectivity, and pores in the TJ strands. The paracellular pathways in renal tubular epithelia such as the proximal tubule, which reabsorbs the largest fraction of filtered NaCl and water, are important routes for the transport of electrolytes and water. Their transport characteristics vary among different nephron segments. Multiple claudins are expressed at TJs of individual nephron segments in a nephron segment-specific manner. Among them, claudin-2 is highly expressed at TJs of proximal tubules, which are leaky epithelia. Overexpression and knockdown of claudin-2 in epithelial cell lines, and knockout of the claudin-2 gene in mice, have demonstrated that claudin-2 forms high-conductance cation-selective pores in the proximal tubule. Here, we review the renal physiology of paracellular transport and the physiological roles of claudins in kidney function, especially claudin-2 and proximal tubule paracellular NaCl transport.

  9. Total protein, albumin and low-molecular-weight protein excretion in HIV-positive patients.

    PubMed

    Campbell, Lucy J; Dew, Tracy; Salota, Rashim; Cheserem, Emily; Hamzah, Lisa; Ibrahim, Fowzia; Sarafidis, Pantelis A; Moniz, Caje F; Hendry, Bruce M; Poulton, Mary; Sherwood, Roy A; Post, Frank A

    2012-08-10

    Chronic kidney disease is common in HIV positive patients and renal tubular dysfunction has been reported in those receiving combination antiretroviral therapy (cART). Tenofovir (TFV) in particular has been linked to severe renal tubular disease as well as proximal tubular dysfunction. Markedly elevated urinary concentrations of retinal-binding protein (RBP) have been reported in patients with severe renal tubular disease, and low-molecular-weight proteins (LMWP) such as RBP may be useful in clinical practice to assess renal tubular function in patients receiving TFV. We analysed 3 LMWP as well as protein and albumin in the urine of a sample of HIV positive patients. In a cross-sectional fashion, total protein, albumin, RBP, cystatin C, and neutrophil gelatinase-associated lipocalin (NGAL) were quantified in random urine samples of 317 HIV positive outpatients and expressed as the ratio-to-creatinine (RBPCR, CCR and NGALCR). Exposure to cART was categorised as none, cART without TFV, and cART containing TFV and a non-nucleoside reverse-transcriptase-inhibitor (TFV/NNRTI) or TFV and a protease-inhibitor (TFV/PI). Proteinuria was present in 10.4 % and microalbuminuria in 16.7 % of patients. Albumin accounted for approximately 10 % of total urinary protein. RBPCR was within the reference range in 95 % of patients while NGALCR was elevated in 67 % of patients. No overall differences in urine protein, albumin, and LMWP levels were observed among patients stratified by cART exposure, although a greater proportion of patients exposed to TFV/PI had RBPCR >38.8 μg/mmol (343 μg/g) (p = 0.003). In multivariate analyses, black ethnicity (OR 0.43, 95 % CI 0.24, 0.77) and eGFR <75 mL/min/1.73 m2 (OR 3.54, 95 % CI 1.61, 7.80) were independently associated with upper quartile (UQ) RBPCR. RBPCR correlated well to CCR (r2 = 0.71), but not to NGALCR, PCR or ACR. In HIV positive patients, proteinuria was predominantly of tubular origin and microalbuminuria was common. RBPCR in patients without overt renal tubular disease was generally within the reference range, including those receiving TFV. RBP therefore appears a promising biomarker for monitoring renal tubular function in patients receiving TFV and for distinguishing patients with normal tubular function or mild tubular dysfunction from those with severe renal tubular disease or Fanconi syndrome.

  10. Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia.

    PubMed

    Hashimoto, Yutaka; Shirane, Michiko; Matsuzaki, Fumiko; Saita, Shotaro; Ohnishi, Takafumi; Nakayama, Keiichi I

    2014-05-09

    Protrudin is a membrane protein that regulates polarized vesicular trafficking in neurons. The protrudin gene (ZFYVE27) is mutated in a subset of individuals with hereditary spastic paraplegia (HSP), and protrudin is therefore also referred to as spastic paraplegia (SPG) 33. We have now generated mice that express a transgene for dual epitope-tagged protrudin under control of a neuron-specific promoter, and we have subjected highly purified protrudin-containing complexes isolated from the brain of these mice to proteomics analysis to identify proteins that associate with protrudin. Protrudin was found to interact with other HSP-related proteins including myelin proteolipid protein 1 (SPG2), atlastin-1 (SPG3A), REEP1 (SPG31), REEP5 (similar to REEP1), Kif5A (SPG10), Kif5B, Kif5C, and reticulon 1, 3, and 4 (similar to reticulon 2, SPG12). Membrane topology analysis indicated that one of three hydrophobic segments of protrudin forms a hydrophobic hairpin domain similar to those of other SPG proteins. Protrudin was found to localize predominantly to the tubular endoplasmic reticulum (ER), and forced expression of protrudin promoted the formation and stabilization of the tubular ER network. The protrudin(G191V) mutant, which has been identified in a subset of HSP patients, manifested an increased intracellular stability, and cells expressing this mutant showed an increased susceptibility to ER stress. Our results thus suggest that protrudin contributes to the regulation of ER morphology and function, and that its deregulation by mutation is a causative defect in HSP.

  11. Quantitative and semi-quantitative histopathological examination of renal biopsies in healthy individuals, and associations with kidney function.

    PubMed

    Bar, Yael; Barregard, Lars; Sallsten, Gerd; Wallin, Maria; Mölne, Johan

    2016-05-01

    This study assesed the prevalence of histopathological changes in renal biopsies from healthy individuals, and the association with age, sex and smoking. Donor biopsies from 109 subjects were obtained from living kidney donors, and blood and urine samples were collected together with medical history. All biopsies were scored according to the Banff '97 classification with some modifications. The parameters included in this study were tubular atrophy, interstitial fibrosis, glomerulosclerosis, arteriosclerosis, arteriolohyalinosis and a sclerosis score. An alternative scoring system for tubular atrophy was examined (using ≤5% rather than <1% as a cut-off for grade 0). Glomerular filtration rate was measured in most cases as chromium ethylenediaminetetra-acetic acid (Cr-EDTA) clearance. Age was a significant predictor for tubular atrophy, fibrosis and sclerosis. Pack-years of smoking increased the risk of tubular atrophy, fibrosis and arteriolohyalinosis. The alternative scoring of tubular atrophy showed a stronger association with smoking, but a weaker association with age, compared with the original one. Limited histopathological changes are common in healthy kidney donors around 50 years of age with normal kidney function. We propose that a cut-off of ≤5% yields a better definition of grade 0 tubular atrophy compared with the established cut-off of >0%. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  12. Nephrolithiasis in renal tubular acidosis.

    PubMed

    Buckalew, V M

    1989-03-01

    Renal tubular acidosis is a term applied to several conditions in which metabolic acidosis is caused by specific defects in renal tubular hydrogen ion secretion. Three types of renal tubular acidosis generally are recognized based on the nature of the tubular defect. Nephrolithiasis occurs only in type I renal tubular acidosis, a condition marked by an abnormality in the generation and maintenance of a hydrogen ion gradient by the distal tubule. A forme fruste of type I renal tubular acidosis has been described in which the characteristic defect in distal hydrogen ion secretion occurs in the absence of metabolic acidosis (incomplete renal tubular acidosis). Type I renal tubular acidosis is a heterogeneous disorder that may be hereditary, idiopathic or secondary to a variety of conditions. Secondary type I renal tubular acidosis in sporadic cases is associated most commonly with autoimmune diseases, such as Sjögren's syndrome and systemic lupus erythematosus, and it occurs more frequently in women than men. Nephrolithiasis, which may occur in any of the subsets of type I renal tubular acidosis, accounts for most of the morbidity in adults and adolescents. Major risk factors for nephrolithiasis include alkaline urine, hypercalciuria and hypocitraturia. In addition, we found hyperuricosuria in 21 per cent of the patients with type I renal tubular acidosis with nephrolithiasis. The most frequently occurring risk factor, hypocitraturia, is due to decreased filtered load and/or to increased tubular reabsorption of filtered citrate. While increased tubular reabsorption may be due to systemic acidosis, hypocitraturia occurs in incomplete renal tubular acidosis. Furthermore, alkali therapy (either bicarbonate or citrate salts) increases citrate excretion in complete and incomplete type I renal tubular acidosis. These data suggest that hypocitraturia in type I renal tubular acidosis may be due to a defect in proximal tubule function. Hypercalciuria appears to have 2 causes. It may be due to metabolic acidosis, usually in children with a hereditary defect in urine acidification. In other cases familial idiopathic hypercalciuria causes nephrocalcinosis and nephrolithiasis resulting in distal tubular damage and type I renal tubular acidosis. In these latter cases hypercalciuria is present in complete and incomplete type I renal tubular acidosis. Potassium citrate appears to reduce calcium excretion in both types of hypercalciuric type I renal tubular acidosis.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Renal uptake and tolerability of a 2'-O-methoxyethyl modified antisense oligonucleotide (ISIS 113715) in monkey.

    PubMed

    Henry, Scott P; Johnson, Mark; Zanardi, Thomas A; Fey, Robert; Auyeung, Diana; Lappin, Patrick B; Levin, Arthur A

    2012-11-15

    The primary target organ for uptake of systemically administered phosphorothioate oligonucleotides is the kidney cortex and the proximal tubular epithelium in particular. To determine the effect of oligonucleotide uptake on renal function, a detailed renal physiology study was performed in cynomolgus monkeys treated with 10-40 mg/kg/week ISIS 113715 for 4 weeks. The concentrations of oligonucleotide in the kidney cortex ranged from 1400 to 2600 μg/g. These concentrations were associated with histologic changes in proximal tubular epithelial cells that ranged from the appearance of cytoplasmic basophilic granules to atrophic and degenerative changes at higher concentrations. However, there were no renal functional abnormalities as determined by the typical measurements of blood urea nitrogen, serum creatinine, creatinine clearance, or urine specific gravity. Nor were there changes in glomerular filtration rate, or renal blood flow. Specific urinary markers of tubular epithelial cell damage, such as N-acetyl-glucosaminidase, and α-glutathione-s-transferase were not affected. Tubular function was further evaluated by monitoring the urinary excretion of amino acids, β(2)-microglobulin, or glucose. Renal function was challenged by administering a glucose load and by examining concentrating ability after a 4-h water deprivation. Neither challenge produced any evidence of change in renal function. The only change observed was a low incidence of increased urine protein/creatinine ratio in monkeys treated with ≥40 mg/kg/week which was rapidly reversible. Collectively, these data indicate that ISIS 113715-uptake by the proximal tubular epithelium has little or no effect on renal function at concentrations of 2600 μg/g. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. The fine structure of the terminal segment of the bovine seminiferous tubule.

    PubMed

    Wrobel, K H; Sinowatz, F; Mademann, R

    1982-01-01

    The intratesticular excurrent duct system of the bull is composed of rete testis, tubuli recti, and the terminal segment of the seminiferous tubules. Each terminal segment is surrounded by a vascular plexus and may be subdivided into a transitional region, middle portion, and terminal plug. The modified supporting cells of the middle portion and the terminal plug no longer display the typical Sertoli-Sertoli junctions seen in the transitional region and the seminiferous tubule proper. In the region of the terminal plug a distinct central lumen is generally not observed: spermatozoa and tubular fluid must pass through an intricate system of communicating clefts between the apices of the closely attached modified supporting cells. Vacuoles in the supranuclear region of the cells in the middle portion indicate strong transepithelial fluid transport. In analogy to the epithelium of rete testis and tubuli recti, the supporting cells of the terminal segment are capable of phagocytosing spermatozoa. The vascular plexus investing the terminal segment serves a dual purpose: it is a regulatory device for fluid and sperm transport, as well as an area of increased diapedesis for white blood cells.

  15. FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Bassett, C.H.

    1961-05-16

    A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

  16. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  17. Aquatic models for the study of renal transport function and pollutant toxicity.

    PubMed Central

    Miller, D S

    1987-01-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed by other anionic xenobiotics that compete for secretory transport sites and by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity that limit transport studies in proximal tubule. Images FIGURE 3. FIGURE 6. PMID:3297665

  18. The Role of “Leakage” of Tubular Fluid in Anuria Due to Mercury Poisoning*

    PubMed Central

    Bank, Norman; Mutz, Bertrand F.; Aynedjian, Hagop S.

    1967-01-01

    The role of “leakage” of tubular fluid in anuria produced by mercury poisoning was studied in rats by micropuncture techniques. After an initial brisk diuresis, almost all animals were completely anuric 24 hours after HgCl2 injection. Lissamine green injected intravenously in the early stage of anuria appeared in the beginning of the proximal tubule, but the color became progressively lighter as the dye traversed the proximal convolutions. The dye was barely visible in the terminal segments of the proximal tubule; it did not appear at all in the distal tubules. These observations suggest that the proximal epithelium had become abnormally permeable to Lissamine green. Tubular fluid to plasma inulin (TF/PIn) ratios and inulin clearance were measured in individual nephrons at three sites: early proximal tubule, late proximal tubule, and distal tubule. It was found that TF/PIn ratios were abnormally low in the late proximal and distal tubules. Inulin clearance was normal at the beginning of the proximal tubule but fell by more than 60% by the late proximal convolutions. Thus, the proximal tubule had also become permeable to inulin. We conclude from these observations that anuria in mercury poisoning can occur in the presence of a normal glomerular filtration rate. The absence of urine flow appears to be due to complete absorption of the filtrate through an excessively permeable tubular epithelium. The driving force affecting this fluid absorption is probably the colloid oncotic pressure of the peritubular capillary blood. Images PMID:6025476

  19. Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy.

    PubMed

    Moore, Jeremy K; Chen, Junjie; Pan, Hua; Gaut, Joseph P; Jain, Sanjay; Wickline, Samuel A

    2018-06-01

    To design a fluorine MRI/MR spectroscopy approach to quantify renal vascular damage after ischemia-reperfusion injury, and the therapeutic response to antithrombin nanoparticles (NPs) to protect kidney function. A total of 53 rats underwent 45 min of bilateral renal artery occlusion and were treated at reperfusion with either plain perfluorocarbon NPs or NPs functionalized with a direct thrombin inhibitor (PPACK:phenyalanine-proline-arginine-chloromethylketone). Three hours after reperfusion, kidneys underwent ex vivo fluorine MRI/MR spectroscopy at 4.7 T to quantify the extent and volume of trapped NPs, as an index of vascular damage and ischemia-reperfusion injury. Microscopic evaluation of structural damage and NP trapping in non-reperfused renal segments was performed. Serum creatinine was quantified serially over 7 days. The damaged renal cortico-medullary junction trapped a significant volume of NPs (P = 0.04), which correlated linearly (r = 0.64) with the severity of kidney injury 3 h after reperfusion. Despite global large vessel reperfusion, non-reperfusion in medullary peritubular capillaries was confirmed by MRI and microscopy, indicative of continuing hypoxia due to vascular compromise. Treatment of animals with PPACK NPs after acute kidney injury did not accelerate kidney functional recovery. Quantification of ischemia-reperfusion injury after acute kidney injury with fluorine MRI/MR spectroscopy of perfluorocarbon NPs objectively depicts the extent and severity of vascular injury and its linear relationship to renal dysfunction. The lack of kidney function improvement after early posttreatment thrombin inhibition confirms the rapid onset of ischemia-reperfusion injury as a consequence of vascular damage and non-reperfusion. The prolongation of medullary ischemia renders cortico-medullary tubular structures susceptible to continued necrosis despite restoration of large vessel flow, which suggests limitations to acute interventions after acute kidney injury, designed to interdict renal tubular damage. Magn Reson Med 79:3144-3153, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Tubular Tissues and Organs of Human Body--Challenges in Regenerative Medicine.

    PubMed

    Góra, Aleksander; Pliszka, Damian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2016-01-01

    Tissue engineering of tubular organs such as the blood vessel, trachea gastrointestinal tract, urinary tract are of the great interest due to the high amount of surgeries performed annually on those organs. Development in tissue engineering in recent years and promising results, showed need to investigate more complex constructs that need to be designed in special manner. Stent technology remain the most widely used procedure to restore functions of tubular tissues after cancer treatment, or after organ removal due to traumatic accidents. Tubular structures like blood vessels, intestines, and trachea have to work in specific environment at the boundary of the liquids, solids or air and surrounding tissues and ensure suitable separation between them. This brings additional challenges in tissue engineering science in order to construct complete organs by using combinations of various cells along with the support material systems. Here we give a comprehensive review of the tubular structures of the human body, in perspective of the current methods of treatment and progress in regenerative medicine that aims to develop fully functioning organs of tubular shape. Extensive analysis of the available literature has been done focusing on materials and methods of creations of such organs. This work describes the attempts to incorporate growth factors and drugs within the scaffolds to ensure localized drug release and enhance vascularization of the organ by attracting blood vessels to the site of implantation.

  1. Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract.

    PubMed

    Li, Jinxing; Thamphiwatana, Soracha; Liu, Wenjuan; Esteban-Fernández de Ávila, Berta; Angsantikul, Pavimol; Sandraz, Elodie; Wang, Jianxing; Xu, Tailin; Soto, Fernando; Ramez, Valentin; Wang, Xiaolei; Gao, Weiwei; Zhang, Liangfang; Wang, Joseph

    2016-09-22

    The gastrointestinal (GI) tract, which hosts hundreds of bacteria species, becomes the most exciting organ for the emerging microbiome research. Some of these GI microbes are hostile and cause a variety of diseases. These bacteria colonize in different segments of the GI tract dependent on the local physicochemical and biological factors. Therefore, selectively locating therapeutic or imaging agents to specific GI segments is of significant importance for studying gut microbiome and treating various GI-related diseases. Herein, we demonstrate an enteric micromotor system capable of precise positioning and controllable retention in desired segments of the GI tract. These motors, consisting of magnesium-based tubular micromotors coated with an enteric polymer layer, act as a robust nanobiotechnology tool for site-specific GI delivery. The micromotors can deliver payload to a particular location via dissolution of their enteric coating to activate their propulsion at the target site toward localized tissue penetration and retention.

  2. Mexican Infrared-Optical New Technology Telescope: The TIM project

    NASA Astrophysics Data System (ADS)

    Salas, L.

    1998-11-01

    The scientific goals for TIM are an image quality of 0.25", consistent with the seeing at our site, optimization for the infrared as many scientific programs are going in that region of the spectrum, a M1 diameter in excess of 6.5 meters and a field of view limited to 10 arc minutes. Practical reasons, such as the limited funding available and the requirement of mexican financial agencies that the telescope should be built and installed in Mexico, lead us to decide for a segmented telescope, with a single secondary mirror, a single cassegrain focus and a light high stifness tubular structure. ALthough we are still working on the conceptual design of the telescope, there are some concepts that we are pursuing. The optical desing (M1+M2) is Ritchey-Cretien type with an hyperbolic primary 7.8 m od F/1.5 and a 0.9 m diameter f/15 secondary mirror. This will give a plate scale of 1.7 "/mm. This is 0.03 "/pix in direct mode, enough for AO goals. As for direct imaging, a factor of 5 reduction with 20 cm diam optical components would be able to produce 5' fields on a 2048, 20 microns type detector with 0.17"/pix. This implies that, with the use of auxiliary optics which is a common need for each particular instrument anyway, a wide variety of needs can be accomodated with a single secondary mirror. Choping for infrared observations would however introduce a additional cost in the secondary mirror. Alternatively the use of cold tertiary choping mirror is currently under study. The M1+M2 design currently aquires d80 of 0.17" in a 5' field without correction and 1" in a 10' field, that would require a field correcting lens. The M1 mirror will be segmented into 19 1.8 m diameter segments. There are 4 kinds of segments, the central, which we have kept to provide a reference for phasing, 6 more segments for the first ring and 12 in the outer ring, of two different kinds. The spacing between the segments is 5 mm, enough to reduce the inter-segment thermal background to half a percent of a 99\\% reflectivity primary mirror. The width of the segments was decided to be 7.5 cm, similar to keck's, noting also that the self weight deflections of this segment are sligthly inferior (more rigid) than the NTT mirror as defined by Willson et al. Due to this increased rigidity, and to a more homogeneous distribution, while the NTT mirror is supported in 78 points, the Keck segments are supported by 36. We have decreased this number of support points to 19 in our design, but using extended actuators (airbags) that distribute the support force and that together support most of the area of the segment. The current design allows also the inclusion of wind buffeting actuators, and position actuators at the edges of each segment. Position control of each segment is accomplished by electromechanical and piezo actuators, that thanks to the force actuators, only have to act on a reduced portion of the weigth of each segment. The hard points can be located at the edge of the segment and provide common reference for neighboor segments as well. The telescope structure is being designed by finite element analysis. It is an alt-az mount with cassegrain focus instruments only. The structure is being designed as a high stiffnes, low weigth tubular structure. The upper tube is a two tier design with eigen-frequencies larger than 12.9 Htz. The elevation ring is also being designed as a tubular structure obtaining so far eigen-frecuencies of 12.6. In the combined structure the first eigenfrequency goes down to 8 Hz, but it is a rigid rotation about the elevation axis, and so it is not structural. The second eigenfrequency is a bending of the secondary structure at 8.5 hz, and other designs of the secondary vanes are being sttudied to increment this frequency. The third eigenfrequency is the first real eigen-frequency of the structure and occurs at 13hz. Maximum deflections by gravity are 2.2 mm for the telescope tube at horizon while at zenith its only of 0.7mm. The total weigth of the structure, optics and a few instruments is expected to be around 80 tons. More information can be obtained at our web site: http://hussongs.astrosen.unam.mx/~tim/

  3. Foldable Instrumented Bits for Ultrasonic/Sonic Penetrators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Badescu, Mircea; Iskenderian, Theodore; Sherrit, Stewart; Bao, Xiaoqi; Linderman, Randel

    2010-01-01

    Long tool bits are undergoing development that can be stowed compactly until used as rock- or ground-penetrating probes actuated by ultrasonic/sonic mechanisms. These bits are designed to be folded or rolled into compact form for transport to exploration sites, where they are to be connected to their ultrasonic/ sonic actuation mechanisms and unfolded or unrolled to their full lengths for penetrating ground or rock to relatively large depths. These bits can be designed to acquire rock or soil samples and/or to be equipped with sensors for measuring properties of rock or soil in situ. These bits can also be designed to be withdrawn from the ground, restowed, and transported for reuse at different exploration sites. Apparatuses based on the concept of a probe actuated by an ultrasonic/sonic mechanism have been described in numerous prior NASA Tech Briefs articles, the most recent and relevant being "Ultrasonic/ Sonic Impacting Penetrators" (NPO-41666) NASA Tech Briefs, Vol. 32, No. 4 (April 2008), page 58. All of those apparatuses are variations on the basic theme of the earliest ones, denoted ultrasonic/sonic drill corers (USDCs). To recapitulate: An apparatus of this type includes a lightweight, low-power, piezoelectrically driven actuator in which ultrasonic and sonic vibrations are generated and coupled to a tool bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary twist drilling, ordinary hammering, or ordinary steady pushing. Examples of properties that could be measured by use of an instrumented tool bit include electrical conductivity, permittivity, magnetic field, magnetic permeability, temperature, and any other properties that can be measured by fiber-optic sensors. The problem of instrumenting a probe of this type is simplified, relative to the problem of attaching electrodes in a rotating drill bit, in two ways: (1) Unlike a rotating drill bit, a bit of this type does not have flutes, which would compound the problem of ensuring contact between sensors and the side wall of a hole; and (2) there is no need for slip rings for electrical contact between sensor electronic circuitry and external circuitry because, unlike a rotating drill, a tool bit of this type is not rotated continuously during operation. One design for a tool bit of the present type is a segmented bit with a segmented, hinged support structure (see figure). The bit and its ultrasonic/sonic actuator are supported by a slider/guiding fixture, and its displacement and preload are controlled by a motor. For deployment from the folded configuration, a spring-loaded mechanism rotates the lower segment about the hinges, causing the lower segment to become axially aligned with the upper segment. A latching mechanism then locks the segments of the bit and the corresponding segments of the slider/guiding fixture. Then the entire resulting assembly is maneuvered into position for drilling into the ground. Another design provides for a bit comprising multiple tubular segments with an inner alignment string, similar to a foldable tent pole comprising multiple tubular segments with an inner elastic cable connecting the two ends. At the beginning of deployment, all segments except the first (lowermost) one remain folded, and the ultrasonic/sonic actuator is clamped to the top of the lowermost segment and used to drive this segment into the ground. When the first segment has penetrated to a specified depth, the second segment is connected to the upper end of the first segment to form a longer rigid tubular bit and the actuator is moved to the upper end of the second segnt. The process as described thus far is repeated, adding segments until the desired depth of penetration has been attained. Yet other designs provide for bits in the form of bistable circular- or rectangular- cross-section tubes that can be stowed compactly like rolls of flat tape and become rigidified upon extension to full length, in a manner partly similar to that of a common steel tape measure. Albeit not marketed for use in tool bits, a bistable reeled composite product that transforms itself from a flat coil to a rigid tube of circular cross section when unrolled, is commercially available under the trade name RolaTube(TradeMark) and serves as a model for the further development of tool bits of this subtype.

  4. The Drosophila Extradenticle and Homothorax selector proteins control branchless/FGF expression in mesodermal bridge-cells.

    PubMed

    Merabet, Samir; Ebner, Andreas; Affolter, Markus

    2005-08-01

    The stereotyped outgrowth of tubular branches of the Drosophila tracheal system is orchestrated by the local and highly dynamic expression profile of branchless (bnl), which encodes a secreted fibroblast growth factor (FGF)-like molecule. Despite the importance of the spatial and temporal bnl regulation, little is known about the upstream mechanisms that establish its complex expression pattern. Here, we show that the Extradenticle and Homothorax selector proteins control bnl transcription in a single cell per segment, the mesodermal bridge-cell. In addition, we observed that a key determinant of bridge-cell specification, the transcription factor Hunchback, is also required for bnl expression. Therefore, we propose that one of the functions of the bridge-cell is to synthesize and secrete the chemoattractant Bnl. These findings provide a hitherto unknown and interesting link between combinatorial inputs of transcription factors, cell-specific ligand expression and organ morphogenesis.

  5. Comparing performance of centerline algorithms for quantitative assessment of brain vascular anatomy.

    PubMed

    Diedrich, Karl T; Roberts, John A; Schmidt, Richard H; Parker, Dennis L

    2012-12-01

    Attributes like length, diameter, and tortuosity of tubular anatomical structures such as blood vessels in medical images can be measured from centerlines. This study develops methods for comparing the accuracy and stability of centerline algorithms. Sample data included numeric phantoms simulating arteries and clinical human brain artery images. Centerlines were calculated from segmented phantoms and arteries with shortest paths centerline algorithms developed with different cost functions. The cost functions were the inverse modified distance from edge (MDFE(i) ), the center of mass (COM), the binary-thinned (BT)-MDFE(i) , and the BT-COM. The accuracy of the centerline algorithms were measured by the root mean square error from known centerlines of phantoms. The stability of the centerlines was measured by starting the centerline tree from different points and measuring the differences between trees. The accuracy and stability of the centerlines were visualized by overlaying centerlines on vasculature images. The BT-COM cost function centerline was the most stable in numeric phantoms and human brain arteries. The MDFE(i) -based centerline was most accurate in the numeric phantoms. The COM-based centerline correctly handled the "kissing" artery in 16 of 16 arteries in eight subjects whereas the BT-COM was correct in 10 of 16 and MDFE(i) was correct in 6 of 16. The COM-based centerline algorithm was selected for future use based on the ability to handle arteries where the initial binary vessels segmentation exhibits closed loops. The selected COM centerline was found to measure numerical phantoms to within 2% of the known length. Copyright © 2012 Wiley Periodicals, Inc.

  6. MDM2 prevents spontaneous tubular epithelial cell death and acute kidney injury

    PubMed Central

    Thomasova, Dana; Ebrahim, Martrez; Fleckinger, Kristina; Li, Moying; Molnar, Jakob; Popper, Bastian; Liapis, Helen; Kotb, Ahmed M; Siegerist, Florian; Endlich, Nicole; Anders, Hans-Joachim

    2016-01-01

    Murine double minute-2 (MDM2) is an E3-ubiquitin ligase and the main negative regulator of tumor suppressor gene p53. MDM2 has also a non-redundant function as a modulator of NF-kB signaling. As such it promotes proliferation and inflammation. MDM2 is highly expressed in the unchallenged tubular epithelial cells and we hypothesized that MDM2 is necessary for their survival and homeostasis. MDM2 knockdown by siRNA or by genetic depletion resulted in demise of tubular cells in vitro. This phenotype was completely rescued by concomitant knockdown of p53, thus suggesting p53 dependency. In vivo experiments in the zebrafish model demonstrated that the tubulus cells of the larvae undergo cell death after the knockdown of mdm2. Doxycycline-induced deletion of MDM2 in tubular cell-specific MDM2-knockout mice Pax8rtTa-cre; MDM2f/f caused acute kidney injury with increased plasma creatinine and blood urea nitrogen and sharp decline of glomerular filtration rate. Histological analysis showed massive swelling of renal tubular cells and later their loss and extensive tubular dilation, markedly in proximal tubules. Ultrastructural changes of tubular epithelial cells included swelling of the cytoplasm and mitochondria with the loss of cristae and their transformation in the vacuoles. The pathological phenotype of the tubular cell-specific MDM2-knockout mouse model was completely rescued by co-deletion of p53. Tubular epithelium compensates only partially for the cell loss caused by MDM2 depletion by proliferation of surviving tubular cells, with incomplete MDM2 deletion, but rather mesenchymal healing occurs. We conclude that MDM2 is a non-redundant survival factor for proximal tubular cells by protecting them from spontaneous p53 overexpression-related cell death. PMID:27882940

  7. Acute and cumulative effects of carboplatin on renal function.

    PubMed Central

    Sleijfer, D. T.; Smit, E. F.; Meijer, S.; Mulder, N. H.; Postmus, P. E.

    1989-01-01

    Carboplatin, a cisplatinum analogue, has no reported nephrotoxicity in phase I/II studies, assessed by creatinine clearance. We prospectively determined renal function in 10 untreated lung cancer patients with normal baseline renal function, treated with carboplatin 400 mg m-2 day 1 and vincristine 2 mg day 1 and 8 every 4 weeks (max. five cycles) by means of clearance studies with 125I-sodium thalamate and 131I-hippurate to determine GFR and ERPF respectively. Tubular damage was monitored by excretion of tubular enzymes and relative beta 2-microglobulin clearance. During the first course no changes in renal function were seen. After the second course a significant fall in GFR and ERPF started, ultimately leading to a median decrease in GFR of 19.0% (range 6.8-38.7%) and in ERPF of 14% (range 0-38.9%). No increases in the excretion of tubular enzymes or changes in the relative beta 2-microglobulin clearances were seen. We conclude from our data that carboplatin causes considerable loss of renal function. Monitoring renal function in patients treated with multiple courses of carboplatin is warranted. PMID:2679841

  8. Spermidine rescues proximal tubular cells from oxidative stress and necrosis after ischemic acute kidney injury.

    PubMed

    Kim, Jinu

    2017-10-01

    Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative stress and necrosis; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated increases in plasma creatinine concentration and tubular injury score after IRI. In addition, exogenous spermidine potently inhibited oxidative stress, especially lipid peroxidation after IRI in kidneys and exposure to hydrogen peroxide in kidney proximal tubular cells, suppressing plasma membrane disruption and necrosis. Consistent with spermidine supplementation, upregulation of ornithine decarboxylase (ODC) in human kidney proximal tubular cells significantly diminished lipid peroxidation and necrosis induced by hydrogen peroxide-induced injury. Conversely, ODC deficiency significantly enhanced lipid peroxidation and necrosis after exposure to hydrogen peroxide. Finally, small interfering RNA-mediated ODC inhibition induced functional and histological damage in kidneys as well as it increased lipid hydroperoxide levels after IRI. In conclusion, these data suggest that spermidine level determines kidney proximal tubular damage through oxidative stress and necrosis induced by IRI, and this finding provides a novel target for prevention of tubular damage induced by IRI.

  9. Neuropilin-1 and neuropilin-2 are differentially expressed in human proteinuric nephropathies and cytokine-stimulated proximal tubular cells.

    PubMed

    Schramek, Herbert; Sarközi, Rita; Lauterberg, Christina; Kronbichler, Andreas; Pirklbauer, Markus; Albrecht, Rudolf; Noppert, Susie-Jane; Perco, Paul; Rudnicki, Michael; Strutz, Frank M; Mayer, Gert

    2009-11-01

    Neuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS). In an additional cohort of patients with minimal change disease (MCD), membranous nephropathy (MN), and FSGS, elevated NRP2 mRNA expression in kidney biopsies inversely correlated with estimated glomerular filtration rate (eGFR) at the time of biopsy. Furthermore, upregulation of NRP2 mRNA correlated with post-bioptic decline of kidney function. Expression of NRP1 and NRP2 in human proximal tubular cells (PTCs) was differentially affected after stimulation with TGF-beta1, interleukin-1beta (IL-1beta), and oncostatin M (OSM). Although the pro-fibrotic mediators, TGF-beta1 and IL-1beta, induced upregulation of NRP2 expression but downregulation of NRP1 expression, OSM stimulated the expression of both NRP1 and NRP2. Basal and OSM-induced NRP1 mRNA expression, as well as TGF-beta1-induced NRP2 mRNA and protein expression were partially mediated by MEK1/2-ERK1/2 signaling. This is the first report suggesting a differential role of NRP1 and NRP2 in renal fibrogenesis, and TGF-beta1, IL-1beta, and OSM represent the first ligands known to stimulate NRP2 expression in mammalian cells.

  10. Worsening Renal Function in Patients With Acute Heart Failure Undergoing Aggressive Diuresis Is Not Associated With Tubular Injury.

    PubMed

    Ahmad, Tariq; Jackson, Keyanna; Rao, Veena S; Tang, W H Wilson; Brisco-Bacik, Meredith A; Chen, Horng H; Felker, G Michael; Hernandez, Adrian F; O'Connor, Christopher M; Sabbisetti, Venkata S; Bonventre, Joseph V; Wilson, F Perry; Coca, Steven G; Testani, Jeffrey M

    2018-05-08

    Worsening renal function (WRF) in the setting of aggressive diuresis for acute heart failure treatment may reflect renal tubular injury or simply indicate a hemodynamic or functional change in glomerular filtration. Well-validated tubular injury biomarkers, N -acetyl-β-d-glucosaminidase, neutrophil gelatinase-associated lipocalin, and kidney injury molecule 1, are now available that can quantify the degree of renal tubular injury. The ROSE-AHF trial (Renal Optimization Strategies Evaluation-Acute Heart Failure) provides an experimental platform for the study of mechanisms of WRF during aggressive diuresis for acute heart failure because the ROSE-AHF protocol dictated high-dose loop diuretic therapy in all patients. We sought to determine whether tubular injury biomarkers are associated with WRF in the setting of aggressive diuresis and its association with prognosis. Patients in the multicenter ROSE-AHF trial with baseline and 72-hour urine tubular injury biomarkers were analyzed (n=283). WRF was defined as a ≥20% decrease in glomerular filtration rate estimated with cystatin C. Consistent with protocol-driven aggressive dosing of loop diuretics, participants received a median 560 mg IV furosemide equivalents (interquartile range, 300-815 mg), which induced a urine output of 8425 mL (interquartile range, 6341-10 528 mL) over the 72-hour intervention period. Levels of N -acetyl-β-d-glucosaminidase and kidney injury molecule 1 did not change with aggressive diuresis (both P >0.59), whereas levels of neutrophil gelatinase-associated lipocalin decreased slightly (-8.7 ng/mg; interquartile range, -169 to 35 ng/mg; P <0.001). WRF occurred in 21.2% of the population and was not associated with an increase in any marker of renal tubular injury: neutrophil gelatinase-associated lipocalin ( P =0.21), N -acetyl-β-d-glucosaminidase ( P =0.46), or kidney injury molecule 1 ( P =0.22). Increases in neutrophil gelatinase-associated lipocalin, N -acetyl-β-d-glucosaminidase, and kidney injury molecule 1 were paradoxically associated with improved survival (adjusted hazard ratio, 0.80 per 10 percentile increase; 95% confidence interval, 0.69-0.91; P =0.001). Kidney tubular injury does not appear to have an association with WRF in the context of aggressive diuresis of patients with acute heart failure. These findings reinforce the notion that the small to moderate deteriorations in renal function commonly encountered with aggressive diuresis are dissimilar from traditional causes of acute kidney injury. © 2018 American Heart Association, Inc.

  11. Bubble-Free Propulsion of Ultrasmall Tubular Nanojets Powered by Biocatalytic Reactions.

    PubMed

    Ma, Xing; Hortelao, Ana C; Miguel-López, Albert; Sánchez, Samuel

    2016-10-26

    The motion of self-propelled tubular micro- and nanojets has so far been achieved by bubble propulsion, e.g., O 2 bubbles formed by catalytic decomposition of H 2 O 2 , which renders future biomedical applications inviable. An alternative self-propulsion mechanism for tubular engines on the nanometer scale is still missing. Here, we report the fabrication and characterization of bubble-free propelled tubular nanojets (as small as 220 nm diameter), powered by an enzyme-triggered biocatalytic reaction using urea as fuel. We studied the translational and rotational dynamics of the nanojets as functions of the length and location of the enzymes. Introducing tracer nanoparticles into the system, we demonstrated the presence of an internal flow that extends into the external fluid via the cavity opening, leading to the self-propulsion. One-dimensional nanosize, longitudinal self-propulsion, and biocompatibility make the tubular nanojets promising for future biomedical applications.

  12. Use of urinary γ-glutamyl transferase (GGT) to monitor the pattern of proteinuria in dogs with leishmaniasis treated with N-methylglucamine antimoniate.

    PubMed

    Paltrinieri, Saverio; Mangiagalli, Giulia; Ibba, Fabrizio

    2018-05-25

    The aim of this study was to assess if the coupled analysis of the urinary protein to creatinine (UPC) ratio and of the GGT/UC ratio (the ratio between urinary γ-glutamyl transferase activity and urinary creatinine) may be used in treated leishmaniotic dogs to differentiate dogs with transient impairment of tubular function from dogs with persistent tubular damage. To this aim, 40 urine from 10 proteinuric and leishmaniotic dogs that at the first visit had high GGT/UC ratio, consistent with tubular damage, were collected and analyzed before treatments and 2, 4 and 6 weeks after treatment with N-methylglucamine antimoniate and allopurinol. Compared with pre-treatment values, at the end of the study period the UPC ratio decreased only in 5/10 dogs, which, however, were still proteinuric or borderline proteinuric. Conversely, the GGT/CU ratio decreased in 8/10 dogs and in 3 of them the values at the end of the study period were below the threshold consistent with tubular proteinuria. The GGT/UC values at 6 weeks was significantly lower than before treatment. However, transient increases were frequent for both the analytes. These results indicate that in most of the dogs that remain proteinuric after treatment, likely due to the persistent glomerular damage, the GGT/UC ratio tends to normalize. This suggests that in these dogs tubular proteinuria at admission depends on functional impairment of tubular cells likely due to the overflow of proteins from damaged glomeruli. However, tubular proteinuria occasionally persists, suggesting that tubulointerstitial damages persist even in dogs responsive to treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The effect of maleate induced proximal tubular dysfunction on the renal handling of Tc-99m DMSA in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provoost, A.P.; Van Aken, M.

    1984-01-01

    In the healthy kidney Tc-99m DMSA accumulates in the proximal tubular cells. Consequently, impairment of the reabsorptive function of these cells may alter the renal handling of this static renal imaging agent. The authors investigated in rats the effects of a sodiummaleate (Ma) (2mmol/kg iv) induced proximal tubular dysfunction on the renal accumulation and excretion of Tc-99m DMSA. Such a treatment results in a moderate fall of the glomerular filtration rate, glycosuria, aminoaciduria and a tubular proteinuria. In 7 adult male Wistar rats, Tc-99m DMSA scans were taken before Ma, on the day of treatment, and 1 week thereafter. Themore » accumulation of Tc-99m DMSA in kidneys (Ki) and bladder (Bl) was determined at 1, 2, 4, and 24 hours after i.v. injection. The results, expressed as a percentage of the injected dose, are presented. The findings show that a reversible Ma induced impairment of the proximal reabsorptive capacity severely alters the renal tubular handling of Tc-99m DMSA. In contrast to the control situation, only a small fraction of the DMSA is retained in the kidney and the majority is transported directly to the urinary bladder. When similar alterations are observed in clinical Tc-99m DMSA scans, this may be an indication of an impairment of the proximal tubular function.« less

  14. Bcl-2 protects tubular epithelial cells from ischemia/reperfusion injury by dual mechanisms.

    PubMed

    Isaka, Y; Suzuki, C; Abe, T; Okumi, M; Ichimaru, N; Imamura, R; Kakuta, Y; Matsui, I; Takabatake, Y; Rakugi, H; Shimizu, S; Takahara, S

    2009-01-01

    Ischemia/reperfusion (I/R) injury, which induces extensive loss of tubular epithelial cells, is associated with delayed graft function following kidney transplantation. Recent reports have suggested that cell death by I/R injury occurs by autophagy, a cellular degradation process responsible for the turnover of unnecessary or dysfunctional organelles and cytoplasmic proteins, as well as by apoptosis. Recently, we demonstrated that overexpression of the anti-apoptotic factor, Bcl-2, inhibited tubular apoptosis and subsequent tubulointerstitial damage after I/R injury. Autophagy is also observed in cells undergoing cell death in several diseases. Therefore, we hypothesized that increased Bcl-2 protein may protect tubular epithelial cells by suppressing autophagy and inhibiting apoptosis. In the present study, a transgenic mouse model (LC3-GFP TG) in which autophagosomes are labeled with LC3-GFP and Bcl-2/LC3-GFP double transgenic mice (Bcl-2/LC3-GFP TG) were used to examine the effect of Bcl-2 on I/R-induced autophagy. I/R injury, which is associated with marked disruption of normal tubular morphology, promoted the formation of LC3-GFP dots, representing extensively induced autophagosomes. On electron microscopy, the autophagosomes contained mitochondria in I/R-injured tubular epithelial cells. In contrast, Bcl-2 augmentation suppressed the formation of autophagosomes and there was less tubular damage. In conclusion, Bcl-2 augmentation protected renal tubular epithelial cells from I/R injury by suppressing autophagosomal degradation and inhibiting tubular apoptosis.

  15. The rebirth of interest in renal tubular function.

    PubMed

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. Copyright © 2016 the American Physiological Society.

  16. Hemodynamic and tubular changes induced by contrast media.

    PubMed

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  17. Neural control of renal function: role of renal alpha adrenoceptors.

    PubMed

    DiBona, G F

    1985-01-01

    Adrenoceptors of various subtypes mediate the renal functional responses to alterations in efferent renal sympathetic nerve activity, the neural component, and renal arterial plasma catecholamine concentrations, the humoral component, of the sympathoadrenergic nervous system. Under normal physiologic as well as hypertensive conditions, the influence of the renal sympathetic nerves predominates over that of circulating plasma catecholamines. In most mammalian species, increases in efferent renal sympathetic nerve activity elicit renal vasoconstrictor responses mediated predominantly by renal vascular alpha-1 adrenoceptors, increases in renin release mediated largely by renal juxtaglomerular granular cell beta-1 adrenoceptors with involvement of renal vascular alpha-1 adrenoceptors only when renal vasoconstriction occurs, and direct increases in renal tubular sodium and water reabsorption mediated predominantly by renal tubular alpha-1 adrenoceptors. In most mammalian species, alpha-2 adrenoceptors do not play a significant role in the renal vascular or renin release responses to renal sympathoadrenergic stimulation. Although renal tubular alpha-2 adrenoceptors do not mediate the increases in renal tubular sodium and water reabsorption produced by increases in efferent renal sympathetic nerve activity, they may be involved through their inhibitory effect on adenylate cyclase in modulating the response to other hormonal agents that influence renal tubular sodium and water reabsorption via stimulation of adenylate cyclase.

  18. Hemodynamic and Tubular Changes Induced by Contrast Media

    PubMed Central

    Caiazza, Antonella; Russo, Luigi; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510

  19. Experimental investigation of the structural behavior of equine urethra.

    PubMed

    Natali, Arturo Nicola; Carniel, Emanuele Luigi; Frigo, Alessandro; Fontanella, Chiara Giulia; Rubini, Alessandro; Avital, Yochai; De Benedictis, Giulia Maria

    2017-04-01

    An integrated experimental and computational investigation was developed aiming to provide a methodology for characterizing the structural response of the urethral duct. The investigation provides information that are suitable for the actual comprehension of lower urinary tract mechanical functionality and the optimal design of prosthetic devices. Experimental activity entailed the execution of inflation tests performed on segments of horse penile urethras from both proximal and distal regions. Inflation tests were developed imposing different volumes. Each test was performed according to a two-step procedure. The tubular segment was inflated almost instantaneously during the first step, while volume was held constant for about 300s to allow the development of relaxation processes during the second step. Tests performed on the same specimen were interspersed by 600s of rest to allow the recovery of the specimen mechanical condition. Results from experimental activities were statistically analyzed and processed by means of a specific mechanical model. Such computational model was developed with the purpose of interpreting the general pressure-volume-time response of biologic tubular structures. The model includes parameters that interpret the elastic and viscous behavior of hollow structures, directly correlated with the results from the experimental activities. Post-processing of experimental data provided information about the non-linear elastic and time-dependent behavior of the urethral duct. In detail, statistically representative pressure-volume and pressure relaxation curves were identified, and summarized by structural parameters. Considering elastic properties, initial stiffness ranged between 0.677 ± 0.026kPa and 0.262 ± 0.006kPa moving from proximal to distal region of penile urethra. Viscous parameters showed typical values of soft biological tissues, as τ 1 =0.153±0.018s, τ 2 =17.458 ± 1.644s and τ 1 =0.201 ± 0.085, τ 2 = 8.514 ± 1.379s for proximal and distal regions respectively. A general procedure for the mechanical characterization of the urethral duct has been provided. The proposed methodology allows identifying mechanical parameters that properly express the mechanical behavior of the biological tube. The approach is especially suitable for evaluating the influence of degenerative phenomena on the lower urinary tract mechanical functionality. The information are mandatory for the optimal design of potential surgical procedures and devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multiphoton imaging for assessing renal disposition in acute kidney injury

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liang, Xiaowen; Wang, Haolu; Roberts, Darren M.; Roberts, Michael S.

    2016-11-01

    Estimation of renal function and drug renal disposition in acute kidney injury (AKI), is important for appropriate dosing of drugs and adjustment of therapeutic strategies, but is challenging due to fluctuations in kidney function. Multiphoton microscopy has been shown to be a useful tool in studying drug disposition in liver and can reflect dynamic changes of liver function. We extend this imaging technique to investigate glomerular filtration rate (GFR) and tubular transporter functional change in various animal models of AKI, which mimic a broad range of causes of AKI such as hypoxia (renal ischemia- reperfusion), therapeutic drugs (e.g. cisplatin), rhabdomyolysis (e.g. glycerol-induced) and sepsis (e.g. LPSinduced). The MPM images revealed acute injury of tubular cells as indicated by reduced autofluorescence and cellular vacuolation in AKI groups compared to control group. In control animal, systemically injected FITC-labelled inulin was rapidly cleared from glomerulus, while the clearance of FITC-inulin was significantly delayed in most of animals in AKI group, which may reflect the reduced GFR in AKI. Following intravenous injection, rhodamine 123, a fluorescent substrate of p-glycoprotein (one of tubular transporter), was excreted into urine in proximal tubule via p-glycoprotein; in response to AKI, rhodamine 123 was retained in tubular cells as revealed by slower decay of fluorescence intensity, indicating P-gp transporter dysfunction in AKI. Thus, real-time changes in GFR and transporter function can be imaged in rodent kidney with AKI using multiphoton excitation of exogenously injected fluorescent markers.

  1. Optimal startup control of a jacketed tubular reactor.

    NASA Technical Reports Server (NTRS)

    Hahn, D. R.; Fan, L. T.; Hwang, C. L.

    1971-01-01

    The optimal startup policy of a jacketed tubular reactor, in which a first-order, reversible, exothermic reaction takes place, is presented. A distributed maximum principle is presented for determining weak necessary conditions for optimality of a diffusional distributed parameter system. A numerical technique is developed for practical implementation of the distributed maximum principle. This involves the sequential solution of the state and adjoint equations, in conjunction with a functional gradient technique for iteratively improving the control function.

  2. Glucagon-like peptide 1 receptor expression in primary porcine proximal tubular cells.

    PubMed

    Schlatter, P; Beglinger, C; Drewe, J; Gutmann, H

    2007-06-07

    GLP-1 is secreted into the circulation after food intake. The main biological effects of GLP-1 include stimulation of glucose dependent insulin secretion and induction of satiety feelings. Recently, it was demonstrated in rats and humans that GLP-1 can stimulate renal excretion of sodium. Based on these data, the existence of a renal GLP-1 receptor (GLP-1R) was postulated. However, the exact localization of the GLP-1R and the mechanism of this GLP-1 action have not yet been investigated. Primary porcine proximal tubular cells were isolated from porcine kidneys. Expression of GLP-1R was measured at the mRNA level by quantitative RT-PCR. Protein expression of GLP-1R was verified with immunocytochemistry, immunohistochemistry and Western blot analysis. Functional studies included transport assessments of sodium and glucose using three different GLP-1 concentrations (200 pM, 2 nM and 20 nM), 200 pM exendin-4 (GLP-1 analogue) and an inhibitor of the dipeptidylpeptidase IV (DPPIV) enzyme (P32/98 at 10 microM). Finally, the expression of NHE3, the predominant Na(+)/H(+) exchanger in proximal tubular cells, was also investigated. GLP-1R, NHE3 and DPPIV were expressed at the mRNA level in porcine proximal tubular kidney cells. GLP-1R expression was confirmed at the protein level. Staining of human and pig kidney cortex revealed that GLP-1R was predominantly expressed in proximal tubular cells. Functional assays demonstrated an inhibition of sodium re-absorption with GLP-1 after 3 h of incubation. Exendin-4 and GLP-1 in combination with P32/98 co-administration had no clear influence on glucose and sodium uptake and transport. GLP-1R is functionally expressed in porcine proximal tubular kidney cells. Addition of GLP-1 to these cells resulted in a reduced sodium re-absorption. GLP-1 had no effect on glucose re-absorption. We conclude that GLP-1 modulates sodium homeostasis in the kidney most likely through a direct action via its GLP-1R in proximal tubular cells.

  3. Impact of thoracic surgery on esophageal motor function-Evaluation by high resolution manometry.

    PubMed

    Wäsche, Anja; Kandulski, Arne; Malfertheiner, Peter; Riedel, Sandra; Zardo, Patrick; Hachenberg, Thomas; Schreiber, Jens

    2017-06-01

    Alteration of esophageal function is a potential risk factor for postoperative complications in thoracic surgery. This prospective study investigates esophageal motility and function during and after thoracic procedures via high resolution manometry (HRM) and impedance technology with spatiotemporal representation of pressure data. Twelve consecutive patients eligible for elective thoracic surgery underwent preoperative and postoperative (48 hours and 7 days) esophageal HRM. Swallowing acts were carried out with 5 mL of water, 10 mL of water and 1 cm 3 bread in physiological posture to evaluate distal contraction integral (DCI). Length and location of contractile integrity breaks were measured by investigators blinded to the form of surgical intervention. The impact of surgical procedures on esophageal motility was quantified according to current Chicago Classification (CC) criteria. Pre-, intra- and postoperative 24-hour multi-channel impedance pH-metry (MII-pH) was performed to further analyze gastroesophageal reflux patterns. All patients were investigated 48 hours prior to and 7 days after thoracic procedures, with a total of n=675 swallowing acts being included in our study. Increased motility patterns of the tubular esophagus occurred temporally 48 hours postoperatively. DCI 48 hours after surgery increased significantly (5 mL, P=0.049; solid, P=0.014) and returned to baseline values after seven days (5 mL, P=0.039; solid, P=0.039). Break length was significantly reduced 48 hours postoperatively, especially in the proximal esophageal segment (transition zone). Follow-up measurements after another week were comparable to preoperative baseline findings. The perioperative MII-pH measurement showed numerous artifacts caused by intubation and ventilation during surgery also with increasing short and frequent acidic reflux episodes. Thoracic procedures cause a transient modulation of esophageal peristalsis with postoperative increased contractility of the tubular esophagus, presumably without affecting intraesophageal reflex arcs. Although limited by the number of patients, we can conclude on our data that postoperative esophageal hypomotility is unlikely to promote secondary pulmonary complications.

  4. Architecture of kangaroo rat inner medulla: segmentation of descending thin limb of Henle's loop.

    PubMed

    Urity, Vinoo B; Issaian, Tadeh; Braun, Eldon J; Dantzler, William H; Pannabecker, Thomas L

    2012-03-15

    We hypothesize that the inner medulla of the kangaroo rat Dipodomys merriami, a desert rodent that concentrates its urine to more than 6,000 mosmol/kgH(2)O water, provides unique examples of architectural features necessary for production of highly concentrated urine. To investigate this architecture, inner medullary nephron segments in the initial 3,000 μm below the outer medulla were assessed with digital reconstructions from physical tissue sections. Descending thin limbs of Henle (DTLs), ascending thin limbs of Henle (ATLs), and collecting ducts (CDs) were identified by immunofluorescence using antibodies that label segment-specific proteins associated with transepithelial water flux (aquaporin 1 and 2, AQP1 and AQP2) and chloride flux (the chloride channel ClC-K1); all tubules and vessels were labeled with wheat germ agglutinin. In the outer 3,000 μm of the inner medulla, AQP1-positive DTLs lie at the periphery of groups of CDs. ATLs lie inside and outside the groups of CDs. Immunohistochemistry and reconstructions of loops that form their bends in the outer 3,000 μm of the inner medulla show that, relative to loop length, the AQP1-positive segment of the kangaroo rat is significantly longer than that of the Munich-Wistar rat. The length of ClC-K1 expression in the prebend region at the terminal end of the descending side of the loop in kangaroo rat is about 50% shorter than that of the Munich-Wistar rat. Tubular fluid of the kangaroo rat DTL may approach osmotic equilibrium with interstitial fluid by water reabsorption along a relatively longer tubule length, compared with Munich-Wistar rat. A relatively shorter-length prebend segment may promote a steeper reabsorptive driving force at the loop bend. These structural features predict functionality that is potentially significant in the production of a high urine osmolality in the kangaroo rat.

  5. Hyperammonemia associated with distal renal tubular acidosis or urinary tract infection: a systematic review.

    PubMed

    Clericetti, Caterina M; Milani, Gregorio P; Lava, Sebastiano A G; Bianchetti, Mario G; Simonetti, Giacomo D; Giannini, Olivier

    2018-03-01

    Hyperammonemia usually results from an inborn error of metabolism or from an advanced liver disease. Individual case reports suggest that both distal renal tubular acidosis and urinary tract infection may also result in hyperammonemia. A systematic review of the literature on hyperammonemia secondary to distal renal tubular acidosis and urinary tract infection was conducted. We identified 39 reports on distal renal tubular acidosis or urinary tract infections in association with hyperammonemia published between 1980 and 2017. Hyperammonemia was detected in 13 children with distal renal tubular acidosis and in one adult patient with distal renal tubular acidosis secondary to primary hyperparathyroidism. In these patients a negative relationship was observed between circulating ammonia and bicarbonate levels (P < 0.05). In 31 patients (19 children, 12 adults), an acute urinary tract infection was complicated by acute hyperammonemia and symptoms and signs of acute neuronal dysfunction, such as an altered level of consciousness, convulsions and asterixis, often associated with signs of brain edema, such as anorexia and vomiting. Urea-splitting bacteria were isolated in 28 of the 31 cases. The urinary tract was anatomically or functionally abnormal in 30 of these patients. This study reveals that both altered distal renal tubular acidification and urinary tract infection may be associated with relevant hyperammonemia in both children and adults.

  6. RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism.

    PubMed

    Liu, Wenjing; Chen, Binbin; Wang, Yang; Meng, Chenling; Huang, Huihui; Huang, Xiao-Ru; Qin, Jinzhong; Mulay, Shrikant R; Anders, Hans-Joachim; Qiu, Andong; Yang, Baoxue; Freeman, Gordon J; Lu, Hua Jenny; Lin, Herbert Y; Zheng, Zhi-Hua; Lan, Hui-Yao; Huang, Yu; Xia, Yin

    2018-02-13

    Tubular cell necrosis is a key histological feature of acute kidney injury (AKI). Necroptosis is a type of programed necrosis, which is executed by mixed lineage kinase domain-like protein (MLKL) upon its binding to the plasma membrane. Emerging evidence indicates that necroptosis plays a critical role in the development of AKI. However, it is unclear whether renal tubular cells undergo necroptosis in vivo and how the necroptotic pathway is regulated during AKI. Repulsive guidance molecule (RGM)-b is a member of the RGM family. Our previous study demonstrated that RGMb is highly expressed in kidney tubular epithelial cells, but its biological role in the kidney has not been well characterized. In the present study, we found that RGMb reduced membrane-associated MLKL levels and inhibited necroptosis in cultured cells. During ischemia/reperfusion injury (IRI) or oxalate nephropathy, MLKL was induced to express on the apical membrane of proximal tubular (PT) cells. Specific knockout of Rgmb in tubular cells (Rgmb cKO) increased MLKL expression at the apical membrane of PT cells and induced more tubular cell death and more severe renal dysfunction compared with wild-type mice. Treatment with the necroptosis inhibitor Necrostatin-1 or GSK'963 reduced MLKL expression on the apical membrane of PT cells and ameliorated renal function impairment after IRI in both wild-type and Rgmb cKO mice. Taken together, our results suggest that proximal tubular cell necroptosis plays an important role in AKI, and that RGMb protects against AKI by inhibiting MLKL membrane association and necroptosis in proximal tubular cells.

  7. Drosophila as a model for epithelial tube formation.

    PubMed

    Maruyama, Rika; Andrew, Deborah J

    2012-01-01

    Epithelial tubular organs are essential for life in higher organisms and include the pancreas and other secretory organs that function as biological factories for the synthesis and delivery of secreted enzymes, hormones, and nutrients essential for tissue homeostasis and viability. The lungs, which are necessary for gas exchange, vocalization, and maintaining blood pH, are organized as highly branched tubular epithelia. Tubular organs include arteries, veins, and lymphatics, high-speed passageways for delivery and uptake of nutrients, liquids, gases, and immune cells. The kidneys and components of the reproductive system are also epithelial tubes. Both the heart and central nervous system of many vertebrates begin as epithelial tubes. Thus, it is not surprising that defects in tube formation and maintenance underlie many human diseases. Accordingly, a thorough understanding how tubes form and are maintained is essential to developing better diagnostics and therapeutics. Among the best-characterized tubular organs are the Drosophila salivary gland and trachea, organs whose relative simplicity have allowed for in depth analysis of gene function, yielding key mechanistic insight into tube initiation, remodeling and maintenance. Here, we review our current understanding of salivary gland and trachea formation - highlighting recent discoveries into how these organs attain their final form and function. Copyright © 2011 Wiley Periodicals, Inc.

  8. Segmented tubular cushion springs and spring assembly

    NASA Technical Reports Server (NTRS)

    Haslim, L. A. (Inventor)

    1985-01-01

    A spring which includes a tube with an elliptical cross section, with the greater axial dimension extending laterally and the lesser axial dimension extending vertically is disclosed. A plurality of cuts in the form of slots passing through most of a wall of the tube extend perpendiculary to a longitudinal axis extending along the tube. An uncut portion of the tube wall extends along the tube for bonding or fastening the tube to a suitable base, such as a bottom of a seat cushion.

  9. Robot-assisted "Santosh-Post Graduate Institute tubularized flap pyelovesicostomy" in a solitary functioning kidney with giant hydronephrosis: A minimally invasive salvage procedure.

    PubMed

    Kumar, Santosh; Singh, Shivanshu; Kumar, Navneet

    2016-03-01

    We describe a case of a solitary functioning kidney with giant hydronephrosis secondary to ureteropelvic junction obstruction in a young girl who underwent successful robot-assisted tubularized flap pyelovesicostomy. The aim of this report was to highlight the feasibility and efficacy of this technique in salvaging such renal moieties and to present a brief review of the surgical options available for the management of giant hydronephrosis.

  10. Are gadolinium-based contrast media nephrotoxic? A renal biopsy study.

    PubMed

    Akgun, Hulya; Gonlusen, Gulfiliz; Cartwright, Joiner; Suki, Wadi N; Truong, Luan D

    2006-09-01

    Gadolinium-based contrast media were originally introduced as alternatives to iodinated media for magnetic resonance imaging. Although originally thought to be nonnephrotoxic, gadolinium-based contrast media have recently been reported to be associated with acute renal failure; the mechanism and the underlying renal injury are not completely understood. We report what is, to our knowledge, the first renal biopsy in this context. A 56-year-old patient underwent 2 consecutive vascular imaging procedures in conjunction with gadolinium-based contrast medium administration. A few days later, the patient developed acute renal failure. A renal biopsy showed acute tubular cell injury including patchy tubular cell necrosis, tubular cell degeneration, and marked proliferation of tubular cells, together with mild interstitial edema and interstitial inflammation, but without significant glomerular or vascular changes. During supportive therapy, renal function was partially regained. This case emphasizes the potential nephrotoxicity of gadolinium-based contrast media and suggests that the nephrotoxicity is related to potentially reversible acute tubular cell injury.

  11. Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds.

    PubMed

    Seifarth, Volker; Gossmann, Matthias; Janke, Heinz Peter; Grosse, Joachim O; Becker, Christoph; Heschel, Ingo; Artmann, Gerhard M; Temiz Artmann, Aysegül

    2015-01-01

    Regenerative medicine, tissue engineering and biomedical research give hope to many patients who need bio-implants. Tissue engineering applications have already been developed based on bioreactors. Physiological ureter implants, however, do not still function sufficiently, as they represent tubular hollow structures with very specific cellular structures and alignments consisting of several cell types. The aim of this study was to a develop a new bioreactor system based on seamless, collagenous, tubular OPTIMAIX 3D prototype sponge as scaffold material for ex-vivo culturing of a tissue engineered ureter replacement for future urological applications. Particular emphasis was given to a great extent to mimic the physiological environment similar to the in vivo situation of a ureter. NIH-3T3 fibroblasts, C2C12, Urotsa and primary genitourinary tract cells were applied as co-cultures on the scaffold and the penetration of cells into the collagenous material was followed. By the end of this study, the bioreactor was functioning, physiological parameter as temperature and pH and the newly developed BIOREACTOR system is applicable to tubular scaffold materials with different lengths and diameters. The automatized incubation system worked reliably. The tubular OPTIMAIX 3D sponge was a suitable scaffold material for tissue engineering purposes and co-cultivation procedures. © 2015 S. Karger AG, Basel.

  12. Structure and Sensilla of the Mouthparts of the Spotted Lanternfly Lycorma delicatula (Hemiptera: Fulgoromorpha: Fulgoridae), a Polyphagous Invasive Planthopper

    PubMed Central

    Hao, Yanan; Dietrich, Christopher H.; Dai, Wu

    2016-01-01

    Mouthparts are among the most important sensory and feeding structures in insects and comparative morphological study may help explain differences in feeding behavior and diet breadth among species. The spotted lanternfly Lycorma delicatula (White) (Hemiptera: Fulgoromorpha: Fulgoridae) is a polyphagous agricultural pest originating in China, recently established and becoming widespread in Korea, and more recently introduced into eastern North America. It causes severe economic damage by sucking phloem sap and the sugary excrement produced by nymphs and adults serves as a medium for sooty mold. To facilitate future study of feeding mechanisms in this insect, the fine-structural morphology of mouthparts focusing on the distribution of sensilla located on the labium in adult L. delicatula was observed using a scanning electron microscope. The mouthparts consist of a small cone-shaped labrum, a tubular labium and a stylet fascicle consisting of two inner interlocked maxillary stylets partially surrounded by two shorter mandibular stylets similar to those found in other hemipteran insects. The five-segmented labium is unusual (most other Fulgoromorpha have four segments) and is provided with several types of sensilla and cuticular processes situated on the apex of its distal labial segment. In general, nine types of sensilla were found on the mouthparts. Six types of sensilla and four types of cuticular processes are present on sensory fields of the labial apex. The proposed taxonomic and functional significance of the sensilla are discussed. Morphological similarities in the interlocking mechanism of the stylets suggest a relationship between Fulgoromorpha and Heteroptera. PMID:27253390

  13. Intestinal atresia and ectopia in a bovine fetus.

    PubMed

    Lejeune, B; Miclard, J; Stoffel, M H; Meylan, M

    2011-07-01

    A 2-year-old Red Holstein cow was presented with uterine torsion at 235 days of pregnancy. The fetus extracted by cesarean section had weak vital signs and marked abdominal distention. An edematous pouch that contained tubular structures with peristaltic activity was associated with the umbilical cord. Because of poor prognosis, both dam and fetus were euthanized. At necropsy, the fetus had severe distention of the forestomachs, abomasum, and proximal small intestine; absence of distal small intestine, cecum, and proximal colon; atresia of the 2 blind ends of the intestine; and atrophy of distal colon and rectum. The tubular structures associated with the umbilical cord were identified as the segments of intestine that were absent in the fetus. Intestinal atresia combined with ectopia may be caused by local ischemia during temporary herniation and rotation of the fetal gut into the extraembryonic coelom. The close connection between ectopic intestine and amniotic sheath of the umbilical cord in this case may have facilitated vascularization and allowed development and viability of the ectopic intestine. © The Authors 2011

  14. Pathogenetic role of Arg-Gly-Asp-recognizing integrins in acute renal failure. off.

    PubMed Central

    Goligorsky, M S; DiBona, G F

    1993-01-01

    Reorientation of the alpha 3 subunit of integrins from predominantly basal to the apical cell surface of cultured renal tubular epithelial cells subjected to oxidant stress has previously been demonstrated. The present study was designed to assess functional competence of ectopically expressed apical integrins. Cell-cell adhesion assay revealed enhanced cytoatractant properties of stressed cells. Stressed epithelial cells exhibited specific recognition and binding of laminin-coated latex beads. These processes were inhibited with the peptide Gly-Arg-Gly-Asp-Asn-Pro (GRGDNP) suggesting a role of RGD-recognizing integrins in augmented adhesion to stressed cells. Given that such enhanced adhesion in in vivo acute renal failure may govern tubular obstruction by desquamated epithelium, a physiological marker of patency of tubular lumen, proximal tubular pressure, was monitored in rats subjected to 60 min of renal ischemia followed by reperfusion. Proximal tubular pressure increased 2-fold after 2 hr of reperfusion in animals that had undergone 60 min of ischemia. Infusion of GRGDNP into the renal artery during reperfusion period virtually abolished an increase in proximal tubular pressure observed in ischemic acute renal failure. These in vitro and in vivo findings are consistent with the hypothesis that RGD-recognizing integrins play an important role in the pathogenesis of tubular obstruction in ischemic acute renal failure. Images Fig. 2 Fig. 3 PMID:8516318

  15. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Jiantao; Jin, Chenwang, E-mail: jcw76@163.com; Yu, Nan

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concavemore » loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.« less

  16. Renal Tubular Cell Mitochondrial Dysfunction Occurs Despite Preserved Renal Oxygen Delivery in Experimental Septic Acute Kidney Injury

    PubMed Central

    Pollen, Sean; Greco, Elisabetta; Courtneidge, Holly; Hall, Andrew M.; Duchen, Michael R.; Tam, Frederick W. K.; Unwin, Robert J.; Singer, Mervyn

    2018-01-01

    Objective: To explain the paradigm of significant renal functional impairment despite preserved hemodynamics and histology in sepsis-induced acute kidney injury. Design: Prospective observational animal study. Setting: University research laboratory. Subjects: Male Wistar rats. Intervention: Using a fluid-resuscitated sublethal rat model of fecal peritonitis, changes in renal function were characterized in relation to global and renal hemodynamics, and histology at 6 and 24 hours (n = 6–10). Sham-operated animals were used as comparison (n = 8). Tubular cell mitochondrial function was assessed using multiphoton confocal imaging of live kidney slices incubated in septic serum. Measurements and Main Results: By 24 hours, serum creatinine was significantly elevated with a concurrent decrease in renal lactate clearance in septic animals compared with sham-operated and 6-hour septic animals. Renal uncoupling protein-2 was elevated in septic animals at 24 hours although tubular cell injury was minimal and mitochondrial ultrastructure in renal proximal tubular cells preserved. There was no significant change in global or renal hemodynamics and oxygen delivery/consumption between sham-operated and septic animals at both 6- and 24-hour timepoints. In the live kidney slice model, mitochondrial dysfunction was seen in proximal tubular epithelial cells incubated with septic serum with increased production of reactive oxygen species, and decreases in nicotinamide adenine dinucleotide and mitochondrial membrane potential. These effects were prevented by coincubation with the reactive oxygen species scavenger, 4-hydroxy-2,2,6,6-tetramethyl-piperidin-1-oxyl. Conclusions: Renal dysfunction in sepsis occurs independently of hemodynamic instability or structural damage. Mitochondrial dysfunction mediated by circulating mediators that induce local oxidative stress may represent an important pathophysiologic mechanism. PMID:29293148

  17. Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Colin D.A.; Sayer, Rachel; Windass, Amy S.

    2008-12-15

    The aim of this study was to determine whether primary human tubular cell monolayers could provide a powerful tool with which to investigate the renal proximal tubular handling of xenobiotics. Human proximal and distal tubule/collecting duct cells were grown as monolayers on permeable filter supports. After 10 days in culture, proximal tubule cells remained differentiated and expressed a wide palette of transporters at the mRNA level including NaPi-IIa, SGLT1, SGLT2, OCT2, OCTN2, OAT1, OAT3, OAT4, MDR1, MRP2 and BCRP. At the protein level, the expression of a subset of transporters including NaPi-IIa, OAT1 and OAT3 was demonstrated using immunohistochemistry. Analysismore » of the expression of the ATP binding cassette efflux pumps MDR1, MRP2 and BCRP confirmed their apical membrane localisation. At the functional level, tubule cell monolayers retain the necessary machinery to mediate the net secretion of the prototypic substrates; PAH and creatinine. PAH secretion across the monolayer consisted of the uptake of PAH across the basolateral membrane by OAT1 and OAT3 and the apical exit of PAH by a probenecid and MK571-sensitive route consistent with actions of MRP2 or MRP4. Creatinine secretion was by OCT2-mediated uptake at the basolateral membrane and via MDR1 at the apical membrane. Functional expression of MDR1 and BCRP at the apical membrane was also demonstrated using a Hoechst 33342 dye. Similarly, measurement of calcein efflux demonstrated the functional expression of MRP2 at the apical membrane of cell monolayers. In conclusion, human tubular cell monolayers provide a powerful tool to investigate renal xenobiotic handling.« less

  18. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.

  19. Constitutive laws with damage effect for the human great saphenous vein.

    PubMed

    Li, Wenguang

    2018-05-01

    Strain energy-based constitutive laws with damage effect were proposed by using existing both uniaxial tensile test and tubular biaxial inflation test data on the human great saphenous vein (GSV) segments. These laws were applied into GSV coronary artery bypass grafts (CABG) by employing a thin-walled vessel model to evaluate their passive biomechanical performance under coronary artery physiological conditions at a fixed axial pre-stretch. At a peak systolic pressure in 100-150 mmHg, a 20-33% GSV diameter dilation was predicted with the law based on tubular biaxial inflation test data and agreed well with 25% dilation in clinical observation in comparison with as small as 2-4% dilation estimated with the law based on uniaxial tensile test data. The constitutive law generated by tubular biaxial inflation test data was mostly suitable for GSV CABG under coronary artery physiological conditions than that based on uniaxial tensile test results. With these laws, the fibre ultimate stretch was extracted from uniaxial tensile test data and the structural sub-failure/damage threshold of 1.0731 was decided for the human GSV. GSV fibres could exhibit damage effect but unlikely undergo a structure failure/break, suggesting a damage factor might exist during CABG arterialization. The damage in GSV tissue might initiate or contribute to early remodelling of CABG after implantation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections.

    PubMed

    Chen, Delei; Goris, Bart; Bleichrodt, Folkert; Mezerji, Hamed Heidari; Bals, Sara; Batenburg, Kees Joost; de With, Gijsbertus; Friedrich, Heiner

    2014-12-01

    In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying different angular sampling schemes. A well-defined realistic model is generated, which consists of tubular domains within a matrix having slab-geometry. Subsequently, the electron tomography workflow is simulated from calculated tilt-series over experimental effects to reconstruction. In comparison with the model, the fidelity of each reconstruction method is evaluated qualitatively and quantitatively based on global and local edge profiles and resolvable distance between particles. Results show that the performance of all reconstruction methods declines with the total electron dose. Overall, SIRT algorithm is the most stable method and insensitive to changes in angular sampling. TVM algorithm yields significantly sharper edges in the reconstruction, but the edge positions are strongly influenced by the tilt scheme and the tubular objects become thinned. The DART algorithm markedly suppresses the elongation artifacts along the beam direction and moreover segments the reconstruction which can be considered a significant advantage for quantification. Finally, no advantage of TVM and DART to deal better with fewer projections was observed. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effects of a Single Dose of Parecoxib on Inflammatory Response and Ischemic Tubular Injury Caused by Hemorrhagic Shock in Rats.

    PubMed

    Takaku, Mariana; da Silva, Andre Carnevali; Iritsu, Nathalie Izumi; Vianna, Pedro Thadeu Galvao; Castiglia, Yara Marcondes Machado

    2018-01-01

    Parecoxib, a selective COX-2 inhibitor, is used to improve analgesia in postoperative procedures. Here we evaluated whether pretreatment with a single dose of parecoxib affects the function, cell injury, and inflammatory response of the kidney of rats subjected to acute hemorrhage. Inflammatory response was determined according to serum and renal tissue cytokine levels (IL-1 α , IL-1 β , IL-6, IL-10, and TNF- α ). Forty-four adult Wistar rats anesthetized with sevoflurane were randomized into four groups: placebo/no hemorrhage (Plc/NH); parecoxib/no hemorrhage (Pcx/NH); placebo/hemorrhage (Plc/H); and parecoxib/hemorrhage (Pcx/H). Pcx groups received a single dose of intravenous parecoxib while Plc groups received a single dose of placebo (isotonic saline). Animals in hemorrhage groups underwent bleeding of 30% of blood volume. Renal function and renal histology were then evaluated. Plc/H showed the highest serum levels of cytokines, suggesting that pretreatment with parecoxib reduced the inflammatory response in rats subjected to hemorrhage. No difference in tissue cytokine levels between groups was observed. Plc/H showed higher percentage of tubular dilation and degeneration, indicating that parecoxib inhibited tubular injury resulting from renal hypoperfusion. Our findings indicate that pretreatment with a single dose of parecoxib reduced the inflammatory response and tubular renal injury without altering renal function in rats undergoing acute hemorrhage.

  2. Second messenger production in avian medullary nephron segments in response to peptide hormones.

    PubMed

    Goldstein, D L; Reddy, V; Plaga, K

    1999-03-01

    We examined the sites of peptide hormone activation within medullary nephron segments of the house sparrow (Passer domesticus) kidney by measuring rates of hormone-induced generation of cyclic nucleotide second messenger. Thin descending limbs, thick ascending limbs, and collecting ducts had baseline activity of adenylyl cyclase that resulted in cAMP accumulation of 207 +/- 56, 147 +/- 31, and 151 +/- 41 fmol. mm-1. 30 min-1, respectively. In all segments, this activity increased 10- to 20-fold in response to forskolin. Activity of adenylyl cyclase in the thin descending limb was stimulated approximately twofold by parathyroid hormone (PTH) but not by any of the other hormones tested [arginine vasotocin (AVT), glucagon, atrial natriuretic peptide (ANP), or isoproterenol, each at 10(-6) M]. Thick ascending limb was stimulated two- to threefold by both AVT and PTH; however, glucagon and isoproterenol had no effect, and ANP stimulated neither cAMP nor cGMP accumulation. Adenylyl cyclase activity in the collecting duct was stimulated fourfold by AVT but not by the other hormones; likewise, ANP did not stimulate cGMP accumulation in this segment. These data support a tubular action of AVT and PTH in the avian renal medulla.

  3. Pretreatment by low-dose fibrates protects against acute free fatty acid-induced renal tubule toxicity by counteracting PPAR{alpha} deterioration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Kyoko; Department of Nephrology Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621; Kamijo, Yuji, E-mail: yujibeat@shinshu-u.ac.jp

    2011-05-01

    Development of a preventive strategy against tubular damage associated with proteinuria is of great importance. Recently, free fatty acid (FFA) toxicities accompanying proteinuria were found to be a main cause of tubular damage, which was aggravated by insufficiency of peroxisome proliferator-activated receptor alpha (PPAR{alpha}), suggesting the benefit of PPAR{alpha} activation. However, an earlier study using a murine acute tubular injury model, FFA-overload nephropathy, demonstrated that high-dose treatment of PPAR{alpha} agonist (0.5% clofibrate diet) aggravated the tubular damage as a consequence of excess serum accumulation of clofibrate metabolites due to decreased kidney elimination. To induce the renoprotective effects of PPAR{alpha} agonistsmore » without drug accumulation, we tried a pretreatment study using low-dose clofibrate (0.1% clofibrate diet) using the same murine model. Low-dose clofibrate pretreatment prevented acute tubular injuries without accumulation of its metabolites. The tubular protective effects appeared to be associated with the counteraction of PPAR{alpha} deterioration, resulting in the decrease of FFAs influx to the kidney, maintenance of fatty acid oxidation, diminution of intracellular accumulation of undigested FFAs, and attenuation of disease developmental factors including oxidative stress, apoptosis, and NF{kappa}B activation. These effects are common to other fibrates and dependent on PPAR{alpha} function. Interestingly, however, clofibrate pretreatment also exerted PPAR{alpha}-independent tubular toxicities in PPAR{alpha}-null mice with FFA-overload nephropathy. The favorable properties of fibrates are evident when PPAR{alpha}-dependent tubular protective effects outweigh their PPAR{alpha}-independent tubular toxicities. This delicate balance seems to be easily affected by the drug dose. It will be important to establish the appropriate dosage of fibrates for treatment against kidney disease and to develop a novel PPAR{alpha} activator that has a steady serum concentration regardless of kidney dysfunction. - Graphical Abstract: Massive proteinuria introduces free fatty acid toxicity to proximal tubular epithelial cells (PTECs). PPAR{alpha} activationvia clofibrate pretreatment maintains fatty acid catabolism and attenuates oxidative stress, apoptosis, and NF{kappa}B activation, resulting in protection of PTECs. The favorable properties of fibrates are evident when PPAR{alpha}-dependent tubular protective effects outweigh their PPAR{alpha}-independent tubular toxicities. Display Omitted Highlights: > Clofibrate pretreatment protects against acute FFA-induced tubular toxicity. > PPAR{alpha} activation decreases FFA influx and maintains fatty acid catabolism. > PPAR{alpha} activation attenuates oxidative stress, apoptosis, and NF{kappa}B activation. > Protective effects must outweigh PPAR{alpha}-independent tubular toxicities of fibrates.« less

  4. In-Situ TEM-STM Observations of SWCNT Ropes/Tubular Transformations

    NASA Technical Reports Server (NTRS)

    Sola, F.; Lebron-Colon, M.; Ferreira, P. J.; Fonseca, L. F.; Meador, M. A.; Marin, C.

    2010-01-01

    Single-walled carbon nanotubes (SWCNTs) prepared by the HiPco process were purified using a modified gas phase purification technique. A TEM-STM holder was used to study the morphological changes of SWCNT ropes as a function of applied voltage. Kink formation, buckling behavior, tubular transformation and eventual breakdown of the system were observed. The tubular formation was attributed to a transformation from SWCNT ropes to multi-walled carbon nanotube (MWCNT) structures. It is likely mediated by the patching and tearing mechanism which is promoted primarily by the mobile vacancies generated due to current-induced heating and, to some extent, by electron irradiation.

  5. Pilot study of association of catechol-O-methyl transferase rs4680 genotypes with acute kidney injury and tubular stress after open heart surgery.

    PubMed

    Albert, Christian; Kube, Johanna; Haase-Fielitz, Anja; Dittrich, Annemarie; Schanze, Denny; Zenker, Martin; Kuppe, Hermann; Hetzer, Roland; Bellomo, Rinaldo; Mertens, Peter R; Haase, Michael

    2014-01-01

    To assess the association of genetic variants of catecholamine-O-methyltransferase (COMT) genotypes with acute kidney injury (AKI) and tubular stress after open heart surgery. We genotyped 195 patients for the COMT-Val158Met polymorphism and measured creatinine, neutrophil gelatinase-associated lipocalin and midkine. We analyzed the association between such polymorphisms and these kidney-related variables. Nonsignificantly more COMT LL patients developed RIFLE-AKI compared with non-LL patients (p = 0.11). Compared with HL and HH patients, LL patients who developed AKI had lower increases in serum creatinine. COMT LL patients had less pronounced release of tubular stress biomarkers (neutrophil gelatinase-associated lipocalin: p = 0.045, midkine: p = 0.072). COMT genotype may associate with different patterns of renal functional changes and tubular stress biomarker release response after open heart surgery.

  6. Optical coherence tomography (OCT) of a murine model of chronic kidney disease

    NASA Astrophysics Data System (ADS)

    Wang, Hsing-Wen; Guo, Hengchang; Andrews, Peter M.; Anderson, Erik; Chen, Y.

    2015-03-01

    Chronic Kidney Disease (CKD) is characterized by a progressive loss in renal function over time. Pathology can provide valuable insights into the progression of CKD by analyzing the status of glomeruli and the uriniferous tubules over time. Optical coherence tomography (OCT) is a new procedure that can analyze the microscopic structure of the kidney in a non-invasive manner. This is especially important because there are significant artifacts associated with excision biopsies and immersion fixation procedures. Recently, we have shown that OCT can provide real time images of kidney microstructure and Doppler OCT (DOCT) can image glomerular renal blood flow in vivo without administrating exogenous contrast agents. In this study, we used OCT to evaluate CKD in a model induced by intravenous Adriamycin injection into Munich-Wistar rats. We evaluated tubular density and tubular diameter from OCT images at several post- Adriamycin induction time points and compared them with conventional light microscopic histological imaging. Proteinurea and serum creatinine were used as physiological markers of the extent of CKD. Preliminary OCT results revealed changes in tubular density due to tubular necrosis and interstitial fibrosis within the first 4 weeks following Adriamycin injection. From week 4 to 8 after Adriamycin induction, changes in tubular density and diameter occurred due to both tubular loss and tubular dilation. The results suggest OCT can provide additional information about kidney histopathology in CKD. DOCT revealed reduced blood flow in some glomeruli probably as a consequence of focal glomerularsclerosis.

  7. Segmented tubular cushion springs and spring assembly

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1988-01-01

    A spring (10) includes a tube (12) having an elliptical cross section, with the greater axial dimension (22) extending laterally and the lesser axial dimension (24) extending vertically. A plurality of cuts (20) in the form of slots passing through most of a wall of the tube (12) extend perpendicularly to a longitudinal axis (16) extending along the tube (12). An uncut portion (26) of the tube wall extends along the tube (12) for bonding or fastening the tube to a suitable base, such as a bottom (28) of a seat cushion (30).

  8. Mechanisms of tubular sodium chloride transport.

    PubMed

    Venkatesh, S; Schrier, R W; Andreoli, T E

    1998-11-01

    Extracellular fluid volume is determined by sodium and its accompanying anions. There are control mechanisms which regulate sodium balance in the body. These include high and low pressure baroreceptors, intrarenal baroreceptors, renal autoregulation, tubuloglomerular feedback, aldosterone, and numerous other physical and hormonal factors. Sodium transport by the nephron involves active and passive processes which occur in several different nephron segments. Mechanisms of cotransport, Na(+)-H+ exchange, antiporters and ion-specific channels are all utilized by the nephron to maintain sodium balance. These regulatory factors and transport mechanisms for sodium in the kidney will he discussed in detail.

  9. Spacesuit mobility joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1978-01-01

    Joints for use in interconnecting adjacent segments of an hermetically sealed spacesuit which have low torques, low leakage and a high degree of reliability are described. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics. Linkages which restrain the joint from longitudinal distension and a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli are featured. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  10. Cytochrome P450 and Lipoxygenase Metabolites on Renal Function

    PubMed Central

    Imig, John D.; Hye Khan, Md. Abdul

    2018-01-01

    Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function. PMID:26756638

  11. Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium.

    PubMed

    Wade, James B; Fang, Liang; Coleman, Richard A; Liu, Jie; Grimm, P Richard; Wang, Tong; Welling, Paul A

    2011-06-01

    ROMK channels are well-known to play a central role in renal K secretion, but the absence of highly specific and avid-ROMK antibodies has presented significant roadblocks toward mapping the extent of expression along the entire distal nephron and determining whether surface density of these channels is regulated in response to physiological stimuli. Here, we prepared new ROMK antibodies verified to be highly specific, using ROMK knockout mice as a control. Characterization with segmental markers revealed a more extensive pattern of ROMK expression along the entire distal nephron than previously thought, localizing to distal convoluted tubule regions, DCT1 and DCT2; the connecting tubule (CNT); and cortical collecting duct (CD). ROMK was diffusely distributed in intracellular compartments and at the apical membrane of each tubular region. Apical labeling was significantly increased by high-K diet in DCT2, CNT1, CNT2, and CD (P < 0.05) but not in DCT1. Consistent with the large increase in apical ROMK, dramatically increased mature glycosylation was observed following dietary potassium augmentation. We conclude 1) our new antibody provides a unique tool to characterize ROMK channel localization and expression and 2) high-K diet causes a large increase in apical expression of ROMK in DCT2, CNT, and CD but not in DCT1, indicating that different regulatory mechanisms are involved in K diet-regulated ROMK channel functions in the distal nephron.

  12. Direct reprogramming of human bone marrow stromal cells into functional renal cells using cell-free extracts.

    PubMed

    Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S; Benigni, Ariela

    2015-04-14

    The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes-formation of "domes" and tubule-like structures-and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure.

    PubMed

    Cheng, Chao-Wen; Rifai, Abdalla; Ka, Shuk-Man; Shui, Hao-Ai; Lin, Yuh-Feng; Lee, Wei-Hwa; Chen, Ann

    2005-12-01

    Rise in cellular calcium is associated with acute tubular necrosis, the most common cause of acute renal failure (ARF). The mechanisms that calcium signaling induce in the quiescent tubular cells to proliferate and differentiate during acute tubular necrosis have not been elucidated. Acute tubular necrosis induced in mice by single intravenous injection of uranyl nitrate and examined after 1, 3, 7, and 14 days. Renal function was monitored and kidneys were evaluated by histology, immunohistochemistry, Western blotting, in situ hybridization, and real-time reverse transcription-polymerase chain reaction (RT-PCR). Models of folic acid induced-ARF and ischemic/reperfusion (I/R) injury were similarly investigated. Analysis of mRNA expression of intracellular calcium and phospholipid-binding proteins demonstrated selective expression of S100A6 and Annexin A2 (Anxa2) in the renal cortex with marked elevation on day 3, and gradually decline on day 7 and further attenuation on day 14. Similarly, the expression of both proteins, as demonstrated by immunohistochemistry and Western blot analysis, was increased and reached the peak level on day 7 and then gradually declined by day 14. Vimentin, a marker of dedifferentiated cells, was highly expressed during the recovery phase. Combined in situ hybridization immunohistochemistry revealed colocalization of both S100A6 and Anxa2 with proliferating cell nuclear antigen (PCNA). The universality of this phenomenon was confirmed in two other mouse acute tubular necrosis models, the ischemic-reperfusion injury and folic acid-induced ARF. Collectively, these findings demonstrate that S100A6 and Anxa2 expression, initiated in response to tubular injury, persist in parallel throughout the recovery process of tubular cells in acute renal failure.

  14. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels.

    PubMed

    Yu, Yin; Zhang, Yahui; Martin, James A; Ozbolat, Ibrahim T

    2013-09-01

    Organ printing is a novel concept recently introduced in developing artificial three-dimensional organs to bridge the gap between transplantation needs and organ shortage. One of the major challenges is inclusion of blood-vessellike channels between layers to support cell viability, postprinting functionality in terms of nutrient transport, and waste removal. In this research, we developed a novel and effective method to print tubular channels encapsulating cells in alginate to mimic the natural vascular system. An experimental investigation into the influence on cartilage progenitor cell (CPCs) survival, and the function of printing parameters during and after the printing process were presented. CPC functionality was evaluated by checking tissue-specific genetic marker expression and extracellular matrix production. Our results demonstrated the capability of direct fabrication of cell-laden tubular channels by our newly designed coaxial nozzle assembly and revealed that the bioprinting process could induce quantifiable cell death due to changes in dispensing pressure, coaxial nozzle geometry, and biomaterial concentration. Cells were able to recover during incubation, as well as to undergo differentiation with high-level cartilage-associated gene expression. These findings may not only help optimize our system but also can be applied to biomanufacturing of 3D functional cellular tissue engineering constructs for various organ systems.

  15. Rolled-up Functionalized Nanomembranes as Three-Dimensional Cavities for Single Cell Studies

    PubMed Central

    2014-01-01

    We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function. PMID:24598026

  16. Cross talk between primary human renal tubular cells and endothelial cells in cocultures.

    PubMed

    Tasnim, Farah; Zink, Daniele

    2012-04-15

    Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.

  17. MitoQ blunts mitochondrial and renal damage during cold preservation of porcine kidneys.

    PubMed

    Parajuli, Nirmala; Campbell, Lia H; Marine, Akira; Brockbank, Kelvin G M; Macmillan-Crow, Lee Ann

    2012-01-01

    Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation.

  18. MitoQ Blunts Mitochondrial and Renal Damage during Cold Preservation of Porcine Kidneys

    PubMed Central

    Parajuli, Nirmala; Campbell, Lia H.; Marine, Akira; Brockbank, Kelvin G. M.; MacMillan-Crow, Lee Ann

    2012-01-01

    Cold preservation has greatly facilitated the use of cadaveric kidneys for transplantation but damage occurs during the preservation episode. It is well established that oxidant production increases during cold renal preservation and mitochondria are a key target for injury. Our laboratory has demonstrated that cold storage of renal cells and rat kidneys leads to increased mitochondrial superoxide levels and mitochondrial electron transport chain damage, and that addition of Mitoquinone (MitoQ) to the preservation solutions blunted this injury. In order to better translate animal studies, the inclusion of large animal models is necessary to develop safe preclinical protocols. Therefore, we tested the hypothesis that addition of MitoQ to cold storage solution preserves mitochondrial function by decreasing oxidative stress, leading to less renal tubular damage during cold preservation of porcine kidneys employing a standard criteria donor model. Results showed that cold storage significantly induced oxidative stress (nitrotyrosine), renal tubular damage, and cell death. Using High Resolution Respirometry and fresh porcine kidney biopsies to assess mitochondrial function we showed that MitoQ significantly improved complex II/III respiration of the electron transport chain following 24 hours of cold storage. In addition, MitoQ blunted oxidative stress, renal tubular damage, and cell death after 48 hours. These results suggested that MitoQ decreased oxidative stress, tubular damage and cell death by improving mitochondrial function during cold storage. Therefore this compound should be considered as an integral part of organ preservation solution prior to transplantation. PMID:23139796

  19. Impact of thoracic surgery on esophageal motor function—Evaluation by high resolution manometry

    PubMed Central

    Kandulski, Arne; Malfertheiner, Peter; Riedel, Sandra; Zardo, Patrick; Hachenberg, Thomas; Schreiber, Jens

    2017-01-01

    Background Alteration of esophageal function is a potential risk factor for postoperative complications in thoracic surgery. This prospective study investigates esophageal motility and function during and after thoracic procedures via high resolution manometry (HRM) and impedance technology with spatiotemporal representation of pressure data. Methods Twelve consecutive patients eligible for elective thoracic surgery underwent preoperative and postoperative (48 hours and 7 days) esophageal HRM. Swallowing acts were carried out with 5 mL of water, 10 mL of water and 1 cm3 bread in physiological posture to evaluate distal contraction integral (DCI). Length and location of contractile integrity breaks were measured by investigators blinded to the form of surgical intervention. The impact of surgical procedures on esophageal motility was quantified according to current Chicago Classification (CC) criteria. Pre-, intra- and postoperative 24-hour multi-channel impedance pH–metry (MII-pH) was performed to further analyze gastroesophageal reflux patterns. Results All patients were investigated 48 hours prior to and 7 days after thoracic procedures, with a total of n=675 swallowing acts being included in our study. Increased motility patterns of the tubular esophagus occurred temporally 48 hours postoperatively. DCI 48 hours after surgery increased significantly (5 mL, P=0.049; solid, P=0.014) and returned to baseline values after seven days (5 mL, P=0.039; solid, P=0.039). Break length was significantly reduced 48 hours postoperatively, especially in the proximal esophageal segment (transition zone). Follow-up measurements after another week were comparable to preoperative baseline findings. The perioperative MII-pH measurement showed numerous artifacts caused by intubation and ventilation during surgery also with increasing short and frequent acidic reflux episodes. Conclusions Thoracic procedures cause a transient modulation of esophageal peristalsis with postoperative increased contractility of the tubular esophagus, presumably without affecting intraesophageal reflex arcs. Although limited by the number of patients, we can conclude on our data that postoperative esophageal hypomotility is unlikely to promote secondary pulmonary complications. PMID:28740669

  20. Detection and Clinical Patterns of Nephron Hypertrophy and Nephrosclerosis Among Apparently Healthy Adults.

    PubMed

    Denic, Aleksandar; Alexander, Mariam P; Kaushik, Vidhu; Lerman, Lilach O; Lieske, John C; Stegall, Mark D; Larson, Joseph J; Kremers, Walter K; Vrtiska, Terri J; Chakkera, Harini A; Poggio, Emilio D; Rule, Andrew D

    2016-07-01

    Even among ostensibly healthy adults, there is often mild pathology in the kidney. The detection of kidney microstructural variation and pathology by imaging and the clinical pattern associated with these structural findings is unclear. Cross-sectional (clinical-pathologic correlation). Living kidney donors at Mayo Clinic (Minnesota and Arizona sites) and Cleveland Clinic 2000 to 2011. Predonation kidney function, risk factors, and contrast computed tomographic scan of the kidneys. These scans were segmented for cortical volume and medullary volume, reviewed for parenchymal cysts, and scored for kidney surface roughness. Nephrosclerosis (glomerulosclerosis, interstitial fibrosis/tubular atrophy, and arteriosclerosis) and nephron size (glomerular volume, mean profile tubular area, and cortical volume per glomerulus) determined from an implantation biopsy of the kidney cortex at donation. Among 1,520 living kidney donors, nephrosclerosis associated with increased kidney surface roughness, cysts, and smaller cortical to medullary volume ratio. Larger nephron size (nephron hypertrophy) associated with larger cortical volume. Nephron hypertrophy and larger cortical volume associated with higher systolic blood pressure, glomerular filtration rate, and urine albumin excretion; larger body mass index; higher serum uric acid level; and family history of end-stage renal disease. Both nephron hypertrophy and nephrosclerosis associated with older age and mild hypertension. The net effect of both nephron hypertrophy and nephrosclerosis associating with cortical volume was that nephron hypertrophy diminished volume loss with age-related nephrosclerosis and fully negated volume loss with mild hypertension-related nephrosclerosis. Kidney donors are selected on health, restricting the spectrum of pathologic findings. Kidney biopsies in living donors are a small tissue sample leading to imprecise estimates of structural findings. Among apparently healthy adults, the microstructural findings of nephron hypertrophy and nephrosclerosis differ in their associations with kidney function, macrostructure, and risk factors. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharpfenecker, Marion, E-mail: m.scharpfenecker@nki.nl; Floot, Ben; Russell, Nicola S.

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, andmore » 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.« less

  2. Improved mitochondrial function underlies the protective effect of pirfenidone against tubulointerstitial fibrosis in 5/6 nephrectomized rats.

    PubMed

    Chen, Jun-Feng; Liu, Hong; Ni, Hai-Feng; Lv, Lin-Li; Zhang, Ming-Hui; Zhang, Ai-Hua; Tang, Ri-Ning; Chen, Ping-Sheng; Liu, Bi-Cheng

    2013-01-01

    Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells.

  3. Improved Mitochondrial Function Underlies the Protective Effect of Pirfenidone against Tubulointerstitial Fibrosis in 5/6 Nephrectomized Rats

    PubMed Central

    Chen, Jun-Feng; Liu, Hong; Ni, Hai-Feng; Lv, Lin-Li; Zhang, Ming-Hui; Zhang, Ai-Hua; Tang, Ri-Ning; Chen, Ping-Sheng; Liu, Bi-Cheng

    2013-01-01

    Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells. PMID:24349535

  4. Automatic detection of lung vessel bifurcation in thoracic CT images

    NASA Astrophysics Data System (ADS)

    Maduskar, Pragnya; Vikal, Siddharth; Devarakota, Pandu

    2011-03-01

    Computer-aided diagnosis (CAD) systems for detection of lung nodules have been an active topic of research for last few years. It is desirable that a CAD system should generate very low false positives (FPs) while maintaining high sensitivity. This work aims to reduce the number of false positives occurring at vessel bifurcation point. FPs occur quite frequently on vessel branching point due to its shape which can appear locally spherical due to the intrinsic geometry of intersecting tubular vessel structures combined with partial volume effects and soft tissue attenuation appearance surrounded by parenchyma. We propose a model-based technique for detection of vessel branching points using skeletonization, followed by branch-point analysis. First we perform vessel structure enhancement using a multi-scale Hessian filter to accurately segment tubular structures of various sizes followed by thresholding to get binary vessel structure segmentation [6]. A modified Reebgraph [7] is applied next to extract the critical points of structure and these are joined by a nearest neighbor criterion to obtain complete skeletal model of vessel structure. Finally, the skeletal model is traversed to identify branch points, and extract metrics including individual branch length, number of branches and angle between various branches. Results on 80 sub-volumes consisting of 60 actual vessel-branching and 20 solitary solid nodules show that the algorithm identified correctly vessel branching points for 57 sub-volumes (95% sensitivity) and misclassified 2 nodules as vessel branch. Thus, this technique has potential in explicit identification of vessel branching points for general vessel analysis, and could be useful in false positive reduction in a lung CAD system.

  5. Response of human renal tubular cells to cyclosporine and sirolimus: A toxicogenomic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallet, Nicolas; Rabant, Marion; Xu-Dubois, Yi-Chun

    The molecular mechanisms involved in the potentially nephrotoxic response of tubular cells to immunosuppressive drugs remain poorly understood. Transcriptional profiles of human proximal tubular cells exposed to cyclosporine A (CsA), sirolimus (SRL) or their combination, were established using oligonucleotide microarrays. Hierarchical clustering of genes implicated in fibrotic processes showed a clear distinction between expression profiles with CsA and CsA + SRL treatments on the one hand and SRL treatment on the other. Functional analysis found that CsA and CsA + SRL treatments preferentially alter biological processes located at the cell membrane, such as ion transport or signal transduction, whereas SRLmore » modifies biological processes within the nucleus and related to transcriptional activity. Genome wide expression analysis suggested that CsA may induce an endoplasmic reticulum (ER) stress in tubular cells in vitro. Moreover we found that CsA exposure in vivo is associated with the upregulation of the ER stress marker BIP in kidney transplant biopsies. In conclusion, this toxicogenomic study highlights the molecular interaction networks that may contribute to the tubular response to CsA and SRL. These results may also offer a new working hypothesis for future research in the field of CsA nephrotoxicity. Further studies are needed to evaluate if ER stress detection in tubular cells in human biopsies can predict CsA nephrotoxicity.« less

  6. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins.

    PubMed

    Birn, Henrik

    2006-07-01

    Over the past 10 years, animal studies have uncovered the molecular mechanisms for the renal tubular recovery of filtered vitamin and vitamin carrier proteins. Relatively few endocytic receptors are responsible for the proximal tubule uptake of a number of different vitamins, preventing urinary losses. In addition to vitamin conservation, tubular uptake by endocytosis is important to vitamin metabolism and homeostasis. The present review focuses on the receptors involved in renal tubular recovery of folate, vitamin B12, and their carrier proteins. The multiligand receptor megalin is important for the uptake and tubular accumulation of vitamin B12. During vitamin load, the kidney accumulates large amounts of free vitamin B12, suggesting a possible storage function. In addition, vitamin B12 is metabolized in the kidney, suggesting a role in vitamin homeostasis. The folate receptor is important for the conservation of folate, mediating endocytosis of the vitamin. Interaction between the structurally closely related, soluble folate-binding protein and megalin suggests that megalin plays an additional role in the uptake of folate bound to filtered folate-binding protein. A third endocytic receptor, the intrinsic factor-B12 receptor cubilin-amnionless complex, is essential to the renal tubular uptake of albumin, a carrier of folate. In conclusion, uptake is mediated by interaction with specific endocytic receptors also involved in the renal uptake of other vitamins and vitamin carriers. Little is known about the mechanisms regulating intracellular transport and release of vitamins, and whereas tubular uptake is a constitutive process, this may be regulated, e.g., by vitamin status.

  7. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells.

    PubMed

    García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J

    2014-01-01

    Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.

  8. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells

    PubMed Central

    García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J.

    2014-01-01

    Background/Aims Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD. PMID:24575118

  9. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.

    PubMed

    Versteegden, Luuk R; van Kampen, Kenny A; Janke, Heinz P; Tiemessen, Dorien M; Hoogenkamp, Henk R; Hafmans, Theo G; Roozen, Edwin A; Lomme, Roger M; van Goor, Harry; Oosterwijk, Egbert; Feitz, Wout F; van Kuppevelt, Toin H; Daamen, Willeke F

    2017-04-01

    Tubular collagen scaffolds have been used for the repair of damaged hollow organs in regenerative medicine, but they generally lack the ability to reversibly expand in radial direction, a physiological characteristic seen in many native tubular organs. In this study, tubular collagen scaffolds were prepared that display a shape recovery effect and therefore exhibit radial elasticity. Scaffolds were constructed by compression of fibrillar collagen around a star-shaped mandrel, mimicking folds in a lumen, a typical characteristic of empty tubular hollow organs, such as ureter or urethra. Shape recovery effect was introduced by in situ fixation using a star-shaped mandrel, 3D-printed clamps and cytocompatible carbodiimide crosslinking. Prepared scaffolds expanded upon increase of luminal pressure and closed to the star-shaped conformation after removal of pressure. In this study, we applied this method to construct a scaffold mimicking the dynamics of human urethra. Radial expansion and closure of the scaffold could be iteratively performed for at least 1000 cycles, burst pressure being 132±22mmHg. Scaffolds were seeded with human epithelial cells and cultured in a bioreactor under dynamic conditions mimicking urination (pulse flow of 21s every 2h). Cells adhered and formed a closed luminal layer that resisted flow conditions. In conclusion, a new type of a tubular collagen scaffold has been constructed with radial elastic-like characteristics based on the shape of the scaffold, and enabling the scaffold to reversibly expand upon increase in luminal pressure. These scaffolds may be useful for regenerative medicine of tubular organs. In this paper, a new type I collagen-based tubular scaffold is presented that possesses intrinsic radial elasticity. This characteristic is key to the functioning of a number of tubular organs including blood vessels and organs of the gastrointestinal and urogenital tract. The scaffold was given a star-shaped lumen by physical compression and chemical crosslinking, mimicking the folding pattern observed in many tubular organs. In rest, the lumen is closed but it opens upon increase of luminal pressure, e.g. when fluids pass. Human epithelial cells seeded on the luminal side adhered well and were compatible with voiding dynamics in a bioreactor. Collagen scaffolds with radial elasticity may be useful in the regeneration of dynamic tubular organs. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Nonlinear Analysis of Bonded Composite Tubular Lap Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Smeltzer, S. S., III; Ambur, D. R.

    2005-01-01

    The present study describes a semi-analytical solution method for predicting the geometrically nonlinear response of a bonded composite tubular single-lap joint subjected to general loading conditions. The transverse shear and normal stresses in the adhesive as well as membrane stress resultants and bending moments in the adherends are determined using this method. The method utilizes the principle of virtual work in conjunction with nonlinear thin-shell theory to model the adherends and a cylindrical shear lag model to represent the kinematics of the thin adhesive layer between the adherends. The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. In the solution procedure, the displacement components for the tubular joint are approximated in terms of non-periodic and periodic B-Spline functions in the longitudinal and circumferential directions, respectively. The approach presented herein represents a rapid-solution alternative to the finite element method. The solution method was validated by comparison against a previously considered tubular single-lap joint. The steep variation of both peeling and shearing stresses near the adhesive edges was successfully captured. The applicability of the present method was also demonstrated by considering tubular bonded lap-joints subjected to pure bending and torsion.

  11. The use of fibrous, supramolecular membranes and human tubular cells for renal epithelial tissue engineering: towards a suitable membrane for a bioartificial kidney.

    PubMed

    Dankers, Patricia Y W; Boomker, Jasper M; Huizinga-van der Vlag, Ali; Smedts, Frank M M; Harmsen, Martin C; van Luyn, Marja J A

    2010-11-10

    A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We hypothesized that this can be improved by electro-spun, supramolecular polymer membranes which show clear benefits in ease of processability. We found that after 7 d, in comparison to conventional microporous membranes, renal tubular cells cultured on top of our fibrous supramolecular membranes formed polarized monolayers, which is prerequisite for a well-functioning bioartificial kidney. In future, these supramolecular membranes allow for incorporation of peptides that may increase cell function even further.

  12. A micropuncture study of the effect of parathyroid hormone on renal bicarbonate reabsorption.

    PubMed Central

    Bank, N; Aynediian, H S

    1976-01-01

    Renal micropuncture and clearance experiments were carried out in rats to study the effect of parathyroid hormone (PTH) on renal tubular HCO-/3 reabsorption. The rats were studied during an initial period of parathyroid deficiency (acute thyroidparathyroidectomy, TPTX) and during infusion of large amounts of bovine PTH. Under normal acid-base conditions, PTH administration to TPTX rats caused a significant rise in proximal tubular fluid HCO-/3 concentration (TFHCO-/3), a decrease in fluid reabsorption, and a fall in proximal HCO-/3 reabsorption from 94.0 to 88.2% (P less than 0.01). In control experiments with mannitol infusion, a comparable reduction in proximal fluid reabsorption occurred without any significant effect on intraluminal HCO-/3 concentration. During acute intravenous HCO-/3 loading, PTH inhibited proximal HCO-/3 reabsorption. However, no change in whole kidney HCO-/3 reabsorption was observed in these experiments or in the animals studied under normal acid-base conditions. The findings are consistent with the view that PTH inhibits proximal tubular HCO-/3 reabsorption with normal or high filtered loads of HCO-/3, but distal segments of the nephron are able to reabsorb the excess delivered from the proximal tubule. Measurements of urinary ammonium and titratable acid indicate that net acid excretion (NH+/4 + TA -- HCO-/3) increases significantly after PTH administration. These results do not provide support for the view that PTH excess causes metabolic acidosis by reducing renal acid excretion. PMID:956369

  13. Tubulointerstitial nephritis antigen: an extracellular matrix protein that selectively regulates tubulogenesis vs. glomerulogenesis during mammalian renal development.

    PubMed

    Kanwar, Y S; Kumar, A; Yang, Q; Tian, Y; Wada, J; Kashihara, N; Wallner, E I

    1999-09-28

    Tubulointerstitial nephritis antigen (TIN-ag) is an extracellular matrix protein and is expressed in the renal tubular basement membranes. Its role in metanephric development was investigated. TIN-ag cDNA, isolated from the newborn mouse library, had an ORF of 1,425 nucleotides, a putative signal sequence, and an ATP/GTP-binding site. The translated sequence had approximately 80% identity with rabbit TIN-ag. Among various tissues, TIN-ag mRNA was primarily expressed in the newborn kidney. In the embryonic metanephros, TIN-ag expression was confined to the distal convolution or pole of the S-shaped body, the segment of the nascent nephron that is the progenitor of renal tubules. Treatment with TIN-ag antisense oligodeoxynucleotide induced dysmorphogenesis of the embryonic metanephroi, malformation of the S-shaped body, and a decrease in the tubular population, whereas the glomeruli were unaffected. Treatment also led to a decrease of TIN-Ag mRNA, de novo synthesis of TIN-ag protein, and its antibody reactivity. The mRNA expression of glomerular epithelial protein 1 (a marker for renal podocytes), anti-heparan-sulfate-proteoglycan antibody reactivity, and wheat germ agglutinin lectin staining of the metanephros were unaffected. The anti-TIN-ag antibody treatment also caused deformation of the S-shaped body and a reduction in the tubular population, whereas the glomeruli were unchanged. The data suggest that the TIN-ag, unlike other basement membrane proteins, selectively regulates tubulogenesis, whereas glomerulogenesis is largely unaffected.

  14. Facile fabrication of mesoporous silica micro-jets with multi-functionalities† †Electronic supplementary information (ESI) available: Detailed BET experiments, videos and supplementary data. See DOI: 10.1039/c7nr04527a

    PubMed Central

    Vilela, D.; Hortelao, A. C.; Balderas-Xicohténcatl, R.; Hirscher, M.; Hahn, K.

    2017-01-01

    Self-propelled micro/nano-devices have been proved as powerful tools in various applications given their capability of both autonomous motion and on-demand task fulfilment. Tubular micro-jets stand out as an important member in the family of self-propelled micro/nano-devices and are widely explored with respect to their fabrication and functionalization. A few methods are currently available for the fabrication of tubular micro-jets, nevertheless there is still a demand to explore the fabrication of tubular micro-jets made of versatile materials and with the capability of multi-functionalization. Here, we present a facile strategy for the fabrication of mesoporous silica micro-jets (MSMJs) for tubular micromotors which can carry out multiple tasks depending on their functionalities. The synthesis of MSMJs does not require the use of any equipment, making it facile and cost-effective for future practical use. The MSMJs can be modified inside, outside or both with different kinds of metal nanoparticles, which provide these micromotors with a possibility of additional properties, such as the anti-bacterial effect by silver nanoparticles, or biochemical sensing based on surface enhanced Raman scattering (SERS) by gold nanoparticles. Because of the high porosity, high surface area and also the easy surface chemistry process, the MSMJs can be employed for the efficient removal of heavy metals in contaminated water, as well as for the controlled and active drug delivery, as two proof-of-concept examples of environmental and biomedical applications, respectively. Therefore, taking into account the new, simple and cheap method of fabrication, highly porous structure, and multiple functionalities, the mesoporous silica based micro-jets can serve as efficient tools for desired applications. PMID:28891580

  15. Tissue-Engineered Heart Valve with a Tubular Leaflet Design for Minimally Invasive Transcatheter Implantation

    PubMed Central

    Moreira, Ricardo; Velz, Thaddaeus; Alves, Nuno; Gesche, Valentine N.; Malischewski, Axel; Schmitz-Rode, Thomas; Frese, Julia

    2015-01-01

    Transcatheter aortic valve implantation of (nonviable) bioprosthetic valves has been proven a valid alternative to conventional surgical implantation in patients at high or prohibitive mortality risk. In this study we present the in vitro proof-of-principle of a newly developed tissue-engineered heart valve for minimally invasive implantation, with the ultimate aim of adding the unique advantages of a living tissue with regeneration capabilities to the continuously developing transcatheter technologies. The tube-in-stent is a fibrin-based tissue-engineered valve with a tubular leaflet design. It consists of a tubular construct sewn into a self-expandable nitinol stent at three commissural attachment points and along a circumferential line so that it forms three coaptating leaflets by collapsing under diastolic back pressure. The tubular constructs were molded with fibrin and human umbilical vein cells. After 3 weeks of conditioning in a bioreactor, the valves were fully functional with unobstructed opening (systolic phase) and complete closure (diastolic phase). Tissue analysis showed a homogeneous cell distribution throughout the valve's thickness and deposition of collagen types I and III oriented along the longitudinal direction. Immunohistochemical staining against CD31 and scanning electron microscopy revealed a confluent endothelial cell layer on the surface of the valves. After harvesting, the valves underwent crimping for 20 min to simulate the catheter-based delivery. This procedure did not affect the valvular functionality in terms of orifice area during systole and complete closure during diastole. No influence on the extracellular matrix organization, as assessed by immunohistochemistry, nor on the mechanical properties was observed. These results show the potential of combining tissue engineering and minimally invasive implantation technology to obtain a living heart valve with a simple and robust tubular design for transcatheter delivery. The effect of the in vivo remodeling on the functionality of the tube-in-stent valve remains to be tested. PMID:25380414

  16. Focal achalasia – case report and review of the literature

    PubMed Central

    TUTUIAN, RADU

    2018-01-01

    Esophageal achalasia is a primary smooth muscle motility disorder specified by aperistalsis of the tubular esophagus in combination with a poorly relaxing and occasionally hypertensive lower esophageal sphincter (LES). These changes occur secondary to the destruction of the neural network coordinating esophageal peristalsis and LES relaxation (plexus myentericus). There are limited data on segmental involvement of the esophagus in adults. We report on the case of a 54-year-old man who presented initially with complete aperistalsis limited to the distal esophagus. After a primary good response to BoTox-infiltration of the distal esophagus the patient relapsed two years later. The manometric recordings documented now a progression of the disease with a poorly relaxing hypertensive lower esophageal sphincter and complete aperistalsis of the tubular esophagus (type III achalasia according to the Chicago 3.0 classification system). This paper also reviews diagnostic findings (including high resolution manometry, CT scan, barium esophagram, upper endoscopy and upper endoscopic ultrasound data) in patients with achalasia and summarizes the therapeutic options (including pneumatic balloon dilatation, botulinum toxin injection, surgical or endoscopic myotomy). PMID:29440962

  17. Population analysis of the cingulum bundle using the tubular surface model for schizophrenia detection

    NASA Astrophysics Data System (ADS)

    Mohan, Vandana; Sundaramoorthi, Ganesh; Kubicki, Marek; Terry, Douglas; Tannenbaum, Allen

    2010-03-01

    We propose a novel framework for population analysis of DW-MRI data using the Tubular Surface Model. We focus on the Cingulum Bundle (CB) - a major tract for the Limbic System and the main connection of the Cingulate Gyrus, which has been associated with several aspects of Schizophrenia symptomatology. The Tubular Surface Model represents a tubular surface as a center-line with an associated radius function. It provides a natural way to sample statistics along the length of the fiber bundle and reduces the registration of fiber bundle surfaces to that of 4D curves. We apply our framework to a population of 20 subjects (10 normal, 10 schizophrenic) and obtain excellent results with neural network based classification (90% sensitivity, 95% specificity) as well as unsupervised clustering (k-means). Further, we apply statistical analysis to the feature data and characterize the discrimination ability of local regions of the CB, as a step towards localizing CB regions most relevant to Schizophrenia.

  18. Whites excrete a water load more rapidly than blacks.

    PubMed

    Weder, Alan B; Gleiberman, Lillian; Sachdeva, Amit

    2009-04-01

    A recent report demonstrated a racial difference in response to furosemide compatible with increased ion reabsorption in the thick ascending limb of the loop of Henle in blacks. Urinary dilution is another function of the loop-diuretic-sensitive Na,K,2Cl cotransporter in the thick ascending limb, and racial differences in urinary diluting capacity have not been reported previously. We assessed diluting segment (cortical thick ascending limb and distal convoluted tubule) function in black and white normotensives in 2 studies using a water-loading approach. In both studies, we found that whites excreted a water load more rapidly than blacks. In the first study, the final free water clearance rates (mean+/-SD) were 7.3+/-4.7 mL/min in whites (n=17, 7 females and 10 males) and 3.8+/-3.6 mL/min in blacks (n=14, 9 females and 5 males; P<0.03). In the second study, final free water clearance rates were 8.3+/-2.6 mL/min in whites (n=17, 8 females and 9 males) and 6.4+/-1.8 mL/min in blacks (n=11, 8 females and 3 males; P<0.01). We found no evidence of a racial difference in renal proximal tubular fluid reabsorption as assessed by renal endogenous lithium clearance or in plasma vasopressin level that could explain the difference in free water excretion. We conclude that our observations are most consistent with a lower capacity of ion reabsorption in the renal diluting segment in blacks. Slower excretion of an acute water load may have been an advantage during natural selection of humans living in arid, hot climates.

  19. Tamm-Horsfall protein translocates to the basolateral domain of thick ascending limbs, interstitium, and circulation during recovery from acute kidney injury

    PubMed Central

    McCracken, Ruth; Liu, Yan; Heitmeier, Monique R.; Bourgeois, Soline; Ryerse, Jan; Wu, Xue-Ru

    2013-01-01

    Tamm-Horsfall protein (THP) is a glycoprotein normally targeted to the apical membrane domain of the kidney's thick ascending limbs (TAL). We previously showed that THP of TAL confers protection to proximal tubules against acute kidney injury (AKI) via a possible cross talk between the two functionally distinct tubular segments. However, the extent, timing, specificity, and functional effects of basolateral translocation of THP during AKI remain unclear. Using an ischemia-reperfusion (IRI) model of murine AKI, we show here that, while THP expression in TAL is downregulated at the peak of injury, it is significantly upregulated 48 h after IRI. Confocal immunofluorescence and immunoelectron microscopy reveal a major redirection of THP during recovery from the apical membrane domain of TAL towards the basolateral domain, interstitium, and basal compartment of S3 segments. This corresponds with increased THP in the serum but not in the urine. The overall epithelial polarity of TAL cells does not change, as evidenced by correct apical targeting of Na+-K+-2Cl cotransporter (NKCC2) and basolateral targeting of Na+-K+-ATPase. Compared with the wild-type, THP−/− mice show a significantly delayed renal recovery after IRI, due possibly to reduced suppression by THP of proinflammatory cytokines and chemokines such as monocyte chemoattractant protein-1 during recovery. Taken together, our data suggest that THP redistribution in the TAL after AKI is a protein-specific event and its increased interstitial presence negatively regulates the evolving inflammatory signaling in neighboring proximal tubules, thereby enhancing kidney recovery. The increase of serum THP may be used as a prognostic biomarker for recovery from AKI. PMID:23389456

  20. [A comparative study of the renal damage produced after the extracorporeal shock wave lithotripsy according to the lithiasis location].

    PubMed

    Cancho Gil, Ma J; Díz Rodríguez, R; Vírseda Chamorro, M; Alpuente Román, C; Cabrera Cabrera, J A; Paños Lozano, P

    2005-04-01

    The Extracorporeal shock waves lithotripsy (ESWL) is fundamental in the treatment of lithiasis. However, there are evidences that it can produce renal damage. The objective of our study is to determine the degree of affectation of the glomerular and tubular function after ESWL, and the influence of the lithiasis location on the type of renal damage. A prospective longitudinal study was carried out in 14 patients with normal renal function subjected to ESWL. We determined the basal level, and the levels at the 24 hours, at the 4th and the 10th day post ESWL of: microalbuminuria (MA) (that values the glomerular function), and N-acetyl glucosamide (NAG) and alanine aminopeptidase (AAP), (that value the tubular function). The basal levels of of MA, NAG and AAP didn't show significant differences in connection with the localization of the stones. A significant increase was observed of the three parameters only 24 hours post ESWL. No significant differences were observed between the variation of the microalbuminuria levels, AAP and NAG and the treatment in relation to the localization of the stones. It exists a glomerular and tubular damage after ESWL. This damage is not related with the pelvic or calicial location of the stones. In patient with previous normal renal function, the renal damage recovers at the 4th day post ESWL.

  1. Functional reconstitution of rhodopsin into tubular lipid bilayers supported by nanoporous media.

    PubMed

    Soubias, Olivier; Polozov, Ivan V; Teague, Walter E; Yeliseev, Alexei A; Gawrisch, Klaus

    2006-12-26

    We report on a novel reconstitution method for G-protein-coupled receptors (GPCRs) that yields detergent-free, single, tubular membranes in porous anodic aluminum oxide (AAO) filters at concentrations sufficient for structural studies by solid-state NMR. The tubular membranes line the inner surface of pores that traverse the filters, permitting easy removal of detergents during sample preparation as well as delivery of ligands for functional studies. Reconstitution of bovine rhodopsin into AAO filters did not interfere with rhodopsin function. Photoactivation of rhodopsin in AAO pores, monitored by UV-vis spectrophotometry, was indistinguishable from rhodopsin in unsupported unilamellar liposomes. The rhodopsin in AAO pores is G-protein binding competent as shown by a [35S]GTPgammaS binding assay. The lipid-rhodopsin interaction was investigated by 2H NMR on sn-1- or sn-2-chain perdeuterated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phospholine as a matrix lipid. Rhodopsin incorporation increased mosaic spread of bilayer orientations and contributed to spectral density of motions with correlation times in the range of nano- to microseconds, detected as a significant reduction in spin-spin relaxation times. The change in lipid chain order parameters due to interaction with rhodopsin was insignificant.

  2. Spacesuit mobility knee joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  3. Zea mays L. extracts modify glomerular function and potassium urinary excretion in conscious rats.

    PubMed

    Velazquez, D V O; Xavier, H S; Batista, J E M; de Castro-Chaves, C

    2005-05-01

    Diuretic and uricosuric properties have traditionally been attributed to corn silk, stigma/style of Zea mays L. Although the diuretic effect was confirmed, studies of the plant's effects on renal function or solute excretion were lacking. Thus, we studied the effects of corn silk aqueous extract on the urinary excretion of water, Na+, K+, and uric acid. Glomerular and proximal tubular function and Na+ tubular handling were also studied. Conscious, unrestrained adult male rats were housed in individual metabolic cages (IMC) with continuous urine collection for 5 and 3 h, following two protocols. The effects of 25, 50, 200, 350, and 500 mg/kg body wt. corn silk extract on urine volume plus Na+ and K+ excretions were studied in water-loaded conscious rats (2.5 ml/100 g body wt.) in the IMC for 5 h (Protocol 1). Kaliuresis was observed with doses of 350 (100.42 +/- 22.32-120.28 +/- 19.70 microEq/5 h/100 g body wt.; n = 13) and 500 mg/kg body wt. (94.97+/- 29.30-134.32 +/- 39.98 microEq/5h/100 g body wt.; n = 12; p<0.01), and the latter dose resulted in diuresis as well (1.98 +/- 0.44-2.41 +/- 0.41 ml/5 h/100 g body wt.; n = 12; p<0.05). The effects of a 500 mg/kg body wt. dose of corn silk extract on urine volume, Na+, K+ and uric acid excretions, and glomerular and proximal tubular function, were measured respectively by creatinine (Cler) and Li+ (ClLi) clearances and Na+ tubular handling, in water-loaded rats (5 ml/100 g body wt.) in the IMC for 3 h (Protocol 2). Clcr (294.6 +/- 73.2, n = 12, to 241.7 +/- 48.0 microl/ min/100 g body wt.; n = 13; p<0.05) and the Na+ filtered load (41.9 +/- 10.3, n = 12, to 34.3 +/- .8, n = 13, p<0.05) decreased and ClLi and Na+ excretion were unchanged, while K+ excretion (0.1044 +/- 0.0458, n=12, to 0.2289 +/- 0.0583 microEq/min/100 body wt.; n = 13; p<0.001) increased. For Na+ tubular handling, the fractional proximal tubular reabsorption (91.5 +/- 3.5, n = 12, to 87.5 +/- 3.4%; n = 13; p<0.01) decreased, and both fractional distal reabsorptions--I and II--increased (96.5 +/- 1.5, n = 12, to 97.8 +/- 0.9%; n = 13; p<0.01; and 8.2 +/- 3.5, n = 12, to 12.2 +/- 3.4%, n = 13, p<0.01, respectively). To summarize, in water-loaded conscious rats (2.5 ml/100 body wt.), corn silk aqueous extract is diuretic at a dose of 500 mg/kg body wt. and kaliuretic at doses of 350 and 500 mg/kg body wt. In water-loaded conscious rats (5.0 ml/100 g body wt.), corn silk aqueous extract is kaliuretic at a dose of 500 mg/kg body wt., but glomerular filtration and filtered load decrease without affecting proximal tubular function, Na+, or uric acid excretion.

  4. Expression of a functional asialoglycoprotein receptor in human renal proximal tubular epithelial cells.

    PubMed

    Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye

    2002-07-01

    The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel

  5. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae

    PubMed Central

    Itoh, Manabu; Nakayama, Koichi; Noguchi, Ryo; Kamohara, Keiji; Furukawa, Kojirou; Uchihashi, Kazuyoshi; Toda, Shuji; Oyama, Jun-ichi; Node, Koichi; Morita, Shigeki

    2015-01-01

    Background Small caliber vascular prostheses are not clinically available because synthetic vascular prostheses lack endothelial cells which modulate platelet activation, leukocyte adhesion, thrombosis, and the regulation of vasomotor tone by the production of vasoactive substances. We developed a novel method to create scaffold-free tubular tissue from multicellular spheroids (MCS) using a “Bio-3D printer”-based system. This system enables the creation of pre-designed three-dimensional structures using a computer controlled robotics system. With this system, we created a tubular structure and studied its biological features. Methods and Results Using a “Bio-3D printer,” we made scaffold-free tubular tissues (inner diameter of 1.5 mm) from a total of 500 MCSs (2.5× 104 cells per one MCS) composed of human umbilical vein endothelial cells (40%), human aortic smooth muscle cells (10%), and normal human dermal fibroblasts (50%). The tubular tissues were cultured in a perfusion system and implanted into the abdominal aortas of F344 nude rats. We assessed the flow by ultrasonography and performed histological examinations on the second (n = 5) and fifth (n = 5) day after implantation. All grafts were patent and remodeling of the tubular tissues (enlargement of the lumen area and thinning of the wall) was observed. A layer of endothelial cells was confirmed five days after implantation. Conclusions The scaffold-free tubular tissues made of MCS using a Bio-3D printer underwent remodeling and endothelialization. Further studies are warranted to elucidate the underlying mechanism of endothelialization and its function, as well as the long-term results. PMID:26325298

  6. Protective effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on adriamycin-induced toxicity of human renal tubular epithelial cell (HK-2).

    PubMed

    Tian, Ting; Li, Jin; Wang, Meng-Ying; Xie, Xian-Fei; Li, Qi-Xiong

    2012-05-15

    20-Hydroxyeicosatetraenoic acid is a cytochrome P4504A11 metabolite of arachidonic acid that plays an important role in the regulation of human renal functions. In the present study, we investigated the role of 20-hydroxyeicosatetraenoic acid on adriamycin induced toxicity in human renal tubular epithelial cells. Results showed that cell viability was decreased significantly and lactate dehydrogenase activity was increased significantly in a concentration-dependent manner when human renal tubular epithelial cells were incubated with adriamycin (10⁻⁷-10⁻³ mol/l) for 24h. In contrast, 20-hydroxyeicosatetraenoic acid (0.1, 1, 10, 50 μmol/l) increased cell survival and decreased lactate dehydrogenase activity concentration dependently in human renal tubular epithelial cells. When 20-hydroxyeicosatetraenoic acid (10, 50 μmol/l) was co-administered with adriamycin (10⁻³ mol/l), it significantly increased cell viability and decreased lactate dehydrogenase activity. On the other hand, N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET-0016) (1 μM), a selective inhibitor of 20-hydroxyeicosatetraenoic acid synthesizing enzyme exaggerated cell viability reduction and lactate dehydrogenase activity augmentation induced by adriamycin. Adriamycin suppressed the expression of cytochrome P4504A11 gene and its protein production in human renal tubular epithelial cells. Furthermore, adriamycin was more effective than N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine at lowering the expression of cytochrome P4504A11 gene and its protein. These results suggest that 20-hydroxyeicosatetraenoic acid may protect adriamycin-induced toxicity of human renal tubular epithelial cells, meanwhile, adriamycin-induced toxicity of human renal tubular epithelial cells possibly involves inhibiting cytochrome P4504A11 expression. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  7. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis

    PubMed Central

    Nesin, Vasyl; Wiley, Graham; Kousi, Maria; Ong, E-Ching; Lehmann, Thomas; Nicholl, David J.; Suri, Mohnish; Shahrizaila, Nortina; Katsanis, Nicholas; Gaffney, Patrick M.; Wierenga, Klaas J.; Tsiokas, Leonidas

    2014-01-01

    Signaling through the store-operated Ca2+ release-activated Ca2+ (CRAC) channel regulates critical cellular functions, including gene expression, cell growth and differentiation, and Ca2+ homeostasis. Loss-of-function mutations in the CRAC channel pore-forming protein ORAI1 or the Ca2+ sensing protein stromal interaction molecule 1 (STIM1) result in severe immune dysfunction and nonprogressive myopathy. Here, we identify gain-of-function mutations in the cytoplasmic domain of STIM1 (p.R304W) associated with thrombocytopenia, bleeding diathesis, miosis, and tubular myopathy in patients with Stormorken syndrome, and in ORAI1 (p.P245L), associated with a Stormorken-like syndrome of congenital miosis and tubular aggregate myopathy but without hematological abnormalities. Heterologous expression of STIM1 p.R304W results in constitutive activation of the CRAC channel in vitro, and spontaneous bleeding accompanied by reduced numbers of thrombocytes in zebrafish embryos, recapitulating key aspects of Stormorken syndrome. p.P245L in ORAI1 does not make a constitutively active CRAC channel, but suppresses the slow Ca2+-dependent inactivation of the CRAC channel, thus also functioning as a gain-of-function mutation. These data expand our understanding of the phenotypic spectrum of dysregulated CRAC channel signaling, advance our knowledge of the molecular function of the CRAC channel, and suggest new therapies aiming at attenuating store-operated Ca2+ entry in the treatment of patients with Stormorken syndrome and related pathologic conditions. PMID:24591628

  8. Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans

    NASA Technical Reports Server (NTRS)

    Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.

    2001-01-01

    We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.

  9. Morphophysiological study of digestive system litter-feeding termite Cornitermes cumulans (Kollar, 1832).

    PubMed

    de Sousa, Géssica; Dos Santos, Vânia Cristina; de Figueiredo Gontijo, Nelder; Constantino, Reginaldo; de Oliveira Paiva E Silva, Gabriela; Bahia, Ana Cristina; Gomes, Fabio Mendonça; de Alcantara Machado, Ednildo

    2017-06-01

    Termites are the major decomposers of lignocellulosic biomass on Earth and are commonly considered as biological reactor models for lignocellulose degradation. Despite their biotechnological potential, few studies have focused on the morphophysiological aspects of the termite digestive system. We therefore analyze the morphology, ultrastructure and gut luminal pH of the digestive system in workers of the litter-feeding termite Cornitermes cumulans (Blattodea: Termitidae). Their digestive system is composed of salivary glands and an alimentary canal with a pH ranging from neutral to alkaline. The salivary glands have an acinar structure and present cells with secretory characteristics. The alimentary canal is differentiated into the foregut, midgut, mixed segment and hindgut, which comprises the ileum (p1), enteric valve (p2), paunch (p3), colon (p4) and rectum (p5) segments. The foregut has a well-developed chewing system. The midgut possesses a tubular peritrophic membrane and two cell types: digestive cells with secretory and absorptive features and several regenerative cells in mitosis, both cell types being organized into regenerative crypts. The mixed segment exhibits cells rich in glycogen granules. Hindgut p1, p4 and p5 segments have flattened cells with a few apical invaginations related to mitochondria and a thick cuticular lining. Conversely, the hindgut p3 segment contains large cuboid cells with extensive apical invaginations associated with numerous mitochondria. These new insights into the morphophysiology of the digestive system of C. cumulans reveal that it mobilizes lignocellulose components as a nutritional source by means of a highly compartmentalized organization with specialized segments and complex microenvironments.

  10. Pathways to nephron loss starting from glomerular diseases-insights from animal models.

    PubMed

    Kriz, Wilhelm; LeHir, Michel

    2005-02-01

    Studies of glomerular diseases in animal models show that progression toward nephron loss starts with extracapillary lesions, whereby podocytes play the central role. If injuries remain bound within the endocapillary compartment, they will undergo recovery or be repaired by scaring. Degenerative, inflammatory and dysregulative mechanisms leading to nephron loss are distinguished. In addition to several other unique features, the dysregulative mechanisms leading to collapsing glomerulopathy are particular in that glomeruli and tubules are affected in parallel. In contrast, in degenerative and inflammatory diseases, tubular injury is secondary to glomerular lesions. In both of the latter groups of diseases, the progression starts in the glomerulus with the loss of the separation between the tuft and Bowman's capsule by forming cell bridges (parietal cells and/or podocytes) between the glomerular and the parietal basement membranes. Cell bridges develop into tuft adhesions to Bowman's capsule, which initiate the formation of crescents, either by misdirected filtration (proteinaceous crescents) or by epithelial cell proliferation (cellular crescents). Crescents may spread over the entire circumference of the glomerulus and, via the glomerulotubular junction, may extend onto the tubule. Two mechanisms concerning the transfer of a glomerular injury onto the tubulointerstitium are discussed: (1) direct encroachment of extracapillary lesions and (2) protein leakage into tubular urine, resulting in injury to the tubule and the interstitium. There is evidence that direct encroachment is the crucial mechanism. Progression of chronic renal disease is underlain by a vicious cycle which passes on the damage from lost and/or damaged nephrons to so far healthy nephrons. Presently, two mechanisms are discussed: (1) the loss of nephrons leads to compensatory mechanisms in the remaining nephrons (glomerular hypertension, hyperfiltration, hypertrophy) which increase their vulnerability to any further challenge (overload hypothesis); and (2) a proteinuric glomerular disease leads, by some way or another, to tubulointerstitial inflammation and fibrosis, accounting for the further deterioration of renal function (fibrosis hypothesis). So far, no convincing evidence has been published that in primary glomerular diseases fibrosis is harmful to healthy nephrons. The potential of glomerular injuries to regenerate or to be repaired by scaring is limited. The only option for extracapillary injuries with tuft adhesion is repair by formation of a segmental adherent scar (i.e., segmental glomerulosclerosis).

  11. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease.

    PubMed

    Tanji, N; Markowitz, G S; Fu, C; Kislinger, T; Taguchi, A; Pischetsrieder, M; Stern, D; Schmidt, A M; D'Agati, V D

    2000-09-01

    Advanced glycation end products (AGE) contribute to diabetic tissue injury by two major mechanisms, i.e., the alteration of extracellular matrix architecture through nonenzymatic glycation, with formation of protein crosslinks, and the modulation of cellular functions through interactions with specific cell surface receptors, the best characterized of which is the receptor for AGE (RAGE). Recent evidence suggests that the AGE-RAGE interaction may also be promoted by inflammatory processes and oxidative cellular injury. To characterize the distributions of AGE and RAGE in diabetic kidneys and to determine their specificity for diabetic nephropathy, an immunohistochemical analysis of renal biopsies from patients with diabetic nephropathy (n = 26), hypertensive nephrosclerosis (n = 7), idiopathic focal segmental glomerulosclerosis (n = 11), focal sclerosis secondary to obesity (n = 7), and lupus nephritis (n = 11) and from normal control subjects (n = 2) was performed, using affinity-purified antibodies raised to RAGE and two subclasses of AGE, i.e., N(epsilon)-(carboxymethyl)-lysine (CML) and pentosidine (PENT). AGE were detected equally in diffuse and nodular diabetic nephropathy. CML was the major AGE detected in diabetic mesangium (96%), glomerular basement membranes (GBM) (42%), tubular basement membranes (85%), and vessel walls (96%). In diabetic nephropathy, PENT was preferentially located in interstitial collagen (90%) and was less consistently observed in vessel walls (54%), mesangium (77%), GBM (4%), and tubular basement membranes (31%). RAGE was expressed on normal podocytes and was upregulated in diabetic nephropathy. The restriction of RAGE mRNA expression to glomeruli was confirmed by reverse transcription-PCR analysis of microdissected renal tissue compartments. The extent of mesangial and GBM immunoreactivity for CML, but not PENT, was correlated with the severity of diabetic glomerulosclerosis, as assessed pathologically. CML and PENT were also identified in areas of glomerulosclerosis and arteriosclerosis in idiopathic and secondary focal segmental glomerulosclerosis, hypertensive nephrosclerosis, and lupus nephritis. In active lupus nephritis, CML and PENT were detected in the proliferative glomerular tufts and crescents. In conclusion, CML is a major AGE in renal basement membranes in diabetic nephropathy, and its accumulation involves upregulation of RAGE on podocytes. AGE are also accumulated in acute inflammatory glomerulonephritis secondary to systemic lupus erythematosus, possibly via enzymatic oxidation of glomerular matrix proteins.

  12. HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells.

    PubMed

    Zhang, Wei; Zhou, Xiangjun; Yao, Qisheng; Liu, Yutao; Zhang, Hao; Dong, Zheng

    2017-10-01

    Exosomes are nano-sized vesicles produced and secreted by cells to mediate intercellular communication. The production and function of exosomes in kidney tissues and cells remain largely unclear. Hypoxia is a common pathophysiological condition in kidneys. This study was designed to characterize exosome production during hypoxia of rat renal proximal tubular cells (RPTCs), investigate the regulation by hypoxia-inducible factor-1 (HIF-1), and determine the effect of the exosomes on ATP-depletion-induced tubular cell injury. Hypoxia did not change the average sizes of exosomes secreted by RPTCs, but it significantly increased exosome production in a time-dependent manner. HIF-1 induction with dimethyloxalylglycine also promoted exosome secretion, whereas pharmacological and genetic suppression of HIF-1 abrogated the increase of exosome secretion under hypoxia. The exosomes from hypoxic RPTCs had inhibitory effects on apoptosis of RPTCs following ATP depletion. The protective effects were lost in the exosomes from HIF-1α knockdown cells. It is concluded that hypoxia stimulates exosome production and secretion in renal tubular cells. The exosomes from hypoxic cells are protective against renal tubular cell injury. HIF-1 mediates exosome production during hypoxia and contributes to the cytoprotective effect of the exosomes. Copyright © 2017 the American Physiological Society.

  13. Glomerular and Tubular Renal Function after Repeated Once-Daily Tobramycin Courses in Cystic Fibrosis Patients.

    PubMed

    Stehling, Florian; Büscher, Rainer; Grosse-Onnebrink, Jörg; Hoyer, Peter F; Mellies, Uwe

    2017-01-01

    Introduction . Antibiotic treatment regimens against Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) patients often include aminoglycoside antibiotics that may cause chronic renal failure after repeated courses. Aminoaciduria is an early marker of acute aminoglycoside-induced renal tubular dysfunction. We hypothesized that urinary amino acid reabsorption is decreased after repeated once-daily tobramycin therapies. Methods . In this prospective cross-sectional study creatinine clearance was estimated by the Schwartz and the Cockcroft-Gault formula. Tubular amino acid reabsorption was determined by ion exchange chromatography in 46 patients with CF who received multiple tobramycin courses (6.3 ± 10.1 (1-57)) in a once-daily dosing regimen and 10 who did not. Results . Estimated creatinine clearance employing the Cockcroft-Gault was mildly reduced in 17/46 (37%) of the patients who received tobramycin and 5/10 (50%) of the patients who did not but in none using the Schwartz formula. No association with lifetime tobramycin courses was found. Tubular amino acid reabsorption was not influenced by the amount of once-daily tobramycin courses. Conclusion . Clinically not significant reduction of eCCL occurred in a minority of CF patients. However, chronic tubular dysfunction was not present in patients with CF repeatedly treated with tobramycin in the once-daily dosing scheme.

  14. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway

    PubMed Central

    Huang, Chunling; Zhang, Yuan; Kelly, Darren J.; Tan, Christina Y. R.; Gill, Anthony; Cheng, Delfine; Braet, Filip; Park, Jin-Sung; Sue, Carolyn M.; Pollock, Carol A.; Chen, Xin-Ming

    2016-01-01

    Hyperglycemia upregulates thioredoxin interacting protein (TXNIP) expression, which in turn induces ROS production, inflammatory and fibrotic responses in the diabetic kidney. Dysregulation of autophagy contributes to the development of diabetic nephropathy. However, the interaction of TXNIP with autophagy/mitophagy in diabetic nephropathy is unknown. In this study, streptozotocin-induced diabetic rats were given TXNIP DNAzyme or scrambled DNAzyme for 12 weeks respectively. Fibrotic markers, mitochondrial function and mitochondrial reactive oxygen species (mtROS) were assessed in kidneys. Tubular autophagy and mitophagy were determined in kidneys from both human and rats with diabetic nephropathy. TXNIP and autophagic signaling molecules were examined. TXNIP DNAzyme dramatically attenuated extracellular matrix deposition in the diabetic kidneys compared to the control DNAzyme. Accumulation of autophagosomes and reduced autophagic clearance were shown in tubular cells of human diabetic compared to non-diabetic kidneys, which was reversed by TXNIP DNAzyme. High glucose induced mitochondrial dysfunction and mtROS production, and inhibited mitophagy in proximal tubular cells, which was reversed by TXNIP siRNA. TXNIP inhibition suppressed diabetes-induced BNIP3 expression and activation of the mTOR signaling pathway. Collectively, hyperglycemia-induced TXNIP contributes to the dysregulation of tubular autophagy and mitophagy in diabetic nephropathy through activation of the mTOR signaling pathway. PMID:27381856

  15. Effect of diuretics on renal tubular transport of calcium and magnesium.

    PubMed

    Alexander, R Todd; Dimke, Henrik

    2017-06-01

    Calcium (Ca 2+ ) and Magnesium (Mg 2+ ) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca 2+ and Mg 2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca 2+ and Mg 2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca 2+ and Mg 2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na + ) transport, but also indirectly affect renal Ca 2+ and Mg 2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca 2+ and Mg 2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca 2+ and Mg 2+ transport. Acetazolamide, osmotic diuretics, Na + /H + exchanger (NHE3) inhibitors, and antidiabetic Na + /glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca 2+ transport predominates. Loop diuretics and renal outer medullary K + (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca 2+ and Mg 2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na + transport at distal sites, can also affect divalent cation transport. Copyright © 2017 the American Physiological Society.

  16. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus.

    PubMed

    Bockenhauer, Detlef; Bichet, Daniel G

    2015-10-01

    Healthy kidneys maintain fluid and electrolyte homoeostasis by adjusting urine volume and composition according to physiological needs. The final urine composition is determined in the last tubular segment: the collecting duct. Water permeability in the collecting duct is regulated by arginine vasopressin (AVP). Secretion of AVP from the neurohypophysis is regulated by a complex signalling network that involves osmosensors, barosensors and volume sensors. AVP facilitates aquaporin (AQP)-mediated water reabsorption via activation of the vasopressin V2 receptor (AVPR2) in the collecting duct, thus enabling concentration of urine. In nephrogenic diabetes insipidus (NDI), inability of the kidneys to respond to AVP results in functional AQP deficiency. Consequently, affected patients have constant diuresis, resulting in large volumes of dilute urine. Primary forms of NDI result from mutations in the genes that encode the key proteins AVPR2 and AQP2, whereas secondary forms are associated with biochemical abnormalities, obstructive uropathy or the use of certain medications, particularly lithium. Treatment of the disease is informed by identification of the underlying cause. Here we review the clinical aspects and diagnosis of NDI, the various aetiologies, current treatment options and potential future developments.

  17. Effect of Organophosphate Compounds on Renal Function and Transport.

    DTIC Science & Technology

    1983-09-15

    DiBona , 15) have presented physiological data that suggest a direct role of the sympathetic nerves in renal tubular sodium reabsorption, i.e., not...tubular sodium reabsorp- tion. Amer. J. Physiol., 233 (1977) F73-81. 16. G.F. DiBona , 1.3. Zambraski, A.S. Aquilera and G.3. Kaloyanides, Neurogenic...reflex renal nerve stimulation. J. Pharuacol. Exptl. flerap.. 198 (1976a) 464-472. 29. 1.3. Zambraski, G.E. DiBona and 0.3. Kloyanides, Specificity of

  18. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface

    NASA Astrophysics Data System (ADS)

    Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng

    2016-05-01

    Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.

  19. Experimental drug-induced changes in renal function and biodistribution of /sup 99m/Tc-MDP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAfee, J.G.; Singh, A.; Roskopf, M.

    Increased renal uptake of /sup 99m/Tc methylene diphosphonate (MDP) was observed irregularly in rats after methotrexate, vincristine or gentamicin, administered separately. Cisplatin regularly induced a dose-related increased MDP uptake which correlated with the degree of tubular damage histologically. The augmented MDP renal uptake was not consistently accompanied by a decreased clearance of simultaneously injected I-131 Hippuran, particularly at lower drug dose levels. This observation agreed with previous evidence that the mechanisms of tubular transport of diphosphonates and organic acids like Hippuran are different. At higher dose levels, the augmented MDP uptake was accompanied by increased renal calcium, hypophosphatemia, elevated serummore » urea nitrogen and creatinine, and only occasional, mild hypercalcemia. The magnitude of the increased renal uptake of MDP observed could not be explained by alterations in iron metabolism or by dehydration. Drug-induced renal retention of MDP by a factor of 2 or more above normal appears to be a useful indicator of tubular damage when other parameters of renal function are sometimes normal.« less

  20. Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots.

    PubMed

    Qian, Xiaojie; Chen, Qiaomei; Yang, Yang; Xu, Yanshuang; Li, Zhen; Wang, Zhenhua; Wu, Yahe; Wei, Yen; Ji, Yan

    2018-05-27

    Stimuli-responsive materials offer a distinguished platform to build tether-free compact soft robots, which can combine sensing and actuation without a linked power supply. In the past, tubular soft robots have to be made by multiple components with various internal channels or complex cavities assembled together. Moreover, robust processing, complex locomotion, simple structure, and easy recyclability represent major challenges in this area. Here, it is shown that those challenges can be tackled by liquid crystalline elastomers with allyl sulfide functional groups. The light-controlled exchange reaction between allyl sulfide groups allows flexible processing of tubular soft robots/actuators, which does not need any assisting materials. Complex locomotion demonstrated here includes reversible simultaneous bending and elongation; reversible diameter expansion; and omnidirectional bending via remote infrared light control. Different modes of actuation can be programmed into the same tube without the routine assembly of multiple tubes as used in the past. In addition, the exchange reaction also makes it possible to use the same single tube repeatedly to perform different functions by erasing and reprogramming. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface.

    PubMed

    Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng

    2016-05-27

    Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification.

  2. Self-assembly of multi-stranded RNA motifs into lattices and tubular structures

    DOE PAGES

    Stewart, Jaimie Marie; Subramanian, Hari K. K.; Franco, Elisa

    2017-02-16

    Rational design of nucleic acidmolecules yields selfassembling scaffolds with increasing complexity, size and functionality. It is an open question whether design methods tailored to build DNA nanostructures can be adapted to build RNA nanostructures with comparable features. We demonstrate the formation of RNA lattices and tubular assemblies from double crossover (DX) tiles, a canonical motif in DNA nanotechnology. Tubular structures can exceed 1 m in length, suggesting that this DX motif can produce very robust lattices. Some of these tubes spontaneously form with left-handed chirality. We obtain assemblies by using two methods: a protocol where gel-extracted RNA strands are slowlymore » annealed, and a one-pot transcription and anneal procedure. We then identify the tile nick position as a structural requirement for lattice formation. These results demonstrate that stable RNA structures can be obtained with design tools imported from DNA nanotechnology. These large assemblies could be potentially integrated with a variety of functional RNA motifs for drug or nanoparticle delivery, or for colocalization of cellular components.« less

  3. Self-assembly of multi-stranded RNA motifs into lattices and tubular structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Jaimie Marie; Subramanian, Hari K. K.; Franco, Elisa

    Rational design of nucleic acidmolecules yields selfassembling scaffolds with increasing complexity, size and functionality. It is an open question whether design methods tailored to build DNA nanostructures can be adapted to build RNA nanostructures with comparable features. We demonstrate the formation of RNA lattices and tubular assemblies from double crossover (DX) tiles, a canonical motif in DNA nanotechnology. Tubular structures can exceed 1 m in length, suggesting that this DX motif can produce very robust lattices. Some of these tubes spontaneously form with left-handed chirality. We obtain assemblies by using two methods: a protocol where gel-extracted RNA strands are slowlymore » annealed, and a one-pot transcription and anneal procedure. We then identify the tile nick position as a structural requirement for lattice formation. These results demonstrate that stable RNA structures can be obtained with design tools imported from DNA nanotechnology. These large assemblies could be potentially integrated with a variety of functional RNA motifs for drug or nanoparticle delivery, or for colocalization of cellular components.« less

  4. Recovery of Na-glucose cotransport activity after renal ischemia is impaired in mice lacking vimentin.

    PubMed

    Runembert, Isabelle; Couette, Sylviane; Federici, Pierre; Colucci-Guyon, Emma; Babinet, Charles; Briand, Pascale; Friedlander, Gérard; Terzi, Fabiola

    2004-11-01

    Vimentin, an intermediate filament protein mainly expressed in mesenchyma-derived cells, is reexpressed in renal tubular epithelial cells under many pathological conditions, characterized by intense cell proliferation. Whether vimentin reexpression is only a marker of cell dedifferentiation or is instrumental in the maintenance of cell structure and/or function is still unknown. Here, we used vimentin knockout mice (Vim(-/-)) and an experimental model of acute renal injury (30-min bilateral renal ischemia) to explore the role of vimentin. Bilateral renal ischemia induced an initial phase of acute tubular necrosis that did not require vimentin and was similar, in terms of morphological and functional changes, in Vim(+/+) and Vim(-/-) mice. However, vimentin was essential to favor Na-glucose cotransporter 1 localization to brush-border membranes and to restore Na-glucose cotransport activity in regenerating tubular cells. We show that the effect of vimentin inactivation is specific and results in persistent glucosuria. We propose that vimentin is part of a structural network that favors carrier localization to plasma membranes to restore transport activity in injured kidneys.

  5. Self-assembly of multi-stranded RNA motifs into lattices and tubular structures

    PubMed Central

    Stewart, Jaimie Marie; Subramanian, Hari K. K.

    2017-01-01

    Abstract Rational design of nucleic acid molecules yields self-assembling scaffolds with increasing complexity, size and functionality. It is an open question whether design methods tailored to build DNA nanostructures can be adapted to build RNA nanostructures with comparable features. Here we demonstrate the formation of RNA lattices and tubular assemblies from double crossover (DX) tiles, a canonical motif in DNA nanotechnology. Tubular structures can exceed 1 μm in length, suggesting that this DX motif can produce very robust lattices. Some of these tubes spontaneously form with left-handed chirality. We obtain assemblies by using two methods: a protocol where gel-extracted RNA strands are slowly annealed, and a one-pot transcription and anneal procedure. We identify the tile nick position as a structural requirement for lattice formation. Our results demonstrate that stable RNA structures can be obtained with design tools imported from DNA nanotechnology. These large assemblies could be potentially integrated with a variety of functional RNA motifs for drug or nanoparticle delivery, or for colocalization of cellular components. PMID:28204562

  6. Chronic unilateral ureteral obstruction in the neonatal mouse delays maturation of both kidneys and leads to late formation of atubular glomeruli

    PubMed Central

    Forbes, Michael S.; Thornhill, Barbara A.; Galarreta, Carolina I.; Minor, Jordan J.; Gordon, Katherine A.

    2013-01-01

    Unilateral ureteral obstruction (UUO) in the adult mouse is the most widely used model of progressive renal disease: the proximal tubule is the nephron segment most severely affected and atubular glomeruli are formed after only 7 days of UUO. To determine the proximal nephron response to UUO in the maturing kidney, neonatal mice were examined 7 to 28 days following complete UUO under general anesthesia. Proximal tubular mass and maturation were determined by staining with Lotus tetragolonobus lectin. Superoxide was localized by nitroblue tetrazolium and collagen by Sirius red. Cell proliferation, cell death, PAX-2, megalin, α-smooth muscle actin (α-SMA), renin, and fibronectin were identified by immunohistochemistry. During the first 14 days of ipsilateral UUO, despite oxidative stress (4-hydroxynonenal staining), glomerulotubular continuity was maintained and mitochondrial superoxide production persisted. However, from 14 to 28 days, papillary growth was impaired and proximal tubules collapsed with increased apoptosis, autophagy, mitochondrial loss, and formation of atubular glomeruli. Fibronectin, α-SMA, and collagen increased in the obstructed kidney. Oxidative stress was present also in the contralateral kidney: renin was decreased, glomerulotubular maturation and papillary growth were delayed, followed by increased cortical and medullary growth. We conclude that neonatal UUO initially delays renal maturation and results in oxidative stress in both kidneys. In contrast to the adult, proximal tubular injury in the neonatal obstructed kidney is delayed at 14 days, followed only later by the formation of atubular glomeruli. Antioxidant therapies directed at proximal tubular mitochondria during early renal maturation may slow progression of congenital obstructive nephropathy. PMID:24107422

  7. A Microperfusion Study of Bicarbonate Accumulation in the Proximal Tubule of the Rat Kidney*

    PubMed Central

    Bank, Norman; Aynedjian, Hagop S.

    1967-01-01

    In order to determine whether HCO3- gains access to the proximal tubular lumen from a source other than the glomerular filtrate, we carried out microperfusion experiments on isolated segments of rat proximal tubules in vivo. The perfusion fluid was essentially free of HCO3- and of a composition that prevented net absorption of sodium and water. It was found that when plasma HCO3- concentration and CO2 tension (PCO2) were normal, the HCO3- concentration in the collected perfusate rose to about 3 mEq per L. Inhibition of renal carbonic anhydrase did not produce an appreciable change in this value in normal rats, but when the enzyme was inhibited in acutely alkalotic rats, a mean concentration of 15 mEq per L was recovered in the perfusate. Addition of HCO3- to the tubular lumen might occur by either intraluminal generation of HCO3- from CO2 and OH- or by influx of ionic bicarbonate from the plasma or tubular cells. Because of the marked increase in HCO3- found when intraluminal carbonic anhydrase was inhibited, generation of new HCO3- from CO2 and OH- seems unlikely. We conclude, therefore, that influx of ionic bicarbonate occurred, either across the luminal membrane or through extracellular aqueous channels. These observations suggest that the proximal epithelium has a finite degree of permeability to HCO3- and that influx of this ion may be a component of the over-all handling of HCO3- by the kidney. PMID:4959907

  8. Urine podocyte mRNAs mark disease activity in IgA nephropathy

    PubMed Central

    Fukuda, Akihiro; Sato, Yuji; Iwakiri, Takashi; Komatsu, Hiroyuki; Kikuchi, Masao; Kitamura, Kazuo; Wiggins, Roger C.; Fujimoto, Shouichi

    2015-01-01

    Background Podocyte depletion is a major mechanism driving glomerulosclerosis. We and others have previously projected from model systems that podocyte-specific mRNAs in the urine pellet might serve as glomerular disease markers. We evaluated IgA nephropathy (IgAN) to test this concept. Methods From 2009 to 2013, early morning voided urine samples and kidney biopsies from IgAN patients (n = 67) were evaluated in comparison with urine samples from healthy age-matched volunteers (n = 28). Urine podocyte (podocin) mRNA expressed in relation to either urine creatinine concentration or a kidney tubular marker (aquaporin 2) was tested as markers. Results Urine podocyte mRNAs were correlated with the severity of active glomerular lesions (segmental glomerulosclerosis and acute extracapillary proliferation), but not with non-glomerular lesions (tubular atrophy/interstitial fibrosis) or with clinical parameters of kidney injury (serum creatinine and estimated glomerular filtration rate), or with degree of accumulated podocyte loss at the time of biopsy. In contrast, proteinuria correlated with all histological and clinical markers. Glomerular tuft podocyte nuclear density (a measure of cumulative podocyte loss) correlated with tubular atrophy/interstitial fibrosis, estimated-glomerular filtration rate and proteinuria, but not with urine podocyte markers. In a subset of the IgA cohort (n = 19, median follow-up period = 37 months), urine podocyte mRNAs were significantly decreased after treatment, in contrast to proteinuria which was not significantly changed. Conclusions Urine podocyte mRNAs reflect active glomerular injury at a given point in time, and therefore provide both different and additional clinical information that can complement proteinuria in the IgAN decision-making paradigm. PMID:25956757

  9. Extracellular 2′,3′-cAMP-adenosine pathway in proximal tubular, thick ascending limb, and collecting duct epithelial cells

    PubMed Central

    Gillespie, Delbert G.

    2013-01-01

    In a previous study, we demonstrated that human proximal tubular epithelial cells obtained from a commercial source metabolized extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and extracellular 2′-AMP and 3′-AMP to adenosine (the extracellular 2′,3′-cAMP-adenosine pathway; extracellular 2′,3′-cAMP → 2′-AMP + 3′-AMP → adenosine). The purpose of this study was to investigate the metabolism of extracellular 2′,3′-cAMP in proximal tubular vs. thick ascending limb vs. collecting duct epithelial cells freshly isolated from their corresponding nephron segments obtained from rat kidneys. In epithelial cells from all three nephron segments, 1) extracellular 2′,3′-cAMP was metabolized to 2′-AMP and 3′-AMP, with 2′-AMP > 3′-AMP, 2) the metabolism of extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP was not inhibited by either 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor) or 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor), 3) extracellular 2′,3′-cAMP increased extracellular adenosine levels, 4) 3′-AMP and 2′-AMP were metabolized to adenosine with an efficiency similar to that of 5′-AMP, and 5) the metabolism of 5′-AMP, 3′-AMP, and 2′-AMP was not inhibited by α,β-methylene-adenosine-5′-diphosphate (CD73 inhibitor). These results support the conclusion that renal epithelial cells all along the nephron can metabolize extracellular 2′,3′-cAMP to 2′-AMP and 3′-AMP and can efficiently metabolize extracellular 2′-AMP and 3′-AMP to adenosine and that the metabolic enzymes involved are not the classical phosphodiesterases nor ecto-5′-nucleotidase (CD73). Because 2′,3′-cAMP is released by injury and because previous studies demonstrate that the extracellular 2′,3′-cAMP-adenosine pathway stimulates epithelial cell proliferation via adenosine A2B receptors, the present results suggest that the extracellular 2′,3′-cAMP-adenosine pathway may help restore epithelial cells along the nephron following kidney injury. PMID:23077101

  10. Design and fabrication of segmented-in-series solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Tammy S.

    Segmented-in-series solid oxide fuel cells (SS-SOFC) consist of several thick film cells deposited onto a porous, flattened tubular substrate. SS-SOFCs have a reduced need for gas-tight seals relative to planar SOFCs and can have a short current path compared to tubular SOFCs, limiting electrode ohmic resistance. Like tubular SOFCs, SS-SOFCs are suitable for stationary power generation. Their potentially small cell size makes them candidates for portable applications as well. The goals of this thesis project were to develop SS-SOFCs with 1-2 mm cell lengths and to analyze the effects of cell geometry and support current shunting on performance. Standard SOFC materials were chosen for the active components: yttria stabilized zirconia (YSZ) electrolyte; Ni-YSZ cermet anode; and (La,Sr)MnO 3-based cathode. A Pt-YSZ cermet was used as the interconnect material. Screen printing was the deposition method for all layers due to its low cost and patterning ability. A power density of >900 mW/cm2 was achieved with a cathode sheet resistance of ≈3 O/□ (≈90 mum LSM thickness). A D-optimal study was conducted to find processing conditions yielding substrates with ≥30 vol% porosity and high strength. Uniaxially pressed partially stabilized zirconia (PSZ) with 15 wt% starch pore former met the requirements, though 20 wt% graphite pore former was later found to give a smoother surface that improved screen printed layer quality. Calculations presented in this thesis take into account losses due to cell resistances, electrode ohmic resistances, interconnect resistance, and shunting by a weakly-conductive support material. Power density was maximized at an optimal cell length---it decreased at larger cell lengths due to electrode lateral resistance loss and at smaller cell lengths due to a decreasing fraction of cell active area. Assuming dimensions expected for screen printing and typical area specific resistances (RAS), optimal cell lengths typically ranged from 1 to 3 mm. The calculated and experimental values for the array RAS (active and inactive areas) showed similar dependences on cathode sheet resistance. The impact of shunting current increased with decreasing cell lengths. Shunting current was predicted to decrease array current by ˜10% for a 1.5 mm active cell length, though experimental measurements suggest that the calculation may overestimate the shunting effect.

  11. Compensatory regulation of Na+ absorption by Na+/H+ exchanger and Na+-Cl- cotransporter in zebrafish (Danio rerio)

    PubMed Central

    2013-01-01

    Introduction In mammals, internal Na+ homeostasis is maintained through Na+ reabsorption via a variety of Na+ transport proteins with mutually compensating functions, which are expressed in different segments of the nephrons. In zebrafish, Na+ homeostasis is achieved mainly through the skin/gill ionocytes, namely Na+/H+ exchanger (NHE3b)-expressing H+-ATPase rich (HR) cells and Na+-Cl- cotransporter (NCC)-expressing NCC cells, which are functionally homologous to mammalian proximal and distal convoluted tubular cells, respectively. The present study aimed to investigate whether or not the functions of HR and NCC ionocytes are differentially regulated to compensate for disruptions of internal Na+ homeostasis and if the cell differentiation of the ionocytes is involved in this regulation pathway. Results Translational knockdown of ncc caused an increase in HR cell number and a resulting augmentation of Na+ uptake in zebrafish larvae, while NHE3b loss-of-function caused an increase in NCC cell number with a concomitant recovery of Na+ absorption. Environmental acid stress suppressed nhe3b expression in HR cells and decreased Na+ content, which was followed by up-regulation of NCC cells accompanied by recovery of Na+ content. Moreover, knockdown of ncc resulted in a significant decrease of Na+ content in acid-acclimated zebrafish. Conclusions These results provide evidence that HR and NCC cells exhibit functional redundancy in Na+ absorption, similar to the regulatory mechanisms in mammalian kidney, and suggest this functional redundancy is a critical strategy used by zebrafish to survive in a harsh environment that disturbs body fluid Na+ homeostasis. PMID:23924428

  12. In vivo antibody-mediated modulation of aminopeptidase A in mouse proximal tubular epithelial cells.

    PubMed

    Mentzel, S; Dijkman, H B; van Son, J P; Wetzels, J F; Assmann, K J

    1999-07-01

    Aminopeptidase A (APA) is one of the many renal hydrolases. In mouse kidney, APA is predominantly expressed on the brush borders and sparsely on the basolateral membranes of proximal tubular epithelial cells. However, when large amounts of monoclonal antibodies (MAbs) against APA were injected into mice, we observed strong binding of the MAbs to the basolateral membranes, whereas the MAbs bound only transiently to the brush borders of the proximal tubular epithelial cells. In parallel, APA itself disappeared from the brush borders by both endocytosis and shedding, whereas it was increasingly expressed on the basolateral sides. Using ultrastructural immunohistology, we found no evidence for transcellular transport of endocytosed APA to the basolateral side of the proximal tubular epithelial cells. The absence of transcellular transport was confirmed by experiments in which we used a low dose of the MAbs. Such a low dose did not result in binding of the MAbs to the brush borders and had no effect on the presence of APA in the brush borders of the proximal tubular epithelial cells. In these experiments we still could observe binding of the MAbs to the basolateral membranes in parallel with the local appearance of APA. In addition, treatment of mice with chlorpromazine, a calmodulin antagonist that interferes with cytoskeletal function, largely inhibited the MAb-induced modulation of APA. Our studies suggest that injection of MAbs to APA specifically interrupts the normal intracellular traffic of this enzyme in proximal tubular epithelial cells. This intracellular transport is dependent on the action of cytoskeletal proteins.

  13. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion.

    PubMed

    Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S

    2016-08-01

    Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Caveolin 3-dependent loss of t-tubular ICa during hypertrophy and heart failure in mice.

    PubMed

    Bryant, Simon M; Kong, Cherrie H T; Watson, Judy J; Gadeberg, Hanne C; James, Andrew F; Cannell, Mark B; Orchard, Clive H

    2018-05-01

    What is the central question of this study? Heart failure is associated with redistribution of L-type Ca 2+ current (I Ca ) away from the t-tubule membrane to the surface membrane of cardiac ventricular myocytes. However, the underlying mechanism and its dependence on severity of pathology (hypertrophy versus failure) are unclear. What is the main finding and its importance? Increasing severity of response to transverse aortic constriction, from hypertrophy to failure, was accompanied by graded loss of t-tubular I Ca and loss of regulation of I Ca by caveolin 3. Thus, the pathological loss of t-tubular I Ca , which contributes to impaired excitation-contraction coupling and thereby cardiac function in vivo, appears to be attributable to loss of caveolin 3-dependent stimulation of t-tubular I Ca . Previous work has shown redistribution of L-type Ca 2+ current (I Ca ) from the t-tubules to the surface membrane of rat ventricular myocytes after myocardial infarction. However, whether this occurs in all species and in response to other insults, the relationship of this redistribution to the severity of the pathology, and the underlying mechanism, are unknown. We have therefore investigated the response of mouse hearts and myocytes to pressure overload induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or equivalent sham operation 8 weeks before use. I Ca and Ca 2+ transients were measured in isolated myocytes, and expression of caveolin 3 (Cav3), junctophilin 2 (Jph2) and bridging integrator 1 (Bin1) was determined. C3SD peptide was used to disrupt Cav3 binding to its protein partners. Some animals showed cardiac hypertrophy in response to TAC with little evidence of heart failure, whereas others showed greater hypertrophy and pulmonary congestion. These graded changes were accompanied by graded cellular hypertrophy, t-tubule disruption, decreased expression of Jph2 and Cav3, and decreased t-tubular I Ca density, with no change at the cell surface, and graded impairment of Ca 2+ release at t-tubules. C3SD decreased I Ca density in control but not in TAC myocytes. These data suggest that the graded changes in cardiac function and size that occur in response to TAC are paralleled by graded changes in cell structure and function, which will contribute to the impaired function observed in vivo. They also suggest that loss of t-tubular I Ca is attributable to loss of Cav3-dependent stimulation of I Ca . © 2018 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  15. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2015-01-01

    The objective of this study was to investigate how physiological, pharmacological, and pathological conditions that alter sodium reabsorption (TNa) in the proximal tubule affect oxygen consumption (QO2) and Na+ transport efficiency (TNa/QO2). To do so, we expanded a mathematical model of solute transport in the proximal tubule of the rat kidney. The model represents compliant S1, S2, and S3 segments and accounts for their specific apical and basolateral transporters. Sodium is reabsorbed transcellularly, via apical Na+/H+ exchangers (NHE) and Na+-glucose (SGLT) cotransporters, and paracellularly. Our results suggest that TNa/QO2 is 80% higher in S3 than in S1–S2 segments, due to the greater contribution of the passive paracellular pathway to TNa in the former segment. Inhibition of NHE or Na-K-ATPase reduced TNa and QO2, as well as Na+ transport efficiency. SGLT2 inhibition also reduced proximal tubular TNa but increased QO2; these effects were relatively more pronounced in the S3 vs. the S1–S2 segments. Diabetes increased TNa and QO2 and reduced TNa/QO2, owing mostly to hyperfiltration. Since SGLT2 inhibition lowers diabetic hyperfiltration, the net effect on TNa, QO2, and Na+ transport efficiency in the proximal tubule will largely depend on the individual extent to which glomerular filtration rate is lowered. PMID:25855513

  16. Ultrasonographic and clinicopathologic features of segmental dilatations of the common bile duct in four cats

    PubMed Central

    Spain, Heather N; Penninck, Dominique G; Webster, Cynthia RL; Daure, Evence; Jennings, Samuel H

    2017-01-01

    Case series summary This case series documents ultrasonographic and clinicopathologic features of four cats with marked segmental dilatations of the common bile duct (CBD). All cats had additional ultrasonographic changes to the hepatobiliary system, including hepatomegaly, tubular to saccular intra/extrahepatic biliary duct dilatation and biliary debris accumulation. Based on all available data the presence of extrahepatic biliary duct obstruction (EHBDO) was ruled out in 3/4 cases and was equivocal in one case. One cat underwent re-routing surgery to address the CBD dilatation after multiple recurrent infections, one cat was euthanized and had a post-mortem examination and two cats were medically managed with antibiotics, liver protectants, gastroprotectants and cholerectics. Relevance and novel information The ultrasonographic features of the CBD in this population of cats were supportive of choledochal cysts (CCs). The maximal diameter of the CBD dilatations exceeded 5 mm in all cases, a sign that has been previously reported to be consistent with EHBDO. In our study, dilatations were segmental rather than diffuse. Given the high morbidity and mortality associated with hepatobiliary surgery in cats, segmental dilatation of the CBD should not prompt emergency surgery. Some cats may respond to medical management. Careful planning for cyst resection was beneficial in one cat. Evaluation of CC morphology (eg, size, location, concurrent intrahepatic anomalies) may assist in selecting cats that could benefit from surgical intervention. PMID:28680700

  17. Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation.

    PubMed

    Chen, Hsin-Chen; Jou, I-Ming; Wang, Chien-Kuo; Su, Fong-Chin; Sun, Yung-Nien

    2010-06-01

    The quantitative measurements of hand bones, including volume, surface, orientation, and position are essential in investigating hand kinematics. Moreover, within the measurement stage, bone segmentation is the most important step due to its certain influences on measuring accuracy. Since hand bones are small and tubular in shape, magnetic resonance (MR) imaging is prone to artifacts such as nonuniform intensity and fuzzy boundaries. Thus, greater detail is required for improving segmentation accuracy. The authors then propose using a novel registration-based method on an articulated hand model to segment hand bones from multipostural MR images. The proposed method consists of the model construction and registration-based segmentation stages. Given a reference postural image, the first stage requires construction of a drivable reference model characterized by hand bone shapes, intensity patterns, and articulated joint mechanism. By applying the reference model to the second stage, the authors initially design a model-based registration pursuant to intensity distribution similarity, MR bone intensity properties, and constraints of model geometry to align the reference model to target bone regions of the given postural image. The authors then refine the resulting surface to improve the superimposition between the registered reference model and target bone boundaries. For each subject, given a reference postural image, the proposed method can automatically segment all hand bones from all other postural images. Compared to the ground truth from two experts, the resulting surface image had an average margin of error within 1 mm (mm) only. In addition, the proposed method showed good agreement on the overlap of bone segmentations by dice similarity coefficient and also demonstrated better segmentation results than conventional methods. The proposed registration-based segmentation method can successfully overcome drawbacks caused by inherent artifacts in MR images and obtain more accurate segmentation results automatically. Moreover, realistic hand motion animations can be generated based on the bone segmentation results. The proposed method is found helpful for understanding hand bone geometries in dynamic postures that can be used in simulating 3D hand motion through multipostural MR images.

  18. Tubular damage and worsening renal function in chronic heart failure.

    PubMed

    Damman, Kevin; Masson, Serge; Hillege, Hans L; Voors, Adriaan A; van Veldhuisen, Dirk J; Rossignol, Patrick; Proietti, Gianni; Barbuzzi, Savino; Nicolosi, Gian Luigi; Tavazzi, Luigi; Maggioni, Aldo P; Latini, Roberto

    2013-10-01

    This study sought to investigate the relationship between tubular damage and worsening renal function (WRF) in chronic heart failure (HF) BACKGROUND: WRF is associated with poor outcome in chronic HF. It is unclear whether urinary tubular markers may identify patients at risk for WRF. In 2,011 patients with chronic HF, we evaluated the ability of urinary tubular markers (N-acetyl-beta-d-glucosaminidase (NAG), kidney injury molecule (KIM)-1, and neutrophil gelatinase-associated lipocalin (NGAL) to predict WRF. Finally, we assessed the prognostic importance of WRF. A total of 290 patients (14.4%) experienced WRF during follow-up, and WRF was a strong and independent predictor of all-cause mortality and HF hospitalizations (hazard ratio [HR]: 2.87; 95% CI: 2.40 to 3.43; p < 0.001). Patients with WRF had lower baseline glomerular filtration rate and higher KIM-1, NAG, and NGAL levels. In a multivariable-adjusted model, KIM-1 was the strongest independent predictor of WRF (HR: 1.23; 95% CI: 1.09 to 1.39 per log increase; p = 0.001). WRF was associated with strongly impaired outcome in patients with chronic HF. Increased level of urinary KIM-1 was the strongest independent predictor of WRF and could therefore be used to identify patients at risk for WRF and poor clinical outcome. (GISSI-HF-Effects of n-3 PUFA and Rosuvastatin on Mortality-Morbidity of Patients With Symptomatic CHF; NCT00336336). Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  19. Acceleration of recovery in acute renal failure: from cellular mechanisms of tubular repair to innovative targeted therapies.

    PubMed

    Abbate, M; Remuzzi, G

    1996-05-01

    Kidney repair from injury is a major focus of interest for research, both clinical and basic, in the field of acute renal failure. This is so because very little progress has been made during the past several years to improve mortality in hospitalized patients with acute renal failure despite the unique potential of the kidney for complete structural and functional recovery. Novel therapeutic options have recently emerged from the knowledge of molecular mechanisms of tissue injury after ischemia, including pathways of endothelial-leukocyte interaction and epithelial cell aggregation mediated by integrin molecules. These strategies are promising because they may target early mechanisms of leukocyte infiltration and tubular obstruction. However, it seems clear that additional interventions should address the reparative program that potentially leads to the full restoration of kidney structure and function. Thus, acceleration of repair from acute renal failure is achieved experimentally by growth factors which besides different renal actions seem to have in common the ability to stimulate proliferation of surviving tubular epithelial cells. We direct attention to cellular processes which characterize, and possibly have role in, renal repair from acute tubular injury as potential targets of therapy. In addition to proliferation, they include epithelial differentiation and apoptosis. Further investigation in the biology of repair should set the stage for rational design of targeted therapies which may accelerate the pace of recovery and hopefully decrease mortality in such a dramatic and potentially reversible setting.

  20. Expandable tubulars for use in geologic structures

    DOEpatents

    Spray, Jeffery A.; Svedeman, Steven; Walter, David; Mckeighan, Peter; Siebanaler, Shane; Dewhurst, Peter; Hobson, Steven; Foss, Doug; Wirz, Holger; Sharpe, Aaron; Apostal, Michael

    2014-08-12

    An expandable tubular includes a plurality of leaves formed from sheet material that have curved surfaces. The leaves extend around a portion or fully around the diameter of the tubular structure. Some of the adjacent leaves of the tubular are coupled together. The tubular is compressed to a smaller diameter so that it can be inserted through previously deployed tubular assemblies. Once the tubular is properly positioned, it is deployed and coupled or not coupled to a previously deployed tubular assembly. The tubular is useful for all types of wells and boreholes.

  1. Anisotropic tubular filtering for automatic detection of acid-fast bacilli in Ziehl-Neelsen stained sputum smear samples

    NASA Astrophysics Data System (ADS)

    Raza, Shan-e.-Ahmed; Marjan, M. Q.; Arif, Muhammad; Butt, Farhana; Sultan, Faisal; Rajpoot, Nasir M.

    2015-03-01

    One of the main factors for high workload in pulmonary pathology in developing countries is the relatively large proportion of tuberculosis (TB) cases which can be detected with high throughput using automated approaches. TB is caused by Mycobacterium tuberculosis, which appears as thin, rod-shaped acid-fast bacillus (AFB) in Ziehl-Neelsen (ZN) stained sputum smear samples. In this paper, we present an algorithm for automatic detection of AFB in digitized images of ZN stained sputum smear samples under a light microscope. A key component of the proposed algorithm is the enhancement of raw input image using a novel anisotropic tubular filter (ATF) which suppresses the background noise while simultaneously enhancing strong anisotropic features of AFBs present in the image. The resulting image is then segmented using color features and candidate AFBs are identified. Finally, a support vector machine classifier using morphological features from candidate AFBs decides whether a given image is AFB positive or not. We demonstrate the effectiveness of the proposed ATF method with two different feature sets by showing that the proposed image analysis pipeline results in higher accuracy and F1-score than the same pipeline with standard median filtering for image enhancement.

  2. Insulative laser shell coupler

    DOEpatents

    Arnold, Phillip A.; Anderson, Andrew T.; Alger, Terry W.

    1994-01-01

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.

  3. Insulative laser shell coupler

    DOEpatents

    Arnold, P.A.; Anderson, A.T.; Alger, T.W.

    1994-09-20

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.

  4. Allogeneic adipose-derived stem cells regenerate bone in a critical-sized ulna segmental defect

    PubMed Central

    Wen, Congji; Yan, Hai; Fu, Shibo; Qian, Yunliang

    2016-01-01

    Adipose-derived stem cells (ASCs) with multilineage potential can be induced into osteoblasts, adipocytes and chondrocytes. ASCs as seed cell are widely used in the field of tissue engineering, but most studies either use autologous cells as the source or an immunodeficient animal as the host. In our present study, we explored the feasibility of applying allogeneic ASCs and demineralized bone matrix (DBM) scaffolds for repairing tubular bone defects without using immunosuppressive therapy. Allogeneic ASCs were expanded and seeded on DBM scaffolds and induced to differentiate along the osteogenic lineage. Eight Sprague–Dawley (SD) rats were used in this study and bilateral critical-sized defects (8 mm) of the ulna were created and divided into two groups: with ASC-DBM constructs or DBM alone. The systemic immune response and the extent of bone healing were evaluated post-operatively. Twenty-four weeks after implantation, digital radiography (DR) testing showed that new bones had formed in the experimental group. By contrast, no bone tissue formation was observed in the control group. This study demonstrated that allogeneic ASCs could promote bone regeneration and repair tubular bone defects combined with DBM by histologically typical bone without systemic immune response PMID:25819682

  5. Imaging MS in Toxicology: An Investigation of Juvenile Rat Nephrotoxicity Associated with Dabrafenib Administration

    NASA Astrophysics Data System (ADS)

    Groseclose, M. Reid; Laffan, Susan B.; Frazier, Kendall S.; Hughes-Earle, Angela; Castellino, Stephen

    2015-06-01

    As part of an investigative nephrotoxicity study, kidney tissues from juvenile rats orally administered dabrafenib at different age intervals between postnatal day (PND) 7 to 35 were investigated by MALDI and LDI imaging mass spectrometry (IMS) to determine the chemical composition of tubular deposits. In the youngest age group (PND 7-13), MALDI IMS demonstrated that a dabrafenib carboxylic acid metabolite was diffusely localized to the regions of tubular deposits (medulla and corticomedullary junction); however, no dabrafenib-related material was detected directly from the deposits. Rather, the LDI IMS analysis determined that the deposits were composed primarily of calcium phosphate. Based on these data, the dabrafenib associated nephrotoxicity, including the formation of tubular deposits, was determined to be age dependent. Furthermore, immature renal function was hypothesized to be responsible for the susceptibility of the youngest pups.

  6. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor and providing separate regions of conductor contact with the channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelzer, Gerald; Meinke, Rainer; Senti, Mark

    A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface ofmore » second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.« less

  7. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Guerrero, Cristian, E-mail: cristian.gonzalez@fjd.es; Ocaña-Salceda, Carlos, E-mail: carlos.ocana@fjd.es; Berzal, Sergio, E-mail: sberzal@fjd.es

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed thatmore » in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory events in mice and human.« less

  8. Testicular histomorphometry and the proliferative and apoptotic activities of the seminiferous epithelium in Syrian hamster during spontaneous recrudescence after exposure to short photoperiod.

    PubMed

    Martínez-Hernández, Jesús; Seco-Rovira, Vicente; Beltrán-Frutos, Ester; Ferrer, Concepción; Canteras, Manuel; Sánchez-Huertas, María Del Mar; Pastor, Luis Miguel

    2018-05-21

    Syrian hamsters are photoperiodic rodents in which reproduction, including testicular function, is stimulated by long photoperiod exposure and curtailed by exposure to a short photoperiod. The objectives of this study were to characterize the testis histomorphometrically and to determine the role of the proliferation and apoptosis phenomena in the recovery of the seminiferous epithelium during spontaneous recrudescence after exposure to short photoperiod. The study was performed using conventional light microscopy, proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling staining, image analysis software, and transmission electron microscopy in three recrudescence groups: initial recrudescence (IR), advanced recrudescence (AR) and total recrudescence (TR). The results morphometrically pointed to the gradual recovery of the testicular and tubular volumes, as well as of the seminiferous epithelium. Among the IR and AR groups, the increase in testicular and tubular volumes was accompanied by an increase in tubular diameter and length, with an increase in interstitial volume. From AR to TR, there was an increase in the tubular and total volumes, but, in this case, with a gradual increase in tubular diameter. Recovery of the seminiferous epithelium was accompanied by changes in apoptosis and proliferation activities. The first decreased halfway through the process, and the second remained higher than the control levels throughout the recrudescence stage. Alterations in the spermatozoa were ultrastructurally observed, which indicated that spermiogenesis was not yet completely normal. In conclusion, spontaneous testicular recrudescence in Syrian hamster comprises two histomorphometrical phases: the first related to an increase in tubular length and diameter and interstitial volume and the second depending principally on the gradual increase in tubular diameter. The restoration of the seminiferous epithelium is due to apoptosis reaching normal values in the AR group accompanied by higher proliferative activity than that observed in the Control group. © 2018 Blackwell Verlag GmbH.

  9. Role of the glomerular-tubular imbalance with tubular predominance in the arterial hypertension pathophysiology.

    PubMed

    Fox, María Ofelia Barber; Gutiérrez, Ernesto Barber

    2013-09-01

    In previous investigations we caused renal tubular reabsorption preponderance relating to the glomerular filtration (Glomerular-tubular imbalance) and we observed that this fact conducted to volume expansion and development of arterial hypertension, in rats that previously were normotens. We based on this evidence and other which are reflected in the literature arrived at the following hypothesis: a greater proportion of tubular reabsorption relating to the filtered volume is the base of the establishment of the glomerular-tubular imbalance with tubular predominance (GTI-T), which favors to the Na(+)-fluid retention and volume expansion. All of which conduced to arterial hypertension. These facts explain a primary hypertensive role of the kidney, consistent with the results of renal transplants performed in different lines of hypertensive rats and their respective controls and in humans: hypertension can be transferred with the kidney. GTI-T aims to be, a common phenomenon involved in the hypertension development in the multiple ways which is manifested the hypertensive syndrome. In secondary hypertension, GTI-T is caused by significant disruptions of hormone secretions that control renal function, or obvious vascular or parenchymal damage of these organs. In primary hypertension the GTI-T has less obvious causes inherently developed in the kidney, including humoral, cellular and subcellular mechanisms, which may insidiously manifest under environmental factors influence, resulting in insidious development of hypertension. This would explain the state of prehypertension that these individuals suffer. So it has great importance to study GTI-T before the hypertension is established, because when hypertensive state is established, other mechanisms are installed and they contribute to maintain the hypertension. Our hypothesis may explaining the inability of the kidneys to excrete salt and water in hypertension, as Guyton and colleagues have expressed and constitutes a step forward in line with the hypothesis of this author. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Beyond Frangi: an improved multiscale vesselness filter

    NASA Astrophysics Data System (ADS)

    Jerman, Tim; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2015-03-01

    Vascular diseases are among the top three causes of death in the developed countries. Effective diagnosis of vascular pathologies from angiographic images is therefore very important and usually relies on segmentation and visualization of vascular structures. To enhance the vascular structures prior to their segmentation and visualization, and to suppress non-vascular structures and image noise, the filters enhancing vascular structures are used extensively. Even though several enhancement filters are widely used, the responses of these filters are typically not uniform between vessels of different radii and, compared to the response in the central part of vessels, their response is lower at vessels' edges and bifurcations, and vascular pathologies like aneurysm. In this paper, we propose a novel enhancement filter based on ratio of multiscale Hessian eigenvalues, which yields a close-to-uniform response in all vascular structures and accurately enhances the border between the vascular structures and the background. The proposed and four state-of-the-art enhancement filters were evaluated and compared on a 3D synthetic image containing tubular structures and a clinical dataset of 15 cerebral 3D digitally subtracted angiograms with manual expert segmentations. The evaluation was based on quantitative metrics of segmentation performance, computed as area under the precision-recall curve, signal-to-noise ratio of the vessel enhancement and the response uniformity within vascular structures. The proposed filter achieved the best scores in all three metrics and thus has a high potential to further improve the performance of existing or encourage the development of more advanced methods for segmentation and visualization of vascular structures.

  11. Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR.

    PubMed

    Gupta, Sebanti; Tycko, Robert

    2018-02-01

    Recent studies of noncrystalline HIV-1 capsid protein (CA) assemblies by our laboratory and by Polenova and coworkers (Protein Sci 19:716-730, 2010; J Mol Biol 426:1109-1127, 2014; J Biol Chem 291:13098-13112, 2016; J Am Chem Soc 138:8538-8546, 2016; J Am Chem Soc 138:12029-12032, 2016; J Am Chem Soc 134:6455-6466, 2012; J Am Chem Soc 132:1976-1987, 2010; J Am Chem Soc 135:17793-17803, 2013; Proc Natl Acad Sci USA 112:14617-14622, 2015; J Am Chem Soc 138:14066-14075, 2016) have established the capability of solid state nuclear magnetic resonance (NMR) measurements to provide site-specific structural and dynamical information that is not available from other types of measurements. Nonetheless, the relatively high molecular weight of HIV-1 CA leads to congestion of solid state NMR spectra of fully isotopically labeled assemblies that has been an impediment to further progress. Here we describe an efficient protocol for production of segmentally labeled HIV-1 CA samples in which either the N-terminal domain (NTD) or the C-terminal domain (CTD) is uniformly 15 N, 13 C-labeled. Segmental labeling is achieved by trans-splicing, using the DnaE split intein. Comparisons of two-dimensional solid state NMR spectra of fully labeled and segmentally labeled tubular CA assemblies show substantial improvements in spectral resolution. The molecular structure of HIV-1 assemblies is not significantly perturbed by the single Ser-to-Cys substitution that we introduce between NTD and CTD segments, as required for trans-splicing.

  12. A BAR domain in the N terminus of the Arf GAP ASAP1 affects membrane structure and trafficking of epidermal growth factor receptor.

    PubMed

    Nie, Zhongzhen; Hirsch, Dianne S; Luo, Ruibai; Jian, Xiaoying; Stauffer, Stacey; Cremesti, Aida; Andrade, Josefa; Lebowitz, Jacob; Marino, Michael; Ahvazi, Bijan; Hinshaw, Jenny E; Randazzo, Paul A

    2006-01-24

    Arf GAPs are multidomain proteins that function in membrane traffic by inactivating the GTP binding protein Arf1. Numerous Arf GAPs contain a BAR domain, a protein structural element that contributes to membrane traffic by either inducing or sensing membrane curvature. We have examined the role of a putative BAR domain in the function of the Arf GAP ASAP1. ASAP1's N terminus, containing the putative BAR domain together with a PH domain, dimerized to form an extended structure that bound to large unilamellar vesicles containing acidic phospholipids, properties that define a BAR domain. A recombinant protein containing the BAR domain of ASAP1, together with the PH and Arf GAP domains, efficiently bent the surface of large unilamellar vesicles, resulting in the formation of tubular structures. This activity was regulated by Arf1*GTP binding to the Arf GAP domain. In vivo, the tubular structures induced by ASAP1 mutants contained epidermal growth factor receptor (EGFR) and Rab11, and ASAP1 colocalized in tubular structures with EGFR during recycling of receptor. Expression of ASAP1 accelerated EGFR trafficking and slowed cell spreading. An ASAP1 mutant lacking the BAR domain had no effect. The N-terminal BAR domain of ASAP1 mediates membrane bending and is necessary for ASAP1 function. The Arf dependence of the bending activity is consistent with ASAP1 functioning as an Arf effector.

  13. Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation.

    PubMed

    O'Valle, Francisco; Del Moral, Raimundo G M; Benítez, María del Carmén; Martín-Oliva, David; Gómez-Morales, Mercedes; Aguilar, David; Aneiros-Fernández, José; Hernández-Cortés, Pedro; Osuna, Antonio; Moreso, Francesc; Serón, Daniel; Oliver, Francisco J; Del Moral, Raimundo G

    2009-09-28

    Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.

  14. Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis.

    PubMed

    Namba, Tomoko; Takabatake, Yoshitsugu; Kimura, Tomonori; Takahashi, Atsushi; Yamamoto, Takeshi; Matsuda, Jun; Kitamura, Harumi; Niimura, Fumio; Matsusaka, Taiji; Iwatani, Hirotsugu; Matsui, Isao; Kaimori, Junya; Kioka, Hidetaka; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-10-01

    Metabolic acidosis, a common complication of CKD, causes mitochondrial stress by undefined mechanisms. Selective autophagy of impaired mitochondria, called mitophagy, contributes toward maintaining cellular homeostasis in various settings. We hypothesized that mitophagy is involved in proximal tubular cell adaptations to chronic metabolic acidosis. In transgenic mice expressing green fluorescent protein-tagged microtubule-associated protein 1 light chain 3 (GFP-LC3), NH4Cl loading increased the number of GFP puncta exclusively in the proximal tubule. In vitro, culture in acidic medium produced similar results in proximal tubular cell lines stably expressing GFP-LC3 and facilitated the degradation of SQSTM1/p62 in wild-type cells, indicating enhanced autophagic flux. Upon acid loading, proximal tubule-specific autophagy-deficient (Atg5-deficient) mice displayed significantly reduced ammonium production and severe metabolic acidosis compared with wild-type mice. In vitro and in vivo, acid loading caused Atg5-deficient proximal tubular cells to exhibit reduced mitochondrial respiratory chain activity, reduced mitochondrial membrane potential, and fragmented morphology with marked swelling in mitochondria. GFP-LC3-tagged autophagosomes colocalized with ubiquitinated mitochondria in proximal tubular cells cultured in acidic medium, suggesting that metabolic acidosis induces mitophagy. Furthermore, restoration of Atg5-intact nuclei in Atg5-deficient proximal tubular cells increased mitochondrial membrane potential and ammoniagenesis. In conclusion, metabolic acidosis induces autophagy in proximal tubular cells, which is indispensable for maintaining proper mitochondrial functions including ammoniagenesis, and thus for adapted urinary acid excretion. Our results provide a rationale for the beneficial effect of alkali supplementation in CKD, a condition in which autophagy may be reduced, and suggest a new therapeutic option for acidosis by modulating autophagy. Copyright © 2014 by the American Society of Nephrology.

  15. Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct.

    PubMed

    Woda, Craig B; Leite, Maurilo; Rohatgi, Rajeev; Satlin, Lisa M

    2002-09-01

    Nucleotide binding to purinergic P2 receptors contributes to the regulation of a variety of physiological functions in renal epithelial cells. Whereas P2 receptors have been functionally identified at the basolateral membrane of the cortical collecting duct (CCD), a final regulatory site of urinary Na(+), K(+), and acid-base excretion, controversy exists as to whether apical purinoceptors exist in this segment. Nor has the distribution of receptor subtypes present on the unique cell populations that constitute Ca(2+) the CCD been established. To examine this, we measured nucleotide-induced changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura 2-loaded rabbit CCDs microperfused in vitro. Resting [Ca(2+)](i) did not differ between principal and intercalated cells, averaging approximately 120 nM. An acute increase in tubular fluid flow rate, associated with a 20% increase in tubular diameter, led to increases in [Ca(2+)](i) in both cell types. Luminal perfusion of 100 microM UTP or ATP-gamma-S, in the absence of change in flow rate, caused a rapid and transient approximately fourfold increase in [Ca(2+)](i) in both cell types (P < 0.05). Luminal suramin, a nonspecific P2 receptor antagonist, blocked the nucleotide- but not flow-induced [Ca(2+)](i) transients. Luminal perfusion with a P2X (alpha,beta-methylene-ATP), P2X(7) (benzoyl-benzoyl-ATP), P2Y(1) (2-methylthio-ATP), or P2Y(4)/P2Y(6) (UDP) receptor agonist had no effect on [Ca(2+)](i). The nucleotide-induced [Ca(2+)](i) transients were inhibited by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenyl borate, thapsigargin, which depletes internal Ca(2+) stores, luminal perfusion with a Ca(2+)-free perfusate, or the L-type Ca(2+) channel blocker nifedipine. These results suggest that luminal nucleotides activate apical P2Y(2) receptors in the CCD via pathways that require both internal Ca(2+) mobilization and extracellular Ca(2+) entry. The flow-induced rise in [Ca(2+)](i) is apparently not mediated by apical P2 purinergic receptor signaling.

  16. Enhanced Flexible Tubular Microelectrode with Conducting Polymer for Multi-Functional Implantable Tissue-Machine Interface

    PubMed Central

    Tian, Hong-Chang; Liu, Jing-Quan; Kang, Xiao-Yang; Tang, Long-Jun; Wang, Ming-Hao; Ji, Bo-Wen; Yang, Bin; Wang, Xiao-Lin; Chen, Xiang; Yang, Chun-Sheng

    2016-01-01

    Implantable biomedical microdevices enable the restoration of body function and improvement of health condition. As the interface between artificial machines and natural tissue, various kinds of microelectrodes with high density and tiny size were developed to undertake precise and complex medical tasks through electrical stimulation and electrophysiological recording. However, if only the electrical interaction existed between electrodes and muscle or nerve tissue without nutrition factor delivery, it would eventually lead to a significant symptom of denervation-induced skeletal muscle atrophy. In this paper, we developed a novel flexible tubular microelectrode integrated with fluidic drug delivery channel for dynamic tissue implant. First, the whole microelectrode was made of biocompatible polymers, which could avoid the drawbacks of the stiff microelectrodes that are easy to be broken and damage tissue. Moreover, the microelectrode sites were circumferentially distributed on the surface of polymer microtube in three dimensions, which would be beneficial to the spatial selectivity. Finally, the in vivo results confirmed that our implantable tubular microelectrodes were suitable for dynamic electrophysiological recording and simultaneous fluidic drug delivery, and the electrode performance was further enhanced by the conducting polymer modification. PMID:27229174

  17. Overexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo.

    PubMed

    Wang, Bin; Lin, Lilu; Wang, Haidong; Guo, Honglei; Gu, Yong; Ding, Wei

    2016-10-25

    The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We report that overexpression of wild-type CYPB attenuated aldosterone-induced oxidative stress (evidenced by reduced production of reactive oxygen species and improved mitochondrial dysfunction), ERS (indicated by reduced expression of the ERS markers glucose-regulated protein 78 [GRP78] and C/-EBP homologous protein [CHOP]), and tubular cell apoptosis in comparison with aldosterone-induced human kidney-2 (HK-2) cells. The in vivo study also yielded similar results. Hence, CYPB performs a crucial function in protecting cells against aldosterone-induced oxidative stress, ERS, and tubular cell injury via its PPIase activity.

  18. Overexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo

    PubMed Central

    Wang, Haidong; Guo, Honglei; Gu, Yong; Ding, Wei

    2016-01-01

    The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We report that overexpression of wild-type CYPB attenuated aldosterone-induced oxidative stress (evidenced by reduced production of reactive oxygen species and improved mitochondrial dysfunction), ERS (indicated by reduced expression of the ERS markers glucose-regulated protein 78 [GRP78] and C/-EBP homologous protein [CHOP]), and tubular cell apoptosis in comparison with aldosterone-induced human kidney-2 (HK-2) cells. The in vivo study also yielded similar results. Hence, CYPB performs a crucial function in protecting cells against aldosterone-induced oxidative stress, ERS, and tubular cell injury via its PPIase activity. PMID:27732567

  19. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  20. Helical image reconstruction of the outward-open human erythrocyte band 3 membrane domain in tubular crystals.

    PubMed

    Yamaguchi, Tomohiro; Fujii, Takashi; Abe, Yoshito; Hirai, Teruhisa; Kang, Dongchon; Namba, Keiichi; Hamasaki, Naotaka; Mitsuoka, Kaoru

    2010-03-01

    The C-terminal membrane domain of erythrocyte band 3 functions as an anion exchanger. Here, we report the three-dimensional (3D) structure of the membrane domain in an inhibitor-stabilized, outward-open conformation at 18A resolution. Unstained, frozen-hydrated tubular crystals containing the membrane domain of band 3 purified from human red blood cells (hB3MD) were examined using cryo-electron microscopy and iterative helical real-space reconstruction (IHRSR). The 3D image reconstruction of the tubular crystals showed the molecular packing of hB3MD dimers with dimensions of 60 x 110 A in the membrane plane and a thickness of 70A across the membrane. Immunoelectron microscopy and carboxyl-terminal digestion demonstrated that the intracellular surface of hB3MD was exposed on the outer surface of the tubular crystal. A 3D density map revealed that hB3MD consists of at least two subdomains and that the outward-open form is characterized by a large hollow area on the extracellular surface and continuous density on the intracellular surface. (c) 2009 Elsevier Inc. All rights reserved.

  1. Kidney biopsy in AA amyloidosis: impact of histopathology on prognosis.

    PubMed

    Kendi Celebi, Zeynep; Kiremitci, Saba; Ozturk, Bengi; Akturk, Serkan; Erdogmus, Siyar; Duman, Neval; Ates, Kenan; Erturk, Sehsuvar; Nergizoglu, Gokhan; Kutlay, Sim; Sengul, Sule; Ensari, Arzu; Keven, Kenan

    2017-09-01

    In AA amyloidosis, while kidney biopsy is widely considered for diagnosis by clinicians, there is no evidence that the detailed investigation of renal histopathology can be utilized for the prognosis and clinical outcomes. In this study, we aimed to obtain whether histopathologic findings in kidney biopsy of AA amyloidosis might have prognostic and clinical value. This is a retrospective cohort study that included 38 patients who were diagnosed with AA amyloidosis by kidney biopsy between 2005 and 2013.The kidney biopsy specimens of patients were evaluated and graded for several characteristics of histopathological lesions and their relationship with renal outcomes. Segmental amyloid deposition in the kidney biopsy was seen in 29%, global amyloid deposition in 71, diffuse involvement of glomeruli in 84.2%, focal involvement in 7%, glomerular enlargement in 53%, tubular atrophy in 75% and interstitial fibrosis in 78% of patients. Histopathologically, glomerular enlargement, interstitial fibrosis, tubular atrophy, interstitial inflammation and global amyloid deposition were significantly associated with lower estimated glomerular filtration rate (eGFR) (p = .02, p < .001, p = .001, p = .009, p = .002, respectively) in univariate analysis. In multivariate analysis, tubular atrophy was the only predictor of eGFR (p = .019 B = -20.573). In the follow-up at an average of 27 months, 18 patients developed end-stage renal disease (ESRD). Among them, global amyloid deposition was the only risk factor for the development of ESRD (p = .01, OR = 18.750, %95 CI= 2.021-173.942). This is the first study showing that the histopathological findings in kidney biopsy of AA amyloidosis might have a prognostic and clinical value for renal outcomes.

  2. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes.

    PubMed

    Hiermeier, Florian; Männer, Jörg

    2017-11-19

    Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.

  3. Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes

    PubMed Central

    Hiermeier, Florian; Männer, Jörg

    2017-01-01

    Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts. PMID:29367548

  4. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function

    PubMed Central

    Qi, Jia; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zeng, Ming; Zhang, Bo; Wang, Ningning; Mao, Huijuan; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-01

    Cisplatin chemotherapy often causes acute kidney injury (AKI) in cancer patients. There is increasing evidence that mitochondrial dysfunction plays an important role in cisplatin-induced nephrotoxicity. Degradation of damaged mitochondria is carried out by mitophagy. Although mitophagy is considered of particular importance in protecting against AKI, little is known of the precise role of mitophagy and its molecular mechanisms during cisplatin-induced nephrotoxicity. Also, evidence that activation of mitophagy improved mitochondrial function is lacking. Furthermore, several evidences have shown that mitochondrial fission coordinates with mitophagy. The aim of this study was to investigate whether activation of mitophagy protects against mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. The effect of mitochondrial fission on mitophagy was also investigated. In cultured human renal proximal tubular cells, we observed that 3-methyladenine, a pharmacological inhibitor of autophagy, blocked mitophagy and exacerbated cisplatin-induced mitochondrial dysfunction and cells injury. In contrast, autophagy activator rapamycin enhanced mitophagy and protected against the harmful effects of cisplatin on mitochondrial function and cells viability. Suppression of mitochondrial fission by knockdown of its main regulator dynamin-related protein-1 (Drp1) decreased cisplatin-induced mitophagy. Meanwhile, Drp1 suppression protected against cisplatin-induced cells injury by inhibiting mitochondrial dysfunction. Our results provide evidence that Drp1-depedent mitophagy has potential as renoprotective targets for the treatment of cisplatin-induced AKI. PMID:28423497

  5. PAROTID FLUID TOTAL PROTEIN IN PATIENTS WITH UREMIA AND PROTEINURIA.

    DTIC Science & Technology

    Stimulated parotid fluid samples (238) were collected from 32 patients to determine if altered renal function was associated with deviations in...tubular necrosis, and 15 had normal renal function. There were no significant differences in parotid fluid protein concentration or minute secretion associated with the state of renal function. (Author)

  6. Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury.

    PubMed

    Yao, Jian; Huang, Tao; Fang, Xin; Chi, Yuan; Zhu, Ying; Wan, Yigang; Matsue, Hiroyuki; Kitamura, Masanori

    2010-08-01

    Gap junctions play important roles in the regulation of cell phenotype and in determining cell survival after various insults. Here, we investigated the role of gap junctions in aminoglycoside-induced injury to renal tubular cells. Two tubular epithelial cell lines NRK-E52 and LLC-PK1 were compared for gap junction protein expression and function by immunofluorescent staining, Western blot and dye transfer assay. Cell viability after exposure to aminoglycosides was evaluated by WST assay. Gap junctions were modulated by transfection of the gap junction protein, connexin 43 (Cx43), use of Cx43 siRNA and gap junction inhibitors. NRK-E52 cells expressed abundant Cx43 and were functionally coupled by gap junctional intercellular communication (GJIC). Exposure of NRK-E52 cells to aminoglycosides, G418 and hygromycin, increased Cx43 phosphorylation and GJIC. The aminoglycosides also decreased cell viability that was prevented by gap junction inhibitors and Cx43 siRNA. LLC-PK1 cells were gap junction-deficient and resistant to aminoglycoside-induced cytotoxicity. Over-expression of a wild-type Cx43 converted LLC-PK1 cells to a drug-sensitive phenotype. The gap junction inhibitor alpha-glycyrrhetinic acid (alpha-GA) activated Akt in NRK-E52 cells. Inhibition of the Akt pathway enhanced cell toxicity to G418 and abolished the protective effects of alpha-GA. In addition, gentamycin-elicited cytotoxicity in NRK-E52 cells was also significantly attenuated by alpha-GA. Gap junctions contributed to the cytotoxic effects of aminoglycosides. Modulation of gap junctions could be a promising approach for prevention and treatment of aminoglycoside-induced renal tubular cell injury.

  7. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering.

    PubMed

    Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei

    2018-01-01

    Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.

  8. GDF11 induces kidney fibrosis, renal cell epithelial-to-mesenchymal transition, and kidney dysfunction and failure.

    PubMed

    Pons, Marianne; Koniaris, Leonidas G; Moe, Sharon M; Gutierrez, Juan C; Esquela-Kerscher, Aurora; Zimmers, Teresa A

    2018-05-03

    GDF11 modulates embryonic patterning and kidney organogenesis. Herein, we sought to define GDF11 function in the adult kidney and in renal diseases. In vitro renal cell lines, genetic, and murine in vivo renal injury models were examined. Among tissues tested, Gdf11 was highest in normal adult mouse kidney. Expression was increased acutely after 5/6 nephrectomy, ischemia-reperfusion injury, kanamycin toxicity, or unilateral ureteric obstruction. Systemic, high-dose GDF11 administration in adult mice led to renal failure, with accompanying kidney atrophy, interstitial fibrosis, epithelial-to-mesenchymal transition of renal tubular cells, and eventually death. These effects were associated with phosphorylation of SMAD2 and could be blocked by follistatin. In contrast, Gdf11 heterozygous mice showed reduced renal Gdf11 expression, renal fibrosis, and expression of fibrosis-associated genes both at baseline and after unilateral ureteric obstruction compared with wild-type littermates. The kidney-specific consequences of GDF11 dose modulation are direct effects on kidney cells. GDF11 induced proliferation and activation of NRK49f renal fibroblasts and also promoted epithelial-to-mesenchymal transition of IMCD-3 tubular epithelial cells in a SMAD3-dependent manner. Taken together, these data suggest that GDF11 and its downstream signals are critical in vivo mediators of renal injury. These effects are through direct actions of GDF11 on renal tubular cells and fibroblasts. Thus, regulation of GDF11 presents a therapeutic target for diseases involving renal fibrosis and impaired tubular function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    PubMed

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  10. Comparison of 1.5 and 3 T BOLD MR to study oxygenation of kidney cortex and medulla in human renovascular disease.

    PubMed

    Gloviczki, Monika L; Glockner, James; Gomez, Sabas I; Romero, Juan C; Lerman, Lilach O; McKusick, Michael; Textor, Stephen C

    2009-09-01

    Imaging of the kidney using blood oxygen level dependent MR presents a major opportunity to examine differences in tissue oxygenation within the cortex and medulla applicable to human disease. We sought to define the differences between regions within kidneys and to optimize selection of regions of interest for study with 1.5 and 3 Tesla systems. Studies in 38 subjects were performed under baseline conditions and after administration of furosemide intravenously to examine changes in R2* as a result of suppressing oxygen consumption related to medullary tubular solute transport. These studies were carried out in patients with atherosclerotic renal artery stenosis (n = 24 kidneys) or essential hypertension or nonstenotic kidneys (n = 39). All patients but one were treated with agents to block the renin angiotensin system (ACE inhibitors or angiotensin receptor blockers). For each kidney, 3 levels (upper pole, hilum, and lower pole) were examined, including 3 individual segments (anterior, lateral, and posterior). Low basal R2* levels in kidney cortex (12.06 +/- 0.84 s(-1)) at 1.5 Tesla reflected robust blood flow and oxygenation and agreed closely with values obtained at 3.0 Tesla (13.62 +/- 0.56 s(-1), NS). Coefficients of variation ranged between 15% and 20% between segments and levels at both field strengths. By contrast, inner medullary R2* levels were higher at 3 T (31.66 +/- 0.74 s(-1)) as compared with 1.5 T (22.19 +/- 1.52 s(-1), P < 0.01). Medullary R2* values fell after furosemide administration reflecting reduced deoxyhemoglobin levels associated with blocked energy-dependent transport. The fall in medullary R2* at 3.0 Tesla (-12.61 +/- 0.97 s(-1)) was greater than observed at 1.5 T (-6.07 +/- 1.38 s(-1), P < 0.05). Cortical R2* levels remained low after furosemide and did not vary with field strength. Correlations between measurements of defined cortical and medullary regions of interest within kidneys were greater at each sampling level and segment at 3.0 T as compared to 1.5 T. For patients studied with 3.0 T, furosemide administration induced a lesser fall in R2* in poststenotic kidneys at 3.0 T (-10.61 +/- 1.61 s(-1)) versus nonstenotic kidneys (-13.21 +/- 0.72 s(-1), P < 0.05). This difference was not evident in comparisons made at 1.5 T. The magnitude of furosemide-suppressible oxygen consumption at 3.0 T (-43%) corresponded more closely with reported experimental differences observed during direct measurement with tissue electrodes (45%-50%) than changes measured at 1.5 T. These results indicate that blood oxygen level dependent MR measurements at high field strength can better distinguish discrete cortical and inner medullary regions of the kidney and approximate measured differences in oxygen tension. Maneuvers that reduce oxygen consumption related to tubular solute transport allow functional evaluation of the interstitial compartment as a function of tissue oxygenation. Impaired response to alterations in oxygen consumption can be detected at 3 T more effectively than at 1.5 T and may provide real-time tools to examine developing parenchymal injury associated with impaired oxygenation.

  11. Creatinine, urea, uric acid, water and electrolytes renal handling in the healthy oldest old

    PubMed Central

    Musso, Carlos Guido; Álvarez Gregori, Joaquín; Jauregui, José Ricardo; Macías Núñez, Juan Florencio

    2012-01-01

    Renal physiology in the healthy oldest old has the following characteristics, in comparison with the renal physiology in the young: a reduced creatinine clearance, tubular pattern of creatinine back-filtration, preserved proximal tubule sodium reabsorption and uric acid secretion, reduced sodium reabsorption in the thick ascending loop of Henle, reduced free water clearance, increased urea excretion, presence of medulla hypotonicity, reduced urinary dilution and concentration capabilities, and finally a reduced collecting tubules response to furosemide which expresses a reduced potassium excretion in this segment due to a sort of aldosterone resistance. All physiological changes of the aged kidney are the same in both genders. PMID:24175249

  12. Functionalization of polycarbonate with proteins; open-tubular enzymatic microreactors.

    PubMed

    Ogończyk, D; Jankowski, P; Garstecki, P

    2012-08-07

    This paper examines a set of techniques for the immobilization of enzymes on the surface of microchannels fabricated in polycarbonate (PC). Our experiments identify the method that uses combined physico-chemical immobilization on a layer of polyethyleneimine (PEI) as a reproducible vista for the robust immobilization of proteins. As an example, we demonstrate the fabrication, throughput and stability of an open-tubular reactor draped with alkaline phosphatase (ALP, EC 3.1.3.1) as a model enzyme. As PC is suitable for industrial applications the method could potentially be used to immobilize proteins in numbered-up implementations.

  13. Neural regulation of renal tubular sodium reabsorption and renin secretion: integrative aspects.

    PubMed

    DiBona, G F

    1987-01-01

    Efferent renal sympathetic nerve activity plays an important role in the regulation of renal function. Via its direct influence on renal tubular sodium reabsorption throughout the entire mammalian nephron, alterations in efferent renal sympathetic nerve activity represent an important physiological contribution to the overall role of the kidney in the regulation of external sodium balance and the defense against sodium deficit and surfeit. Abnormalities of this mechanism can lead to inappropriate renal sodium retention and augmentation of renin secretion, two factors which are capable of contributing to the development and maintenance of hypertension.

  14. Comparison of celioscopy and histological examinations to assess male gonadal health and functionality in adults and immature wild raptors.

    PubMed

    Dogliero, Andrea; Rossi, Giacomo; Mauthe von Degerfeld, Mitzy; Quaranta, Giuseppe; Rota, Ada

    2017-10-15

    Celioscopy is routinely used in birds for sex determination and diagnostic purposes. Aim of this work was to validate celioscopy for the assessment of male gonads functionality in wild raptors, comparing the results of direct observation with morphometrical and histological characteristics. The work was done at the 'Centro Animali Non Convenzionali' of the University of Turin, Italy, on 31 endoscopically evaluated raptors that died or were euthanized. Through celioscopic observation, the birds were classified in adults or immatures and maturity categories were defined according to the adrenal-gonad size ratio and to the degree of blood filling of testicular vessels. The gonads were removed immediately after death/euthanasia and measured. Albuginea tunic thickness, diameter of seminiferous tubules, number of meiosis figures, tubular development degree, tubular degeneration degree and germinal cells production degree were evaluated. Testicular size tended to increase from immature to adult birds and from 'out of' to 'in' breeding season; albuginea tunic thickness tended to be higher out of the reproductive season while diameter of the seminiferous tubules, germinative epithelium thickness and number of meiosis figures were higher in the breeding season. In season adults generally showed higher values in tubular development and germinal cells production, and lower degrees of tubular cells degeneration and fibrosis. From the interpretation of all the morphometrical and histological aspects, a general reproductive degree of activity was given to the birds and compared with celioscopic results. A perfect concordance was found in 23 out of 31 cases and a good concordance in six ones; histology could describe obviously better sub-clinical conditions undetectable at direct observation. These preliminary results suggest that celioscopy could be a useful tool to assess male gonads functionality in wild raptors, with the future goal to select the better potential semen donors. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effects on vitamin D, bone and the kidney of switching from fixed-dose tenofovir disoproxil fumarate/emtricitabine/efavirenz to darunavir/ritonavir monotherapy: a randomized, controlled trial (MIDAS).

    PubMed

    Hamzah, Lisa; Tiraboschi, Juan M; Iveson, Helen; Toby, Martina; Mant, Christine; Cason, John; Burling, Keith; Wandolo, Emily; Jendrulek, Isabelle; Taylor, Chris; Ibrahim, Fowzia; Kulasegaram, Ranjababu; Teague, Alastair; Post, Frank A; Fox, Julie

    2016-01-01

    Efavirenz (EFV) has been associated with reductions in vitamin D (25[OH]D) and tenofovir (TDF) with increased bone turnover, reductions in bone mineral density (BMD) and renal tubular dysfunction. We hypothesized that switching from fixed-dose TDF/emtricitabine (FTC)/EFV to darunavir/ritonavir monotherapy (DRV/r) might increase 25(OH)D and BMD, and improve renal tubular function. Subjects with HIV RNA <50 copies/ml on TDF/FTC/EFV for ≥6 months were randomized 1:1 to ongoing TDF/FTC/EFV or DRV/r (800/100 mg once daily) for 48 weeks. The primary end point was change from baseline in 25(OH)D at week 48. Secondary end points included changes in BMD, bone turnover markers and renal tubular function. A total of 64 subjects (86% male, 66% white, mean [sd] CD4(+) T-cell count 537.3 [191.5]/mm(3)) were analysed. After adjustment for baseline 25(OH)D and demographics, at week 48 DRV/r monotherapy was associated with a +3.6 (95% CI 0.6, 6.6) ng/ml increase in 25(OH)D compared to TDF/FTC/EFV (P=0.02). DRV/r monotherapy was associated with an increase in BMD (+2.9% versus -0.003% at the neck of femur and +2.6% versus +0.008% at the lumbar spine for DRV/r versus TDF/FTC/EFV; P<0.05 for all) and reductions in bone biomarkers compared with those remaining on TDF/FTC/EFV. No significant difference in renal tubular function was observed. Reasons for discontinuation in the DRV/r arm included side effects (n=4) and viral load rebound (n=3), all of which resolved with DRV/r discontinuation or regimen intensification. Switching from TDF/FTC/EFV to DRV/r in patients with suppressed HIV RNA resulted in significant improvements in 25(OH)D and bone biomarkers, and a 2-3% increase in BMD.

  16. Poly[ADP-Ribose] Polymerase-1 Expression Is Related To Cold Ischemia, Acute Tubular Necrosis, and Delayed Renal Function In Kidney Transplantation

    PubMed Central

    O'Valle, Francisco; Del Moral, Raimundo G. M.; Benítez, María del Carmén; Martín-Oliva, David; Gómez-Morales, Mercedes; Aguilar, David; Aneiros-Fernández, José; Hernández-Cortés, Pedro; Osuna, Antonio; Moreso, Francesc; Serón, Daniel; Oliver, Francisco J.; Del Moral, Raimundo G.

    2009-01-01

    Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion (IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in non-ECD allografts that develop posttransplant acute tubular necrosis (ATN). Materials and Methods Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury. Results PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN. In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function. PMID:19784367

  17. 78 FR 14361 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, PA; Notice of Initiation of Investigation To Terminate Certification of Eligibility Pursuant to... Tubular Products, McKeesport Tubular Operations Division, Subsidiary of United States Steel Corporation...

  18. 78 FR 37584 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... make the following certification: All workers of U.S. Steel Tubular Products, McKeesport Tubular... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, Pennsylvania; Notice of Amended Certification Pursuant to Section 221 of the Trade Act of 1974...

  19. Fluid assisted installation of electrical cable accessories

    DOEpatents

    Mayer, Robert W.; Silva, Frank A.

    1977-01-01

    An electrical cable accessory includes a generally tubular member of elastomeric material which is to be installed by placement over a cylindrical surface to grip the cylindrical surface, when in appropriate assembled relation therewith, with a predetermined gripping force established by dilation of the tubular member, the installation being facilitated by introducing fluid under pressure, through means provided in the tubular member, between the tubular member and the cylindrical surface, and simultaneously impeding the escape of the fluid under pressure from between the tubular member and the cylindrical surface by means adjacent one of the ends of the tubular member to cause dilation of the tubular member and establish a fluid layer between the tubular member and the cylindrical surface, thereby reducing the gripping force during installation.

  20. Mitochondrial cytopathies and the kidney.

    PubMed

    Emma, Francesco; Salviati, Leonardo

    2017-04-01

    Mitochondrial cytopathies include a heterogeneous group of diseases that are characterized by impaired oxidative phosphorylation. Current evidence suggests that renal involvement is probably more frequent than originally suspected but remains subclinical in a significant number of patients or is underestimated due to the severity of other clinical manifestations. Until recently, these diseases were thought to develop primarily in pediatric patients but patients that become symptomatic only in adulthood are now well recognized. From a renal standpoint, many patients with severe systemic disease and several patients with oligo-symptomatic clinical pictures have tubular defects, ranging from isolated tubular wasting of electrolytes to complete forms of renal Fanconi syndrome. Aside from rare cases of tubulo-interstitial and cystic diseases, other patients present with glomerular diseases that correspond in the majority of cases to focal segmental glomerulosclerosis lesions. Two specific entities should be singled out, namely the 3243 A>G mutation in the gene encoding for the mitochondrial leucine tRNA because it represents the most frequent form of mitochondrial glomerulopathy, and defects in the biosynthesis of coenzyme Q10 because they represent one of the few treatable forms of mitochondrial cytopathies. Copyright © 2017 Société francophone de néphrologie, dialyse et transplantation. Published by Elsevier Masson SAS. All rights reserved.

  1. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    PubMed

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  2. Effect of initiator concentration to low-density polyethylene production in a tubular reactor

    NASA Astrophysics Data System (ADS)

    Azmi, A.; Aziz, N.

    2016-11-01

    Low-density polyethylene (LDPE) is one of the most widely used polymers in the world, which is produced in high-capacity tubular and autoclave reactors. As the LDPE industry turn into more competitive and its market profit margins become tighter, manufacturers have to develop solutions to debottleneck the reactor output while abiding to the stringent product specification. A single polyolefin plant producing ten to forty grades of LDPE with various melt flow index (MFI), therefore understanding the reaction mechanism, the operating conditions as well as the dynamic behavior of tubular reactor is essential before any improvement can take place. In the present work, a steady state mathematical model representing a tubular reactor for the production of LDPE is simulated using MATLAB R2015a®. The model developed is a function of feed inlet, reactor jacket, single initiator injector and outlet stream. Analysis on the effect of initiator concentration (CI) shows sudden declining trend of initiator's concentration which indicates that all of the initiators are exhausted after polymerization reaction and no further reaction occur from this point onwards. Furthermore, the results demonstrate that the concentration of initiator gives significant impact on reactor temperature's profile and monomer conversion rate, since higher initiator concentration promotes greater polymerization rate, and therefore leads to higher monomer conversion throughput.

  3. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications.

    PubMed

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2010-07-01

    This study provides a systematic and quantitative approach to the analysis and optimization of solar photocatalytic reactors utilized in environmental applications such as pollutant remediation and conversion of biomass (waste) to hydrogen. Ray tracing technique was coupled with the six-flux absorption scattering model (SFM) to analyze the complex radiation field in solar compound parabolic collectors (CPC) and tubular photoreactors. The absorption of solar radiation represented by the spatial distribution of the local volumetric rate of photon absorption (LVRPA) depends strongly on catalyst loading and geometry. The total radiation absorbed in the reactors, the volumetric rate of absorption (VRPA), was analyzed as a function of the optical properties (scattering albedo) of the photocatalyst. The VRPA reached maxima at specific catalyst concentrations in close agreement with literature experimental studies. The CPC has on average 70% higher photon absorption efficiency than a tubular reactor and requires 39% less catalyst to operate under optimum conditions. The "apparent optical thickness" is proposed as a new dimensionless parameter for optimization of CPC and tubular reactors. It removes the dependence of the optimum catalyst concentration on tube diameter and photocatalyst scattering albedo. For titanium dioxide (TiO(2)) Degussa P25, maximum photon absorption occurs at apparent optical thicknesses of 7.78 for CPC and 12.97 for tubular reactors.

  4. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury.

    PubMed

    Huang, Di; Wang, Chuangyuan; Duan, Yingjie; Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong; Liu, Kexin

    2017-07-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Urinary biomarkers in hexachloro-1:3-butadiene-induced acute kidney injury in the female Hanover Wistar rat; correlation of α-glutathione S-transferase, albumin and kidney injury molecule-1 with histopathology and gene expression.

    PubMed

    Swain, Aubrey; Turton, John; Scudamore, Cheryl L; Pereira, Ines; Viswanathan, Neeti; Smyth, Rosemary; Munday, Michael; McClure, Fiona; Gandhi, Mitul; Sondh, Surjit; York, Malcolm

    2011-05-01

    Hexachloro-1:3-butadiene (HCBD) causes kidney injury specific to the pars recta of the proximal tubule. In the present studies, injury to the nephron was characterized at 24 h following a single dose of HCBD, using a range of quantitative urinary measurements, renal histopathology and gene expression. Multiplexed renal biomarker measurements were performed using both the Meso Scale Discovery (MSD) and Rules Based Medicine platforms. In a second study, rats were treated with a single nephrotoxic dose of HCBD and the time course release of a range of traditional and newer urinary biomarkers was followed over a 25 day period. Urinary albumin (a marker of both proximal tubular function and glomerular integrity) and α-glutathione S-transferase (α-GST, a proximal tubular cell marker of cytoplasmic leakage) showed the largest fold change at 24 h (day 1) after dosing. Most other markers measured on either the MSD or RBM platforms peaked on day 1 or 2 post-dosing, whereas levels of kidney injury molecule-1 (KIM-1), a marker of tubular regeneration, peaked on day 3/4. Therefore, in rat proximal tubular nephrotoxicity, the measurement of urinary albumin, α-GST and KIM-1 is recommended as they potentially provide useful information about the function, degree of damage and repair of the proximal tubule. Gene expression data provided useful confirmatory information regarding exposure of the kidney and liver to HCBD, and the response of these tissues to HCBD in terms of metabolism, oxidative stress, inflammation, and regeneration and repair. Copyright © 2011 John Wiley & Sons, Ltd.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhenzhou, E-mail: jiangcpu@yahoo.com.cn; Bao, Qingli, E-mail: bao_ql@126.com; Sun, Lixin, E-mail: slxcpu@126.com

    This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague–Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged andmore » dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans. -- Highlights: ► AAI-induced acute renal failure in rats and the proximal tubule was the target. ► Tubular mitochondria were morphologically aberrant in ultrastructural examination. ► AAI impair mitochondrial bioenergetic function and mtDNA replication.« less

  7. Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury

    PubMed Central

    Yao, Jian; Huang, Tao; Fang, Xin; Chi, Yuan; Zhu, Ying; Wan, Yigang; Matsue, Hiroyuki; Kitamura, Masanori

    2010-01-01

    BACKGROUND AND PURPOSE Gap junctions play important roles in the regulation of cell phenotype and in determining cell survival after various insults. Here, we investigated the role of gap junctions in aminoglycoside-induced injury to renal tubular cells. EXPERIMENTAL APPROACH Two tubular epithelial cell lines NRK-E52 and LLC-PK1 were compared for gap junction protein expression and function by immunofluorescent staining, Western blot and dye transfer assay. Cell viability after exposure to aminoglycosides was evaluated by WST assay. Gap junctions were modulated by transfection of the gap junction protein, connexin 43 (Cx43), use of Cx43 siRNA and gap junction inhibitors. KEY RESULTS NRK-E52 cells expressed abundant Cx43 and were functionally coupled by gap junctional intercellular communication (GJIC). Exposure of NRK-E52 cells to aminoglycosides, G418 and hygromycin, increased Cx43 phosphorylation and GJIC. The aminoglycosides also decreased cell viability that was prevented by gap junction inhibitors and Cx43 siRNA. LLC-PK1 cells were gap junction-deficient and resistant to aminoglycoside-induced cytotoxicity. Over-expression of a wild-type Cx43 converted LLC-PK1 cells to a drug-sensitive phenotype. The gap junction inhibitor α-glycyrrhetinic acid (α-GA) activated Akt in NRK-E52 cells. Inhibition of the Akt pathway enhanced cell toxicity to G418 and abolished the protective effects of α-GA. In addition, gentamycin-elicited cytotoxicity in NRK-E52 cells was also significantly attenuated by α-GA. CONCLUSION AND IMPLICATIONS Gap junctions contributed to the cytotoxic effects of aminoglycosides. Modulation of gap junctions could be a promising approach for prevention and treatment of aminoglycoside-induced renal tubular cell injury. PMID:20649601

  8. NGAL attenuates renal ischemia/reperfusion injury through autophagy activation and apoptosis inhibition in rats.

    PubMed

    Zhang, Ya-Li; Qiao, Shu-Kai; Wang, Rong-Ying; Guo, Xiao-Nan

    2018-06-01

    Ischemia/reperfusion (I/R) injury is a main cause of acute kidney injury (AKI), and currently lacks effective therapies. This study is to investigate the level of Neutrophil gelatinase-associated lipocalin (NGAL) and autophagy status during renal I/R injury, so as to determine whether the exogenous NGAL protein could exert a protective effect for I/R injury and explore the potential mechanisms. Forty male Wistar rats were randomly divided into the following four groups: Sham, I/R, pre-treated with NGAL before I/R (I/R + pre-N), treated with NGAL after I/R (I/R + post-N). All rats were subjected to clamping the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. Serum creatinine (SCr) and blood urea nitrogen (BUN) were used for renal function, tubular cell apoptosis and autophagy were measured by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method, histological examination and electron microscope, respectively. The tubular cell proliferation was assessed by the protein expression of proliferating cell nuclear antigen (PCNA). Western blotting was used to quantitate the levels of LC3, Beclin-1, Bcl-2 and Bax in kidney tissues. Exogenous NGAL protein intervention significantly improved renal function, reduced tubular cell apoptosis, increased tubular cell proliferation and promoted autophagy activation after renal I/R injury. Further, the efficacy in pre-N was significantly better than post-N. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Our study demonstrated that exogenous NGAL protein play a protective role during I/R injury, which may offer a novel may for prevention and treatment of renal I/R injury. Copyright © 2018. Published by Elsevier B.V.

  9. Peripheral Nerve Repair in Rats Using Composite Hydrogel-Filled Aligned Nanofiber Conduits with Incorporated Nerve Growth Factor

    PubMed Central

    Jin, Jenny; Limburg, Sonja; Joshi, Sunil K.; Landman, Rebeccah; Park, Michelle; Zhang, Qia; Kim, Hubert T.

    2013-01-01

    Repair of peripheral nerve defects with current synthetic, tubular nerve conduits generally shows inferior recovery when compared with using nerve autografts, the current gold standard. We tested the ability of composite collagen and hyaluronan hydrogels, with and without the nerve growth factor (NGF), to stimulate neurite extension on a promising aligned, nanofiber poly-L-lactide-co-caprolactone (PLCL) scaffold. In vitro, the hydrogels significantly increased neurite extension from dorsal root ganglia explants. Consistent with these results, the addition of hydrogels as luminal fillers within aligned, nanofiber tubular PLCL conduits led to improved sensory function compared to autograft repair in a critical-size defect in the sciatic nerve in a rat model. Sensory recovery was assessed 3 and 12 weeks after repair using a withdrawal assay from thermal stimulation. The addition of hydrogel did not enhance recovery of motor function in the rat model. The NGF led to dose-dependent improvements in neurite out-growth in vitro, but did not have a significant effect in vivo. In summary, composite collagen/hyaluronan hydrogels enhanced sensory neurite outgrowth in vitro and sensory recovery in vivo. The use of such hydrogels as luminal fillers for tubular nerve conduits may therefore be useful in assisting restoration of protective sensation following peripheral nerve injury. PMID:23659607

  10. Activation of Hypoxia-Inducible Factors Prevents Diabetic Nephropathy

    PubMed Central

    Nordquist, Lina; Friederich-Persson, Malou; Fasching, Angelica; Liss, Per; Shoji, Kumi; Nangaku, Masaomi; Hansell, Peter

    2015-01-01

    Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glomerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharmacologic activation of the HIF system may prevent development of diabetic nephropathy. PMID:25183809

  11. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster.

    PubMed

    Sriram, V; Krishnan, K S; Mayor, Satyajit

    2003-05-12

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.

  12. Indoxyl Sulfate Induces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells.

    PubMed

    Ellis, Robert J; Small, David M; Ng, Keng Lim; Vesey, David A; Vitetta, Luis; Francis, Ross S; Gobe, Glenda C; Morais, Christudas

    2018-06-01

    Indoxyl sulfate (IS) is a protein-bound uremic toxin that accumulates in patients with declining kidney function. Although generally thought of as a consequence of declining kidney function, emerging evidence demonstrates direct cytotoxic role of IS on endothelial cells and cardiomyocytes, largely through the expression of pro-inflammatory and pro-fibrotic factors. The direct toxicity of IS on human kidney proximal tubular epithelial cells (PTECs) remains a matter of debate. The current study explored the effect of IS on primary cultures of human PTECs and HK-2, an immortalized human PTEC line. Pathologically relevant concentrations of IS induced apoptosis and increased the expression of the proapoptotic molecule Bax in both cell types. IS impaired mitochondrial metabolic activity and induced cellular hypertrophy. Furthermore, statistically significant upregulation of pro-fibrotic (transforming growth factor-β, fibronectin) and pro-inflammatory molecules (interleukin-6, interleukin-8, and tumor necrosis factor-α) in response to IS was observed. Albumin had no influence on the toxicity of IS. The results of this study suggest that IS directly induced a pro-inflammatory and pro-fibrotic phenotype in proximal tubular cells. In light of the associated apoptosis, hypertrophy, and metabolic dysfunction, this study demonstrates that IS may play a role in the progression of chronic kidney disease.

  13. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    PubMed

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.

  14. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    PubMed Central

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  15. [Acute renal failure and proximal renal tubular dysfuntion in a patient with acquired immunodeficiency syndrome treated with tenofovir].

    PubMed

    de la Prada, F J; Prados, A M; Tugores, A; Uriol, M; Saus, C; Morey, A

    2006-01-01

    Tenofovir, a new nucleotide reverse transcriptase inhibitor that has good antiviral activity against drug-resistant strains of HIV, is structurally similar to cidofovir and adefovir and seems to be less nephrotoxic. Nephrotoxicity of cidofovir and adefovir is well established and they have been associated with increase for acute renal insufficiency due to tubular toxicity, possibly induced via mitochondrial deplection. Tenofovir has little mithocondrial toxicity in in vitro assays and early clinical studies. However some cases of renal tubular dysfuntion and renal failure related to tenofovir treatment have been published recently. Increased plasma concentrations of didanosine were observed after the adition of tenofovir and protease inhibitors can interact with the renal transport of organic anions leading to proximal tubular intracellular accumulation of tenofovir, yield Fanconi syndrome-type tubulopathy. We present a case in wich acute renal failure and proximal tubular dysfunction developed after therapy with tenofovir in a patiente with HIV who had suffered from complications of didanosine treatment. Although nephrotoxicity certainly occurs much less frequently with tenofovir that it does with other nuclotide analogues, use of tenofovir by patients with underlying renal disfuntion, for longer durations and/or associated with didanosine or lopinavir-ritonavir, might be associated with renal toxicity. Patients receiving tenofovir must be monitored for sings of tubulopathy with simple tests such us glycosuria, phosphaturia, proteinuria, phosphoremia and renal function, as well as assessment for signs of mithocondrial toxicity when a nucleoside analogue is being administered, and therapy should be stopped to avoid the risk of definitive renal failure.

  16. Study of process parameter on mist lubrication of Titanium (Grade 5) alloy

    NASA Astrophysics Data System (ADS)

    Maity, Kalipada; Pradhan, Swastik

    2017-02-01

    This paper deals with the machinability of Ti-6Al-4V alloy with mist cooling lubrication using carbide inserts. The influence of process parameter on the cutting forces, evolution of tool wear, surface finish of the workpiece, material removal rate and chip reduction coefficient have been investigated. Weighted principal component analysis coupled with grey relational analysis optimization is applied to identify the optimum setting of the process parameter. Optimal condition of the process parameter was cutting speed at 160 m/min, feed at 0.16 mm/rev and depth of cut at 1.6 mm. Effects of cutting speed and depth of cut on the type of chips formation were observed. Most of the chips forms were long tubular and long helical type. Image analyses of the segmented chip were examined to study the shape and size of the saw tooth profile of serrated chips. It was found that by increasing cutting speed from 95 m/min to 160 m/min, the free surface lamella of the chips increased and the visibility of the saw tooth segment became clearer.

  17. Verifying the error bound of numerical computation implemented in computer systems

    DOEpatents

    Sawada, Jun

    2013-03-12

    A verification tool receives a finite precision definition for an approximation of an infinite precision numerical function implemented in a processor in the form of a polynomial of bounded functions. The verification tool receives a domain for verifying outputs of segments associated with the infinite precision numerical function. The verification tool splits the domain into at least two segments, wherein each segment is non-overlapping with any other segment and converts, for each segment, a polynomial of bounded functions for the segment to a simplified formula comprising a polynomial, an inequality, and a constant for a selected segment. The verification tool calculates upper bounds of the polynomial for the at least two segments, beginning with the selected segment and reports the segments that violate a bounding condition.

  18. New Aspects of the Structure of Human Scalp Hair-II: Tubular Structure and Material Flow Property of the Medulla.

    PubMed

    Yamauchi, Asao; Yamauchi, Kiyoshi

    Asian scalp hair fibers were made thin by treatment with papain or sliced along the longitudinal axis or randomly cut by mechanical means. Optical microscopic observations of the resulting specimens indicated that (i) the medulla (M) consisted of two types of the M-surrounding cells which were linearly linked one another to form a tubular structure running through the fiber and (ii) the drum-shaped vesicles containing small proteinous granules were neatly or sparsely stored within the tube. On the other hand, H + and OH - ions were able to move spontaneously from one end to another through the M tube. Large molecules such as an anthocyanin dye (from purple sweet potato) were also capable of flowing through the M tube, especially rapidly when DC voltage was applied between the two ends of the hair fiber. The possible function of the M is briefly discussed in conjunction with the tubular structure and the material flow property.

  19. Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus

    PubMed Central

    Suzuki, Takafumi; Seki, Shiori; Hiramoto, Keiichiro; Naganuma, Eriko; Kobayashi, Eri H.; Yamaoka, Ayaka; Baird, Liam; Takahashi, Nobuyuki; Sato, Hiroshi; Yamamoto, Masayuki

    2017-01-01

    NF-E2-related factor-2 (Nrf2) regulates cellular responses to oxidative and electrophilic stress. Loss of Keap1 increases Nrf2 protein levels, and Keap1-null mice die of oesophageal hyperkeratosis because of Nrf2 hyperactivation. Here we show that deletion of oesophageal Nrf2 in Keap1-null mice allows survival until adulthood, but the animals develop polyuria with low osmolality and bilateral hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced aquaporin 2 levels in the kidney. Renal tubular deletion of Keap1 promotes nephrogenic diabetes insipidus features, confirming that Nrf2 activation in developing tubular cells causes a water reabsorption defect. These findings suggest that Nrf2 activity should be tightly controlled during development in order to maintain renal homeostasis. In addition, tissue-specific ablation of Nrf2 in Keap1-null mice might create useful animal models to uncover novel physiological functions of Nrf2. PMID:28233855

  20. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  1. Chronic kidney disease, severe arterial and arteriolar sclerosis and kidney neoplasia: on the spectrum of kidney involvement in MELAS syndrome

    PubMed Central

    2012-01-01

    Background MELAS syndrome (MIM ID#540000), an acronym for Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-like episodes, is a genetically heterogeneous mitochondrial disorder with protean manifestations and occasional kidney involvement. Interest in the latter is rising due to the identification of cases with predominant kidney involvement and to the hypothesis of a link between mitochondrial DNA and kidney neoplasia. Case presentation We report the case of a 41-year-old male with full blown MELAS syndrome, with lactic acidosis and neurological impairment, affected by the "classic" 3243A > G mutation of mitochondrial DNA, with kidney cancer. After unilateral nephrectomy, he rapidly developed severe kidney functional impairment, with nephrotic proteinuria. Analysis of the kidney tissue at a distance from the two tumor lesions, sampled at the time of nephrectomy was performed in the context of normal blood pressure, recent onset of diabetes and before the appearance of proteinuria. The morphological examination revealed a widespread interstitial fibrosis with dense inflammatory infiltrate and tubular atrophy, mostly with thyroidization pattern. Vascular lesions were prominent: large vessels displayed marked intimal fibrosis and arterioles had hyaline deposits typical of hyaline arteriolosclerosis. These severe vascular lesions explained the different glomerular alterations including ischemic and obsolescent glomeruli, as is commonly observed in the so-called "benign" arteriolonephrosclerosis. Some rare glomeruli showed focal segmental glomerulosclerosis; as the patient subsequently developed nephrotic syndrome, these lesions suggest that silent ischemic changes may result in the development of focal segmental glomerulosclerosis secondary to nephron loss. Conclusions Nephron loss may trigger glomerular sclerosis, at least in some cases of MELAS-related nephropathy. Thus the incidence of kidney disease in the "survivors" of MELAS syndrome may increase as the support therapy of these patients improves. PMID:22353239

  2. Chronic kidney disease, severe arterial and arteriolar sclerosis and kidney neoplasia: on the spectrum of kidney involvement in MELAS syndrome.

    PubMed

    Piccoli, Giorgina Barbara; Bonino, Laura Davico; Campisi, Paola; Vigotti, Federica Neve; Ferraresi, Martina; Fassio, Federica; Brocheriou, Isabelle; Porpiglia, Francesco; Restagno, Gabriella

    2012-02-21

    MELAS syndrome (MIM ID#540000), an acronym for Mitochondrial Encephalopathy, Lactic Acidosis and Stroke-like episodes, is a genetically heterogeneous mitochondrial disorder with protean manifestations and occasional kidney involvement. Interest in the latter is rising due to the identification of cases with predominant kidney involvement and to the hypothesis of a link between mitochondrial DNA and kidney neoplasia. We report the case of a 41-year-old male with full blown MELAS syndrome, with lactic acidosis and neurological impairment, affected by the "classic" 3243A > G mutation of mitochondrial DNA, with kidney cancer. After unilateral nephrectomy, he rapidly developed severe kidney functional impairment, with nephrotic proteinuria. Analysis of the kidney tissue at a distance from the two tumor lesions, sampled at the time of nephrectomy was performed in the context of normal blood pressure, recent onset of diabetes and before the appearance of proteinuria. The morphological examination revealed a widespread interstitial fibrosis with dense inflammatory infiltrate and tubular atrophy, mostly with thyroidization pattern. Vascular lesions were prominent: large vessels displayed marked intimal fibrosis and arterioles had hyaline deposits typical of hyaline arteriolosclerosis. These severe vascular lesions explained the different glomerular alterations including ischemic and obsolescent glomeruli, as is commonly observed in the so-called "benign" arteriolonephrosclerosis. Some rare glomeruli showed focal segmental glomerulosclerosis; as the patient subsequently developed nephrotic syndrome, these lesions suggest that silent ischemic changes may result in the development of focal segmental glomerulosclerosis secondary to nephron loss. Nephron loss may trigger glomerular sclerosis, at least in some cases of MELAS-related nephropathy. Thus the incidence of kidney disease in the "survivors" of MELAS syndrome may increase as the support therapy of these patients improves.

  3. Comparative ultrastructure of coxal glands in unfed larvae of Leptotrombidium orientale (Schluger, 1948) (Trombiculidae) and Hydryphantes ruber (de Geer, 1778) (Hydryphantidae).

    PubMed

    Shatrov, Andrey B

    2017-11-01

    Coxal glands of unfed larvae Leptotrombidium orientale (Schluger, 1948) (Trombiculidae), a terrestrial mite parasitizing vertebrates, and Hydryphantes ruber (de Geer, 1778) (Hydryphantidae), a water mite parasitizing insects were studied using transmission electron microscopy. In both species, the coxal glands are represented by a paired tubular organ extending on the sides of the brain from the mouthparts to the frontal midgut wall and are formed of the cells arranged around the central lumen. As in other Parasitengona, the coxal glands are devoid of a proximal sacculus. The excretory duct, joining with ducts of the prosomal salivary glands constitutes the common podocephalic duct, opening into the subcheliceral space. The coxal glands of L. orientale are composed of a distal tubule with a basal labyrinth, an intermediate segment without labyrinth, and a proximal tubule bearing tight microvilli on the apical cell surface and coiled around the intermediate segment. The coxal glands of H. ruber mainly consist of the uniformly organized proximal tubule with apical microvilli of the cells lacking the basal labyrinth. This tubule shows several loops running backward and forward in a vertical plane on the side of the brain. In contrast to L. orientale, larvae of H. ruber reveal a terminal cuticular sac/bladder for accumulation of secreted fluids. Organization of the coxal glands depends on the ecological conditions of mites. Larvae of terrestrial L. orientale possess distal tubule functioning in re-absorption of ions and water. Conversely, water mite larvae H. ruber need to evacuate of the water excess, so the filtrating proximal tubule is prominent. © 2017 Wiley Periodicals, Inc.

  4. Automatic 3D segmentation of spinal cord MRI using propagated deformable models

    NASA Astrophysics Data System (ADS)

    De Leener, B.; Cohen-Adad, J.; Kadoury, S.

    2014-03-01

    Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.

  5. Tubular inverse opal scaffolds for biomimetic vessels

    NASA Astrophysics Data System (ADS)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03173k

  6. A Novel Therapy to Attenuate Acute Kidney Injury and Ischemic Allograft Damage after Allogenic Kidney Transplantation in Mice

    PubMed Central

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20–50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells. PMID:25617900

  7. A novel therapy to attenuate acute kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice.

    PubMed

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann; Wensvoort, Gert; Rong, Song

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20-50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells.

  8. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.

    PubMed

    Stefani, I; Cooper-White, J J

    2016-05-01

    Cardiovascular diseases remain the largest cause of death worldwide, and half of these deaths are the result of failure of the vascular system. Tissue engineering promises to provide new, and potentially more effective therapeutic strategies to replace damaged or degenerated vessels with functional vessels. However, these engineered vessels have substantial performance criteria, including vessel-like tubular shape, structure and mechanical property slate. Further, whether implanted without or with prior in vitro culture, such tubular scaffolds must provide a suitable environment for cell adhesion and growth and be of sufficient porosity to permit cell colonization. This study investigates the fabrication of slowly degradable, composite tubular polymer scaffolds made from polycaprolactone (PCL) and acrylated l-lactide-co-trimethylene carbonate (aPLA-co-TMC). The addition of acrylate groups permits the 'in-process' formation of crosslinks between aPLA-co-TMC chains during electrospinning of the composite system, exemplifying a novel process to produce multicomponent, elastomeric electrospun polymer scaffolds. Although PCL and aPLA-co-TMC were miscible in a co-solvent, a criteria for electrospinning, due to thermodynamic incompatibility of the two polymers as melts, solvent evaporation during electrospinning drove phase separation of these two systems, producing 'core-shell' fibres, with the core being composed of PCL, and the shell of crosslinked elastomeric aPLA-co-TMC. The resulting elastic fibrous scaffolds displayed burst pressures and suture retention strengths comparable with human arteries. Cytocompatibility testing with human mesenchymal stem cells confirmed adhesion to, and proliferation on the three-dimensional fibrous network, as well as alignment with highly-organized fibres. This new processing methodology and resulting mechanically-robust composite scaffolds hold significant promise for tubular tissue engineering applications. Autologous small diameter blood vessel grafts are unsuitable solutions for vessel repair. Engineered solutions such as tubular biomaterial scaffolds however have substantial performance criteria to meet, including vessel-like tubular shape, structure and mechanical property slate. We detail herein an innovative methodology to co-electrospin and 'in-process' crosslink composite mixtures of Poly(caprolactone) and a newly synthesised acrylated-Poly(lactide-co-trimethylene-carbonate) to create elastomeric, core-shell nanofibrous porous scaffolds in a one-step process. This novel composite system can be used to make aligned scaffolds that encourage stem cell adhesion, growth and morphological control, and produce robust tubular scaffolds of tunable internal diameter and wall thickness that possess mechanical properties approaching those of native vessels, ideal for future applications in the field of vessel tissue engineering. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. Performance of Serum Creatinine and Kidney Injury Biomarkers for Diagnosing Histologic Acute Tubular Injury.

    PubMed

    Moledina, Dennis G; Hall, Isaac E; Thiessen-Philbrook, Heather; Reese, Peter P; Weng, Francis L; Schröppel, Bernd; Doshi, Mona D; Wilson, F Perry; Coca, Steven G; Parikh, Chirag R

    2017-12-01

    The diagnosis of acute kidney injury (AKI), which is currently defined as an increase in serum creatinine (Scr) concentration, provides little information on the condition's actual cause. To improve phenotyping of AKI, many urinary biomarkers of tubular injury are being investigated. Because AKI cases are not frequently biopsied, the diagnostic accuracy of concentrations of Scr and urinary biomarkers for histologic acute tubular injury is unknown. Cross-sectional analysis from multicenter prospective cohort. Hospitalized deceased kidney donors on whom kidney biopsies were performed at the time of organ procurement for histologic evaluation. (1) AKI diagnosed by change in Scr concentration during donor hospitalization and (2) concentrations of urinary biomarkers (neutrophil gelatinase-associated lipocalin [NGAL], liver-type fatty acid-binding protein [L-FABP], interleukin 18 [IL-18], and kidney injury molecule 1 [KIM-1]) measured at organ procurement. Histologic acute tubular injury. Of 581 donors, 98 (17%) had mild acute tubular injury and 57 (10%) had severe acute tubular injury. Overall, Scr-based AKI had poor diagnostic performance for identifying histologic acute tubular injury and 49% of donors with severe acute tubular injury did not have AKI. The area under the receiver operating characteristic curve (AUROC) of change in Scr concentration for diagnosing severe acute tubular injury was 0.58 (95% CI, 0.49-0.67) and for any acute tubular injury was 0.52 (95% CI, 0.45-0.58). Compared with Scr concentration, NGAL concentration demonstrated higher AUROC for diagnosing both severe acute tubular injury (0.67; 95% CI, 0.60-0.74; P=0.03) and any acute tubular injury (0.60; 95% CI, 0.55-0.66; P=0.005). In donors who did not have Scr-based AKI, NGAL concentrations were higher with increasing severities of acute tubular injury (subclinical AKI). However, compared with Scr concentration, AUROCs for acute tubular injury diagnosis were not significantly higher for urinary L-FABP, IL-18, or KIM-1. The spectrum of AKI cause in deceased donors may be different from that of a general hospitalized population. Concentrations of Scr and kidney injury biomarkers (L-FABP, IL-18, and KIM-1) lack accuracy for diagnosing acute tubular injury in hospitalized deceased donors. Although urinary NGAL concentration had slightly higher discrimination for acute tubular injury than did Scr concentration, its overall AUROC was still modest. Published by Elsevier Inc.

  10. Ambient occlusion effects for combined volumes and tubular geometry.

    PubMed

    Schott, Mathias; Martin, Tobias; Grosset, A V Pascal; Smith, Sean T; Hansen, Charles D

    2013-06-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.

  11. Ambient Occlusion Effects for Combined Volumes and Tubular Geometry

    PubMed Central

    Schott, Mathias; Martin, Tobias; Grosset, A.V. Pascal; Smith, Sean T.; Hansen, Charles D.

    2013-01-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed. PMID:23559506

  12. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  13. Inhibition of WISE preserves renal allograft function.

    PubMed

    Qian, Xueming; Yuan, Xiaodong; Vonderfecht, Steven; Ge, Xupeng; Lee, Jae; Jurisch, Anke; Zhang, Li; You, Andrew; Fitzpatrick, Vincent D; Williams, Alexia; Valente, Eliane G; Pretorius, Jim; Stevens, Jennitte L; Tipton, Barbara; Winters, Aaron G; Graham, Kevin; Harriss, Lindsey; Baker, Daniel M; Damore, Michael; Salimi-Moosavi, Hossein; Gao, Yongming; Elkhal, Abdallah; Paszty, Chris; Simonet, W Scott; Richards, William G; Tullius, Stefan G

    2013-01-01

    Wnt-modulator in surface ectoderm (WISE) is a secreted modulator of Wnt signaling expressed in the adult kidney. Activation of Wnt signaling has been observed in renal transplants developing interstitial fibrosis and tubular atrophy; however, whether WISE contributes to chronic changes is not well understood. Here, we found moderate to high expression of WISE mRNA in a rat model of renal transplantation and in kidneys from normal rats. Treatment with a neutralizing antibody against WISE improved proteinuria and graft function, which correlated with higher levels of β-catenin protein in kidney allografts. In addition, treatment with the anti-WISE antibody reduced infiltration of CD68(+) macrophages and CD8(+) T cells, attenuated glomerular and interstitial injury, and decreased biomarkers of renal injury. This treatment reduced expression of genes involved in immune responses and in fibrogenic pathways. In summary, WISE contributes to renal dysfunction by promoting tubular atrophy and interstitial fibrosis.

  14. Method of securing filter elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.

    2016-10-04

    A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit bodymore » housing.« less

  15. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury.

    PubMed

    Ceron, Carla S; Baligand, Celine; Joshi, Sunil; Wanga, Shaynah; Cowley, Patrick M; Walker, Joy P; Song, Sang Heon; Mahimkar, Rajeev; Baker, Anthony J; Raffai, Robert L; Wang, Zhen J; Lovett, David H

    2017-06-01

    Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH 2 -terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.

  16. Imatinib Increases Serum Creatinine by Inhibiting Its Tubular Secretion in a Reversible Fashion in Chronic Myeloid Leukemia.

    PubMed

    Vidal-Petiot, Emmanuelle; Rea, Delphine; Serrano, Fidéline; Stehlé, Thomas; Gardin, Claude; Rousselot, Philippe; Peraldi, Marie-Noëlle; Flamant, Martin

    2016-03-01

    Monitoring renal function is important in imatinib-treated patients with chronic myeloid leukemia because serum creatinine may increase during the course of therapy. The mechanism of this increase and its reversibility on treatment cessation have never been investigated. We retrospectively analyzed data from imatinib-treated patients explored in our renal physiology unit with measurement of glomerular filtration rate (urinary clearance of (51)CrEDTA) and of urinary clearance and tubular secretion of creatinine. Results were compared with those of controls matched for measured glomerular filtration rate, age, gender, and ethnicity. We also analyzed variations of serum creatinine before and during imatinib cessation and after imatinib resumption in patients enrolled in imatinib discontinuation studies. In 4 imatinib-treated patients who underwent thorough renal exploration, the part of creatinine clearance due to tubular secretion was negligible (2.4, 3.1, -1.3, and 2.8 mL/min) and significantly lower than that measured in their respective controls (17.7 ± 5.6, 43.0 ± 18.0, 23.1 ± 6.7, and 18.6 ± 5.6 mL/min, P < .001). In 1 patient, exploration was repeated after imatinib discontinuation and evidenced a recovery of creatinine tubular secretion (20.3 vs. 17.9 ± 5.2 mL/min in the control population, P = .2). In 15 patients of imatinib discontinuation studies, a median decrease in serum creatinine of 17.9% was observed after imatinib cessation. Resumption of treatment in 6 patients led to a median increase in serum creatinine of 18.8%. Imatinib completely blunts tubular secretion of creatinine, a previously unreported pharmacologic property. This inhibition increases serum creatinine independently of any glomerular dysfunction and is fully reversible on imatinib cessation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A miniature implantable coil that can be wrapped around a tubular organ within the human body

    NASA Astrophysics Data System (ADS)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    There are many tubular or rod-shaped organs and tissues within the human body. A miniature medical implant that wraps around such a biological structure can monitor or modulate its function. In order to provide the wrap-around implant with power, a solenoidal coil coupled wirelessly with a planar coil outside the human body can be used. Unfortunately, there is a serious practical problem that this configuration cannot be realized easily because the implantable solenoidal coil cannot be positioned around the tubular biological structure unless either the structure or the coil is cut and reconnected, which is impermissible in most cases. In addition, when a planner exterior coil is used for wireless power transfer and communication, its maximum magnetic coupling with the implanted solenoidal coil is achieved when the tubular structure is perpendicular to the surface of the body. However, in human anatomy, most tubular/rod structures are oriented horizontally. In order to solve these problems, we present a new flexible coil for the class of wrapped-around implantable devices. Our multilayer coil has specially designed windings in cross patterns. The new coil can be made conveniently in high precision at low cost on a flat substrate using the same technology for making the flexible multilayer printed circuit boards along with miniature sensors and electronic circuits. This allows the implant to be made in a flat form and then wrapped around the biostructure during surgery. We present the design of this new coil, perform theoretical analysis with respect to its wireless power transfer efficiency, discuss the effects of coil parameters, and conduct experiments using constructed miniature prototypes. Our results confirm the validity of the new coil.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Yu, E-mail: wychen624@cgmh.org.tw; Chang, Ya-Jen; Su, Chia-Hao

    Interstitial fibrosis and loss of parenchymal tubular cells are the common outcomes of progressive renal diseases. Pro-inflammatory cytokines have been known contributing to the damage of tubular cells and fibrosis responses after renal injury. Interleukin (IL)-33 is a tissue-derived nucleus alarmin that drives inflammatory responses. The regulation and function of IL-33 in renal injury, however, is not well understood. To investigate the involvement of cytokines in the pathogenesis of renal injury and fibrosis, we performed the mouse renal injury model induced by unilateral urinary obstruction (UUO) and analyze the differentially upregulated genes between the obstructed and the contralateral unobstructed kidneysmore » using RNA sequencing (RNAseq). Our RNAseq data identified IL33 and its receptor ST2 were upregulated in the UUO kidney. Quantitative analysis confirmed that transcripts of IL33 and ST2 were upregulated in the obstructed kidneys. Immunofluorescent staining revealed that IL-33 was upregulated in Vimentin- and alpha-SMA-positive interstitial cells. By using genetically knockout mice, deletion of IL33 reduced UUO-induced renal fibrosis. Moreover, in combination with BrdU labeling technique, we observed that the numbers of proliferating tubular epithelial cells were increased in the UUO kidneys from IL33-or ST2-deficient mice compared to wild type mice. Collectively, our study demonstrated the upregulation of IL-33/ST2 signaling in the obstructed kidney may promote tubular cell injury and interstitial fibrosis. IL-33 may serve as a biomarker to detect renal injury and that IL-33/ST2 signaling may represent a novel target for treating renal diseases. -- Highlights: •Interleukin (IL)-33 was upregulated in obstructed kidneys. •Interstitial myofibroblasts expressed IL-33 after UUO-induced renal injury. •Deficiency of IL33 reduced interstitial fibrosis and promoted tubular cell proliferation.« less

  19. Fascin-1 is released from proximal tubular cells in response to calcineurin inhibitors (CNIs) and correlates with isometric vacuolization in kidney transplanted patients

    PubMed Central

    Jacobs-Cachá, Conxita; Torres, Irina B; López-Hellín, Joan; Cantarell, Carme; Azancot, María A; Román, Antonio; Moreso, Francesc; Serón, Daniel; Meseguer, Anna; Sarró, Eduard

    2017-01-01

    Immunosuppression based on calcineurin inhibitors (CNIs) has greatly improved organ transplantation, although subsequent nephrotoxicity significantly hinders treatment success. There are no currently available specific soluble biomarkers for CNI-induced nephrotoxicity and diagnosis relies on renal biopsy, which is costly, invasive and may cause complications. Accordingly, identification of non-invasive biomarkers distinguishing CNI-induced kidney tubular damage from that of other etiologies would greatly improve diagnosis and enable more precise dosage adjustment. For this purpose, HK-2 cells, widely used to model human proximal tubule, were treated with CNIs cyclosporine-A and FK506, or staurosporine as a calcineurin-independent toxic compound, and secretomes of each treatment were analyzed by proteomic means. Among the differentially secreted proteins identified, only fascin-1 was specifically released by both CNIs but not by staurosporine. To validate fascin-1 as a biomarker of CNI-induced tubular toxicity, fascin-1 levels were analyzed in serum and urine from kidney-transplanted patients under CNIs treatment presenting or not isometric vacuolization (IV), which nowadays represents the main histological hallmark of CNI-induced tubular damage. Patients with chronic kidney disease (CKD) and healthy volunteers were used as controls. Our results show that urinary fascin-1 was only significantly elevated in the subset of CNI-treated patients presenting IV. Moreover, fascin-1 anticipated the rise of sCr levels in serially collected urine samples from CNI-treated pulmonary-transplanted patients, where a decline in kidney function and serum creatinine (sCr) elevation was mainly attributed to CNIs treatment. In conclusion, our results point towards fascin-1 as a putative soluble biomarker of CNI-induced damage in the kidney tubular compartment. PMID:28979691

  20. Fascin-1 is released from proximal tubular cells in response to calcineurin inhibitors (CNIs) and correlates with isometric vacuolization in kidney transplanted patients.

    PubMed

    Jacobs-Cachá, Conxita; Torres, Irina B; López-Hellín, Joan; Cantarell, Carme; Azancot, María A; Román, Antonio; Moreso, Francesc; Serón, Daniel; Meseguer, Anna; Sarró, Eduard

    2017-01-01

    Immunosuppression based on calcineurin inhibitors (CNIs) has greatly improved organ transplantation, although subsequent nephrotoxicity significantly hinders treatment success. There are no currently available specific soluble biomarkers for CNI-induced nephrotoxicity and diagnosis relies on renal biopsy, which is costly, invasive and may cause complications. Accordingly, identification of non-invasive biomarkers distinguishing CNI-induced kidney tubular damage from that of other etiologies would greatly improve diagnosis and enable more precise dosage adjustment. For this purpose, HK-2 cells, widely used to model human proximal tubule, were treated with CNIs cyclosporine-A and FK506, or staurosporine as a calcineurin-independent toxic compound, and secretomes of each treatment were analyzed by proteomic means. Among the differentially secreted proteins identified, only fascin-1 was specifically released by both CNIs but not by staurosporine. To validate fascin-1 as a biomarker of CNI-induced tubular toxicity, fascin-1 levels were analyzed in serum and urine from kidney-transplanted patients under CNIs treatment presenting or not isometric vacuolization (IV), which nowadays represents the main histological hallmark of CNI-induced tubular damage. Patients with chronic kidney disease (CKD) and healthy volunteers were used as controls. Our results show that urinary fascin-1 was only significantly elevated in the subset of CNI-treated patients presenting IV. Moreover, fascin-1 anticipated the rise of sCr levels in serially collected urine samples from CNI-treated pulmonary-transplanted patients, where a decline in kidney function and serum creatinine (sCr) elevation was mainly attributed to CNIs treatment. In conclusion, our results point towards fascin-1 as a putative soluble biomarker of CNI-induced damage in the kidney tubular compartment.

  1. Zinc deficiency during growth: influence on renal function and morphology.

    PubMed

    Tomat, Analía Lorena; Costa, María Angeles; Girgulsky, Luciana Carolina; Veiras, Luciana; Weisstaub, Adriana Ruth; Inserra, Felipe; Balaszczuk, Ana María; Arranz, Cristina Teresa

    2007-03-13

    This study was designed to investigate the effects of moderate zinc deficiency during growth on renal morphology and function in adult life. Weaned male Wistar rats were divided into two groups and fed either a moderately zinc-deficient diet (zinc: 8 mg/kg, n=12) or a control diet (zinc: 30 mg/kg, n=12) for 60 days. We evaluated: renal parameters, NADPH-diaphorase and nitric oxide synthase activity in kidney, renal morphology and apoptotic cells in renal cortex. Zinc-deficient rats showed a decrease in glomerular filtration rate and no changes in sodium and potassium urinary excretion. Zinc deficiency decreased NADPH diaphorase activity in glomeruli and tubular segment of nephrons, and reduced activity of nitric oxide synthase in the renal medulla and cortex, showing that zinc plays an important role in preservation of the renal nitric oxide system. A reduction in nephron number, glomerular capillary area and number of glomerular nuclei in cortical and juxtamedullary areas was observed in zinc deficient kidneys. Sirius red staining and immunostaining for alpha-smooth muscle-actin and collagen III showed no signs of fibrosis in the renal cortex and medulla. An increase in the number of apoptotic cells in distal tubules and cortical collecting ducts neighboring glomeruli and, to a lesser extent, in the glomeruli was observed in zinc deficient rats. The major finding of our study is the emergence of moderate zinc deficiency during growth as a potential nutritional factor related to abnormalities in renal morphology and function that facilitates the development of cardiovascular and renal diseases in adult life.

  2. Ascending aorta dilatation in patients with bicuspid aortic valve stenosis: a prospective CMR study.

    PubMed

    Rossi, Alexia; van der Linde, Denise; Yap, Sing Chien; Lapinskas, Thomas; Kirschbaum, Sharon; Springeling, Tirza; Witsenburg, Maarten; Cuypers, Judith; Moelker, Adriaan; Krestin, Gabriel P; van Dijk, Arie; Johnson, Mark; van Geuns, Robert-Jan; Roos-Hesselink, Jolien W

    2013-03-01

    The aim of this study was to evaluate the natural progression of aortic dilatation and its association with aortic valve stenosis (AoS) in patients with bicuspid aortic valve (BAV). Prospective study of aorta dilatation in patients with BAV and AoS using cardiac magnetic resonance (CMR). Aortic root, ascending aorta, aortic peak velocity, left ventricular systolic and diastolic function and mass were assessed at baseline and at 3-year follow-up. Of the 33 enrolled patients, 5 needed surgery, while 28 patients (17 male; mean age: 31 ± 8 years) completed the study. Aortic diameters significantly increased at the aortic annulus, sinus of Valsalva and tubular ascending aorta levels (P < 0.050). The number of patients with dilated tubular ascending aortas increased from 32 % to 43 %. No significant increase in sino-tubular junction diameter was observed. Aortic peak velocity, ejection fraction and myocardial mass significantly increased while the early/late filling ratio significantly decreased at follow-up (P < 0.050). The progression rate of the ascending aorta diameter correlated weakly with the aortic peak velocity at baseline (R (2) = 0.16, P = 0.040). BAV patients with AoS showed a progressive increase of aortic diameters with maximal expression at the level of the tubular ascending aorta. The progression of aortic dilatation correlated weakly with the severity of AoS.

  3. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Di

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps),more » which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.« less

  4. Distal renal tubular dysfunction: a common feature in calcium stone formers.

    PubMed

    Megevand, M; Favre, H

    1984-12-01

    Distal renal tubular acidosis has been reported as an uncommon cause of urinary calcium stone disease. However, this defect appears to be more frequent when appropriate tests are performed systematically. Twenty-nine patients with recurrent calcium stones have been separated into three groups: normocalciuric (group A), renal hypercalciuric (group B) and absorptive hypercalciuric (group C). Distal tubular functions were investigated by the (urine-blood) pCO2 gradient and by an ammonium chloride test. (Urine-blood) pCO2 gradient was (mean +/- SEM), 3.33 +/- 0.59 in group A, 2.95 +/- 0.34 in group B and 3.31 +/- 0.58 kPa in group C. All these values differ significantly from those observed in controls (4.11 +/- 0.28 kPa; P less than 0.05). After 3 days of ammonium chloride loading, ammonium excretion averaged 54.7 +/- 4.2 in group A, 54.4 +/- 4.3 in group B and 64.3 +/- 5.5 mumol min-1 in group C. Values obtained in the first two groups were significantly lower than that achieved by control subjects (76.4 +/- 14.9 mumol min-1). It is concluded that tubular dysfunctions defined as impairments in hydrogen ion secretion and ammonium excretion after an acid challenge are a common feature of the urinary calcium stone disease and play a contributory role in its pathogenesis.

  5. A Cost-Effective Culture System for the In Vitro Assembly, Maturation, and Stimulation of Advanced Multilayered Multiculture Tubular Tissue Models.

    PubMed

    Loy, Caroline; Pezzoli, Daniele; Candiani, Gabriele; Mantovani, Diego

    2018-01-01

    The development of tubular engineered tissues is a challenging research area aiming to provide tissue substitutes but also in vitro models to test drugs, medical devices, and even to study physiological and pathological processes. In this work, the design, fabrication, and validation of an original cost-effective tubular multilayered-tissue culture system (TMCS) are reported. By exploiting cellularized collagen gel as scaffold, a simple moulding technique and an endothelialization step on a rotating system, TMCS allowed to easily prepare in 48 h, trilayered arterial wall models with finely organized cellular composition and to mature them for 2 weeks without any need of manipulation. Multilayered constructs incorporating different combinations of vascular cells are compared in terms of cell organization and viscoelastic mechanical properties demonstrating that cells always progressively aligned parallel to the longitudinal direction. Also, fibroblast compacted less the collagen matrix and appeared crucial in term of maturation/deposition of elastic extracellular matrix. Preliminary studies under shear stress stimulation upon connection with a flow bioreactor are successfully conducted without damaging the endothelial monolayer. Altogether, the TMCS herein developed, thanks to its versatility and multiple functionalities, holds great promise for vascular tissue engineering applications, but also for other tubular tissues such as trachea or oesophagus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Vesicle-mediated growth of tubular branches and centimeter-long microtubes from a single molecule.

    PubMed

    Abbas, Abdennour; Brimer, Andrew; Tian, Limei; d'Avignon, D André; Hameed, Abdulrahman Shahul; Vittal, Jagadese J; Singamaneni, Srikanth

    2013-08-12

    The mechanism by which small molecules assemble into microscale tubular structures in aqueous solution remains poorly understood, particularly when the initial building blocks are non-amphiphilic molecules and no surfactant is used. It is here shown how a subnanometric molecule, namely p-aminothiophenol (p-ATP), prepared in normal water with a small amount of ethanol, spontaneously assembles into a new class of nanovesicle. Due to Brownian motion, these nanostructures rapidly grow into micrometric vesicles and start budding to yield macroscale tubular branches with a remarkable growth rate of ∼20 μm s⁻¹. A real-time visualization by optical microscopy reveals that tubular growth proceeds by vesicle walk and fusion on the apex (growth cone) and sides of the branches and ultimately leads to the generation of centimeter-long microtubes. This unprecedented growth mechanism is triggered by a pH-activated proton switch and maintained by hydrogen bonding. The vesicle fusion-mediated synthesis suggests that functional microtubes with biological properties can be efficiently prepared with a mixture of appropriate diaminophenyl blocks and the desired macromolecule. The reversibility, timescale, and very high yield (90%) of this synthetic approach make it a valuable model for the investigation of hierarchical and structural transition between organized assemblies with different size scales and morphologies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Subband-Based Group Delay Segmentation of Spontaneous Speech into Syllable-Like Units

    NASA Astrophysics Data System (ADS)

    Nagarajan, T.; Murthy, H. A.

    2004-12-01

    In the development of a syllable-centric automatic speech recognition (ASR) system, segmentation of the acoustic signal into syllabic units is an important stage. Although the short-term energy (STE) function contains useful information about syllable segment boundaries, it has to be processed before segment boundaries can be extracted. This paper presents a subband-based group delay approach to segment spontaneous speech into syllable-like units. This technique exploits the additive property of the Fourier transform phase and the deconvolution property of the cepstrum to smooth the STE function of the speech signal and make it suitable for syllable boundary detection. By treating the STE function as a magnitude spectrum of an arbitrary signal, a minimum-phase group delay function is derived. This group delay function is found to be a better representative of the STE function for syllable boundary detection. Although the group delay function derived from the STE function of the speech signal contains segment boundaries, the boundaries are difficult to determine in the context of long silences, semivowels, and fricatives. In this paper, these issues are specifically addressed and algorithms are developed to improve the segmentation performance. The speech signal is first passed through a bank of three filters, corresponding to three different spectral bands. The STE functions of these signals are computed. Using these three STE functions, three minimum-phase group delay functions are derived. By combining the evidence derived from these group delay functions, the syllable boundaries are detected. Further, a multiresolution-based technique is presented to overcome the problem of shift in segment boundaries during smoothing. Experiments carried out on the Switchboard and OGI-MLTS corpora show that the error in segmentation is at most 25 milliseconds for 67% and 76.6% of the syllable segments, respectively.

  8. Tubular inverse opal scaffolds for biomimetic vessels.

    PubMed

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-14

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.

  9. EMMPRIN expression is involved in the development of interstitial fibrosis and tubular atrophy in human kidney allografts.

    PubMed

    Kemmner, Stephan; Schulte, Christian; von Weyhern, Claus Hann; Schmidt, Roland; Baumann, Marcus; Heemann, Uwe; Renders, Lutz; Schmaderer, Christoph

    2016-03-01

    Matrix metalloproteinases (MMP) are involved in the development of interstitial fibrosis and tubular atrophy (IF/TA) in renal disease. The synthesis of MMP is activated by the extracellular matrix metalloproteinases inducer protein (EMMPRIN). To analyze the role of EMMPRIN in IF/TA, we retrospectively detected EMMPRIN expression in specimens of human renal allografts with various levels of IF/TA. Immunohistochemistry was performed to detect EMMPRIN expression. In a retrospective analysis, a total cohort of 50 specimens were divided according to BANFF-classification into four subgroups (0-3): no, mild (≤ 25%), moderate (26-50%), or severe (>50%) IF/TA. Among other parameters, renal function was analyzed and compared to EMMPRIN expression. In 24 of 38 biopsies, we detected positive EMMPRIN staining. All nephrectomy (n = 12) samples were negative for EMMPRIN. Positive staining in the biopsy samples was detectable on the basolateral side of tubular epithelial cells. EMMPRIN staining was negatively correlated with IF/TA (p < 0.001). We found significant differences between the mean EMMPRIN expression in IF/TA groups 0 and 3 (p = 0.021) and groups 1 and 3 (p = 0.004). Furthermore, we found significant correlations between EMMPRIN staining and renal function. Our data suggest that EMMPRIN is involved in the pathophysiology of IF/TA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Renal tubular ACE-mediated tubular injury is the major contributor to microalbuminuria in early diabetic nephropathy.

    PubMed

    Eriguchi, Masahiro; Lin, Mercury; Yamashita, Michifumi; Zhao, Tuantuan V; Khan, Zakir; Bernstein, Ellen A; Gurley, Susan B; Gonzalez-Villalobos, Romer A; Bernstein, Kenneth E; Giani, Jorge F

    2018-04-01

    Diabetic nephropathy is a major cause of end-stage renal disease in developed countries. While angiotensin-converting enzyme (ACE) inhibitors are used to treat diabetic nephropathy, how intrarenal ACE contributes to diabetic renal injury is uncertain. Here, two mouse models with different patterns of renal ACE expression were studied to determine the specific contribution of tubular vs. glomerular ACE to early diabetic nephropathy: it-ACE mice, which make endothelial ACE but lack ACE expression by renal tubular epithelium, and ACE 3/9 mice, which lack endothelial ACE and only express renal ACE in tubular epithelial cells. The absence of endothelial ACE normalized the glomerular filtration rate and endothelial injury in diabetic ACE 3/9 mice. However, these mice developed tubular injury and albuminuria and displayed low renal levels of megalin that were similar to those observed in diabetic wild-type mice. In diabetic it-ACE mice, despite hyperfiltration, the absence of renal tubular ACE greatly reduced tubulointerstitial injury and albuminuria and increased renal megalin expression compared with diabetic wild-type and diabetic ACE 3/9 mice. These findings demonstrate that endothelial ACE is a central regulator of the glomerular filtration rate while tubular ACE is a key player in the development of tubular injury and albuminuria. These data suggest that tubular injury, rather than hyperfiltration, is the main cause of microalbuminuria in early diabetic nephropathy.

  11. 75 FR 28058 - Certain Oil Country Tubular Goods From China; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1159 (Final)] Certain Oil Country Tubular... threatened with material injury by reason of imports from China of certain oil country tubular goods (``OCTG... are contained in USITC Publication 4152 (May 2010), entitled Certain Oil Country Tubular Goods From...

  12. A case of Fanconi syndrome due to a deferasirox overdose and a trial of plasmapheresis.

    PubMed

    Shah, L; Powell, J L; Zaritsky, J J

    2017-10-01

    Deferasirox has nephrotoxic effects in the context of chronic therapy. This case report illustrates proximal tubular dysfunction (Fanconi syndrome) due to an acute deferasirox overdose. In response, we trialled plasmapheresis to eliminate the drug. Deferasirox levels were obtained in the context of three rounds of plasmapheresis. Given the half-life model of decay, we concluded that plasmapheresis may not have been successful. The patient ultimately recovered normal tubular function after 2 months. This report is the first to describe acute deferasirox-induced nephrotoxicity, and the application of plasmapheresis that, ultimately, did not change the typical time to recovery. © 2017 John Wiley & Sons Ltd.

  13. In vitro generation of renal tubular epithelial cells from fibroblasts: implications for precision and regenerative medicine in nephrology.

    PubMed

    Wyatt, Christina M; Dubois, Nicole

    2017-02-01

    Prior efforts to generate renal epithelial cells in vitro have relied on pluripotent or bone marrow-derived mesenchymal stem cells. A recent publication in Nature Cell Biology describes the generation of induced tubular epithelial cells from fibroblasts, potentially offering a novel platform for personalized drug toxicity screening and in vitro disease modeling. This report serves as a promising proof of principle study and opens future research directions, including the optimization of the reprogramming process, efficient translation to adult human fibroblasts, and the generation of highly specific functional renal cell types. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  14. Fundamental understanding and rational design of high energy structural microbatteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel

    Microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices and medical applications, etc. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights inmore » designing the structural microbatteries for emerging technologies.« less

  15. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  16. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries) were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  17. [Laparascopic cholecystectomy in patients with acute cholecystitis].

    PubMed

    Tokin, A N; Chistiakov, A A; Mamalygina, L A; Zheliabin, D G; Osokin, G Iu

    2008-01-01

    Experience of diagnostics and treatment of 758 patients with acute cholecystitis was summarized. Authors attach the main importance to evaluation of ultrasound data and functional condition of respiratory and cardio-vascular sistem choosing the method of surgical treatment. Sparse use of laparoscopic cholecystectomy in treatment of acute cholecystitis compared with chronic may be explouned by presence of complications in patients which make problems in differentiation of tubular structures during the operation. Authors offered to use ultrasound dissection for clear identification of tubular structures and argon coagulation for hemostasis and safe mobilization of gall bladder. Stick to suggested tactics authors practically doubled the amount of performed laparoscopic cholecystectomies reducing at the same time the frequency of complications.

  18. Connector tube for a turbine rotor cooling circuit

    DOEpatents

    Li, Ming Cheng

    2003-06-24

    A tubular connector adapted to extend between two tubular components comprising a tubular body having an internal diameter, a first free end including an annular radial flange having a tapered surface adapted to engage a complementary seating surface on a first of the two tubular components, the internal diameter remaining constant through the first free end; and a second free end having an annular bulbous shape adapted to seat within a cylindrical end of a second of the two tubular components.

  19. Connector tube for a turbine rotor cooling circuit

    DOEpatents

    Li, Ming Cheng

    2002-01-01

    A tubular connector adapted to extend between two tubular components comprising a tubular body having an internal diameter, a first free end including an annular radial flange having a tapered surface adapted to engage a complementary seating surface on a first of the two tubular components, the internal diameter remaining constant through the first free end; and a second free end having an annular bulbous shape adapted to seat within a cylindrical end of a second of the two tubular components.

  20. Airflow structures and nano-particle deposition in a human upper airway model

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Kleinstreuer, C.

    2004-07-01

    Considering a human upper airway model, or equivalently complex internal flow conduits, the transport and deposition of nano-particles in the 1-150 nm diameter range are simulated and analyzed for cyclic and steady flow conditions. Specifically, using a commercial finite-volume software with user-supplied programs as a solver, the Euler-Euler approach for the fluid-particle dynamics is employed with a low-Reynolds-number k- ω model for laminar-to-turbulent airflow and the mass transfer equation for dispersion of nano-particles or vapors. Presently, the upper respiratory system consists of two connected segments of a simplified human cast replica, i.e., the oral airways from the mouth to the trachea (Generation G0) and an upper tracheobronchial tree model of G0-G3. Experimentally validated computational fluid-particle dynamics results show the following: (i) transient effects in the oral airways appear most prominently during the decelerating phase of the inspiratory cycle; (ii) selecting matching flow rates, total deposition fractions of nano-size particles for cyclic inspiratory flow are not significantly different from those for steady flow; (iii) turbulent fluctuations which occur after the throat can persist downstream to at least Generation G3 at medium and high inspiratory flow rates (i.e., Qin⩾30 l/min) due to the enhancement of flow instabilities just upstream of the flow dividers; however, the effects of turbulent fluctuations on nano-particle deposition are quite minor in the human upper airways; (iv) deposition of nano-particles occurs to a relatively greater extent around the carinal ridges when compared to the straight tubular segments in the bronchial airways; (v) deposition distributions of nano-particles vary with airway segment, particle size, and inhalation flow rate, where the local deposition is more uniformly distributed for large-size particles (say, dp=100 nm) than for small-size particles (say, dp=1 nm); (vi) dilute 1 nm particle suspensions behave like certain (fuel) vapors which have the same diffusivities; and (vii) new correlations for particle deposition as a function of a diffusion parameter are most useful for global lung modeling.

  1. Why kidneys fail post-partum: a tubulocentric viewpoint.

    PubMed

    Villie, Patricia; Dommergues, Marc; Brocheriou, Isabelle; Piccoli, Giorgina Barbara; Tourret, Jérôme; Hertig, Alexandre

    2018-04-10

    Kidneys may fail post-partum in a number of circumstances due, for example, to post-partum haemorrhage, preeclampsia, amniotic fluid embolism or septic abortion. All these conditions in pregnancy and post partum represent a threat not only to the endothelium but also to the renal tubular epithelium, and as such may lead to rapid and also irreversible impairment of the renal function. This paper is a non-systematic review of the literature and of our experience, in which we discuss the main open issues on kidney disease in pregnancy and following delivery, in particular as regards tubular damage, with the aim to help reasoning on acute kidney injury (AKI) following delivery. The review will emphasize the often under-estimated importance of the tubular epithelium in the peri-partum period and will: (1) describe the main characteristics of the renal tissues around delivery; (2) define pregnancy-related AKI according to recent Kidney Disease/Improving Global Outcome (KDIGO) guidelines; (3) discuss the most common circumstances of post-partum AKI; and (4) describe the input expected from urinalysis, renal imaging and kidney biopsy.

  2. Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway.

    PubMed

    He, Ting; Guan, Xu; Wang, Song; Xiao, Tangli; Yang, Ke; Xu, Xinli; Wang, Junping; Zhao, Jinghong

    2015-02-15

    Resveratrol (RSV) is reported to have renoprotective activity against diabetic nephropathy, while the mechanisms underlying its function have not been fully elucidated. In this study, we investigate the effect and related mechanism of RSV against high glucose-induced epithelial to mesenchymal transition (EMT) in human tubular epithelial cells (HK-2). A typical EMT is induced by high glucose in HK-2 cells, accompanied by increased levels of reactive oxygen species (ROS). RSV exhibits a strong ability to inhibit high glucose-induced EMT by decreasing intracellular ROS levels via down-regulation of NADPH oxidase subunits NOX1 and NOX4. The activation of extracellular signal-regulated kinase (ERK1/2) is found to be involved in high glucose-induced EMT in HK-2 cells. RSV, like NADPH oxidase inhibitor diphenyleneiodonium, can block ERK1/2 activation induced by high glucose. Our results demonstrate that RSV is a potent agent against high glucose-induced EMT in renal tubular cells via inhibition of NADPH oxidase/ROS/ERK1/2 pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Vancomycin-Associated Cast Nephropathy

    PubMed Central

    Luque, Yosu; Louis, Kevin; Jouanneau, Chantal; Placier, Sandrine; Esteve, Emmanuel; Bazin, Dominique; Rondeau, Eric; Letavernier, Emmanuel; Wolfromm, Alice; Gosset, Clément; Boueilh, Anna; Burbach, Maren; Frère, Perrine; Verpont, Marie-Christine; Vandermeersch, Sophie; Langui, Dominique; Daudon, Michel; Frochot, Vincent

    2017-01-01

    Vancomycin is a widely prescribed antibiotic, but the exact nature of vancomycin-associated nephrotoxicity is unclear, in particular when considering the frequent coadministration of aminoglycosides. We describe here the initial case of a 56-year-old woman with normal renal function developing unexplained ARF without hypovolemia after administration of vancomycin without coadministration of aminoglycosides. Studying the patient’s renal biopsy specimen, we ascertained that obstructive tubular casts composed of noncrystal nanospheric vancomycin aggregates entangled with uromodulin explained the vancomycin-associated ARF. We developed in parallel a new immunohistologic staining technique to detect vancomycin in renal tissue and confirmed retrospectively that deleterious vancomycin-associated casts existed in eight additional patients with acute tubular necrosis in the absence of hypovolemia. Concomitant high vancomycin trough plasma levels had been observed in each patient. We also reproduced experimentally the toxic and obstructive nature of vancomycin-associated cast nephropathy in mice, which we detected using different in vivo imaging techniques. In conclusion, the interaction of uromodulin with nanospheric vancomycin aggregates represents a new mode of tubular cast formation, revealing the hitherto unsuspected mechanism of vancomycin-associated renal injury. PMID:28082518

  4. Vancomycin-Associated Cast Nephropathy.

    PubMed

    Luque, Yosu; Louis, Kevin; Jouanneau, Chantal; Placier, Sandrine; Esteve, Emmanuel; Bazin, Dominique; Rondeau, Eric; Letavernier, Emmanuel; Wolfromm, Alice; Gosset, Clément; Boueilh, Anna; Burbach, Maren; Frère, Perrine; Verpont, Marie-Christine; Vandermeersch, Sophie; Langui, Dominique; Daudon, Michel; Frochot, Vincent; Mesnard, Laurent

    2017-06-01

    Vancomycin is a widely prescribed antibiotic, but the exact nature of vancomycin-associated nephrotoxicity is unclear, in particular when considering the frequent coadministration of aminoglycosides. We describe here the initial case of a 56-year-old woman with normal renal function developing unexplained ARF without hypovolemia after administration of vancomycin without coadministration of aminoglycosides. Studying the patient's renal biopsy specimen, we ascertained that obstructive tubular casts composed of noncrystal nanospheric vancomycin aggregates entangled with uromodulin explained the vancomycin-associated ARF. We developed in parallel a new immunohistologic staining technique to detect vancomycin in renal tissue and confirmed retrospectively that deleterious vancomycin-associated casts existed in eight additional patients with acute tubular necrosis in the absence of hypovolemia. Concomitant high vancomycin trough plasma levels had been observed in each patient. We also reproduced experimentally the toxic and obstructive nature of vancomycin-associated cast nephropathy in mice, which we detected using different in vivo imaging techniques. In conclusion, the interaction of uromodulin with nanospheric vancomycin aggregates represents a new mode of tubular cast formation, revealing the hitherto unsuspected mechanism of vancomycin-associated renal injury. Copyright © 2017 by the American Society of Nephrology.

  5. Minimally Invasive Treatment for a Sacral Tarlov Cyst Through Tubular Retractors.

    PubMed

    Del Castillo-Calcáneo, Juan D; Navarro-Ramírez, Rodrigo; Nakhla, Jonathan; Kim, Eliana; Härtl, Roger

    2017-12-01

    Tarlov cysts (TC) are focal dilations of arachnoid and dura mater of the spinal posterior nerve root sheath that appear as cystic lesions of the nerve roots typically in the lower spine, especially in the sacrum, which can cause radicular symptoms when they increase in size and compress the nerve roots. Different open procedures have been described to treat TCs, but no minimally invasive procedures have been described to effectively address this pathology. A 29-year-old woman presented with right lower extremity pain and weakness. A magnetic resonance imaging scan demonstrated a lumbosacral TC that protruded through the right L5-S1 foramina. Through a small laminotomy, cyst drainage followed by neck ligation using a Scanlan modified technique through tubular retractors was performed. The patient recovered full motor function within the first days postoperatively and showed no signs of relapse at 6-month follow-up. Minimally invasive spine surgery through tubular retractors can be safely performed for successful excision and ligation of TC using a Scanlan modified technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [Case of young woman with Graves' disease and incomplete distal renal tubular acidosis with severe progress and cardiac arrest].

    PubMed

    Klimm, Wojciech; Kade, Grzegorz; Spaleniak, Sebastian; Dubchak, Ivanna; Niemczyk, Stanisław

    2014-07-01

    Diagnostic of renal tubular disorders can be often difficult. Incomplete form of distal Renal Tubular Acidosis (dRta) in course of Graves' disease was de novo recognized in a young woman hospitalized with a deep deficiency of potassium in blood serum complicated with cardiac arrest. Series of tests assessing the types and severity of water-electrolyte, acid-base and thyroid disorders were performed during a complex diagnosis. During the treatment of acute phase of the disease we intensified efforts to maintain basic life functions and to eliminate deep water-electrolyte disturbances. In the second phase of the treatment we determined an underlying cause of the disease, recognized dRTA, and introduced a specific long-term electrolyte and hormonal therapy. To confirm the diagnosis oral test with ammonium chloride (Wrong-Davies' test) was performed. After completion of the diagnostic and therapeutic process, the patient was included in the nephrological supervision on an outpatient basis. The basic drug for the therapy was sodium citrate. After a year of observation and continuing treatment we evaluated therapeutic results as good and permanent.

  7. Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury.

    PubMed

    Zhao, Chuanyan; Chen, Zhuyun; Xu, Xueqiang; An, Xiaofei; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zhang, Bo; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-15

    Cisplatin often causes acute kidney injury (AKI) in the treatment of a wide variety of malignancies. Mitochondrial dysfunction is one of the main reasons for cisplatin nephrotoxicity. Previous study showed that Pink1 and Parkin play central roles in regulating the mitophagy, which is a key protective mechanism by specifically eliminating dysfunctional or damaged mitochondria. However, the mechanisms that modulate mitophagy in cisplatin induced nephrotoxicity remain to be elucidated. The purpose of this study was to investigate the effects of Pink1/Parkin pathway in mitophagy, mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. In cultured human renal proximal tubular cells, we found that knockdown of Pink1/Parkin induced the aggravation of mitochondrial function, leading to the increase of cell injury through inhibition of mitophagy. Additionally, the overexpression of Pink1/Parkin protected against cisplatin-induced mitochondrial dysfunction and cell injury by promoting mitophagy. Our results provide clear evidence that Pink1/Parkin-dependent mitophagy has identified potential targets for the treatment of cisplatin-induced AKI. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A class of dynamin-like GTPases involved in the generation of the tubular ER network

    PubMed Central

    Hu, Junjie; Shibata, Yoko; Zhu, Peng-Peng; Voss, Christiane; Rismanchi, Neggy; Prinz, William A.; Rapoport, Tom A.; Blackstone, Craig

    2009-01-01

    The endoplasmic reticulum (ER) consists of tubules that are shaped by the reticulons and DP1/Yop1p, but how the tubules form an interconnected network is unknown. Here, we show that mammalian atlastins, which are dynamin-like, integral membrane GTPases, interact with the tubule-shaping proteins. The atlastins localize to the tubular ER and are required for proper network formation in vivo and in vitro. Depletion of the atlastins or overexpression of dominant-negative forms inhibits tubule interconnections. The Sey1p GTPase in S. cerevisiae is likely a functional ortholog of the atlastins; it shares the same signature motifs and membrane topology and interacts genetically and physically with the tubule-shaping proteins. Cells simultaneously lacking Sey1p and a tubule-shaping protein have ER morphology defects. These results indicate that formation of the tubular ER network depends on conserved dynamin-like GTPases. Since atlastin-1 mutations cause a common form of hereditary spastic paraplegia, we suggest ER shaping defects as a novel neuropathogenic mechanism. PMID:19665976

  9. Loss of tubular creatinine secretion as the only sign of tubular proximal cell dysfunction in light chain proximal tubulopathy: A case report.

    PubMed

    Stehlé, Thomas; Vignon, Marguerite; Flamant, Martin; Figueres, Marie-Lucile; Rabant, Marion; Rodenas, Anita; Noël, Laure-Hélène; Arnulf, Bertrand; Vidal-Petiot, Emmanuelle

    2016-06-01

    Light chain proximal tubulopathy (LCPT) is a rare disease, characterized by cytoplasmic inclusions of light chain (usually kappa) immunoglobulins. Clinical presentation is usually a Fanconi syndrome. The proximal tubular dysfunction can be incomplete, and exceptional cases of LCPT without any tubular dysfunction have even been described. Here, we report a case of LCPT in which the only sign of proximal tubulopathy is the absence of secretion of creatinine, as assessed by the simultaneous measurement of renal clearance of creatinine and CrEDTA. The loss of tubular creatinine secretion as a sign of tubular proximal cell dysfunction ought to be identified in patients with light chain proximal tubulopathy as it leads to a clinically relevant underestimation of GFR by the creatinine-derived equations. The prevalence and prognostic significance of this particular proximal tubular damage in LCPT remain to be determined.

  10. Expression of cleaved caspase-3 in renal tubular cells in Plasmodium falciparum malaria patients.

    PubMed

    Wichapoon, Benjamas; Punsawad, Chuchard; Viriyavejakul, Parnpen

    2017-01-01

    In Plasmodium falciparum malaria, the clinical manifestation of acute kidney injury (AKI) is commonly associated with acute tubular necrosis (ATN) in the kidney tissues. Renal tubular cells often exhibit various degrees of cloudy swelling, cell degeneration, and frank necrosis. To study individual cell death, this study evaluates the degree of renal tubular necrosis in association with apoptosis in malarial kidneys. Kidney tissues from P. falciparum malaria with AKI (10 cases), and without AKI (10 cases) were evaluated for tubular pathology. Normal kidney tissues from 10 cases served as controls. Tubular necrosis was assessed quantitatively in kidney tissues infected with P. falciparum malaria, based on histopathological evaluation. In addition, the occurrence of apoptosis was investigated using cleaved caspase-3 marker. Correlation between tubular necrosis and apoptosis was analyzed. Tubular necrosis was found to be highest in P. falciparum malaria patients with AKI (36.44% ± 3.21), compared to non-AKI (15.88% ± 1.63) and control groups (2.58% ± 0.39) (all p < 0.001). In the AKI group, the distal tubules showed a significantly higher degree of tubular necrosis than the proximal tubules (p = 0.021) and collecting tubules (p = 0.033). Tubular necrosis was significantly correlated with the level of serum creatinine (r = 0.596, p = 0.006), and the occurrence of apoptosis (r = 0.681, p = 0.001). In malarial AKI, the process of apoptosis occurs in ATN. © 2016 Asian Pacific Society of Nephrology.

  11. Albumin-induced apoptosis of tubular cells is modulated by BASP1

    PubMed Central

    Sanchez-Niño, M D; Fernandez-Fernandez, B; Perez-Gomez, M V; Poveda, J; Sanz, A B; Cannata-Ortiz, P; Ruiz-Ortega, M; Egido, J; Selgas, R; Ortiz, A

    2015-01-01

    Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells. We have studied the role of BASP1 in albumin-induced tubular cell death. BASP1 expression was studied in experimental puromycin aminonucleoside-induced nephrotic syndrome in rats and in human nephrotic syndrome. The role of BASP1 in albumin-induced apoptosis was studied in cultured human HK2 proximal tubular epithelial cells. Puromycin aminonucleoside induced proteinuria and increased total kidney BASP1 mRNA and protein expression. Immunohistochemistry localized the increased BASP1 to tubular cells. BASP1 expression colocalized with deoxynucleotidyl-transferase-mediated dUTP nick-end labeling staining for apoptotic cells. Increased tubular BASP1 expression was observed in human proteinuric nephropathy by immunohistochemistry, providing evidence for potential clinical relevance. In cultured tubular cells, albumin induced apoptosis and increased BASP1 mRNA and protein expression at 6–48 h. Confocal microscopy localized the increased BASP1 expression in albumin-treated cells mainly to the perinuclear area. A peripheral location near the cell membrane was more conspicuous in albumin-treated apoptotic cells, where it colocalized with actin. Inhibition of BASP1 expression by a BASP1 siRNA protected from albumin-induced apoptosis. In conclusion, albumin-induced apoptosis in tubular cells is BASP1-dependent. This information may be used to design novel therapeutic approaches to slow CKD progression based on protection of tubular cells from the adverse consequences of albuminuria. PMID:25675304

  12. Fluid and electrolyte disturbances in cirrhosis.

    PubMed

    Papper, S

    1976-01-01

    Glomerular filtration rate and renal plasma flow may be normal, reduced or increased in cirrhosis. The mechanism of departures from normal is not known. Other renal functional changes in cirrhosis include avid sodium reabsorption, impaired concentrating and diluting abilities, and partial renal tubular acidosis. Fluid and electrolyte disorders are common. Sodium retention with edema and ascites should generally be treated conservatively because they tend to disappear as the liver heals and because forced diuresis has hazards. The indications for diuretics are (1) incipient or overt atelectasis; (2) abdominal distress; and (3) possibility of skin breakdown. Hyponatremia is common and its mechanism and treatment must be assessed in each patient. Hypokalemia occurs and requires treatment. Respiratory alkalosis and renal tubular acidosis seldom need therapy. The hepatorenal syndrome is defined as functional renal failure in the absence of other known causes of renal functional impairment. The prognosis is terrible and therapy is unsatisfactory. The best approach is not to equate the occurrence of renal failure in cirrhosis with the hepatorenal syndrome. Rather the physician should first explore all treatable causes of renal failure, eg, dehydration, obstruction, infection, heart failure, potassium depletion, and others.

  13. The vomeronasal system of the mink, Mustela vison. I. The vomeronasal organ.

    PubMed

    Salazar, I; Cifuentes, J M; Quinteiro, P S; Caballero, G

    1994-01-01

    The vomeronasal organ (VNO) of the mink is restricted to the area of the Fissura palatina and thus always topographically related to the Ductus incisivus (DI). The VNO and DI have also a functional relation because the vomeronasal duct ends in the incisive duct. On the other hand, as the DI has its mouth in the Papilla incisiva there is a communication between the VNO and the oral cavity. The vomeronasal cartilage, approximately in 1/6 of its length, wraps completely the parenchyma of the VNO whose main structure is the vomeronasal duct, with two different epithelia: sensory receptor in the medial wall, and respiratory in the lateral one. Nevertheless the variations of epithelia belong to the segment of the duct because in its rostral and caudal parts the medial and lateral epithelia are very similar. Branches and tubular PAS positive glands stand out in three points: superior, inferior and medial areas of the vomeronasal duct in which they end. An important number of vessels, mainly veins of different diameter, are located around the duct, while the nervous fibers are close to the medial wall of the duct and very easy to identify in the caudal third of the organ. Two immunohistochemical techniques were used to identify the nerve fibers and the receptor cells.

  14. Clinical and molecular aspects of distal renal tubular acidosis in children.

    PubMed

    Besouw, Martine T P; Bienias, Marc; Walsh, Patrick; Kleta, Robert; Van't Hoff, William G; Ashton, Emma; Jenkins, Lucy; Bockenhauer, Detlef

    2017-06-01

    Distal renal tubular acidosis (dRTA) is characterized by hyperchloraemic metabolic acidosis, hypokalaemia, hypercalciuria and nephrocalcinosis. It is due to reduced urinary acidification by the α-intercalated cells in the collecting duct and can be caused by mutations in genes that encode subunits of the vacuolar H + -ATPase (ATP6V1B1, ATP6V0A4) or the anion exchanger 1 (SLC4A1). Treatment with alkali is the mainstay of therapy. This study is an analysis of clinical data from a long-term follow-up of 24 children with dRTA in a single centre, including a genetic analysis. Of the 24 children included in the study, genetic diagnosis was confirmed in 19 patients, with six children having mutations in ATP6V1B1, ten in ATP6V0A4 and three in SLC4A1; molecular diagnosis was not available for five children. Five novel mutations were detected (2 in ATP6V1B1 and 3 in ATP6V0A4). Two-thirds of patients presented with features of proximal tubular dysfunction leading to an erroneous diagnosis of renal Fanconi syndrome. The proximal tubulopathy disappeared after resolution of acidosis, indicating the importance of following proximal tubular function to establish the correct diagnosis. Growth retardation with a height below -2 standard deviation score was found in ten patients at presentation, but persisted in only three of these children once established on alkali treatment. Sensorineural hearing loss was found in five of the six patients with an ATP6V1B1 mutation. Only one patient with an ATP6V0A4 mutation had sensorineural hearing loss during childhood. Nine children developed medullary cysts, but without apparent clinical consequences. Cyst development in this cohort was not correlated with age at therapy onset, molecular diagnosis, growth parameters or renal function. In general, the prognosis of dRTA is good in children treated with alkali.

  15. Renal ultrafiltration changes induced by focused US.

    PubMed

    Fischer, Krisztina; McDannold, Nathan J; Zhang, Yongzhi; Kardos, Magdolna; Szabo, Andras; Szabo, Antal; Reusz, Gyorgy S; Jolesz, Ferenc A

    2009-12-01

    To determine if focused ultrasonography (US) combined with a diagnostic microbubble-based US contrast agent can be used to modulate glomerular ultrafiltration and size selectivity. The experiments were approved by the animal care committee. The left kidney of 17 healthy rabbits was sonicated by using a 260-kHz focused US transducer in the presence of a microbubble-based US contrast agent. The right kidney served as the control. Three acoustic power levels were applied: 0.4 W (six rabbits), 0.9 W (six rabbits), and 1.7 W (five rabbits). Three rabbits were not treated with focused US and served as control animals. The authors evaluated changes in glomerular size selectivity by measuring the clearance rates of 3000- and 70,000-Da fluorescence-neutral dextrans. The creatinine clearance was calculated for estimation of the glomerular filtration rate. The urinary protein-creatinine ratio was monitored during the experiments. The authors assessed tubular function by evaluating the fractional sodium excretion, tubular reabsorption of phosphate, and gamma-glutamyltransferase-creatinine ratio. Whole-kidney histologic analysis was performed. For each measurement, the values obtained before and after sonication were compared by using the paired t test. Significant (P < .05) increases in the relative (ratio of treated kidney value/nontreated kidney value) clearance of small- and large-molecule agents and the urine flow rates that resulted from the focused US treatments were observed. Overall, 1.23-, 1.23-, 1.61-, and 1.47-fold enhancement of creatinine clearance, 3000-Da dextran clearance, 70 000-Da dextran clearance, and urine flow rate, respectively, were observed. Focal tubular hemorrhage and transient functional tubular alterations were observed at only the highest (1.7-W) acoustic power level tested. Glomerular ultrafiltration and size selectivity can be temporarily modified with simultaneous application of US and microbubbles. This method could offer new opportunities for treatment of renal disease.

  16. Preventing and Managing Toxicities of High-Dose Methotrexate.

    PubMed

    Howard, Scott C; McCormick, John; Pui, Ching-Hon; Buddington, Randall K; Harvey, R Donald

    2016-12-01

    : High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m 2 , is used to treat a range of adult and childhood cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI) in 2%-12% of patients. Nephrotoxicity results from crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. AKI and other toxicities of high-dose methotrexate can lead to significant morbidity, treatment delays, and diminished renal function. Risk factors for methotrexate-associated toxicity include a history of renal dysfunction, volume depletion, acidic urine, and drug interactions. Renal toxicity leads to impaired methotrexate clearance and prolonged exposure to toxic concentrations, which further worsen renal function and exacerbate nonrenal adverse events, including myelosuppression, mucositis, dermatologic toxicity, and hepatotoxicity. Serum creatinine, urine output, and serum methotrexate concentration are monitored to assess renal clearance, with concurrent hydration, urinary alkalinization, and leucovorin rescue to prevent and mitigate AKI and subsequent toxicity. When delayed methotrexate excretion or AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase are usually sufficient to allow renal recovery without the need for dialysis. Prompt recognition and effective treatment of AKI and associated toxicities mitigate further toxicity, facilitate renal recovery, and permit patients to receive other chemotherapy or resume HDMTX therapy when additional courses are indicated. High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m 2 , is used for a range of cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI), attributable to crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. When AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase allow renal recovery without the need for dialysis. This article, based on a review of the current associated literature, provides comprehensive recommendations for prevention of toxicity and, when necessary, detailed treatment guidance to mitigate AKI and subsequent toxicity. ©AlphaMed Press.

  17. Preventing and Managing Toxicities of High-Dose Methotrexate

    PubMed Central

    McCormick, John; Pui, Ching-Hon; Buddington, Randall K.; Harvey, R. Donald

    2016-01-01

    High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m2, is used to treat a range of adult and childhood cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI) in 2%–12% of patients. Nephrotoxicity results from crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. AKI and other toxicities of high-dose methotrexate can lead to significant morbidity, treatment delays, and diminished renal function. Risk factors for methotrexate-associated toxicity include a history of renal dysfunction, volume depletion, acidic urine, and drug interactions. Renal toxicity leads to impaired methotrexate clearance and prolonged exposure to toxic concentrations, which further worsen renal function and exacerbate nonrenal adverse events, including myelosuppression, mucositis, dermatologic toxicity, and hepatotoxicity. Serum creatinine, urine output, and serum methotrexate concentration are monitored to assess renal clearance, with concurrent hydration, urinary alkalinization, and leucovorin rescue to prevent and mitigate AKI and subsequent toxicity. When delayed methotrexate excretion or AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase are usually sufficient to allow renal recovery without the need for dialysis. Prompt recognition and effective treatment of AKI and associated toxicities mitigate further toxicity, facilitate renal recovery, and permit patients to receive other chemotherapy or resume HDMTX therapy when additional courses are indicated. Implications for Practice: High-dose methotrexate (HDMTX), defined as a dose higher than 500 mg/m2, is used for a range of cancers. Although HDMTX is safely administered to most patients, it can cause significant toxicity, including acute kidney injury (AKI), attributable to crystallization of methotrexate in the renal tubular lumen, leading to tubular toxicity. When AKI occurs despite preventive strategies, increased hydration, high-dose leucovorin, and glucarpidase allow renal recovery without the need for dialysis. This article, based on a review of the current associated literature, provides comprehensive recommendations for prevention of toxicity and, when necessary, detailed treatment guidance to mitigate AKI and subsequent toxicity. PMID:27496039

  18. 49 CFR 230.55 - Tubular type water and lubricator glasses and shields.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tubular type water and lubricator glasses and... STANDARDS Boilers and Appurtenances Water Glasses and Gauge Cocks § 230.55 Tubular type water and lubricator glasses and shields. (a) Water glasses. Tubular type water glasses shall be renewed at each 92 service day...

  19. Automated measurement of uptake in cerebellum, liver, and aortic arch in full-body FDG PET/CT scans.

    PubMed

    Bauer, Christian; Sun, Shanhui; Sun, Wenqing; Otis, Justin; Wallace, Audrey; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M; Beichel, Reinhard R

    2012-06-01

    The purpose of this work was to develop and validate fully automated methods for uptake measurement of cerebellum, liver, and aortic arch in full-body PET/CT scans. Such measurements are of interest in the context of uptake normalization for quantitative assessment of metabolic activity and/or automated image quality control. Cerebellum, liver, and aortic arch regions were segmented with different automated approaches. Cerebella were segmented in PET volumes by means of a robust active shape model (ASM) based method. For liver segmentation, a largest possible hyperellipsoid was fitted to the liver in PET scans. The aortic arch was first segmented in CT images of a PET/CT scan by a tubular structure analysis approach, and the segmented result was then mapped to the corresponding PET scan. For each of the segmented structures, the average standardized uptake value (SUV) was calculated. To generate an independent reference standard for method validation, expert image analysts were asked to segment several cross sections of each of the three structures in 134 F-18 fluorodeoxyglucose (FDG) PET/CT scans. For each case, the true average SUV was estimated by utilizing statistical models and served as the independent reference standard. For automated aorta and liver SUV measurements, no statistically significant scale or shift differences were observed between automated results and the independent standard. In the case of the cerebellum, the scale and shift were not significantly different, if measured in the same cross sections that were utilized for generating the reference. In contrast, automated results were scaled 5% lower on average although not shifted, if FDG uptake was calculated from the whole segmented cerebellum volume. The estimated reduction in total SUV measurement error ranged between 54.7% and 99.2%, and the reduction was found to be statistically significant for cerebellum and aortic arch. With the proposed methods, the authors have demonstrated that automated SUV uptake measurements in cerebellum, liver, and aortic arch agree with expert-defined independent standards. The proposed methods were found to be accurate and showed less intra- and interobserver variability, compared to manual analysis. The approach provides an alternative to manual uptake quantification, which is time-consuming. Such an approach will be important for application of quantitative PET imaging to large scale clinical trials. © 2012 American Association of Physicists in Medicine.

  20. Magnifying endoscopy for the diagnosis of specialized intestinal metaplasia in short-segment Barrett's esophagus.

    PubMed

    Ham, Nam Seok; Jang, Jae Young; Ryu, Sung Woo; Kim, Ji Hye; Park, Eui Ju; Lee, Woong Cheul; Shim, Kwang Yeun; Jeong, Soung Won; Kim, Hyun Gun; Lee, Tae Hee; Jeon, Sung Ran; Cho, Jun Hyung; Cho, Joo Young; Jin, So Young; Lee, Ji Sung

    2013-11-07

    To determine whether magnified observation of short-segment Barrett's esophagus (BE) is useful for the detection of specialized intestinal metaplasia (SIM). Thirty patients with suspected short-segment BE underwent magnifying endoscopy up to × 80. The magnified images were analyzed with respect to their pit-patterns, which were simultaneously classified into five epithelial types [I (small round), II (straight), III (long oval), IV (tubular), V (villous)] by Endo's classification. Then, a 0.5% solution of methylene blue (MB) was sprayed over columnar mucosa. The patterns of the magnified image and MB staining were analyzed. Biopsies were obtained from the regions previously observed by magnifying endoscopy and MB chromoendoscopy. Three of five patients with a type V (villous) epithelial pattern had SIM, whereas 21 patients with a non-type V epithelial patterns did not have SIM. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of pit-patterns in detecting SIM were 100%, 91.3%, 92.3%, 60% and 100%, respectively (P = 0.004). Three of the 12 patients with positive MB staining had SIM, whereas 14 patients with negative MB staining did not have SIM. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of MB staining in detecting SIM were 100%, 60.9%, 65.4%, 25% and 100%, respectively (P = 0.085). The specificity and accuracy of pit-pattern evaluation were significantly superior compared with MB staining for detecting SIM by comparison with the exact McNemar's test (P = 0.0391). The magnified observation of a short-segment BE according to the mucosal pattern and its classification can be predictive of SIM.

  1. Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.

    PubMed

    Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya

    2015-12-01

    Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Age of the North Anatolian Fault Segments in the Yalova with U/Th Dating Method by Travertine Data

    NASA Astrophysics Data System (ADS)

    Selim, Haluk; Ömer Taş, K.

    2016-04-01

    Travertine occurrences developed along the segments of the North Anatolian Fault (NAF) in the south of Yalova. Travertines outcrop approximately 1 km2 area. These are middle-thick bedded approximately 20-40 m and back-tilted southward or horizontally. Lithology of travertines deposited such as physolite, stalactites-stalagmites, cave pearls, sharp pebble carbonate nodules, spherical-roller-intricate shapes or laminated banded travertine. Geochemical analyses were performed on the six samples of the travertines. X-ray analysis indicates that all samples are entirely composed of low-Mg calcite. Banded travertines with some tubular structures formed by precipitation from rising hot water are best developed near the toes of the large, hanging-wall-derived alluvial fans, whereas phreatic cement preferentially exists in footwall-derived, alluvial-fan conglomerates. The unit developed clarity which is controlled by normal fault as the structural and morphological, relationship with active tectonics. The travertines are a range-front type. U/Th series age dating results indicate that the travertine deposition extends back to 155 ka and yields ages of 60.000 (± 3, 091) to 153.149 (±13,466) from the range-front type travertines.

  3. Gap filling of 3-D microvascular networks by tensor voting.

    PubMed

    Risser, L; Plouraboue, F; Descombes, X

    2008-05-01

    We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to fill the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated.

  4. Alterations in acid-base homeostasis during water immersion in normal man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Schneider, N. S.; Vaamonde, C. A.

    1974-01-01

    The effects of water immersion on renal bicarbonate and acid excretion were assessed in 10 normal male subjects. Immersion resulted in a highly significant progressive increase in the rate of sodium and bicarbonate excretion, and in urine pH. Immersion was also associated with a significant increase in urine P-CO2; this increase presupposes a maintained rate of hydrogen secretion in the distal tubular segment. The rapidity of onset of the bicarbonaturia (2 hrs of immersion) and the concomitant increase in urinary P-CO2 suggest that enhanced bicarbonate excretion of immersion cannot be completely accounted for by immersion-induced suppression of aldosterone, and that the natriuresis and bicarbonaturia of immersion is mediated in part by an increased proximal rejection of sodium and bicarbonate.

  5. Tracheal reaction to three different intraluminal stents in an animal model of tracheomalacia.

    PubMed

    Weinberg, Mark; Sandbank, Judith; Flumenblit, Yoseph; Klin, Baruch; Vinograd, Itzhak

    2005-06-01

    Three different internal airway stents were studied in an animal model of tracheomalacia: the Palmaz stent (Johnson & Johnson, Warren, New Jersey) and the NIR stent (Medinol Ltd., Tel Aviv, Israel)--both made of stainless steel in the form of tubular mesh--and the Nitinol stent, made of nickel-titanium formed into a spiral shape. All three stents could be adequately stabilized in the malacic tracheal segment. The Nitinol stent (Medinol Ltd., Tel Aviv, Israel) proved to be less reactive to the tracheal mucosa, demonstrated higher biocompatibility with significantly less granulation tissue formation, and showed superior radial resistance. Extraction of the Nitinol stent also proved to be much smoother. This stent may be the stent of choice in the treatment of tracheo- and bronchomalacia.

  6. Cobalt treatment does not prevent glomerular morphological alterations in type 1 diabetic rats.

    PubMed

    Singh, Gaaminepreet; Krishan, Pawan

    2018-06-02

    Early renal morphological alterations including glomerular hypertrophy and mesangial expansion occur in diabetic kidney disease and correlate with various clinical manifestations of diabetes. The present study was designed to investigate the influence of pharmacological modulation of HIF-1α (hypoxia inducible factor-1 alpha) protein levels, on these glomerular changes in rodent model of type 1 diabetes. Male wistar rats were made diabetic (Streptozotocin 45 mg/kg; i.p.) and afterwards treated with HIF activator cobalt chloride for 4 weeks. Renal function was assessed by serum creatinine, albumin, proteinuria levels, oxidative stress: reduced glutathione levels and catalase activity, and renal tissue HIF-1α protein levels were determined by ELISA assay. Histological analysis of kidney sections was done by haematoxylin and eosin (glomeruli diameter), periodic acid Schiff (mesangial expansion and glomerulosclerosis) and sirius red (fibrosis, tubular dilation) staining. Diabetes rats displayed reduced serum albumin levels, marked proteinuria, lower kidney reduced glutathione content, glomerular hypertrophy, glomerulosclerosis, mesangial expansion, tubular dilation and renal fibrosis. Cobalt chloride treatment normalised renal HIF-1α protein levels, reduced development of proteinuria and tubulo-interstitial fibrosis, but the glomerular morphological alterations such as glomerulosclerosis, mesangial expansion, increased glomerular diameter and tubular vacoulations were not abrogated in diabetic kidneys. Glomerular morphological abnormalities might precede the development of proteinuria and renal fibrosis in experimental model of type 1 diabetes. Pharmacological modulation of renal HIF-1α protein levels does not influence glomerular and tubular dilatory changes in diabetic kidney disease.

  7. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    PubMed

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.

  8. Tissue-Engineered Fibrin-Based Heart Valve with a Tubular Leaflet Design

    PubMed Central

    Weber, Miriam; Heta, Eriona; Moreira, Ricardo; Gesche, Valentine N.; Schermer, Thomas; Frese, Julia

    2014-01-01

    The general approach in heart valve tissue engineering is to mimic the shape of the native valve in the attempt to recreate the natural haemodynamics. In this article, we report the fabrication of the first tissue-engineered heart valve (TEHV) based on a tubular leaflet design, where the function of the leaflets of semilunar heart valves is performed by a simple tubular construct sutured along a circumferential line at the root and at three single points at the sinotubular junction. The tubular design is a recent development in pericardial (nonviable) bioprostheses, which has attracted interest because of the simplicity of the construction and the reliability of the implantation technique. Here we push the potential of the concept further from the fabrication and material point of view to realize the tube-in-tube valve: an autologous, living HV with remodelling and growing capability, physiological haemocompatibility, simple to construct and fast to implant. We developed two different fabrication/conditioning procedures and produced fibrin-based constructs embedding cells from the ovine umbilical cord artery according to the two different approaches. Tissue formation was confirmed by histology and immunohistology. The design of the tube-in-tube foresees the possibility of using a textile coscaffold (here demonstrated with a warp-knitted mesh) to achieve enhanced mechanical properties in vision of implantation in the aortic position. The tube-in-tube represents an attractive alternative to the conventional design of TEHVs aiming at reproducing the valvular geometry. PMID:23829551

  9. The evolutionary origin and diversification of feathers.

    PubMed

    Prum, Richard O; Brush, Alan H

    2002-09-01

    Progress on the evolutionary origin and diversification of feathers has been hampered by conceptual problems and by the lack of plesiomorphic feather fossils. Recently, both of these limitations have been overcome by the proposal of the developmental theory of the origin of feathers, and the discovery of primitive feather fossils on nonavian theropod dinosaurs. The conceptual problems of previous theories of the origin of feathers are reviewed, and the alternative developmental theory is presented and discussed. The developmental theory proposes that feathers evolved through a series of evolutionary novelties in developmental mechanisms of the follicle and feather germ. The discovery of primitive and derived fossil feathers on a diversity of coelurosaurian theropod dinosaurs documents that feathers evolved and diversified in nonavian theropods before the origin of birds and before the origin of flight. The morphologies of these primitive feathers are congruent with the predictions of the developmental theory. Alternatives to the theropod origin of feathers are critique and rejected. Hypotheses for the initial function of feathers are reviewed. The aerodynamic theory of feather origins is falsified, but many other functions remain developmentally and phylogenetically plausible. Whatever their function, feathers evolved by selection for a follicle that would grow an emergent tubular appendage. Feathers are inherently tubular structures. The homology of feathers and scales is weakly supported. Feathers are composed of a suite of evolutionary novelties that evolved by the duplication, hierarchical organization, interaction, dissociation, and differentiation of morphological modules. The unique capacity for modular subdivision of the tubular feather follicle and germ has fostered the evolution of numerous innovations that characterize feathers. The evolution of feather keratin and the molecular basis of feather development are also discussed.

  10. Mechanisms Underpinning Increased Plasma Creatinine Levels in Patients Receiving Vemurafenib for Advanced Melanoma

    PubMed Central

    Hurabielle, Charlotte; Pillebout, Evangéline; Stehlé, Thomas; Pagès, Cécile; Roux, Jennifer; Schneider, Pierre; Chevret, Sylvie; Chaffaut, Cendrine; Boutten, Anne; Mourah, Samia; Basset-Seguin, Nicole; Vidal-Petiot, Emmanuelle; Lebbé, Céleste; Flamant, Martin

    2016-01-01

    Context Serum creatinine has been reported to increase in patients receiving Vemurafenib, yet neither the prevalence nor the mechanism of this adverse event are known. Objective We aimed to evaluate the frequency and the mechanisms of increases in plasma creatinine level in patients receiving Vemurafenib for advanced melanoma. Methods We performed a retrospective monocentric study including consecutive patients treated with Vemurafenib for an advanced melanoma. We collected clinical and biological data concerning renal function before introduction of Vemurafenib and in the course of monthly follow-up visits from March 2013 to December 2014. Cystatin C-derived glomerular filtration rate was evaluated before and after Vemurafenib initiation, as increase in serum cystatin C is specific to a decrease in the glomerular filtration rate. We also performed thorough renal explorations in 3 patients, with measurement of tubular secretion of creatinine before and after Vemurafenib initiation and a renal biopsy in 2 patients. Results 70 patients were included: 97% of them displayed an immediate, and thereafter stable, increase in creatinine (+22.8%) after Vemurafenib initiation. In 44/52 patients in whom Vemurafenib was discontinued, creatinine levels returned to baseline. Serum cystatin C increased, although proportionally less than serum creatinine, showing that creatinine increase under vemurafenib was indeed partly due to a renal function impairment. In addition, renal explorations demonstrated that Vemurafenib induced an inhibition of creatinine tubular secretion. Conclusion Thus, Vemurafenib induces a dual mechanism of increase in plasma creatinine with both an inhibition of creatinine tubular secretion and slight renal function impairment. However, this side effect is mostly reversible when Vemurafenib is discontinued, and should not lead physicians to discontinue the treatment if it is effective. PMID:26930506

  11. Fludrocortisone therapy for persistent hyperkalaemia.

    PubMed

    Dobbin, S J H; Petrie, J R; Lean, M E J; McKay, G A

    2017-07-01

    Type 4 renal tubular acidosis causes hyperkalaemia, for which diabetes and medications commonly used in this patient group are aetiological factors. Here we describe the novel use of fludrocortisone in this difficult condition. A 55-year-old woman with complex co-morbidities, including Type 2 diabetes (HbA 1c 37 mmol/mol 5.5%), was admitted with renal failure. Bloods on admission: eGFR 25 ml/min, creatinine 184 ?mol/L, urea 35.9 mmol/L, sodium 128 mmol/L, potassium 5.6 mmol/L, bicarbonate 15 mmol/L, and albumin 30 g/L. Her admission was prolonged, complicated by hospital-acquired sepsis (lower respiratory tract, urinary tract, and infected leg ulcers), poor venous access and severe depression. She had recurrent hyperkalaemia and deteriorating renal function, from presumed Type 4 renal tubular acidosis and excessive fluid losses from leg ulcers. Her renal function recurrently deteriorated, despite conventional treatment methods. After 69 days, she was commenced on fludrocortisone 50 mcg/day. Her renal function and serum potassium stabilized and she was discharged with potassium 4.3 mmol/L, eGFR 42 ml/min, and bicarbonate 23 mmol/L. She has remained stable on this treatment, without requiring further hospital admission for over 6 months, with eGFR 40 ml/min, and potassium 5.5 mmol/L, and albumin 26 g/L. This woman was presumed to have Type 4 renal tubular acidosis and recurrent hyperkalaemia due to renal insufficiency, in the context of underlying diabetes and chronic kidney disease, which was poorly responsive to conventional management. There is limited evidence for using fludrocortisone in this setting. Our case suggests that fludrocortisone might offer a novel therapeutic strategy when conventional management is not working. © 2017 Diabetes UK.

  12. Mechanisms Underpinning Increased Plasma Creatinine Levels in Patients Receiving Vemurafenib for Advanced Melanoma.

    PubMed

    Hurabielle, Charlotte; Pillebout, Evangéline; Stehlé, Thomas; Pagès, Cécile; Roux, Jennifer; Schneider, Pierre; Chevret, Sylvie; Chaffaut, Cendrine; Boutten, Anne; Mourah, Samia; Basset-Seguin, Nicole; Vidal-Petiot, Emmanuelle; Lebbé, Céleste; Flamant, Martin

    2016-01-01

    Serum creatinine has been reported to increase in patients receiving Vemurafenib, yet neither the prevalence nor the mechanism of this adverse event are known. We aimed to evaluate the frequency and the mechanisms of increases in plasma creatinine level in patients receiving Vemurafenib for advanced melanoma. We performed a retrospective monocentric study including consecutive patients treated with Vemurafenib for an advanced melanoma. We collected clinical and biological data concerning renal function before introduction of Vemurafenib and in the course of monthly follow-up visits from March 2013 to December 2014. Cystatin C-derived glomerular filtration rate was evaluated before and after Vemurafenib initiation, as increase in serum cystatin C is specific to a decrease in the glomerular filtration rate. We also performed thorough renal explorations in 3 patients, with measurement of tubular secretion of creatinine before and after Vemurafenib initiation and a renal biopsy in 2 patients. 70 patients were included: 97% of them displayed an immediate, and thereafter stable, increase in creatinine (+22.8%) after Vemurafenib initiation. In 44/52 patients in whom Vemurafenib was discontinued, creatinine levels returned to baseline. Serum cystatin C increased, although proportionally less than serum creatinine, showing that creatinine increase under vemurafenib was indeed partly due to a renal function impairment. In addition, renal explorations demonstrated that Vemurafenib induced an inhibition of creatinine tubular secretion. Thus, Vemurafenib induces a dual mechanism of increase in plasma creatinine with both an inhibition of creatinine tubular secretion and slight renal function impairment. However, this side effect is mostly reversible when Vemurafenib is discontinued, and should not lead physicians to discontinue the treatment if it is effective.

  13. A power function profile of a ski jumping in-run hill.

    PubMed

    Zanevskyy, Ihor

    2011-01-01

    The aim of the research was to find a function of the curvilinear segment profile which could make possible to avoid an instantaneous increasing of a curvature and to replace a circle arc segment on the in-run of a ski jump without any correction of the angles of inclination and the length of the straight-line segments. The methods of analytical geometry and trigonometry were used to calculate an optimal in-run hill profile. There were two fundamental conditions of the model: smooth borders between a curvilinear segment and straight-line segments of an in-run hill and concave of the curvilinear segment. Within the framework of this model, the problem has been solved with a reasonable precision. Four functions of a curvilinear segment profile of the in-run hill were investigated: circle arc, inclined quadratic parabola, inclined cubic parabola, and power function. The application of a power function to the in-run profile satisfies equal conditions for replacing a circle arc segment. Geometrical parameters of 38 modern ski jumps were investigated using the methods proposed.

  14. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    PubMed

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  15. Fire extinguishing apparatus having a slidable mass for a penetrator nozzle. [for penetrating aircraft and shuttle orbiter skin

    NASA Technical Reports Server (NTRS)

    Gray, N. C.; Senseny, R. M.; Bolton, P. N.

    1980-01-01

    A fire extinguishing apparatus for delivering an extinguishing agent through a tarrier surrounding a structure into its interior includes an elongated tubular nozzle body which has a pointed penetrating head carried on one end of the tubular body. A source of extinguishing agent coupled to the opposite end of the tubular body is fed through and passes through passages adjacent the head for delivering the extinguishing agent to the interior of the structure. A slidable mass is carried on the tubular body on a remote end of the tubular body from the penetrating head. By manipulating the slidable mass and bringing such in contact with an abutment the force imparted to the tubular body causes the head to penetrate the structure.

  16. Stray light field dependence for large astronomical space telescopes

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Bowers, Charles W.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the aspect ratio of the tubular baffle length to PM diameter. Additional analysis has been done to examine the stray light implications for the fields near the image of a bright source. This near field stray light is shown to be dependent on the Bidirectional Reflectance Distribution Function (BRDF) characteristics of the mirrors in the optical train. The near field stray light contribution is dominated by those mirrors closer to the focal plane compared to the contributions from the PM and SM. Hence the near field stray light is independent of the exterior telescope baffle geometry. Contributions from self-emission from the telescope have been compared to natural background for telescopes operating at infrared wavelengths.

  17. Fundamental understanding and rational design of high energy structural microbatteries

    DOE PAGES

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; ...

    2017-11-21

    We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress duringmore » the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.« less

  18. Fundamental understanding and rational design of high energy structural microbatteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel

    We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress duringmore » the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.« less

  19. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    PubMed Central

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  20. [Diagnostic difficulties in a case of constricted tubular visual field].

    PubMed

    Dogaru, Oana-Mihaela; Rusu, Monica; Hâncu, Dacia; Horvath, Kárin

    2013-01-01

    In the paper below we present the clinical case of a 48 year old female with various symptoms associated with functional visual disturbance -constricted tubular visual fields, wich lasts from 6 years; the extensive clinical and paraclinical ophthalmological investigations ruled out the presence of an organic disorder. In the present, we suspect a diagnosis of hysteria, still uncertain, wich represented over time a big challenge in psychology and ophthalmology. The mechanisms and reasons for hysteria are still not clear and it could represent a fascinating research theme. The tunnel, spiral or star-shaped visual fields are specific findings in hysteria for patients who present visual disturbance. The question of whether or not a patient with hysterical visual impairment can or cannot "see" is still unresolved.

  1. Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation

    NASA Astrophysics Data System (ADS)

    Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward

    1981-11-01

    A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.

  2. Tubularized proximally-incised plate in distal/midshaft hypospadias repair.

    PubMed

    Marte, Antonio; Pintozzi, Lucia

    2017-06-23

    The aim of this study was to verify the validity, feasibility, and the functional results, by uroflowmetry, of Tubularized proximallyincised plate technique in selected case of distal/midshaft hypospadias. Out of 120 patients scheduled to undergo TIP (or Snodgrass) procedure, 23 were selected between January 2013 and January 2016 (19.1%). This case series comprised 16 patients with distal and 7 with midshaft hypospadias. Mean age at surgery was 2.9 years. The inclusion criteria were a deep and wide glandular groove and a proximal narrow urethral plate. The procedure was carried out as described by Snodgrass but the incision of the urethral plate, including the mucosal and submucosal tissue, was made only proximally, between the original meatus and the glandular groove in no case extending to the entire length of the plate. Postoperatively a foley catheter was left in place from 4 to 7 days. Uroflowmetry was performed when the patients age ranged from 2.5 to 5.7 years (mean age 3.11 years and mean follow-up 1.8 years, body surface 2). No patient presented fistulas nor perioperative complications. At uroflowmetry, eighteen patients presented values above the 25th percentile and 5 showed a borderline flow. All patients in this group remained stable without urinary symptoms. In selected cases, the tubularized proximally-incised plate yields satisfactory cosmetic and functional results for the treatment of midshaft proximal hypospadias. A long-term follow-up study is needed for further evaluation. Patient selection is crucial for the success of this technique.

  3. Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury

    PubMed Central

    Bruno, Stefania; Grange, Cristina; Collino, Federica; Deregibus, Maria Chiara; Cantaluppi, Vincenzo; Biancone, Luigi; Tetta, Ciro; Camussi, Giovanni

    2012-01-01

    Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs. PMID:22431999

  4. Tubular organ epithelialisation

    PubMed Central

    Saksena, Rhea; Gao, Chuanyu; Wicox, Mathew; de Mel, Achala

    2016-01-01

    Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious cell–scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts. Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation, hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs conducted to actualise epithelialised grafts. PMID:28228931

  5. An evidence based hypothesis on the existence of two pathways of mitochondrial crista formation

    PubMed Central

    Harner, Max E; Unger, Ann-Katrin; Geerts, Willie JC; Mari, Muriel; Izawa, Toshiaki; Stenger, Maria; Geimer, Stefan; Reggiori, Fulvio; Westermann, Benedikt; Neupert, Walter

    2016-01-01

    Metabolic function and architecture of mitochondria are intimately linked. More than 60 years ago, cristae were discovered as characteristic elements of mitochondria that harbor the protein complexes of oxidative phosphorylation, but how cristae are formed, remained an open question. Here we present experimental results obtained with yeast that support a novel hypothesis on the existence of two molecular pathways that lead to the generation of lamellar and tubular cristae. Formation of lamellar cristae depends on the mitochondrial fusion machinery through a pathway that is required also for homeostasis of mitochondria and mitochondrial DNA. Tubular cristae are formed via invaginations of the inner boundary membrane by a pathway independent of the fusion machinery. Dimerization of the F1FO-ATP synthase and the presence of the MICOS complex are necessary for both pathways. The proposed hypothesis is suggested to apply also to higher eukaryotes, since the key components are conserved in structure and function throughout evolution. DOI: http://dx.doi.org/10.7554/eLife.18853.001 PMID:27849155

  6. [Improvement in nuclear medicine diagnosis of kidney function using 99m technetium mercaptoacetyltriglycine (MAG3)].

    PubMed

    Erpenbach, K; Ebert, A; Wieler, H

    1991-03-01

    Renal scintigraphy and clearance measurement are indispensable in nephro-urologic disorders. A continuous series of 103 sequential scintigraphies and clearance measurements were performed with the new technetium-labelled agent MAG3 (Gamma-kamera, Phillips Tomo Diagnost) and 131I-orthohippuric acid (OIH) using the Oberhausen method (Nucleopan, Siemens). The time-activity curves obtained with the two radionuclides agreed exactly. Reaching a tubular excretion rate of nearly 90%, the clearance of MAG3 differed by no more than 6% from the OIH clearance in 95% of the cases. The factor between clearances of the two radionuclides was determined by means of a commercially available software according to the Oberhausen method and amounted to 0.59 +/- 0.09. The favorable physical properties and high activity of MAG3 permit exact examination of tubular function and better assessment of renal morphology than hippuran-labelled radionuclides. The low radiation dose combined with a better spatial resolution, especially, the constant availability in a nuclear medicine department should give the preference to MAG3.

  7. Cyclic adenosine monophosphate modulates cell morphology and behavior of a cultured renal epithelial.

    PubMed

    Amsler, K

    1990-07-01

    The role of cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) in modulating functions of differentiated renal cells is well established. Its importance in controlling their growth and differentiation is less clear. We have used somatic cell genetic techniques to probe the role of PKA in controlling morphology and behavior of a renal epithelial cell line, LLC-PK1, which acquires many properties characteristic of the renal proximal tubular cell. Mutants of this line altered in PKA activity have been isolated and their behavior compared to that of the parent line. The results indicate that PKA is involved, either directly or indirectly, in maintenance of cell morphology, cell-cell and cell-substratum interactions, density-dependent growth regulation, and expression of one function characteristic of the renal proximal tubular cell, Na-hexose symport. The relevance of these results to the role of PKA in controlling growth and differentiation of renal epithelial cells in vivo is discussed.

  8. Functional Human Podocytes Generated in Organoids from Amniotic Fluid Stem Cells

    PubMed Central

    Benedetti, Valentina; Novelli, Rubina; Abbate, Mauro; Rizzo, Paola; Conti, Sara; Tomasoni, Susanna; Corna, Daniela; Pozzobon, Michela; Cavallotti, Daniela; Yokoo, Takashi; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe

    2016-01-01

    Generating kidney organoids using human stem cells could offer promising prospects for research and therapeutic purposes. However, no cell-based strategy has generated nephrons displaying an intact three-dimensional epithelial filtering barrier. Here, we generated organoids using murine embryonic kidney cells, and documented that these tissues recapitulated the complex three-dimensional filtering structure of glomerular slits in vivo and accomplished selective glomerular filtration and tubular reabsorption. Exploiting this technology, we mixed human amniotic fluid stem cells with mouse embryonic kidney cells to establish three-dimensional chimeric organoids that engrafted in vivo and grew to form vascularized glomeruli and tubular structures. Human cells contributed to the formation of glomerular structures, differentiated into podocytes with slit diaphragms, and internalized exogenously infused BSA, thus attaining in vivo degrees of specialization and function unprecedented for donor stem cells. In conclusion, human amniotic fluid stem cell chimeric organoids may offer new paths for studying renal development and human podocyte disease, and for facilitating drug discovery and translational research. PMID:26516208

  9. Histopathology of Septic Acute Kidney Injury: A Systematic Review of Experimental Data.

    PubMed

    Kosaka, Junko; Lankadeva, Yugeesh R; May, Clive N; Bellomo, Rinaldo

    2016-09-01

    The histopathologic changes associated with septic acute kidney injury are poorly understood, in part, because of the lack of biopsy data in humans. Animal models of septic acute kidney injury may help define such changes. Therefore, we performed a systematic review of the histopathologic changes found in modern experimental septic acute kidney injury models. MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature, and PubMed (from January 2007 to February 2015). We reviewed experimental studies reporting findings on the histopathology of contemporary experimental septic acute kidney injury. We focused on the presence or the absence of acute tubular necrosis, tubular cell apoptosis, and other nonspecific findings. We identified 102 studies in 1,059 animals. Among the 1,059 animals, 53 (5.0%) did not have any renal histopathologic changes, but acute tubular necrosis was found in 184 (17.4%). The prevalence of acute tubular necrosis was not related to animal size or model of sepsis and was only found in models with low cardiac output and decreased renal blood flow (p < 0.0001). Only 21 studies (170 animals) assessed the prevalence of tubular cell apoptosis, which was reported in 158 animals (92.9%). The prevalence of tubular cell apoptosis was significantly higher in studies using small animals (p < 0.0001) and in peritonitis models (p < 0.0001). Simultaneous acute tubular necrosis and tubular cell apoptosis was rare (55 animals [32.4%]) and only seen with decreased cardiac output and renal blood flow. Nonspecific changes (vacuolization of tubular cells, loss of brush border, and tubular cell swelling) were each observed in 423 (39.9%), 250 (23.6%) and 243 (22.9%) animals, respectively. In models of experimental septic acute kidney injury in contemporary articles, acute tubular necrosis was relatively uncommon and, when present, reflected the presence of an associated low cardiac output or low renal blood flow syndrome. Tubular cell apoptosis seemed frequent in the few studies in which it was investigated. Nonspecific morphologic changes, however, were the most common histopathologic findings.

  10. Normal tubular regeneration and differentiation of the post-ischemic kidney in mice lacking vimentin.

    PubMed Central

    Terzi, F.; Maunoury, R.; Colucci-Guyon, E.; Babinet, C.; Federici, P.; Briand, P.; Friedlander, G.

    1997-01-01

    Proliferation and dedifferentiation of tubular cells are the hallmark of early regeneration after renal ischemic injury. Vimentin, a class III intermediate filament expressed only in mesenchymal cells of mature mammals, was shown to be transiently expressed in post-ischemic renal tubular epithelial cells. Vimentin re-expression was interpreted as a marker of cellular dedifferentiation, but its role in tubular regeneration after renal ischemia has also been hypothesized. This role was evaluated in mice bearing a null mutation of the vimentin gene. Expression of vimentin, proliferating cell nuclear antigen (a marker of cellular proliferation), and villin (a marker of differentiated brush-border membranes) was studied in wild-type (Vim+/+), heterozygous (Vim+/-), and homozygous (Vim-/-) mice subjected to transient ischemia of the left kidney. As expected, vimentin was detected by immunohistochemistry at the basal pole of proximal tubular cells from post-ischemic kidney in Vim+/+ and Vim+/- mice from day 2 to day 28. The expression of the reporter gene beta-galactosidase in Vim+/- and Vim-/- mice confirmed the tubular origin of vimentin. No compensatory expression of keratin could be demonstrated in Vim-/- mice. The intensity of proliferating cell nuclear antigen labeling and the pattern of villin expression were comparable in Vim-/-, Vim+/- and Vim+/+ mice at any time of the study. After 60 days, the structure of post-ischemic kidneys in Vim-/- mice was indistinguishable from that of normal non-operated kidneys in Vim+/+ mice. In conclusion, 1) the pattern of post-ischemic proximal tubular cell proliferation, differentiation, and tubular organization was not impaired in mice lacking vimentin and 2) these results suggest that the transient tubular expression of vimentin is not instrumental in tubular regeneration after renal ischemic injury. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID:9094992

  11. Efficient globally optimal segmentation of cells in fluorescence microscopy images using level sets and convex energy functionals.

    PubMed

    Bergeest, Jan-Philip; Rohr, Karl

    2012-10-01

    In high-throughput applications, accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression and the understanding of cell function. We propose an approach for segmenting cell nuclei which is based on active contours using level sets and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We consider three different well-known energy functionals for active contour-based segmentation and introduce convex formulations of these functionals. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images from different experiments comprising different cell types. We have also performed a quantitative comparison with previous segmentation approaches. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction.

    PubMed

    Ju, Guan-qun; Cheng, Jun; Zhong, Liang; Wu, Shuai; Zou, Xiang-yu; Zhang, Guang-yuan; Gu, Di; Miao, Shuai; Zhu, Ying-jian; Sun, Jie; Du, Tao

    2015-01-01

    During acute kidney injury (AKI), tubular cell dedifferentiation initiates cell regeneration; hepatocyte growth factor (HGF) is involved in modulating cell dedifferentiation. Mesenchymal stem cell (MSC)-derived microvesicles (MVs) deliver RNA into injured tubular cells and alter their gene expression, thus regenerating these cells. We boldly speculated that MVs might induce HGF synthesis via RNA transfer, thereby facilitating tubular cell dedifferentiation and regeneration. In a rat model of unilateral AKI, the administration of MVs promoted kidney recovery. One of the mechanisms of action is the acceleration of tubular cell dedifferentiation and growth. Both in vivo and in vitro, rat HGF expression in damaged rat tubular cells was greatly enhanced by MV treatment. In addition, human HGF mRNA present in MVs was delivered into rat tubular cells and translated into the HGF protein as another mechanism of HGF induction. RNase treatment abrogated all MV effects. In the in vitro experimental setting, the conditioned medium of MV-treated injured tubular cells, which contains a higher concentration of HGF, strongly stimulated cell dedifferentiation and growth, as well as Erk1/2 signaling activation. Intriguingly, these effects were completely abrogated by either c-Met inhibitor or MEK inhibitor, suggesting that HGF induction is a crucial contributor to the acceleration of cell dedifferentiation and growth. All these findings indicate that MV-induced HGF synthesis in damaged tubular cells via RNA transfer facilitates cell dedifferentiation and growth, which are important regenerative mechanisms.

  13. Role of AMP-activated protein kinase in kidney tubular transport, metabolism, and disease.

    PubMed

    Rajani, Roshan; Pastor-Soler, Nuria M; Hallows, Kenneth R

    2017-09-01

    AMP-activated protein kinase (AMPK) is a metabolic sensor that regulates cellular energy balance, transport, growth, inflammation, and survival functions. This review explores recent work in defining the effects of AMPK on various renal tubular epithelial ion transport proteins as well as its role in kidney injury and repair in normal and disease states. Recently, several groups have uncovered additional functions of AMPK in the regulation of kidney and transport proteins. These new studies have focused on the role of AMPK in the kidney in the setting of various diseases such as diabetes, which include evaluation of the effects of the hyperglycemic state on podocyte and tubular cell function. Other recent studies have investigated how reduced kidney mass, polycystic kidney disease (PKD), and fibrosis affect AMPK activation status. A general theme of several conditions that lead to chronic kidney disease (CKD) is that AMPK activity is abnormally suppressed relative to that in normal kidneys. Thus, the idea that AMPK activation may be a therapeutic strategy to slow down the progression of CKD has emerged. In addition to drugs such as metformin and 5-aminoimidazole-4-carboxamide ribonucleotide that are classically used as AMPK activators, recent studies have identified the therapeutic potential of other compounds that function at least partly as AMPK activators, such as salicylates, statins, berberine, and resveratrol, in preventing the progression of CKD. AMPK in the kidney plays a unique role at the crossroads of energy metabolism, ion and water transport, inflammation, and stress. Its potential role in modulating recovery from vs. progression of acute and chronic kidney injury has been the topic of recent research findings. The continued study of AMPK in kidney physiology and disease has improved our understanding of these physiological and pathological processes and offers great hope for therapeutic avenues for the increasing population at risk to develop kidney failure.

  14. Potential Use of Autologous Renal Cells from Diseased Kidneys for the Treatment of Renal Failure.

    PubMed

    George, Sunil K; Abolbashari, Mehran; Jackson, John D; Aboushwareb, Tamer; Atala, Anthony; Yoo, James J

    2016-01-01

    Chronic kidney disease (CKD) occurs when certain conditions cause the kidneys to gradually lose function. For patients with CKD, renal transplantation is the only treatment option that restores kidney function. In this study, we evaluated primary renal cells obtained from diseased kidneys to determine whether their normal phenotypic and functional characteristics are retained, and could be used for cell therapy. Primary renal cells isolated from both normal kidneys (NK) and diseased kidneys (CKD) showed similar phenotypic characteristics and growth kinetics. The expression levels of renal tubular cell markers, Aquaporin-1 and E-Cadherin, and podocyte-specific markers, WT-1 and Nephrin, were similar in both NK and CKD kidney derived cells. Using fluorescence- activated cell sorting (FACS), specific renal cell populations were identified and included proximal tubular cells (83.1% from NK and 80.3% from CKD kidneys); distal tubular cells (11.03% from NK and 10.9% from CKD kidneys); and podocytes (1.91% from NK and 1.78% from CKD kidneys). Ultra-structural analysis using scanning electron microscopy (SEM) revealed microvilli on the apical surface of cultured cells from NK and CKD samples. Moreover, transmission electron microscopy (TEM) analysis showed a similar organization of tight junctions, desmosomes, and other intracellular structures. The Na+ uptake characteristics of NK and CKD derived renal cells were also similar (24.4 mmol/L and 25 mmol/L, respectively) and no significant differences were observed in the protein uptake and transport characteristics of these two cell isolates. These results show that primary renal cells derived from diseased kidneys such as CKD have similar structural and functional characteristics to their counterparts from a normal healthy kidney (NK) when grown in vitro. This study suggests that cells derived from diseased kidney may be used as an autologous cell source for renal cell therapy, particularly in patients with CKD or end-stage renal disease (ESRD).

  15. Evaluation of the Oxford Classification of IgA nephropathy: a systematic review and meta-analysis.

    PubMed

    Lv, Jicheng; Shi, Sufang; Xu, Damin; Zhang, Hong; Troyanov, Stéphan; Cattran, Daniel C; Wang, Haiyan

    2013-11-01

    The Oxford Classification of the pathology of immunoglobulin A (IgA) nephropathy, developed in 2009, is highly predictive of renal prognosis. It has been validated in different populations, but the results remain inconsistent. Systematic review and meta-analysis. Patients with biopsy-proven primary IgA nephropathy. Studies assessing the Oxford Classification of IgA nephropathy published between January 2009 and December 2012 were included following systematic searching of the MEDLINE and EMBASE databases. 4 pathologic lesions of the Oxford Classification: mesangial hypercellularity (M), endocapillary hypercellularity (E), segmental glomerulosclerosis (S), and tubular atrophy/interstitial fibrosis (T). Kidney failure defined as doubled serum creatinine level, 50% decline in estimated glomerular filtration rate, or end-stage kidney disease. 16 retrospective cohort studies with 3,893 patients and 570 kidney failure events were included. In a multivariate model, HRs for kidney failure were 0.6 (95% CI, 0.5-0.8; P < 0.001), 1.8 (95% CI, 1.4-2.4; P < 0.001), and 3.2 (95% CI, 1.8-5.6; P < 0.001) for scores of M0 (mesangial hypercellularity score ≤0.5), S1 (presence of segmental glomerulosclerosis), and T1/2 (>25% tubular atrophy/interstitial fibrosis), respectively, without evidence of heterogeneity. Pooled results showed that E lesions were not associated with kidney failure (HR, 1.4; 95% CI, 0.9-2.0; P = 0.1), with evidence of heterogeneity (I(2) = 54.1%; P = 0.01). Crescent (C) lesions were associated with kidney failure (HR, 2.3; 95% CI, 1.6-3.4; P < 0.001), with no evidence of heterogeneity (I(2) = 14.7%; P = 0.3). All studies were retrospective. This was not an individual-patient-data meta-analysis. This study suggests that M, S, T, and C lesions, but not E lesions, are associated strongly with progression to kidney failure and thus should be included in the Oxford Classification system. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  16. Weld joint concepts for on-orbit repair of Space Station Freedom fluid system tube assemblies

    NASA Technical Reports Server (NTRS)

    Jolly, Steven D.

    1993-01-01

    Because Space Station Freedom (SSF) is an independent satellite, not depending upon another spacecraft for power, attitude control, or thermal regulation, it has a variety of tubular, fluid-carrying assemblies on-board. The systems of interest in this analysis provide breathing air (oxygen and nitrogen), a working fluid (two-phase anhydrous ammonia) for thermal control, and a monopropellant (hydrazine) for station reboost. The tube assemblies run both internally and externally with respect to the habitats. They are found in up to 50 ft. continuous lengths constructed of mostly AISI 316L stainless steel tubing, but also including some Inconel 625 nickel-iron and Monel 400 nickel-copper alloy tubing. The outer diameters (OD) of the tubes range from 0.25-1.25 inches, and the wall thickness between 0.028-.095 inches. The system operational pressures range from 377 psi (for the thermal control system) to 3400 psi (for the high pressure oxygen and nitrogen supply lines in the ECLSS). SSF is designed for a fifteen to thirty year mission. It is likely that the tubular assemblies (TA's) will sustain damage or fail during this lifetime such that they require repair or replacement. The nature of the damage will be combinations of punctures, chips, scratches, and creases and may be cosmetic or actually leaking. The causes of these hypothetical problems are postulated to be: (1) faulty or fatigued fluid joints--both QD's and butt-welds; (2) micro-meteoroid impacts; (3) collison with another man-made object; and (4) over-pressure strain or burst (system origin). While the current NASA baseline may be to temporarily patch the lines by clamping metal c-sections over the defect, and then perform high pressure injection of a sealing compound, it is clear that permanent repair of the line(s) is necessary. This permanent repair could be to replace the entire TA in the segment, or perhaps the segment itself, both alternatives being extremely expensive and risky. The former would likely require extensive EVA to release TA clamps and pose great risk to other engineering subsystems, and the latter would require major de-servicing of the Station.

  17. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury.

    PubMed

    Masola, Valentina; Zaza, Gianluigi; Bellin, Gloria; Dall'Olmo, Luigi; Granata, Simona; Vischini, Gisella; Secchi, Maria Francesca; Lupo, Antonio; Gambaro, Giovanni; Onisto, Maurizio

    2018-02-01

    Heparanase (HPSE) is part of the biologic network triggered by ischemia/reperfusion (I/R) injury, a complication of renal transplantation and acute kidney injury. During this period, the kidney or graft undergoes a process of macrophages recruitment and activation. HPSE may therefore control these biologic effects. We measured the ability of HPSE and its inhibitor, SST0001, to regulate macrophage polarization and the crosstalk between macrophages and HK-2 renal tubular cells during in vitro hypoxia/reoxygenation (H/R). Furthermore, we evaluated in vivo renal inflammation, macrophage polarization, and histologic changes in mice subjected to monolateral I/R and treated with SST0001 for 2 or 7 d. The in vitro experiments showed that HPSE sustained M1 macrophage polarization and modulated apoptosis, the release of damage associated molecular patterns in post-H/R tubular cells, the synthesis of proinflammatory cytokines, and the up-regulation of TLRs on both epithelial cells and macrophages. HPSE also regulated M1 polarization induced by H/R-injured tubular cells and the partial epithelial-mesenchymal transition of these epithelial cells by M1 macrophages. All these effects were prevented by inhibiting HPSE. Furthermore, the inhibition of HPSE in vivo reduced inflammation and M1 polarization in mice undergoing I/R injury, partially restored renal function and normal histology, and reduced apoptosis. These results show for the first time that HPSE regulates macrophage polarization as well as renal damage and repair after I/R. HPSE inhibitors could therefore provide a new pharmacologic approach to minimize acute kidney injury and to prevent the chronic profibrotic damages induced by I/R.-Masola, V., Zaza, G., Bellin, G., Dall'Olmo, L., Granata, S., Vischini, G., Secchi, M. F., Lupo, A., Gambaro, G., Onisto, M. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury.

  18. Distal renal tubular acidosis and hepatic lipidosis in a cat.

    PubMed

    Brown, S A; Spyridakis, L K; Crowell, W A

    1986-11-15

    Clinical and laboratory evidence of hepatic failure was found in a chronically anorectic cat. Simultaneous blood and urine pH determinations established a diagnosis of distal renal tubular acidosis. The cat did not respond to treatment. Necropsy revealed distal tubular nephrosis and hepatic lipidosis. The finding of distal renal tubular acidosis in a cat with hepatic lipidosis emphasizes the importance of complete evaluation of acid-base disorders in patients.

  19. Intra-tubular hydrodynamic forces influence tubulo-interstitial fibrosis in the kidney

    PubMed Central

    Rohatgi, Rajeev; Flores, Daniel

    2010-01-01

    Purpose of review Renal epithelial cells respond to mechanical stimuli with immediate transduction events (e.g., activation of ion channels), intermediate biological responses (e.g., changes in gene expression), and long term cellular adaptation (e.g., protein expression). Progressive renal disease is characterized by disturbed glomerular hydrodynamics that contributes to glomerulosclerosis, but, how intra-tubular biomechanical forces contribute to tubulo-interstital inflammation and fibrosis is poorly understood. Recent findings In vivo and in vitro models of obstructive uropathy demonstrate that tubular stretch induces robust expression of transforming growth factor β-1 (TGFβ-1), activation of tubular apoptosis, and induction of NF-κB signaling which contribute to the inflammatory and fibrotic milieu. Non-obstructive structural kidney diseases associated with nephron loss follow a course characterized by compensatory increases of single nephron glomerular filtration rate and tubular flow rate. Resulting increases in tubular fluid shear stress (FSS) reduce tissue-plasminogen activator and urokinase enzymatic activity which diminishes breakdown of extracellular matrix. In models of high dietary Na intake, which increase tubular flow, urinary TGFβ-1 concentrations and renal mitogen activated protein kinase activity are increased. Summary In conclusion, intra-tubular biomechanical forces, stretch and FSS, generate changes in intracellular signaling and gene expression that contribute to the pathobiology of obstructive, and non-obstructive kidney disease. PMID:19851105

  20. Methods of performing downhole operations using orbital vibrator energy sources

    DOEpatents

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  1. Tubular Adenoma of the Breast: A Rare Presentation and Review of the Literature

    PubMed Central

    Salemis, Nikolaos S.; Gemenetzis, Georgios; Karagkiouzis, Gregorios; Seretis, Charalambos; Sapounas, Konstantinos; Tsantilas, Vlasios; Sambaziotis, Dimitrios; Lagoudianakis, Emmanuel

    2012-01-01

    Tubular adenomas, also known as pure adenomas, are rare epithelial tumors of the breast. Only a few cases have been reported in the literature, especially in young women of reproductive age. Postmenopausal women are very rarely affected. We describe here a very rare case of tubular breast adenoma in a postmenopausal woman who presented with a gradually enlarging breast lump. Clinical examination and imaging studies revealed a non-tender well circumscribed left breast tumor suggestive of a fibroadenoma. Due to the history of progressive enlargement of the breast lump, a surgical excision was performed. Histological findings were suggestive of a tubular breast adenoma. We conclude that although tubular breast adenoma is rare, it should always be considered in the differential diagnosis in postmenopausal patients presenting with a gradually enlarging breast mass. Preoperative diagnosis is difficult because tubular adenoma is indistinguishable from a fibroadenoma on physical examination and breast imaging. Surgical excision is necessary to establish a definitive diagnosis. Clinical presentation and management of our patient are discussed along with a review of the literature. Keywords Tubular adenoma; Breast; Breast mass. PMID:22383931

  2. Tubular adenoma of the breast: a rare presentation and review of the literature.

    PubMed

    Salemis, Nikolaos S; Gemenetzis, Georgios; Karagkiouzis, Gregorios; Seretis, Charalambos; Sapounas, Konstantinos; Tsantilas, Vlasios; Sambaziotis, Dimitrios; Lagoudianakis, Emmanuel

    2012-02-01

    Tubular adenomas, also known as pure adenomas, are rare epithelial tumors of the breast. Only a few cases have been reported in the literature, especially in young women of reproductive age. Postmenopausal women are very rarely affected. We describe here a very rare case of tubular breast adenoma in a postmenopausal woman who presented with a gradually enlarging breast lump. Clinical examination and imaging studies revealed a non-tender well circumscribed left breast tumor suggestive of a fibroadenoma. Due to the history of progressive enlargement of the breast lump, a surgical excision was performed. Histological findings were suggestive of a tubular breast adenoma. We conclude that although tubular breast adenoma is rare, it should always be considered in the differential diagnosis in postmenopausal patients presenting with a gradually enlarging breast mass. Preoperative diagnosis is difficult because tubular adenoma is indistinguishable from a fibroadenoma on physical examination and breast imaging. Surgical excision is necessary to establish a definitive diagnosis. Clinical presentation and management of our patient are discussed along with a review of the literature. Tubular adenoma; Breast; Breast mass.

  3. The three-dimensional simulation analysis of dynamic response on perforated strings

    NASA Astrophysics Data System (ADS)

    Li, M. F.; Liu, H. F.; Dou, Y. H.; Cao, L. H.; Liu, Y. X.

    2018-06-01

    It analyzes the dynamic response and stresses of perforating tubular string to detonating impact load in oil-gas well in ANSYS, obtains the response of vibration displacement, velocity and acceleration of perforating tubularstring caused by detonating impact load, finds the influence of the length and wall thickness of perforating tubular string to working stresses. The result shows that:when the detonating impact load exerts the perforating tubular string with compressive and tensile axial force alternatively;the vibration displacement, velocity and acceleration of perfora-ting tubular string change periodically at same cycle;the closer to the perforating gun, the larger the amplitude of vi-bration velocity and acceleration;the closer to the packer the smaller the vibration displacement, the larger the work-ing equivalent stress of perforating tubular string;the longer or the thicker the perforating tubular string, the smaller the working equivalent stress and the higher the strength safety. Therefore, it uses the damping tube between packer and perforating gun as well as thick walled tubing to increase the strength safety of perforating tubular string.

  4. Differentiation of vasoactive renal sympathetic nerve fibres.

    PubMed

    Dibona, G F

    2000-01-01

    Activation of renal sympathetic nerves produces marked changes in renal haemodynamics, tubular ion and water transport and renin secretion. This review examines information indicating that these effects are mediated by functionally specific groups of renal sympathetic nerve fibres separately innervating the renal vessels, tubules and juxtaglomerular granular cells.

  5. Paracrine Activation of the Wnt/β-Catenin Pathway by Bone Marrow Stem Cell Attenuates Cisplatin-Induced Kidney Injury.

    PubMed

    Jiao, Xiaoyan; Cai, Jieru; Yu, Xiaofang; Ding, Xiaoqiang

    2017-01-01

    Cisplatin-induced acute kidney injury (AKI) involves damage to tubular cells via excess reactive oxygen species (ROS) generation. Stem cell-based therapies have shown great promise in AKI treatment. In this study, we aimed to assess the protective effect and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived conditioned medium (CM) against cisplatin-induced AKI. In vitro, NRK-52E cells were incubated with cisplatin in the presence or absence of CM, followed by the assessment of cell viability, apoptosis and cell cycle distribution. Then, ICG-001 and IWR-1 were used to inhibit the wnt/β-catenin pathway. Furthermore, intracellular and mitochondrial ROS levels were evaluated using DCFH-DA and MitoSOX, respectively. In vivo, after cisplatin injection, rats were intravenously injected with CM or BMSCs. Sera and kidney tissues were collected on day 3 after cisplatin injection to evaluate changes in renal function and histology. Western blotting and qRT-PCR were employed to determine the expression of wnt/β-catenin pathway-related genes and proteins. Immunohistochemical staining was used to evaluate tubular β-catenin expression in kidney biopsy from AKI patients. CM protected NRK-52E cells from cisplatin-induced injury by restoring the wnt4/β-catenin pathway. In response to ICG-001 and IWR-1, the protective effect of CM was attenuated, characterized by a decrease in cell proliferation and an increase in cell apoptosis and intracellular and mitochondrial ROS levels. Knockdown of β-catenin using siRNAs also suppressed the mitochondrial biogenesis regulators PGC-1α, TFAM and NRF-1. In the rat model, CM significantly alleviated renal function and histology associated with tubular injury and upregulated wnt4 and β-catenin. However, the renoprotective effect of CM was blocked by ICG-001, characterized by exacerbated renal function, suppressed PGC-1α expression and increased mitochondrial ROS. Clinical data showed that the tubular β-catenin level was lower in AKI patients experiencing partial recovery than in patients experiencing complete recovery. The activation of the wnt/β-catenin pathway by CM protects against cisplatin-induced kidney injury, resulting in reduced apoptosis and intracellular ROS levels. © 2017 The Author(s). Published by S. Karger AG, Basel.

  6. Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney.

    PubMed

    Ellery, Stacey J; Ireland, Zoe; Kett, Michelle M; Snow, Rod; Walker, David W; Dickinson, Hayley

    2013-02-01

    Acute kidney injury (AKI) is a major complication for infants following an asphyxic insult at birth. We aimed to determine if kidney structure and function were affected in an animal model of birth asphyxia and if maternal dietary creatine supplementation could provide an energy reserve to the fetal kidney, maintaining cellular respiration during asphyxia and preventing AKI. Pregnant spiny mice were maintained on normal chow or chow supplemented with creatine from day 20 gestation. On day 38 (term ~39 d), pups were delivered by cesarean section (c-section) or subjected to intrauterine asphyxia. Twenty-four hours after insult, kidneys were collected for histological or molecular analysis. Urine and plasma were also collected for biochemical analysis. AKI was evident at 24 h after birth asphyxia, with a higher incidence of shrunken glomeruli (P < 0.02), disturbance to tubular arrangement, tubular dilatation, a twofold increase (P < 0.02) in expression of Ngal (early marker of kidney injury), and decreased expression of the podocyte differentiation marker nephrin. Maternal creatine supplementation prevented the glomerular and tubular abnormalities observed in the kidney at 24 h and the increased expression of Ngal. Maternal creatine supplementation may prove useful in ameliorating kidney injury associated with birth asphyxia.

  7. mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells.

    PubMed

    Grahammer, Florian; Ramakrishnan, Suresh K; Rinschen, Markus M; Larionov, Alexey A; Syed, Maryam; Khatib, Hazim; Roerden, Malte; Sass, Jörn Oliver; Helmstaedter, Martin; Osenberg, Dorothea; Kühne, Lucas; Kretz, Oliver; Wanner, Nicola; Jouret, Francois; Benzing, Thomas; Artunc, Ferruh; Huber, Tobias B; Theilig, Franziska

    2017-01-01

    Renal proximal tubular cells constantly recycle nutrients to ensure minimal loss of vital substrates into the urine. Although most of the transport mechanisms have been discovered at the molecular level, little is known about the factors regulating these processes. Here, we show that mTORC1 and mTORC2 specifically and synergistically regulate PTC endocytosis and transport processes. Using a conditional mouse genetic approach to disable nonredundant subunits of mTORC1, mTORC2, or both, we showed that mice lacking mTORC1 or mTORC1/mTORC2 but not mTORC2 alone develop a Fanconi-like syndrome of glucosuria, phosphaturia, aminoaciduria, low molecular weight proteinuria, and albuminuria. Interestingly, proteomics and phosphoproteomics of freshly isolated kidney cortex identified either reduced expression or loss of phosphorylation at critical residues of different classes of specific transport proteins. Functionally, this resulted in reduced nutrient transport and a profound perturbation of the endocytic machinery, despite preserved absolute expression of the main scavenger receptors, MEGALIN and CUBILIN. Our findings highlight a novel mTOR-dependent regulatory network for nutrient transport in renal proximal tubular cells. Copyright © 2016 by the American Society of Nephrology.

  8. Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming

    DOEpatents

    Golovashchenko, Sergey Fedorovich [Beverly Hills, MI

    2011-03-15

    A tubular preform is contracted in an electro-hydraulic forming operation. The tubular preform is wrapped with one or more coils of wire and placed in a chamber of an electro-hydraulic forming tool. The electro-hydraulic forming tool is discharged to form a compressed area on a portion of the tube. The tube is then placed in a hydroforming tool that expands the tubular preform to form a part.

  9. Open tube guideway for high speed air cushioned vehicles

    NASA Technical Reports Server (NTRS)

    Goering, R. S. (Inventor)

    1974-01-01

    This invention is a tubular shaped guideway for high-speed air-cushioned supported vehicles. The tubular guideway is split and separated such that the sides of the guideway are open. The upper portion of the tubular guideway is supported above the lower portion by truss-like structural members. The lower portion of the tubular guideway may be supported by the terrain over which the vehicle travels, on pedestals or some similar structure.

  10. Apparatus and methods for splicing conduits and hoses subsea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slocum, Alexander Henry; Gutierrez, Luis Javier

    A hose connection system comprises a body including an internal cavity and a port in fluid communication with a portion of the internal cavity. In addition, the system comprises a hose end fitting positioned in the cavity. The hose end fitting includes an inner tubular member and an outer tubular member concentrically disposed about the inner tubular member. The outer tubular member includes a plurality of circumferentially spaced axial slits. Further, the system comprises a plurality of wedge members arranged circumferentially about the outer tubular member. Still further, the system comprises an annular piston movably disposed within the internal cavitymore » of the body. An end of the piston has an inner frustoconical surface that slidingly engages the plurality of wedge members. The piston is configured to move axially through the body and compress the wedge members and the outer tubular member radially inward.« less

  11. Flexible high-temperature pH probe

    DOEpatents

    Bielawski, John C.; Outwater, John O.; Halbfinger, George P.

    2003-04-22

    A flexible pH probe device is provided for use in hot water and other high temperature environments up to about 590.degree. F. The pH probe includes a flexible, inert tubular probe member, an oxygen anion conducting, solid state electrolyte plug located at the distal end of the tubular member, oxide powder disposed at the distal end of the tubular member; a metal wire extending along the tubular member and having a distal end in contact with the oxide powder so as to form therewith an internal reference electrode; and a compression fitting forming a pressure boundary seal around a portion of the tubular member remote from the distal end thereof. Preferably, the tubular member is made of polytetrafluoroethylene, and the solid state electrolyte plug is made of stabilized zirconia. The flexibility of the probe member enables placement of the electrode into the area of interest, including around corners, into confined areas and the like.

  12. Expression of Nek1 during kidney development and cyst formation in multiple nephron segments in the Nek1-deficient kat2J mouse model of polycystic kidney disease.

    PubMed

    Chen, Yumay; Chiang, Huai-Chin; Litchfield, Patricia; Pena, Michelle; Juang, Charity; Riley, Daniel J

    2014-07-17

    Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD. We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman's space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths. Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.

  13. Factor h and properdin recognize different epitopes on renal tubular epithelial heparan sulfate.

    PubMed

    Zaferani, Azadeh; Vivès, Romain R; van der Pol, Pieter; Navis, Gerjan J; Daha, Mohamed R; van Kooten, Cees; Lortat-Jacob, Hugues; Seelen, Marc A; van den Born, Jacob

    2012-09-07

    During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope than properdin. Factor H was present on the urinary side of renal tubular cells in proteinuric, but not in normal renal tissues and colocalized with properdin in proteinuric kidneys. Factor H dose-dependently bound to proximal tubular epithelial cells (PTEC) in vitro. Preincubation of factor H with exogenous heparin and pretreatment of PTECs with heparitinase abolished the binding to PTECs. Surface plasmon resonance experiments showed high affinity of factor H for heparin and HS (K(D) values of 32 and 93 nm, respectively). Using a library of HS-like polysaccharides, we showed that chain length and high sulfation density are the most important determinants for glycosaminoglycan-factor H interaction and clearly differ from properdin-heparinoid interaction. Coincubation of properdin and factor H did not hamper HS/heparin binding of one another, indicating recognition of different nonoverlapping epitopes on HS/heparin by factor H and properdin. Finally we showed that certain low anticoagulant heparinoids can inhibit properdin binding to tubular HS, with a minor effect on factor H binding to tubular HS. As a result, these heparinoids can control the alternative complement pathway. In conclusion, factor H and properdin interact with different HS epitopes of PTECs. These interactions can be manipulated with some low anticoagulant heparinoids, which can be important for preventing complement-derived tubular injury in proteinuric renal diseases.

  14. Clinical types and drug therapy of renal impairment in cirrhosis

    PubMed Central

    Rodés, J.; Bosch, J.; Arroyo, V.

    1975-01-01

    Four separate types of renal failure in cirrhosis are described: functional renal failure; diuretic induced uraemia; acute tubular necrosis; chronic intrinsic renal disease. Functional renal failure may arise spontaneously or be precipitated by such factors as haemorrhage, surgery, or infection. It carries a poor prognosis but preliminary results of treating this condition with plasma volume expansion in combination with high doses of furosemide are encouraging. PMID:1234328

  15. Testicular growth and tubular function in prepubertal boys conceived by intracytoplasmic sperm injection.

    PubMed

    De Schepper, Jean; Belva, Florence; Schiettecatte, Johan; Anckaert, Ellen; Tournaye, Herman; Bonduelle, Maryse

    2009-01-01

    Little is known about the gonadal function of boys conceived by intracytoplasmic sperm injection (ICSI) from fathers with compromised spermatogenesis. To evaluate the potential risk of tubular dysfunction in these boys, we assessed morphological and functional gonadal parameters and their correlation with paternal sperm characteristics. In a group of 88 eight-year-old ICSI boys, we measured testicular and penile size. Serum concentrations of anti-mullerian hormone (AMH) and inhibin B were analyzed in 59 of them. Except for two boys with micropenis, penis length and mean testicular length were normal in all boys. In 7 boys inhibin B concentrations were below the lower limit for age, while all AMH results were within normal limits. Serum Sertoli cell markers correlated significantly with each other (p < 0.005), but were independent of paternal sperm parameters. Our data suggest that penile and testicular growth as well as Sertoli cell function are normal in the majority of prepubertal ICSI boys. Serum AMH and inhibin B levels were found to be independent of sperm quality of the father. Further follow-up of these prepubertal children is needed to examine whether normal Sertoli cell markers will be followed by a normal spermatogenesis in puberty. 2009 S. Karger AG, Basel

  16. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats.

    PubMed

    Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2013-10-01

    Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.

  17. [High-Definition Exoscope System for Microneurosurgery:Use of an Exoscope in Combination with Tubular Retraction and Frameless Neuronavigation for Microsurgical Resection of Deep Brain Lesions].

    PubMed

    Nagatani, Kimihiro; Takeuchi, Satoru; Feng, Dongxia; Mori, Kentaro; Day, J Diaz

    2015-07-01

    The high-definition exoscope (VITOM®, Karl Storz GmbH & Co., Tuttlingen, Germany) is a new equipment that can be used as an alternative to the operating microscope in neurosurgery. Several neurosurgeons have recently reported that the exoscope allows for long working distances and great depth of field. Herein, we review reported cases of exoscope use in neurosurgery. We also describe the advantages of the exoscope compared to the operating microscope and endoscope. Furthermore, we introduce a novel technique for microsurgical resection of deep brain lesions, in which the exoscope is used along with tubular retraction and frameless neuronavigation. Before the operation, neuronavigation is registered and the surgical trajectory is planned to avoid damaging the functional cortex and eloquent white matter tracts. By using intraoperative neuronavigation, the tubular retractor (NICO BrainPath®, NICO Corporation, Indianapolis, US), which is designed to split the white matter when gently inserted, is inserted transcortically into the brain to reach the lesion, along the preplanned trajectory. After insertion, the tubular retractor is fixed in place using a self-retaining arm. This creates a narrow corridor that enables the use of the exoscope (for optimum visualization), bimanual dissection technique, and long bayoneted surgical instruments. The large focal distance of the exoscope allows it to be placed sufficiently further away from the surgical site, permitting the passage of long surgical instruments under the scope. Although obtaining surgical access to deep-seated brain lesions is challenging, we consider that this technique facilitates a safe surgical approach for lesions in deep locations.

  18. Transport characteristics of L-citrulline in renal apical membrane of proximal tubular cells.

    PubMed

    Mitsuoka, Keisuke; Shirasaka, Yoshiyuki; Fukushi, Akimasa; Sato, Masanobu; Nakamura, Toshimichi; Nakanishi, Takeo; Tamai, Ikumi

    2009-04-01

    L-Citrulline has diagnostic potential for renal function, because its plasma concentration increases with the progression of renal failure. Although L-citrulline extracted by glomerular filtration in kidney is mostly reabsorbed, the mechanism involved is not clearly understood. The present study was designed to characterize L-citrulline transport across the apical membranes of renal epithelial tubular cells, using primary-cultured rat renal proximal tubular cells, as well as the human kidney proximal tubular cell line HK-2. L-Citrulline was transported in a Na(+)-dependent manner from the apical side of both cell types cultured on permeable supports with a microporous membrane. Kinetic analysis indicated that the transport involves two distinct Na(+)-dependent saturable systems and one Na(+)-independent saturable system in HK-2 cells. The uptake was competitively inhibited by neutral and cationic, but not anionic amino acids. Relatively large cationic and anionic compounds inhibited the uptake, but smaller ones did not. In HK-2 cells, mRNA expression of SLC6A19 and SLC7A9, which encode B(0)AT1 and b(0,+)AT, respectively, was detected by RT-PCR. In addition, L-citrulline transport was significantly decreased in HK-2 cells in which either SLC6A19 or SLC7A9 was silenced. Hence, these results suggest that amino acid transporters B(0)AT1 and b(0,+)AT are involved in the reabsorption of L-citrulline in the kidney, at least in part, by mediating the apical membrane transport of L-citrulline in renal tubule cells.

  19. Tubular graphite cones.

    PubMed

    Zhang, Guangyu; Jiang, Xin; Wang, Enge

    2003-04-18

    We report the synthesis of tubular graphite cones using a chemical vapor deposition method. The cones have nanometer-sized tips, micrometer-sized roots, and hollow interiors with a diameter ranging from about 2 to several tens of nanometers. The cones are composed of cylindrical graphite sheets; a continuous shortening of the graphite layers from the interior to the exterior makes them cone-shaped. All of the tubular graphite cones have a faceted morphology. The constituent graphite sheets have identical chiralities of a zigzag type across the entire diameter, imparting structural control to tubular-based carbon structures. The tubular graphite cones have potential for use as tips for scanning probe microscopy, but with greater rigidity and easier mounting than currently used carbon nanotubes.

  20. Tubular nanostructured materials for bioapplications

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Chen, Linfeng; Srivatsan, Malathi; Varadan, Vijay K.

    2009-03-01

    Tubular nanomaterials possess hollow structures as well as high aspect ratios. In addition to their unique physical and chemical properties induced by their nanoscale dimensions, their inner voids and outer surfaces make them ideal candidates for a number of biomedical applications. In this work, three types of tubular nanomaterials including carbon nanotubes, hematite nanotubes, and maghemite nanotubes, were synthesized by different chemical techniques. Their structural and crystalline properties were characterized. For potential bioapplications of tubular nanomaterials, experimental investigations were carried out to demonstrate the feasibility of using carbon nanotubes, hematite nanotubes, and maghemite nanotubes in glucose sensing, neuronal growth, and drug delivery, respectively. Preliminary results show the promise of tubular nanomaterials in future biomedical applications.

  1. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    PubMed

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  2. An efficient polymeric micromotor doped with Pt nanoparticle@carbon nanotubes for complex bio-media.

    PubMed

    Li, Yana; Wu, Jie; Xie, Yuzhe; Ju, Huangxian

    2015-04-14

    A highly efficient polymeric tubular micromotor doped with Pt nanoparticle@carbon nanotubes is fabricated by template-assisted electrochemical growth. The micromotors preserve good navigation in multi-media and surface modification, along with simple synthesis, easy functionalization and good biocompatibility, displaying great promise in biological applications.

  3. Consistency functional map propagation for repetitive patterns

    NASA Astrophysics Data System (ADS)

    Wang, Hao

    2017-09-01

    Repetitive patterns appear frequently in both man-made and natural environments. Automatically and robustly detecting such patterns from an image is a challenging problem. We study repetitive pattern alignment by embedding segmentation cue with a functional map model. However, this model cannot tackle the repetitive patterns directly due to the large photometric and geometric variations. Thus, a consistency functional map propagation (CFMP) algorithm that extends the functional map with dynamic propagation is proposed to address this issue. This propagation model is acquired in two steps. The first one aligns the patterns from a local region, transferring segmentation functions among patterns. It can be cast as an L norm optimization problem. The latter step updates the template segmentation for the next round of pattern discovery by merging the transferred segmentation functions. Extensive experiments and comparative analyses have demonstrated an encouraging performance of the proposed algorithm in detection and segmentation of repetitive patterns.

  4. Renal control of calcium, phosphate, and magnesium homeostasis.

    PubMed

    Blaine, Judith; Chonchol, Michel; Levi, Moshe

    2015-07-07

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. Copyright © 2015 by the American Society of Nephrology.

  5. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  6. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  7. The many faces of intraosseous haemangioma: a diagnostic headache.

    PubMed

    Ching, B C; Wong, J S; Tan, M H; Jara-Lazaro, A R

    2009-05-01

    Intraosseous haemangioma constitutes less than ten percent of all primary bone neoplasms. Approximately 75 percent occur in the calvarium or vertebrae, with long bones, short tubular bones and ribs constituting the rest. We describe a 52-year-old woman who presented with left knee pain for 4-5 years and loss of weight over one week. An initial radiograph of the knee showed several well circumscribed isodense lesions with sclerotic rims in the medullary cavity of the distal femur and diaphysis of the left tibia. There were also lucent lesions with a slightly sclerotic rim in the diaphysis of the left tibia and proximal left fibula. In view of the clinical presentation and radiological findings, extensive investigations were made to rule out metastases and multiple myeloma. An open biopsy with segmental osteotomy of the left mid fibular lesion revealed an intraosseous haemangioma.

  8. Evaluation of Road Performance Based on International Roughness Index and Falling Weight Deflectometer

    NASA Astrophysics Data System (ADS)

    Hasanuddin; Setyawan, A.; Yulianto, B.

    2018-03-01

    Assessment to the performance of road pavement is deemed necessary to improve the management quality of road maintenance and rehabilitation. This research to evaluate the road base on functional and structural and recommendations handling done. Assessing the pavement performance is conducted with functional and structural evaluation. Functional evaluation of pavement is based on the value of IRI (International Roughness Index) which among others is derived from reading NAASRA for analysis and recommended road handling. Meanwhile, structural evaluation of pavement is done by analyzing deflection value based on FWD (Falling Weight Deflectometer) data resulting in SN (Structural Number) value. The analysis will result in SN eff (Structural Number Effective) and SN f (Structural Number Future) value obtained from comparing SN eff to SN f value that leads to SCI (Structural Condition Index) value. SCI value implies the possible recommendation for handling pavement. The study done to Simpang Tuan-Batas Kota Jambi road segment was based on functional analysis. The study indicated that the road segment split into 12 segments in which segment 1, 3, 5, 7, 9, and 11 were of regular maintenance, segment 2, 4, 8, 10, 12 belonged to periodic maintenance, and segment 6 was of rehabilitation. The structural analysis resulted in 8 segments consisting of segment 1 and 2 recommended for regular maintenance, segment 3, 4, 5, and 7 for functional overlay, and 6 and 8 were of structural overlay.

  9. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenicmore » reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPAR{gamma} activation.« less

  10. BBSome function is required for both the morphogenesis and maintenance of the photoreceptor outer segment

    PubMed Central

    Hsu, Ying; Kim, Gunhee; Zhang, Qihong; Datta, Poppy; Seo, Seongjin

    2017-01-01

    Genetic mutations disrupting the structure and function of primary cilia cause various inherited retinal diseases in humans. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic ciliopathy characterized by retinal degeneration, obesity, postaxial polydactyly, intellectual disability, and genital and renal abnormalities. To gain insight into the mechanisms of retinal degeneration in BBS, we developed a congenital knockout mouse of Bbs8, as well as conditional mouse models in which function of the BBSome (a protein complex that mediates ciliary trafficking) can be temporally inactivated or restored. We demonstrate that BBS mutant mice have defects in retinal outer segment morphogenesis. We further demonstrate that removal of Bbs8 in adult mice affects photoreceptor function and disrupts the structural integrity of the outer segment. Notably, using a mouse model in which a gene trap inhibiting Bbs8 gene expression can be removed by an inducible FLP recombinase, we show that when BBS8 is restored in immature retinas with malformed outer segments, outer segment extension can resume normally and malformed outer segment discs are displaced distally by normal outer segment structures. Over time, the retinas of the rescued mice become morphologically and functionally normal, indicating that there is a window of plasticity when initial retinal outer segment morphogenesis defects can be ameliorated. PMID:29049287

  11. Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.

    PubMed

    Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang

    2015-11-01

    Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. © 2015 Wiley Periodicals, Inc.

  12. Integrated continuous dissolution, refolding and tag removal of fusion proteins from inclusion bodies in a tubular reactor.

    PubMed

    Pan, Siqi; Zelger, Monika; Jungbauer, Alois; Hahn, Rainer

    2014-09-20

    An integrated continuous tubular reactor system was developed for processing an autoprotease expressed as inclusion bodies. The inclusion bodies were suspended and fed into the tubular reactor system for continuous dissolving, refolding and precipitation. During refolding, the dissolved autoprotease cleaves itself, separating the fusion tag from the target peptide. Subsequently, the cleaved fusion tag and any uncleaved autoprotease were precipitated out in the precipitation step. The processed exiting solution results in the purified soluble target peptide. Refolding and precipitation yields performed in the tubular reactor were similar to batch reactor and process was stable for at least 20 h. The authenticity of purified peptide was also verified by mass spectroscopy. Productivity (in mg/l/h and mg/h) calculated in the tubular process was twice and 1.5 times of the batch process, respectively. Although it is more complex to setup a tubular than a batch reactor, it offers faster mixing, higher productivity and better integration to other bioprocessing steps. With increasing interest of integrated continuous biomanufacturing, the use of tubular reactors in industrial settings offers clear advantages. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Percutaneous Transtubular Middle Fossa Approach for Intracanalicular Tumors.

    PubMed

    Bernardo, Antonio; Evins, Alexander I; Tsiouris, Apostolos J; Stieg, Philip E

    2015-07-01

    In cases of small intracanalicular tumors (≤ 1.5 cm), the middle fossa approach (MFA) provides the ability for adequate tumor removal with preservation of existing auditory function. Application of a minimally invasive tubular retractor in this approach may help mitigate the risk of postoperative seizures, aphasia, and venous complications by minimizing intraoperative retraction of the temporal lobe. We propose a minimally invasive microscopic and/or endoscopic percutaneous transtubular MFA for the management of intracanalicular tumors. Subtemporal keyhole craniectomies were performed on 5 preserved cadaveric heads (10 sides), with 6 sides previously injected with a synthetic tumor model. A ViewSite Brain Access System tubular retractor (Vycor Medical, Inc., Boca Raton, Florida, USA) was used to provide minimal temporal retraction and protection of the surrounding anatomy. An extradural dissection of the internal auditory canal was performed under microscopic and endoscopic visualization with a minimally invasive surgical drill and tube shaft instruments, the intracanalicular tumors were removed, and degree of resection was assessed. All 10 approaches were completed successfully through the tubular retractor with minimal retraction of the temporal lobe. Excellent visualization of the structures within the internal auditory canal was achieved with both the microscope and 3-dimensional endoscope. On the 6 synthetic intracanalicular tumors resected, 5 gross total (Grade I) and 1 near total (Grade II) resections were achieved. A percutaneous transtubular MFA is a feasible minimally invasive option for resection of small intracanalicular tumors with potential preservation of auditory function, reduced temporal retraction, and enhanced protection of surrounding structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Segmental expression of Pax3/7 and engrailed homologs in tardigrade development.

    PubMed

    Gabriel, Willow N; Goldstein, Bob

    2007-06-01

    How morphological diversity arises through evolution of gene sequence is a major question in biology. In Drosophila, the genetic basis for body patterning and morphological segmentation has been studied intensively. It is clear that some of the genes in the Drosophila segmentation program are functioning similarly in certain other taxa, although many questions remain about when these gene functions arose and which taxa use these genes similarly to establish diverse body plans. Tardigrades are an outgroup to arthropods in the Ecdysozoa and, as such, can provide insight into how gene functions have evolved among the arthropods and their close relatives. We developed immunostaining methods for tardigrade embryos, and we used cross-reactive antibodies to investigate the expression of homologs of the pair-rule gene paired (Pax3/7) and the segment polarity gene engrailed in the tardigrade Hypsibius dujardini. We find that in H. dujardini embryos, Pax3/7 protein localizes not in a pair-rule pattern but in a segmentally iterated pattern, after the segments are established, in regions of the embryo where neurons later arise. Engrailed protein localizes in the posterior ectoderm of each segment before ectodermal segmentation is apparent. Together with previous results from others, our data support the conclusions that the pair-rule function of Pax3/7 is specific to the arthropods, that some of the ancient functions of Pax3/7 and Engrailed in ancestral bilaterians may have been in neurogenesis, and that Engrailed may have a function in establishing morphological boundaries between segments that is conserved at least among the Panarthropoda.

  15. Anti-clogging filter system

    DOEpatents

    Brown, Erik P.

    2015-05-19

    An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain that preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.

  16. Anti-clogging filter system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Erik P.

    An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain thatmore » preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.« less

  17. 46 CFR 61.10-5 - Pressure vessels in service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... conditions at each inspection for certification: all tubular heat exchangers, hydraulic accumulators, and all...: all tubular heat exchangers, hydraulic accumulators, and all pressure vessels used in refrigeration... normally be subjected to a hydrostatic test: (1) Tubular heat exchangers. (2) Pressure vessels used in...

  18. 46 CFR 61.10-5 - Pressure vessels in service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... conditions at each inspection for certification: all tubular heat exchangers, hydraulic accumulators, and all...: all tubular heat exchangers, hydraulic accumulators, and all pressure vessels used in refrigeration... normally be subjected to a hydrostatic test: (1) Tubular heat exchangers. (2) Pressure vessels used in...

  19. Arcas Rocket with Special Tubular Launcher

    NASA Image and Video Library

    1959-07-31

    Arcas Rocket with Special Tubular Launcher: Lt. Commander W. Houston checks elevation adjustment of special tubular launcher for Arcas rocket, July 31, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 697.

  20. 46 CFR 61.10-5 - Pressure vessels in service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... conditions at each inspection for certification: all tubular heat exchangers, hydraulic accumulators, and all...: all tubular heat exchangers, hydraulic accumulators, and all pressure vessels used in refrigeration... normally be subjected to a hydrostatic test: (1) Tubular heat exchangers. (2) Pressure vessels used in...

  1. 46 CFR 61.10-5 - Pressure vessels in service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... conditions at each inspection for certification: all tubular heat exchangers, hydraulic accumulators, and all...: all tubular heat exchangers, hydraulic accumulators, and all pressure vessels used in refrigeration... normally be subjected to a hydrostatic test: (1) Tubular heat exchangers. (2) Pressure vessels used in...

  2. Neural control of renal tubular sodium reabsorption of the dog.

    PubMed

    DiBona, G F

    1978-04-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies demonstrate adrenergic nerve terminals in direct contact with basement membranes of mammalian renal tubular epithelial cells. Low level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. The antinatriuresis is prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney upon renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. Reflex diminutions in renal nerve activity (left atrial distention, stellate ganglion stimulation) produce a decrease in renal tubular sodium reabsorption independent of glomerular filtration rate or renal blood flow. The anatomically described adrenergic innervation of the renal tubules participates in the direct regulation of renal tubular sodium reabsorption.

  3. Patient-specific evolution of renal function in chronic heart failure patients dynamically predicts clinical outcome in the Bio-SHiFT study.

    PubMed

    Brankovic, Milos; Akkerhuis, K Martijn; van Boven, Nick; Anroedh, Sharda; Constantinescu, Alina; Caliskan, Kadir; Manintveld, Olivier; Cornel, Jan Hein; Baart, Sara; Rizopoulos, Dimitris; Hillege, Hans; Boersma, Eric; Umans, Victor; Kardys, Isabella

    2018-04-01

    Renal dysfunction is an important component of chronic heart failure (CHF), but its single assessment does not sufficiently reflect clinically silent progression of CHF prior to adverse clinical outcome. Therefore, we aimed to investigate temporal evolutions of glomerular and tubular markers in 263 stable patients with CHF, and to determine if their patient-specific evolutions during this clinically silent period can dynamically predict clinical outcome. We determined the risk of clinical outcome (composite endpoint of Heart Failure hospitalization, cardiac death, Left Ventricular Assist Device placement, and heart transplantation) in relation to marker levels, slopes and areas under their trajectories. In each patient, the trajectories were estimated using repeatedly measured glomerular markers: creatinine/estimated glomerular filtration rate (eGFR), cystatin C (CysC), and tubular markers: urinary N-acetyl-beta-D-glucosaminidase (NAG) and kidney injury molecule (KIM)-1, plasma and urinary neutrophil gelatinase-associated lipocalin (NGAL). During 2.2 years of follow-up, we collected on average 8 urine and 9 plasma samples per patient. All glomerular markers predicted the endpoint (univariable hazard ratio [95% confidence interval] per 20% increase: creatinine: 1.18[1.07-1.31], CysC: 2.41[1.81-3.41], and per 20% eGFR decrease: 1.13[1.05-1.23]). Tubular markers, NAG, and KIM-1 also predicted the endpoint (NAG: 1.06[1.01-1.11] and KIM-1: 1.08[1.04-1.11]). Larger slopes were the strongest predictors (creatinine: 1.57[1.39-1.84], CysC: 1.76[1.52-2.09], eGFR: 1.59[1.37-1.90], NAG: 1.26[1.11-1.44], and KIM-1: 1.64[1.38-2.05]). Associations persisted after multivariable adjustment for clinical characteristics. Thus, during clinically silent progression of CHF, glomerular and tubular functions deteriorate, but not simultaneously. Hence, patient-specific evolutions of these renal markers dynamically predict clinical outcome in patients with CHF. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  4. The P2X7 receptor antagonist, oxidized adenosine triphosphate, ameliorates renal ischemia-reperfusion injury by expansion of regulatory T cells.

    PubMed

    Koo, Tai Yeon; Lee, Jae-Ghi; Yan, Ji-Jing; Jang, Joon Young; Ju, Kyung Don; Han, Miyeun; Oh, Kook-Hwan; Ahn, Curie; Yang, Jaeseok

    2017-08-01

    Extracellular adenosine triphosphate (ATP) binds to purinergic receptors and, as a danger molecule, promotes inflammatory responses. Here we tested whether periodate-oxidized ATP (oATP), a P2X7 receptor (P2X7R) antagonist can attenuate renal ischemia-reperfusion injury and clarify the related cellular mechanisms. Treatment with oATP prior to ischemia-reperfusion injury decreased blood urea nitrogen, serum creatinine, the tubular injury score, and tubular epithelial cell apoptosis after injury. The infiltration of dendritic cells, neutrophils, macrophages, CD69 + CD4 + , and CD44 + CD4 + T cells was attenuated, but renal Foxp3 + CD4 + Treg infiltration was increased by oATP. The levels of IL-6 and CCL2 were reduced in the oATP group. Additionally, oATP treatment following injury improved renal function, decreased the infiltration of innate and adaptive effector cells, and increased the renal infiltration of Foxp3 + CD4 + Tregs. Post-ischemia-reperfusion injury oATP treatment increased tubular cell proliferation and reduced renal fibrosis. oATP treatment attenuated renal functional deterioration after ischemia-reperfusion injury in RAG-1 knockout mice; however, Treg depletion using PC61 abrogated the beneficial effects of oATP in wild-type mice. Furthermore, oATP treatment after transfer of Tregs from wild-type mice improved the beneficial effects of Tregs on ischemia-reperfusion injury, but treatment after transfer of Tregs from P2X7R knockout mice did not. Renal ischemia-reperfusion injury was also attenuated in P2X7R knockout mice. Experiments using bone marrow chimeras established that P2X7R expression on hematopoietic cells rather than non-hematopoietic cells, such as tubular epithelial cells, plays a major role in ischemia-reperfusion injury. Thus, oATP attenuated acute renal damage and facilitated renal recovery in ischemia-reperfusion injury by expansion of Tregs. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  5. Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices.

    PubMed

    Zanuy, David; Gunasekaran, Kannan; Lesk, Arthur M; Nussinov, Ruth

    2006-04-21

    The formation of fibril aggregates by long polyglutamine sequences is assumed to play a major role in neurodegenerative diseases such as Huntington. Here, we model peptides rich in glutamine, through a series of molecular dynamics simulations. Starting from a rigid nanotube-like conformation, we have obtained a new conformational template that shares structural features of a tubular helix and of a beta-helix conformational organization. Our new model can be described as a super-helical arrangement of flat beta-sheet segments linked by planar turns or bends. Interestingly, our comprehensive analysis of the Protein Data Bank reveals that this is a common motif in beta-helices (termed beta-bend), although it has not been identified so far. The motif is based on the alternation of beta-sheet and helical conformation as the protein sequence is followed from the N to the C termini (beta-alpha(R)-beta-polyPro-beta). We further identify this motif in the ssNMR structure of the protofibril of the amyloidogenic peptide Abeta(1-40). The recurrence of the beta-bend suggests a general mode of connecting long parallel beta-sheet segments that would allow the growth of partially ordered fibril structures. The design allows the peptide backbone to change direction with a minimal loss of main chain hydrogen bonds. The identification of a coherent organization beyond that of the beta-sheet segments in different folds rich in parallel beta-sheets suggests a higher degree of ordered structure in protein fibrils, in agreement with their low solubility and dense molecular packing.

  6. Renal Histopathologic Findings Associated With Severity of Clinical Acute Kidney Injury.

    PubMed

    Kudose, Satoru; Hoshi, Masato; Jain, Sanjay; Gaut, Joseph P

    2018-05-01

    Acute kidney injury (AKI) is a significant cause of morbidity and mortality. Acute tubular injury is considered to be the early pathologic manifestation of AKI, however, the underlying pathology is complex, lacks standards for interpretation, and its relationship with AKI often is unclear or inconsistent. To clarify clinicopathologic correlations in AKI, we evaluated 32 histologic findings in 100 kidney biopsies from patients with AKI as a training set to correlate pathologic findings with clinical AKI grades. Kidney Injury Molecule-1 quantitative immunohistochemistry was performed to confirm tubular injury. A separate cohort of 50 biopsies were evaluated blinded to clinical information to validate the findings. Pathologic tubular injury correlated best with Kidney Disease Improving Global Outcomes criteria. Tubular epithelial simplification, tubular epithelial mitosis, and cell sloughing correlated well with clinically severe AKI and were used to construct a tubular injury classification scheme with sensitivity of 0.93 (0.85, 1), specificity of 0.95 (0.83, 1), and area under the receiver-operating characteristic curve of 0.98 (0.98, 1) for grades 2 to 3 AKI. Predictive ability of the model did not improve when Kidney Injury Molecule-1 immunostaining results were added. The results show a strong correlation between pathologic tubular injury and modern clinical definitions of AKI. The proposed classification scheme may aid in development of more precise and clinically meaningful interpretations of pathologic tubular injury in native kidney biopsies and provides simple pathologic criteria without special studies that can easily be adopted globally.

  7. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: Can creatinine predict renal tubular elimination?

    PubMed

    Ma, Yan-Rong; Zhou, Yan; Huang, Jing; Qin, Hong-Yan; Wang, Pei; Wu, Xin-An

    2018-03-01

    The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Monitoring of Total and Regional Liver Function after SIRT.

    PubMed

    Bennink, Roelof J; Cieslak, Kasia P; van Delden, Otto M; van Lienden, Krijn P; Klümpen, Heinz-Josef; Jansen, Peter L; van Gulik, Thomas M

    2014-01-01

    Selective internal radiation therapy (SIRT) is a promising treatment modality for advanced hepatocellular carcinoma or metastatic liver cancer. SIRT is usually well tolerated. However, in most patients, SIRT will result in a (temporary) decreased liver function. Occasionally patients develop radioembolization-induced liver disease (REILD). In case of a high tumor burden of the liver, it could be beneficial to perform SIRT in two sessions enabling the primary untreated liver segments to guarantee liver function until function in the treated segments has recovered or functional hypertrophy has occurred. Clinically used liver function tests provide evidence of only one of the many liver functions, though all of them lack the possibility of assessment of segmental (regional) liver function. Hepatobiliary scintigraphy (HBS) has been validated as a tool to assess total and regional liver function in liver surgery. It is also used to assess segmental liver function before and after portal vein embolization. HBS is considered as a valuable quantitative liver function test enabling assessment of segmental liver function recovery after regional intervention and determination of future remnant liver function. We present two cases in which HBS was used to monitor total and regional liver function in a patient after repeated whole liver SIRT complicated with REILD and a patient treated unilaterally without complications.

  9. Metal accumulation and nephron heterogeneity in mercuric chloride-induced acute renal failure.

    PubMed

    Wilks, M F; Gregg, N J; Bach, P H

    1994-01-01

    The present study was designed to assess the effects of mercury on glomerular integrity during the early phase of acute renal failure. The silver amplification method showed distribution of mercury in midcortical and juxtamedullary glomeruli and on the brush border of the S2 segment of the proximal tubule 15 min after treatment. At 30 min, there was a decrease in glomerular staining and increased mercury in the proximal tubule. After 3 hr, mercury was no longer detectable in glomeruli but was widespread in the lumen of the proximal tubule. By 24 hr, mercury was prominent in all proximal tubular segments throughout the cortex. The presence of mercury in glomeruli was not related to hemodynamic changes, as there was no evidence for blood redistribution toward juxtamedullary glomeruli as assessed by the filling of the microvascular system with Monastral Blue B. The reduced activity of horseradish peroxidase (administered i.v. 90 sec and 10 min before sacrifice) in juxtamedullary glomeruli 30 min after mercury administration suggests a decreased uptake of horseradish peroxidase or an increased glomerular protein filtration. These data support glomerular filtration as the predominant excretory route for mercury, highlight the marked nephron heterogeneity in the distribution of this metal, and show that impairment of glomerular integrity occurs before necrosis of the proximal tubules and acute renal failure.

  10. FIB-SEM tomography of human skin telocytes and their extracellular vesicles

    PubMed Central

    Cretoiu, Dragos; Gherghiceanu, Mihaela; Hummel, Eric; Zimmermann, Hans; Simionescu, Olga; Popescu, Laurentiu M

    2015-01-01

    We have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.com). TCs have very long prolongations (tens to hundreds micrometers) named Telopodes (Tps). These Tps have a special conformation with dilated portions named podoms (containing mitochondria, endoplasmic reticulum and caveolae) and very thin segments (below resolving power of light microscopy), called podomers. To show the real 3D architecture of TC network, we used the most advanced available electron microscope technology: focused ion beam scanning electron microscopy (FIB-SEM) tomography. Generally, 3D reconstruction of dermal TCs by FIB-SEM tomography revealed the existence of Tps with various conformations: (i) long, flattened irregular veils (ribbon-like segments) with knobs, corresponding to podoms, and (ii) tubular structures (podomers) with uneven calibre because of irregular dilations (knobs) – the podoms. FIB-SEM tomography also showed numerous extracellular vesicles (diameter 438.6 ± 149.1 nm, n = 30) released by a human dermal TC. Our data might be useful for understanding the role(s) of TCs in intercellular signalling and communication, as well as for comprehension of pathologies like scleroderma, multiple sclerosis, psoriasis, etc. PMID:25823591

  11. Expression of Heme Oxygenase-1 in Thick Ascending Loop of Henle Attenuates Angiotensin II-Dependent Hypertension

    PubMed Central

    Drummond, Heather A.; Gousette, Monette U.; Storm, Megan V.; Abraham, Nader G.; Csongradi, Eva

    2012-01-01

    Kidney-specific induction of heme oxygenase-1 (HO-1) attenuates the development of angiotensin II (Ang II) -dependent hypertension, but the relative contribution of vascular versus tubular induction of HO-1 is unknown. To determine the specific contribution of thick ascending loop of Henle (TALH) -derived HO-1, we generated a transgenic mouse in which the uromodulin promoter controlled expression of human HO-1. Quantitative RT-PCR and confocal microscopy confirmed successful localization of the HO-1 transgene to TALH tubule segments. Medullary HO activity, but not cortical HO activity, was significantly higher in transgenic mice than control mice. Enhanced TALH HO-1 attenuated the hypertension induced by Ang II delivered by an osmotic minipump for 10 days (139±3 versus 153±2 mmHg in the transgenic and control mice, respectively; P<0.05). The lower blood pressure in transgenic mice associated with a 60% decrease in medullary NKCC2 transporter expression determined by Western blot. Transgenic mice also exhibited a 36% decrease in ouabain-sensitive sodium reabsorption and a significantly attenuated response to furosemide in isolated TALH segments,. In summary, these results show that increased levels of HO-1 in the TALH can lower blood pressure by a mechanism that may include alterations in NKCC2-dependent sodium reabsorption. PMID:22323644

  12. 78 FR 56865 - Certain Oil Country Tubular Goods From India and Turkey: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Country Tubular Goods From India and Turkey: Postponement of Preliminary Determination in the... (202) 482-0189 (Turkey), AD/CVD Operations, Import Administration, International Trade Administration... the countervailing duty investigations of certain oil country tubular goods from India and Turkey.\\1...

  13. Parenchymal preserving anatomic resections result in less pulmonary function loss in patients with Stage I non-small cell lung cancer.

    PubMed

    Macke, Ryan A; Schuchert, Matthew J; Odell, David D; Wilson, David O; Luketich, James D; Landreneau, Rodney J

    2015-04-01

    A suggested benefit of sublobar resection for stage I non-small cell lung cancer (NSCLC) compared to lobectomy is a relative preservation of pulmonary function. Very little objective data exist, however, supporting this supposition. We sought to evaluate the relative impact of both anatomic segmental and lobar resection on pulmonary function in patients with resected clinical stage I NSCLC. The records of 159 disease-free patients who underwent anatomic segmentectomy (n = 89) and lobectomy (n = 70) for the treatment of stage I NSCLC with pre- and postoperative pulmonary function tests performed between 6 to 36 months after resection were retrospectively reviewed. Changes in forced expiratory volume in one second (FEV1) and diffusion capacity of carbon monoxide (DLCO) were analyzed based upon the number of anatomic pulmonary segments removed: 1-2 segments (n = 77) or 3-5 segments (n = 82). Preoperative pulmonary function was worse in the lesser resection cohort (1-2 segments) compared to the greater resection group (3-5 segments) (FEV1(%predicted): 79% vs. 85%, p = 0.038; DLCO(%predicted): 63% vs. 73%, p = 0.010). A greater decline in FEV1 was noted in patients undergoing resection of 3-5 segments (FEV1 (observed): 0.1 L vs. 0.3 L, p = 0.003; and FEV1 (% predicted): 4.3% vs. 8.2%, p = 0.055). Changes in DLCO followed this same trend (DLCO(observed): 1.3 vs. 2.4 mL/min/mmHg, p = 0.015; and DLCO(% predicted): 3.6% vs. 5.9%, p = 0.280). Parenchymal-sparing resections resulted in better preservation of pulmonary function at a median of one year, suggesting a long-term functional benefit with small anatomic segmental resections (1-2 segments). Prospective studies to evaluate measurable functional changes, as well as quality of life, between segmentectomy and lobectomy with a larger patient cohort appear justified.

  14. Hedgehog signaling regulates segment formation in the annelid Platynereis.

    PubMed

    Dray, Nicolas; Tessmar-Raible, Kristin; Le Gouar, Martine; Vibert, Laura; Christodoulou, Foteini; Schipany, Katharina; Guillou, Aurélien; Zantke, Juliane; Snyman, Heidi; Béhague, Julien; Vervoort, Michel; Arendt, Detlev; Balavoine, Guillaume

    2010-07-16

    Annelids and arthropods share a similar segmented organization of the body whose evolutionary origin remains unclear. The Hedgehog signaling pathway, prominent in arthropod embryonic segment patterning, has not been shown to have a similar function outside arthropods. We show that the ligand Hedgehog, the receptor Patched, and the transcription factor Gli are all expressed in striped patterns before the morphological appearance of segments in the annelid Platynereis dumerilii. Treatments with small molecules antagonistic to Hedgehog signaling disrupt segment formation. Platynereis Hedgehog is not necessary to establish early segment patterns but is required to maintain them. The molecular similarity of segment patterning functions of the Hedgehog pathway in an annelid and in arthropods supports a common origin of segmentation in protostomes.

  15. Efficient Algorithms for Segmentation of Item-Set Time Series

    NASA Astrophysics Data System (ADS)

    Chundi, Parvathi; Rosenkrantz, Daniel J.

    We propose a special type of time series, which we call an item-set time series, to facilitate the temporal analysis of software version histories, email logs, stock market data, etc. In an item-set time series, each observed data value is a set of discrete items. We formalize the concept of an item-set time series and present efficient algorithms for segmenting a given item-set time series. Segmentation of a time series partitions the time series into a sequence of segments where each segment is constructed by combining consecutive time points of the time series. Each segment is associated with an item set that is computed from the item sets of the time points in that segment, using a function which we call a measure function. We then define a concept called the segment difference, which measures the difference between the item set of a segment and the item sets of the time points in that segment. The segment difference values are required to construct an optimal segmentation of the time series. We describe novel and efficient algorithms to compute segment difference values for each of the measure functions described in the paper. We outline a dynamic programming based scheme to construct an optimal segmentation of the given item-set time series. We use the item-set time series segmentation techniques to analyze the temporal content of three different data sets—Enron email, stock market data, and a synthetic data set. The experimental results show that an optimal segmentation of item-set time series data captures much more temporal content than a segmentation constructed based on the number of time points in each segment, without examining the item set data at the time points, and can be used to analyze different types of temporal data.

  16. Nephrotoxicity of ibandronate and zoledronate in Wistar rats with normal renal function and after unilateral nephrectomy.

    PubMed

    Bergner, R; Siegrist, B; Gretz, N; Pohlmeyer-Esch, G; Kränzlin, B

    2015-09-01

    A previous animal study compared the nephrotoxic effect of ibandronate (IBN) and zoledronate (ZOL), but interpretation of these study results was limited because of the model of minimal nephrotoxic dosage with a dosage ratio of 1:3. The present study investigated the nephrotoxicity of ibandronate and zoledronate in a 1.5:1 dose ratio, as used in clinical practice and compared the nephrotoxicity in rats with normal and with mildly to moderately impaired renal function. We compared rats with normal renal function (SHAM) and with impaired renal function after unilateral nephrectomy (UNX), treated either with ibandronate 1.5mg/kg, zoledronate 1mg/kg or placebo once (1×) or nine (9×) times. Renal function and markers of tubular toxicity were measured over a 27 week period. After last bisphosphonate treatment the rats were sacrificed and kidneys examined histologically. All bisphosphonate treated animals showed a significant tubular toxicity, which was temporary except in the ZOL-UNX-9×-group. Also the renal function was only transiently reduced except in the ZOL-UNX-9×-group. Histologically, bisphosphonate treatment led to cortical tubuloepithelial degeneration/necrosis and medullary tubuloepithelial swelling which were slightly more pronounced in ibandronate treated animals, when compared to zoledronate treated animals, especially with impaired renal function. In contrast to the previous study we found a similar nephrotoxicity of ibandronate and zoledronate in rats with normal renal function. In rats with impaired renal function the peak of toxicity had not even been fully reached until end of experiment in the zoledronate treated animals. The peak of toxicity seems to be more severe and delayed in rats with impaired renal function compared with rats with normal renal function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Dynamic gadoxetate-enhanced MRI for the assessment of total and segmental liver function and volume in primary sclerosing cholangitis.

    PubMed

    Nilsson, Henrik; Blomqvist, Lennart; Douglas, Lena; Nordell, Anders; Jacobsson, Hans; Hagen, Karin; Bergquist, Annika; Jonas, Eduard

    2014-04-01

    To evaluate dynamic hepatocyte-specific contrast-enhanced MRI (DHCE-MRI) for the assessment of global and segmental liver volume and function in patients with primary sclerosing cholangitis (PSC), and to explore the heterogeneous distribution of liver function in this patient group. Twelve patients with primary sclerosing cholangitis (PSC) and 20 healthy volunteers were examined using DHCE-MRI with Gd-EOB-DTPA. Segmental and total liver volume were calculated, and functional parameters (hepatic extraction fraction [HEF], input relative blood-flow [irBF], and mean transit time [MTT]) were calculated in each liver voxel using deconvolutional analysis. In each study subject, and incongruence score (IS) was constructed to describe the mismatch between segmental function and volume. Among patients, the liver function parameters were correlated to bile duct obstruction and to established scoring models for liver disease. Liver function was significantly more heterogeneously distributed in the patient group (IS 1.0 versus 0.4). There were significant correlations between biliary obstruction and segmental functional parameters (HEF rho -0.24; irBF rho -0.45), and the Mayo risk score correlated significantly with the total liver extraction capacity of Gd-EOB-DTPA (rho -0.85). The study demonstrates a new method to quantify total and segmental liver function using DHCE-MRI in patients with PSC. Copyright © 2013 Wiley Periodicals, Inc.

  18. The association between vitamin B12, albuminuria and reduced kidney function: an observational cohort study

    USDA-ARS?s Scientific Manuscript database

    Background: Variants in CUBN, the gene encoding cubilin, a proximal tubular transport protein, have been associated with albuminuria and vitamin B12 (B12) deficiency. We hypothesized that low levels of B12 would be associated with albuminuria in a population-based cohort. Methods: We analyzed parti...

  19. Enzyme resistant carbohydrate based micro-scale materials from sugar beet (Beta vulgaris L.) pulp for food and pharmaceutical applications

    USDA-ARS?s Scientific Manuscript database

    Bio-based micro scale materials are increasingly used in functional food and pharmaceutical applications. The present study produced carbohydrate-based micro scale tubular materials from sugar beet (Beta vulgaris L.) pulp (SBP), a by-product of sugar beet processing. The isolated carbohydrates wer...

  20. 76 FR 39071 - Certain Oil Country Tubular Goods From the People's Republic of China: Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-944] Certain Oil Country Tubular... administrative review of the countervailing duty order on certain oil country tubular goods (``OCTG'') from the... subject to administrative protective order (``APO'') of their responsibility concerning the disposition of...

  1. Effect of section shape on frequencies of natural oscillations of tubular springs

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Chuba, A. Yu; Cherentsov, D. A.

    2018-05-01

    The necessity of determining the frequencies of natural oscillations of manometric tubular springs is substantiated. Based on the mathematical model and computer program, numerical experiments were performed that allowed us to reveal the effect of geometric parameters on the frequencies of free oscillations of manometric tubular springs.

  2. Heat transfer device

    NASA Technical Reports Server (NTRS)

    Kalkbrenner, R. W. (Inventor)

    1974-01-01

    A heat transfer device is characterized by an hermetically sealed tubular housing including a tubular shell terminating in spaced end plates, and a tubular mesh wick concentrically arranged and operatively supported within said housing. The invention provides an improved wicking restraint formed as an elongated and radially expanded tubular helix concentrically related to the wick and adapted to be axially foreshortened and radially expanded into engagement with the wick in response to an axially applied compressive load. The wick is continuously supported in a contiguous relationship with the internal surfaces of the shell.

  3. Technique for detecting liquid metal leaks

    DOEpatents

    Bauerle, James E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector.

  4. Resistor holder

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    A resistor device for use with electrostatic particle accelerators includes a resistor element positioned within a tubular housing having a fixed end cap at one end thereof and a movable end cap at the other end thereof. The tubular housing, fixed end cap, and movable end cap serve as an electromagnetic field for the resistor element. Conductive disks engage opposite ends of the resistor element and concentrically position the resistor element within the tubular housing. Helical springs engage the conductive disks and the end caps to yieldably support the movable end caps and resistor element for yieldable axial movement relative to the tubular housing. An annular conducting ring is secured to the tubular housing and is spaced radially from the movable end cap and cooperates with the latter to define an annular spark gap.

  5. IgA-kappa type multiple myeloma affecting proximal and distal renal tubules.

    PubMed

    Minemura, K; Ichikawa, K; Itoh, N; Suzuki, N; Hara, M; Shigematsu, S; Kobayashi, H; Hiramatsu, K; Hashizume, K

    2001-09-01

    A 45-year-old male was admitted because of chest pain, lumbago, and bilateral ankle pain. Examination disclosed hypophosphatemic osteomalacia, acquired Fanconi syndrome, and abnormalities in distal nephron such as distal renal tubular acidosis and renal diabetes insipidus. Further exploration revealed IgA kappa multiple myeloma excreting urinary Bence Jones protein (kappa-light chain). Renal biopsy revealed thick basement membranes and elec-tron-dense crystals in proximal tubular epithelial cells. Immunofluorescent studies revealed deposition of kappa-light chain in renal tubular epithelial cells that caused the renal tubular damage. Although the osteomalacia was relieved by medical treatment, the urinary Bence Jones protein and the renal tubular defects were not improved by the chemotherapy for the myeloma. The patient died of exacerbation of multiple myeloma at 50 years of age.

  6. Review: peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds.

    PubMed

    Hashimoto, Tadashi; Suzuki, Yoshihisa; Suzuki, Kyoko; Nakashima, Toshihide; Tanihara, Masao; Ide, Chizuka

    2005-06-01

    We have developed a nerve regeneration material consisting of alginate gel crosslinked with covalent bonds. in the first part of this study, we attempted to analyze nerve regeneration through alginate gel in the early stages within 2 weeks. in the second part, we tried to regenerate cat peripheral nerve by using alginate tubular or non-tubular nerve regeneration devices, and compared their efficacies. Four days after surgery, regenerating axons grew without Schwann cell investment through the partially degraded alginate gel, being in direct contact with the alginate without a basal lamina covering. One to 2 weeks after surgery, regenerating axons were surrounded by common Schwann cells, forming small bundles, with some axons at the periphery being partly in direct contact with alginate. At the distal stump, numerous Schwann cells had migrated into the alginate 8-14 days after surgery. Remarkable restorations of the 50-mm gap in cat sciatic nerve were obtained after a long term by using tubular or non-tubular nerve regeneration material consisting mainly of alginate gel. However, there was no significant difference between both groups at electrophysiological and morphological evaluation. Although, nowadays, nerve regeneration materials being marketed mostly have a tubular structure, our results suggest that the tubular structure is not indispensable for peripheral nerve regeneration.

  7. Inherited renal tubulopathies associated with metabolic alkalosis: effects on blood pressure.

    PubMed

    Ariceta, Gema; Rodríguez-Soriano, Juan

    2006-11-01

    Inherited tubular disorders associated with metabolic alkalosis are caused by several gene mutations encoding different tubular transporters responsible for NaCl renal handling. Body volume and renin-angiotensin-aldosterone system status are determined by NaCl reabsorption in the distal nephron. Two common hallmarks in affected individuals: hypokalemia and normal / high blood pressure, support the differential diagnosis. Bartter's syndrome, characterized by hypokalemia and normal blood pressure, is a heterogenic disease caused by the loss of function of SLC12A1 (type 1), KCNJ1 (type 2), CLCNKB (type 3), or BSND genes (type 4). As a result, patients present with renal salt wasting and hypercalciuria. Gitelman's syndrome is caused by the loss of funcion of the SLC12A3 gene and may resemble Bartter's syndrome, though is associated with the very low urinary calcium. Liddle's syndrome, also with similar phenotype but with hypertension, is produced by the gain of function of the SNCC1B or SNCC1G genes, and must be distinguished from other entities of inherited hypertension such as Apparently Mineralocorticoid Excess, of glucocorticoid remediable hypertension.

  8. Hashimoto Thyroiditis and Nephrocalcinosis in a Child with Down Syndrome

    PubMed Central

    Spahiu, Lidvana; Jashari, Haki; Mulliqi-Kotori, Vjosa; Elezi-Rugova, Blerta; Merovci, Besart

    2016-01-01

    Introduction: Hypothyroidism has been reported to affect renal function and structure. However, the association of hypothyroidism with distal renal tubular acidosis (dRTA) is rarely reported in children. Case Presentation: We present a 6-year-boy with Down syndrome admitted in our department due to vomiting, weakness, polyuria, polydipsia, irritability and weight loss in the last few weeks. Investigations revealed features of hypokalemia, metabolic acidosis and alkaline urine consistent with dTRA. Abdominal ultrasound found nephrocalcinosis. In addition, Antithyroid peroxidase antibodies were positive, suggesting an autoimmune background for the pathogenesis of the tubular dysfunction. Treatment for dRTA and hypothyroidism was started and symptomatic improve was noticed. Conclusion: dRTA should be excluded in children with autoimmune disorders who develop weakness, polyuria, polydipsia or growth failure. Early diagnosis would reduce long-term complications. PMID:27147809

  9. Differential impact of glucose levels and advanced glycation end-products on tubular cell viability and pro-inflammatory/profibrotic functions.

    PubMed

    Franko, Benoit; Brault, Julie; Jouve, Thomas; Beaumel, Sylvain; Benhamou, Pierre-Yves; Zaoui, Philippe; Stasia, Marie José

    2014-09-05

    High glucose (HG) or synthetic advanced glycation end-products (AGE) conditions are generally used to mimic diabetes in cellular models. Both models have shown an increase of apoptosis, oxidative stress and pro-inflammatory cytokine production in tubular cells. However, the impact of the two conditions combined has rarely been studied. In addition, the impact of glucose level variation due to cellular consumption is not clearly characterized in such experiments. Therefore, the aim of this study was to compare the effect of HG and AGE separately and of both on tubular cell phenotype changes in the HK2 cell line. Moreover, glucose consumption was monitored every hour to maintain the glucose level by supplementation throughout the experiments. We thus observed a significant decrease of apoptosis and H2O2 production in the HK2 cell. HG or AGE treatment induced an increase of total and mitochondrial apoptosis as well as TGF-β release compared to control conditions; however, AGE or HG led to apoptosis preferentially involving the mitochondria pathway. No cumulative effect of HG and AGE treatment was observed on apoptosis. However, a pretreatment with RAGE antibodies partially abolished the apoptotic effect of HG and completely abolished the apoptotic effect of AGE. In conclusion, tubular cells are sensitive to the lack of glucose as well as to the HG and AGE treatments, the AGE effect being more deleterious than the HG effect. Absence of a potential synergistic effect of HG and AGE could indicate that they act through a common pathway, possibly via the activation of the RAGE receptors. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Biomimetic coating of cross-linked gelatin to improve mechanical and biological properties of electrospun PET: A promising approach for small caliber vascular graft applications.

    PubMed

    Pezzoli, Daniele; Cauli, Elisa; Chevallier, Pascale; Farè, Silvia; Mantovani, Diego

    2017-09-01

    Electrospun PET (ePET) is a promising material for small caliber vascular graft applications owing to its tunable mechanical properties, biocompatibility, and nanofibrous structure that mimic the morphology of natural extracellular matrix. However, the inherent inertness of PET impairs the adhesion and proliferation of endothelial cells on the inner surface of ePET tubular grafts, hindering the formation of a functional endothelium. Gelatin coatings, owing to their ability to promote endothelialization, are a valuable approach to overcome the limitations of ePET. Herein, a novel process for the deposition of stable biomimetic coatings of gelatin on ePET tubular grafts is proposed. Electrospun PET was first aminated by plasma treatment and then coated with a gelatin hydrogel cross-linked in situ by a Michael-type addition reaction. Amination provided a superhydrophilic behavior to the ePET surface, allowing easy gelatin interpenetration along the wall thickness of the tubular structure, and the obtainment of thin coatings that maintained the morphology of ePET fibers. Gelatin coating was stable at long term in a physiological-like environment, noncytotoxic and promoted in vitro cell adhesion and proliferation. Noteworthy, the mechanical properties of gelatin-coated ePET tubular grafts were improved in terms of elastic modulus, compliance, and elastic recoil, finally better matching the characteristics of native blood vessels. Altogether, the proposed coating technique successfully combines the advantages of ePET nanofibrous structure with cross-linked gelatin biological cues and mechanical reinforcement, and emerges as a promising strategy for the development of biocompatible small caliber vascular grafts with superior biomimetic and mechanical properties. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2405-2415, 2017. © 2017 Wiley Periodicals, Inc.

  11. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network

    PubMed Central

    Park, Seong H.; Zhu, Peng-Peng; Parker, Rell L.; Blackstone, Craig

    2010-01-01

    Hereditary spastic paraplegias (HSPs; SPG1–45) are inherited neurological disorders characterized by lower extremity spastic weakness. More than half of HSP cases result from autosomal dominant mutations in atlastin-1 (also known as SPG3A), receptor expression enhancing protein 1 (REEP1; SPG31), or spastin (SPG4). The atlastin-1 GTPase interacts with spastin, a microtubule-severing ATPase, as well as with the DP1/Yop1p and reticulon families of ER-shaping proteins, and SPG3A caused by atlastin-1 mutations has been linked pathogenically to abnormal ER morphology. Here we investigated SPG31 by analyzing the distribution, interactions, and functions of REEP1. We determined that REEP1 is structurally related to the DP1/Yop1p family of ER-shaping proteins and localizes to the ER in cultured rat cerebral cortical neurons, where it colocalizes with spastin and atlastin-1. Upon overexpression in COS7 cells, REEP1 formed protein complexes with atlastin-1 and spastin within the tubular ER, and these interactions required hydrophobic hairpin domains in each of these proteins. REEP proteins were required for ER network formation in vitro, and REEP1 also bound microtubules and promoted ER alignment along the microtubule cytoskeleton in COS7 cells. A SPG31 mutant REEP1 lacking the C-terminal cytoplasmic region did not interact with microtubules and disrupted the ER network. These data indicate that the HSP proteins atlastin-1, spastin, and REEP1 interact within the tubular ER membrane in corticospinal neurons to coordinate ER shaping and microtubule dynamics. Thus, defects in tubular ER shaping and network interactions with the microtubule cytoskeleton seem to be the predominant pathogenic mechanism of HSP. PMID:20200447

  12. Effect of vitamin E on reversibility of renal function following discontinuation of colistin in rats: Histological and biochemical investigations.

    PubMed

    Ghlissi, Zohra; Hakim, Ahmed; Mnif, Hela; Kallel, Rim; Zeghal, Khaled; Boudawara, Tahiya; Sahnoun, Zouheir

    2018-01-01

    This study was carried out to evaluate spontaneous renal regeneration after stopping colistin methanesulfonate (CMS), which induces tubular damage, and the curative effect of Vitamin E (vit E) in rats. Animals were given the following: sterile saline (n = 6), 300,000 IU/kg/ day of CMS (n = 24), or 450,000 IU/kg/day of CMS (n = 24) for seven days. Each CMS group was subdivided into four subgroups (n = 6) and sacrificed as follows: (i) 12 h after stopping CMS, (ii) two weeks after stopping CMS, (iii) two weeks after stopping treatment with vit E, and (iv) two weeks after stopping treatment with olive oil. Subsequently, plasma creatinine (pCr), urine N-acetyl-b-D-glucosaminidase (NAG), renal tissue level of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione reductase (GSH), and renal histology were tested. CMS-induced tubular damage increased the NAG and MDA levels and decreased the SOD and GSH activities. After two weeks of stopping CMS, there was no significant renal recovery. However, treatment with vit E improved tubular regeneration and reduced the biochemical impairments. Two weeks might not be long enough for significant spontaneous renal regeneration. Improvement of renal parameters by vit E could be explained by the reduction of oxidative stress damage.

  13. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis.

    PubMed

    Hong, Feng; Wei, Bin; Chen, Lin

    2015-01-01

    Bacterial nanocellulose (BNC) has demonstrated a tempting prospect for applications in substitute of small blood vessels. However, present technology is inefficient in production and BNC tubes have a layered structure that may bring danger after implanting. Double oxygen-permeable silicone tubes in different diameters were therefore used as a tube-shape mold and also as oxygenated supports to construct a novel bioreactor for production of the tubular BNC materials. Double cannula technology was used to produce tubular BNC via cultivations with Acetobacter xylinum, and Kombucha, a symbiosis of acetic acid bacteria and yeasts. The results indicated that Kombucha gave higher yield and productivity of BNC than A. xylinum. Bacterial nanocellulose was simultaneously synthesized both on the inner surface of the outer silicone tube and on the outer surface of the inner silicone tube. Finally, the nano BNC fibrils from two directions formed a BNC tube with good structural integrity. Scanning electron microscopy inspection showed that the tubular BNC had a multilayer structure in the beginning but finally it disappeared and an intact BNC tube formed. The mechanical properties of BNC tubes were comparable with the reported value in literatures, demonstrating a great potential in vascular implants or in functional substitutes in biomedicine.

  14. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis

    PubMed Central

    Wei, Bin; Chen, Lin

    2015-01-01

    Bacterial nanocellulose (BNC) has demonstrated a tempting prospect for applications in substitute of small blood vessels. However, present technology is inefficient in production and BNC tubes have a layered structure that may bring danger after implanting. Double oxygen-permeable silicone tubes in different diameters were therefore used as a tube-shape mold and also as oxygenated supports to construct a novel bioreactor for production of the tubular BNC materials. Double cannula technology was used to produce tubular BNC via cultivations with Acetobacter xylinum, and Kombucha, a symbiosis of acetic acid bacteria and yeasts. The results indicated that Kombucha gave higher yield and productivity of BNC than A. xylinum. Bacterial nanocellulose was simultaneously synthesized both on the inner surface of the outer silicone tube and on the outer surface of the inner silicone tube. Finally, the nano BNC fibrils from two directions formed a BNC tube with good structural integrity. Scanning electron microscopy inspection showed that the tubular BNC had a multilayer structure in the beginning but finally it disappeared and an intact BNC tube formed. The mechanical properties of BNC tubes were comparable with the reported value in literatures, demonstrating a great potential in vascular implants or in functional substitutes in biomedicine. PMID:26090420

  15. The lymphotoxin β receptor is a potential therapeutic target in renal inflammation.

    PubMed

    Seleznik, Gitta; Seeger, Harald; Bauer, Judith; Fu, Kai; Czerkowicz, Julie; Papandile, Adrian; Poreci, Uriana; Rabah, Dania; Ranger, Ann; Cohen, Clemens D; Lindenmeyer, Maja; Chen, Jin; Edenhofer, Ilka; Anders, Hans J; Lech, Maciej; Wüthrich, Rudolf P; Ruddle, Nancy H; Moeller, Marcus J; Kozakowski, Nicolas; Regele, Heinz; Browning, Jeffrey L; Heikenwalder, Mathias; Segerer, Stephan

    2016-01-01

    Accumulation of inflammatory cells in different renal compartments is a hallmark of progressive kidney diseases including glomerulonephritis (GN). Lymphotoxin β receptor (LTβR) signaling is crucial for the formation of lymphoid tissue, and inhibition of LTβR signaling has ameliorated several non-renal inflammatory models. Therefore, we tested whether LTβR signaling could also have a role in renal injury. Renal biopsies from patients with GN were found to express both LTα and LTβ ligands, as well as LTβR. The LTβR protein and mRNA were localized to tubular epithelial cells, parietal epithelial cells, crescents, and cells of the glomerular tuft, whereas LTβ was found on lymphocytes and tubular epithelial cells. Human tubular epithelial cells, mesangial cells, and mouse parietal epithelial cells expressed both LTα and LTβ mRNA upon stimulation with TNF in vitro. Several chemokine mRNAs and proteins were expressed in response to LTβR signaling. Importantly, in a murine lupus model, LTβR blockade improved renal function without the reduction of serum autoantibody titers or glomerular immune complex deposition. Thus, a preclinical mouse model and human studies strongly suggest that LTβR signaling is involved in renal injury and may be a suitable therapeutic target in renal diseases. Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery.

    PubMed

    Basu, Rajit K; Wong, Hector R; Krawczeski, Catherine D; Wheeler, Derek S; Manning, Peter B; Chawla, Lakhmir S; Devarajan, Prasad; Goldstein, Stuart L

    2014-12-30

    Increases in serum creatinine (ΔSCr) from baseline signify acute kidney injury (AKI) but offer little granular information regarding its characteristics. The 10th Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) suggested that combining AKI biomarkers would provide better precision for AKI course prognostication. This study investigated the value of combining a functional damage biomarker (plasma cystatin C [pCysC]) with a tubular damage biomarker (urine neutrophil gelatinase-associated lipocalin [uNGAL]), forming a composite biomarker for prediction of discrete characteristics of AKI. Data from 345 children after cardiopulmonary bypass (CPB) were analyzed. Severe AKI was defined as Kidney Disease Global Outcomes Initiative stages 2 to 3 (≥100% ΔSCr) within 7 days of CPB. Persistent AKI lasted >2 days. SCr in reversible AKI returned to baseline ≤48 h after CPB. The composite of uNGAL (>200 ng/mg urine Cr = positive [+]) and pCysC (>0.8 mg/l = positive [+]), uNGAL+/pCysC+, measured 2 h after CPB initiation, was compared to ΔSCr increases of ≥50% for correlation with AKI characteristics by using predictive probabilities, likelihood ratios (LR), and area under the curve receiver operating curve (AUC-ROC) values [Corrected]. Severe AKI occurred in 18% of patients. The composite uNGAL+/pCysC+ demonstrated a greater likelihood than ΔSCr for severe AKI (+LR: 34.2 [13.0:94.0] vs. 3.8 [1.9:7.2]) and persistent AKI (+LR: 15.6 [8.8:27.5] versus 4.5 [2.3:8.8]). In AKI patients, the uNGAL-/pCysC+ composite was superior to ΔSCr for prediction of transient AKI. Biomarker composites carried greater probability for specific outcomes than ΔSCr strata. Composites of functional and tubular damage biomarkers are superior to ΔSCr for predicting discrete characteristics of AKI. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Combining Functional and Tubular Damage Biomarkers Improves Diagnostic Precision for Acute Kidney Injury After Cardiac Surgery

    PubMed Central

    Basu, Rajit K.; Wong, Hector R.; Krawczeski, Catherine D.; Wheeler, Derek S.; Manning, Peter B.; Chawla, Lakhmir S.; Devarajan, Prasad; Goldstein, Stuart L.

    2015-01-01

    BACKGROUND Increases in serum creatinine (ΔSCr) from baseline signify acute kidney injury (AKI) but offer little granular information regarding its characteristics. The 10th Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) suggested that combining AKI biomarkers would provide better precision for AKI course prognostication. OBJECTIVES This study investigated the value of combining a functional damage biomarker (plasma cystatin C [pCysC]) with a tubular damage biomarker (urine neutrophil gelatinase-associated lipocalin [uNGAL]), forming a composite biomarker for prediction of discrete characteristics of AKI. METHODS Data from 345 children after cardiopulmonary bypass (CPB) were analyzed. Severe AKI was defined as Kidney Disease Global Outcomes Initiative stages 2 to 3 (>100% ΔSCr) within 7 days of CPB. Persistent AKI lasted >2 days. SCr in reversible AKI returned to baseline ≤48 h after CPB. The composite of uNGAL (>200 ng/mg urine Cr = positive [+]) and pCysC (>0.8 mg/l = positive [+]), uNGAL+/pCysC+, measured 2 h after CPB initiation, was compared to ΔSCr increases of ≤50% for correlation with AKI characteristics by using predictive probabilities, likelihood ratios (LR), and area under the curve receiver operating curve (AUC-ROC) values. RESULTS Severe AKI occurred in 18% of patients. The composite uNGAL+/pCysC+ demonstrated a greater likelihood than ΔSCr for severe AKI (+LR: 34.2 [13.0:94.0] vs. 3.8 [1.9:7.2]) and persistent AKI (+LR: 15.6 [8.8:27.5] versus 4.5 [2.3:8.8]). In AKI patients, the uNGAL−/pCysC+ composite was superior to ΔSCr for prediction of transient AKI. Biomarker composites carried greater probability for specific outcomes than ΔSCr strata. CONCLUSIONS Composites of functional and tubular damage biomarkers are superior to ΔSCr for predicting discrete characteristics of AKI. PMID:25541128

  18. Tissue-engineered microenvironment systems for modeling human vasculature.

    PubMed

    Tourovskaia, Anna; Fauver, Mark; Kramer, Gregory; Simonson, Sara; Neumann, Thomas

    2014-09-01

    The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells (ECs) seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a "parent" vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific ECs within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described technology can be used to create TEMS that recapitulate structural, functional, and physico-chemical elements of vascularized human tissue microenvironments in vitro. © 2014 by the Society for Experimental Biology and Medicine.

  19. Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.

    PubMed

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.

  20. Understanding heterogeneity among elderly consumers: an evaluation of segmentation approaches in the functional food market.

    PubMed

    van der Zanden, Lotte D T; van Kleef, Ellen; de Wijk, René A; van Trijp, Hans C M

    2014-06-01

    It is beneficial for both the public health community and the food industry to meet nutritional needs of elderly consumers through product formats that they want. The heterogeneity of the elderly market poses a challenge, however, and calls for market segmentation. Although many researchers have proposed ways to segment the elderly consumer population, the elderly food market has received surprisingly little attention in this respect. Therefore, the present paper reviewed eight potential segmentation bases on their appropriateness in the context of functional foods aimed at the elderly: cognitive age, life course, time perspective, demographics, general food beliefs, food choice motives, product attributes and benefits sought, and past purchase. Each of the segmentation bases had strengths as well as weaknesses regarding seven evaluation criteria. Given that both product design and communication are useful tools to increase the appeal of functional foods, we argue that elderly consumers in this market may best be segmented using a preference-based segmentation base that is predictive of behaviour (for example, attributes and benefits sought), combined with a characteristics-based segmentation base that describes consumer characteristics (for example, demographics). In the end, the effectiveness of (combinations of) segmentation bases for elderly consumers in the functional food market remains an empirical matter. We hope that the present review stimulates further empirical research that substantiates the ideas presented in this paper.

  1. A narrow open tubular column for high efficiency liquid chromatographic separation

    DOE PAGES

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen; ...

    2018-01-01

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow ( e.g. , 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar.

  2. Drilling subsurface wellbores with cutting structures

    DOEpatents

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  3. A narrow open tubular column for high efficiency liquid chromatographic separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow ( e.g. , 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar.

  4. Functional significance of the taper of vertebrate cone photoreceptors

    PubMed Central

    Hárosi, Ferenc I.

    2012-01-01

    Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between ellipsoid size and acuity, on the one hand, and faster response time and reduced light sensitivity, on the other. PMID:22250013

  5. Is ciprofloxacin safe in patients with solitary kidney and upper urinary tract infection?

    PubMed

    Gluhovschi, Gheorghe; Gadalean, Florica; Gluhovschi, Cristina; Velciov, Silvia; Petrica, Ligia; Bob, Flaviu; Bozdog, Gheorghe; Kaycsa, Adriana

    2016-12-01

    The solitary kidney (SK) undergoes adaptive phenomena of hyperfunction and hyperfiltration. These secondary adaptive phenomena can make it more vulnerable to potentially nephrotoxic therapies. Adverse reactions of the kidneys to ciprofloxacin are rare, but sometimes severe. Therefore, our study sought to assess the reactions to ciprofloxacin of patients with solitary kidney (SK) and urinary tract infection (UTI) by means of urinary biomarkers. We studied 19 patients with SK and urinary tract infection (UTI) who had been administered a 7-day treatment with intravenous ciprofloxacin. Urinary N-acetyl-beta-d-glucosaminidase, alpha 1-microglobulin, and estimated glomerular filtration rate (eGFR) of these patients were measured at the initiation and at the end of treatment. In 47.37% patients NAG diminished under ciprofloxacin treatment. This observation has the significance of favourable evolution of the tubulointerstitial lesions caused by UTI and lack of nephrotoxic effects; 52.63% cases presented an increase of urinary NAG, a fact that suggests a nephrotoxic effect of ciprofloxacin. The evolution of urinary alpha 1-microglobulin was similar to that one of urinary NAG. Only one of three cases with chronic kidney disease (CKD) stage 5 presented acute kidney injury, associated with increase in the tubular markers. In spite of the high variability of the urinary biomarkers, UTI evolved favourably in these cases; eGFR increased in 16 out of 19 patients, a fact which is indicative of a good outcome of renal function, even in patients with elevated levels of the tubular damage biomarkers. This observation supports the hypothesis that eGFR may be dissociated from the biomarkers which assess tubular injury. In SK patients the occurrence of AKI is not frequent, although the urinary biomarkers rise in some patients treated with ciprofloxacin. This is related not only to the nephrotoxic effect of the drug, but probably to the association of other factors (allergy, individual susceptibility). In SK patients, renal tubular biomarkers, especially NAG, allow monitoring of tubular injury and impose caution in prescribing ciprofloxacin treatment, mainly to patients at risk. Ciprofloxacin is relatively safe regarding its nephrotoxicity, while caution is required in vulnerable patients. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-González, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end ofmore » the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels. • Fluoride increased kidney injury biomarkers at stages where eGFR was unaltered.« less

  7. Renal function assessment in heart failure.

    PubMed

    Pérez Calvo, J I; Josa Laorden, C; Giménez López, I

    Renal function is one of the most consistent prognostic determinants in heart failure. The prognostic information it provides is independent of the ejection fraction and functional status. This article reviews the various renal function assessment measures, with special emphasis on the fact that the patient's clinical situation and response to the heart failure treatment should be considered for the correct interpretation of the results. Finally, we review the literature on the performance of tubular damage biomarkers. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  8. Clinical Correlates and Prognostic Value of Proenkephalin in Acute and Chronic Heart Failure.

    PubMed

    Matsue, Yuya; Ter Maaten, Jozine M; Struck, Joachim; Metra, Marco; O'Connor, Christopher M; Ponikowski, Piotr; Teerlink, John R; Cotter, Gad; Davison, Beth; Cleland, John G; Givertz, Michael M; Bloomfield, Daniel M; Dittrich, Howard C; van Veldhuisen, Dirk J; van der Meer, Peter; Damman, Kevin; Voors, Adriaan A

    2017-03-01

    Proenkephalin (pro-ENK) has emerged as a novel biomarker associated with both renal function and cardiac function. However, its clinical and prognostic value have not been well evaluated in symptomatic patients with heart failure. The association between pro-ENK and markers of renal function was evaluated in 95 patients with chronic heart failure who underwent renal hemodynamic measurements, including renal blood flow (RBF) and glomerular filtration rate (GFR) with the use of 131 I-Hippuran and 125 I-iothalamate clearances, respectively. The association between pro-ENK and clinical outcome in acute heart failure was assessed in another 1589 patients. Pro-ENK was strongly correlated with both RBF (P < .001) and GFR (P < .001), but not with renal tubular markers. In the acute heart failure cohort, pro-ENK was a predictor of death through 180 days, heart failure rehospitalization through 60 days, and death or cardiovascular or renal rehospitalization through day 60 in univariable analyses, but its predictive value was lost in a multivariable model when other renal markers were entered in the model. In patients with chronic and acute heart failure, pro-ENK is strongly associated with glomerular function, but not with tubular damage. Pro-ENK provides limited prognostic information in patients with acute heart failure on top of established renal markers. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Xenon Treatment Protects Against Cold Ischemia Associated Delayed Graft Function and Prolongs Graft Survival in Rats

    PubMed Central

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-01-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia–hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. PMID:23710625

  10. Furosemide/Fludrocortisone Test and Clinical Parameters to Diagnose Incomplete Distal Renal Tubular Acidosis in Kidney Stone Formers.

    PubMed

    Dhayat, Nasser A; Gradwell, Michael W; Pathare, Ganesh; Anderegg, Manuel; Schneider, Lisa; Luethi, David; Mattmann, Cedric; Moe, Orson W; Vogt, Bruno; Fuster, Daniel G

    2017-09-07

    Incomplete distal renal tubular acidosis is a well known cause of calcareous nephrolithiasis but the prevalence is unknown, mostly due to lack of accepted diagnostic tests and criteria. The ammonium chloride test is considered as gold standard for the diagnosis of incomplete distal renal tubular acidosis, but the furosemide/fludrocortisone test was recently proposed as an alternative. Because of the lack of rigorous comparative studies, the validity of the furosemide/fludrocortisone test in stone formers remains unknown. In addition, the performance of conventional, nonprovocative parameters in predicting incomplete distal renal tubular acidosis has not been studied. We conducted a prospective study in an unselected cohort of 170 stone formers that underwent sequential ammonium chloride and furosemide/fludrocortisone testing. Using the ammonium chloride test as gold standard, the prevalence of incomplete distal renal tubular acidosis was 8%. Sensitivity and specificity of the furosemide/fludrocortisone test were 77% and 85%, respectively, yielding a positive predictive value of 30% and a negative predictive value of 98%. Testing of several nonprovocative clinical parameters in the prediction of incomplete distal renal tubular acidosis revealed fasting morning urinary pH and plasma potassium as the most discriminative parameters. The combination of a fasting morning urinary threshold pH <5.3 with a plasma potassium threshold >3.8 mEq/L yielded a negative predictive value of 98% with a sensitivity of 85% and a specificity of 77% for the diagnosis of incomplete distal renal tubular acidosis. The furosemide/fludrocortisone test can be used for incomplete distal renal tubular acidosis screening in stone formers, but an abnormal furosemide/fludrocortisone test result needs confirmation by ammonium chloride testing. Our data furthermore indicate that incomplete distal renal tubular acidosis can reliably be excluded in stone formers by use of nonprovocative clinical parameters. Copyright © 2017 by the American Society of Nephrology.

  11. Straw blood cell count, growth, inhibition and comparison to apoptotic bodies.

    PubMed

    Wu, Yonnie; Henry, David C; Heim, Kyle; Tomkins, Jeffrey P; Kuan, Cheng-Yi

    2008-05-20

    Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress in vitro. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis. There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC) is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6 approximately 1.1 (microm/hr) and 3.8 (microm(3)/hr), respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R2 = 0.7). Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK). Tubular transformation is a programmed cell survival process that diverges from apoptosis. SBCs may be an important indicator of intrinsic aging-related stress.

  12. Bidirectional Fusion of the Heart-forming Fields in the Developing Chick Embryo

    PubMed Central

    Moreno-Rodriguez, R.A.; Krug, E.L.; Reyes, L.; Villavicencio, L.; Mjaatvedt, C.H.; Markwald, R.R.

    2007-01-01

    It is generally thought that the early pre-tubular chick heart is formed by fusion of the anterior or cephalic limits of the paired cardiogenic fields. However, this study shows that the heart fields initially fuse at their midpoint to form a transitory “butterfly”-shaped, cardiogenic structure. Fusion then progresses bi-directionally along the longitudinal axis in both cranial and caudal directions. Using in vivo labeling, we demonstrate that cells along the ventral fusion line are highly motile, crossing future primitive segments. We found that mesoderm cells migrated cephalically from the unfused tips of the anterior/cephalic wings into the head mesenchyme in the region that has been called the secondary heart field. Perturbing the anterior/cranial fusion results in formation of a biconal heart. A theoretical role of the ventral fusion line acting as a “heart organizer” and its role in cardia bifida is discussed. PMID:16252277

  13. Rat Sertoli cells acquire a beta-adrenergic response during primary culture.

    PubMed Central

    Kierszenbaum, A L; Spruill, W A; White, M G; Tres, L L; Perkins, J P

    1985-01-01

    Two-dimensional polyacrylamide gel electrophoresis and the radioligand (-)-[125I]iodopindolol (125I-Pin) have been used to study isoproterenol-dependent protein phosphorylation and beta-adrenergic receptor availability, respectively, in cultured Sertoli cells and freshly isolated seminiferous tubular segments of sexually immature and mature rats. Sertoli cells prepared from sexually immature rats show progressive 125I-Pin binding in primary cultures that correlates with isoproterenol-induced cell shape changes, redistribution of immunoreactive vimentin, and phosphorylation of this intermediate filament protein. The development of 125I-Pin binding to Sertoli cell lysates is blocked by cycloheximide. Seminiferous tubules do not show significant isoproterenol-dependent vimentin phosphorylation nor 125I-Pin binding. However, vimentin phosphorylation can be induced by follicle-stimulating hormone or a cyclic nucleotide analog. This study stresses the need for correlating pharmacological-induced responses observed in Sertoli cell primary cultures with those in the intact seminiferous tubule. Images PMID:2984678

  14. 3D Gabor wavelet based vessel filtering of photoacoustic images.

    PubMed

    Haq, Israr Ul; Nagoaka, Ryo; Makino, Takahiro; Tabata, Takuya; Saijo, Yoshifumi

    2016-08-01

    Filtering and segmentation of vasculature is an important issue in medical imaging. The visualization of vasculature is crucial for the early diagnosis and therapy in numerous medical applications. This paper investigates the use of Gabor wavelet to enhance the effect of vasculature while eliminating the noise due to size, sensitivity and aperture of the detector in 3D Optical Resolution Photoacoustic Microscopy (OR-PAM). A detailed multi-scale analysis of wavelet filtering and Hessian based method is analyzed for extracting vessels of different sizes since the blood vessels usually vary with in a range of radii. The proposed algorithm first enhances the vasculature in the image and then tubular structures are classified by eigenvalue decomposition of the local Hessian matrix at each voxel in the image. The algorithm is tested on non-invasive experiments, which shows appreciable results to enhance vasculature in photo-acoustic images.

  15. Cylindrical electron beam diode

    DOEpatents

    Bolduc, Paul E.

    1976-01-01

    A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.

  16. Coaxial stub tuner

    NASA Technical Reports Server (NTRS)

    Chern, Shy-Shiun (Inventor)

    1981-01-01

    A coaxial stub tuner assembly is comprised of a short circuit branch diametrically opposite an open circuit branch. The stub of the short circuit branch is tubular, and the stub of the open circuit branch is a rod which extends through the tubular stub into the open circuit branch. The rod is threaded at least at its outer end, and the tubular stub is internally threaded to receive the threads of the rod. The open circuit branch can be easily tuned by turning the threaded rod in the tubular stub to adjust the length of the rod extending into the open circuit branch.

  17. A robust and fast active contour model for image segmentation with intensity inhomogeneity

    NASA Astrophysics Data System (ADS)

    Ding, Keyan; Weng, Guirong

    2018-04-01

    In this paper, a robust and fast active contour model is proposed for image segmentation in the presence of intensity inhomogeneity. By introducing the local image intensities fitting functions before the evolution of curve, the proposed model can effectively segment images with intensity inhomogeneity. And the computation cost is low because the fitting functions do not need to be updated in each iteration. Experiments have shown that the proposed model has a higher segmentation efficiency compared to some well-known active contour models based on local region fitting energy. In addition, the proposed model is robust to initialization, which allows the initial level set function to be a small constant function.

  18. The 6-hydroxychromanol derivative SUL-109 ameliorates renal injury after deep hypothermia and rewarming in rats.

    PubMed

    Vogelaar, Pieter C; Roorda, Maurits; de Vrij, Edwin L; Houwertjes, Martin C; Goris, Maaike; Bouma, Hjalmar; van der Graaf, Adrianus C; Krenning, Guido; Henning, Robert H

    2018-04-11

    Mitochondrial dysfunction plays an important role in kidney damage in various pathologies, including acute and chronic kidney injury and diabetic nephropathy. In addition to the well-studied ischaemia/reperfusion (I/R) injury, hypothermia/rewarming (H/R) also inflicts acute kidney injury. Substituted 6-hydroxychromanols are a novel class of mitochondrial medicines that ameliorate mitochondrial oxidative stress and protect the mitochondrial network. To identify a novel 6-hydroxychromanol that protects mitochondrial structure and function in the kidney during H/R, we screened multiple compounds in vitro and subsequently assessed the efficacy of the 6-hydroxychromanol derivatives SUL-109 and SUL-121 in vivo to protect against kidney injury after H/R in rats. Human proximal tubule cell viability was assessed following exposure to H/R for 48/4 h in the presence of various 6-hydroxychromanols. Selected compounds (SUL-109, SUL-121) or vehicle were administered to ketamine-anaesthetized male Wistar rats (IV 135 µg/kg/h) undergoing H/R at 15°C for 3 h followed by rewarming and normothermia for 1 h. Metabolic parameters and body temperature were measured throughout. In addition, renal function, renal injury, histopathology and mitochondrial fitness were assessed. H/R injury in vitro lowered cell viability by 94 ± 1%, which was counteracted dose-dependently by multiple 6-hydroxychomanols derivatives. In vivo, H/R in rats showed kidney injury molecule 1 expression in the kidney and tubular dilation, accompanied by double-strand DNA breaks and protein nitrosylation. SUL-109 and SUL-121 ameliorated tubular kidney damage, preserved mitochondrial mass and maintained cortical adenosine 5'-triphosphate (ATP) levels, although SUL-121 did not reduce protein nitrosylation. The substituted 6-hydroxychromanols SUL-109 and SUL-121 ameliorate kidney injury during in vivo H/R by preserving mitochondrial mass, function and ATP levels. In addition, both 6-hydroxychromanols limit DNA damage, but only SUL-109 also prevented protein nitrosylation in tubular cells. Therefore SUL-109 offers a promising therapeutic strategy to preserve kidney mitochondrial function.

  19. Increased curvature of hollow fiber membranes could up-regulate differential functions of renal tubular cell layers.

    PubMed

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2013-08-01

    Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices. Copyright © 2013 Wiley Periodicals, Inc.

  20. Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm?

    PubMed

    Prowle, John; Bagshaw, Sean M; Bellomo, Rinaldo

    2012-12-01

    Global renal blood flow is considered pivotal to renal function. Decreased global renal blood flow (decreased perfusion) is further considered the major mechanism of reduced glomerular filtration rate responsible for the development of acute kidney injury (AKI) in critically ill patients. Additionally, urinary biochemical tests are widely taught to allow the differential diagnosis of prerenal (functional) AKI and intrinsic [structural AKI (so-called acute tubular necrosis)]. In this review we will examine recent evidence regarding these two key clinical paradigms. Recent animal experiments and clinical studies in humans using cine-phase contrast magnetic resonance technology are not consistent with the decreased perfusion paradigm. They suggest instead that changes in the intra-renal circulation including modification in efferent arteriolar function and intra-renal shunting are much more likely to be responsible for AKI, especially in sepsis. Similarly, recent human studies indicate the urinary biochemistry has limited diagnostic or prognostic ability and is dissociated form biomarker and microscopic evidence of tubular injury. Intra-renal microcirculatory changes are likely more important than changes in global blood flow in the development of AKI. Urinary biochemistry is not a clinically useful diagnostic or prognostic tool in critically ill patients at risk of or with AKI.

Top