Automatic extraction of planetary image features
NASA Technical Reports Server (NTRS)
LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)
2013-01-01
A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.
Image segmentation-based robust feature extraction for color image watermarking
NASA Astrophysics Data System (ADS)
Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen
2018-04-01
This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trease, Lynn L.; Trease, Harold E.; Fowler, John
2007-03-15
One of the critical steps toward performing computational biology simulations, using mesh based integration methods, is in using topologically faithful geometry derived from experimental digital image data as the basis for generating the computational meshes. Digital image data representations contain both the topology of the geometric features and experimental field data distributions. The geometric features that need to be captured from the digital image data are three-dimensional, therefore the process and tools we have developed work with volumetric image data represented as data-cubes. This allows us to take advantage of 2D curvature information during the segmentation and feature extraction process.more » The process is basically: 1) segmenting to isolate and enhance the contrast of the features that we wish to extract and reconstruct, 2) extracting the geometry of the features in an isosurfacing technique, and 3) building the computational mesh using the extracted feature geometry. “Quantitative” image reconstruction and feature extraction is done for the purpose of generating computational meshes, not just for producing graphics "screen" quality images. For example, the surface geometry that we extract must represent a closed water-tight surface.« less
Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer
2013-10-01
The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV segments classified by the LD classifier. A combination of linear/nonlinear features from HRV signals is effective in automatic sleep staging. Moreover, time-frequency features are more informative than others. In addition, a separability measure and classification results showed that HRV signal features, especially nonlinear features, extracted from 5-min segments are more discriminative than those from 0.5-min segments in automatic sleep staging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
3D Texture Features Mining for MRI Brain Tumor Identification
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Saba, Tanzila; Nayer, Fatima; Syed, Afraz Zahra
2014-03-01
Medical image segmentation is a process to extract region of interest and to divide an image into its individual meaningful, homogeneous components. Actually, these components will have a strong relationship with the objects of interest in an image. For computer-aided diagnosis and therapy process, medical image segmentation is an initial mandatory step. Medical image segmentation is a sophisticated and challenging task because of the sophisticated nature of the medical images. Indeed, successful medical image analysis heavily dependent on the segmentation accuracy. Texture is one of the major features to identify region of interests in an image or to classify an object. 2D textures features yields poor classification results. Hence, this paper represents 3D features extraction using texture analysis and SVM as segmentation technique in the testing methodologies.
BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana
2006-01-01
Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.
Remote, non-contacting personnel bio-identification using microwave radiation
NASA Technical Reports Server (NTRS)
McGrath, William R. (Inventor); Talukder, Ashit (Inventor)
2011-01-01
A system to remotely identify a person by utilizing a microwave cardiogram, where some embodiments segment a signal representing cardiac beats into segments, extract features from the segments, and perform pattern identification of the segments and features with a pre-existing data set. Other embodiments are described and claimed.
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Weixin; Pei, Jihong
2018-03-01
Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.
Biomorphic networks: approach to invariant feature extraction and segmentation for ATR
NASA Astrophysics Data System (ADS)
Baek, Andrew; Farhat, Nabil H.
1998-10-01
Invariant features in two dimensional binary images are extracted in a single layer network of locally coupled spiking (pulsating) model neurons with prescribed synapto-dendritic response. The feature vector for an image is represented as invariant structure in the aggregate histogram of interspike intervals obtained by computing time intervals between successive spikes produced from each neuron over a given period of time and combining such intervals from all neurons in the network into a histogram. Simulation results show that the feature vectors are more pattern-specific and invariant under translation, rotation, and change in scale or intensity than achieved in earlier work. We also describe an application of such networks to segmentation of line (edge-enhanced or silhouette) images. The biomorphic spiking network's capabilities in segmentation and invariant feature extraction may prove to be, when they are combined, valuable in Automated Target Recognition (ATR) and other automated object recognition systems.
Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953
Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.
NASA Astrophysics Data System (ADS)
Alshehhi, Rasha; Marpu, Prashanth Reddy
2017-04-01
Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.
Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images
Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.
2013-01-01
We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements significantly improves the prediction accuracy of morphological changes (Spearman correlation coefficient = 0.8715, p<2e-16). PMID:23431398
Improve threshold segmentation using features extraction to automatic lung delimitation.
França, Cleunio; Vasconcelos, Germano; Diniz, Paula; Melo, Pedro; Diniz, Jéssica; Novaes, Magdala
2013-01-01
With the consolidation of PACS and RIS systems, the development of algorithms for tissue segmentation and diseases detection have intensely evolved in recent years. These algorithms have advanced to improve its accuracy and specificity, however, there is still some way until these algorithms achieved satisfactory error rates and reduced processing time to be used in daily diagnosis. The objective of this study is to propose a algorithm for lung segmentation in x-ray computed tomography images using features extraction, as Centroid and orientation measures, to improve the basic threshold segmentation. As result we found a accuracy of 85.5%.
NASA Astrophysics Data System (ADS)
Jafari, Mehdi; Kasaei, Shohreh
2012-01-01
Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.
NASA Astrophysics Data System (ADS)
Jafari, Mehdi; Kasaei, Shohreh
2011-12-01
Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.
Padma, A; Sukanesh, R
2013-01-01
A computer software system is designed for the segmentation and classification of benign from malignant tumour slices in brain computed tomography (CT) images. This paper presents a method to find and select both the dominant run length and co-occurrence texture features of region of interest (ROI) of the tumour region of each slice to be segmented by Fuzzy c means clustering (FCM) and evaluate the performance of support vector machine (SVM)-based classifiers in classifying benign and malignant tumour slices. Two hundred and six tumour confirmed CT slices are considered in this study. A total of 17 texture features are extracted by a feature extraction procedure, and six features are selected using Principal Component Analysis (PCA). This study constructed the SVM-based classifier with the selected features and by comparing the segmentation results with the experienced radiologist labelled ground truth (target). Quantitative analysis between ground truth and segmented tumour is presented in terms of segmentation accuracy, segmentation error and overlap similarity measures such as the Jaccard index. The classification performance of the SVM-based classifier with the same selected features is also evaluated using a 10-fold cross-validation method. The proposed system provides some newly found texture features have an important contribution in classifying benign and malignant tumour slices efficiently and accurately with less computational time. The experimental results showed that the proposed system is able to achieve the highest segmentation and classification accuracy effectiveness as measured by jaccard index and sensitivity and specificity.
Influence of nuclei segmentation on breast cancer malignancy classification
NASA Astrophysics Data System (ADS)
Jelen, Lukasz; Fevens, Thomas; Krzyzak, Adam
2009-02-01
Breast Cancer is one of the most deadly cancers affecting middle-aged women. Accurate diagnosis and prognosis are crucial to reduce the high death rate. Nowadays there are numerous diagnostic tools for breast cancer diagnosis. In this paper we discuss a role of nuclear segmentation from fine needle aspiration biopsy (FNA) slides and its influence on malignancy classification. Classification of malignancy plays a very important role during the diagnosis process of breast cancer. Out of all cancer diagnostic tools, FNA slides provide the most valuable information about the cancer malignancy grade which helps to choose an appropriate treatment. This process involves assessing numerous nuclear features and therefore precise segmentation of nuclei is very important. In this work we compare three powerful segmentation approaches and test their impact on the classification of breast cancer malignancy. The studied approaches involve level set segmentation, fuzzy c-means segmentation and textural segmentation based on co-occurrence matrix. Segmented nuclei were used to extract nuclear features for malignancy classification. For classification purposes four different classifiers were trained and tested with previously extracted features. The compared classifiers are Multilayer Perceptron (MLP), Self-Organizing Maps (SOM), Principal Component-based Neural Network (PCA) and Support Vector Machines (SVM). The presented results show that level set segmentation yields the best results over the three compared approaches and leads to a good feature extraction with a lowest average error rate of 6.51% over four different classifiers. The best performance was recorded for multilayer perceptron with an error rate of 3.07% using fuzzy c-means segmentation.
Sensor-oriented feature usability evaluation in fingerprint segmentation
NASA Astrophysics Data System (ADS)
Li, Ying; Yin, Yilong; Yang, Gongping
2013-06-01
Existing fingerprint segmentation methods usually process fingerprint images captured by different sensors with the same feature or feature set. We propose to improve the fingerprint segmentation result in view of an important fact that images from different sensors have different characteristics for segmentation. Feature usability evaluation, which means to evaluate the usability of features to find the personalized feature or feature set for different sensors to improve the performance of segmentation. The need for feature usability evaluation for fingerprint segmentation is raised and analyzed as a new issue. To address this issue, we present a decision-tree-based feature-usability evaluation method, which utilizes a C4.5 decision tree algorithm to evaluate and pick the best suitable feature or feature set for fingerprint segmentation from a typical candidate feature set. We apply the novel method on the FVC2002 database of fingerprint images, which are acquired by four different respective sensors and technologies. Experimental results show that the accuracy of segmentation is improved, and time consumption for feature extraction is dramatically reduced with selected feature(s).
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
Bio-Inspired Sensing and Display of Polarization Imagery
2005-07-17
and weighting coefficients in this example. Panel 4D clearly shows a better visibility, feature extraction , and lesser effect from the background...of linear polarization. Panel E represents the segmentation of the degree of linear polarization, and then Panel F shows the extracted segment with...polarization, and Panel F shows the segment extraction with the finger print selected. Panel G illustrates the application of Canny edge detection to
Segmentation of prostate biopsy needles in transrectal ultrasound images
NASA Astrophysics Data System (ADS)
Krefting, Dagmar; Haupt, Barbara; Tolxdorff, Thomas; Kempkensteffen, Carsten; Miller, Kurt
2007-03-01
Prostate cancer is the most common cancer in men. Tissue extraction at different locations (biopsy) is the gold-standard for diagnosis of prostate cancer. These biopsies are commonly guided by transrectal ultrasound imaging (TRUS). Exact location of the extracted tissue within the gland is desired for more specific diagnosis and provides better therapy planning. While the orientation and the position of the needle within clinical TRUS image are limited, the appearing length and visibility of the needle varies strongly. Marker lines are present and tissue inhomogeneities and deflection artefacts may appear. Simple intensity, gradient oder edge-detecting based segmentation methods fail. Therefore a multivariate statistical classificator is implemented. The independent feature model is built by supervised learning using a set of manually segmented needles. The feature space is spanned by common binary object features as size and eccentricity as well as imaging-system dependent features like distance and orientation relative to the marker line. The object extraction is done by multi-step binarization of the region of interest. The ROI is automatically determined at the beginning of the segmentation and marker lines are removed from the images. The segmentation itself is realized by scale-invariant classification using maximum likelihood estimation and Mahalanobis distance as discriminator. The technique presented here could be successfully applied in 94% of 1835 TRUS images from 30 tissue extractions. It provides a robust method for biopsy needle localization in clinical prostate biopsy TRUS images.
Nagarajan, Mahesh B; Huber, Markus B; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel
2013-10-01
Characterizing the dignity of breast lesions as benign or malignant is specifically difficult for small lesions; they don't exhibit typical characteristics of malignancy and are harder to segment since margins are harder to visualize. Previous attempts at using dynamic or morphologic criteria to classify small lesions (mean lesion diameter of about 1 cm) have not yielded satisfactory results. The goal of this work was to improve the classification performance in such small diagnostically challenging lesions while concurrently eliminating the need for precise lesion segmentation. To this end, we introduce a method for topological characterization of lesion enhancement patterns over time. Three Minkowski Functionals were extracted from all five post-contrast images of sixty annotated lesions on dynamic breast MRI exams. For each Minkowski Functional, topological features extracted from each post-contrast image of the lesions were combined into a high-dimensional texture feature vector. These feature vectors were classified in a machine learning task with support vector regression. For comparison, conventional Haralick texture features derived from gray-level co-occurrence matrices (GLCM) were also used. A new method for extracting thresholded GLCM features was also introduced and investigated here. The best classification performance was observed with Minkowski Functionals area and perimeter , thresholded GLCM features f8 and f9, and conventional GLCM features f4 and f6. However, both Minkowski Functionals and thresholded GLCM achieved such results without lesion segmentation while the performance of GLCM features significantly deteriorated when lesions were not segmented ( p < 0.05). This suggests that such advanced spatio-temporal characterization can improve the classification performance achieved in such small lesions, while simultaneously eliminating the need for precise segmentation.
Multi scales based sparse matrix spectral clustering image segmentation
NASA Astrophysics Data System (ADS)
Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin
2018-04-01
In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.
New auto-segment method of cerebral hemorrhage
NASA Astrophysics Data System (ADS)
Wang, Weijiang; Shen, Tingzhi; Dang, Hua
2007-12-01
A novel method for Computerized tomography (CT) cerebral hemorrhage (CH) image automatic segmentation is presented in the paper, which uses expert system that models human knowledge about the CH automatic segmentation problem. The algorithm adopts a series of special steps and extracts some easy ignored CH features which can be found by statistic results of mass real CH images, such as region area, region CT number, region smoothness and some statistic CH region relationship. And a seven steps' extracting mechanism will ensure these CH features can be got correctly and efficiently. By using these CH features, a decision tree which models the human knowledge about the CH automatic segmentation problem has been built and it will ensure the rationality and accuracy of the algorithm. Finally some experiments has been taken to verify the correctness and reasonable of the automatic segmentation, and the good correct ratio and fast speed make it possible to be widely applied into practice.
Texture segmentation by genetic programming.
Song, Andy; Ciesielski, Vic
2008-01-01
This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.
Computerized Interpretation of Dynamic Breast MRI
2006-05-01
correction, tumor segmentation , extraction of computerized features that help distinguish between benign and malignant lesions, and classification. Our...for assessing tumor extent in 3D. The primary feature used for 3D tumor segmentation is the postcontrast enhancement vector. Tumor segmentation is a...Appendix B. 4. Investigation of methods for automatic tumor segmentation We developed an automatic method for assessing tumor extent in 3D. The
Multi-Feature Based Information Extraction of Urban Green Space Along Road
NASA Astrophysics Data System (ADS)
Zhao, H. H.; Guan, H. Y.
2018-04-01
Green space along road of QuickBird image was studied in this paper based on multi-feature-marks in frequency domain. The magnitude spectrum of green along road was analysed, and the recognition marks of the tonal feature, contour feature and the road were built up by the distribution of frequency channels. Gabor filters in frequency domain were used to detect the features based on the recognition marks built up. The detected features were combined as the multi-feature-marks, and watershed based image segmentation were conducted to complete the extraction of green space along roads. The segmentation results were evaluated by Fmeasure with P = 0.7605, R = 0.7639, F = 0.7622.
Multifractal texture estimation for detection and segmentation of brain tumors.
Islam, Atiq; Reza, Syed M S; Iftekharuddin, Khan M
2013-11-01
A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available.
Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors
Islam, Atiq; Reza, Syed M. S.
2016-01-01
A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available. PMID:23807424
Lu, Lijun; Lv, Wenbing; Jiang, Jun; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan
2016-12-01
Radiomic features are increasingly utilized to evaluate tumor heterogeneity in PET imaging and to enable enhanced prediction of therapy response and outcome. An important ingredient to success in translation of radiomic features to clinical reality is to quantify and ascertain their robustness. In the present work, we studied the impact of segmentation and discretization on 88 radiomic features in 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and [ 11 C]methyl-choline ([ 11 C]choline) positron emission tomography/X-ray computed tomography (PET/CT) imaging of nasopharyngeal carcinoma. Forty patients underwent [ 18 F]FDG PET/CT scans. Of these, nine patients were imaged on a different day utilizing [ 11 C]choline PET/CT. Tumors were delineated using reference manual segmentation by the consensus of three expert physicians, using 41, 50, and 70 % maximum standardized uptake value (SUV max ) threshold with background correction, Nestle's method, and watershed and region growing methods, and then discretized with fixed bin size (0.05, 0.1, 0.2, 0.5, and 1) in units of SUV. A total of 88 features, including 21 first-order intensity features, 10 shape features, and 57 second- and higher-order textural features, were extracted from the tumors. The robustness of the features was evaluated via the intraclass correlation coefficient (ICC) for seven kinds of segmentation methods (involving all 88 features) and five kinds of discretization bin size (involving the 57 second- and higher-order features). Forty-four (50 %) and 55 (63 %) features depicted ICC ≥0.8 with respect to segmentation as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Thirteen (23 %) and 12 (21 %) features showed ICC ≥0.8 with respect to discretization as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Six features were obtained from both [ 18 F]FDG and [ 11 C]choline having ICC ≥0.8 for both segmentation and discretization, five of which were gray-level co-occurrence matrix (GLCM) features (SumEntropy, Entropy, DifEntropy, Homogeneity1, and Homogeneity2) and one of which was an neighborhood gray-tone different matrix (NGTDM) feature (Coarseness). Discretization generated larger effects on features than segmentation in both tracers. Features extracted from [ 11 C]choline were more robust than [ 18 F]FDG for segmentation. Discretization had very similar effects on features extracted from both tracers.
Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα Images
NASA Astrophysics Data System (ADS)
Yang, Meng; Tian, Yu; Liu, Yangyi; Rao, Changhui
2018-05-01
In this article, an automated solar flare detection method applied to both full-disk and local high-resolution Hα images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of Hα solar flares.
NASA Astrophysics Data System (ADS)
Chen, K.; Weinmann, M.; Gao, X.; Yan, M.; Hinz, S.; Jutzi, B.; Weinmann, M.
2018-05-01
In this paper, we address the deep semantic segmentation of aerial imagery based on multi-modal data. Given multi-modal data composed of true orthophotos and the corresponding Digital Surface Models (DSMs), we extract a variety of hand-crafted radiometric and geometric features which are provided separately and in different combinations as input to a modern deep learning framework. The latter is represented by a Residual Shuffling Convolutional Neural Network (RSCNN) combining the characteristics of a Residual Network with the advantages of atrous convolution and a shuffling operator to achieve a dense semantic labeling. Via performance evaluation on a benchmark dataset, we analyze the value of different feature sets for the semantic segmentation task. The derived results reveal that the use of radiometric features yields better classification results than the use of geometric features for the considered dataset. Furthermore, the consideration of data on both modalities leads to an improvement of the classification results. However, the derived results also indicate that the use of all defined features is less favorable than the use of selected features. Consequently, data representations derived via feature extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation.
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, S.; Yang, D.
2017-09-01
Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.
NASA Astrophysics Data System (ADS)
Antropova, Natasha; Huynh, Benjamin; Giger, Maryellen
2017-03-01
Intuitive segmentation-based CADx/radiomic features, calculated from the lesion segmentations of dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) have been utilized in the task of distinguishing between malignant and benign lesions. Additionally, transfer learning with pre-trained deep convolutional neural networks (CNNs) allows for an alternative method of radiomics extraction, where the features are derived directly from the image data. However, the comparison of computer-extracted segmentation-based and CNN features in MRI breast lesion characterization has not yet been conducted. In our study, we used a DCE-MRI database of 640 breast cases - 191 benign and 449 malignant. Thirty-eight segmentation-based features were extracted automatically using our quantitative radiomics workstation. Also, 2D ROIs were selected around each lesion on the DCE-MRIs and directly input into a pre-trained CNN AlexNet, yielding CNN features. Each method was investigated separately and in combination in terms of performance in the task of distinguishing between benign and malignant lesions. Area under the ROC curve (AUC) served as the figure of merit. Both methods yielded promising classification performance with round-robin cross-validated AUC values of 0.88 (se =0.01) and 0.76 (se=0.02) for segmentationbased and deep learning methods, respectively. Combination of the two methods enhanced the performance in malignancy assessment resulting in an AUC value of 0.91 (se=0.01), a statistically significant improvement over the performance of the CNN method alone.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
NASA Astrophysics Data System (ADS)
Wu, T. Y.; Lin, S. F.
2013-10-01
Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.
Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang
2017-02-15
Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.
1991-12-01
9 2.6.1 Multi-Shape Detection. .. .. .. .. .. .. ...... 9 Page 2.6.2 Line Segment Extraction and Re-Combination.. 9 2.6.3 Planimetric Feature... Extraction ............... 10 2.6.4 Line Segment Extraction From Statistical Texture Analysis .............................. 11 2.6.5 Edge Following as Graph...image after image, could benefit clue to the fact that major spatial characteristics of subregions could be extracted , and minor spatial changes could be
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.
Heuristic algorithm for optical character recognition of Arabic script
NASA Astrophysics Data System (ADS)
Yarman-Vural, Fatos T.; Atici, A.
1996-02-01
In this paper, a heuristic method is developed for segmentation, feature extraction and recognition of the Arabic script. The study is part of a large project for the transcription of the documents in Ottoman Archives. A geometrical and topological feature analysis method is developed for segmentation and feature extraction stages. Chain code transformation is applied to main strokes of the characters which are then classified by the hidden Markov model (HMM) in the recognition stage. Experimental results indicate that the performance of the proposed method is impressive, provided that the thinning process does not yield spurious branches.
Content-based audio authentication using a hierarchical patchwork watermark embedding
NASA Astrophysics Data System (ADS)
Gulbis, Michael; Müller, Erika
2010-05-01
Content-based audio authentication watermarking techniques extract perceptual relevant audio features, which are robustly embedded into the audio file to protect. Manipulations of the audio file are detected on the basis of changes between the original embedded feature information and the anew extracted features during verification. The main challenges of content-based watermarking are on the one hand the identification of a suitable audio feature to distinguish between content preserving and malicious manipulations. On the other hand the development of a watermark, which is robust against content preserving modifications and able to carry the whole authentication information. The payload requirements are significantly higher compared to transaction watermarking or copyright protection. Finally, the watermark embedding should not influence the feature extraction to avoid false alarms. Current systems still lack a sufficient alignment of watermarking algorithm and feature extraction. In previous work we developed a content-based audio authentication watermarking approach. The feature is based on changes in DCT domain over time. A patchwork algorithm based watermark was used to embed multiple one bit watermarks. The embedding process uses the feature domain without inflicting distortions to the feature. The watermark payload is limited by the feature extraction, more precisely the critical bands. The payload is inverse proportional to segment duration of the audio file segmentation. Transparency behavior was analyzed in dependence of segment size and thus the watermark payload. At a segment duration of about 20 ms the transparency shows an optimum (measured in units of Objective Difference Grade). Transparency and/or robustness are fast decreased for working points beyond this area. Therefore, these working points are unsuitable to gain further payload, needed for the embedding of the whole authentication information. In this paper we present a hierarchical extension of the watermark method to overcome the limitations given by the feature extraction. The approach is a recursive application of the patchwork algorithm onto its own patches, with a modified patch selection to ensure a better signal to noise ratio for the watermark embedding. The robustness evaluation was done by compression (mp3, ogg, aac), normalization, and several attacks of the stirmark benchmark for audio suite. Compared on the base of same payload and transparency the hierarchical approach shows improved robustness.
NASA Astrophysics Data System (ADS)
Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue
2018-04-01
The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.
The Study of Residential Areas Extraction Based on GF-3 Texture Image Segmentation
NASA Astrophysics Data System (ADS)
Shao, G.; Luo, H.; Tao, X.; Ling, Z.; Huang, Y.
2018-04-01
The study chooses the standard stripe and dual polarization SAR images of GF-3 as the basic data. Residential areas extraction processes and methods based upon GF-3 images texture segmentation are compared and analyzed. GF-3 images processes include radiometric calibration, complex data conversion, multi-look processing, images filtering, and then conducting suitability analysis for different images filtering methods, the filtering result show that the filtering method of Kuan is efficient for extracting residential areas, then, we calculated and analyzed the texture feature vectors using the GLCM (the Gary Level Co-occurrence Matrix), texture feature vectors include the moving window size, step size and angle, the result show that window size is 11*11, step is 1, and angle is 0°, which is effective and optimal for the residential areas extracting. And with the FNEA (Fractal Net Evolution Approach), we segmented the GLCM texture images, and extracted the residential areas by threshold setting. The result of residential areas extraction verified and assessed by confusion matrix. Overall accuracy is 0.897, kappa is 0.881, and then we extracted the residential areas by SVM classification based on GF-3 images, the overall accuracy is less 0.09 than the accuracy of extraction method based on GF-3 Texture Image Segmentation. We reached the conclusion that residential areas extraction based on GF-3 SAR texture image multi-scale segmentation is simple and highly accurate. although, it is difficult to obtain multi-spectrum remote sensing image in southern China, in cloudy and rainy weather throughout the year, this paper has certain reference significance.
Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming
2015-01-01
Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832
Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing
2018-06-01
Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Wei; Chen, Ting; Zhang, Wenjun; Shi, Yunyu; Li, Jun
2012-04-01
In recent years, Music video data is increasing at an astonishing speed. Shot segmentation and keyframe extraction constitute a fundamental unit in organizing, indexing, retrieving video content. In this paper a unified framework is proposed to detect the shot boundaries and extract the keyframe of a shot. Music video is first segmented to shots by illumination-invariant chromaticity histogram in independent component (IC) analysis feature space .Then we presents a new metric, image complexity, to extract keyframe in a shot which is computed by ICs. Experimental results show the framework is effective and has a good performance.
Vatsa, Mayank; Singh, Richa; Noore, Afzel
2008-08-01
This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.
A new method for recognizing hand configurations of Brazilian gesture language.
Costa Filho, C F F; Dos Santos, B L; de Souza, R S; Dos Santos, J R; Costa, M G F
2016-08-01
This paper describes a new method for recognizing hand configurations of the Brazilian Gesture Language - LIBRAS - using depth maps obtained with a Kinect® camera. The proposed method comprised three phases: hand segmentation, feature extraction, and classification. The segmentation phase is independent from the background and depends only on pixel depth information. Using geometric operations and numerical normalization, the feature extraction process was done independent from rotation and translation. The features are extracted employing two techniques: (2D)2LDA and (2D)2PCA. The classification is made with a novelty classifier. A robust database was constructed for classifier evaluation, with 12,200 images of LIBRAS and 200 gestures of each hand configuration. The best accuracy obtained was 95.41%, which was greater than previous values obtained in the literature.
Color Image Segmentation Based on Statistics of Location and Feature Similarity
NASA Astrophysics Data System (ADS)
Mori, Fumihiko; Yamada, Hiromitsu; Mizuno, Makoto; Sugano, Naotoshi
The process of “image segmentation and extracting remarkable regions” is an important research subject for the image understanding. However, an algorithm based on the global features is hardly found. The requisite of such an image segmentation algorism is to reduce as much as possible the over segmentation and over unification. We developed an algorithm using the multidimensional convex hull based on the density as the global feature. In the concrete, we propose a new algorithm in which regions are expanded according to the statistics of the region such as the mean value, standard deviation, maximum value and minimum value of pixel location, brightness and color elements and the statistics are updated. We also introduced a new concept of conspicuity degree and applied it to the various 21 images to examine the effectiveness. The remarkable object regions, which were extracted by the presented system, highly coincided with those which were pointed by the sixty four subjects who attended the psychological experiment.
User-assisted video segmentation system for visual communication
NASA Astrophysics Data System (ADS)
Wu, Zhengping; Chen, Chun
2002-01-01
Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.
Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI.
Gatos, Ilias; Tsantis, Stavros; Karamesini, Maria; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Hazle, John D; Kagadis, George C
2017-07-01
To automatically segment and classify focal liver lesions (FLLs) on nonenhanced T2-weighted magnetic resonance imaging (MRI) scans using a computer-aided diagnosis (CAD) algorithm. 71 FLLs (30 benign lesions, 19 hepatocellular carcinomas, and 22 metastases) on T2-weighted MRI scans were delineated by the proposed CAD scheme. The FLL segmentation procedure involved wavelet multiscale analysis to extract accurate edge information and mean intensity values for consecutive edges computed using horizontal and vertical analysis that were fed into the subsequent fuzzy C-means algorithm for final FLL border extraction. Texture information for each extracted lesion was derived using 42 first- and second-order textural features from grayscale value histogram, co-occurrence, and run-length matrices. Twelve morphological features were also extracted to capture any shape differentiation between classes. Feature selection was performed with stepwise multilinear regression analysis that led to a reduced feature subset. A multiclass Probabilistic Neural Network (PNN) classifier was then designed and used for lesion classification. PNN model evaluation was performed using the leave-one-out (LOO) method and receiver operating characteristic (ROC) curve analysis. The mean overlap between the automatically segmented FLLs and the manual segmentations performed by radiologists was 0.91 ± 0.12. The highest classification accuracies in the PNN model for the benign, hepatocellular carcinoma, and metastatic FLLs were 94.1%, 91.4%, and 94.1%, respectively, with sensitivity/specificity values of 90%/97.3%, 89.5%/92.2%, and 90.9%/95.6% respectively. The overall classification accuracy for the proposed system was 90.1%. Our diagnostic system using sophisticated FLL segmentation and classification algorithms is a powerful tool for routine clinical MRI-based liver evaluation and can be a supplement to contrast-enhanced MRI to prevent unnecessary invasive procedures. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rossi, P; Jani, A
Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage.more » During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful tool for image-guided interventions in prostate-cancer diagnosis and treatment. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313.« less
Maalek, Reza; Lichti, Derek D; Ruwanpura, Janaka Y
2018-03-08
Automated segmentation of planar and linear features of point clouds acquired from construction sites is essential for the automatic extraction of building construction elements such as columns, beams and slabs. However, many planar and linear segmentation methods use scene-dependent similarity thresholds that may not provide generalizable solutions for all environments. In addition, outliers exist in construction site point clouds due to data artefacts caused by moving objects, occlusions and dust. To address these concerns, a novel method for robust classification and segmentation of planar and linear features is proposed. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a new robust clustering method, the robust complete linkage method. A robust method is also proposed to extract the points of flat-slab floors and/or ceilings independent of the aforementioned stages to improve computational efficiency. The applicability of the proposed method is evaluated in eight datasets acquired from a complex laboratory environment and two construction sites at the University of Calgary. The precision, recall, and accuracy of the segmentation at both construction sites were 96.8%, 97.7% and 95%, respectively. These results demonstrate the suitability of the proposed method for robust segmentation of planar and linear features of contaminated datasets, such as those collected from construction sites.
Maalek, Reza; Lichti, Derek D; Ruwanpura, Janaka Y
2018-01-01
Automated segmentation of planar and linear features of point clouds acquired from construction sites is essential for the automatic extraction of building construction elements such as columns, beams and slabs. However, many planar and linear segmentation methods use scene-dependent similarity thresholds that may not provide generalizable solutions for all environments. In addition, outliers exist in construction site point clouds due to data artefacts caused by moving objects, occlusions and dust. To address these concerns, a novel method for robust classification and segmentation of planar and linear features is proposed. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a new robust clustering method, the robust complete linkage method. A robust method is also proposed to extract the points of flat-slab floors and/or ceilings independent of the aforementioned stages to improve computational efficiency. The applicability of the proposed method is evaluated in eight datasets acquired from a complex laboratory environment and two construction sites at the University of Calgary. The precision, recall, and accuracy of the segmentation at both construction sites were 96.8%, 97.7% and 95%, respectively. These results demonstrate the suitability of the proposed method for robust segmentation of planar and linear features of contaminated datasets, such as those collected from construction sites. PMID:29518062
Multiple supervised residual network for osteosarcoma segmentation in CT images.
Zhang, Rui; Huang, Lin; Xia, Wei; Zhang, Bo; Qiu, Bensheng; Gao, Xin
2018-01-01
Automatic and accurate segmentation of osteosarcoma region in CT images can help doctor make a reasonable treatment plan, thus improving cure rate. In this paper, a multiple supervised residual network (MSRN) was proposed for osteosarcoma image segmentation. Three supervised side output modules were added to the residual network. The shallow side output module could extract image shape features, such as edge features and texture features. The deep side output module could extract semantic features. The side output module could compute the loss value between output probability map and ground truth and back-propagate the loss information. Then, the parameters of residual network could be modified by gradient descent method. This could guide the multi-scale feature learning of the network. The final segmentation results were obtained by fusing the results output by the three side output modules. A total of 1900 CT images from 15 osteosarcoma patients were used to train the network and a total of 405 CT images from another 8 osteosarcoma patients were used to test the network. Results indicated that MSRN enabled a dice similarity coefficient (DSC) of 89.22%, a sensitivity of 88.74% and a F1-measure of 0.9305, which were larger than those obtained by fully convolutional network (FCN) and U-net. Thus, MSRN for osteosarcoma segmentation could give more accurate results than FCN and U-Net. Copyright © 2018 Elsevier Ltd. All rights reserved.
An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation
NASA Technical Reports Server (NTRS)
Zhang, Zhou; Pasolli, Edoardo; Crawford, Melba M.; Tilton, James C.
2015-01-01
Augmenting spectral data with spatial information for image classification has recently gained significant attention, as classification accuracy can often be improved by extracting spatial information from neighboring pixels. In this paper, we propose a new framework in which active learning (AL) and hierarchical segmentation (HSeg) are combined for spectral-spatial classification of hyperspectral images. The spatial information is extracted from a best segmentation obtained by pruning the HSeg tree using a new supervised strategy. The best segmentation is updated at each iteration of the AL process, thus taking advantage of informative labeled samples provided by the user. The proposed strategy incorporates spatial information in two ways: 1) concatenating the extracted spatial features and the original spectral features into a stacked vector and 2) extending the training set using a self-learning-based semi-supervised learning (SSL) approach. Finally, the two strategies are combined within an AL framework. The proposed framework is validated with two benchmark hyperspectral datasets. Higher classification accuracies are obtained by the proposed framework with respect to five other state-of-the-art spectral-spatial classification approaches. Moreover, the effectiveness of the proposed pruning strategy is also demonstrated relative to the approaches based on a fixed segmentation.
An improved method for pancreas segmentation using SLIC and interactive region merging
NASA Astrophysics Data System (ADS)
Zhang, Liyuan; Yang, Huamin; Shi, Weili; Miao, Yu; Li, Qingliang; He, Fei; He, Wei; Li, Yanfang; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang
2017-03-01
Considering the weak edges in pancreas segmentation, this paper proposes a new solution which integrates more features of CT images by combining SLIC superpixels and interactive region merging. In the proposed method, Mahalanobis distance is first utilized in SLIC method to generate better superpixel images. By extracting five texture features and one gray feature, the similarity measure between two superpixels becomes more reliable in interactive region merging. Furthermore, object edge blocks are accurately addressed by re-segmentation merging process. Applying the proposed method to four cases of abdominal CT images, we segment pancreatic tissues to verify the feasibility and effectiveness. The experimental results show that the proposed method can make segmentation accuracy increase to 92% on average. This study will boost the application process of pancreas segmentation for computer-aided diagnosis system.
Singh, Anushikha; Dutta, Malay Kishore; ParthaSarathi, M; Uher, Vaclav; Burget, Radim
2016-02-01
Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Machine learning in soil classification.
Bhattacharya, B; Solomatine, D P
2006-03-01
In a number of engineering problems, e.g. in geotechnics, petroleum engineering, etc. intervals of measured series data (signals) are to be attributed a class maintaining the constraint of contiguity and standard classification methods could be inadequate. Classification in this case needs involvement of an expert who observes the magnitude and trends of the signals in addition to any a priori information that might be available. In this paper, an approach for automating this classification procedure is presented. Firstly, a segmentation algorithm is developed and applied to segment the measured signals. Secondly, the salient features of these segments are extracted using boundary energy method. Based on the measured data and extracted features to assign classes to the segments classifiers are built; they employ Decision Trees, ANN and Support Vector Machines. The methodology was tested in classifying sub-surface soil using measured data from Cone Penetration Testing and satisfactory results were obtained.
Research on Method of Interactive Segmentation Based on Remote Sensing Images
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, H.; Han, Y.; Yu, F.
2017-09-01
In this paper, we aim to solve the object extraction problem in remote sensing images using interactive segmentation tools. Firstly, an overview of the interactive segmentation algorithm is proposed. Then, our detailed implementation of intelligent scissors and GrabCut for remote sensing images is described. Finally, several experiments on different typical features (water area, vegetation) in remote sensing images are performed respectively. Compared with the manual result, it indicates that our tools maintain good feature boundaries and show good performance.
Echegaray, Sebastian; Nair, Viswam; Kadoch, Michael; Leung, Ann; Rubin, Daniel; Gevaert, Olivier; Napel, Sandy
2016-12-01
Quantitative imaging approaches compute features within images' regions of interest. Segmentation is rarely completely automatic, requiring time-consuming editing by experts. We propose a new paradigm, called "digital biopsy," that allows for the collection of intensity- and texture-based features from these regions at least 1 order of magnitude faster than the current manual or semiautomated methods. A radiologist reviewed automated segmentations of lung nodules from 100 preoperative volume computed tomography scans of patients with non-small cell lung cancer, and manually adjusted the nodule boundaries in each section, to be used as a reference standard, requiring up to 45 minutes per nodule. We also asked a different expert to generate a digital biopsy for each patient using a paintbrush tool to paint a contiguous region of each tumor over multiple cross-sections, a procedure that required an average of <3 minutes per nodule. We simulated additional digital biopsies using morphological procedures. Finally, we compared the features extracted from these digital biopsies with our reference standard using intraclass correlation coefficient (ICC) to characterize robustness. Comparing the reference standard segmentations to our digital biopsies, we found that 84/94 features had an ICC >0.7; comparing erosions and dilations, using a sphere of 1.5-mm radius, of our digital biopsies to the reference standard segmentations resulted in 41/94 and 53/94 features, respectively, with ICCs >0.7. We conclude that many intensity- and texture-based features remain consistent between the reference standard and our method while substantially reducing the amount of operator time required.
Robust hepatic vessel segmentation using multi deep convolution network
NASA Astrophysics Data System (ADS)
Kitrungrotsakul, Titinunt; Han, Xian-Hua; Iwamoto, Yutaro; Foruzan, Amir Hossein; Lin, Lanfen; Chen, Yen-Wei
2017-03-01
Extraction of blood vessels of the organ is a challenging task in the area of medical image processing. It is really difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the hepatic vessels from computed tomography (CT) image. We proposed novel deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of three deep convolution neural networks to extract features from difference planes of CT data. The three networks have share features at the first convolution layer but will separately learn their own features in the second layer. All three networks will join again at the top layer. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 12 CT volumes which training data are randomly generate from 5 CT volumes and 7 using for test. Our network can yield an average dice coefficient 0.830, while 3D deep convolution neural network can yield around 0.7 and multi-scale can yield only 0.6.
A neural network approach to lung nodule segmentation
NASA Astrophysics Data System (ADS)
Hu, Yaoxiu; Menon, Prahlad G.
2016-03-01
Computed tomography (CT) imaging is a sensitive and specific lung cancer screening tool for the high-risk population and shown to be promising for detection of lung cancer. This study proposes an automatic methodology for detecting and segmenting lung nodules from CT images. The proposed methods begin with thorax segmentation, lung extraction and reconstruction of the original shape of the parenchyma using morphology operations. Next, a multi-scale hessian-based vesselness filter is applied to extract lung vasculature in lung. The lung vasculature mask is subtracted from the lung region segmentation mask to extract 3D regions representing candidate pulmonary nodules. Finally, the remaining structures are classified as nodules through shape and intensity features which are together used to train an artificial neural network. Up to 75% sensitivity and 98% specificity was achieved for detection of lung nodules in our testing dataset, with an overall accuracy of 97.62%+/-0.72% using 11 selected features as input to the neural network classifier, based on 4-fold cross-validation studies. Receiver operator characteristics for identifying nodules revealed an area under curve of 0.9476.
Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar
2016-02-01
Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.
Free-Form Region Description with Second-Order Pooling.
Carreira, João; Caseiro, Rui; Batista, Jorge; Sminchisescu, Cristian
2015-06-01
Semantic segmentation and object detection are nowadays dominated by methods operating on regions obtained as a result of a bottom-up grouping process (segmentation) but use feature extractors developed for recognition on fixed-form (e.g. rectangular) patches, with full images as a special case. This is most likely suboptimal. In this paper we focus on feature extraction and description over free-form regions and study the relationship with their fixed-form counterparts. Our main contributions are novel pooling techniques that capture the second-order statistics of local descriptors inside such free-form regions. We introduce second-order generalizations of average and max-pooling that together with appropriate non-linearities, derived from the mathematical structure of their embedding space, lead to state-of-the-art recognition performance in semantic segmentation experiments without any type of local feature coding. In contrast, we show that codebook-based local feature coding is more important when feature extraction is constrained to operate over regions that include both foreground and large portions of the background, as typical in image classification settings, whereas for high-accuracy localization setups, second-order pooling over free-form regions produces results superior to those of the winning systems in the contemporary semantic segmentation challenges, with models that are much faster in both training and testing.
Method of Grassland Information Extraction Based on Multi-Level Segmentation and Cart Model
NASA Astrophysics Data System (ADS)
Qiao, Y.; Chen, T.; He, J.; Wen, Q.; Liu, F.; Wang, Z.
2018-04-01
It is difficult to extract grassland accurately by traditional classification methods, such as supervised method based on pixels or objects. This paper proposed a new method combing the multi-level segmentation with CART (classification and regression tree) model. The multi-level segmentation which combined the multi-resolution segmentation and the spectral difference segmentation could avoid the over and insufficient segmentation seen in the single segmentation mode. The CART model was established based on the spectral characteristics and texture feature which were excavated from training sample data. Xilinhaote City in Inner Mongolia Autonomous Region was chosen as the typical study area and the proposed method was verified by using visual interpretation results as approximate truth value. Meanwhile, the comparison with the nearest neighbor supervised classification method was obtained. The experimental results showed that the total precision of classification and the Kappa coefficient of the proposed method was 95 % and 0.9, respectively. However, the total precision of classification and the Kappa coefficient of the nearest neighbor supervised classification method was 80 % and 0.56, respectively. The result suggested that the accuracy of classification proposed in this paper was higher than the nearest neighbor supervised classification method. The experiment certificated that the proposed method was an effective extraction method of grassland information, which could enhance the boundary of grassland classification and avoid the restriction of grassland distribution scale. This method was also applicable to the extraction of grassland information in other regions with complicated spatial features, which could avoid the interference of woodland, arable land and water body effectively.
Superpixel-Augmented Endmember Detection for Hyperspectral Images
NASA Technical Reports Server (NTRS)
Thompson, David R.; Castano, Rebecca; Gilmore, Martha
2011-01-01
Superpixels are homogeneous image regions comprised of several contiguous pixels. They are produced by shattering the image into contiguous, homogeneous regions that each cover between 20 and 100 image pixels. The segmentation aims for a many-to-one mapping from superpixels to image features; each image feature could contain several superpixels, but each superpixel occupies no more than one image feature. This conservative segmentation is relatively easy to automate in a robust fashion. Superpixel processing is related to the more general idea of improving hyperspectral analysis through spatial constraints, which can recognize subtle features at or below the level of noise by exploiting the fact that their spectral signatures are found in neighboring pixels. Recent work has explored spatial constraints for endmember extraction, showing significant advantages over techniques that ignore pixels relative positions. Methods such as AMEE (automated morphological endmember extraction) express spatial influence using fixed isometric relationships a local square window or Euclidean distance in pixel coordinates. In other words, two pixels covariances are based on their spatial proximity, but are independent of their absolute location in the scene. These isometric spatial constraints are most appropriate when spectral variation is smooth and constant over the image. Superpixels are simple to implement, efficient to compute, and are empirically effective. They can be used as a preprocessing step with any desired endmember extraction technique. Superpixels also have a solid theoretical basis in the hyperspectral linear mixing model, making them a principled approach for improving endmember extraction. Unlike existing approaches, superpixels can accommodate non-isometric covariance between image pixels (characteristic of discrete image features separated by step discontinuities). These kinds of image features are common in natural scenes. Analysts can substitute superpixels for image pixels during endmember analysis that leverages the spatial contiguity of scene features to enhance subtle spectral features. Superpixels define populations of image pixels that are independent samples from each image feature, permitting robust estimation of spectral properties, and reducing measurement noise in proportion to the area of the superpixel. This permits improved endmember extraction, and enables automated search for novel and constituent minerals in very noisy, hyperspatial images. This innovation begins with a graph-based segmentation based on the work of Felzenszwalb et al., but then expands their approach to the hyperspectral image domain with a Euclidean distance metric. Then, the mean spectrum of each segment is computed, and the resulting data cloud is used as input into sequential maximum angle convex cone (SMACC) endmember extraction.
Comparative analysis of feature extraction methods in satellite imagery
NASA Astrophysics Data System (ADS)
Karim, Shahid; Zhang, Ye; Asif, Muhammad Rizwan; Ali, Saad
2017-10-01
Feature extraction techniques are extensively being used in satellite imagery and getting impressive attention for remote sensing applications. The state-of-the-art feature extraction methods are appropriate according to the categories and structures of the objects to be detected. Based on distinctive computations of each feature extraction method, different types of images are selected to evaluate the performance of the methods, such as binary robust invariant scalable keypoints (BRISK), scale-invariant feature transform, speeded-up robust features (SURF), features from accelerated segment test (FAST), histogram of oriented gradients, and local binary patterns. Total computational time is calculated to evaluate the speed of each feature extraction method. The extracted features are counted under shadow regions and preprocessed shadow regions to compare the functioning of each method. We have studied the combination of SURF with FAST and BRISK individually and found very promising results with an increased number of features and less computational time. Finally, feature matching is conferred for all methods.
Model-based morphological segmentation and labeling of coronary angiograms.
Haris, K; Efstratiadis, S N; Maglaveras, N; Pappas, C; Gourassas, J; Louridas, G
1999-10-01
A method for extraction and labeling of the coronary arterial tree (CAT) using minimal user supervision in single-view angiograms is proposed. The CAT structural description (skeleton and borders) is produced, along with quantitative information for the artery dimensions and assignment of coded labels, based on a given coronary artery model represented by a graph. The stages of the method are: 1) CAT tracking and detection; 2) artery skeleton and border estimation; 3) feature graph creation; and iv) artery labeling by graph matching. The approximate CAT centerline and borders are extracted by recursive tracking based on circular template analysis. The accurate skeleton and borders of each CAT segment are computed, based on morphological homotopy modification and watershed transform. The approximate centerline and borders are used for constructing the artery segment enclosing area (ASEA), where the defined skeleton and border curves are considered as markers. Using the marked ASEA, an artery gradient image is constructed where all the ASEA pixels (except the skeleton ones) are assigned the gradient magnitude of the original image. The artery gradient image markers are imposed as its unique regional minima by the homotopy modification method, the watershed transform is used for extracting the artery segment borders, and the feature graph is updated. Finally, given the created feature graph and the known model graph, a graph matching algorithm assigns the appropriate labels to the extracted CAT using weighted maximal cliques on the association graph corresponding to the two given graphs. Experimental results using clinical digitized coronary angiograms are presented.
Arabic OCR: toward a complete system
NASA Astrophysics Data System (ADS)
El-Bialy, Ahmed M.; Kandil, Ahmed H.; Hashish, Mohamed; Yamany, Sameh M.
1999-12-01
Latin and Chinese OCR systems have been studied extensively in the literature. Yet little work was performed for Arabic character recognition. This is due to the technical challenges found in the Arabic text. Due to its cursive nature, a powerful and stable text segmentation is needed. Also; features capturing the characteristics of the rich Arabic character representation are needed to build the Arabic OCR. In this paper a novel segmentation technique which is font and size independent is introduced. This technique can segment the cursive written text line even if the line suffers from small skewness. The technique is not sensitive to the location of the centerline of the text line and can segment different font sizes and type (for different character sets) occurring on the same line. Features extraction is considered one of the most important phases of the text reading system. Ideally, the features extracted from a character image should capture the essential characteristics of this character that are independent of the font type and size. In such ideal case, the classifier stores a single prototype per character. However, it is practically challenging to find such ideal set of features. In this paper, a set of features that reflect the topological aspects of Arabia characters is proposed. These proposed features integrated with a topological matching technique introduce an Arabic text reading system that is semi Omni.
Line drawing extraction from gray level images by feature integration
NASA Astrophysics Data System (ADS)
Yoo, Hoi J.; Crevier, Daniel; Lepage, Richard; Myler, Harley R.
1994-10-01
We describe procedures that extract line drawings from digitized gray level images, without use of domain knowledge, by modeling preattentive and perceptual organization functions of the human visual system. First, edge points are identified by standard low-level processing, based on the Canny edge operator. Edge points are then linked into single-pixel thick straight- line segments and circular arcs: this operation serves to both filter out isolated and highly irregular segments, and to lump the remaining points into a smaller number of structures for manipulation by later stages of processing. The next stages consist in linking the segments into a set of closed boundaries, which is the system's definition of a line drawing. According to the principles of Gestalt psychology, closure allows us to organize the world by filling in the gaps in a visual stimulation so as to perceive whole objects instead of disjoint parts. To achieve such closure, the system selects particular features or combinations of features by methods akin to those of preattentive processing in humans: features include gaps, pairs of straight or curved parallel lines, L- and T-junctions, pairs of symmetrical lines, and the orientation and length of single lines. These preattentive features are grouped into higher-level structures according to the principles of proximity, similarity, closure, symmetry, and feature conjunction. Achieving closure may require supplying missing segments linking contour concavities. Choices are made between competing structures on the basis of their overall compliance with the principles of closure and symmetry. Results include clean line drawings of curvilinear manufactured objects. The procedures described are part of a system called VITREO (viewpoint-independent 3-D recognition and extraction of objects).
Paroxysmal atrial fibrillation prediction method with shorter HRV sequences.
Boon, K H; Khalil-Hani, M; Malarvili, M B; Sia, C W
2016-10-01
This paper proposes a method that predicts the onset of paroxysmal atrial fibrillation (PAF), using heart rate variability (HRV) segments that are shorter than those applied in existing methods, while maintaining good prediction accuracy. PAF is a common cardiac arrhythmia that increases the health risk of a patient, and the development of an accurate predictor of the onset of PAF is clinical important because it increases the possibility to stabilize (electrically) and prevent the onset of atrial arrhythmias with different pacing techniques. We investigate the effect of HRV features extracted from different lengths of HRV segments prior to PAF onset with the proposed PAF prediction method. The pre-processing stage of the predictor includes QRS detection, HRV quantification and ectopic beat correction. Time-domain, frequency-domain, non-linear and bispectrum features are then extracted from the quantified HRV. In the feature selection, the HRV feature set and classifier parameters are optimized simultaneously using an optimization procedure based on genetic algorithm (GA). Both full feature set and statistically significant feature subset are optimized by GA respectively. For the statistically significant feature subset, Mann-Whitney U test is used to filter non-statistical significance features that cannot pass the statistical test at 20% significant level. The final stage of our predictor is the classifier that is based on support vector machine (SVM). A 10-fold cross-validation is applied in performance evaluation, and the proposed method achieves 79.3% prediction accuracy using 15-minutes HRV segment. This accuracy is comparable to that achieved by existing methods that use 30-minutes HRV segments, most of which achieves accuracy of around 80%. More importantly, our method significantly outperforms those that applied segments shorter than 30 minutes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks
Wang, Changjian; Liu, Xiaohui; Jin, Shiyao
2018-01-01
Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galavis, P; Friedman, K; Chandarana, H
Purpose: Radiomics involves the extraction of texture features from different imaging modalities with the purpose of developing models to predict patient treatment outcomes. The purpose of this study is to investigate texture feature reproducibility across [18F]FDG PET/CT and [18F]FDG PET/MR imaging in patients with primary malignancies. Methods: Twenty five prospective patients with solid tumors underwent clinical [18F]FDG PET/CT scan followed by [18F]FDG PET/MR scans. In all patients the lesions were identified using nuclear medicine reports. The images were co-registered and segmented using an in-house auto-segmentation method. Fifty features, based on the intensity histogram, second and high order matrices, were extractedmore » from the segmented regions from both image data sets. One-way random-effects ANOVA model of the intra-class correlation coefficient (ICC) was used to establish texture feature correlations between both data sets. Results: Fifty features were classified based on their ICC values, which were found in the range from 0.1 to 0.86, in three categories: high, intermediate, and low. Ten features extracted from second and high-order matrices showed large ICC ≥ 0.70. Seventeen features presented intermediate 0.5 ≤ ICC ≤ 0.65 and the remaining twenty three presented low ICC ≤ 0.45. Conclusion: Features with large ICC values could be reliable candidates for quantification as they lead to similar results from both imaging modalities. Features with small ICC indicates a lack of correlation. Therefore, the use of these features as a quantitative measure will lead to different assessments of the same lesion depending on the imaging modality from where they are extracted. This study shows the importance of the need for further investigation and standardization of features across multiple imaging modalities.« less
Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking
NASA Astrophysics Data System (ADS)
He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.
2018-04-01
The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.
SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects
2014-01-01
Background Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. Results The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Conclusions Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems. PMID:24964954
SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects.
Kloster, Michael; Kauer, Gerhard; Beszteri, Bánk
2014-06-25
Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems.
Altazi, Baderaldeen A; Zhang, Geoffrey G; Fernandez, Daniel C; Montejo, Michael E; Hunt, Dylan; Werner, Joan; Biagioli, Matthew C; Moros, Eduardo G
2017-11-01
Site-specific investigations of the role of radiomics in cancer diagnosis and therapy are emerging. We evaluated the reproducibility of radiomic features extracted from 18 Flourine-fluorodeoxyglucose ( 18 F-FDG) PET images for three parameters: manual versus computer-aided segmentation methods, gray-level discretization, and PET image reconstruction algorithms. Our cohort consisted of pretreatment PET/CT scans from 88 cervical cancer patients. Two board-certified radiation oncologists manually segmented the metabolic tumor volume (MTV 1 and MTV 2 ) for each patient. For comparison, we used a graphical-based method to generate semiautomated segmented volumes (GBSV). To address any perturbations in radiomic feature values, we down-sampled the tumor volumes into three gray-levels: 32, 64, and 128 from the original gray-level of 256. Finally, we analyzed the effect on radiomic features on PET images of eight patients due to four PET 3D-reconstruction algorithms: maximum likelihood-ordered subset expectation maximization (OSEM) iterative reconstruction (IR) method, fourier rebinning-ML-OSEM (FOREIR), FORE-filtered back projection (FOREFBP), and 3D-Reprojection (3DRP) analytical method. We extracted 79 features from all segmentation method, gray-levels of down-sampled volumes, and PET reconstruction algorithms. The features were extracted using gray-level co-occurrence matrices (GLCM), gray-level size zone matrices (GLSZM), gray-level run-length matrices (GLRLM), neighborhood gray-tone difference matrices (NGTDM), shape-based features (SF), and intensity histogram features (IHF). We computed the Dice coefficient between each MTV and GBSV to measure segmentation accuracy. Coefficient values close to one indicate high agreement, and values close to zero indicate low agreement. We evaluated the effect on radiomic features by calculating the mean percentage differences (d¯) between feature values measured from each pair of parameter elements (i.e. segmentation methods: MTV 1 -MTV 2 , MTV 1 -GBSV, MTV 2 -GBSV; gray-levels: 64-32, 64-128, and 64-256; reconstruction algorithms: OSEM-FORE-OSEM, OSEM-FOREFBP, and OSEM-3DRP). We used |d¯| as a measure of radiomic feature reproducibility level, where any feature scored |d¯| ±SD ≤ |25|% ± 35% was considered reproducible. We used Bland-Altman analysis to evaluate the mean, standard deviation (SD), and upper/lower reproducibility limits (U/LRL) for radiomic features in response to variation in each testing parameter. Furthermore, we proposed U/LRL as a method to classify the level of reproducibility: High- ±1% ≤ U/LRL ≤ ±30%; Intermediate- ±30% < U/LRL ≤ ±45%; Low- ±45 < U/LRL ≤ ±50%. We considered any feature below the low level as nonreproducible (NR). Finally, we calculated the interclass correlation coefficient (ICC) to evaluate the reliability of radiomic feature measurements for each parameter. The segmented volumes of 65 patients (81.3%) scored Dice coefficient >0.75 for all three volumes. The result outcomes revealed a tendency of higher radiomic feature reproducibility among segmentation pair MTV 1 -GBSV than MTV 2 -GBSV, gray-level pairs of 64-32 and 64-128 than 64-256, and reconstruction algorithm pairs of OSEM-FOREIR and OSEM-FOREFBP than OSEM-3DRP. Although the choice of cervical tumor segmentation method, gray-level value, and reconstruction algorithm may affect radiomic features, some features were characterized by high reproducibility through all testing parameters. The number of radiomic features that showed insensitivity to variations in segmentation methods, gray-level discretization, and reconstruction algorithms was 10 (13%), 4 (5%), and 1 (1%), respectively. These results suggest that a careful analysis of the effects of these parameters is essential prior to any radiomics clinical application. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Fabric defect detection based on visual saliency using deep feature and low-rank recovery
NASA Astrophysics Data System (ADS)
Liu, Zhoufeng; Wang, Baorui; Li, Chunlei; Li, Bicao; Dong, Yan
2018-04-01
Fabric defect detection plays an important role in improving the quality of fabric product. In this paper, a novel fabric defect detection method based on visual saliency using deep feature and low-rank recovery was proposed. First, unsupervised training is carried out by the initial network parameters based on MNIST large datasets. The supervised fine-tuning of fabric image library based on Convolutional Neural Networks (CNNs) is implemented, and then more accurate deep neural network model is generated. Second, the fabric images are uniformly divided into the image block with the same size, then we extract their multi-layer deep features using the trained deep network. Thereafter, all the extracted features are concentrated into a feature matrix. Third, low-rank matrix recovery is adopted to divide the feature matrix into the low-rank matrix which indicates the background and the sparse matrix which indicates the salient defect. In the end, the iterative optimal threshold segmentation algorithm is utilized to segment the saliency maps generated by the sparse matrix to locate the fabric defect area. Experimental results demonstrate that the feature extracted by CNN is more suitable for characterizing the fabric texture than the traditional LBP, HOG and other hand-crafted features extraction method, and the proposed method can accurately detect the defect regions of various fabric defects, even for the image with complex texture.
Herrera, Pedro Javier; Pajares, Gonzalo; Guijarro, Maria; Ruz, José J.; Cruz, Jesús M.; Montes, Fernando
2009-01-01
This paper describes a novel feature-based stereovision matching process based on a pair of omnidirectional images in forest stands acquired with a stereovision sensor equipped with fish-eye lenses. The stereo analysis problem consists of the following steps: image acquisition, camera modelling, feature extraction, image matching and depth determination. Once the depths of significant points on the trees are obtained, the growing stock volume can be estimated by considering the geometrical camera modelling, which is the final goal. The key steps are feature extraction and image matching. This paper is devoted solely to these two steps. At a first stage a segmentation process extracts the trunks, which are the regions used as features, where each feature is identified through a set of attributes of properties useful for matching. In the second step the features are matched based on the application of the following four well known matching constraints, epipolar, similarity, ordering and uniqueness. The combination of the segmentation and matching processes for this specific kind of sensors make the main contribution of the paper. The method is tested with satisfactory results and compared against the human expert criterion. PMID:22303134
Zheng, Qiang; Warner, Steven; Tasian, Gregory; Fan, Yong
2018-02-12
Automatic segmentation of kidneys in ultrasound (US) images remains a challenging task because of high speckle noise, low contrast, and large appearance variations of kidneys in US images. Because texture features may improve the US image segmentation performance, we propose a novel graph cuts method to segment kidney in US images by integrating image intensity information and texture feature maps. We develop a new graph cuts-based method to segment kidney US images by integrating original image intensity information and texture feature maps extracted using Gabor filters. To handle large appearance variation within kidney images and improve computational efficiency, we build a graph of image pixels close to kidney boundary instead of building a graph of the whole image. To make the kidney segmentation robust to weak boundaries, we adopt localized regional information to measure similarity between image pixels for computing edge weights to build the graph of image pixels. The localized graph is dynamically updated and the graph cuts-based segmentation iteratively progresses until convergence. Our method has been evaluated based on kidney US images of 85 subjects. The imaging data of 20 randomly selected subjects were used as training data to tune parameters of the image segmentation method, and the remaining data were used as testing data for validation. Experiment results demonstrated that the proposed method obtained promising segmentation results for bilateral kidneys (average Dice index = 0.9446, average mean distance = 2.2551, average specificity = 0.9971, average accuracy = 0.9919), better than other methods under comparison (P < .05, paired Wilcoxon rank sum tests). The proposed method achieved promising performance for segmenting kidneys in two-dimensional US images, better than segmentation methods built on any single channel of image information. This method will facilitate extraction of kidney characteristics that may predict important clinical outcomes such as progression of chronic kidney disease. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Research on oral test modeling based on multi-feature fusion
NASA Astrophysics Data System (ADS)
Shi, Yuliang; Tao, Yiyue; Lei, Jun
2018-04-01
In this paper, the spectrum of speech signal is taken as an input of feature extraction. The advantage of PCNN in image segmentation and other processing is used to process the speech spectrum and extract features. And a new method combining speech signal processing and image processing is explored. At the same time of using the features of the speech map, adding the MFCC to establish the spectral features and integrating them with the features of the spectrogram to further improve the accuracy of the spoken language recognition. Considering that the input features are more complicated and distinguishable, we use Support Vector Machine (SVM) to construct the classifier, and then compare the extracted test voice features with the standard voice features to achieve the spoken standard detection. Experiments show that the method of extracting features from spectrograms using PCNN is feasible, and the fusion of image features and spectral features can improve the detection accuracy.
Prinyakupt, Jaroonrut; Pluempitiwiriyawej, Charnchai
2015-06-30
Blood smear microscopic images are routinely investigated by haematologists to diagnose most blood diseases. However, the task is quite tedious and time consuming. An automatic detection and classification of white blood cells within such images can accelerate the process tremendously. In this paper we propose a system to locate white blood cells within microscopic blood smear images, segment them into nucleus and cytoplasm regions, extract suitable features and finally, classify them into five types: basophil, eosinophil, neutrophil, lymphocyte and monocyte. Two sets of blood smear images were used in this study's experiments. Dataset 1, collected from Rangsit University, were normal peripheral blood slides under light microscope with 100× magnification; 555 images with 601 white blood cells were captured by a Nikon DS-Fi2 high-definition color camera and saved in JPG format of size 960 × 1,280 pixels at 15 pixels per 1 μm resolution. In dataset 2, 477 cropped white blood cell images were downloaded from CellaVision.com. They are in JPG format of size 360 × 363 pixels. The resolution is estimated to be 10 pixels per 1 μm. The proposed system comprises a pre-processing step, nucleus segmentation, cell segmentation, feature extraction, feature selection and classification. The main concept of the segmentation algorithm employed uses white blood cell's morphological properties and the calibrated size of a real cell relative to image resolution. The segmentation process combined thresholding, morphological operation and ellipse curve fitting. Consequently, several features were extracted from the segmented nucleus and cytoplasm regions. Prominent features were then chosen by a greedy search algorithm called sequential forward selection. Finally, with a set of selected prominent features, both linear and naïve Bayes classifiers were applied for performance comparison. This system was tested on normal peripheral blood smear slide images from two datasets. Two sets of comparison were performed: segmentation and classification. The automatically segmented results were compared to the ones obtained manually by a haematologist. It was found that the proposed method is consistent and coherent in both datasets, with dice similarity of 98.9 and 91.6% for average segmented nucleus and cell regions, respectively. Furthermore, the overall correction rate in the classification phase is about 98 and 94% for linear and naïve Bayes models, respectively. The proposed system, based on normal white blood cell morphology and its characteristics, was applied to two different datasets. The results of the calibrated segmentation process on both datasets are fast, robust, efficient and coherent. Meanwhile, the classification of normal white blood cells into five types shows high sensitivity in both linear and naïve Bayes models, with slightly better results in the linear classifier.
Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator.
Ma, Jun; Wu, Jiande; Wang, Xiaodong
2018-06-04
Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved. Copyright © 2018. Published by Elsevier Ltd.
SAR image segmentation using skeleton-based fuzzy clustering
NASA Astrophysics Data System (ADS)
Cao, Yun Yi; Chen, Yan Qiu
2003-06-01
SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.
Extraction of latent images from printed media
NASA Astrophysics Data System (ADS)
Sergeyev, Vladislav; Fedoseev, Victor
2015-12-01
In this paper we propose an automatic technology for extraction of latent images from printed media such as documents, banknotes, financial securities, etc. This technology includes image processing by adaptively constructed Gabor filter bank for obtaining feature images, as well as subsequent stages of feature selection, grouping and multicomponent segmentation. The main advantage of the proposed technique is versatility: it allows to extract latent images made by different texture variations. Experimental results showing performance of the method over another known system for latent image extraction are given.
An effective hand vein feature extraction method.
Li, Haigang; Zhang, Qian; Li, Chengdong
2015-01-01
As a new authentication method developed years ago, vein recognition technology features the unique advantage of bioassay. This paper studies the specific procedure for the extraction of hand back vein characteristics. There are different positions used in the collecting process, so that a suitable intravenous regional orientation method is put forward, allowing the positioning area to be the same for all hand positions. In addition, to eliminate the pseudo vein area, the valley regional shape extraction operator can be improved and combined with multiple segmentation algorithms. The images should be segmented step by step, making the vein texture to appear clear and accurate. Lastly, the segmented images should be filtered, eroded, and refined. This process helps to filter the most of the pseudo vein information. Finally, a clear vein skeleton diagram is obtained, demonstrating the effectiveness of the algorithm. This paper presents a hand back vein region location method. This makes it possible to rotate and correct the image by working out the inclination degree of contour at the side of hand back.
Multi-scale image segmentation method with visual saliency constraints and its application
NASA Astrophysics Data System (ADS)
Chen, Yan; Yu, Jie; Sun, Kaimin
2018-03-01
Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.
Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets
NASA Astrophysics Data System (ADS)
Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara
2004-05-01
This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%
Application of an enhanced fuzzy algorithm for MR brain tumor image segmentation
NASA Astrophysics Data System (ADS)
Hemanth, D. Jude; Vijila, C. Kezi Selva; Anitha, J.
2010-02-01
Image segmentation is one of the significant digital image processing techniques commonly used in the medical field. One of the specific applications is tumor detection in abnormal Magnetic Resonance (MR) brain images. Fuzzy approaches are widely preferred for tumor segmentation which generally yields superior results in terms of accuracy. But most of the fuzzy algorithms suffer from the drawback of slow convergence rate which makes the system practically non-feasible. In this work, the application of modified Fuzzy C-means (FCM) algorithm to tackle the convergence problem is explored in the context of brain image segmentation. This modified FCM algorithm employs the concept of quantization to improve the convergence rate besides yielding excellent segmentation efficiency. This algorithm is experimented on real time abnormal MR brain images collected from the radiologists. A comprehensive feature vector is extracted from these images and used for the segmentation technique. An extensive feature selection process is performed which reduces the convergence time period and improve the segmentation efficiency. After segmentation, the tumor portion is extracted from the segmented image. Comparative analysis in terms of segmentation efficiency and convergence rate is performed between the conventional FCM and the modified FCM. Experimental results show superior results for the modified FCM algorithm in terms of the performance measures. Thus, this work highlights the application of the modified algorithm for brain tumor detection in abnormal MR brain images.
Automatic Extraction of Planetary Image Features
NASA Technical Reports Server (NTRS)
Troglio, G.; LeMoigne, J.; Moser, G.; Serpico, S. B.; Benediktsson, J. A.
2009-01-01
With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration.
A rapid extraction of landslide disaster information research based on GF-1 image
NASA Astrophysics Data System (ADS)
Wang, Sai; Xu, Suning; Peng, Ling; Wang, Zhiyi; Wang, Na
2015-08-01
In recent years, the landslide disasters occurred frequently because of the seismic activity. It brings great harm to people's life. It has caused high attention of the state and the extensive concern of society. In the field of geological disaster, landslide information extraction based on remote sensing has been controversial, but high resolution remote sensing image can improve the accuracy of information extraction effectively with its rich texture and geometry information. Therefore, it is feasible to extract the information of earthquake- triggered landslides with serious surface damage and large scale. Taking the Wenchuan county as the study area, this paper uses multi-scale segmentation method to extract the landslide image object through domestic GF-1 images and DEM data, which uses the estimation of scale parameter tool to determine the optimal segmentation scale; After analyzing the characteristics of landslide high-resolution image comprehensively and selecting spectrum feature, texture feature, geometric features and landform characteristics of the image, we can establish the extracting rules to extract landslide disaster information. The extraction results show that there are 20 landslide whose total area is 521279.31 .Compared with visual interpretation results, the extraction accuracy is 72.22%. This study indicates its efficient and feasible to extract earthquake landslide disaster information based on high resolution remote sensing and it provides important technical support for post-disaster emergency investigation and disaster assessment.
Tele-Autonomous control involving contact. Final Report Thesis; [object localization
NASA Technical Reports Server (NTRS)
Shao, Lejun; Volz, Richard A.; Conway, Lynn; Walker, Michael W.
1990-01-01
Object localization and its application in tele-autonomous systems are studied. Two object localization algorithms are presented together with the methods of extracting several important types of object features. The first algorithm is based on line-segment to line-segment matching. Line range sensors are used to extract line-segment features from an object. The extracted features are matched to corresponding model features to compute the location of the object. The inputs of the second algorithm are not limited only to the line features. Featured points (point to point matching) and featured unit direction vectors (vector to vector matching) can also be used as the inputs of the algorithm, and there is no upper limit on the number of the features inputed. The algorithm will allow the use of redundant features to find a better solution. The algorithm uses dual number quaternions to represent the position and orientation of an object and uses the least squares optimization method to find an optimal solution for the object's location. The advantage of using this representation is that the method solves for the location estimation by minimizing a single cost function associated with the sum of the orientation and position errors and thus has a better performance on the estimation, both in accuracy and speed, than that of other similar algorithms. The difficulties when the operator is controlling a remote robot to perform manipulation tasks are also discussed. The main problems facing the operator are time delays on the signal transmission and the uncertainties of the remote environment. How object localization techniques can be used together with other techniques such as predictor display and time desynchronization to help to overcome these difficulties are then discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M; Woo, B; Kim, J
Purpose: Objective and reliable quantification of imaging phenotype is an essential part of radiogenomic studies. We compared the reproducibility of two semi-automatic segmentation methods for quantitative image phenotyping in magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM). Methods: MRI examinations with T1 post-gadolinium and FLAIR sequences of 10 GBM patients were downloaded from the Cancer Image Archive site. Two semi-automatic segmentation tools with different algorithms (deformable model and grow cut method) were used to segment contrast enhancement, necrosis and edema regions by two independent observers. A total of 21 imaging features consisting of area and edge groups were extracted automaticallymore » from the segmented tumor. The inter-observer variability and coefficient of variation (COV) were calculated to evaluate the reproducibility. Results: Inter-observer correlations and coefficient of variation of imaging features with the deformable model ranged from 0.953 to 0.999 and 2.1% to 9.2%, respectively, and the grow cut method ranged from 0.799 to 0.976 and 3.5% to 26.6%, respectively. Coefficient of variation for especially important features which were previously reported as predictive of patient survival were: 3.4% with deformable model and 7.4% with grow cut method for the proportion of contrast enhanced tumor region; 5.5% with deformable model and 25.7% with grow cut method for the proportion of necrosis; and 2.1% with deformable model and 4.4% with grow cut method for edge sharpness of tumor on CE-T1W1. Conclusion: Comparison of two semi-automated tumor segmentation techniques shows reliable image feature extraction for radiogenomic analysis of GBM patients with multiparametric Brain MRI.« less
Late summer sea ice segmentation with multi-polarisation SAR features in C- and X-band
NASA Astrophysics Data System (ADS)
Fors, A. S.; Brekke, C.; Doulgeris, A. P.; Eltoft, T.; Renner, A. H. H.; Gerland, S.
2015-09-01
In this study we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around zero degrees Celsius. In situ data consisting of sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporally consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set, and for a reduced SAR feature set limited to temporally consistent features. In general, the algorithm produces a good late summer sea ice segmentation. Excluding temporally inconsistent SAR features improved the segmentation at air temperatures above zero degrees Celcius.
Extraction and Classification of Human Gait Features
NASA Astrophysics Data System (ADS)
Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee; Abdullah, Junaidi; Komiya, Ryoichi
In this paper, a new approach is proposed for extracting human gait features from a walking human based on the silhouette images. The approach consists of six stages: clearing the background noise of image by morphological opening; measuring of the width and height of the human silhouette; dividing the enhanced human silhouette into six body segments based on anatomical knowledge; applying morphological skeleton to obtain the body skeleton; applying Hough transform to obtain the joint angles from the body segment skeletons; and measuring the distance between the bottom of right leg and left leg from the body segment skeletons. The angles of joints, step-size together with the height and width of the human silhouette are collected and used for gait analysis. The experimental results have demonstrated that the proposed system is feasible and achieved satisfactory results.
Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao
2016-02-01
This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.
Automated segmentation and feature extraction of product inspection items
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1997-03-01
X-ray film and linescan images of pistachio nuts on conveyor trays for product inspection are considered. The final objective is the categorization of pistachios into good, blemished and infested nuts. A crucial step before classification is the separation of touching products and the extraction of features essential for classification. This paper addresses new detection and segmentation algorithms to isolate touching or overlapping items. These algorithms employ a new filter, a new watershed algorithm, and morphological processing to produce nutmeat-only images. Tests on a large database of x-ray film and real-time x-ray linescan images of around 2900 small, medium and large nuts showed excellent segmentation results. A new technique to detect and segment dark regions in nutmeat images is also presented and tested on approximately 300 x-ray film and approximately 300 real-time linescan x-ray images with 95-97 percent detection and correct segmentation. New algorithms are described that determine nutmeat fill ratio and locate splits in nutmeat. The techniques formulated in this paper are of general use in many different product inspection and computer vision problems.
Delineation and geometric modeling of road networks
NASA Astrophysics Data System (ADS)
Poullis, Charalambos; You, Suya
In this work we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory (Gabor filtering, tensor voting) and optimized segmentation techniques (global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local precision of the Gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and transforming them to their polygonal representations.
NASA Astrophysics Data System (ADS)
Maier, Oskar; Wilms, Matthias; von der Gablentz, Janina; Krämer, Ulrike; Handels, Heinz
2014-03-01
Automatic segmentation of ischemic stroke lesions in magnetic resonance (MR) images is important in clinical practice and for neuroscientific trials. The key problem is to detect largely inhomogeneous regions of varying sizes, shapes and locations. We present a stroke lesion segmentation method based on local features extracted from multi-spectral MR data that are selected to model a human observer's discrimination criteria. A support vector machine classifier is trained on expert-segmented examples and then used to classify formerly unseen images. Leave-one-out cross validation on eight datasets with lesions of varying appearances is performed, showing our method to compare favourably with other published approaches in terms of accuracy and robustness. Furthermore, we compare a number of feature selectors and closely examine each feature's and MR sequence's contribution.
Alexnet Feature Extraction and Multi-Kernel Learning for Objectoriented Classification
NASA Astrophysics Data System (ADS)
Ding, L.; Li, H.; Hu, C.; Zhang, W.; Wang, S.
2018-04-01
In view of the fact that the deep convolutional neural network has stronger ability of feature learning and feature expression, an exploratory research is done on feature extraction and classification for high resolution remote sensing images. Taking the Google image with 0.3 meter spatial resolution in Ludian area of Yunnan Province as an example, the image segmentation object was taken as the basic unit, and the pre-trained AlexNet deep convolution neural network model was used for feature extraction. And the spectral features, AlexNet features and GLCM texture features are combined with multi-kernel learning and SVM classifier, finally the classification results were compared and analyzed. The results show that the deep convolution neural network can extract more accurate remote sensing image features, and significantly improve the overall accuracy of classification, and provide a reference value for earthquake disaster investigation and remote sensing disaster evaluation.
NASA Astrophysics Data System (ADS)
Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia
2018-05-01
Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.
SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.
Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga
2013-01-01
High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.
Song, Youyi; Zhang, Ling; Chen, Siping; Ni, Dong; Lei, Baiying; Wang, Tianfu
2015-10-01
In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.
Classification of CT examinations for COPD visual severity analysis
NASA Astrophysics Data System (ADS)
Tan, Jun; Zheng, Bin; Wang, Xingwei; Pu, Jiantao; Gur, David; Sciurba, Frank C.; Leader, J. Ken
2012-03-01
In this study we present a computational method of CT examination classification into visual assessed emphysema severity. The visual severity categories ranged from 0 to 5 and were rated by an experienced radiologist. The six categories were none, trace, mild, moderate, severe and very severe. Lung segmentation was performed for every input image and all image features are extracted from the segmented lung only. We adopted a two-level feature representation method for the classification. Five gray level distribution statistics, six gray level co-occurrence matrix (GLCM), and eleven gray level run-length (GLRL) features were computed for each CT image depicted segment lung. Then we used wavelets decomposition to obtain the low- and high-frequency components of the input image, and again extract from the lung region six GLCM features and eleven GLRL features. Therefore our feature vector length is 56. The CT examinations were classified using the support vector machine (SVM) and k-nearest neighbors (KNN) and the traditional threshold (density mask) approach. The SVM classifier had the highest classification performance of all the methods with an overall sensitivity of 54.4% and a 69.6% sensitivity to discriminate "no" and "trace visually assessed emphysema. We believe this work may lead to an automated, objective method to categorically classify emphysema severity on CT exam.
Chen, Jia-Mei; Qu, Ai-Ping; Wang, Lin-Wei; Yuan, Jing-Ping; Yang, Fang; Xiang, Qing-Ming; Maskey, Ninu; Yang, Gui-Fang; Liu, Juan; Li, Yan
2015-01-01
Computer-aided image analysis (CAI) can help objectively quantify morphologic features of hematoxylin-eosin (HE) histopathology images and provide potentially useful prognostic information on breast cancer. We performed a CAI workflow on 1,150 HE images from 230 patients with invasive ductal carcinoma (IDC) of the breast. We used a pixel-wise support vector machine classifier for tumor nests (TNs)-stroma segmentation, and a marker-controlled watershed algorithm for nuclei segmentation. 730 morphologic parameters were extracted after segmentation, and 12 parameters identified by Kaplan-Meier analysis were significantly associated with 8-year disease free survival (P < 0.05 for all). Moreover, four image features including TNs feature (HR 1.327, 95%CI [1.001 - 1.759], P = 0.049), TNs cell nuclei feature (HR 0.729, 95%CI [0.537 - 0.989], P = 0.042), TNs cell density (HR 1.625, 95%CI [1.177 - 2.244], P = 0.003), and stromal cell structure feature (HR 1.596, 95%CI [1.142 - 2.229], P = 0.006) were identified by multivariate Cox proportional hazards model to be new independent prognostic factors. The results indicated that CAI can assist the pathologist in extracting prognostic information from HE histopathology images for IDC. The TNs feature, TNs cell nuclei feature, TNs cell density, and stromal cell structure feature could be new prognostic factors. PMID:26022540
Off-lexicon online Arabic handwriting recognition using neural network
NASA Astrophysics Data System (ADS)
Yahia, Hamdi; Chaabouni, Aymen; Boubaker, Houcine; Alimi, Adel M.
2017-03-01
This paper highlights a new method for online Arabic handwriting recognition based on graphemes segmentation. The main contribution of our work is to explore the utility of Beta-elliptic model in segmentation and features extraction for online handwriting recognition. Indeed, our method consists in decomposing the input signal into continuous part called graphemes based on Beta-Elliptical model, and classify them according to their position in the pseudo-word. The segmented graphemes are then described by the combination of geometric features and trajectory shape modeling. The efficiency of the considered features has been evaluated using feed forward neural network classifier. Experimental results using the benchmarking ADAB Database show the performance of the proposed method.
New approach for segmentation and recognition of handwritten numeral strings
NASA Astrophysics Data System (ADS)
Sadri, Javad; Suen, Ching Y.; Bui, Tien D.
2004-12-01
In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.
New approach for segmentation and recognition of handwritten numeral strings
NASA Astrophysics Data System (ADS)
Sadri, Javad; Suen, Ching Y.; Bui, Tien D.
2005-01-01
In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.
A method of plane geometry primitive presentation
NASA Astrophysics Data System (ADS)
Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin
2014-11-01
Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.
Video shot boundary detection using region-growing-based watershed method
NASA Astrophysics Data System (ADS)
Wang, Jinsong; Patel, Nilesh; Grosky, William
2004-10-01
In this paper, a novel shot boundary detection approach is presented, based on the popular region growing segmentation method - Watershed segmentation. In image processing, gray-scale pictures could be considered as topographic reliefs, in which the numerical value of each pixel of a given image represents the elevation at that point. Watershed method segments images by filling up basins with water starting at local minima, and at points where water coming from different basins meet, dams are built. In our method, each frame in the video sequences is first transformed from the feature space into the topographic space based on a density function. Low-level features are extracted from frame to frame. Each frame is then treated as a point in the feature space. The density of each point is defined as the sum of the influence functions of all neighboring data points. The height function that is originally used in Watershed segmentation is then replaced by inverting the density at the point. Thus, all the highest density values are transformed into local minima. Subsequently, Watershed segmentation is performed in the topographic space. The intuitive idea under our method is that frames within a shot are highly agglomerative in the feature space and have higher possibilities to be merged together, while those frames between shots representing the shot changes are not, hence they have less density values and are less likely to be clustered by carefully extracting the markers and choosing the stopping criterion.
Virtual Surveyor based Object Extraction from Airborne LiDAR data
NASA Astrophysics Data System (ADS)
Habib, Md. Ahsan
Topographic feature detection of land cover from LiDAR data is important in various fields - city planning, disaster response and prevention, soil conservation, infrastructure or forestry. In recent years, feature classification, compliant with Object-Based Image Analysis (OBIA) methodology has been gaining traction in remote sensing and geographic information science (GIS). In OBIA, the LiDAR image is first divided into meaningful segments called object candidates. This results, in addition to spectral values, in a plethora of new information such as aggregated spectral pixel values, morphology, texture, context as well as topology. Traditional nonparametric segmentation methods rely on segmentations at different scales to produce a hierarchy of semantically significant objects. Properly tuned scale parameters are, therefore, imperative in these methods for successful subsequent classification. Recently, some progress has been made in the development of methods for tuning the parameters for automatic segmentation. However, researchers found that it is very difficult to automatically refine the tuning with respect to each object class present in the scene. Moreover, due to the relative complexity of real-world objects, the intra-class heterogeneity is very high, which leads to over-segmentation. Therefore, the method fails to deliver correctly many of the new segment features. In this dissertation, a new hierarchical 3D object segmentation algorithm called Automatic Virtual Surveyor based Object Extracted (AVSOE) is presented. AVSOE segments objects based on their distinct geometric concavity/convexity. This is achieved by strategically mapping the sloping surface, which connects the object to its background. Further analysis produces hierarchical decomposition of objects to its sub-objects at a single scale level. Extensive qualitative and qualitative results are presented to demonstrate the efficacy of this hierarchical segmentation approach.
Automatic exudate detection by fusing multiple active contours and regionwise classification.
Harangi, Balazs; Hajdu, Andras
2014-11-01
In this paper, we propose a method for the automatic detection of exudates in digital fundus images. Our approach can be divided into three stages: candidate extraction, precise contour segmentation and the labeling of candidates as true or false exudates. For candidate detection, we borrow a grayscale morphology-based method to identify possible regions containing these bright lesions. Then, to extract the precise boundary of the candidates, we introduce a complex active contour-based method. Namely, to increase the accuracy of segmentation, we extract additional possible contours by taking advantage of the diverse behavior of different pre-processing methods. After selecting an appropriate combination of the extracted contours, a region-wise classifier is applied to remove the false exudate candidates. For this task, we consider several region-based features, and extract an appropriate feature subset to train a Naïve-Bayes classifier optimized further by an adaptive boosting technique. Regarding experimental studies, the method was tested on publicly available databases both to measure the accuracy of the segmentation of exudate regions and to recognize their presence at image-level. In a proper quantitative evaluation on publicly available datasets the proposed approach outperformed several state-of-the-art exudate detector algorithms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Classification of product inspection items using nonlinear features
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.; Lee, H.-W.
1998-03-01
Automated processing and classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. This approach involves two main steps: preprocessing and classification. Preprocessing locates individual items and segments ones that touch using a modified watershed algorithm. The second stage involves extraction of features that allow discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper. We use a new nonlinear feature extraction scheme called the maximum representation and discriminating feature (MRDF) extraction method to compute nonlinear features that are used as inputs to a classifier. The MRDF is shown to provide better classification and a better ROC (receiver operating characteristic) curve than other methods.
Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band
NASA Astrophysics Data System (ADS)
Fors, Ane S.; Brekke, Camilla; Doulgeris, Anthony P.; Eltoft, Torbjørn; Renner, Angelika H. H.; Gerland, Sebastian
2016-02-01
In this study, we investigate the potential of sea ice segmentation by C- and X-band multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice during a week with air temperatures varying around 0 °C. Sea ice thickness, surface roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the scenes. The ability of the individual SAR features to discriminate between sea ice types and their temporal consistency were examined. All SAR features were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested both for a full SAR feature set and for a reduced SAR feature set limited to temporally consistent features. In C band, the algorithm produced a good late-summer sea ice segmentation, separating the scenes into segments that could be associated with different sea ice types in the next step. The X-band performance was slightly poorer. Excluding temporally inconsistent SAR features improved the segmentation in one of the X-band scenes.
NASA Astrophysics Data System (ADS)
Yang, Honggang; Lin, Huibin; Ding, Kang
2018-05-01
The performance of sparse features extraction by commonly used K-Singular Value Decomposition (K-SVD) method depends largely on the signal segment selected in rolling bearing diagnosis, furthermore, the calculating speed is relatively slow and the dictionary becomes so redundant when the fault signal is relatively long. A new sliding window denoising K-SVD (SWD-KSVD) method is proposed, which uses only one small segment of time domain signal containing impacts to perform sliding window dictionary learning and select an optimal pattern with oscillating information of the rolling bearing fault according to a maximum variance principle. An inner product operation between the optimal pattern and the whole fault signal is performed to enhance the characteristic of the impacts' occurrence moments. Lastly, the signal is reconstructed at peak points of the inner product to realize the extraction of the rolling bearing fault features. Both simulation and experiments verify that the method could extract the fault features effectively.
Multi-object segmentation framework using deformable models for medical imaging analysis.
Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel
2016-08-01
Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.
Analysis of breast thermograms using Gabor wavelet anisotropy index.
Suganthi, S S; Ramakrishnan, S
2014-09-01
In this study, an attempt is made to distinguish the normal and abnormal tissues in breast thermal images using Gabor wavelet transform. Thermograms having normal, benign and malignant tissues are considered in this study and are obtained from public online database. Segmentation of breast tissues is performed by multiplying raw image and ground truth mask. Left and right breast regions are separated after removing the non-breast regions from the segmented image. Based on the pathological conditions, the separated breast regions are grouped as normal and abnormal tissues. Gabor features such as energy and amplitude in different scales and orientations are extracted. Anisotropy and orientation measures are calculated from the extracted features and analyzed. A distinctive variation is observed among different orientations of the extracted features. It is found that the anisotropy measure is capable of differentiating the structural changes due to varied metabolic conditions. Further, the Gabor features also showed relative variations among different pathological conditions. It appears that these features can be used efficiently to identify normal and abnormal tissues and hence, improve the relevance of breast thermography in early detection of breast cancer and content based image retrieval.
An Extended Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Astrophysics Data System (ADS)
Akbari, D.
2017-11-01
In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.
NASA Astrophysics Data System (ADS)
Jayasekare, Ajith S.; Wickramasuriya, Rohan; Namazi-Rad, Mohammad-Reza; Perez, Pascal; Singh, Gaurav
2017-07-01
A continuous update of building information is necessary in today's urban planning. Digital images acquired by remote sensing platforms at appropriate spatial and temporal resolutions provide an excellent data source to achieve this. In particular, high-resolution satellite images are often used to retrieve objects such as rooftops using feature extraction. However, high-resolution images acquired over built-up areas are associated with noises such as shadows that reduce the accuracy of feature extraction. Feature extraction heavily relies on the reflectance purity of objects, which is difficult to perfect in complex urban landscapes. An attempt was made to increase the reflectance purity of building rooftops affected by shadows. In addition to the multispectral (MS) image, derivatives thereof namely, normalized difference vegetation index and principle component (PC) images were incorporated in generating the probability image. This hybrid probability image generation ensured that the effect of shadows on rooftop extraction, particularly on light-colored roofs, is largely eliminated. The PC image was also used for image segmentation, which further increased the accuracy compared to segmentation performed on an MS image. Results show that the presented method can achieve higher rooftop extraction accuracy (70.4%) in vegetation-rich urban areas compared to traditional methods.
Speech Music Discrimination Using Class-Specific Features
2004-08-01
Speech Music Discrimination Using Class-Specific Features Thomas Beierholm...between speech and music . Feature extraction is class-specific and can therefore be tailored to each class meaning that segment size, model orders...interest. Some of the applications of audio signal classification are speech/ music classification [1], acoustical environmental classification [2][3
A flower image retrieval method based on ROI feature.
Hong, An-Xiang; Chen, Gang; Li, Jun-Li; Chi, Zhe-Ru; Zhang, Dan
2004-07-01
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).
Blessy, S A Praylin Selva; Sulochana, C Helen
2015-01-01
Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.
Automatic detection of multi-level acetowhite regions in RGB color images of the uterine cervix
NASA Astrophysics Data System (ADS)
Lange, Holger
2005-04-01
Uterine cervical cancer is the second most common cancer among women worldwide. Colposcopy is a diagnostic method used to detect cancer precursors and cancer of the uterine cervix, whereby a physician (colposcopist) visually inspects the metaplastic epithelium on the cervix for certain distinctly abnormal morphologic features. A contrast agent, a 3-5% acetic acid solution, is used, causing abnormal and metaplastic epithelia to turn white. The colposcopist considers diagnostic features such as the acetowhite, blood vessel structure, and lesion margin to derive a clinical diagnosis. STI Medical Systems is developing a Computer-Aided-Diagnosis (CAD) system for colposcopy -- ColpoCAD, a complex image analysis system that at its core assesses the same visual features as used by colposcopists. The acetowhite feature has been identified as one of the most important individual predictors of lesion severity. Here, we present the details and preliminary results of a multi-level acetowhite region detection algorithm for RGB color images of the cervix, including the detection of the anatomic features: cervix, os and columnar region, which are used for the acetowhite region detection. The RGB images are assumed to be glare free, either obtained by cross-polarized image acquisition or glare removal pre-processing. The basic approach of the algorithm is to extract a feature image from the RGB image that provides a good acetowhite to cervix background ratio, to segment the feature image using novel pixel grouping and multi-stage region-growing algorithms that provide region segmentations with different levels of detail, to extract the acetowhite regions from the region segmentations using a novel region selection algorithm, and then finally to extract the multi-levels from the acetowhite regions using multiple thresholds. The performance of the algorithm is demonstrated using human subject data.
NASA Astrophysics Data System (ADS)
Gevaert, C. M.; Persello, C.; Sliuzas, R.; Vosselman, G.
2016-06-01
Unmanned Aerial Vehicles (UAVs) are capable of providing very high resolution and up-to-date information to support informal settlement upgrading projects. In order to provide accurate basemaps, urban scene understanding through the identification and classification of buildings and terrain is imperative. However, common characteristics of informal settlements such as small, irregular buildings with heterogeneous roof material and large presence of clutter challenge state-of-the-art algorithms. Especially the dense buildings and steeply sloped terrain cause difficulties in identifying elevated objects. This work investigates how 2D radiometric and textural features, 2.5D topographic features, and 3D geometric features obtained from UAV imagery can be integrated to obtain a high classification accuracy in challenging classification problems for the analysis of informal settlements. It compares the utility of pixel-based and segment-based features obtained from an orthomosaic and DSM with point-based and segment-based features extracted from the point cloud to classify an unplanned settlement in Kigali, Rwanda. Findings show that the integration of 2D and 3D features leads to higher classification accuracies.
Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion
NASA Astrophysics Data System (ADS)
Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Tade, Funmilayo; Schuster, David M.; Nieh, Peter; Master, Viraj; Fei, Baowei
2017-02-01
Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.
Random forest feature selection approach for image segmentation
NASA Astrophysics Data System (ADS)
Lefkovits, László; Lefkovits, Szidónia; Emerich, Simina; Vaida, Mircea Florin
2017-03-01
In the field of image segmentation, discriminative models have shown promising performance. Generally, every such model begins with the extraction of numerous features from annotated images. Most authors create their discriminative model by using many features without using any selection criteria. A more reliable model can be built by using a framework that selects the important variables, from the point of view of the classification, and eliminates the unimportant once. In this article we present a framework for feature selection and data dimensionality reduction. The methodology is built around the random forest (RF) algorithm and its variable importance evaluation. In order to deal with datasets so large as to be practically unmanageable, we propose an algorithm based on RF that reduces the dimension of the database by eliminating irrelevant features. Furthermore, this framework is applied to optimize our discriminative model for brain tumor segmentation.
Plantar fascia segmentation and thickness estimation in ultrasound images.
Boussouar, Abdelhafid; Meziane, Farid; Crofts, Gillian
2017-03-01
Ultrasound (US) imaging offers significant potential in diagnosis of plantar fascia (PF) injury and monitoring treatment. In particular US imaging has been shown to be reliable in foot and ankle assessment and offers a real-time effective imaging technique that is able to reliably confirm structural changes, such as thickening, and identify changes in the internal echo structure associated with diseased or damaged tissue. Despite the advantages of US imaging, images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. It is therefore a requirement to devise a system that allows better and easier interpretation of PF ultrasound images during diagnosis. This study proposes an automatic segmentation approach which for the first time extracts ultrasound data to estimate size across three sections of the PF (rearfoot, midfoot and forefoot). This segmentation method uses artificial neural network module (ANN) in order to classify small overlapping patches as belonging or not-belonging to the region of interest (ROI) of the PF tissue. Features ranking and selection techniques were performed as a post-processing step for features extraction to reduce the dimension and number of the extracted features. The trained ANN classifies the image overlapping patches into PF and non-PF tissue, and then it is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and area-length calculation algorithms. This new approach is capable of accurately segmenting the PF region, differentiating it from surrounding tissues and estimating its thickness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yi, Chucai; Tian, Yingli
2012-09-01
In this paper, we propose a novel framework to extract text regions from scene images with complex backgrounds and multiple text appearances. This framework consists of three main steps: boundary clustering (BC), stroke segmentation, and string fragment classification. In BC, we propose a new bigram-color-uniformity-based method to model both text and attachment surface, and cluster edge pixels based on color pairs and spatial positions into boundary layers. Then, stroke segmentation is performed at each boundary layer by color assignment to extract character candidates. We propose two algorithms to combine the structural analysis of text stroke with color assignment and filter out background interferences. Further, we design a robust string fragment classification based on Gabor-based text features. The features are obtained from feature maps of gradient, stroke distribution, and stroke width. The proposed framework of text localization is evaluated on scene images, born-digital images, broadcast video images, and images of handheld objects captured by blind persons. Experimental results on respective datasets demonstrate that the framework outperforms state-of-the-art localization algorithms.
Retina vascular network recognition
NASA Astrophysics Data System (ADS)
Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo
1993-09-01
The analysis of morphological and structural modifications of the retina vascular network is an interesting investigation method in the study of diabetes and hypertension. Normally this analysis is carried out by qualitative evaluations, according to standardized criteria, though medical research attaches great importance to quantitative analysis of vessel color, shape and dimensions. The paper describes a system which automatically segments and recognizes the ocular fundus circulation and micro circulation network, and extracts a set of features related to morphometric aspects of vessels. For this class of images the classical segmentation methods seem weak. We propose a computer vision system in which segmentation and recognition phases are strictly connected. The system is hierarchically organized in four modules. Firstly the Image Enhancement Module (IEM) operates a set of custom image enhancements to remove blur and to prepare data for subsequent segmentation and recognition processes. Secondly the Papilla Border Analysis Module (PBAM) automatically recognizes number, position and local diameter of blood vessels departing from optical papilla. Then the Vessel Tracking Module (VTM) analyses vessels comparing the results of body and edge tracking and detects branches and crossings. Finally the Feature Extraction Module evaluates PBAM and VTM output data and extracts some numerical indexes. Used algorithms appear to be robust and have been successfully tested on various ocular fundus images.
Image segmentation using fuzzy LVQ clustering networks
NASA Technical Reports Server (NTRS)
Tsao, Eric Chen-Kuo; Bezdek, James C.; Pal, Nikhil R.
1992-01-01
In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation.
Role of Gist and PHOG Features in Computer-Aided Diagnosis of Tuberculosis without Segmentation
Chauhan, Arun; Chauhan, Devesh; Rout, Chittaranjan
2014-01-01
Purpose Effective diagnosis of tuberculosis (TB) relies on accurate interpretation of radiological patterns found in a chest radiograph (CXR). Lack of skilled radiologists and other resources, especially in developing countries, hinders its efficient diagnosis. Computer-aided diagnosis (CAD) methods provide second opinion to the radiologists for their findings and thereby assist in better diagnosis of cancer and other diseases including TB. However, existing CAD methods for TB are based on the extraction of textural features from manually or semi-automatically segmented CXRs. These methods are prone to errors and cannot be implemented in X-ray machines for automated classification. Methods Gabor, Gist, histogram of oriented gradients (HOG), and pyramid histogram of oriented gradients (PHOG) features extracted from the whole image can be implemented into existing X-ray machines to discriminate between TB and non-TB CXRs in an automated manner. Localized features were extracted for the above methods using various parameters, such as frequency range, blocks and region of interest. The performance of these features was evaluated against textural features. Two digital CXR image datasets (8-bit DA and 14-bit DB) were used for evaluating the performance of these features. Results Gist (accuracy 94.2% for DA, 86.0% for DB) and PHOG (accuracy 92.3% for DA, 92.0% for DB) features provided better results for both the datasets. These features were implemented to develop a MATLAB toolbox, TB-Xpredict, which is freely available for academic use at http://sourceforge.net/projects/tbxpredict/. This toolbox provides both automated training and prediction modules and does not require expertise in image processing for operation. Conclusion Since the features used in TB-Xpredict do not require segmentation, the toolbox can easily be implemented in X-ray machines. This toolbox can effectively be used for the mass screening of TB in high-burden areas with improved efficiency. PMID:25390291
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Ashirbani, E-mail: as698@duke.edu; Grimm, La
Purpose: To assess the interobserver variability of readers when outlining breast tumors in MRI, study the reasons behind the variability, and quantify the effect of the variability on algorithmic imaging features extracted from breast MRI. Methods: Four readers annotated breast tumors from the MRI examinations of 50 patients from one institution using a bounding box to indicate a tumor. All of the annotated tumors were biopsy proven cancers. The similarity of bounding boxes was analyzed using Dice coefficients. An automatic tumor segmentation algorithm was used to segment tumors from the readers’ annotations. The segmented tumors were then compared between readersmore » using Dice coefficients as the similarity metric. Cases showing high interobserver variability (average Dice coefficient <0.8) after segmentation were analyzed by a panel of radiologists to identify the reasons causing the low level of agreement. Furthermore, an imaging feature, quantifying tumor and breast tissue enhancement dynamics, was extracted from each segmented tumor for a patient. Pearson’s correlation coefficients were computed between the features for each pair of readers to assess the effect of the annotation on the feature values. Finally, the authors quantified the extent of variation in feature values caused by each of the individual reasons for low agreement. Results: The average agreement between readers in terms of the overlap (Dice coefficient) of the bounding box was 0.60. Automatic segmentation of tumor improved the average Dice coefficient for 92% of the cases to the average value of 0.77. The mean agreement between readers expressed by the correlation coefficient for the imaging feature was 0.96. Conclusions: There is a moderate variability between readers when identifying the rectangular outline of breast tumors on MRI. This variability is alleviated by the automatic segmentation of the tumors. Furthermore, the moderate interobserver variability in terms of the bounding box does not translate into a considerable variability in terms of assessment of enhancement dynamics. The authors propose some additional ways to further reduce the interobserver variability.« less
Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection
NASA Astrophysics Data System (ADS)
Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav
2014-03-01
Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.
Forest Roadidentification and Extractionof Through Advanced Log Matching Techniques
NASA Astrophysics Data System (ADS)
Zhang, W.; Hu, B.; Quist, L.
2017-10-01
A novel algorithm for forest road identification and extraction was developed. The algorithm utilized Laplacian of Gaussian (LoG) filter and slope calculation on high resolution multispectral imagery and LiDAR data respectively to extract both primary road and secondary road segments in the forest area. The proposed method used road shape feature to extract the road segments, which have been further processed as objects with orientation preserved. The road network was generated after post processing with tensor voting. The proposed method was tested on Hearst forest, located in central Ontario, Canada. Based on visual examination against manually digitized roads, the majority of roads from the test area have been identified and extracted from the process.
Almasi, Sepideh; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L; Xu, Xiaoyin
2017-03-01
To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.
Evaluation of a New Ensemble Learning Framework for Mass Classification in Mammograms.
Rahmani Seryasat, Omid; Haddadnia, Javad
2018-06-01
Mammography is the most common screening method for diagnosis of breast cancer. In this study, a computer-aided system for diagnosis of benignity and malignity of the masses was implemented in mammogram images. In the computer aided diagnosis system, we first reduce the noise in the mammograms using an effective noise removal technique. After the noise removal, the mass in the region of interest must be segmented and this segmentation is done using a deformable model. After the mass segmentation, a number of features are extracted from it. These features include: features of the mass shape and border, tissue properties, and the fractal dimension. After extracting a large number of features, a proper subset must be chosen from among them. In this study, we make use of a new method on the basis of a genetic algorithm for selection of a proper set of features. After determining the proper features, a classifier is trained. To classify the samples, a new architecture for combination of the classifiers is proposed. In this architecture, easy and difficult samples are identified and trained using different classifiers. Finally, the proposed mass diagnosis system was also tested on mini-Mammographic Image Analysis Society and digital database for screening mammography databases. The obtained results indicate that the proposed system can compete with the state-of-the-art methods in terms of accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
A two-view ultrasound CAD system for spina bifida detection using Zernike features
NASA Astrophysics Data System (ADS)
Konur, Umut; Gürgen, Fikret; Varol, Füsun
2011-03-01
In this work, we address a very specific CAD (Computer Aided Detection/Diagnosis) problem and try to detect one of the relatively common birth defects - spina bifida, in the prenatal period. To do this, fetal ultrasound images are used as the input imaging modality, which is the most convenient so far. Our approach is to decide using two particular types of views of the fetal neural tube. Transcerebellar head (i.e. brain) and transverse (axial) spine images are processed to extract features which are then used to classify healthy (normal), suspicious (probably defective) and non-decidable cases. Decisions raised by two independent classifiers may be individually treated, or if desired and data related to both modalities are available, those decisions can be combined to keep matters more secure. Even more security can be attained by using more than two modalities and base the final decision on all those potential classifiers. Our current system relies on feature extraction from images for cases (for particular patients). The first step is image preprocessing and segmentation to get rid of useless image pixels and represent the input in a more compact domain, which is hopefully more representative for good classification performance. Next, a particular type of feature extraction, which uses Zernike moments computed on either B/W or gray-scale image segments, is performed. The aim here is to obtain values for indicative markers that signal the presence of spina bifida. Markers differ depending on the image modality being used. Either shape or texture information captured by moments may propose useful features. Finally, SVM is used to train classifiers to be used as decision makers. Our experimental results show that a promising CAD system can be actualized for the specific purpose. On the other hand, the performance of such a system would highly depend on the qualities of image preprocessing, segmentation, feature extraction and comprehensiveness of image data.
Local multifractal detrended fluctuation analysis for non-stationary image's texture segmentation
NASA Astrophysics Data System (ADS)
Wang, Fang; Li, Zong-shou; Li, Jin-wei
2014-12-01
Feature extraction plays a great important role in image processing and pattern recognition. As a power tool, multifractal theory is recently employed for this job. However, traditional multifractal methods are proposed to analyze the objects with stationary measure and cannot for non-stationary measure. The works of this paper is twofold. First, the definition of stationary image and 2D image feature detection methods are proposed. Second, a novel feature extraction scheme for non-stationary image is proposed by local multifractal detrended fluctuation analysis (Local MF-DFA), which is based on 2D MF-DFA. A set of new multifractal descriptors, called local generalized Hurst exponent (Lhq) is defined to characterize the local scaling properties of textures. To test the proposed method, both the novel texture descriptor and other two multifractal indicators, namely, local Hölder coefficients based on capacity measure and multifractal dimension Dq based on multifractal differential box-counting (MDBC) method, are compared in segmentation experiments. The first experiment indicates that the segmentation results obtained by the proposed Lhq are better than the MDBC-based Dq slightly and superior to the local Hölder coefficients significantly. The results in the second experiment demonstrate that the Lhq can distinguish the texture images more effectively and provide more robust segmentations than the MDBC-based Dq significantly.
Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
Maji, Pradipta; Roy, Shaswati
2015-01-01
Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices. PMID:25848961
NASA Astrophysics Data System (ADS)
Fauziah; Wibowo, E. P.; Madenda, S.; Hustinawati
2018-03-01
Capturing and recording motion in human is mostly done with the aim for sports, health, animation films, criminality, and robotic applications. In this study combined background subtraction and back propagation neural network. This purpose to produce, find similarity movement. The acquisition process using 8 MP resolution camera MP4 format, duration 48 seconds, 30frame/rate. video extracted produced 1444 pieces and results hand motion identification process. Phase of image processing performed is segmentation process, feature extraction, identification. Segmentation using bakground subtraction, extracted feature basically used to distinguish between one object to another object. Feature extraction performed by using motion based morfology analysis based on 7 invariant moment producing four different classes motion: no object, hand down, hand-to-side and hands-up. Identification process used to recognize of hand movement using seven inputs. Testing and training with a variety of parameters tested, it appears that architecture provides the highest accuracy in one hundred hidden neural network. The architecture is used propagate the input value of the system implementation process into the user interface. The result of the identification of the type of the human movement has been clone to produce the highest acuracy of 98.5447%. The training process is done to get the best results.
NASA Astrophysics Data System (ADS)
Varga, T.; McKinney, A. L.; Bingham, E.; Handakumbura, P. P.; Jansson, C.
2017-12-01
Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as in processes with important implications to farming and thus human food supply. X-ray computed tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. Selected Brachypodium distachyon phenotypes were grown in both natural and artificial soil mixes. The specimens were imaged by XCT, and the root architectures were extracted from the data using three different software-based methods; RooTrak, ImageJ-based WEKA segmentation, and the segmentation feature in VG Studio MAX. The 3D root image was successfully segmented at 30 µm resolution by all three methods. In this presentation, ease of segmentation and the accuracy of the extracted quantitative information (root volume and surface area) will be compared between soil types and segmentation methods. The best route to easy and accurate segmentation and root analysis will be highlighted.
Lee, Myungeun; Woo, Boyeong; Kuo, Michael D.; Jamshidi, Neema
2017-01-01
Objective The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. Materials and Methods MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic. Results Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC < 0.5). Most first order statistics and morphometric features showed moderate-to-high NDR (4 > NDR ≥1), while above 35% of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they were highly redundant. Conclusion The use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics. PMID:28458602
Lee, Myungeun; Woo, Boyeong; Kuo, Michael D; Jamshidi, Neema; Kim, Jong Hyo
2017-01-01
The purpose of this study was to evaluate the reliability and quality of radiomic features in glioblastoma multiforme (GBM) derived from tumor volumes obtained with semi-automated tumor segmentation software. MR images of 45 GBM patients (29 males, 16 females) were downloaded from The Cancer Imaging Archive, in which post-contrast T1-weighted imaging and fluid-attenuated inversion recovery MR sequences were used. Two raters independently segmented the tumors using two semi-automated segmentation tools (TumorPrism3D and 3D Slicer). Regions of interest corresponding to contrast-enhancing lesion, necrotic portions, and non-enhancing T2 high signal intensity component were segmented for each tumor. A total of 180 imaging features were extracted, and their quality was evaluated in terms of stability, normalized dynamic range (NDR), and redundancy, using intra-class correlation coefficients, cluster consensus, and Rand Statistic. Our study results showed that most of the radiomic features in GBM were highly stable. Over 90% of 180 features showed good stability (intra-class correlation coefficient [ICC] ≥ 0.8), whereas only 7 features were of poor stability (ICC < 0.5). Most first order statistics and morphometric features showed moderate-to-high NDR (4 > NDR ≥1), while above 35% of the texture features showed poor NDR (< 1). Features were shown to cluster into only 5 groups, indicating that they were highly redundant. The use of semi-automated software tools provided sufficiently reliable tumor segmentation and feature stability; thus helping to overcome the inherent inter-rater and intra-rater variability of user intervention. However, certain aspects of feature quality, including NDR and redundancy, need to be assessed for determination of representative signature features before further development of radiomics.
Content-based cell pathology image retrieval by combining different features
NASA Astrophysics Data System (ADS)
Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong
2004-04-01
Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.
Dictionary learning-based CT detection of pulmonary nodules
NASA Astrophysics Data System (ADS)
Wu, Panpan; Xia, Kewen; Zhang, Yanbo; Qian, Xiaohua; Wang, Ge; Yu, Hengyong
2016-10-01
Segmentation of lung features is one of the most important steps for computer-aided detection (CAD) of pulmonary nodules with computed tomography (CT). However, irregular shapes, complicated anatomical background and poor pulmonary nodule contrast make CAD a very challenging problem. Here, we propose a novel scheme for feature extraction and classification of pulmonary nodules through dictionary learning from training CT images, which does not require accurately segmented pulmonary nodules. Specifically, two classification-oriented dictionaries and one background dictionary are learnt to solve a two-category problem. In terms of the classification-oriented dictionaries, we calculate sparse coefficient matrices to extract intrinsic features for pulmonary nodule classification. The support vector machine (SVM) classifier is then designed to optimize the performance. Our proposed methodology is evaluated with the lung image database consortium and image database resource initiative (LIDC-IDRI) database, and the results demonstrate that the proposed strategy is promising.
MPEG content summarization based on compressed domain feature analysis
NASA Astrophysics Data System (ADS)
Sugano, Masaru; Nakajima, Yasuyuki; Yanagihara, Hiromasa
2003-11-01
This paper addresses automatic summarization of MPEG audiovisual content on compressed domain. By analyzing semantically important low-level and mid-level audiovisual features, our method universally summarizes the MPEG-1/-2 contents in the form of digest or highlight. The former is a shortened version of an original, while the latter is an aggregation of important or interesting events. In our proposal, first, the incoming MPEG stream is segmented into shots and the above features are derived from each shot. Then the features are adaptively evaluated in an integrated manner, and finally the qualified shots are aggregated into a summary. Since all the processes are performed completely on compressed domain, summarization is achieved at very low computational cost. The experimental results show that news highlights and sports highlights in TV baseball games can be successfully extracted according to simple shot transition models. As for digest extraction, subjective evaluation proves that meaningful shots are extracted from content without a priori knowledge, even if it contains multiple genres of programs. Our method also has the advantage of generating an MPEG-7 based description such as summary and audiovisual segments in the course of summarization.
Digital auscultation analysis for heart murmur detection.
Delgado-Trejos, Edilson; Quiceno-Manrique, A F; Godino-Llorente, J I; Blanco-Velasco, M; Castellanos-Dominguez, G
2009-02-01
This work presents a comparison of different approaches for the detection of murmurs from phonocardiographic signals. Taking into account the variability of the phonocardiographic signals induced by valve disorders, three families of features were analyzed: (a) time-varying & time-frequency features; (b) perceptual; and (c) fractal features. With the aim of improving the performance of the system, the accuracy of the system was tested using several combinations of the aforementioned families of parameters. In the second stage, the main components extracted from each family were combined together with the goal of improving the accuracy of the system. The contribution of each family of features extracted was evaluated by means of a simple k-nearest neighbors classifier, showing that fractal features provide the best accuracy (97.17%), followed by time-varying & time-frequency (95.28%), and perceptual features (88.7%). However, an accuracy around 94% can be reached just by using the two main features of the fractal family; therefore, considering the difficulties related to the automatic intrabeat segmentation needed for spectral and perceptual features, this scheme becomes an interesting alternative. The conclusion is that fractal type features were the most robust family of parameters (in the sense of accuracy vs. computational load) for the automatic detection of murmurs. This work was carried out using a database that contains 164 phonocardiographic recordings (81 normal and 83 records with murmurs). The database was segmented to extract 360 representative individual beats (180 per class).
Facets : a Cloudcompare Plugin to Extract Geological Planes from Unstructured 3d Point Clouds
NASA Astrophysics Data System (ADS)
Dewez, T. J. B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J.
2016-06-01
Geological planar facets (stratification, fault, joint…) are key features to unravel the tectonic history of rock outcrop or appreciate the stability of a hazardous rock cliff. Measuring their spatial attitude (dip and strike) is generally performed by hand with a compass/clinometer, which is time consuming, requires some degree of censoring (i.e. refusing to measure some features judged unimportant at the time), is not always possible for fractures higher up on the outcrop and is somewhat hazardous. 3D virtual geological outcrop hold the potential to alleviate these issues. Efficiently segmenting massive 3D point clouds into individual planar facets, inside a convenient software environment was lacking. FACETS is a dedicated plugin within CloudCompare v2.6.2 (http://cloudcompare.org/ ) implemented to perform planar facet extraction, calculate their dip and dip direction (i.e. azimuth of steepest decent) and report the extracted data in interactive stereograms. Two algorithms perform the segmentation: Kd-Tree and Fast Marching. Both divide the point cloud into sub-cells, then compute elementary planar objects and aggregate them progressively according to a planeity threshold into polygons. The boundaries of the polygons are adjusted around segmented points with a tension parameter, and the facet polygons can be exported as 3D polygon shapefiles towards third party GIS software or simply as ASCII comma separated files. One of the great features of FACETS is the capability to explore planar objects but also 3D points with normals with the stereogram tool. Poles can be readily displayed, queried and manually segmented interactively. The plugin blends seamlessly into CloudCompare to leverage all its other 3D point cloud manipulation features. A demonstration of the tool is presented to illustrate these different features. While designed for geological applications, FACETS could be more widely applied to any planar objects.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
Automated renal histopathology: digital extraction and quantification of renal pathology
NASA Astrophysics Data System (ADS)
Sarder, Pinaki; Ginley, Brandon; Tomaszewski, John E.
2016-03-01
The branch of pathology concerned with excess blood serum proteins being excreted in the urine pays particular attention to the glomerulus, a small intertwined bunch of capillaries located at the beginning of the nephron. Normal glomeruli allow moderate amount of blood proteins to be filtered; proteinuric glomeruli allow large amount of blood proteins to be filtered. Diagnosis of proteinuric diseases requires time intensive manual examination of the structural compartments of the glomerulus from renal biopsies. Pathological examination includes cellularity of individual compartments, Bowman's and luminal space segmentation, cellular morphology, glomerular volume, capillary morphology, and more. Long examination times may lead to increased diagnosis time and/or lead to reduced precision of the diagnostic process. Automatic quantification holds strong potential to reduce renal diagnostic time. We have developed a computational pipeline capable of automatically segmenting relevant features from renal biopsies. Our method first segments glomerular compartments from renal biopsies by isolating regions with high nuclear density. Gabor texture segmentation is used to accurately define glomerular boundaries. Bowman's and luminal spaces are segmented using morphological operators. Nuclei structures are segmented using color deconvolution, morphological processing, and bottleneck detection. Average computation time of feature extraction for a typical biopsy, comprising of ~12 glomeruli, is ˜69 s using an Intel(R) Core(TM) i7-4790 CPU, and is ~65X faster than manual processing. Using images from rat renal tissue samples, automatic glomerular structural feature estimation was reproducibly demonstrated for 15 biopsy images, which contained 148 individual glomeruli images. The proposed method holds immense potential to enhance information available while making clinical diagnoses.
Yuan, Xin; Martínez, José-Fernán; Eckert, Martina; López-Santidrián, Lourdes
2016-01-01
The main focus of this paper is on extracting features with SOund Navigation And Ranging (SONAR) sensing for further underwater landmark-based Simultaneous Localization and Mapping (SLAM). According to the characteristics of sonar images, in this paper, an improved Otsu threshold segmentation method (TSM) has been developed for feature detection. In combination with a contour detection algorithm, the foreground objects, although presenting different feature shapes, are separated much faster and more precisely than by other segmentation methods. Tests have been made with side-scan sonar (SSS) and forward-looking sonar (FLS) images in comparison with other four TSMs, namely the traditional Otsu method, the local TSM, the iterative TSM and the maximum entropy TSM. For all the sonar images presented in this work, the computational time of the improved Otsu TSM is much lower than that of the maximum entropy TSM, which achieves the highest segmentation precision among the four above mentioned TSMs. As a result of the segmentations, the centroids of the main extracted regions have been computed to represent point landmarks which can be used for navigation, e.g., with the help of an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-SLAM approach is a recursive and iterative estimation-update process, which besides a prediction and an update stage (as in classical Extended Kalman Filter (EKF)), includes an augmentation stage. During navigation, the robot localizes the centroids of different segments of features in sonar images, which are detected by our improved Otsu TSM, as point landmarks. Using them with the AEKF achieves more accurate and robust estimations of the robot pose and the landmark positions, than with those detected by the maximum entropy TSM. Together with the landmarks identified by the proposed segmentation algorithm, the AEKF-SLAM has achieved reliable detection of cycles in the map and consistent map update on loop closure, which is shown in simulated experiments. PMID:27455279
Yuan, Xin; Martínez, José-Fernán; Eckert, Martina; López-Santidrián, Lourdes
2016-07-22
The main focus of this paper is on extracting features with SOund Navigation And Ranging (SONAR) sensing for further underwater landmark-based Simultaneous Localization and Mapping (SLAM). According to the characteristics of sonar images, in this paper, an improved Otsu threshold segmentation method (TSM) has been developed for feature detection. In combination with a contour detection algorithm, the foreground objects, although presenting different feature shapes, are separated much faster and more precisely than by other segmentation methods. Tests have been made with side-scan sonar (SSS) and forward-looking sonar (FLS) images in comparison with other four TSMs, namely the traditional Otsu method, the local TSM, the iterative TSM and the maximum entropy TSM. For all the sonar images presented in this work, the computational time of the improved Otsu TSM is much lower than that of the maximum entropy TSM, which achieves the highest segmentation precision among the four above mentioned TSMs. As a result of the segmentations, the centroids of the main extracted regions have been computed to represent point landmarks which can be used for navigation, e.g., with the help of an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-SLAM approach is a recursive and iterative estimation-update process, which besides a prediction and an update stage (as in classical Extended Kalman Filter (EKF)), includes an augmentation stage. During navigation, the robot localizes the centroids of different segments of features in sonar images, which are detected by our improved Otsu TSM, as point landmarks. Using them with the AEKF achieves more accurate and robust estimations of the robot pose and the landmark positions, than with those detected by the maximum entropy TSM. Together with the landmarks identified by the proposed segmentation algorithm, the AEKF-SLAM has achieved reliable detection of cycles in the map and consistent map update on loop closure, which is shown in simulated experiments.
The Extraction of Post-Earthquake Building Damage Informatiom Based on Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Chen, M.; Wang, X.; Dou, A.; Wu, X.
2018-04-01
The seismic damage information of buildings extracted from remote sensing (RS) imagery is meaningful for supporting relief and effective reduction of losses caused by earthquake. Both traditional pixel-based and object-oriented methods have some shortcoming in extracting information of object. Pixel-based method can't make fully use of contextual information of objects. Object-oriented method faces problem that segmentation of image is not ideal, and the choice of feature space is difficult. In this paper, a new stratage is proposed which combines Convolution Neural Network (CNN) with imagery segmentation to extract building damage information from remote sensing imagery. the key idea of this method includes two steps. First to use CNN to predicate the probability of each pixel and then integrate the probability within each segmentation spot. The method is tested through extracting the collapsed building and uncollapsed building from the aerial image which is acquired in Longtoushan Town after Ms 6.5 Ludian County, Yunnan Province earthquake. The results show that the proposed method indicates its effectiveness in extracting damage information of buildings after earthquake.
Shape based segmentation of MRIs of the bones in the knee using phase and intensity information
NASA Astrophysics Data System (ADS)
Fripp, Jurgen; Bourgeat, Pierrick; Crozier, Stuart; Ourselin, Sébastien
2007-03-01
The segmentation of the bones from MR images is useful for performing subsequent segmentation and quantitative measurements of cartilage tissue. In this paper, we present a shape based segmentation scheme for the bones that uses texture features derived from the phase and intensity information in the complex MR image. The phase can provide additional information about the tissue interfaces, but due to the phase unwrapping problem, this information is usually discarded. By using a Gabor filter bank on the complex MR image, texture features (including phase) can be extracted without requiring phase unwrapping. These texture features are then analyzed using a support vector machine classifier to obtain probability tissue matches. The segmentation of the bone is fully automatic and performed using a 3D active shape model based approach driven using gradient and texture information. The 3D active shape model is automatically initialized using a robust affine registration. The approach is validated using a database of 18 FLASH MR images that are manually segmented, with an average segmentation overlap (Dice similarity coefficient) of 0.92 compared to 0.9 obtained using the classifier only.
Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review.
Sudarshan, Vidya K; Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chandran, Vinod; Molinari, Filippo; Fujita, Hamido; Ng, Kwan Hoong
2016-02-01
Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images. Copyright © 2015 Elsevier Ltd. All rights reserved.
Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring.
Kallenberg, Michiel; Petersen, Kersten; Nielsen, Mads; Ng, Andrew Y; Pengfei Diao; Igel, Christian; Vachon, Celine M; Holland, Katharina; Winkel, Rikke Rass; Karssemeijer, Nico; Lillholm, Martin
2016-05-01
Mammographic risk scoring has commonly been automated by extracting a set of handcrafted features from mammograms, and relating the responses directly or indirectly to breast cancer risk. We present a method that learns a feature hierarchy from unlabeled data. When the learned features are used as the input to a simple classifier, two different tasks can be addressed: i) breast density segmentation, and ii) scoring of mammographic texture. The proposed model learns features at multiple scales. To control the models capacity a novel sparsity regularizer is introduced that incorporates both lifetime and population sparsity. We evaluated our method on three different clinical datasets. Our state-of-the-art results show that the learned breast density scores have a very strong positive relationship with manual ones, and that the learned texture scores are predictive of breast cancer. The model is easy to apply and generalizes to many other segmentation and scoring problems.
Integrated circuit layer image segmentation
NASA Astrophysics Data System (ADS)
Masalskis, Giedrius; Petrauskas, Romas
2010-09-01
In this paper we present IC layer image segmentation techniques which are specifically created for precise metal layer feature extraction. During our research we used many samples of real-life de-processed IC metal layer images which were obtained using optical light microscope. We have created sequence of various image processing filters which provides segmentation results of good enough precision for our application. Filter sequences were fine tuned to provide best possible results depending on properties of IC manufacturing process and imaging technology. Proposed IC image segmentation filter sequences were experimentally tested and compared with conventional direct segmentation algorithms.
Extraction of linear features on SAR imagery
NASA Astrophysics Data System (ADS)
Liu, Junyi; Li, Deren; Mei, Xin
2006-10-01
Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.
A multiscale Markov random field model in wavelet domain for image segmentation
NASA Astrophysics Data System (ADS)
Dai, Peng; Cheng, Yu; Wang, Shengchun; Du, Xinyu; Wu, Dan
2017-07-01
The human vision system has abilities for feature detection, learning and selective attention with some properties of hierarchy and bidirectional connection in the form of neural population. In this paper, a multiscale Markov random field model in the wavelet domain is proposed by mimicking some image processing functions of vision system. For an input scene, our model provides its sparse representations using wavelet transforms and extracts its topological organization using MRF. In addition, the hierarchy property of vision system is simulated using a pyramid framework in our model. There are two information flows in our model, i.e., a bottom-up procedure to extract input features and a top-down procedure to provide feedback controls. The two procedures are controlled simply by two pyramidal parameters, and some Gestalt laws are also integrated implicitly. Equipped with such biological inspired properties, our model can be used to accomplish different image segmentation tasks, such as edge detection and region segmentation.
Semantic and topological classification of images in magnetically guided capsule endoscopy
NASA Astrophysics Data System (ADS)
Mewes, P. W.; Rennert, P.; Juloski, A. L.; Lalande, A.; Angelopoulou, E.; Kuth, R.; Hornegger, J.
2012-03-01
Magnetically-guided capsule endoscopy (MGCE) is a nascent technology with the goal to allow the steering of a capsule endoscope inside a water filled stomach through an external magnetic field. We developed a classification cascade for MGCE images with groups images in semantic and topological categories. Results can be used in a post-procedure review or as a starting point for algorithms classifying pathologies. The first semantic classification step discards over-/under-exposed images as well as images with a large amount of debris. The second topological classification step groups images with respect to their position in the upper gastrointestinal tract (mouth, esophagus, stomach, duodenum). In the third stage two parallel classifications steps distinguish topologically different regions inside the stomach (cardia, fundus, pylorus, antrum, peristaltic view). For image classification, global image features and local texture features were applied and their performance was evaluated. We show that the third classification step can be improved by a bubble and debris segmentation because it limits feature extraction to discriminative areas only. We also investigated the impact of segmenting intestinal folds on the identification of different semantic camera positions. The results of classifications with a support-vector-machine show the significance of color histogram features for the classification of corrupted images (97%). Features extracted from intestinal fold segmentation lead only to a minor improvement (3%) in discriminating different camera positions.
Pereira, Sérgio; Meier, Raphael; McKinley, Richard; Wiest, Roland; Alves, Victor; Silva, Carlos A; Reyes, Mauricio
2018-02-01
Machine learning systems are achieving better performances at the cost of becoming increasingly complex. However, because of that, they become less interpretable, which may cause some distrust by the end-user of the system. This is especially important as these systems are pervasively being introduced to critical domains, such as the medical field. Representation Learning techniques are general methods for automatic feature computation. Nevertheless, these techniques are regarded as uninterpretable "black boxes". In this paper, we propose a methodology to enhance the interpretability of automatically extracted machine learning features. The proposed system is composed of a Restricted Boltzmann Machine for unsupervised feature learning, and a Random Forest classifier, which are combined to jointly consider existing correlations between imaging data, features, and target variables. We define two levels of interpretation: global and local. The former is devoted to understanding if the system learned the relevant relations in the data correctly, while the later is focused on predictions performed on a voxel- and patient-level. In addition, we propose a novel feature importance strategy that considers both imaging data and target variables, and we demonstrate the ability of the approach to leverage the interpretability of the obtained representation for the task at hand. We evaluated the proposed methodology in brain tumor segmentation and penumbra estimation in ischemic stroke lesions. We show the ability of the proposed methodology to unveil information regarding relationships between imaging modalities and extracted features and their usefulness for the task at hand. In both clinical scenarios, we demonstrate that the proposed methodology enhances the interpretability of automatically learned features, highlighting specific learning patterns that resemble how an expert extracts relevant data from medical images. Copyright © 2017 Elsevier B.V. All rights reserved.
Image processing based detection of lung cancer on CT scan images
NASA Astrophysics Data System (ADS)
Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi
2017-10-01
In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.
Wang, Lei; Zhang, Huimao; He, Kan; Chang, Yan; Yang, Xiaodong
2015-01-01
Active contour models are of great importance for image segmentation and can extract smooth and closed boundary contours of the desired objects with promising results. However, they cannot work well in the presence of intensity inhomogeneity. Hence, a novel region-based active contour model is proposed by taking image intensities and 'vesselness values' from local phase-based vesselness enhancement into account simultaneously to define a novel multi-feature Gaussian distribution fitting energy in this paper. This energy is then incorporated into a level set formulation with a regularization term for accurate segmentations. Experimental results based on publicly available STructured Analysis of the Retina (STARE) demonstrate our model is more accurate than some existing typical methods and can successfully segment most small vessels with varying width.
Xu, Jun; Luo, Xiaofei; Wang, Guanhao; Gilmore, Hannah; Madabhushi, Anant
2016-01-01
Epithelial (EP) and stromal (ST) are two types of tissues in histological images. Automated segmentation or classification of EP and ST tissues is important when developing computerized system for analyzing the tumor microenvironment. In this paper, a Deep Convolutional Neural Networks (DCNN) based feature learning is presented to automatically segment or classify EP and ST regions from digitized tumor tissue microarrays (TMAs). Current approaches are based on handcraft feature representation, such as color, texture, and Local Binary Patterns (LBP) in classifying two regions. Compared to handcrafted feature based approaches, which involve task dependent representation, DCNN is an end-to-end feature extractor that may be directly learned from the raw pixel intensity value of EP and ST tissues in a data driven fashion. These high-level features contribute to the construction of a supervised classifier for discriminating the two types of tissues. In this work we compare DCNN based models with three handcraft feature extraction based approaches on two different datasets which consist of 157 Hematoxylin and Eosin (H&E) stained images of breast cancer and 1376 immunohistological (IHC) stained images of colorectal cancer, respectively. The DCNN based feature learning approach was shown to have a F1 classification score of 85%, 89%, and 100%, accuracy (ACC) of 84%, 88%, and 100%, and Matthews Correlation Coefficient (MCC) of 86%, 77%, and 100% on two H&E stained (NKI and VGH) and IHC stained data, respectively. Our DNN based approach was shown to outperform three handcraft feature extraction based approaches in terms of the classification of EP and ST regions. PMID:28154470
Xu, Jun; Luo, Xiaofei; Wang, Guanhao; Gilmore, Hannah; Madabhushi, Anant
2016-05-26
Epithelial (EP) and stromal (ST) are two types of tissues in histological images. Automated segmentation or classification of EP and ST tissues is important when developing computerized system for analyzing the tumor microenvironment. In this paper, a Deep Convolutional Neural Networks (DCNN) based feature learning is presented to automatically segment or classify EP and ST regions from digitized tumor tissue microarrays (TMAs). Current approaches are based on handcraft feature representation, such as color, texture, and Local Binary Patterns (LBP) in classifying two regions. Compared to handcrafted feature based approaches, which involve task dependent representation, DCNN is an end-to-end feature extractor that may be directly learned from the raw pixel intensity value of EP and ST tissues in a data driven fashion. These high-level features contribute to the construction of a supervised classifier for discriminating the two types of tissues. In this work we compare DCNN based models with three handcraft feature extraction based approaches on two different datasets which consist of 157 Hematoxylin and Eosin (H&E) stained images of breast cancer and 1376 immunohistological (IHC) stained images of colorectal cancer, respectively. The DCNN based feature learning approach was shown to have a F1 classification score of 85%, 89%, and 100%, accuracy (ACC) of 84%, 88%, and 100%, and Matthews Correlation Coefficient (MCC) of 86%, 77%, and 100% on two H&E stained (NKI and VGH) and IHC stained data, respectively. Our DNN based approach was shown to outperform three handcraft feature extraction based approaches in terms of the classification of EP and ST regions.
A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images
Tang, Yunwei; Jing, Linhai; Ding, Haifeng
2017-01-01
The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods. PMID:29064416
Brosch, Tom; Tang, Lisa Y W; Youngjin Yoo; Li, David K B; Traboulsee, Anthony; Tam, Roger
2016-05-01
We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that consists of two interconnected pathways, a convolutional pathway, which learns increasingly more abstract and higher-level image features, and a deconvolutional pathway, which predicts the final segmentation at the voxel level. The joint training of the feature extraction and prediction pathways allows for the automatic learning of features at different scales that are optimized for accuracy for any given combination of image types and segmentation task. In addition, shortcut connections between the two pathways allow high- and low-level features to be integrated, which enables the segmentation of lesions across a wide range of sizes. We have evaluated our method on two publicly available data sets (MICCAI 2008 and ISBI 2015 challenges) with the results showing that our method performs comparably to the top-ranked state-of-the-art methods, even when only relatively small data sets are available for training. In addition, we have compared our method with five freely available and widely used MS lesion segmentation methods (EMS, LST-LPA, LST-LGA, Lesion-TOADS, and SLS) on a large data set from an MS clinical trial. The results show that our method consistently outperforms these other methods across a wide range of lesion sizes.
CP-CHARM: segmentation-free image classification made accessible.
Uhlmann, Virginie; Singh, Shantanu; Carpenter, Anne E
2016-01-27
Automated classification using machine learning often relies on features derived from segmenting individual objects, which can be difficult to automate. WND-CHARM is a previously developed classification algorithm in which features are computed on the whole image, thereby avoiding the need for segmentation. The algorithm obtained encouraging results but requires considerable computational expertise to execute. Furthermore, some benchmark sets have been shown to be subject to confounding artifacts that overestimate classification accuracy. We developed CP-CHARM, a user-friendly image-based classification algorithm inspired by WND-CHARM in (i) its ability to capture a wide variety of morphological aspects of the image, and (ii) the absence of requirement for segmentation. In order to make such an image-based classification method easily accessible to the biological research community, CP-CHARM relies on the widely-used open-source image analysis software CellProfiler for feature extraction. To validate our method, we reproduced WND-CHARM's results and ensured that CP-CHARM obtained comparable performance. We then successfully applied our approach on cell-based assay data and on tissue images. We designed these new training and test sets to reduce the effect of batch-related artifacts. The proposed method preserves the strengths of WND-CHARM - it extracts a wide variety of morphological features directly on whole images thereby avoiding the need for cell segmentation, but additionally, it makes the methods easily accessible for researchers without computational expertise by implementing them as a CellProfiler pipeline. It has been demonstrated to perform well on a wide range of bioimage classification problems, including on new datasets that have been carefully selected and annotated to minimize batch effects. This provides for the first time a realistic and reliable assessment of the whole image classification strategy.
Tissues segmentation based on multi spectral medical images
NASA Astrophysics Data System (ADS)
Li, Ya; Wang, Ying
2017-11-01
Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.
Das, Dev Kumar; Ghosh, Madhumala; Pal, Mallika; Maiti, Asok K; Chakraborty, Chandan
2013-02-01
The aim of this paper is to address the development of computer assisted malaria parasite characterization and classification using machine learning approach based on light microscopic images of peripheral blood smears. In doing this, microscopic image acquisition from stained slides, illumination correction and noise reduction, erythrocyte segmentation, feature extraction, feature selection and finally classification of different stages of malaria (Plasmodium vivax and Plasmodium falciparum) have been investigated. The erythrocytes are segmented using marker controlled watershed transformation and subsequently total ninety six features describing shape-size and texture of erythrocytes are extracted in respect to the parasitemia infected versus non-infected cells. Ninety four features are found to be statistically significant in discriminating six classes. Here a feature selection-cum-classification scheme has been devised by combining F-statistic, statistical learning techniques i.e., Bayesian learning and support vector machine (SVM) in order to provide the higher classification accuracy using best set of discriminating features. Results show that Bayesian approach provides the highest accuracy i.e., 84% for malaria classification by selecting 19 most significant features while SVM provides highest accuracy i.e., 83.5% with 9 most significant features. Finally, the performance of these two classifiers under feature selection framework has been compared toward malaria parasite classification. Copyright © 2012 Elsevier Ltd. All rights reserved.
EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity.
Diykh, Mohammed; Li, Yan; Wen, Peng
2016-11-01
The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high classification accuracy. In this paper, the statistical features in time domain, the structural graph similarity and the K-means (SGSKM) are combined to identify six sleep stages using single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted, sorted into different sets of features and forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relationships between sleep stages and the time domain features of the EEG data used in this paper. The experimental results show that the proposed method yields better classification results than other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by using the proposed method.
Eyben, Florian; Weninger, Felix; Lehment, Nicolas; Schuller, Björn; Rigoll, Gerhard
2013-01-01
Without doubt general video and sound, as found in large multimedia archives, carry emotional information. Thus, audio and video retrieval by certain emotional categories or dimensions could play a central role for tomorrow's intelligent systems, enabling search for movies with a particular mood, computer aided scene and sound design in order to elicit certain emotions in the audience, etc. Yet, the lion's share of research in affective computing is exclusively focusing on signals conveyed by humans, such as affective speech. Uniting the fields of multimedia retrieval and affective computing is believed to lend to a multiplicity of interesting retrieval applications, and at the same time to benefit affective computing research, by moving its methodology "out of the lab" to real-world, diverse data. In this contribution, we address the problem of finding "disturbing" scenes in movies, a scenario that is highly relevant for computer-aided parental guidance. We apply large-scale segmental feature extraction combined with audio-visual classification to the particular task of detecting violence. Our system performs fully data-driven analysis including automatic segmentation. We evaluate the system in terms of mean average precision (MAP) on the official data set of the MediaEval 2012 evaluation campaign's Affect Task, which consists of 18 original Hollywood movies, achieving up to .398 MAP on unseen test data in full realism. An in-depth analysis of the worth of individual features with respect to the target class and the system errors is carried out and reveals the importance of peak-related audio feature extraction and low-level histogram-based video analysis.
Eyben, Florian; Weninger, Felix; Lehment, Nicolas; Schuller, Björn; Rigoll, Gerhard
2013-01-01
Without doubt general video and sound, as found in large multimedia archives, carry emotional information. Thus, audio and video retrieval by certain emotional categories or dimensions could play a central role for tomorrow's intelligent systems, enabling search for movies with a particular mood, computer aided scene and sound design in order to elicit certain emotions in the audience, etc. Yet, the lion's share of research in affective computing is exclusively focusing on signals conveyed by humans, such as affective speech. Uniting the fields of multimedia retrieval and affective computing is believed to lend to a multiplicity of interesting retrieval applications, and at the same time to benefit affective computing research, by moving its methodology “out of the lab” to real-world, diverse data. In this contribution, we address the problem of finding “disturbing” scenes in movies, a scenario that is highly relevant for computer-aided parental guidance. We apply large-scale segmental feature extraction combined with audio-visual classification to the particular task of detecting violence. Our system performs fully data-driven analysis including automatic segmentation. We evaluate the system in terms of mean average precision (MAP) on the official data set of the MediaEval 2012 evaluation campaign's Affect Task, which consists of 18 original Hollywood movies, achieving up to .398 MAP on unseen test data in full realism. An in-depth analysis of the worth of individual features with respect to the target class and the system errors is carried out and reveals the importance of peak-related audio feature extraction and low-level histogram-based video analysis. PMID:24391704
A two-stage method for microcalcification cluster segmentation in mammography by deformable models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arikidis, N.; Kazantzi, A.; Skiadopoulos, S.
Purpose: Segmentation of microcalcification (MC) clusters in x-ray mammography is a difficult task for radiologists. Accurate segmentation is prerequisite for quantitative image analysis of MC clusters and subsequent feature extraction and classification in computer-aided diagnosis schemes. Methods: In this study, a two-stage semiautomated segmentation method of MC clusters is investigated. The first stage is targeted to accurate and time efficient segmentation of the majority of the particles of a MC cluster, by means of a level set method. The second stage is targeted to shape refinement of selected individual MCs, by means of an active contour model. Both methods aremore » applied in the framework of a rich scale-space representation, provided by the wavelet transform at integer scales. Segmentation reliability of the proposed method in terms of inter and intraobserver agreements was evaluated in a case sample of 80 MC clusters originating from the digital database for screening mammography, corresponding to 4 morphology types (punctate: 22, fine linear branching: 16, pleomorphic: 18, and amorphous: 24) of MC clusters, assessing radiologists’ segmentations quantitatively by two distance metrics (Hausdorff distance—HDIST{sub cluster}, average of minimum distance—AMINDIST{sub cluster}) and the area overlap measure (AOM{sub cluster}). The effect of the proposed segmentation method on MC cluster characterization accuracy was evaluated in a case sample of 162 pleomorphic MC clusters (72 malignant and 90 benign). Ten MC cluster features, targeted to capture morphologic properties of individual MCs in a cluster (area, major length, perimeter, compactness, and spread), were extracted and a correlation-based feature selection method yielded a feature subset to feed in a support vector machine classifier. Classification performance of the MC cluster features was estimated by means of the area under receiver operating characteristic curve (Az ± Standard Error) utilizing tenfold cross-validation methodology. A previously developed B-spline active rays segmentation method was also considered for comparison purposes. Results: Interobserver and intraobserver segmentation agreements (median and [25%, 75%] quartile range) were substantial with respect to the distance metrics HDIST{sub cluster} (2.3 [1.8, 2.9] and 2.5 [2.1, 3.2] pixels) and AMINDIST{sub cluster} (0.8 [0.6, 1.0] and 1.0 [0.8, 1.2] pixels), while moderate with respect to AOM{sub cluster} (0.64 [0.55, 0.71] and 0.59 [0.52, 0.66]). The proposed segmentation method outperformed (0.80 ± 0.04) statistically significantly (Mann-Whitney U-test, p < 0.05) the B-spline active rays segmentation method (0.69 ± 0.04), suggesting the significance of the proposed semiautomated method. Conclusions: Results indicate a reliable semiautomated segmentation method for MC clusters offered by deformable models, which could be utilized in MC cluster quantitative image analysis.« less
A New Approach to Automated Labeling of Internal Features of Hardwood Logs Using CT Images
Daniel L. Schmoldt; Pei Li; A. Lynn Abbott
1996-01-01
The feasibility of automatically identifying internal features of hardwood logs using CT imagery has been established previously. Features of primary interest are bark, knots, voids, decay, and clear wood. Our previous approach: filtered original CT images, applied histogram segmentation, grew volumes to extract 3-d regions, and applied a rule base, with Dempster-...
Glioma grading using cell nuclei morphologic features in digital pathology images
NASA Astrophysics Data System (ADS)
Reza, Syed M. S.; Iftekharuddin, Khan M.
2016-03-01
This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
Automated road network extraction from high spatial resolution multi-spectral imagery
NASA Astrophysics Data System (ADS)
Zhang, Qiaoping
For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a road network. The extracted road network is evaluated against a reference dataset using a line segment matching algorithm. The entire process is unsupervised and fully automated. Based on extensive experimentation on a variety of remotely-sensed multi-spectral images, the proposed methodology achieves a moderate success in automating road network extraction from high spatial resolution multi-spectral imagery.
Patch-based automatic retinal vessel segmentation in global and local structural context.
Cao, Shuoying; Bharath, Anil A; Parker, Kim H; Ng, Jeffrey
2012-01-01
In this paper, we extend our published work [1] and propose an automated system to segment retinal vessel bed in digital fundus images with enough adaptability to analyze images from fluorescein angiography. This approach takes into account both the global and local context and enables both vessel segmentation and microvascular centreline extraction. These tools should allow researchers and clinicians to estimate and assess vessel diameter, capillary blood volume and microvascular topology for early stage disease detection, monitoring and treatment. Global vessel bed segmentation is achieved by combining phase-invariant orientation fields with neighbourhood pixel intensities in a patch-based feature vector for supervised learning. This approach is evaluated against benchmarks on the DRIVE database [2]. Local microvascular centrelines within Regions-of-Interest (ROIs) are segmented by linking the phase-invariant orientation measures with phase-selective local structure features. Our global and local structural segmentation can be used to assess both pathological structural alterations and microemboli occurrence in non-invasive clinical settings in a longitudinal study.
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.
2009-07-01
The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.
Chitchian, Shahab; Weldon, Thomas P; Fried, Nathaniel M
2009-01-01
The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. Two-dimensional (2-D) optical coherence tomography (OCT) images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. To detect these nerves, three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The Gabor feature was applied with different standard deviations in the x and y directions. In the Daubechies wavelet feature, an 8-tap Daubechies orthonormal wavelet was implemented, and the low-pass sub-band was chosen as the filtered image. Last, Laws feature extraction was applied to the images. The features were segmented using a nearest-neighbor classifier. N-ary morphological postprocessing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058+/-0.019. This algorithm may be useful for implementation in clinical endoscopic OCT systems currently being studied for potential intraoperative diagnostic use in laparoscopic and robotic nerve-sparing prostate cancer surgery.
Basic test framework for the evaluation of text line segmentation and text parameter extraction.
Brodić, Darko; Milivojević, Dragan R; Milivojević, Zoran
2010-01-01
Text line segmentation is an essential stage in off-line optical character recognition (OCR) systems. It is a key because inaccurately segmented text lines will lead to OCR failure. Text line segmentation of handwritten documents is a complex and diverse problem, complicated by the nature of handwriting. Hence, text line segmentation is a leading challenge in handwritten document image processing. Due to inconsistencies in measurement and evaluation of text segmentation algorithm quality, some basic set of measurement methods is required. Currently, there is no commonly accepted one and all algorithm evaluation is custom oriented. In this paper, a basic test framework for the evaluation of text feature extraction algorithms is proposed. This test framework consists of a few experiments primarily linked to text line segmentation, skew rate and reference text line evaluation. Although they are mutually independent, the results obtained are strongly cross linked. In the end, its suitability for different types of letters and languages as well as its adaptability are its main advantages. Thus, the paper presents an efficient evaluation method for text analysis algorithms.
Basic Test Framework for the Evaluation of Text Line Segmentation and Text Parameter Extraction
Brodić, Darko; Milivojević, Dragan R.; Milivojević, Zoran
2010-01-01
Text line segmentation is an essential stage in off-line optical character recognition (OCR) systems. It is a key because inaccurately segmented text lines will lead to OCR failure. Text line segmentation of handwritten documents is a complex and diverse problem, complicated by the nature of handwriting. Hence, text line segmentation is a leading challenge in handwritten document image processing. Due to inconsistencies in measurement and evaluation of text segmentation algorithm quality, some basic set of measurement methods is required. Currently, there is no commonly accepted one and all algorithm evaluation is custom oriented. In this paper, a basic test framework for the evaluation of text feature extraction algorithms is proposed. This test framework consists of a few experiments primarily linked to text line segmentation, skew rate and reference text line evaluation. Although they are mutually independent, the results obtained are strongly cross linked. In the end, its suitability for different types of letters and languages as well as its adaptability are its main advantages. Thus, the paper presents an efficient evaluation method for text analysis algorithms. PMID:22399932
Vessel Enhancement and Segmentation of 4D CT Lung Image Using Stick Tensor Voting
NASA Astrophysics Data System (ADS)
Cong, Tan; Hao, Yang; Jingli, Shi; Xuan, Yang
2016-12-01
Vessel enhancement and segmentation plays a significant role in medical image analysis. This paper proposes a novel vessel enhancement and segmentation method for 4D CT lung image using stick tensor voting algorithm, which focuses on addressing the vessel distortion issue of vessel enhancement diffusion (VED) method. Furthermore, the enhanced results are easily segmented using level-set segmentation. In our method, firstly, vessels are filtered using Frangi's filter to reduce intrapulmonary noises and extract rough blood vessels. Secondly, stick tensor voting algorithm is employed to estimate the correct direction along the vessel. Then the estimated direction along the vessel is used as the anisotropic diffusion direction of vessel in VED algorithm, which makes the intensity diffusion of points locating at the vessel wall be consistent with the directions of vessels and enhance the tubular features of vessels. Finally, vessels can be extracted from the enhanced image by applying level-set segmentation method. A number of experiments results show that our method outperforms traditional VED method in vessel enhancement and results in satisfied segmented vessels.
Computer-aided detection of bladder mass within non-contrast-enhanced region of CT Urography (CTU)
NASA Astrophysics Data System (ADS)
Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon; Zhou, Chuan
2016-03-01
We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). We have previously developed methods for detection of bladder masses within the contrast-enhanced region of the bladder. In this study, we investigated methods for detection of bladder masses within the non-contrast enhanced region. The bladder was first segmented using a newly developed deep-learning convolutional neural network in combination with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensityprojection- based method. The non-contrast region was smoothed and a gray level threshold was employed to segment the bladder wall and potential masses. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify lesion candidates as a prescreening step. The lesion candidates were segmented using our autoinitialized cascaded level set (AI-CALS) segmentation method, and 27 morphological features were extracted for each candidate. Stepwise feature selection with simplex optimization and leave-one-case-out resampling were used for training and validation of a false positive (FP) classifier. In each leave-one-case-out cycle, features were selected from the training cases and a linear discriminant analysis (LDA) classifier was designed to merge the selected features into a single score for classification of the left-out test case. A data set of 33 cases with 42 biopsy-proven lesions in the noncontrast enhanced region was collected. During prescreening, the system obtained 83.3% sensitivity at an average of 2.4 FPs/case. After feature extraction and FP reduction by LDA, the system achieved 81.0% sensitivity at 2.0 FPs/case, and 73.8% sensitivity at 1.5 FPs/case.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images.
Gumaei, Abdu; Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-05-15
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang's method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used.
A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.
Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip
2014-11-01
This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Sun, Yujie; Wang, Qiao
2018-07-01
In object-based image analysis (OBIA), object classification performance is jointly determined by image segmentation, sample or rule setting, and classifiers. Typically, as a crucial step to obtain object primitives, image segmentation quality significantly influences subsequent feature extraction and analyses. By contrast, template matching extracts specific objects from images and prevents shape defects caused by image segmentation. However, creating or editing templates is tedious and sometimes results in incomplete or inaccurate templates. In this study, we combine OBIA and template matching techniques to address these problems and aim for accurate photovoltaic panel (PVP) extraction from very high-resolution (VHR) aerial imagery. The proposed method is based on the previously proposed region-line primitive association framework, in which complementary information between region (segment) and line (straight line) primitives is utilized to achieve a more powerful performance than routine OBIA. Several novel concepts, including the mutual fitting ratio and best-fitting template based on region-line primitive association analyses, are proposed. Automatic template generation and matching method for PVP extraction from VHR imagery are designed for concept and model validation. Results show that the proposed method can successfully extract PVPs without any user-specified matching template or training sample. High user independency and accuracy are the main characteristics of the proposed method in comparison with routine OBIA and template matching techniques.
Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh
2011-05-01
This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively.
Qiao, Xiaojun; Jiang, Jinbao; Qi, Xiaotong; Guo, Haiqiang; Yuan, Deshuai
2017-04-01
It's well-known fungi-contaminated peanuts contain potent carcinogen. Efficiently identifying and separating the contaminated can help prevent aflatoxin entering in food chain. In this study, shortwave infrared (SWIR) hyperspectral images for identifying the prepared contaminated kernels. Feature selection method of analysis of variance (ANOVA) and feature extraction method of nonparametric weighted feature extraction (NWFE) were used to concentrate spectral information into a subspace where contaminated and healthy peanuts can have favorable separability. Then, peanut pixels were classified using SVM. Moreover, image segmentation method of region growing was applied to segment the image as kernel-scale patches and meanwhile to number the kernels. The result shows that pixel-wise classification accuracies are 99.13% for breed A, 96.72% for B and 99.73% for C in learning images, and are 96.32%, 94.2% and 97.51% in validation images. Contaminated peanuts were correctly marked as aberrant kernels in both learning images and validation images. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun
2018-05-01
Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.
Textural features for radar image analysis
NASA Technical Reports Server (NTRS)
Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.
1981-01-01
Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen; Liu, Yuan; Liang, Fuxun; Wang, Yongjun
2017-04-01
In recent years, updating the inventory of road infrastructures based on field work is labor intensive, time consuming, and costly. Fortunately, vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. However, robust recognition of road facilities from huge volumes of 3D point clouds is still a challenging issue because of complicated and incomplete structures, occlusions and varied point densities. Most existing methods utilize point or object based features to recognize object candidates, and can only extract limited types of objects with a relatively low recognition rate, especially for incomplete and small objects. To overcome these drawbacks, this paper proposes a semantic labeling framework by combing multiple aggregation levels (point-segment-object) of features and contextual features to recognize road facilities, such as road surfaces, road boundaries, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, and cars, for highway infrastructure inventory. The proposed method first identifies ground and non-ground points, and extracts road surfaces facilities from ground points. Non-ground points are segmented into individual candidate objects based on the proposed multi-rule region growing method. Then, the multiple aggregation levels of features and the contextual features (relative positions, relative directions, and spatial patterns) associated with each candidate object are calculated and fed into a SVM classifier to label the corresponding candidate object. The recognition performance of combining multiple aggregation levels and contextual features was compared with single level (point, segment, or object) based features using large-scale highway scene point clouds. Comparative studies demonstrated that the proposed semantic labeling framework significantly improves road facilities recognition precision (90.6%) and recall (91.2%), particularly for incomplete and small objects.
Regional shape-based feature space for segmenting biomedical images using neural networks
NASA Astrophysics Data System (ADS)
Sundaramoorthy, Gopal; Hoford, John D.; Hoffman, Eric A.
1993-07-01
In biomedical images, structure of interest, particularly the soft tissue structures, such as the heart, airways, bronchial and arterial trees often have grey-scale and textural characteristics similar to other structures in the image, making it difficult to segment them using only gray- scale and texture information. However, these objects can be visually recognized by their unique shapes and sizes. In this paper we discuss, what we believe to be, a novel, simple scheme for extracting features based on regional shapes. To test the effectiveness of these features for image segmentation (classification), we use an artificial neural network and a statistical cluster analysis technique. The proposed shape-based feature extraction algorithm computes regional shape vectors (RSVs) for all pixels that meet a certain threshold criteria. The distance from each such pixel to a boundary is computed in 8 directions (or in 26 directions for a 3-D image). Together, these 8 (or 26) values represent the pixel's (or voxel's) RSV. All RSVs from an image are used to train a multi-layered perceptron neural network which uses these features to 'learn' a suitable classification strategy. To clearly distinguish the desired object from other objects within an image, several examples from inside and outside the desired object are used for training. Several examples are presented to illustrate the strengths and weaknesses of our algorithm. Both synthetic and actual biomedical images are considered. Future extensions to this algorithm are also discussed.
Iterative cross section sequence graph for handwritten character segmentation.
Dawoud, Amer
2007-08-01
The iterative cross section sequence graph (ICSSG) is an algorithm for handwritten character segmentation. It expands the cross section sequence graph concept by applying it iteratively at equally spaced thresholds. The iterative thresholding reduces the effect of information loss associated with image binarization. ICSSG preserves the characters' skeletal structure by preventing the interference of pixels that causes flooding of adjacent characters' segments. Improving the structural quality of the characters' skeleton facilitates better feature extraction and classification, which improves the overall performance of optical character recognition (OCR). Experimental results showed significant improvements in OCR recognition rates compared to other well-established segmentation algorithms.
Graph run-length matrices for histopathological image segmentation.
Tosun, Akif Burak; Gunduz-Demir, Cigdem
2011-03-01
The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.
Toward a model for lexical access based on acoustic landmarks and distinctive features
NASA Astrophysics Data System (ADS)
Stevens, Kenneth N.
2002-04-01
This article describes a model in which the acoustic speech signal is processed to yield a discrete representation of the speech stream in terms of a sequence of segments, each of which is described by a set (or bundle) of binary distinctive features. These distinctive features specify the phonemic contrasts that are used in the language, such that a change in the value of a feature can potentially generate a new word. This model is a part of a more general model that derives a word sequence from this feature representation, the words being represented in a lexicon by sequences of feature bundles. The processing of the signal proceeds in three steps: (1) Detection of peaks, valleys, and discontinuities in particular frequency ranges of the signal leads to identification of acoustic landmarks. The type of landmark provides evidence for a subset of distinctive features called articulator-free features (e.g., [vowel], [consonant], [continuant]). (2) Acoustic parameters are derived from the signal near the landmarks to provide evidence for the actions of particular articulators, and acoustic cues are extracted by sampling selected attributes of these parameters in these regions. The selection of cues that are extracted depends on the type of landmark and on the environment in which it occurs. (3) The cues obtained in step (2) are combined, taking context into account, to provide estimates of ``articulator-bound'' features associated with each landmark (e.g., [lips], [high], [nasal]). These articulator-bound features, combined with the articulator-free features in (1), constitute the sequence of feature bundles that forms the output of the model. Examples of cues that are used, and justification for this selection, are given, as well as examples of the process of inferring the underlying features for a segment when there is variability in the signal due to enhancement gestures (recruited by a speaker to make a contrast more salient) or due to overlap of gestures from neighboring segments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, S; Jeraj, R; Galavis, P
Purpose: Sensitivity of PET-derived texture features to reconstruction methods has been reported for features extracted from axial planes; however, studies often utilize three dimensional techniques. This work aims to quantify the impact of multi-plane (3D) vs. single-plane (2D) feature extraction on radiomics-based analysis, including sensitivity to reconstruction parameters and potential loss of spatial information. Methods: Twenty-three patients with solid tumors underwent [{sup 18}F]FDG PET/CT scans under identical protocols. PET data were reconstructed using five sets of reconstruction parameters. Tumors were segmented using an automatic, in-house algorithm robust to reconstruction variations. 50 texture features were extracted using two Methods: 2D patchesmore » along axial planes and 3D patches. For each method, sensitivity of features to reconstruction parameters was calculated as percent difference relative to the average value across reconstructions. Correlations between feature values were compared when using 2D and 3D extraction. Results: 21/50 features showed significantly different sensitivity to reconstruction parameters when extracted in 2D vs 3D (wilcoxon α<0.05), assessed by overall range of variation, Rangevar(%). Eleven showed greater sensitivity to reconstruction in 2D extraction, primarily first-order and co-occurrence features (average Rangevar increase 83%). The remaining ten showed higher variation in 3D extraction (average Range{sub var}increase 27%), mainly co-occurence and greylevel run-length features. Correlation of feature value extracted in 2D and feature value extracted in 3D was poor (R<0.5) in 12/50 features, including eight co-occurrence features. Feature-to-feature correlations in 2D were marginally higher than 3D, ∣R∣>0.8 in 16% and 13% of all feature combinations, respectively. Larger sensitivity to reconstruction parameters were seen for inter-feature correlation in 2D(σ=6%) than 3D (σ<1%) extraction. Conclusion: Sensitivity and correlation of various texture features were shown to significantly differ between 2D and 3D extraction. Additionally, inter-feature correlations were more sensitive to reconstruction variation using single-plane extraction. This work highlights a need for standardized feature extraction/selection techniques in radiomics.« less
Unsupervised texture image segmentation by improved neural network ART2
NASA Technical Reports Server (NTRS)
Wang, Zhiling; Labini, G. Sylos; Mugnuolo, R.; Desario, Marco
1994-01-01
We here propose a segmentation algorithm of texture image for a computer vision system on a space robot. An improved adaptive resonance theory (ART2) for analog input patterns is adapted to classify the image based on a set of texture image features extracted by a fast spatial gray level dependence method (SGLDM). The nonlinear thresholding functions in input layer of the neural network have been constructed by two parts: firstly, to reduce the effects of image noises on the features, a set of sigmoid functions is chosen depending on the types of the feature; secondly, to enhance the contrast of the features, we adopt fuzzy mapping functions. The cluster number in output layer can be increased by an autogrowing mechanism constantly when a new pattern happens. Experimental results and original or segmented pictures are shown, including the comparison between this approach and K-means algorithm. The system written in C language is performed on a SUN-4/330 sparc-station with an image board IT-150 and a CCD camera.
NASA Astrophysics Data System (ADS)
Koma, Zsófia; Székely, Balázs; Folly-Ritvay, Zoltán; Skobrák, Ferenc; Koenig, Kristina; Höfle, Bernhard
2016-04-01
Mobile Laser Scanning (MLS) is an evolving operational measurement technique for urban environment providing large amounts of high resolution information about trees, street features, pole-like objects on the street sides or near to motorways. In this study we investigate a robust segmentation method to extract the individual trees automatically in order to build an object-based tree database system. We focused on the large urban parks in Budapest (Margitsziget and Városliget; KARESZ project) which contained large diversity of different kind of tree species. The MLS data contained high density point cloud data with 1-8 cm mean absolute accuracy 80-100 meter distance from streets. The robust segmentation method contained following steps: The ground points are determined first. As a second step cylinders are fitted in vertical slice 1-1.5 meter relative height above ground, which is used to determine the potential location of each single trees trunk and cylinder-like object. Finally, residual values are calculated as deviation of each point from a vertically expanded fitted cylinder; these residual values are used to separate cylinder-like object from individual trees. After successful parameterization, the model parameters and the corresponding residual values of the fitted object are extracted and imported into the tree database. Additionally, geometric features are calculated for each segmented individual tree like crown base, crown width, crown length, diameter of trunk, volume of the individual trees. In case of incompletely scanned trees, the extraction of geometric features is based on fitted circles. The result of the study is a tree database containing detailed information about urban trees, which can be a valuable dataset for ecologist, city planners, planting and mapping purposes. Furthermore, the established database will be the initial point for classification trees into single species. MLS data used in this project had been measured in the framework of KARESZ project for whole Budapest. BSz contributed as an Alexander von Humboldt Research Fellow.
Classification of speech dysfluencies using LPC based parameterization techniques.
Hariharan, M; Chee, Lim Sin; Ai, Ooi Chia; Yaacob, Sazali
2012-06-01
The goal of this paper is to discuss and compare three feature extraction methods: Linear Predictive Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC) and Weighted Linear Prediction Cepstral Coefficients (WLPCC) for recognizing the stuttered events. Speech samples from the University College London Archive of Stuttered Speech (UCLASS) were used for our analysis. The stuttered events were identified through manual segmentation and were used for feature extraction. Two simple classifiers namely, k-nearest neighbour (kNN) and Linear Discriminant Analysis (LDA) were employed for speech dysfluencies classification. Conventional validation method was used for testing the reliability of the classifier results. The study on the effect of different frame length, percentage of overlapping, value of ã in a first order pre-emphasizer and different order p were discussed. The speech dysfluencies classification accuracy was found to be improved by applying statistical normalization before feature extraction. The experimental investigation elucidated LPC, LPCC and WLPCC features can be used for identifying the stuttered events and WLPCC features slightly outperforms LPCC features and LPC features.
NASA Astrophysics Data System (ADS)
Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.
2018-04-01
A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.
3D model retrieval method based on mesh segmentation
NASA Astrophysics Data System (ADS)
Gan, Yuanchao; Tang, Yan; Zhang, Qingchen
2012-04-01
In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.
NASA Astrophysics Data System (ADS)
Liu, Q.; Jing, L.; Li, Y.; Tang, Y.; Li, H.; Lin, Q.
2016-04-01
For the purpose of forest management, high resolution LIDAR and optical remote sensing imageries are used for treetop detection, tree crown delineation, and classification. The purpose of this study is to develop a self-adjusted dominant scales calculation method and a new crown horizontal cutting method of tree canopy height model (CHM) to detect and delineate tree crowns from LIDAR, under the hypothesis that a treetop is radiometric or altitudinal maximum and tree crowns consist of multi-scale branches. The major concept of the method is to develop an automatic selecting strategy of feature scale on CHM, and a multi-scale morphological reconstruction-open crown decomposition (MRCD) to get morphological multi-scale features of CHM by: cutting CHM from treetop to the ground; analysing and refining the dominant multiple scales with differential horizontal profiles to get treetops; segmenting LiDAR CHM using watershed a segmentation approach marked with MRCD treetops. This method has solved the problems of false detection of CHM side-surface extracted by the traditional morphological opening canopy segment (MOCS) method. The novel MRCD delineates more accurate and quantitative multi-scale features of CHM, and enables more accurate detection and segmentation of treetops and crown. Besides, the MRCD method can also be extended to high optical remote sensing tree crown extraction. In an experiment on aerial LiDAR CHM of a forest of multi-scale tree crowns, the proposed method yielded high-quality tree crown maps.
Automated detection of videotaped neonatal seizures of epileptic origin.
Karayiannis, Nicolaos B; Xiong, Yaohua; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M
2006-06-01
This study aimed at the development of a seizure-detection system by training neural networks with quantitative motion information extracted from short video segments of neonatal seizures of the myoclonic and focal clonic types and random infant movements. The motion of the infants' body parts was quantified by temporal motion-strength signals extracted from video segments by motion-segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The motion of the infants' body parts also was quantified by temporal motion-trajectory signals extracted from video recordings by robust motion trackers based on block-motion models. These motion trackers were developed to adjust autonomously to illumination and contrast changes that may occur during the video-frame sequence. Video segments were represented by quantitative features obtained by analyzing motion-strength and motion-trajectory signals in both the time and frequency domains. Seizure recognition was performed by conventional feed-forward neural networks, quantum neural networks, and cosine radial basis function neural networks, which were trained to detect neonatal seizures of the myoclonic and focal clonic types and to distinguish them from random infant movements. The computational tools and procedures developed for automated seizure detection were evaluated on a set of 240 video segments of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). Regardless of the decision scheme used for interpreting the responses of the trained neural networks, all the neural network models exhibited sensitivity and specificity>90%. For one of the decision schemes proposed for interpreting the responses of the trained neural networks, the majority of the trained neural-network models exhibited sensitivity>90% and specificity>95%. In particular, cosine radial basis function neural networks achieved the performance targets of this phase of the project (i.e., sensitivity>95% and specificity>95%). The best among the motion segmentation and tracking methods developed in this study produced quantitative features that constitute a reliable basis for detecting neonatal seizures. The performance targets of this phase of the project were achieved by combining the quantitative features obtained by analyzing motion-strength signals with those produced by analyzing motion-trajectory signals. The computational procedures and tools developed in this study to perform off-line analysis of short video segments will be used in the next phase of this project, which involves the integration of these procedures and tools into a system that can process and analyze long video recordings of infants monitored for seizures in real time.
Iris recognition using possibilistic fuzzy matching on local features.
Tsai, Chung-Chih; Lin, Heng-Yi; Taur, Jinshiuh; Tao, Chin-Wang
2012-02-01
In this paper, we propose a novel possibilistic fuzzy matching strategy with invariant properties, which can provide a robust and effective matching scheme for two sets of iris feature points. In addition, the nonlinear normalization model is adopted to provide more accurate position before matching. Moreover, an effective iris segmentation method is proposed to refine the detected inner and outer boundaries to smooth curves. For feature extraction, the Gabor filters are adopted to detect the local feature points from the segmented iris image in the Cartesian coordinate system and to generate a rotation-invariant descriptor for each detected point. After that, the proposed matching algorithm is used to compute a similarity score for two sets of feature points from a pair of iris images. The experimental results show that the performance of our system is better than those of the systems based on the local features and is comparable to those of the typical systems.
Feature Extraction Assessment Study.
1984-11-01
base in the form of orthophotos , control manuscripts, . or maps or charts; aids to feature identification such as im- agery (rectified and unrectified...manually delineated (i.e. , drawn by * hand) on a feature manuscript which may be a mylar overlay on an orthophoto or other control base. Once delineated...partition of tiled constant gray level regions, with addi- tive noise in each, it is not clear that any segmentation tech- nique would identify each
Exploiting spectral content for image segmentation in GPR data
NASA Astrophysics Data System (ADS)
Wang, Patrick K.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.
2011-06-01
Ground-penetrating radar (GPR) sensors provide an effective means for detecting changes in the sub-surface electrical properties of soils, such as changes indicative of landmines or other buried threats. However, most GPR-based pre-screening algorithms only localize target responses along the surface of the earth, and do not provide information regarding an object's position in depth. As a result, feature extraction algorithms are forced to process data from entire cubes of data around pre-screener alarms, which can reduce feature fidelity and hamper performance. In this work, spectral analysis is investigated as a method for locating subsurface anomalies in GPR data. In particular, a 2-D spatial/frequency decomposition is applied to pre-screener flagged GPR B-scans. Analysis of these spatial/frequency regions suggests that aspects (e.g. moments, maxima, mode) of the frequency distribution of GPR energy can be indicative of the presence of target responses. After translating a GPR image to a function of the spatial/frequency distributions at each pixel, several image segmentation approaches can be applied to perform segmentation in this new transformed feature space. To illustrate the efficacy of the approach, a performance comparison between feature processing with and without the image segmentation algorithm is provided.
A new method for automated discontinuity trace mapping on rock mass 3D surface model
NASA Astrophysics Data System (ADS)
Li, Xiaojun; Chen, Jianqin; Zhu, Hehua
2016-04-01
This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.
The ICSI+ Multilingual Sentence Segmentation System
2006-01-01
these steps the ASR output needs to be enriched with information additional to words, such as speaker diarization , sentence segmentation, or story...and the out- of a speaker diarization is considered as well. We first detail extraction of the prosodic features, and then describe the clas- ation...also takes into account the speaker turns that estimated by the diarization system. In addition to the Max- 1) model speaker turn unigrams, trigram
NASA Astrophysics Data System (ADS)
Krappe, Sebastian; Benz, Michaela; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian
2015-03-01
The morphological analysis of bone marrow smears is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually with the use of bright field microscope. This is a time consuming, partly subjective and tedious process. Furthermore, repeated examinations of a slide yield intra- and inter-observer variances. For this reason an automation of morphological bone marrow analysis is pursued. This analysis comprises several steps: image acquisition and smear detection, cell localization and segmentation, feature extraction and cell classification. The automated classification of bone marrow cells is depending on the automated cell segmentation and the choice of adequate features extracted from different parts of the cell. In this work we focus on the evaluation of support vector machines (SVMs) and random forests (RFs) for the differentiation of bone marrow cells in 16 different classes, including immature and abnormal cell classes. Data sets of different segmentation quality are used to test the two approaches. Automated solutions for the morphological analysis for bone marrow smears could use such a classifier to pre-classify bone marrow cells and thereby shortening the examination duration.
Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing
NASA Astrophysics Data System (ADS)
Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan
2010-03-01
We propose an automated lung tumor segmentation method for whole body PET images based on a novel downhill region growing (DRG) technique, which regards homogeneous tumor hotspots as 3D monotonically decreasing functions. The method has three major steps: thoracic slice extraction with K-means clustering of the slice features; hotspot segmentation with DRG; and decision tree analysis based hotspot classification. To overcome the common problem of leakage into adjacent hotspots in automated lung tumor segmentation, DRG employs the tumors' SUV monotonicity features. DRG also uses gradient magnitude of tumors' SUV to improve tumor boundary definition. We used 14 PET volumes from patients with primary NSCLC for validation. The thoracic region extraction step achieved good and consistent results for all patients despite marked differences in size and shape of the lungs and the presence of large tumors. The DRG technique was able to avoid the problem of leakage into adjacent hotspots and produced a volumetric overlap fraction of 0.61 +/- 0.13 which outperformed four other methods where the overlap fraction varied from 0.40 +/- 0.24 to 0.59 +/- 0.14. Of the 18 tumors in 14 NSCLC studies, 15 lesions were classified correctly, 2 were false negative and 15 were false positive.
Knowledge-based low-level image analysis for computer vision systems
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.; Baxi, Himanshu; Ranganath, M. V.
1988-01-01
Two algorithms for entry-level image analysis and preliminary segmentation are proposed which are flexible enough to incorporate local properties of the image. The first algorithm involves pyramid-based multiresolution processing and a strategy to define and use interlevel and intralevel link strengths. The second algorithm, which is designed for selected window processing, extracts regions adaptively using local histograms. The preliminary segmentation and a set of features are employed as the input to an efficient rule-based low-level analysis system, resulting in suboptimal meaningful segmentation.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images
Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-01-01
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang’s method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used. PMID:29762519
NASA Astrophysics Data System (ADS)
Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Qiu, Yuchen; Zheng, Bin
2018-02-01
Objective of this study is to develop and test a new computer-aided detection (CAD) scheme with improved region of interest (ROI) segmentation combined with an image feature extraction framework to improve performance in predicting short-term breast cancer risk. A dataset involving 570 sets of "prior" negative mammography screening cases was retrospectively assembled. In the next sequential "current" screening, 285 cases were positive and 285 cases remained negative. A CAD scheme was applied to all 570 "prior" negative images to stratify cases into the high and low risk case group of having cancer detected in the "current" screening. First, a new ROI segmentation algorithm was used to automatically remove useless area of mammograms. Second, from the matched bilateral craniocaudal view images, a set of 43 image features related to frequency characteristics of ROIs were initially computed from the discrete cosine transform and spatial domain of the images. Third, a support vector machine model based machine learning classifier was used to optimally classify the selected optimal image features to build a CAD-based risk prediction model. The classifier was trained using a leave-one-case-out based cross-validation method. Applying this improved CAD scheme to the testing dataset, an area under ROC curve, AUC = 0.70+/-0.04, which was significantly higher than using the extracting features directly from the dataset without the improved ROI segmentation step (AUC = 0.63+/-0.04). This study demonstrated that the proposed approach could improve accuracy on predicting short-term breast cancer risk, which may play an important role in helping eventually establish an optimal personalized breast cancer paradigm.
Instantaneous Coastline Extraction from LIDAR Point Cloud and High Resolution Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Li, Y.; Zhoing, L.; Lai, Z.; Gan, Z.
2018-04-01
A new method was proposed for instantaneous waterline extraction in this paper, which combines point cloud geometry features and image spectral characteristics of the coastal zone. The proposed method consists of follow steps: Mean Shift algorithm is used to segment the coastal zone of high resolution remote sensing images into small regions containing semantic information;Region features are extracted by integrating LiDAR data and the surface area of the image; initial waterlines are extracted by α-shape algorithm; a region growing algorithm with is taking into coastline refinement, with a growth rule integrating the intensity and topography of LiDAR data; moothing the coastline. Experiments are conducted to demonstrate the efficiency of the proposed method.
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Tseng, Tzu-Liang B.; Zheng, Bin; Zhang, Jianying; Qian, Wei
2015-03-01
A novel breast cancer risk analysis approach is proposed for enhancing performance of computerized breast cancer risk analysis using bilateral mammograms. Based on the intensity of breast area, five different sub-regions were acquired from one mammogram, and bilateral features were extracted from every sub-region. Our dataset includes 180 bilateral mammograms from 180 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including sub-region segmentation, bilateral feature extraction, feature selection, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under the curve (AUC) is 0.763 ± 0.021 when applying the multiple sub-region features to our testing dataset. The positive predictive value and the negative predictive value were 0.60 and 0.73, respectively. The study demonstrates that (1) features extracted from multiple sub-regions can improve the performance of our scheme compared to using features from whole breast area only; (2) a classifier using asymmetry bilateral features can effectively predict breast cancer risk; (3) incorporating texture and morphological features with density features can boost the classification accuracy.
Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh
2011-01-01
This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively. PMID:22606666
Automated segmentation of dental CBCT image with prior-guided sequential random forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Gao, Yaozong; Shi, Feng
Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate 3D models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the image artifacts caused by beam hardening, imaging noise, inhomogeneity, truncation, and maximal intercuspation, it is difficult to segment the CBCT. Methods: In this paper, the authors present a new automatic segmentation method to address these problems. Specifically, the authors first employ a majority voting method to estimatemore » the initial segmentation probability maps of both mandible and maxilla based on multiple aligned expert-segmented CBCT images. These probability maps provide an important prior guidance for CBCT segmentation. The authors then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of random forest classifier that can select discriminative features for segmentation. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of random forest classifier. By iteratively training the subsequent random forest classifier using both the original CBCT features and the updated segmentation probability maps, a sequence of classifiers can be derived for accurate segmentation of CBCT images. Results: Segmentation results on CBCTs of 30 subjects were both quantitatively and qualitatively validated based on manually labeled ground truth. The average Dice ratios of mandible and maxilla by the authors’ method were 0.94 and 0.91, respectively, which are significantly better than the state-of-the-art method based on sparse representation (p-value < 0.001). Conclusions: The authors have developed and validated a novel fully automated method for CBCT segmentation.« less
Residential roof condition assessment system using deep learning
NASA Astrophysics Data System (ADS)
Wang, Fan; Kerekes, John P.; Xu, Zhuoyi; Wang, Yandong
2018-01-01
The emergence of high resolution (HR) and ultra high resolution (UHR) airborne remote sensing imagery is enabling humans to move beyond traditional land cover analysis applications to the detailed characterization of surface objects. A residential roof condition assessment method using techniques from deep learning is presented. The proposed method operates on individual roofs and divides the task into two stages: (1) roof segmentation, followed by (2) condition classification of the segmented roof regions. As the first step in this process, a self-tuning method is proposed to segment the images into small homogeneous areas. The segmentation is initialized with simple linear iterative clustering followed by deep learned feature extraction and region merging, with the optimal result selected by an unsupervised index, Q. After the segmentation, a pretrained residual network is fine-tuned on the augmented roof segments using a proposed k-pixel extension technique for classification. The effectiveness of the proposed algorithm was demonstrated on both HR and UHR imagery collected by EagleView over different study sites. The proposed algorithm has yielded promising results and has outperformed traditional machine learning methods using hand-crafted features.
Khalilzadeh, Mohammad Mahdi; Fatemizadeh, Emad; Behnam, Hamid
2013-06-01
Automatic extraction of the varying regions of magnetic resonance images is required as a prior step in a diagnostic intelligent system. The sparsest representation and high-dimensional feature are provided based on learned dictionary. The classification is done by employing the technique that computes the reconstruction error locally and non-locally of each pixel. The acquired results from the real and simulated images are superior to the best MRI segmentation method with regard to the stability advantages. In addition, it is segmented exactly through a formula taken from the distance and sparse factors. Also, it is done automatically taking sparse factor in unsupervised clustering methods whose results have been improved. Copyright © 2013 Elsevier Inc. All rights reserved.
Automatic Feature Extraction from Planetary Images
NASA Technical Reports Server (NTRS)
Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.
2010-01-01
With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.
Soltaninejad, Mohammadreza; Yang, Guang; Lambrou, Tryphon; Allinson, Nigel; Jones, Timothy L; Barrick, Thomas R; Howe, Franklyn A; Ye, Xujiong
2018-04-01
Accurate segmentation of brain tumour in magnetic resonance images (MRI) is a difficult task due to various tumour types. Using information and features from multimodal MRI including structural MRI and isotropic (p) and anisotropic (q) components derived from the diffusion tensor imaging (DTI) may result in a more accurate analysis of brain images. We propose a novel 3D supervoxel based learning method for segmentation of tumour in multimodal MRI brain images (conventional MRI and DTI). Supervoxels are generated using the information across the multimodal MRI dataset. For each supervoxel, a variety of features including histograms of texton descriptor, calculated using a set of Gabor filters with different sizes and orientations, and first order intensity statistical features are extracted. Those features are fed into a random forests (RF) classifier to classify each supervoxel into tumour core, oedema or healthy brain tissue. The method is evaluated on two datasets: 1) Our clinical dataset: 11 multimodal images of patients and 2) BRATS 2013 clinical dataset: 30 multimodal images. For our clinical dataset, the average detection sensitivity of tumour (including tumour core and oedema) using multimodal MRI is 86% with balanced error rate (BER) 7%; while the Dice score for automatic tumour segmentation against ground truth is 0.84. The corresponding results of the BRATS 2013 dataset are 96%, 2% and 0.89, respectively. The method demonstrates promising results in the segmentation of brain tumour. Adding features from multimodal MRI images can largely increase the segmentation accuracy. The method provides a close match to expert delineation across all tumour grades, leading to a faster and more reproducible method of brain tumour detection and delineation to aid patient management. Copyright © 2018 Elsevier B.V. All rights reserved.
Latha, Manohar; Kavitha, Ganesan
2018-02-03
Schizophrenia (SZ) is a psychiatric disorder that especially affects individuals during their adolescence. There is a need to study the subanatomical regions of SZ brain on magnetic resonance images (MRI) based on morphometry. In this work, an attempt was made to analyze alterations in structure and texture patterns in images of the SZ brain using the level-set method and Laws texture features. T1-weighted MRI of the brain from Center of Biomedical Research Excellence (COBRE) database were considered for analysis. Segmentation was carried out using the level-set method. Geometrical and Laws texture features were extracted from the segmented brain stem, corpus callosum, cerebellum, and ventricle regions to analyze pattern changes in SZ. The level-set method segmented multiple brain regions, with higher similarity and correlation values compared with an optimized method. The geometric features obtained from regions of the corpus callosum and ventricle showed significant variation (p < 0.00001) between normal and SZ brain. Laws texture feature identified a heterogeneous appearance in the brain stem, corpus callosum and ventricular regions, and features from the brain stem were correlated with Positive and Negative Syndrome Scale (PANSS) score (p < 0.005). A framework of geometric and Laws texture features obtained from brain subregions can be used as a supplement for diagnosis of psychiatric disorders.
Fiot, Jean-Baptiste; Cohen, Laurent D; Raniga, Parnesh; Fripp, Jurgen
2013-09-01
Support vector machines (SVM) are machine learning techniques that have been used for segmentation and classification of medical images, including segmentation of white matter hyper-intensities (WMH). Current approaches using SVM for WMH segmentation extract features from the brain and classify these followed by complex post-processing steps to remove false positives. The method presented in this paper combines advanced pre-processing, tissue-based feature selection and SVM classification to obtain efficient and accurate WMH segmentation. Features from 125 patients, generated from up to four MR modalities [T1-w, T2-w, proton-density and fluid attenuated inversion recovery(FLAIR)], differing neighbourhood sizes and the use of multi-scale features were compared. We found that although using all four modalities gave the best overall classification (average Dice scores of 0.54 ± 0.12, 0.72 ± 0.06 and 0.82 ± 0.06 respectively for small, moderate and severe lesion loads); this was not significantly different (p = 0.50) from using just T1-w and FLAIR sequences (Dice scores of 0.52 ± 0.13, 0.71 ± 0.08 and 0.81 ± 0.07). Furthermore, there was a negligible difference between using 5 × 5 × 5 and 3 × 3 × 3 features (p = 0.93). Finally, we show that careful consideration of features and pre-processing techniques not only saves storage space and computation time but also leads to more efficient classification, which outperforms the one based on all features with post-processing. Copyright © 2013 John Wiley & Sons, Ltd.
Blood vessel segmentation in color fundus images based on regional and Hessian features.
Shah, Syed Ayaz Ali; Tang, Tong Boon; Faye, Ibrahima; Laude, Augustinus
2017-08-01
To propose a new algorithm of blood vessel segmentation based on regional and Hessian features for image analysis in retinal abnormality diagnosis. Firstly, color fundus images from the publicly available database DRIVE were converted from RGB to grayscale. To enhance the contrast of the dark objects (blood vessels) against the background, the dot product of the grayscale image with itself was generated. To rectify the variation in contrast, we used a 5 × 5 window filter on each pixel. Based on 5 regional features, 1 intensity feature and 2 Hessian features per scale using 9 scales, we extracted a total of 24 features. A linear minimum squared error (LMSE) classifier was trained to classify each pixel into a vessel or non-vessel pixel. The DRIVE dataset provided 20 training and 20 test color fundus images. The proposed algorithm achieves a sensitivity of 72.05% with 94.79% accuracy. Our proposed algorithm achieved higher accuracy (0.9206) at the peripapillary region, where the ocular manifestations in the microvasculature due to glaucoma, central retinal vein occlusion, etc. are most obvious. This supports the proposed algorithm as a strong candidate for automated vessel segmentation.
NASA Astrophysics Data System (ADS)
Shi, Bibo; Grimm, Lars J.; Mazurowski, Maciej A.; Marks, Jeffrey R.; King, Lorraine M.; Maley, Carlo C.; Hwang, E. Shelley; Lo, Joseph Y.
2017-03-01
Predicting the risk of occult invasive disease in ductal carcinoma in situ (DCIS) is an important task to help address the overdiagnosis and overtreatment problems associated with breast cancer. In this work, we investigated the feasibility of using computer-extracted mammographic features to predict occult invasive disease in patients with biopsy proven DCIS. We proposed a computer-vision algorithm based approach to extract mammographic features from magnification views of full field digital mammography (FFDM) for patients with DCIS. After an expert breast radiologist provided a region of interest (ROI) mask for the DCIS lesion, the proposed approach is able to segment individual microcalcifications (MCs), detect the boundary of the MC cluster (MCC), and extract 113 mammographic features from MCs and MCC within the ROI. In this study, we extracted mammographic features from 99 patients with DCIS (74 pure DCIS; 25 DCIS plus invasive disease). The predictive power of the mammographic features was demonstrated through binary classifications between pure DCIS and DCIS with invasive disease using linear discriminant analysis (LDA). Before classification, the minimum redundancy Maximum Relevance (mRMR) feature selection method was first applied to choose subsets of useful features. The generalization performance was assessed using Leave-One-Out Cross-Validation and Receiver Operating Characteristic (ROC) curve analysis. Using the computer-extracted mammographic features, the proposed model was able to distinguish DCIS with invasive disease from pure DCIS, with an average classification performance of AUC = 0.61 +/- 0.05. Overall, the proposed computer-extracted mammographic features are promising for predicting occult invasive disease in DCIS.
Nasir, Muhammad; Attique Khan, Muhammad; Sharif, Muhammad; Lali, Ikram Ullah; Saba, Tanzila; Iqbal, Tassawar
2018-02-21
Melanoma is the deadliest type of skin cancer with highest mortality rate. However, the annihilation in early stage implies a high survival rate therefore, it demands early diagnosis. The accustomed diagnosis methods are costly and cumbersome due to the involvement of experienced experts as well as the requirements for highly equipped environment. The recent advancements in computerized solutions for these diagnoses are highly promising with improved accuracy and efficiency. In this article, we proposed a method for the classification of melanoma and benign skin lesions. Our approach integrates preprocessing, lesion segmentation, features extraction, features selection, and classification. Preprocessing is executed in the context of hair removal by DullRazor, whereas lesion texture and color information are utilized to enhance the lesion contrast. In lesion segmentation, a hybrid technique has been implemented and results are fused using additive law of probability. Serial based method is applied subsequently that extracts and fuses the traits such as color, texture, and HOG (shape). The fused features are selected afterwards by implementing a novel Boltzman Entropy method. Finally, the selected features are classified by Support Vector Machine. The proposed method is evaluated on publically available data set PH2. Our approach has provided promising results of sensitivity 97.7%, specificity 96.7%, accuracy 97.5%, and F-score 97.5%, which are significantly better than the results of existing methods available on the same data set. The proposed method detects and classifies melanoma significantly good as compared to existing methods. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves
2015-04-01
Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.
Barbosa, Jocelyn; Lee, Kyubum; Lee, Sunwon; Lodhi, Bilal; Cho, Jae-Gu; Seo, Woo-Keun; Kang, Jaewoo
2016-03-12
Facial palsy or paralysis (FP) is a symptom that loses voluntary muscles movement in one side of the human face, which could be very devastating in the part of the patients. Traditional methods are solely dependent to clinician's judgment and therefore time consuming and subjective in nature. Hence, a quantitative assessment system becomes apparently invaluable for physicians to begin the rehabilitation process; and to produce a reliable and robust method is challenging and still underway. We introduce a novel approach for a quantitative assessment of facial paralysis that tackles classification problem for FP type and degree of severity. Specifically, a novel method of quantitative assessment is presented: an algorithm that extracts the human iris and detects facial landmarks; and a hybrid approach combining the rule-based and machine learning algorithm to analyze and prognosticate facial paralysis using the captured images. A method combining the optimized Daugman's algorithm and Localized Active Contour (LAC) model is proposed to efficiently extract the iris and facial landmark or key points. To improve the performance of LAC, appropriate parameters of initial evolving curve for facial features' segmentation are automatically selected. The symmetry score is measured by the ratio between features extracted from the two sides of the face. Hybrid classifiers (i.e. rule-based with regularized logistic regression) were employed for discriminating healthy and unhealthy subjects, FP type classification, and for facial paralysis grading based on House-Brackmann (H-B) scale. Quantitative analysis was performed to evaluate the performance of the proposed approach. Experiments show that the proposed method demonstrates its efficiency. Facial movement feature extraction on facial images based on iris segmentation and LAC-based key point detection along with a hybrid classifier provides a more efficient way of addressing classification problem on facial palsy type and degree of severity. Combining iris segmentation and key point-based method has several merits that are essential for our real application. Aside from the facial key points, iris segmentation provides significant contribution as it describes the changes of the iris exposure while performing some facial expressions. It reveals the significant difference between the healthy side and the severe palsy side when raising eyebrows with both eyes directed upward, and can model the typical changes in the iris region.
NASA Astrophysics Data System (ADS)
Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping
2016-09-01
Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.
Ishikawa, Masahiro; Murakami, Yuri; Ahi, Sercan Taha; Yamaguchi, Masahiro; Kobayashi, Naoki; Kiyuna, Tomoharu; Yamashita, Yoshiko; Saito, Akira; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie
2016-01-01
Abstract. This paper proposes a digital image analysis method to support quantitative pathology by automatically segmenting the hepatocyte structure and quantifying its morphological features. To structurally analyze histopathological hepatic images, we isolate the trabeculae by extracting the sinusoids, fat droplets, and stromata. We then measure the morphological features of the extracted trabeculae, divide the image into cords, and calculate the feature values of the local cords. We propose a method of calculating the nuclear–cytoplasmic ratio, nuclear density, and number of layers using the local cords. Furthermore, we evaluate the effectiveness of the proposed method using surgical specimens. The proposed method was found to be an effective method for the quantification of the Edmondson grade. PMID:27335894
Veeraraghavan, Harini; Dashevsky, Brittany Z; Onishi, Natsuko; Sadinski, Meredith; Morris, Elizabeth; Deasy, Joseph O; Sutton, Elizabeth J
2018-03-19
We present a segmentation approach that combines GrowCut (GC) with cancer-specific multi-parametric Gaussian Mixture Model (GCGMM) to produce accurate and reproducible segmentations. We evaluated GCGMM using a retrospectively collected 75 invasive ductal carcinoma with ERPR+ HER2- (n = 15), triple negative (TN) (n = 9), and ER-HER2+ (n = 57) cancers with variable presentation (mass and non-mass enhancement) and background parenchymal enhancement (mild and marked). Expert delineated manual contours were used to assess the segmentation performance using Dice coefficient (DSC), mean surface distance (mSD), Hausdorff distance, and volume ratio (VR). GCGMM segmentations were significantly more accurate than GrowCut (GC) and fuzzy c-means clustering (FCM). GCGMM's segmentations and the texture features computed from those segmentations were the most reproducible compared with manual delineations and other analyzed segmentation methods. Finally, random forest (RF) classifier trained with leave-one-out cross-validation using features extracted from GCGMM segmentation resulted in the best accuracy for ER-HER2+ vs. ERPR+/TN (GCGMM 0.95, expert 0.95, GC 0.90, FCM 0.92) and for ERPR + HER2- vs. TN (GCGMM 0.92, expert 0.91, GC 0.77, FCM 0.83).
3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.
Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin
2012-07-01
Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational segmentation method was able to better disambiguate the tumor from the surrounding tissue.
S V, Mahesh Kumar; R, Gunasundari
2018-06-02
Eye disease is a major health problem among the elderly people. Cataract and corneal arcus are the major abnormalities that exist in the anterior segment eye region of aged people. Hence, computer-aided diagnosis of anterior segment eye abnormalities will be helpful for mass screening and grading in ophthalmology. In this paper, we propose a multiclass computer-aided diagnosis (CAD) system using visible wavelength (VW) eye images to diagnose anterior segment eye abnormalities. In the proposed method, the input VW eye images are pre-processed for specular reflection removal and the iris circle region is segmented using a circular Hough Transform (CHT)-based approach. The first-order statistical features and wavelet-based features are extracted from the segmented iris circle and used for classification. The Support Vector Machine (SVM) by Sequential Minimal Optimization (SMO) algorithm was used for the classification. In experiments, we used 228 VW eye images that belong to three different classes of anterior segment eye abnormalities. The proposed method achieved a predictive accuracy of 96.96% with 97% sensitivity and 99% specificity. The experimental results show that the proposed method has significant potential for use in clinical applications.
Image Segmentation, Registration, Compression, and Matching
NASA Technical Reports Server (NTRS)
Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina
2011-01-01
A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity/topology components of the generated models. The highly efficient triangular mesh compression compacts the connectivity information at the rate of 1.5-4 bits per vertex (on average for triangle meshes), while reducing the 3D geometry by 40-50 percent. Finally, taking into consideration the characteristics of 3D terrain data, and using the innovative, regularized binary decomposition mesh modeling, a multistage, pattern-drive modeling, and compression technique has been developed to provide an effective framework for compressing digital elevation model (DEM) surfaces, high-resolution aerial imagery, and other types of NASA data.
Ben Chaabane, Salim; Fnaiech, Farhat
2014-01-23
Color image segmentation has been so far applied in many areas; hence, recently many different techniques have been developed and proposed. In the medical imaging area, the image segmentation may be helpful to provide assistance to doctor in order to follow-up the disease of a certain patient from the breast cancer processed images. The main objective of this work is to rebuild and also to enhance each cell from the three component images provided by an input image. Indeed, from an initial segmentation obtained using the statistical features and histogram threshold techniques, the resulting segmentation may represent accurately the non complete and pasted cells and enhance them. This allows real help to doctors, and consequently, these cells become clear and easy to be counted. A novel method for color edges extraction based on statistical features and automatic threshold is presented. The traditional edge detector, based on the first and the second order neighborhood, describing the relationship between the current pixel and its neighbors, is extended to the statistical domain. Hence, color edges in an image are obtained by combining the statistical features and the automatic threshold techniques. Finally, on the obtained color edges with specific primitive color, a combination rule is used to integrate the edge results over the three color components. Breast cancer cell images were used to evaluate the performance of the proposed method both quantitatively and qualitatively. Hence, a visual and a numerical assessment based on the probability of correct classification (PC), the false classification (Pf), and the classification accuracy (Sens(%)) are presented and compared with existing techniques. The proposed method shows its superiority in the detection of points which really belong to the cells, and also the facility of counting the number of the processed cells. Computer simulations highlight that the proposed method substantially enhances the segmented image with smaller error rates better than other existing algorithms under the same settings (patterns and parameters). Moreover, it provides high classification accuracy, reaching the rate of 97.94%. Additionally, the segmentation method may be extended to other medical imaging types having similar properties.
PCA feature extraction for change detection in multidimensional unlabeled data.
Kuncheva, Ludmila I; Faithfull, William J
2014-01-01
When classifiers are deployed in real-world applications, it is assumed that the distribution of the incoming data matches the distribution of the data used to train the classifier. This assumption is often incorrect, which necessitates some form of change detection or adaptive classification. While there has been a lot of work on change detection based on the classification error monitored over the course of the operation of the classifier, finding changes in multidimensional unlabeled data is still a challenge. Here, we propose to apply principal component analysis (PCA) for feature extraction prior to the change detection. Supported by a theoretical example, we argue that the components with the lowest variance should be retained as the extracted features because they are more likely to be affected by a change. We chose a recently proposed semiparametric log-likelihood change detection criterion that is sensitive to changes in both mean and variance of the multidimensional distribution. An experiment with 35 datasets and an illustration with a simple video segmentation demonstrate the advantage of using extracted features compared to raw data. Further analysis shows that feature extraction through PCA is beneficial, specifically for data with multiple balanced classes.
Selecting salient frames for spatiotemporal video modeling and segmentation.
Song, Xiaomu; Fan, Guoliang
2007-12-01
We propose a new statistical generative model for spatiotemporal video segmentation. The objective is to partition a video sequence into homogeneous segments that can be used as "building blocks" for semantic video segmentation. The baseline framework is a Gaussian mixture model (GMM)-based video modeling approach that involves a six-dimensional spatiotemporal feature space. Specifically, we introduce the concept of frame saliency to quantify the relevancy of a video frame to the GMM-based spatiotemporal video modeling. This helps us use a small set of salient frames to facilitate the model training by reducing data redundancy and irrelevance. A modified expectation maximization algorithm is developed for simultaneous GMM training and frame saliency estimation, and the frames with the highest saliency values are extracted to refine the GMM estimation for video segmentation. Moreover, it is interesting to find that frame saliency can imply some object behaviors. This makes the proposed method also applicable to other frame-related video analysis tasks, such as key-frame extraction, video skimming, etc. Experiments on real videos demonstrate the effectiveness and efficiency of the proposed method.
Schneider, Matthias; Hirsch, Sven; Weber, Bruno; Székely, Gábor; Menze, Bjoern H
2015-01-01
We propose a novel framework for joint 3-D vessel segmentation and centerline extraction. The approach is based on multivariate Hough voting and oblique random forests (RFs) that we learn from noisy annotations. It relies on steerable filters for the efficient computation of local image features at different scales and orientations. We validate both the segmentation performance and the centerline accuracy of our approach both on synthetic vascular data and four 3-D imaging datasets of the rat visual cortex at 700 nm resolution. First, we evaluate the most important structural components of our approach: (1) Orthogonal subspace filtering in comparison to steerable filters that show, qualitatively, similarities to the eigenspace filters learned from local image patches. (2) Standard RF against oblique RF. Second, we compare the overall approach to different state-of-the-art methods for (1) vessel segmentation based on optimally oriented flux (OOF) and the eigenstructure of the Hessian, and (2) centerline extraction based on homotopic skeletonization and geodesic path tracing. Our experiments reveal the benefit of steerable over eigenspace filters as well as the advantage of oblique split directions over univariate orthogonal splits. We further show that the learning-based approach outperforms different state-of-the-art methods and proves highly accurate and robust with regard to both vessel segmentation and centerline extraction in spite of the high level of label noise in the training data. Copyright © 2014 Elsevier B.V. All rights reserved.
A holistic image segmentation framework for cloud detection and extraction
NASA Astrophysics Data System (ADS)
Shen, Dan; Xu, Haotian; Blasch, Erik; Horvath, Gregory; Pham, Khanh; Zheng, Yufeng; Ling, Haibin; Chen, Genshe
2013-05-01
Atmospheric clouds are commonly encountered phenomena affecting visual tracking from air-borne or space-borne sensors. Generally clouds are difficult to detect and extract because they are complex in shape and interact with sunlight in a complex fashion. In this paper, we propose a clustering game theoretic image segmentation based approach to identify, extract, and patch clouds. In our framework, the first step is to decompose a given image containing clouds. The problem of image segmentation is considered as a "clustering game". Within this context, the notion of a cluster is equivalent to a classical equilibrium concept from game theory, as the game equilibrium reflects both the internal and external (e.g., two-player) cluster conditions. To obtain the evolutionary stable strategies, we explore three evolutionary dynamics: fictitious play, replicator dynamics, and infection and immunization dynamics (InImDyn). Secondly, we use the boundary and shape features to refine the cloud segments. This step can lower the false alarm rate. In the third step, we remove the detected clouds and patch the empty spots by performing background recovery. We demonstrate our cloud detection framework on a video clip provides supportive results.
[A graph cuts-based interactive method for segmentation of magnetic resonance images of meningioma].
Li, Shuan-qiang; Feng, Qian-jin; Chen, Wu-fan; Lin, Ya-zhong
2011-06-01
For accurate segmentation of the magnetic resonance (MR) images of meningioma, we propose a novel interactive segmentation method based on graph cuts. The high dimensional image features was extracted, and for each pixel, the probabilities of its origin, either the tumor or the background regions, were estimated by exploiting the weighted K-nearest neighborhood classifier. Based on these probabilities, a new energy function was proposed. Finally, a graph cut optimal framework was used for the solution of the energy function. The proposed method was evaluated by application in the segmentation of MR images of meningioma, and the results showed that the method significantly improved the segmentation accuracy compared with the gray level information-based graph cut method.
Kashyap, Kanchan L; Bajpai, Manish K; Khanna, Pritee; Giakos, George
2018-01-01
Automatic segmentation of abnormal region is a crucial task in computer-aided detection system using mammograms. In this work, an automatic abnormality detection algorithm using mammographic images is proposed. In the preprocessing step, partial differential equation-based variational level set method is used for breast region extraction. The evolution of the level set method is done by applying mesh-free-based radial basis function (RBF). The limitation of mesh-based approach is removed by using mesh-free-based RBF method. The evolution of variational level set function is also done by mesh-based finite difference method for comparison purpose. Unsharp masking and median filtering is used for mammogram enhancement. Suspicious abnormal regions are segmented by applying fuzzy c-means clustering. Texture features are extracted from the segmented suspicious regions by computing local binary pattern and dominated rotated local binary pattern (DRLBP). Finally, suspicious regions are classified as normal or abnormal regions by means of support vector machine with linear, multilayer perceptron, radial basis, and polynomial kernel function. The algorithm is validated on 322 sample mammograms of mammographic image analysis society (MIAS) and 500 mammograms from digital database for screening mammography (DDSM) datasets. Proficiency of the algorithm is quantified by using sensitivity, specificity, and accuracy. The highest sensitivity, specificity, and accuracy of 93.96%, 95.01%, and 94.48%, respectively, are obtained on MIAS dataset using DRLBP feature with RBF kernel function. Whereas, the highest 92.31% sensitivity, 98.45% specificity, and 96.21% accuracy are achieved on DDSM dataset using DRLBP feature with RBF kernel function. Copyright © 2017 John Wiley & Sons, Ltd.
Texture-based segmentation and analysis of emphysema depicted on CT images
NASA Astrophysics Data System (ADS)
Tan, Jun; Zheng, Bin; Wang, Xingwei; Lederman, Dror; Pu, Jiantao; Sciurba, Frank C.; Gur, David; Leader, J. Ken
2011-03-01
In this study we present a texture-based method of emphysema segmentation depicted on CT examination consisting of two steps. Step 1, a fractal dimension based texture feature extraction is used to initially detect base regions of emphysema. A threshold is applied to the texture result image to obtain initial base regions. Step 2, the base regions are evaluated pixel-by-pixel using a method that considers the variance change incurred by adding a pixel to the base in an effort to refine the boundary of the base regions. Visual inspection revealed a reasonable segmentation of the emphysema regions. There was a strong correlation between lung function (FEV1%, FEV1/FVC, and DLCO%) and fraction of emphysema computed using the texture based method, which were -0.433, -.629, and -0.527, respectively. The texture-based method produced more homogeneous emphysematous regions compared to simple thresholding, especially for large bulla, which can appear as speckled regions in the threshold approach. In the texture-based method, single isolated pixels may be considered as emphysema only if neighboring pixels meet certain criteria, which support the idea that single isolated pixels may not be sufficient evidence that emphysema is present. One of the strength of our complex texture-based approach to emphysema segmentation is that it goes beyond existing approaches that typically extract a single or groups texture features and individually analyze the features. We focus on first identifying potential regions of emphysema and then refining the boundary of the detected regions based on texture patterns.
3D Feature Extraction for Unstructured Grids
NASA Technical Reports Server (NTRS)
Silver, Deborah
1996-01-01
Visualization techniques provide tools that help scientists identify observed phenomena in scientific simulation. To be useful, these tools must allow the user to extract regions, classify and visualize them, abstract them for simplified representations, and track their evolution. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This article explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and those from Finite Element Analysis.
Bremer, Peer-Timo; Weber, Gunther; Tierny, Julien; Pascucci, Valerio; Day, Marcus S; Bell, John B
2011-09-01
Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications, these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single-pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of features for any given parameter selection in a postprocessing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical analysis enabled by our techniques provides new insight into the combustion process.
NASA Astrophysics Data System (ADS)
Garcia-Allende, P. Beatriz; Amygdalos, Iakovos; Dhanapala, Hiruni; Goldin, Robert D.; Hanna, George B.; Elson, Daniel S.
2012-01-01
Computer-aided diagnosis of ophthalmic diseases using optical coherence tomography (OCT) relies on the extraction of thickness and size measures from the OCT images, but such defined layers are usually not observed in emerging OCT applications aimed at "optical biopsy" such as pulmonology or gastroenterology. Mathematical methods such as Principal Component Analysis (PCA) or textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric auto-correlation (CSAC) and spatial grey-level dependency matrices (SGLDM), as well as, quantitative measurements of the attenuation coefficient have been previously proposed to overcome this problem. We recently proposed an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technology for feature quantification. OCT images were first segmented in the axial direction in an automated manner according to intensity. Afterwards, a morphological analysis of the segmented OCT images was employed for quantifying the features that served for tissue classification. In this study, a PCA processing of the extracted features is accomplished to combine their discriminative power in a lower number of dimensions. Ready discrimination of gastrointestinal surgical specimens is attained demonstrating that the approach further surpasses the algorithms previously reported and is feasible for tissue classification in the clinical setting.
Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-01-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801
Shape adaptive, robust iris feature extraction from noisy iris images.
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-10-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.
Adaptive image inversion of contrast 3D echocardiography for enabling automated analysis.
Shaheen, Anjuman; Rajpoot, Kashif
2015-08-01
Contrast 3D echocardiography (C3DE) is commonly used to enhance the visual quality of ultrasound images in comparison with non-contrast 3D echocardiography (3DE). Although the image quality in C3DE is perceived to be improved for visual analysis, however it actually deteriorates for the purpose of automatic or semi-automatic analysis due to higher speckle noise and intensity inhomogeneity. Therefore, the LV endocardial feature extraction and segmentation from the C3DE images remains a challenging problem. To address this challenge, this work proposes an adaptive pre-processing method to invert the appearance of C3DE image. The image inversion is based on an image intensity threshold value which is automatically estimated through image histogram analysis. In the inverted appearance, the LV cavity appears dark while the myocardium appears bright thus making it similar in appearance to a 3DE image. Moreover, the resulting inverted image has high contrast and low noise appearance, yielding strong LV endocardium boundary and facilitating feature extraction for segmentation. Our results demonstrate that the inverse appearance of contrast image enables the subsequent LV segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Detection of reflecting surfaces by a statistical model
NASA Astrophysics Data System (ADS)
He, Qiang; Chu, Chee-Hung H.
2009-02-01
Remote sensing is widely used assess the destruction from natural disasters and to plan relief and recovery operations. How to automatically extract useful features and segment interesting objects from digital images, including remote sensing imagery, becomes a critical task for image understanding. Unfortunately, current research on automated feature extraction is ignorant of contextual information. As a result, the fidelity of populating attributes corresponding to interesting features and objects cannot be satisfied. In this paper, we present an exploration on meaningful object extraction integrating reflecting surfaces. Detection of specular reflecting surfaces can be useful in target identification and then can be applied to environmental monitoring, disaster prediction and analysis, military, and counter-terrorism. Our method is based on a statistical model to capture the statistical properties of specular reflecting surfaces. And then the reflecting surfaces are detected through cluster analysis.
Towards online iris and periocular recognition under relaxed imaging constraints.
Tan, Chun-Wei; Kumar, Ajay
2013-10-01
Online iris recognition using distantly acquired images in a less imaging constrained environment requires the development of a efficient iris segmentation approach and recognition strategy that can exploit multiple features available for the potential identification. This paper presents an effective solution toward addressing such a problem. The developed iris segmentation approach exploits a random walker algorithm to efficiently estimate coarsely segmented iris images. These coarsely segmented iris images are postprocessed using a sequence of operations that can effectively improve the segmentation accuracy. The robustness of the proposed iris segmentation approach is ascertained by providing comparison with other state-of-the-art algorithms using publicly available UBIRIS.v2, FRGC, and CASIA.v4-distance databases. Our experimental results achieve improvement of 9.5%, 4.3%, and 25.7% in the average segmentation accuracy, respectively, for the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with most competing approaches. We also exploit the simultaneously extracted periocular features to achieve significant performance improvement. The joint segmentation and combination strategy suggest promising results and achieve average improvement of 132.3%, 7.45%, and 17.5% in the recognition performance, respectively, from the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with the related competing approaches.
Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Juhun, E-mail: leej15@upmc.edu; Nishikawa, Robert M.; Reiser, Ingrid
2015-09-15
Purpose: The purpose of this study is to measure the effectiveness of local curvature measures as novel image features for classifying breast tumors. Methods: A total of 119 breast lesions from 104 noncontrast dedicated breast computed tomography images of women were used in this study. Volumetric segmentation was done using a seed-based segmentation algorithm and then a triangulated surface was extracted from the resulting segmentation. Total, mean, and Gaussian curvatures were then computed. Normalized curvatures were used as classification features. In addition, traditional image features were also extracted and a forward feature selection scheme was used to select the optimalmore » feature set. Logistic regression was used as a classifier and leave-one-out cross-validation was utilized to evaluate the classification performances of the features. The area under the receiver operating characteristic curve (AUC, area under curve) was used as a figure of merit. Results: Among curvature measures, the normalized total curvature (C{sub T}) showed the best classification performance (AUC of 0.74), while the others showed no classification power individually. Five traditional image features (two shape, two margin, and one texture descriptors) were selected via the feature selection scheme and its resulting classifier achieved an AUC of 0.83. Among those five features, the radial gradient index (RGI), which is a margin descriptor, showed the best classification performance (AUC of 0.73). A classifier combining RGI and C{sub T} yielded an AUC of 0.81, which showed similar performance (i.e., no statistically significant difference) to the classifier with the above five traditional image features. Additional comparisons in AUC values between classifiers using different combinations of traditional image features and C{sub T} were conducted. The results showed that C{sub T} was able to replace the other four image features for the classification task. Conclusions: The normalized curvature measure contains useful information in classifying breast tumors. Using this, one can reduce the number of features in a classifier, which may result in more robust classifiers for different datasets.« less
Muthu Rama Krishnan, M; Shah, Pratik; Chakraborty, Chandan; Ray, Ajoy K
2012-04-01
The objective of this paper is to provide an improved technique, which can assist oncopathologists in correct screening of oral precancerous conditions specially oral submucous fibrosis (OSF) with significant accuracy on the basis of collagen fibres in the sub-epithelial connective tissue. The proposed scheme is composed of collagen fibres segmentation, its textural feature extraction and selection, screening perfomance enhancement under Gaussian transformation and finally classification. In this study, collagen fibres are segmented on R,G,B color channels using back-probagation neural network from 60 normal and 59 OSF histological images followed by histogram specification for reducing the stain intensity variation. Henceforth, textural features of collgen area are extracted using fractal approaches viz., differential box counting and brownian motion curve . Feature selection is done using Kullback-Leibler (KL) divergence criterion and the screening performance is evaluated based on various statistical tests to conform Gaussian nature. Here, the screening performance is enhanced under Gaussian transformation of the non-Gaussian features using hybrid distribution. Moreover, the routine screening is designed based on two statistical classifiers viz., Bayesian classification and support vector machines (SVM) to classify normal and OSF. It is observed that SVM with linear kernel function provides better classification accuracy (91.64%) as compared to Bayesian classifier. The addition of fractal features of collagen under Gaussian transformation improves Bayesian classifier's performance from 80.69% to 90.75%. Results are here studied and discussed.
Kim, Jongin; Park, Hyeong-jun
2016-01-01
The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128
NASA Astrophysics Data System (ADS)
Hasan, Taufiq; Bořil, Hynek; Sangwan, Abhijeet; L Hansen, John H.
2013-12-01
The ability to detect and organize `hot spots' representing areas of excitement within video streams is a challenging research problem when techniques rely exclusively on video content. A generic method for sports video highlight selection is presented in this study which leverages both video/image structure as well as audio/speech properties. Processing begins where the video is partitioned into small segments and several multi-modal features are extracted from each segment. Excitability is computed based on the likelihood of the segmental features residing in certain regions of their joint probability density function space which are considered both exciting and rare. The proposed measure is used to rank order the partitioned segments to compress the overall video sequence and produce a contiguous set of highlights. Experiments are performed on baseball videos based on signal processing advancements for excitement assessment in the commentators' speech, audio energy, slow motion replay, scene cut density, and motion activity as features. Detailed analysis on correlation between user excitability and various speech production parameters is conducted and an effective scheme is designed to estimate the excitement level of commentator's speech from the sports videos. Subjective evaluation of excitability and ranking of video segments demonstrate a higher correlation with the proposed measure compared to well-established techniques indicating the effectiveness of the overall approach.
NASA Astrophysics Data System (ADS)
Paul, Subir; Nagesh Kumar, D.
2018-04-01
Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.
Automatic segmentation of multimodal brain tumor images based on classification of super-voxels.
Kadkhodaei, M; Samavi, S; Karimi, N; Mohaghegh, H; Soroushmehr, S M R; Ward, K; All, A; Najarian, K
2016-08-01
Despite the rapid growth in brain tumor segmentation approaches, there are still many challenges in this field. Automatic segmentation of brain images has a critical role in decreasing the burden of manual labeling and increasing robustness of brain tumor diagnosis. We consider segmentation of glioma tumors, which have a wide variation in size, shape and appearance properties. In this paper images are enhanced and normalized to same scale in a preprocessing step. The enhanced images are then segmented based on their intensities using 3D super-voxels. Usually in images a tumor region can be regarded as a salient object. Inspired by this observation, we propose a new feature which uses a saliency detection algorithm. An edge-aware filtering technique is employed to align edges of the original image to the saliency map which enhances the boundaries of the tumor. Then, for classification of tumors in brain images, a set of robust texture features are extracted from super-voxels. Experimental results indicate that our proposed method outperforms a comparable state-of-the-art algorithm in term of dice score.
Le, T Hoang Ngan; Luu, Khoa; Savvides, Marios
2013-08-01
Robust facial hair detection and segmentation is a highly valued soft biometric attribute for carrying out forensic facial analysis. In this paper, we propose a novel and fully automatic system, called SparCLeS, for beard/moustache detection and segmentation in challenging facial images. SparCLeS uses the multiscale self-quotient (MSQ) algorithm to preprocess facial images and deal with illumination variation. Histogram of oriented gradients (HOG) features are extracted from the preprocessed images and a dynamic sparse classifier is built using these features to classify a facial region as either containing skin or facial hair. A level set based approach, which makes use of the advantages of both global and local information, is then used to segment the regions of a face containing facial hair. Experimental results demonstrate the effectiveness of our proposed system in detecting and segmenting facial hair regions in images drawn from three databases, i.e., the NIST Multiple Biometric Grand Challenge (MBGC) still face database, the NIST Color Facial Recognition Technology FERET database, and the Labeled Faces in the Wild (LFW) database.
A Set of Handwriting Features for Use in Automated Writer Identification.
Miller, John J; Patterson, Robert Bradley; Gantz, Donald T; Saunders, Christopher P; Walch, Mark A; Buscaglia, JoAnn
2017-05-01
A writer's biometric identity can be characterized through the distribution of physical feature measurements ("writer's profile"); a graph-based system that facilitates the quantification of these features is described. To accomplish this quantification, handwriting is segmented into basic graphical forms ("graphemes"), which are "skeletonized" to yield the graphical topology of the handwritten segment. The graph-based matching algorithm compares the graphemes first by their graphical topology and then by their geometric features. Graphs derived from known writers can be compared against graphs extracted from unknown writings. The process is computationally intensive and relies heavily upon statistical pattern recognition algorithms. This article focuses on the quantification of these physical features and the construction of the associated pattern recognition methods for using the features to discriminate among writers. The graph-based system described in this article has been implemented in a highly accurate and approximately language-independent biometric recognition system of writers of cursive documents. © 2017 American Academy of Forensic Sciences.
Nearest neighbor 3D segmentation with context features
NASA Astrophysics Data System (ADS)
Hristova, Evelin; Schulz, Heinrich; Brosch, Tom; Heinrich, Mattias P.; Nickisch, Hannes
2018-03-01
Automated and fast multi-label segmentation of medical images is challenging and clinically important. This paper builds upon a supervised machine learning framework that uses training data sets with dense organ annotations and vantage point trees to classify voxels in unseen images based on similarity of binary feature vectors extracted from the data. Without explicit model knowledge, the algorithm is applicable to different modalities and organs, and achieves high accuracy. The method is successfully tested on 70 abdominal CT and 42 pelvic MR images. With respect to ground truth, an average Dice overlap score of 0.76 for the CT segmentation of liver, spleen and kidneys is achieved. The mean score for the MR delineation of bladder, bones, prostate and rectum is 0.65. Additionally, we benchmark several variations of the main components of the method and reduce the computation time by up to 47% without significant loss of accuracy. The segmentation results are - for a nearest neighbor method - surprisingly accurate, robust as well as data and time efficient.
Analysis of cerebral vessels dynamics using experimental data with missed segments
NASA Astrophysics Data System (ADS)
Pavlova, O. N.; Abdurashitov, A. S.; Ulanova, M. V.; Shihalov, G. M.; Semyachkina-Glushkovskaya, O. V.; Pavlov, A. N.
2018-04-01
Physiological signals often contain various bad segments that occur due to artifacts, failures of the recording equipment or varying experimental conditions. The related experimental data need to be preprocessed to avoid such parts of recordings. In the case of few bad segments, they can simply be removed from the signal and its analysis is further performed. However, when there are many extracted segments, the internal structure of the analyzed physiological process may be destroyed, and it is unclear whether such signal can be used in diagnostic-related studies. In this paper we address this problem for the case of cerebral vessels dynamics. We perform analysis of simulated data in order to reveal general features of quantifying scaling features of complex signals with distinct correlation properties and show that the effects of data loss are significantly different for experimental data with long-range correlations and anti-correlations. We conclude that the cerebral vessels dynamics is significantly less sensitive to missed data fragments as compared with signals with anti-correlated statistics.
Reproducibility and Prognosis of Quantitative Features Extracted from CT Images12
Balagurunathan, Yoganand; Gu, Yuhua; Wang, Hua; Kumar, Virendra; Grove, Olya; Hawkins, Sam; Kim, Jongphil; Goldgof, Dmitry B; Hall, Lawrence O; Gatenby, Robert A; Gillies, Robert J
2014-01-01
We study the reproducibility of quantitative imaging features that are used to describe tumor shape, size, and texture from computed tomography (CT) scans of non-small cell lung cancer (NSCLC). CT images are dependent on various scanning factors. We focus on characterizing image features that are reproducible in the presence of variations due to patient factors and segmentation methods. Thirty-two NSCLC nonenhanced lung CT scans were obtained from the Reference Image Database to Evaluate Response data set. The tumors were segmented using both manual (radiologist expert) and ensemble (software-automated) methods. A set of features (219 three-dimensional and 110 two-dimensional) was computed, and quantitative image features were statistically filtered to identify a subset of reproducible and nonredundant features. The variability in the repeated experiment was measured by the test-retest concordance correlation coefficient (CCCTreT). The natural range in the features, normalized to variance, was measured by the dynamic range (DR). In this study, there were 29 features across segmentation methods found with CCCTreT and DR ≥ 0.9 and R2Bet ≥ 0.95. These reproducible features were tested for predicting radiologist prognostic score; some texture features (run-length and Laws kernels) had an area under the curve of 0.9. The representative features were tested for their prognostic capabilities using an independent NSCLC data set (59 lung adenocarcinomas), where one of the texture features, run-length gray-level nonuniformity, was statistically significant in separating the samples into survival groups (P ≤ .046). PMID:24772210
A new license plate extraction framework based on fast mean shift
NASA Astrophysics Data System (ADS)
Pan, Luning; Li, Shuguang
2010-08-01
License plate extraction is considered to be the most crucial step of Automatic license plate recognition (ALPR) system. In this paper, a region-based license plate hybrid detection method is proposed to solve practical problems under complex background in which existing large quantity of disturbing information. In this method, coarse license plate location is carried out firstly to get the head part of a vehicle. Then a new Fast Mean Shift method based on random sampling of Kernel Density Estimate (KDE) is adopted to segment the color vehicle images, in order to get candidate license plate regions. The remarkable speed-up it brings makes Mean Shift segmentation more suitable for this application. Feature extraction and classification is used to accurately separate license plate from other candidate regions. At last, tilted license plate regulation is used for future recognition steps.
Analysis of spike-wave discharges in rats using discrete wavelet transform.
Ubeyli, Elif Derya; Ilbay, Gül; Sahin, Deniz; Ateş, Nurbay
2009-03-01
A feature is a distinctive or characteristic measurement, transform, structural component extracted from a segment of a pattern. Features are used to represent patterns with the goal of minimizing the loss of important information. The discrete wavelet transform (DWT) as a feature extraction method was used in representing the spike-wave discharges (SWDs) records of Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. The SWD records of WAG/Rij rats were decomposed into time-frequency representations using the DWT and the statistical features were calculated to depict their distribution. The obtained wavelet coefficients were used to identify characteristics of the signal that were not apparent from the original time domain signal. The present study demonstrates that the wavelet coefficients are useful in determining the dynamics in the time-frequency domain of SWD records.
Du, Cheng-Jin; Sun, Da-Wen; Jackman, Patrick; Allen, Paul
2008-12-01
An automatic method for estimating the content of intramuscular fat (IMF) in beef M. longissimus dorsi (LD) was developed using a sequence of image processing algorithm. To extract IMF particles within the LD muscle from structural features of intermuscular fat surrounding the muscle, three steps of image processing algorithm were developed, i.e. bilateral filter for noise removal, kernel fuzzy c-means clustering (KFCM) for segmentation, and vector confidence connected and flood fill for IMF extraction. The technique of bilateral filtering was firstly applied to reduce the noise and enhance the contrast of the beef image. KFCM was then used to segment the filtered beef image into lean, fat, and background. The IMF was finally extracted from the original beef image by using the techniques of vector confidence connected and flood filling. The performance of the algorithm developed was verified by correlation analysis between the IMF characteristics and the percentage of chemically extractable IMF content (P<0.05). Five IMF features are very significantly correlated with the fat content (P<0.001), including count densities of middle (CDMiddle) and large (CDLarge) fat particles, area densities of middle and large fat particles, and total fat area per unit LD area. The highest coefficient is 0.852 for CDLarge.
Wang, ShaoPeng; Zhang, Yu-Hang; Huang, GuoHua; Chen, Lei; Cai, Yu-Dong
2017-01-01
Myristoylation is an important hydrophobic post-translational modification that is covalently bound to the amino group of Gly residues on the N-terminus of proteins. The many diverse functions of myristoylation on proteins, such as membrane targeting, signal pathway regulation and apoptosis, are largely due to the lipid modification, whereas abnormal or irregular myristoylation on proteins can lead to several pathological changes in the cell. To better understand the function of myristoylated sites and to correctly identify them in protein sequences, this study conducted a novel computational investigation on identifying myristoylation sites in protein sequences. A training dataset with 196 positive and 84 negative peptide segments were obtained. Four types of features derived from the peptide segments following the myristoylation sites were used to specify myristoylatedand non-myristoylated sites. Then, feature selection methods including maximum relevance and minimum redundancy (mRMR), incremental feature selection (IFS), and a machine learning algorithm (extreme learning machine method) were adopted to extract optimal features for the algorithm to identify myristoylation sites in protein sequences, thereby building an optimal prediction model. As a result, 41 key features were extracted and used to build an optimal prediction model. The effectiveness of the optimal prediction model was further validated by its performance on a test dataset. Furthermore, detailed analyses were also performed on the extracted 41 features to gain insight into the mechanism of myristoylation modification. This study provided a new computational method for identifying myristoylation sites in protein sequences. We believe that it can be a useful tool to predict myristoylation sites from protein sequences. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Filter Design and Performance Evaluation for Fingerprint Image Segmentation
Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten
2016-01-01
Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: ‘true’ foreground can be labeled as background and features like minutiae can be lost, or conversely ‘true’ background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available. PMID:27171150
Temporal Analysis and Automatic Calibration of the Velodyne HDL-32E LiDAR System
NASA Astrophysics Data System (ADS)
Chan, T. O.; Lichti, D. D.; Belton, D.
2013-10-01
At the end of the first quarter of 2012, more than 600 Velodyne LiDAR systems had been sold worldwide for various robotic and high-accuracy survey applications. The ultra-compact Velodyne HDL-32E LiDAR has become a predominant sensor for many applications that require lower sensor size/weight and cost. For high accuracy applications, cost-effective calibration methods with minimal manual intervention are always desired by users. However, the calibrations are complicated by the Velodyne LiDAR's narrow vertical field of view and the very highly time-variant nature of its measurements. In the paper, the temporal stability of the HDL-32E is first analysed as the motivation for developing a new, automated calibration method. This is followed by a detailed description of the calibration method that is driven by a novel segmentation method for extracting vertical cylindrical features from the Velodyne point clouds. The proposed segmentation method utilizes the Velodyne point cloud's slice-like nature and first decomposes the point clouds into 2D layers. Then the layers are treated as 2D images and are processed with the Generalized Hough Transform which extracts the points distributed in circular patterns from the point cloud layers. Subsequently, the vertical cylindrical features can be readily extracted from the whole point clouds based on the previously extracted points. The points are passed to the calibration that estimates the cylinder parameters and the LiDAR's additional parameters simultaneously by constraining the segmented points to fit to the cylindrical geometric model in such a way the weighted sum of the adjustment residuals are minimized. The proposed calibration is highly automatic and this allows end users to obtain the time-variant additional parameters instantly and frequently whenever there are vertical cylindrical features presenting in scenes. The methods were verified with two different real datasets, and the results suggest that up to 78.43% accuracy improvement for the HDL-32E can be achieved using the proposed calibration method.
Multi-Scale Voxel Segmentation for Terrestrial Lidar Data within Marshes
NASA Astrophysics Data System (ADS)
Nguyen, C. T.; Starek, M. J.; Tissot, P.; Gibeaut, J. C.
2016-12-01
The resilience of marshes to a rising sea is dependent on their elevation response. Terrestrial laser scanning (TLS) is a detailed topographic approach for accurate, dense surface measurement with high potential for monitoring of marsh surface elevation response. The dense point cloud provides a 3D representation of the surface, which includes both terrain and non-terrain objects. Extraction of topographic information requires filtering of the data into like-groups or classes, therefore, methods must be incorporated to identify structure in the data prior to creation of an end product. A voxel representation of three-dimensional space provides quantitative visualization and analysis for pattern recognition. The objectives of this study are threefold: 1) apply a multi-scale voxel approach to effectively extract geometric features from the TLS point cloud data, 2) investigate the utility of K-means and Self Organizing Map (SOM) clustering algorithms for segmentation, and 3) utilize a variety of validity indices to measure the quality of the result. TLS data were collected at a marsh site along the central Texas Gulf Coast using a Riegl VZ 400 TLS. The site consists of both exposed and vegetated surface regions. To characterize structure of the point cloud, octree segmentation is applied to create a tree data structure of voxels containing the points. The flexibility of voxels in size and point density makes this algorithm a promising candidate to locally extract statistical and geometric features of the terrain including surface normal and curvature. The characteristics of the voxel itself such as the volume and point density are also computed and assigned to each point as are laser pulse characteristics. The features extracted from the voxelization are then used as input for clustering of the points using the K-means and SOM clustering algorithms. Optimal number of clusters are then determined based on evaluation of cluster separability criterions. Results for different combinations of the feature space vector and differences between K-means and SOM clustering will be presented. The developed method provides a novel approach for compressing TLS scene complexity in marshes, such as for vegetation biomass studies or erosion monitoring.
Bahadure, Nilesh Bhaskarrao; Ray, Arun Kumar; Thethi, Har Pal
2018-01-17
The detection of a brain tumor and its classification from modern imaging modalities is a primary concern, but a time-consuming and tedious work was performed by radiologists or clinical supervisors. The accuracy of detection and classification of tumor stages performed by radiologists is depended on their experience only, so the computer-aided technology is very important to aid with the diagnosis accuracy. In this study, to improve the performance of tumor detection, we investigated comparative approach of different segmentation techniques and selected the best one by comparing their segmentation score. Further, to improve the classification accuracy, the genetic algorithm is employed for the automatic classification of tumor stage. The decision of classification stage is supported by extracting relevant features and area calculation. The experimental results of proposed technique are evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on segmentation score, accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 92.03% accuracy, 91.42% specificity, 92.36% sensitivity, and an average segmentation score between 0.82 and 0.93 demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 93.79% dice similarity index coefficient, which indicates better overlap between the automated extracted tumor regions with manually extracted tumor region by radiologists.
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Chughtai, Aamer; Wei, Jun; Kazerooni, Ella A.
2016-03-01
We are developing an automated method to identify the best quality segment among the corresponding segments in multiple-phase cCTA. The coronary artery trees are automatically extracted from different cCTA phases using our multi-scale vessel segmentation and tracking method. An automated registration method is then used to align the multiple-phase artery trees. The corresponding coronary artery segments are identified in the registered vessel trees and are straightened by curved planar reformation (CPR). Four features are extracted from each segment in each phase as quality indicators in the original CT volume and the straightened CPR volume. Each quality indicator is used as a voting classifier to vote the corresponding segments. A newly designed weighted voting ensemble (WVE) classifier is finally used to determine the best-quality coronary segment. An observer preference study is conducted with three readers to visually rate the quality of the vessels in 1 to 6 rankings. Six and 10 cCTA cases are used as training and test set in this preliminary study. For the 10 test cases, the agreement between automatically identified best-quality (AI-BQ) segments and radiologist's top 2 rankings is 79.7%, and between AI-BQ and the other two readers are 74.8% and 83.7%, respectively. The results demonstrated that the performance of our automated method was comparable to those of experienced readers for identification of the best-quality coronary segments.
A Low Cost VLSI Architecture for Spike Sorting Based on Feature Extraction with Peak Search.
Chang, Yuan-Jyun; Hwang, Wen-Jyi; Chen, Chih-Chang
2016-12-07
The goal of this paper is to present a novel VLSI architecture for spike sorting with high classification accuracy, low area costs and low power consumption. A novel feature extraction algorithm with low computational complexities is proposed for the design of the architecture. In the feature extraction algorithm, a spike is separated into two portions based on its peak value. The area of each portion is then used as a feature. The algorithm is simple to implement and less susceptible to noise interference. Based on the algorithm, a novel architecture capable of identifying peak values and computing spike areas concurrently is proposed. To further accelerate the computation, a spike can be divided into a number of segments for the local feature computation. The local features are subsequently merged with the global ones by a simple hardware circuit. The architecture can also be easily operated in conjunction with the circuits for commonly-used spike detection algorithms, such as the Non-linear Energy Operator (NEO). The architecture has been implemented by an Application-Specific Integrated Circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture is well suited for real-time multi-channel spike detection and feature extraction requiring low hardware area costs, low power consumption and high classification accuracy.
Dehzangi, Abdollah; Paliwal, Kuldip; Sharma, Alok; Dehzangi, Omid; Sattar, Abdul
2013-01-01
Better understanding of structural class of a given protein reveals important information about its overall folding type and its domain. It can also be directly used to provide critical information on general tertiary structure of a protein which has a profound impact on protein function determination and drug design. Despite tremendous enhancements made by pattern recognition-based approaches to solve this problem, it still remains as an unsolved issue for bioinformatics that demands more attention and exploration. In this study, we propose a novel feature extraction model that incorporates physicochemical and evolutionary-based information simultaneously. We also propose overlapped segmented distribution and autocorrelation-based feature extraction methods to provide more local and global discriminatory information. The proposed feature extraction methods are explored for 15 most promising attributes that are selected from a wide range of physicochemical-based attributes. Finally, by applying an ensemble of different classifiers namely, Adaboost.M1, LogitBoost, naive Bayes, multilayer perceptron (MLP), and support vector machine (SVM) we show enhancement of the protein structural class prediction accuracy for four popular benchmarks.
Breast cancer mitosis detection in histopathological images with spatial feature extraction
NASA Astrophysics Data System (ADS)
Albayrak, Abdülkadir; Bilgin, Gökhan
2013-12-01
In this work, cellular mitosis detection in histopathological images has been investigated. Mitosis detection is very expensive and time consuming process. Development of digital imaging in pathology has enabled reasonable and effective solution to this problem. Segmentation of digital images provides easier analysis of cell structures in histopathological data. To differentiate normal and mitotic cells in histopathological images, feature extraction step is very crucial step for the system accuracy. A mitotic cell has more distinctive textural dissimilarities than the other normal cells. Hence, it is important to incorporate spatial information in feature extraction or in post-processing steps. As a main part of this study, Haralick texture descriptor has been proposed with different spatial window sizes in RGB and La*b* color spaces. So, spatial dependencies of normal and mitotic cellular pixels can be evaluated within different pixel neighborhoods. Extracted features are compared with various sample sizes by Support Vector Machines using k-fold cross validation method. According to the represented results, it has been shown that separation accuracy on mitotic and non-mitotic cellular pixels gets better with the increasing size of spatial window.
Feature extraction for change analysis in SAR time series
NASA Astrophysics Data System (ADS)
Boldt, Markus; Thiele, Antje; Schulz, Karsten; Hinz, Stefan
2015-10-01
In remote sensing, the change detection topic represents a broad field of research. If time series data is available, change detection can be used for monitoring applications. These applications require regular image acquisitions at identical time of day along a defined period. Focusing on remote sensing sensors, radar is especially well-capable for applications requiring regularity, since it is independent from most weather and atmospheric influences. Furthermore, regarding the image acquisitions, the time of day plays no role due to the independence from daylight. Since 2007, the German SAR (Synthetic Aperture Radar) satellite TerraSAR-X (TSX) permits the acquisition of high resolution radar images capable for the analysis of dense built-up areas. In a former study, we presented the change analysis of the Stuttgart (Germany) airport. The aim of this study is the categorization of detected changes in the time series. This categorization is motivated by the fact that it is a poor statement only to describe where and when a specific area has changed. At least as important is the statement about what has caused the change. The focus is set on the analysis of so-called high activity areas (HAA) representing areas changing at least four times along the investigated period. As first step for categorizing these HAAs, the matching HAA changes (blobs) have to be identified. Afterwards, operating in this object-based blob level, several features are extracted which comprise shape-based, radiometric, statistic, morphological values and one context feature basing on a segmentation of the HAAs. This segmentation builds on the morphological differential attribute profiles (DAPs). Seven context classes are established: Urban, infrastructure, rural stable, rural unstable, natural, water and unclassified. A specific HA blob is assigned to one of these classes analyzing the CovAmCoh time series signature of the surrounding segments. In combination, also surrounding GIS information is included to verify the CovAmCoh based context assignment. In this paper, the focus is set on the features extracted for a later change categorization procedure.
Arabic sign language recognition based on HOG descriptor
NASA Astrophysics Data System (ADS)
Ben Jmaa, Ahmed; Mahdi, Walid; Ben Jemaa, Yousra; Ben Hamadou, Abdelmajid
2017-02-01
We present in this paper a new approach for Arabic sign language (ArSL) alphabet recognition using hand gesture analysis. This analysis consists in extracting a histogram of oriented gradient (HOG) features from a hand image and then using them to generate an SVM Models. Which will be used to recognize the ArSL alphabet in real-time from hand gesture using a Microsoft Kinect camera. Our approach involves three steps: (i) Hand detection and localization using a Microsoft Kinect camera, (ii) hand segmentation and (iii) feature extraction using Arabic alphabet recognition. One each input image first obtained by using a depth sensor, we apply our method based on hand anatomy to segment hand and eliminate all the errors pixels. This approach is invariant to scale, to rotation and to translation of the hand. Some experimental results show the effectiveness of our new approach. Experiment revealed that the proposed ArSL system is able to recognize the ArSL with an accuracy of 90.12%.
Min-Cut Based Segmentation of Airborne LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Ural, S.; Shan, J.
2012-07-01
Introducing an organization to the unstructured point cloud before extracting information from airborne lidar data is common in many applications. Aggregating the points with similar features into segments in 3-D which comply with the nature of actual objects is affected by the neighborhood, scale, features and noise among other aspects. In this study, we present a min-cut based method for segmenting the point cloud. We first assess the neighborhood of each point in 3-D by investigating the local geometric and statistical properties of the candidates. Neighborhood selection is essential since point features are calculated within their local neighborhood. Following neighborhood determination, we calculate point features and determine the clusters in the feature space. We adapt a graph representation from image processing which is especially used in pixel labeling problems and establish it for the unstructured 3-D point clouds. The edges of the graph that are connecting the points with each other and nodes representing feature clusters hold the smoothness costs in the spatial domain and data costs in the feature domain. Smoothness costs ensure spatial coherence, while data costs control the consistency with the representative feature clusters. This graph representation formalizes the segmentation task as an energy minimization problem. It allows the implementation of an approximate solution by min-cuts for a global minimum of this NP hard minimization problem in low order polynomial time. We test our method with airborne lidar point cloud acquired with maximum planned post spacing of 1.4 m and a vertical accuracy 10.5 cm as RMSE. We present the effects of neighborhood and feature determination in the segmentation results and assess the accuracy and efficiency of the implemented min-cut algorithm as well as its sensitivity to the parameters of the smoothness and data cost functions. We find that smoothness cost that only considers simple distance parameter does not strongly conform to the natural structure of the points. Including shape information within the energy function by assigning costs based on the local properties may help to achieve a better representation for segmentation.
3D variational brain tumor segmentation on a clustered feature set
NASA Astrophysics Data System (ADS)
Popuri, Karteek; Cobzas, Dana; Jagersand, Martin; Shah, Sirish L.; Murtha, Albert
2009-02-01
Tumor segmentation from MRI data is a particularly challenging and time consuming task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. Our work addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multi-dimensional feature set. Further, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this paper is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to the previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned inside and outside region voxel probabilities in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance, during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters in the ventricles to be in the tumor and hence better disambiguate the tumor from brain tissue. We show the performance of our method on real MRI scans. The experimental dataset includes MRI scans, from patients with difficult instances, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Our method shows good results on these test cases.
Speculation detection for Chinese clinical notes: Impacts of word segmentation and embedding models.
Zhang, Shaodian; Kang, Tian; Zhang, Xingting; Wen, Dong; Elhadad, Noémie; Lei, Jianbo
2016-04-01
Speculations represent uncertainty toward certain facts. In clinical texts, identifying speculations is a critical step of natural language processing (NLP). While it is a nontrivial task in many languages, detecting speculations in Chinese clinical notes can be particularly challenging because word segmentation may be necessary as an upstream operation. The objective of this paper is to construct a state-of-the-art speculation detection system for Chinese clinical notes and to investigate whether embedding features and word segmentations are worth exploiting toward this overall task. We propose a sequence labeling based system for speculation detection, which relies on features from bag of characters, bag of words, character embedding, and word embedding. We experiment on a novel dataset of 36,828 clinical notes with 5103 gold-standard speculation annotations on 2000 notes, and compare the systems in which word embeddings are calculated based on word segmentations given by general and by domain specific segmenters respectively. Our systems are able to reach performance as high as 92.2% measured by F score. We demonstrate that word segmentation is critical to produce high quality word embedding to facilitate downstream information extraction applications, and suggest that a domain dependent word segmenter can be vital to such a clinical NLP task in Chinese language. Copyright © 2016 Elsevier Inc. All rights reserved.
Automated estimation of leaf distribution for individual trees based on TLS point clouds
NASA Astrophysics Data System (ADS)
Koma, Zsófia; Rutzinger, Martin; Bremer, Magnus
2017-04-01
Light Detection and Ranging (LiDAR) especially the ground based LiDAR (Terrestrial Laser Scanning - TLS) is an operational used and widely available measurement tool supporting forest inventory updating and research in forest ecology. High resolution point clouds from TLS already represent single leaves which can be used for a more precise estimation of Leaf Area Index (LAI) and for higher accurate biomass estimation. However, currently the methodology for extracting single leafs from the unclassified point clouds for individual trees is still missing. The aim of this study is to present a novel segmentation approach in order to extract single leaves and derive features related to leaf morphology (such as area, slope, length and width) of each single leaf from TLS point cloud data. For the study two exemplary single trees were scanned in leaf-on condition on the university campus of Innsbruck during calm wind conditions. A northern red oak (Quercus rubra) was scanned by a discrete return recording Optech ILRIS-3D TLS scanner and a tulip tree (Liliodendron tulpifera) with Riegl VZ-6000 scanner. During the scanning campaign a reference dataset was measured parallel to scanning. In this case 230 leaves were randomly collected around the lower branches of the tree and photos were taken. The developed workflow steps were the following: in the first step normal vectors and eigenvalues were calculated based on the user specified neighborhood. Then using the direction of the largest eigenvalue outliers i.e. ghost points were removed. After that region growing segmentation based on the curvature and angles between normal vectors was applied on the filtered point cloud. On each segment a RANSAC plane fitting algorithm was applied in order to extract the segment based normal vectors. Using the related features of the calculated segments the stem and branches were labeled as non-leaf and other segments were classified as leaf. The validation of the different segmentation parameters was evaluated as the following: i) the sum area of the collected leaves and the point cloud, ii) the segmented leaf length-width ratio iii) the distribution of the leaf area for the segmented and the reference-ones were compared and the ideal parameter-set was found. The results show that the leaves can be captured with the developed workflow and the slope can be determined robustly for the segmented leaves. However, area, length and width values are systematically depending on the angle and the distance from the scanner. For correction of the systematic underestimation, more systematic measurement or LiDAR simulation is required for further detailed analysis. The results of leaf segmentation algorithm show high potential in generating more precise tree models with correctly located leaves in order to extract more precise input model for biological modeling of LAI or atmospheric corrections studies. The presented workflow also can be used in monitoring the change of angle of the leaves due to sun irradiation, water balance, and day-night rhythm.
NASA Astrophysics Data System (ADS)
Paino, A.; Keller, J.; Popescu, M.; Stone, K.
2014-06-01
In this paper we present an approach that uses Genetic Programming (GP) to evolve novel feature extraction algorithms for greyscale images. Our motivation is to create an automated method of building new feature extraction algorithms for images that are competitive with commonly used human-engineered features, such as Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG). The evolved feature extraction algorithms are functions defined over the image space, and each produces a real-valued feature vector of variable length. Each evolved feature extractor breaks up the given image into a set of cells centered on every pixel, performs evolved operations on each cell, and then combines the results of those operations for every cell using an evolved operator. Using this method, the algorithm is flexible enough to reproduce both LBP and HOG features. The dataset we use to train and test our approach consists of a large number of pre-segmented image "chips" taken from a Forward Looking Infrared Imagery (FLIR) camera mounted on the hood of a moving vehicle. The goal is to classify each image chip as either containing or not containing a buried object. To this end, we define the fitness of a candidate solution as the cross-fold validation accuracy of the features generated by said candidate solution when used in conjunction with a Support Vector Machine (SVM) classifier. In order to validate our approach, we compare the classification accuracy of an SVM trained using our evolved features with the accuracy of an SVM trained using mainstream feature extraction algorithms, including LBP and HOG.
Extraction of edge-based and region-based features for object recognition
NASA Astrophysics Data System (ADS)
Coutts, Benjamin; Ravi, Srinivas; Hu, Gongzhu; Shrikhande, Neelima
1993-08-01
One of the central problems of computer vision is object recognition. A catalogue of model objects is described as a set of features such as edges and surfaces. The same features are extracted from the scene and matched against the models for object recognition. Edges and surfaces extracted from the scenes are often noisy and imperfect. In this paper algorithms are described for improving low level edge and surface features. Existing edge extraction algorithms are applied to the intensity image to obtain edge features. Initial edges are traced by following directions of the current contour. These are improved by using corresponding depth and intensity information for decision making at branch points. Surface fitting routines are applied to the range image to obtain planar surface patches. An algorithm of region growing is developed that starts with a coarse segmentation and uses quadric surface fitting to iteratively merge adjacent regions into quadric surfaces based on approximate orthogonal distance regression. Surface information obtained is returned to the edge extraction routine to detect and remove fake edges. This process repeats until no more merging or edge improvement can take place. Both synthetic (with Gaussian noise) and real images containing multiple object scenes have been tested using the merging criteria. Results appeared quite encouraging.
Fission gas bubble identification using MATLAB's image processing toolbox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collette, R.
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. This study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding proved to bemore » the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods. - Highlights: •Automated image processing can aid in the fuel qualification process. •Routines are developed to characterize fission gas bubbles in irradiated U–Mo fuel. •Frequency domain filtration effectively eliminates FIB curtaining artifacts. •Adaptive thresholding proved to be the most accurate segmentation method. •The techniques established are ready to be applied to large scale data extraction testing.« less
Power spectral ensity of markov texture fields
NASA Technical Reports Server (NTRS)
Shanmugan, K. S.; Holtzman, J. C.
1984-01-01
Texture is an important image characteristic. A variety of spatial domain techniques were proposed for extracting and utilizing textural features for segmenting and classifying images. for the most part, these spatial domain techniques are ad hos in nature. A markov random field model for image texture is discussed. A frequency domain description of image texture is derived in terms of the power spectral density. This model is used for designing optimum frequency domain filters for enhancing, restoring and segmenting images based on their textural properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Nishikawa, R; Reiser, I
Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benignmore » or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification performance. The best segmentation Result does not necessarily lead to the best classification Result. This work has been supported in part by grants from the NIH R21-EB015053. R Nishikawa is receives royalties form Hologic, Inc.« less
Extraction and classification of 3D objects from volumetric CT data
NASA Astrophysics Data System (ADS)
Song, Samuel M.; Kwon, Junghyun; Ely, Austin; Enyeart, John; Johnson, Chad; Lee, Jongkyu; Kim, Namho; Boyd, Douglas P.
2016-05-01
We propose an Automatic Threat Detection (ATD) algorithm for Explosive Detection System (EDS) using our multistage Segmentation Carving (SC) followed by Support Vector Machine (SVM) classifier. The multi-stage Segmentation and Carving (SC) step extracts all suspect 3-D objects. The feature vector is then constructed for all extracted objects and the feature vector is classified by the Support Vector Machine (SVM) previously learned using a set of ground truth threat and benign objects. The learned SVM classifier has shown to be effective in classification of different types of threat materials. The proposed ATD algorithm robustly deals with CT data that are prone to artifacts due to scatter, beam hardening as well as other systematic idiosyncrasies of the CT data. Furthermore, the proposed ATD algorithm is amenable for including newly emerging threat materials as well as for accommodating data from newly developing sensor technologies. Efficacy of the proposed ATD algorithm with the SVM classifier is demonstrated by the Receiver Operating Characteristics (ROC) curve that relates Probability of Detection (PD) as a function of Probability of False Alarm (PFA). The tests performed using CT data of passenger bags shows excellent performance characteristics.
Region based feature extraction from non-cooperative iris images using triplet half-band filter bank
NASA Astrophysics Data System (ADS)
Barpanda, Soubhagya Sankar; Majhi, Banshidhar; Sa, Pankaj Kumar
2015-09-01
In this paper, we have proposed energy based features using a multi-resolution analysis (MRA) on iris template. The MRA is based on our suggested triplet half-band filter bank (THFB). The THFB derivation process is discussed in detail. The iris template is divided into six equispaced sub-templates and two level decomposition has been made to each sub-template using THFB except second one. The reason for discarding the second template is due to the fact that it mostly contains the noise due to eyelids, eyelashes, and occlusion due to segmentation failure. Subsequently, energy features are derived from the decomposed coefficients of each sub-template. The proposed feature has been experimented on standard databases like CASIAv3, UBIRISv1, and IITD and mostly on iris images which encounter a segmentation failure. Comparative analysis has been done with existing features based on Gabor transform, Fourier transform, and CDF 9/7 filter bank. The proposed scheme shows superior performance with respect to FAR, GAR and AUC.
A random forest model based classification scheme for neonatal amplitude-integrated EEG.
Chen, Weiting; Wang, Yu; Cao, Guitao; Chen, Guoqiang; Gu, Qiufang
2014-01-01
Modern medical advances have greatly increased the survival rate of infants, while they remain in the higher risk group for neurological problems later in life. For the infants with encephalopathy or seizures, identification of the extent of brain injury is clinically challenging. Continuous amplitude-integrated electroencephalography (aEEG) monitoring offers a possibility to directly monitor the brain functional state of the newborns over hours, and has seen an increasing application in neonatal intensive care units (NICUs). This paper presents a novel combined feature set of aEEG and applies random forest (RF) method to classify aEEG tracings. To that end, a series of experiments were conducted on 282 aEEG tracing cases (209 normal and 73 abnormal ones). Basic features, statistic features and segmentation features were extracted from both the tracing as a whole and the segmented recordings, and then form a combined feature set. All the features were sent to a classifier afterwards. The significance of feature, the data segmentation, the optimization of RF parameters, and the problem of imbalanced datasets were examined through experiments. Experiments were also done to evaluate the performance of RF on aEEG signal classifying, compared with several other widely used classifiers including SVM-Linear, SVM-RBF, ANN, Decision Tree (DT), Logistic Regression(LR), ML, and LDA. The combined feature set can better characterize aEEG signals, compared with basic features, statistic features and segmentation features respectively. With the combined feature set, the proposed RF-based aEEG classification system achieved a correct rate of 92.52% and a high F1-score of 95.26%. Among all of the seven classifiers examined in our work, the RF method got the highest correct rate, sensitivity, specificity, and F1-score, which means that RF outperforms all of the other classifiers considered here. The results show that the proposed RF-based aEEG classification system with the combined feature set is efficient and helpful to better detect the brain disorders in newborns.
Fusing Image Data for Calculating Position of an Object
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Cheng, Yang; Liebersbach, Robert; Trebi-Ollenu, Ashitey
2007-01-01
A computer program has been written for use in maintaining the calibration, with respect to the positions of imaged objects, of a stereoscopic pair of cameras on each of the Mars Explorer Rovers Spirit and Opportunity. The program identifies and locates a known object in the images. The object in question is part of a Moessbauer spectrometer located at the tip of a robot arm, the kinematics of which are known. In the program, the images are processed through a module that extracts edges, combines the edges into line segments, and then derives ellipse centroids from the line segments. The images are also processed by a feature-extraction algorithm that performs a wavelet analysis, then performs a pattern-recognition operation in the wavelet-coefficient space to determine matches to a texture feature measure derived from the horizontal, vertical, and diagonal coefficients. The centroids from the ellipse finder and the wavelet feature matcher are then fused to determine co-location. In the event that a match is found, the centroid (or centroids if multiple matches are present) is reported. If no match is found, the process reports the results of the analyses for further examination by human experts.
Dynamic updating atlas for heart segmentation with a nonlinear field-based model.
Cai, Ken; Yang, Rongqian; Yue, Hongwei; Li, Lihua; Ou, Shanxing; Liu, Feng
2017-09-01
Segmentation of cardiac computed tomography (CT) images is an effective method for assessing the dynamic function of the heart and lungs. In the atlas-based heart segmentation approach, the quality of segmentation usually relies upon atlas images, and the selection of those reference images is a key step. The optimal goal in this selection process is to have the reference images as close to the target image as possible. This study proposes an atlas dynamic update algorithm using a scheme of nonlinear deformation field. The proposed method is based on the features among double-source CT (DSCT) slices. The extraction of these features will form a base to construct an average model and the created reference atlas image is updated during the registration process. A nonlinear field-based model was used to effectively implement a 4D cardiac segmentation. The proposed segmentation framework was validated with 14 4D cardiac CT sequences. The algorithm achieved an acceptable accuracy (1.0-2.8 mm). Our proposed method that combines a nonlinear field-based model and dynamic updating atlas strategies can provide an effective and accurate way for whole heart segmentation. The success of the proposed method largely relies on the effective use of the prior knowledge of the atlas and the similarity explored among the to-be-segmented DSCT sequences. Copyright © 2016 John Wiley & Sons, Ltd.
Hayat, Maqsood; Khan, Asifullah
2013-05-01
Membrane protein is the prime constituent of a cell, which performs a role of mediator between intra and extracellular processes. The prediction of transmembrane (TM) helix and its topology provides essential information regarding the function and structure of membrane proteins. However, prediction of TM helix and its topology is a challenging issue in bioinformatics and computational biology due to experimental complexities and lack of its established structures. Therefore, the location and orientation of TM helix segments are predicted from topogenic sequences. In this regard, we propose WRF-TMH model for effectively predicting TM helix segments. In this model, information is extracted from membrane protein sequences using compositional index and physicochemical properties. The redundant and irrelevant features are eliminated through singular value decomposition. The selected features provided by these feature extraction strategies are then fused to develop a hybrid model. Weighted random forest is adopted as a classification approach. We have used two benchmark datasets including low and high-resolution datasets. tenfold cross validation is employed to assess the performance of WRF-TMH model at different levels including per protein, per segment, and per residue. The success rates of WRF-TMH model are quite promising and are the best reported so far on the same datasets. It is observed that WRF-TMH model might play a substantial role, and will provide essential information for further structural and functional studies on membrane proteins. The accompanied web predictor is accessible at http://111.68.99.218/WRF-TMH/ .
Dendritic tree extraction from noisy maximum intensity projection images in C. elegans.
Greenblum, Ayala; Sznitman, Raphael; Fua, Pascal; Arratia, Paulo E; Oren, Meital; Podbilewicz, Benjamin; Sznitman, Josué
2014-06-12
Maximum Intensity Projections (MIP) of neuronal dendritic trees obtained from confocal microscopy are frequently used to study the relationship between tree morphology and mechanosensory function in the model organism C. elegans. Extracting dendritic trees from noisy images remains however a strenuous process that has traditionally relied on manual approaches. Here, we focus on automated and reliable 2D segmentations of dendritic trees following a statistical learning framework. Our dendritic tree extraction (DTE) method uses small amounts of labelled training data on MIPs to learn noise models of texture-based features from the responses of tree structures and image background. Our strategy lies in evaluating statistical models of noise that account for both the variability generated from the imaging process and from the aggregation of information in the MIP images. These noisy models are then used within a probabilistic, or Bayesian framework to provide a coarse 2D dendritic tree segmentation. Finally, some post-processing is applied to refine the segmentations and provide skeletonized trees using a morphological thinning process. Following a Leave-One-Out Cross Validation (LOOCV) method for an MIP databse with available "ground truth" images, we demonstrate that our approach provides significant improvements in tree-structure segmentations over traditional intensity-based methods. Improvements for MIPs under various imaging conditions are both qualitative and quantitative, as measured from Receiver Operator Characteristic (ROC) curves and the yield and error rates in the final segmentations. In a final step, we demonstrate our DTE approach on previously unseen MIP samples including the extraction of skeletonized structures, and compare our method to a state-of-the art dendritic tree tracing software. Overall, our DTE method allows for robust dendritic tree segmentations in noisy MIPs, outperforming traditional intensity-based methods. Such approach provides a useable segmentation framework, ultimately delivering a speed-up for dendritic tree identification on the user end and a reliable first step towards further morphological characterizations of tree arborization.
Brain's tumor image processing using shearlet transform
NASA Astrophysics Data System (ADS)
Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander
2017-09-01
Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.
Bakas, Spyridon; Akbari, Hamed; Sotiras, Aristeidis; Bilello, Michel; Rozycki, Martin; Kirby, Justin S.; Freymann, John B.; Farahani, Keyvan; Davatzikos, Christos
2017-01-01
Gliomas belong to a group of central nervous system tumors, and consist of various sub-regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for both clinical and computational studies, including radiomic and radiogenomic analyses. Towards this end, we release segmentation labels and radiomic features for all pre-operative multimodal magnetic resonance imaging (MRI) (n=243) of the multi-institutional glioma collections of The Cancer Genome Atlas (TCGA), publicly available in The Cancer Imaging Archive (TCIA). Pre-operative scans were identified in both glioblastoma (TCGA-GBM, n=135) and low-grade-glioma (TCGA-LGG, n=108) collections via radiological assessment. The glioma sub-region labels were produced by an automated state-of-the-art method and manually revised by an expert board-certified neuroradiologist. An extensive panel of radiomic features was extracted based on the manually-revised labels. This set of labels and features should enable i) direct utilization of the TCGA/TCIA glioma collections towards repeatable, reproducible and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments, as well as ii) performance evaluation of computer-aided segmentation methods, and comparison to our state-of-the-art method. PMID:28872634
Distance-based over-segmentation for single-frame RGB-D images
NASA Astrophysics Data System (ADS)
Fang, Zhuoqun; Wu, Chengdong; Chen, Dongyue; Jia, Tong; Yu, Xiaosheng; Zhang, Shihong; Qi, Erzhao
2017-11-01
Over-segmentation, known as super-pixels, is a widely used preprocessing step in segmentation algorithms. Oversegmentation algorithm segments an image into regions of perceptually similar pixels, but performs badly based on only color image in the indoor environments. Fortunately, RGB-D images can improve the performances on the images of indoor scene. In order to segment RGB-D images into super-pixels effectively, we propose a novel algorithm, DBOS (Distance-Based Over-Segmentation), which realizes full coverage of super-pixels on the image. DBOS fills the holes in depth images to fully utilize the depth information, and applies SLIC-like frameworks for fast running. Additionally, depth features such as plane projection distance are extracted to compute distance which is the core of SLIC-like frameworks. Experiments on RGB-D images of NYU Depth V2 dataset demonstrate that DBOS outperforms state-ofthe-art methods in quality while maintaining speeds comparable to them.
Deep convolutional neural network for mammographic density segmentation
NASA Astrophysics Data System (ADS)
Wei, Jun; Li, Songfeng; Chan, Heang-Ping; Helvie, Mark A.; Roubidoux, Marilyn A.; Lu, Yao; Zhou, Chuan; Hadjiiski, Lubomir; Samala, Ravi K.
2018-02-01
Breast density is one of the most significant factors for cancer risk. In this study, we proposed a supervised deep learning approach for automated estimation of percentage density (PD) on digital mammography (DM). The deep convolutional neural network (DCNN) was trained to estimate a probability map of breast density (PMD). PD was calculated as the ratio of the dense area to the breast area based on the probability of each pixel belonging to dense region or fatty region at a decision threshold of 0.5. The DCNN estimate was compared to a feature-based statistical learning approach, in which gray level, texture and morphological features were extracted from each ROI and the least absolute shrinkage and selection operator (LASSO) was used to select and combine the useful features to generate the PMD. The reference PD of each image was provided by two experienced MQSA radiologists. With IRB approval, we retrospectively collected 347 DMs from patient files at our institution. The 10-fold cross-validation results showed a strong correlation r=0.96 between the DCNN estimation and interactive segmentation by radiologists while that of the feature-based statistical learning approach vs radiologists' segmentation had a correlation r=0.78. The difference between the segmentation by DCNN and by radiologists was significantly smaller than that between the feature-based learning approach and radiologists (p < 0.0001) by two-tailed paired t-test. This study demonstrated that the DCNN approach has the potential to replace radiologists' interactive thresholding in PD estimation on DMs.
Improved parameter extraction and classification for dynamic contrast enhanced MRI of prostate
NASA Astrophysics Data System (ADS)
Haq, Nandinee Fariah; Kozlowski, Piotr; Jones, Edward C.; Chang, Silvia D.; Goldenberg, S. Larry; Moradi, Mehdi
2014-03-01
Magnetic resonance imaging (MRI), particularly dynamic contrast enhanced (DCE) imaging, has shown great potential in prostate cancer diagnosis and prognosis. The time course of the DCE images provides measures of the contrast agent uptake kinetics. Also, using pharmacokinetic modelling, one can extract parameters from the DCE-MR images that characterize the tumor vascularization and can be used to detect cancer. A requirement for calculating the pharmacokinetic DCE parameters is estimating the Arterial Input Function (AIF). One needs an accurate segmentation of the cross section of the external femoral artery to obtain the AIF. In this work we report a semi-automatic method for segmentation of the cross section of the femoral artery, using circular Hough transform, in the sequence of DCE images. We also report a machine-learning framework to combine pharmacokinetic parameters with the model-free contrast agent uptake kinetic parameters extracted from the DCE time course into a nine-dimensional feature vector. This combination of features is used with random forest and with support vector machine classi cation for cancer detection. The MR data is obtained from patients prior to radical prostatectomy. After the surgery, wholemount histopathology analysis is performed and registered to the DCE-MR images as the diagnostic reference. We show that the use of a combination of pharmacokinetic parameters and the model-free empirical parameters extracted from the time course of DCE results in improved cancer detection compared to the use of each group of features separately. We also validate the proposed method for calculation of AIF based on comparison with the manual method.
A bio-inspired method and system for visual object-based attention and segmentation
NASA Astrophysics Data System (ADS)
Huber, David J.; Khosla, Deepak
2010-04-01
This paper describes a method and system of human-like attention and object segmentation in visual scenes that (1) attends to regions in a scene in their rank of saliency in the image, (2) extracts the boundary of an attended proto-object based on feature contours, and (3) can be biased to boost the attention paid to specific features in a scene, such as those of a desired target object in static and video imagery. The purpose of the system is to identify regions of a scene of potential importance and extract the region data for processing by an object recognition and classification algorithm. The attention process can be performed in a default, bottom-up manner or a directed, top-down manner which will assign a preference to certain features over others. One can apply this system to any static scene, whether that is a still photograph or imagery captured from video. We employ algorithms that are motivated by findings in neuroscience, psychology, and cognitive science to construct a system that is novel in its modular and stepwise approach to the problems of attention and region extraction, its application of a flooding algorithm to break apart an image into smaller proto-objects based on feature density, and its ability to join smaller regions of similar features into larger proto-objects. This approach allows many complicated operations to be carried out by the system in a very short time, approaching real-time. A researcher can use this system as a robust front-end to a larger system that includes object recognition and scene understanding modules; it is engineered to function over a broad range of situations and can be applied to any scene with minimal tuning from the user.
Lymphoma diagnosis in histopathology using a multi-stage visual learning approach
NASA Astrophysics Data System (ADS)
Codella, Noel; Moradi, Mehdi; Matasar, Matt; Sveda-Mahmood, Tanveer; Smith, John R.
2016-03-01
This work evaluates the performance of a multi-stage image enhancement, segmentation, and classification approach for lymphoma recognition in hematoxylin and eosin (H and E) stained histopathology slides of excised human lymph node tissue. In the first stage, the original histology slide undergoes various image enhancement and segmentation operations, creating an additional 5 images for every slide. These new images emphasize unique aspects of the original slide, including dominant staining, staining segmentations, non-cellular groupings, and cellular groupings. For the resulting 6 total images, a collection of visual features are extracted from 3 different spatial configurations. Visual features include the first fully connected layer (4096 dimensions) of the Caffe convolutional neural network trained from ImageNet data. In total, over 200 resultant visual descriptors are extracted for each slide. Non-linear SVMs are trained over each of the over 200 descriptors, which are then input to a forward stepwise ensemble selection that optimizes a late fusion sum of logistically normalized model outputs using local hill climbing. The approach is evaluated on a public NIH dataset containing 374 images representing 3 lymphoma conditions: chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). Results demonstrate a 38.4% reduction in residual error over the current state-of-art on this dataset.
Correlative feature analysis of FFDM images
NASA Astrophysics Data System (ADS)
Yuan, Yading; Giger, Maryellen L.; Li, Hui; Sennett, Charlene
2008-03-01
Identifying the corresponding image pair of a lesion is an essential step for combining information from different views of the lesion to improve the diagnostic ability of both radiologists and CAD systems. Because of the non-rigidity of the breasts and the 2D projective property of mammograms, this task is not trivial. In this study, we present a computerized framework that differentiates the corresponding images from different views of a lesion from non-corresponding ones. A dual-stage segmentation method, which employs an initial radial gradient index(RGI) based segmentation and an active contour model, was initially applied to extract mass lesions from the surrounding tissues. Then various lesion features were automatically extracted from each of the two views of each lesion to quantify the characteristics of margin, shape, size, texture and context of the lesion, as well as its distance to nipple. We employed a two-step method to select an effective subset of features, and combined it with a BANN to obtain a discriminant score, which yielded an estimate of the probability that the two images are of the same physical lesion. ROC analysis was used to evaluate the performance of the individual features and the selected feature subset in the task of distinguishing between corresponding and non-corresponding pairs. By using a FFDM database with 124 corresponding image pairs and 35 non-corresponding pairs, the distance feature yielded an AUC (area under the ROC curve) of 0.8 with leave-one-out evaluation by lesion, and the feature subset, which includes distance feature, lesion size and lesion contrast, yielded an AUC of 0.86. The improvement by using multiple features was statistically significant as compared to single feature performance. (p<0.001)
Gandomkar, Ziba; Brennan, Patrick C.; Mello-Thoms, Claudia
2017-01-01
Context: Previous studies showed that the agreement among pathologists in recognition of mitoses in breast slides is fairly modest. Aims: Determining the significantly different quantitative features among easily identifiable mitoses, challenging mitoses, and miscounted nonmitoses within breast slides and identifying which color spaces capture the difference among groups better than others. Materials and Methods: The dataset contained 453 mitoses and 265 miscounted objects in breast slides. The mitoses were grouped into three categories based on the confidence degree of three pathologists who annotated them. The mitoses annotated as “probably a mitosis” by the majority of pathologists were considered as the challenging category. The miscounted objects were recognized as a mitosis or probably a mitosis by only one of the pathologists. The mitoses were segmented using k-means clustering, followed by morphological operations. Morphological, intensity-based, and textural features were extracted from the segmented area and also the image patch of 63 × 63 pixels in different channels of eight color spaces. Holistic features describing the mitoses' surrounding cells of each image were also extracted. Statistical Analysis Used: The Kruskal–Wallis H-test followed by the Tukey-Kramer test was used to identify significantly different features. Results: The results indicated that challenging mitoses were smaller and rounder compared to other mitoses. Among different features, the Gabor textural features differed more than others between challenging mitoses and the easily identifiable ones. Sizes of the non-mitoses were similar to easily identifiable mitoses, but nonmitoses were rounder. The intensity-based features from chromatin channels were the most discriminative features between the easily identifiable mitoses and the miscounted objects. Conclusions: Quantitative features can be used to describe the characteristics of challenging mitoses and miscounted nonmitotic objects. PMID:28966834
NASA Astrophysics Data System (ADS)
Wan, Yi
2011-06-01
Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.
Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data
2017-01-01
Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects. PMID:28984823
Song, Yang; Cai, Weidong; Feng, David Dagan; Chen, Mei
2013-01-01
Automated segmentation of cell nuclei in microscopic images is critical to high throughput analysis of the ever increasing amount of data. Although cell nuclei are generally visually distinguishable for human, automated segmentation faces challenges when there is significant intensity inhomogeneity among cell nuclei or in the background. In this paper, we propose an effective method for automated cell nucleus segmentation using a three-step approach. It first obtains an initial segmentation by extracting salient regions in the image, then reduces false positives using inter-region feature discrimination, and finally refines the boundary of the cell nuclei using intra-region contrast information. This method has been evaluated on two publicly available datasets of fluorescence microscopic images with 4009 cells, and has achieved superior performance compared to popular state of the art methods using established metrics.
Defect Detection and Segmentation Framework for Remote Field Eddy Current Sensor Data.
Falque, Raphael; Vidal-Calleja, Teresa; Miro, Jaime Valls
2017-10-06
Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. By analyzing the RFEC data, it is possible to quantify the corrosion present in pipes. Quantifying the corrosion involves detecting defects and extracting their depth and shape. For large sections of pipelines, this can be extremely time-consuming if performed manually. Automated approaches are therefore well motivated. In this article, we propose an automated framework to locate and segment defects in individual pipe segments, starting from raw RFEC measurements taken over large pipelines. The framework relies on a novel feature to robustly detect these defects and a segmentation algorithm applied to the deconvolved RFEC signal. The framework is evaluated using both simulated and real datasets, demonstrating its ability to efficiently segment the shape of corrosion defects.
Automated image segmentation-assisted flattening of atomic force microscopy images.
Wang, Yuliang; Lu, Tongda; Li, Xiaolai; Wang, Huimin
2018-01-01
Atomic force microscopy (AFM) images normally exhibit various artifacts. As a result, image flattening is required prior to image analysis. To obtain optimized flattening results, foreground features are generally manually excluded using rectangular masks in image flattening, which is time consuming and inaccurate. In this study, a two-step scheme was proposed to achieve optimized image flattening in an automated manner. In the first step, the convex and concave features in the foreground were automatically segmented with accurate boundary detection. The extracted foreground features were taken as exclusion masks. In the second step, data points in the background were fitted as polynomial curves/surfaces, which were then subtracted from raw images to get the flattened images. Moreover, sliding-window-based polynomial fitting was proposed to process images with complex background trends. The working principle of the two-step image flattening scheme were presented, followed by the investigation of the influence of a sliding-window size and polynomial fitting direction on the flattened images. Additionally, the role of image flattening on the morphological characterization and segmentation of AFM images were verified with the proposed method.
Prosodic Encoding in Silent Reading.
ERIC Educational Resources Information Center
Wilkenfeld, Deborah
In silent reading, short-memory tasks, such as semantic and syntactic processing, require a stage of phonetic encoding between visual representation and the actual extraction of meaning, and this encoding includes prosodic as well as segmental features. To test for this suprasegmental coding, an experiment was conducted in which subjects were…
Region-Based Building Rooftop Extraction and Change Detection
NASA Astrophysics Data System (ADS)
Tian, J.; Metzlaff, L.; d'Angelo, P.; Reinartz, P.
2017-09-01
Automatic extraction of building changes is important for many applications like disaster monitoring and city planning. Although a lot of research work is available based on 2D as well as 3D data, an improvement in accuracy and efficiency is still needed. The introducing of digital surface models (DSMs) to building change detection has strongly improved the resulting accuracy. In this paper, a post-classification approach is proposed for building change detection using satellite stereo imagery. Firstly, DSMs are generated from satellite stereo imagery and further refined by using a segmentation result obtained from the Sobel gradients of the panchromatic image. Besides the refined DSMs, the panchromatic image and the pansharpened multispectral image are used as input features for mean-shift segmentation. The DSM is used to calculate the nDSM, out of which the initial building candidate regions are extracted. The candidate mask is further refined by morphological filtering and by excluding shadow regions. Following this, all segments that overlap with a building candidate region are determined. A building oriented segments merging procedure is introduced to generate a final building rooftop mask. As the last step, object based change detection is performed by directly comparing the building rooftops extracted from the pre- and after-event imagery and by fusing the change indicators with the roof-top region map. A quantitative and qualitative assessment of the proposed approach is provided by using WorldView-2 satellite data from Istanbul, Turkey.
NASA Astrophysics Data System (ADS)
Soltanian-Zadeh, Hamid; Windham, Joe P.; Peck, Donald J.
1997-04-01
This paper presents development and performance evaluation of an MRI feature space method. The method is useful for: identification of tissue types; segmentation of tissues; and quantitative measurements on tissues, to obtain information that can be used in decision making (diagnosis, treatment planning, and evaluation of treatment). The steps of the work accomplished are as follows: (1) Four T2-weighted and two T1-weighted images (before and after injection of Gadolinium) were acquired for ten tumor patients. (2) Images were analyed by two image analysts according to the following algorithm. The intracranial brain tissues were segmented from the scalp and background. The additive noise was suppressed using a multi-dimensional non-linear edge- preserving filter which preserves partial volume information on average. Image nonuniformities were corrected using a modified lowpass filtering approach. The resulting images were used to generate and visualize an optimal feature space. Cluster centers were identified on the feature space. Then images were segmented into normal tissues and different zones of the tumor. (3) Biopsy samples were extracted from each patient and were subsequently analyzed by the pathology laboratory. (4) Image analysis results were compared to each other and to the biopsy results. Pre- and post-surgery feature spaces were also compared. The proposed algorithm made it possible to visualize the MRI feature space and to segment the image. In all cases, the operators were able to find clusters for normal and abnormal tissues. Also, clusters for different zones of the tumor were found. Based on the clusters marked for each zone, the method successfully segmented the image into normal tissues (white matter, gray matter, and CSF) and different zones of the lesion (tumor, cyst, edema, radiation necrosis, necrotic core, and infiltrated tumor). The results agreed with those obtained from the biopsy samples. Comparison of pre- to post-surgery and radiation feature spaces confirmed that the tumor was not present in the second study but radiation necrosis was generated as a result of radiation.
Automated detection of videotaped neonatal seizures based on motion segmentation methods.
Karayiannis, Nicolaos B; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M
2006-07-01
This study was aimed at the development of a seizure detection system by training neural networks using quantitative motion information extracted by motion segmentation methods from short video recordings of infants monitored for seizures. The motion of the infants' body parts was quantified by temporal motion strength signals extracted from video recordings by motion segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by direct thresholding, by clustering of the pixel velocities, and by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The computational tools and procedures developed for automated seizure detection were tested and evaluated on 240 short video segments selected and labeled by physicians from a set of video recordings of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). The experimental study described in this paper provided the basis for selecting the most effective strategy for training neural networks to detect neonatal seizures as well as the decision scheme used for interpreting the responses of the trained neural networks. Depending on the decision scheme used for interpreting the responses of the trained neural networks, the best neural networks exhibited sensitivity above 90% or specificity above 90%. The best among the motion segmentation methods developed in this study produced quantitative features that constitute a reliable basis for detecting myoclonic and focal clonic neonatal seizures. The performance targets of this phase of the project may be achieved by combining the quantitative features described in this paper with those obtained by analyzing motion trajectory signals produced by motion tracking methods. A video system based upon automated analysis potentially offers a number of advantages. Infants who are at risk for seizures could be monitored continuously using relatively inexpensive and non-invasive video techniques that supplement direct observation by nursery personnel. This would represent a major advance in seizure surveillance and offers the possibility for earlier identification of potential neurological problems and subsequent intervention.
Figure-Ground Segmentation Using Factor Graphs
Shen, Huiying; Coughlan, James; Ivanchenko, Volodymyr
2009-01-01
Foreground-background segmentation has recently been applied [26,12] to the detection and segmentation of specific objects or structures of interest from the background as an efficient alternative to techniques such as deformable templates [27]. We introduce a graphical model (i.e. Markov random field)-based formulation of structure-specific figure-ground segmentation based on simple geometric features extracted from an image, such as local configurations of linear features, that are characteristic of the desired figure structure. Our formulation is novel in that it is based on factor graphs, which are graphical models that encode interactions among arbitrary numbers of random variables. The ability of factor graphs to express interactions higher than pairwise order (the highest order encountered in most graphical models used in computer vision) is useful for modeling a variety of pattern recognition problems. In particular, we show how this property makes factor graphs a natural framework for performing grouping and segmentation, and demonstrate that the factor graph framework emerges naturally from a simple maximum entropy model of figure-ground segmentation. We cast our approach in a learning framework, in which the contributions of multiple grouping cues are learned from training data, and apply our framework to the problem of finding printed text in natural scenes. Experimental results are described, including a performance analysis that demonstrates the feasibility of the approach. PMID:20160994
The information extraction of Gannan citrus orchard based on the GF-1 remote sensing image
NASA Astrophysics Data System (ADS)
Wang, S.; Chen, Y. L.
2017-02-01
The production of Gannan oranges is the largest in China, which occupied an important part in the world. The extraction of citrus orchard quickly and effectively has important significance for fruit pathogen defense, fruit production and industrial planning. The traditional spectra extraction method of citrus orchard based on pixel has a lower classification accuracy, difficult to avoid the “pepper phenomenon”. In the influence of noise, the phenomenon that different spectrums of objects have the same spectrum is graveness. Taking Xunwu County citrus fruit planting area of Ganzhou as the research object, aiming at the disadvantage of the lower accuracy of the traditional method based on image element classification method, a decision tree classification method based on object-oriented rule set is proposed. Firstly, multi-scale segmentation is performed on the GF-1 remote sensing image data of the study area. Subsequently the sample objects are selected for statistical analysis of spectral features and geometric features. Finally, combined with the concept of decision tree classification, a variety of empirical values of single band threshold, NDVI, band combination and object geometry characteristics are used hierarchically to execute the information extraction of the research area, and multi-scale segmentation and hierarchical decision tree classification is implemented. The classification results are verified with the confusion matrix, and the overall Kappa index is 87.91%.
Capability of geometric features to classify ships in SAR imagery
NASA Astrophysics Data System (ADS)
Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li
2016-10-01
Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.
Segmentation and feature extraction of cervical spine x-ray images
NASA Astrophysics Data System (ADS)
Long, L. Rodney; Thoma, George R.
1999-05-01
As part of an R&D project in mixed text/image database design, the National Library of Medicine has archived a collection of 17,000 digitized x-ray images of the cervical and lumbar spine which were collected as part of the second National Health and Nutrition Examination Survey (NHANES II). To make this image data available and usable to a wide audience, we are investigating techniques for indexing the image content by automated or semi-automated means. Indexing of the images by features of interest to researchers in spine disease and structure requires effective segmentation of the vertebral anatomy. This paper describes work in progress toward this segmentation of the cervical spine images into anatomical components of interest, including anatomical landmarks for vertebral location, and segmentation and identification of individual vertebrae. Our work includes developing a reliable method for automatically fixing an anatomy-based coordinate system in the images, and work to adaptively threshold the images, using methods previously applied by researchers in cardioangiography. We describe the motivation for our work and present our current results in both areas.
Chen, Yinsheng; Li, Zeju; Wu, Guoqing; Yu, Jinhua; Wang, Yuanyuan; Lv, Xiaofei; Ju, Xue; Chen, Zhongping
2018-07-01
Due to the totally different therapeutic regimens needed for primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM), accurate differentiation of the two diseases by noninvasive imaging techniques is important for clinical decision-making. Thirty cases of PCNSL and 66 cases of GBM with conventional T1-contrast magnetic resonance imaging (MRI) were analyzed in this study. Convolutional neural networks was used to segment tumor automatically. A modified scale invariant feature transform (SIFT) method was utilized to extract three-dimensional local voxel arrangement information from segmented tumors. Fisher vector was proposed to normalize the dimension of SIFT features. An improved genetic algorithm (GA) was used to extract SIFT features with PCNSL and GBM discrimination ability. The data-set was divided into a cross-validation cohort and an independent validation cohort by the ratio of 2:1. Support vector machine with the leave-one-out cross-validation based on 20 cases of PCNSL and 44 cases of GBM was employed to build and validate the differentiation model. Among 16,384 high-throughput features, 1356 features show significant differences between PCNSL and GBM with p < 0.05 and 420 features with p < 0.001. A total of 496 features were finally chosen by improved GA algorithm. The proposed method produces PCNSL vs. GBM differentiation with an area under the curve (AUC) curve of 99.1% (98.2%), accuracy 95.3% (90.6%), sensitivity 85.0% (80.0%) and specificity 100% (95.5%) on the cross-validation cohort (and independent validation cohort). Since the local voxel arrangement characterization provided by SIFT features, proposed method produced more competitive PCNSL and GBM differentiation performance by using conventional MRI than methods based on advanced MRI.
Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features
NASA Astrophysics Data System (ADS)
Rezaeian, A.; Homayouni, S.; Safari, A.
2015-12-01
Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.
Fast linear feature detection using multiple directional non-maximum suppression.
Sun, C; Vallotton, P
2009-05-01
The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.
NASA Astrophysics Data System (ADS)
Kemper, Thomas; Gueguen, Lionel; Soille, Pierre
2012-06-01
The enumeration of the population remains a critical task in the management of refugee/IDP camps. Analysis of very high spatial resolution satellite data proofed to be an efficient and secure approach for the estimation of dwellings and the monitoring of the camp over time. In this paper we propose a new methodology for the automated extraction of features based on differential morphological decomposition segmentation for feature extraction and interactive training sample selection from the max-tree and min-tree structures. This feature extraction methodology is tested on a WorldView-2 scene of an IDP camp in Darfur Sudan. Special emphasis is given to the additional available bands of the WorldView-2 sensor. The results obtained show that the interactive image information tool is performing very well by tuning the feature extraction to the local conditions. The analysis of different spectral subsets shows that it is possible to obtain good results already with an RGB combination, but by increasing the number of spectral bands the detection of dwellings becomes more accurate. Best results were obtained using all eight bands of WorldView-2 satellite.
Grand-Brochier, Manuel; Vacavant, Antoine; Cerutti, Guillaume; Kurtz, Camille; Weber, Jonathan; Tougne, Laure
2015-05-01
In this paper, we propose a comparative study of various segmentation methods applied to the extraction of tree leaves from natural images. This study follows the design of a mobile application, developed by Cerutti et al. (published in ReVeS Participation--Tree Species Classification Using Random Forests and Botanical Features. CLEF 2012), to highlight the impact of the choices made for segmentation aspects. All the tests are based on a database of 232 images of tree leaves depicted on natural background from smartphones acquisitions. We also propose to study the improvements, in terms of performance, using preprocessing tools, such as the interaction between the user and the application through an input stroke, as well as the use of color distance maps. The results presented in this paper shows that the method developed by Cerutti et al. (denoted Guided Active Contour), obtains the best score for almost all observation criteria. Finally, we detail our online benchmark composed of 14 unsupervised methods and 6 supervised ones.
Segmentation of human face using gradient-based approach
NASA Astrophysics Data System (ADS)
Baskan, Selin; Bulut, M. Mete; Atalay, Volkan
2001-04-01
This paper describes a method for automatic segmentation of facial features such as eyebrows, eyes, nose, mouth and ears in color images. This work is an initial step for wide range of applications based on feature-based approaches, such as face recognition, lip-reading, gender estimation, facial expression analysis, etc. Human face can be characterized by its skin color and nearly elliptical shape. For this purpose, face detection is performed using color and shape information. Uniform illumination is assumed. No restrictions on glasses, make-up, beard, etc. are imposed. Facial features are extracted using the vertically and horizontally oriented gradient projections. The gradient of a minimum with respect to its neighbor maxima gives the boundaries of a facial feature. Each facial feature has a different horizontal characteristic. These characteristics are derived by extensive experimentation with many face images. Using fuzzy set theory, the similarity between the candidate and the feature characteristic under consideration is calculated. Gradient-based method is accompanied by the anthropometrical information, for robustness. Ear detection is performed using contour-based shape descriptors. This method detects the facial features and circumscribes each facial feature with the smallest rectangle possible. AR database is used for testing. The developed method is also suitable for real-time systems.
Jian, Junming; Xiong, Fei; Xia, Wei; Zhang, Rui; Gu, Jinhui; Wu, Xiaodong; Meng, Xiaochun; Gao, Xin
2018-06-01
Segmentation of colorectal tumors is the basis of preoperative prediction, staging, and therapeutic response evaluation. Due to the blurred boundary between lesions and normal colorectal tissue, it is hard to realize accurate segmentation. Routinely manual or semi-manual segmentation methods are extremely tedious, time-consuming, and highly operator-dependent. In the framework of FCNs, a segmentation method for colorectal tumor was presented. Normalization was applied to reduce the differences among images. Borrowing from transfer learning, VGG-16 was employed to extract features from normalized images. We conducted five side-output blocks from the last convolutional layer of each block of VGG-16 along the network, these side-output blocks can deep dive multiscale features, and produced corresponding predictions. Finally, all of the predictions from side-output blocks were fused to determine the final boundaries of the tumors. A quantitative comparison of 2772 colorectal tumor manual segmentation results from T2-weighted magnetic resonance images shows that the average Dice similarity coefficient, positive predictive value, specificity, sensitivity, Hammoude distance, and Hausdorff distance were 83.56, 82.67, 96.75, 87.85%, 0.2694, and 8.20, respectively. The proposed method is superior to U-net in colorectal tumor segmentation (P < 0.05). There is no difference between cross-entropy loss and Dice-based loss in colorectal tumor segmentation (P > 0.05). The results indicate that the introduction of FCNs contributed to accurate segmentation of colorectal tumors. This method has the potential to replace the present time-consuming and nonreproducible manual segmentation method.
A Manual Segmentation Tool for Three-Dimensional Neuron Datasets.
Magliaro, Chiara; Callara, Alejandro L; Vanello, Nicola; Ahluwalia, Arti
2017-01-01
To date, automated or semi-automated software and algorithms for segmentation of neurons from three-dimensional imaging datasets have had limited success. The gold standard for neural segmentation is considered to be the manual isolation performed by an expert. To facilitate the manual isolation of complex objects from image stacks, such as neurons in their native arrangement within the brain, a new Manual Segmentation Tool (ManSegTool) has been developed. ManSegTool allows user to load an image stack, scroll down the images and to manually draw the structures of interest stack-by-stack. Users can eliminate unwanted regions or split structures (i.e., branches from different neurons that are too close each other, but, to the experienced eye, clearly belong to a unique cell), to view the object in 3D and save the results obtained. The tool can be used for testing the performance of a single-neuron segmentation algorithm or to extract complex objects, where the available automated methods still fail. Here we describe the software's main features and then show an example of how ManSegTool can be used to segment neuron images acquired using a confocal microscope. In particular, expert neuroscientists were asked to segment different neurons from which morphometric variables were subsequently extracted as a benchmark for precision. In addition, a literature-defined index for evaluating the goodness of segmentation was used as a benchmark for accuracy. Neocortical layer axons from a DIADEM challenge dataset were also segmented with ManSegTool and compared with the manual "gold-standard" generated for the competition.
Acetabular rim and surface segmentation for hip surgery planning and dysplasia evaluation
NASA Astrophysics Data System (ADS)
Tan, Sovira; Yao, Jianhua; Yao, Lawrence; Summers, Ronald M.; Ward, Michael M.
2008-03-01
Knowledge of the acetabular rim and surface can be invaluable for hip surgery planning and dysplasia evaluation. The acetabular rim can also be used as a landmark for registration purposes. At the present time acetabular features are mostly extracted manually at great cost of time and human labor. Using a recent level set algorithm that can evolve on the surface of a 3D object represented by a triangular mesh we automatically extracted rims and surfaces of acetabulae. The level set is guided by curvature features on the mesh. It can segment portions of a surface that are bounded by a line of extremal curvature (ridgeline or crestline). The rim of the acetabulum is such an extremal curvature line. Our material consists of eight hemi-pelvis surfaces. The algorithm is initiated by putting a small circle (level set seed) at the center of the acetabular surface. Because this surface distinctively has the form of a cup we were able to use the Shape Index feature to automatically extract an approximate center. The circle then expands and deforms so as to take the shape of the acetabular rim. The results were visually inspected. Only minor errors were detected. The algorithm also proved to be robust. Seed placement was satisfactory for the eight hemi-pelvis surfaces without changing any parameters. For the level set evolution we were able to use a single set of parameters for seven out of eight surfaces.
NASA Astrophysics Data System (ADS)
Jawak, Shridhar D.; Luis, Alvarinho J.
2016-04-01
An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.
Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder
Taniguchi, Tadahiro; Takenaka, Kazuhito; Bando, Takashi
2018-01-01
Data representing driving behavior, as measured by various sensors installed in a vehicle, are collected as multi-dimensional sensor time-series data. These data often include redundant information, e.g., both the speed of wheels and the engine speed represent the velocity of the vehicle. Redundant information can be expected to complicate the data analysis, e.g., more factors need to be analyzed; even varying the levels of redundancy can influence the results of the analysis. We assume that the measured multi-dimensional sensor time-series data of driving behavior are generated from low-dimensional data shared by the many types of one-dimensional data of which multi-dimensional time-series data are composed. Meanwhile, sensor time-series data may be defective because of sensor failure. Therefore, another important function is to reduce the negative effect of defective data when extracting low-dimensional time-series data. This study proposes a defect-repairable feature extraction method based on a deep sparse autoencoder (DSAE) to extract low-dimensional time-series data. In the experiments, we show that DSAE provides high-performance latent feature extraction for driving behavior, even for defective sensor time-series data. In addition, we show that the negative effect of defects on the driving behavior segmentation task could be reduced using the latent features extracted by DSAE. PMID:29462931
a Landmark Extraction Method Associated with Geometric Features and Location Distribution
NASA Astrophysics Data System (ADS)
Zhang, W.; Li, J.; Wang, Y.; Xiao, Y.; Liu, P.; Zhang, S.
2018-04-01
Landmark plays an important role in spatial cognition and spatial knowledge organization. Significance measuring model is the main method of landmark extraction. It is difficult to take account of the spatial distribution pattern of landmarks because that the significance of landmark is built in one-dimensional space. In this paper, we start with the geometric features of the ground object, an extraction method based on the target height, target gap and field of view is proposed. According to the influence region of Voronoi Diagram, the description of target gap is established to the geometric representation of the distribution of adjacent targets. Then, segmentation process of the visual domain of Voronoi K order adjacent is given to set up target view under the multi view; finally, through three kinds of weighted geometric features, the landmarks are identified. Comparative experiments show that this method has a certain coincidence degree with the results of traditional significance measuring model, which verifies the effectiveness and reliability of the method and reduces the complexity of landmark extraction process without losing the reference value of landmark.
Irrigation network extraction methodology from LiDAR DTM using Whitebox and ArcGIS
NASA Astrophysics Data System (ADS)
Mahor, M. A. P.; De La Cruz, R. M.; Olfindo, N. T.; Perez, A. M. C.
2016-10-01
Irrigation networks are important in distributing water resources to areas where rainfall is not enough to sustain agriculture. They are also crucial when it comes to being able to redirect vast amounts of water to decrease the risks of flooding in flat areas, especially near sources of water. With the lack of studies about irrigation feature extraction, which range from wide canals to small ditches, this study aims to present a method of extracting these features from LiDAR-derived digital terrain models (DTMs) using Geographic Information Systems (GIS) tools such as ArcGIS and Whitebox Geospatial Analysis Tools (Whitebox GAT). High-resolution LiDAR DTMs with 1-meter horizontal and 0.25-meter vertical accuracies were processed to generate the gully depth map. This map was then reclassified, converted to vector, and filtered according to segment length, and sinuosity to be able to isolate these irrigation features. Initial results in the test area show that the extraction completeness is greater than 80% when compared with data obtained from the National Irrigation Administration (NIA).
Wu, Wei; Chen, Albert Y C; Zhao, Liang; Corso, Jason J
2014-03-01
Detection and segmentation of a brain tumor such as glioblastoma multiforme (GBM) in magnetic resonance (MR) images are often challenging due to its intrinsically heterogeneous signal characteristics. A robust segmentation method for brain tumor MRI scans was developed and tested. Simple thresholds and statistical methods are unable to adequately segment the various elements of the GBM, such as local contrast enhancement, necrosis, and edema. Most voxel-based methods cannot achieve satisfactory results in larger data sets, and the methods based on generative or discriminative models have intrinsic limitations during application, such as small sample set learning and transfer. A new method was developed to overcome these challenges. Multimodal MR images are segmented into superpixels using algorithms to alleviate the sampling issue and to improve the sample representativeness. Next, features were extracted from the superpixels using multi-level Gabor wavelet filters. Based on the features, a support vector machine (SVM) model and an affinity metric model for tumors were trained to overcome the limitations of previous generative models. Based on the output of the SVM and spatial affinity models, conditional random fields theory was applied to segment the tumor in a maximum a posteriori fashion given the smoothness prior defined by our affinity model. Finally, labeling noise was removed using "structural knowledge" such as the symmetrical and continuous characteristics of the tumor in spatial domain. The system was evaluated with 20 GBM cases and the BraTS challenge data set. Dice coefficients were computed, and the results were highly consistent with those reported by Zikic et al. (MICCAI 2012, Lecture notes in computer science. vol 7512, pp 369-376, 2012). A brain tumor segmentation method using model-aware affinity demonstrates comparable performance with other state-of-the art algorithms.
Manhole Cover Detection Using Vehicle-Based Multi-Sensor Data
NASA Astrophysics Data System (ADS)
Ji, S.; Shi, Y.; Shi, Z.
2012-07-01
A new method combined wit multi-view matching and feature extraction technique is developed to detect manhole covers on the streets using close-range images combined with GPS/IMU and LINDAR data. The covers are an important target on the road traffic as same as transport signs, traffic lights and zebra crossing but with more unified shapes. However, the different shoot angle and distance, ground material, complex street scene especially its shadow, and cars in the road have a great impact on the cover detection rate. The paper introduces a new method in edge detection and feature extraction in order to overcome these difficulties and greatly improve the detection rate. The LIDAR data are used to do scene segmentation and the street scene and cars are excluded from the roads. And edge detection method base on canny which sensitive to arcs and ellipses is applied on the segmented road scene and the interesting areas contain arcs are extracted and fitted to ellipse. The ellipse are then resampled for invariance to shooting angle and distance and then are matched to adjacent images for further checking if covers and . More than 1000 images with different scenes are used in our tests and the detection rate is analyzed. The results verified our method have its advantages in correct covers detection in the complex street scene.
Automatic facial animation parameters extraction in MPEG-4 visual communication
NASA Astrophysics Data System (ADS)
Yang, Chenggen; Gong, Wanwei; Yu, Lu
2002-01-01
Facial Animation Parameters (FAPs) are defined in MPEG-4 to animate a facial object. The algorithm proposed in this paper to extract these FAPs is applied to very low bit-rate video communication, in which the scene is composed of a head-and-shoulder object with complex background. This paper addresses the algorithm to automatically extract all FAPs needed to animate a generic facial model, estimate the 3D motion of head by points. The proposed algorithm extracts human facial region by color segmentation and intra-frame and inter-frame edge detection. Facial structure and edge distribution of facial feature such as vertical and horizontal gradient histograms are used to locate the facial feature region. Parabola and circle deformable templates are employed to fit facial feature and extract a part of FAPs. A special data structure is proposed to describe deformable templates to reduce time consumption for computing energy functions. Another part of FAPs, 3D rigid head motion vectors, are estimated by corresponding-points method. A 3D head wire-frame model provides facial semantic information for selection of proper corresponding points, which helps to increase accuracy of 3D rigid object motion estimation.
A Local DCT-II Feature Extraction Approach for Personal Identification Based on Palmprint
NASA Astrophysics Data System (ADS)
Choge, H. Kipsang; Oyama, Tadahiro; Karungaru, Stephen; Tsuge, Satoru; Fukumi, Minoru
Biometric applications based on the palmprint have recently attracted increased attention from various researchers. In this paper, a method is presented that differs from the commonly used global statistical and structural techniques by extracting and using local features instead. The middle palm area is extracted after preprocessing for rotation, position and illumination normalization. The segmented region of interest is then divided into blocks of either 8×8 or 16×16 pixels in size. The type-II Discrete Cosine Transform (DCT) is applied to transform the blocks into DCT space. A subset of coefficients that encode the low to medium frequency components is selected using the JPEG-style zigzag scanning method. Features from each block are subsequently concatenated into a compact feature vector and used in palmprint verification experiments with palmprints from the PolyU Palmprint Database. Results indicate that this approach achieves better results than many conventional transform-based methods, with an excellent recognition accuracy above 99% and an Equal Error Rate (EER) of less than 1.2% in palmprint verification.
Detection of breast cancer in automated 3D breast ultrasound
NASA Astrophysics Data System (ADS)
Tan, Tao; Platel, Bram; Mus, Roel; Karssemeijer, Nico
2012-03-01
Automated 3D breast ultrasound (ABUS) is a novel imaging modality, in which motorized scans of the breasts are made with a wide transducer through a membrane under modest compression. The technology has gained high interest and may become widely used in screening of dense breasts, where sensitivity of mammography is poor. ABUS has a high sensitivity for detecting solid breast lesions. However, reading ABUS images is time consuming, and subtle abnormalities may be missed. Therefore, we are developing a computer aided detection (CAD) system to help reduce reading time and errors. In the multi-stage system we propose, segmentations of the breast and nipple are performed, providing landmarks for the detection algorithm. Subsequently, voxel features characterizing coronal spiculation patterns, blobness, contrast, and locations with respect to landmarks are extracted. Using an ensemble of classifiers, a likelihood map indicating potential malignancies is computed. Local maxima in the likelihood map are determined using a local maxima detector and form a set of candidate lesions in each view. These candidates are further processed in a second detection stage, which includes region segmentation, feature extraction and a final classification. Region segmentation is performed using a 3D spiral-scanning dynamic programming method. Region features include descriptors of shape, acoustic behavior and texture. Performance was determined using a 78-patient dataset with 93 images, including 50 malignant lesions. We used 10-fold cross-validation. Using FROC analysis we found that the system obtains a lesion sensitivity of 60% and 70% at 2 and 4 false positives per image respectively.
Grid point extraction and coding for structured light system
NASA Astrophysics Data System (ADS)
Song, Zhan; Chung, Ronald
2011-09-01
A structured light system simplifies three-dimensional reconstruction by illuminating a specially designed pattern to the target object, thereby generating a distinct texture on it for imaging and further processing. Success of the system hinges upon what features are to be coded in the projected pattern, extracted in the captured image, and matched between the projector's display panel and the camera's image plane. The codes have to be such that they are largely preserved in the image data upon illumination from the projector, reflection from the target object, and projective distortion in the imaging process. The features also need to be reliably extracted in the image domain. In this article, a two-dimensional pseudorandom pattern consisting of rhombic color elements is proposed, and the grid points between the pattern elements are chosen as the feature points. We describe how a type classification of the grid points plus the pseudorandomness of the projected pattern can equip each grid point with a unique label that is preserved in the captured image. We also present a grid point detector that extracts the grid points without the need of segmenting the pattern elements, and that localizes the grid points in subpixel accuracy. Extensive experiments are presented to illustrate that, with the proposed pattern feature definition and feature detector, more features points in higher accuracy can be reconstructed in comparison with the existing pseudorandomly encoded structured light systems.
Drunk driving detection based on classification of multivariate time series.
Li, Zhenlong; Jin, Xue; Zhao, Xiaohua
2015-09-01
This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
Khotanlou, Hassan; Afrasiabi, Mahlagha
2012-10-01
This paper presents a new feature selection approach for automatically extracting multiple sclerosis (MS) lesions in three-dimensional (3D) magnetic resonance (MR) images. Presented method is applicable to different types of MS lesions. In this method, T1, T2, and fluid attenuated inversion recovery (FLAIR) images are firstly preprocessed. In the next phase, effective features to extract MS lesions are selected by using a genetic algorithm (GA). The fitness function of the GA is the Similarity Index (SI) of a support vector machine (SVM) classifier. The results obtained on different types of lesions have been evaluated by comparison with manual segmentations. This algorithm is evaluated on 15 real 3D MR images using several measures. As a result, the SI between MS regions determined by the proposed method and radiologists was 87% on average. Experiments and comparisons with other methods show the effectiveness and the efficiency of the proposed approach.
Feature Relevance Assessment of Multispectral Airborne LIDAR Data for Tree Species Classification
NASA Astrophysics Data System (ADS)
Amiri, N.; Heurich, M.; Krzystek, P.; Skidmore, A. K.
2018-04-01
The presented experiment investigates the potential of Multispectral Laser Scanning (MLS) point clouds for single tree species classification. The basic idea is to simulate a MLS sensor by combining two different Lidar sensors providing three different wavelngthes. The available data were acquired in the summer 2016 at the same date in a leaf-on condition with an average point density of 37 points/m2. For the purpose of classification, we segmented the combined 3D point clouds consisiting of three different spectral channels into 3D clusters using Normalized Cut segmentation approach. Then, we extracted four group of features from the 3D point cloud space. Once a varity of features has been extracted, we applied forward stepwise feature selection in order to reduce the number of irrelevant or redundant features. For the classification, we used multinomial logestic regression with L1 regularization. Our study is conducted using 586 ground measured single trees from 20 sample plots in the Bavarian Forest National Park, in Germany. Due to lack of reference data for some rare species, we focused on four classes of species. The results show an improvement between 4-10 pp for the tree species classification by using MLS data in comparison to a single wavelength based approach. A cross validated (15-fold) accuracy of 0.75 can be achieved when all feature sets from three different spectral channels are used. Our results cleary indicates that the use of MLS point clouds has great potential to improve detailed forest species mapping.
Bi-model processing for early detection of breast tumor in CAD system
NASA Astrophysics Data System (ADS)
Mughal, Bushra; Sharif, Muhammad; Muhammad, Nazeer
2017-06-01
Early screening of skeptical masses in mammograms may reduce mortality rate among women. This rate can be further reduced upon developing the computer-aided diagnosis system with decrease in false assumptions in medical informatics. This method highlights the early tumor detection in digitized mammograms. For improving the performance of this system, a novel bi-model processing algorithm is introduced. It divides the region of interest into two parts, the first one is called pre-segmented region (breast parenchyma) and other is the post-segmented region (suspicious region). This system follows the scheme of the preprocessing technique of contrast enhancement that can be utilized to segment and extract the desired feature of the given mammogram. In the next phase, a hybrid feature block is presented to show the effective performance of computer-aided diagnosis. In order to assess the effectiveness of the proposed method, a database provided by the society of mammographic images is tested. Our experimental outcomes on this database exhibit the usefulness and robustness of the proposed method.
Detection of hypertensive retinopathy using vessel measurements and textural features.
Agurto, Carla; Joshi, Vinayak; Nemeth, Sheila; Soliz, Peter; Barriga, Simon
2014-01-01
Features that indicate hypertensive retinopathy have been well described in the medical literature. This paper presents a new system to automatically classify subjects with hypertensive retinopathy (HR) using digital color fundus images. Our method consists of the following steps: 1) normalization and enhancement of the image; 2) determination of regions of interest based on automatic location of the optic disc; 3) segmentation of the retinal vasculature and measurement of vessel width and tortuosity; 4) extraction of color features; 5) classification of vessel segments as arteries or veins; 6) calculation of artery-vein ratios using the six widest (major) vessels for each category; 7) calculation of mean red intensity and saturation values for all arteries; 8) calculation of amplitude-modulation frequency-modulation (AM-FM) features for entire image; and 9) classification of features into HR and non-HR using linear regression. This approach was tested on 74 digital color fundus photographs taken with TOPCON and CANON retinal cameras using leave-one out cross validation. An area under the ROC curve (AUC) of 0.84 was achieved with sensitivity and specificity of 90% and 67%, respectively.
Fast and robust segmentation of the striatum using deep convolutional neural networks.
Choi, Hongyoon; Jin, Kyong Hwan
2016-12-01
Automated segmentation of brain structures is an important task in structural and functional image analysis. We developed a fast and accurate method for the striatum segmentation using deep convolutional neural networks (CNN). T1 magnetic resonance (MR) images were used for our CNN-based segmentation, which require neither image feature extraction nor nonlinear transformation. We employed two serial CNN, Global and Local CNN: The Global CNN determined approximate locations of the striatum. It performed a regression of input MR images fitted to smoothed segmentation maps of the striatum. From the output volume of Global CNN, cropped MR volumes which included the striatum were extracted. The cropped MR volumes and the output volumes of Global CNN were used for inputs of Local CNN. Local CNN predicted the accurate label of all voxels. Segmentation results were compared with a widely used segmentation method, FreeSurfer. Our method showed higher Dice Similarity Coefficient (DSC) (0.893±0.017 vs. 0.786±0.015) and precision score (0.905±0.018 vs. 0.690±0.022) than FreeSurfer-based striatum segmentation (p=0.06). Our approach was also tested using another independent dataset, which showed high DSC (0.826±0.038) comparable with that of FreeSurfer. Comparison with existing method Segmentation performance of our proposed method was comparable with that of FreeSurfer. The running time of our approach was approximately three seconds. We suggested a fast and accurate deep CNN-based segmentation for small brain structures which can be widely applied to brain image analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wahi-Anwar, M. Wasil; Emaminejad, Nastaran; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.
2018-02-01
Quantitative imaging in lung cancer CT seeks to characterize nodules through quantitative features, usually from a region of interest delineating the nodule. The segmentation, however, can vary depending on segmentation approach and image quality, which can affect the extracted feature values. In this study, we utilize a fully-automated nodule segmentation method - to avoid reader-influenced inconsistencies - to explore the effects of varied dose levels and reconstruction parameters on segmentation. Raw projection CT images from a low-dose screening patient cohort (N=59) were reconstructed at multiple dose levels (100%, 50%, 25%, 10%), two slice thicknesses (1.0mm, 0.6mm), and a medium kernel. Fully-automated nodule detection and segmentation was then applied, from which 12 nodules were selected. Dice similarity coefficient (DSC) was used to assess the similarity of the segmentation ROIs of the same nodule across different reconstruction and dose conditions. Nodules at 1.0mm slice thickness and dose levels of 25% and 50% resulted in DSC values greater than 0.85 when compared to 100% dose, with lower dose leading to a lower average and wider spread of DSC values. At 0.6mm, the increased bias and wider spread of DSC values from lowering dose were more pronounced. The effects of dose reduction on DSC for CAD-segmented nodules were similar in magnitude to reducing the slice thickness from 1.0mm to 0.6mm. In conclusion, variation of dose and slice thickness can result in very different segmentations because of noise and image quality. However, there exists some stability in segmentation overlap, as even at 1mm, an image with 25% of the lowdose scan still results in segmentations similar to that seen in a full-dose scan.
Measurement of glucose concentration by image processing of thin film slides
NASA Astrophysics Data System (ADS)
Piramanayagam, Sankaranaryanan; Saber, Eli; Heavner, David
2012-02-01
Measurement of glucose concentration is important for diagnosis and treatment of diabetes mellitus and other medical conditions. This paper describes a novel image-processing based approach for measuring glucose concentration. A fluid drop (patient sample) is placed on a thin film slide. Glucose, present in the sample, reacts with reagents on the slide to produce a color dye. The color intensity of the dye formed varies with glucose at different concentration levels. Current methods use spectrophotometry to determine the glucose level of the sample. Our proposed algorithm uses an image of the slide, captured at a specific wavelength, to automatically determine glucose concentration. The algorithm consists of two phases: training and testing. Training datasets consist of images at different concentration levels. The dye-occupied image region is first segmented using a Hough based technique and then an intensity based feature is calculated from the segmented region. Subsequently, a mathematical model that describes a relationship between the generated feature values and the given concentrations is obtained. During testing, the dye region of a test slide image is segmented followed by feature extraction. These two initial steps are similar to those done in training. However, in the final step, the algorithm uses the model (feature vs. concentration) obtained from the training and feature generated from test image to predict the unknown concentration. The performance of the image-based analysis was compared with that of a standard glucose analyzer.
Automated feature extraction for retinal vascular biometry in zebrafish using OCT angiography
NASA Astrophysics Data System (ADS)
Bozic, Ivan; Rao, Gopikrishna M.; Desai, Vineet; Tao, Yuankai K.
2017-02-01
Zebrafish have been identified as an ideal model for angiogenesis because of anatomical and functional similarities with other vertebrates. The scale and complexity of zebrafish assays are limited by the need to manually treat and serially screen animals, and recent technological advances have focused on automation and improving throughput. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo imaging of retinal vasculature in zebrafish. OCT-A summed voxel projections were low pass filtered and skeletonized to create an en face vascular map prior to connectivity analysis. Vascular segmentation was referenced to the optic nerve head (ONH), which was identified by automatically segmenting the retinal pigment epithelium boundary on the OCT structural volume. The first vessel branch generation was identified as skeleton segments with branch points closest to the ONH, and subsequent generations were found iteratively by expanding the search space outwards from the ONH. Biometric parameters, including length, curvature, and branch angle of each vessel segment were calculated and grouped by branch generation. Despite manual handling and alignment of each animal over multiple time points, we observe distinct qualitative patterns that enable unique identification of each eye from individual animals. We believe this OCT-based retinal biometry method can be applied for automated animal identification and handling in high-throughput organism-level pharmacological assays and genetic screens. In addition, these extracted features may enable high-resolution quantification of longitudinal vascular changes as a method for studying zebrafish models of retinal neovascularization and vascular remodeling.
NASA Astrophysics Data System (ADS)
He, Wenda; Juette, Arne; Denton, Erica R. E.; Zwiggelaar, Reyer
2015-03-01
Breast cancer is the most frequently diagnosed cancer in women. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective ways to overcome the disease. Successful mammographic density segmentation is a key aspect in deriving correct tissue composition, ensuring an accurate mammographic risk assessment. However, mammographic densities have not yet been fully incorporated with non-image based risk prediction models, (e.g. the Gail and the Tyrer-Cuzick model), because of unreliable segmentation consistency and accuracy. This paper presents a novel multiresolution mammographic density segmentation, a concept of stack representation is proposed, and 3D texture features were extracted by adapting techniques based on classic 2D first-order statistics. An unsupervised clustering technique was employed to achieve mammographic segmentation, in which two improvements were made; 1) consistent segmentation by incorporating an optimal centroids initialisation step, and 2) significantly reduced the number of missegmentation by using an adaptive cluster merging technique. A set of full field digital mammograms was used in the evaluation. Visual assessment indicated substantial improvement on segmented anatomical structures and tissue specific areas, especially in low mammographic density categories. The developed method demonstrated an ability to improve the quality of mammographic segmentation via clustering, and results indicated an improvement of 26% in segmented image with good quality when compared with the standard clustering approach. This in turn can be found useful in early breast cancer detection, risk-stratified screening, and aiding radiologists in the process of decision making prior to surgery and/or treatment.
Semi-automatic segmentation of brain tumors using population and individual information.
Wu, Yao; Yang, Wei; Jiang, Jun; Li, Shuanqian; Feng, Qianjin; Chen, Wufan
2013-08-01
Efficient segmentation of tumors in medical images is of great practical importance in early diagnosis and radiation plan. This paper proposes a novel semi-automatic segmentation method based on population and individual statistical information to segment brain tumors in magnetic resonance (MR) images. First, high-dimensional image features are extracted. Neighborhood components analysis is proposed to learn two optimal distance metrics, which contain population and patient-specific information, respectively. The probability of each pixel belonging to the foreground (tumor) and the background is estimated by the k-nearest neighborhood classifier under the learned optimal distance metrics. A cost function for segmentation is constructed through these probabilities and is optimized using graph cuts. Finally, some morphological operations are performed to improve the achieved segmentation results. Our dataset consists of 137 brain MR images, including 68 for training and 69 for testing. The proposed method overcomes segmentation difficulties caused by the uneven gray level distribution of the tumors and even can get satisfactory results if the tumors have fuzzy edges. Experimental results demonstrate that the proposed method is robust to brain tumor segmentation.
Mohebbi, Maryam; Ghassemian, Hassan
2011-08-01
Atrial fibrillation (AF) is the most common cardiac arrhythmia and increases the risk of stroke. Predicting the onset of paroxysmal AF (PAF), based on noninvasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic intervention and to minimize risks for the patients. In this paper, we propose an effective PAF predictor which is based on the analysis of the RR-interval signal. This method consists of three steps: preprocessing, feature extraction and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the RR-interval signal is extracted. In the next step, the recurrence plot (RP) of the RR-interval signal is obtained and five statistically significant features are extracted to characterize the basic patterns of the RP. These features consist of the recurrence rate, length of longest diagonal segments (L(max )), average length of the diagonal lines (L(mean)), entropy, and trapping time. Recurrence quantification analysis can reveal subtle aspects of dynamics not easily appreciated by other methods and exhibits characteristic patterns which are caused by the typical dynamical behavior. In the final step, a support vector machine (SVM)-based classifier is used for PAF prediction. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database (AFPDB) which consists of both 30 min ECG recordings that end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, positive predictivity and negative predictivity were 97%, 100%, 100%, and 96%, respectively. The proposed methodology presents better results than other existing approaches.
Automatic Extraction of Road Markings from Mobile Laser-Point Cloud Using Intensity Data
NASA Astrophysics Data System (ADS)
Yao, L.; Chen, Q.; Qin, C.; Wu, H.; Zhang, S.
2018-04-01
With the development of intelligent transportation, road's high precision information data has been widely applied in many fields. This paper proposes a concise and practical way to extract road marking information from point cloud data collected by mobile mapping system (MMS). The method contains three steps. Firstly, road surface is segmented through edge detection from scan lines. Then the intensity image is generated by inverse distance weighted (IDW) interpolation and the road marking is extracted by using adaptive threshold segmentation based on integral image without intensity calibration. Moreover, the noise is reduced by removing a small number of plaque pixels from binary image. Finally, point cloud mapped from binary image is clustered into marking objects according to Euclidean distance, and using a series of algorithms including template matching and feature attribute filtering for the classification of linear markings, arrow markings and guidelines. Through processing the point cloud data collected by RIEGL VUX-1 in case area, the results show that the F-score of marking extraction is 0.83, and the average classification rate is 0.9.
Road marking features extraction using the VIAPIX® system
NASA Astrophysics Data System (ADS)
Kaddah, W.; Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.; Gutierrez, C.
2016-07-01
Precise extraction of road marking features is a critical task for autonomous urban driving, augmented driver assistance, and robotics technologies. In this study, we consider an autonomous system allowing us lane detection for marked urban roads and analysis of their features. The task is to relate the georeferencing of road markings from images obtained using the VIAPIX® system. Based on inverse perspective mapping and color segmentation to detect all white objects existing on this road, the present algorithm enables us to examine these images automatically and rapidly and also to get information on road marks, their surface conditions, and their georeferencing. This algorithm allows detecting all road markings and identifying some of them by making use of a phase-only correlation filter (POF). We illustrate this algorithm and its robustness by applying it to a variety of relevant scenarios.
Segmentation, feature extraction, and multiclass brain tumor classification.
Sachdeva, Jainy; Kumar, Vinod; Gupta, Indra; Khandelwal, Niranjan; Ahuja, Chirag Kamal
2013-12-01
Multiclass brain tumor classification is performed by using a diversified dataset of 428 post-contrast T1-weighted MR images from 55 patients. These images are of primary brain tumors namely astrocytoma (AS), glioblastoma multiforme (GBM), childhood tumor-medulloblastoma (MED), meningioma (MEN), secondary tumor-metastatic (MET), and normal regions (NR). Eight hundred fifty-six regions of interest (SROIs) are extracted by a content-based active contour model. Two hundred eighteen intensity and texture features are extracted from these SROIs. In this study, principal component analysis (PCA) is used for reduction of dimensionality of the feature space. These six classes are then classified by artificial neural network (ANN). Hence, this approach is named as PCA-ANN approach. Three sets of experiments have been performed. In the first experiment, classification accuracy by ANN approach is performed. In the second experiment, PCA-ANN approach with random sub-sampling has been used in which the SROIs from the same patient may get repeated during testing. It is observed that the classification accuracy has increased from 77 to 91 %. PCA-ANN has delivered high accuracy for each class: AS-90.74 %, GBM-88.46 %, MED-85 %, MEN-90.70 %, MET-96.67 %, and NR-93.78 %. In the third experiment, to remove bias and to test the robustness of the proposed system, data is partitioned in a manner such that the SROIs from the same patient are not common for training and testing sets. In this case also, the proposed system has performed well by delivering an overall accuracy of 85.23 %. The individual class accuracy for each class is: AS-86.15 %, GBM-65.1 %, MED-63.36 %, MEN-91.5 %, MET-65.21 %, and NR-93.3 %. A computer-aided diagnostic system comprising of developed methods for segmentation, feature extraction, and classification of brain tumors can be beneficial to radiologists for precise localization, diagnosis, and interpretation of brain tumors on MR images.
Sarrafzadeh, Omid; Dehnavi, Alireza Mehri
2015-01-01
Segmentation of leukocytes acts as the foundation for all automated image-based hematological disease recognition systems. Most of the time, hematologists are interested in evaluation of white blood cells only. Digital image processing techniques can help them in their analysis and diagnosis. The main objective of this paper is to detect leukocytes from a blood smear microscopic image and segment them into their two dominant elements, nucleus and cytoplasm. The segmentation is conducted using two stages of applying K-means clustering. First, the nuclei are segmented using K-means clustering. Then, a proposed method based on region growing is applied to separate the connected nuclei. Next, the nuclei are subtracted from the original image. Finally, the cytoplasm is segmented using the second stage of K-means clustering. The results indicate that the proposed method is able to extract the nucleus and cytoplasm regions accurately and works well even though there is no significant contrast between the components in the image. In this paper, a method based on K-means clustering and region growing is proposed in order to detect leukocytes from a blood smear microscopic image and segment its components, the nucleus and the cytoplasm. As region growing step of the algorithm relies on the information of edges, it will not able to separate the connected nuclei more accurately in poor edges and it requires at least a weak edge to exist between the nuclei. The nucleus and cytoplasm segments of a leukocyte can be used for feature extraction and classification which leads to automated leukemia detection.
Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing
Sarrafzadeh, Omid; Dehnavi, Alireza Mehri
2015-01-01
Background: Segmentation of leukocytes acts as the foundation for all automated image-based hematological disease recognition systems. Most of the time, hematologists are interested in evaluation of white blood cells only. Digital image processing techniques can help them in their analysis and diagnosis. Materials and Methods: The main objective of this paper is to detect leukocytes from a blood smear microscopic image and segment them into their two dominant elements, nucleus and cytoplasm. The segmentation is conducted using two stages of applying K-means clustering. First, the nuclei are segmented using K-means clustering. Then, a proposed method based on region growing is applied to separate the connected nuclei. Next, the nuclei are subtracted from the original image. Finally, the cytoplasm is segmented using the second stage of K-means clustering. Results: The results indicate that the proposed method is able to extract the nucleus and cytoplasm regions accurately and works well even though there is no significant contrast between the components in the image. Conclusions: In this paper, a method based on K-means clustering and region growing is proposed in order to detect leukocytes from a blood smear microscopic image and segment its components, the nucleus and the cytoplasm. As region growing step of the algorithm relies on the information of edges, it will not able to separate the connected nuclei more accurately in poor edges and it requires at least a weak edge to exist between the nuclei. The nucleus and cytoplasm segments of a leukocyte can be used for feature extraction and classification which leads to automated leukemia detection. PMID:26605213
Musical structure analysis using similarity matrix and dynamic programming
NASA Astrophysics Data System (ADS)
Shiu, Yu; Jeong, Hong; Kuo, C.-C. Jay
2005-10-01
Automatic music segmentation and structure analysis from audio waveforms based on a three-level hierarchy is examined in this research, where the three-level hierarchy includes notes, measures and parts. The pitch class profile (PCP) feature is first extracted at the note level. Then, a similarity matrix is constructed at the measure level, where a dynamic time warping (DTW) technique is used to enhance the similarity computation by taking the temporal distortion of similar audio segments into account. By processing the similarity matrix, we can obtain a coarse-grain music segmentation result. Finally, dynamic programming is applied to the coarse-grain segments so that a song can be decomposed into several major parts such as intro, verse, chorus, bridge and outro. The performance of the proposed music structure analysis system is demonstrated for pop and rock music.
Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images
NASA Astrophysics Data System (ADS)
Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei
2017-02-01
Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.
Knowledge-based segmentation of pediatric kidneys in CT for measuring parenchymal volume
NASA Astrophysics Data System (ADS)
Brown, Matthew S.; Feng, Waldo C.; Hall, Theodore R.; McNitt-Gray, Michael F.; Churchill, Bernard M.
2000-06-01
The purpose of this work was to develop an automated method for segmenting pediatric kidneys in contrast-enhanced helical CT images and measuring the volume of the renal parenchyma. An automated system was developed to segment the abdomen, spine, aorta and kidneys. The expected size, shape, topology an X-ray attenuation of anatomical structures are stored as features in an anatomical model. These features guide 3-D threshold-based segmentation and then matching of extracted image regions to anatomical structures in the model. Following segmentation, the kidney volumes are calculated by summing included voxels. To validate the system, the kidney volumes of 4 swine were calculated using our approach and compared to the 'true' volumes measured after harvesting the kidneys. Automated volume calculations were also performed retrospectively in a cohort of 10 children. The mean difference between the calculated and measured values in the swine kidneys was 1.38 (S.D. plus or minus 0.44) cc. For the pediatric cases, calculated volumes ranged from 41.7 - 252.1 cc/kidney, and the mean ratio of right to left kidney volume was 0.96 (S.D. plus or minus 0.07). These results demonstrate the accuracy of the volumetric technique that may in the future provide an objective assessment of renal damage.
Analysis of Texture Using the Fractal Model
NASA Technical Reports Server (NTRS)
Navas, William; Espinosa, Ramon Vasquez
1997-01-01
Properties such as the fractal dimension (FD) can be used for feature extraction and classification of regions within an image. The FD measures the degree of roughness of a surface, so this number is used to characterize a particular region, in order to differentiate it from another. There are two basic approaches discussed in the literature to measure FD: the blanket method, and the box counting method. Both attempt to measure FD by estimating the change in surface area with respect to the change in resolution. We tested both methods but box counting resulted computationally faster and gave better results. Differential Box Counting (DBC) was used to segment a collage containing three textures. The FD is independent of directionality and brightness so five features were used derived from the original image to account for directionality and gray level biases. FD can not be measured on a point, so we use a window that slides across the image giving values of FD to the pixel on the center of the window. Windowing blurs the boundaries of adjacent classes, so an edge-preserving, feature-smoothing algorithm is used to improve classification within segments and to make the boundaries sharper. Segmentation using DBC was 90.8910 accurate.
Liu, Tongtong; Ge, Xifeng; Yu, Jinhua; Guo, Yi; Wang, Yuanyuan; Wang, Wenping; Cui, Ligang
2018-06-21
B-mode ultrasound (B-US) and strain elastography ultrasound (SE-US) images have a potential to distinguish thyroid tumor with different lymph node (LN) status. The purpose of our study is to investigate whether the application of multi-modality images including B-US and SE-US can improve the discriminability of thyroid tumor with LN metastasis based on a radiomics approach. Ultrasound (US) images including B-US and SE-US images of 75 papillary thyroid carcinoma (PTC) cases were retrospectively collected. A radiomics approach was developed in this study to estimate LNs status of PTC patients. The approach included image segmentation, quantitative feature extraction, feature selection and classification. Three feature sets were extracted from B-US, SE-US, and multi-modality containing B-US and SE-US. They were used to evaluate the contribution of different modalities. A total of 684 radiomics features have been extracted in our study. We used sparse representation coefficient-based feature selection method with 10-bootstrap to reduce the dimension of feature sets. Support vector machine with leave-one-out cross-validation was used to build the model for estimating LN status. Using features extracted from both B-US and SE-US, the radiomics-based model produced an area under the receiver operating characteristic curve (AUC) [Formula: see text] 0.90, accuracy (ACC) [Formula: see text] 0.85, sensitivity (SENS) [Formula: see text] 0.77 and specificity (SPEC) [Formula: see text] 0.88, which was better than using features extracted from B-US or SE-US separately. Multi-modality images provided more information in radiomics study. Combining use of B-US and SE-US could improve the LN metastasis estimation accuracy for PTC patients.
Selection of the best features for leukocytes classification in blood smear microscopic images
NASA Astrophysics Data System (ADS)
Sarrafzadeh, Omid; Rabbani, Hossein; Talebi, Ardeshir; Banaem, Hossein Usefi
2014-03-01
Automatic differential counting of leukocytes provides invaluable information to pathologist for diagnosis and treatment of many diseases. The main objective of this paper is to detect leukocytes from a blood smear microscopic image and classify them into their types: Neutrophil, Eosinophil, Basophil, Lymphocyte and Monocyte using features that pathologists consider to differentiate leukocytes. Features contain color, geometric and texture features. Colors of nucleus and cytoplasm vary among the leukocytes. Lymphocytes have single, large, round or oval and Monocytes have singular convoluted shape nucleus. Nucleus of Eosinophils is divided into 2 segments and nucleus of Neutrophils into 2 to 5 segments. Lymphocytes often have no granules, Monocytes have tiny granules, Neutrophils have fine granules and Eosinophils have large granules in cytoplasm. Six color features is extracted from both nucleus and cytoplasm, 6 geometric features only from nucleus and 6 statistical features and 7 moment invariants features only from cytoplasm of leukocytes. These features are fed to support vector machine (SVM) classifiers with one to one architecture. The results obtained by applying the proposed method on blood smear microscopic image of 10 patients including 149 white blood cells (WBCs) indicate that correct rate for all classifiers are above 93% which is in a higher level in comparison with previous literatures.
Road Damage Extraction from Post-Earthquake Uav Images Assisted by Vector Data
NASA Astrophysics Data System (ADS)
Chen, Z.; Dou, A.
2018-04-01
Extraction of road damage information after earthquake has been regarded as urgent mission. To collect information about stricken areas, Unmanned Aerial Vehicle can be used to obtain images rapidly. This paper put forward a novel method to detect road damage and bring forward a coefficient to assess road accessibility. With the assistance of vector road data, image data of the Jiuzhaigou Ms7.0 Earthquake is tested. In the first, the image is clipped according to vector buffer. Then a large-scale segmentation is applied to remove irrelevant objects. Thirdly, statistics of road features are analysed, and damage information is extracted. Combining with the on-filed investigation, the extraction result is effective.
Automated classification of optical coherence tomography images of human atrial tissue
NASA Astrophysics Data System (ADS)
Gan, Yu; Tsay, David; Amir, Syed B.; Marboe, Charles C.; Hendon, Christine P.
2016-10-01
Tissue composition of the atria plays a critical role in the pathology of cardiovascular disease, tissue remodeling, and arrhythmogenic substrates. Optical coherence tomography (OCT) has the ability to capture the tissue composition information of the human atria. In this study, we developed a region-based automated method to classify tissue compositions within human atria samples within OCT images. We segmented regional information without prior information about the tissue architecture and subsequently extracted features within each segmented region. A relevance vector machine model was used to perform automated classification. Segmentation of human atrial ex vivo datasets was correlated with trichrome histology and our classification algorithm had an average accuracy of 80.41% for identifying adipose, myocardium, fibrotic myocardium, and collagen tissue compositions.
Traffic sign recognition by color segmentation and neural network
NASA Astrophysics Data System (ADS)
Surinwarangkoon, Thongchai; Nitsuwat, Supot; Moore, Elvin J.
2011-12-01
An algorithm is proposed for traffic sign detection and identification based on color filtering, color segmentation and neural networks. Traffic signs in Thailand are classified by color into four types: namely, prohibitory signs (red or blue), general warning signs (yellow) and construction area warning signs (amber). A color filtering method is first used to detect traffic signs and classify them by type. Then color segmentation methods adapted for each color type are used to extract inner features, e.g., arrows, bars etc. Finally, neural networks trained to recognize signs in each color type are used to identify any given traffic sign. Experiments show that the algorithm can improve the accuracy of traffic sign detection and recognition for the traffic signs used in Thailand.
Feature Selection based on Machine Learning in MRIs for Hippocampal Segmentation
NASA Astrophysics Data System (ADS)
Tangaro, Sabina; Amoroso, Nicola; Brescia, Massimo; Cavuoti, Stefano; Chincarini, Andrea; Errico, Rosangela; Paolo, Inglese; Longo, Giuseppe; Maglietta, Rosalia; Tateo, Andrea; Riccio, Giuseppe; Bellotti, Roberto
2015-01-01
Neurodegenerative diseases are frequently associated with structural changes in the brain. Magnetic resonance imaging (MRI) scans can show these variations and therefore can be used as a supportive feature for a number of neurodegenerative diseases. The hippocampus has been known to be a biomarker for Alzheimer disease and other neurological and psychiatric diseases. However, it requires accurate, robust, and reproducible delineation of hippocampal structures. Fully automatic methods are usually the voxel based approach; for each voxel a number of local features were calculated. In this paper, we compared four different techniques for feature selection from a set of 315 features extracted for each voxel: (i) filter method based on the Kolmogorov-Smirnov test; two wrapper methods, respectively, (ii) sequential forward selection and (iii) sequential backward elimination; and (iv) embedded method based on the Random Forest Classifier on a set of 10 T1-weighted brain MRIs and tested on an independent set of 25 subjects. The resulting segmentations were compared with manual reference labelling. By using only 23 feature for each voxel (sequential backward elimination) we obtained comparable state-of-the-art performances with respect to the standard tool FreeSurfer.
Fission gas bubble identification using MATLAB's image processing toolbox
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collette, R.; King, J.; Keiser, Jr., D.
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less
Fission gas bubble identification using MATLAB's image processing toolbox
Collette, R.; King, J.; Keiser, Jr., D.; ...
2016-06-08
Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less
Object-Based Arctic Sea Ice Feature Extraction through High Spatial Resolution Aerial photos
NASA Astrophysics Data System (ADS)
Miao, X.; Xie, H.
2015-12-01
High resolution aerial photographs used to detect and classify sea ice features can provide accurate physical parameters to refine, validate, and improve climate models. However, manually delineating sea ice features, such as melt ponds, submerged ice, water, ice/snow, and pressure ridges, is time-consuming and labor-intensive. An object-based classification algorithm is developed to automatically extract sea ice features efficiently from aerial photographs taken during the Chinese National Arctic Research Expedition in summer 2010 (CHINARE 2010) in the MIZ near the Alaska coast. The algorithm includes four steps: (1) the image segmentation groups the neighboring pixels into objects based on the similarity of spectral and textural information; (2) the random forest classifier distinguishes four general classes: water, general submerged ice (GSI, including melt ponds and submerged ice), shadow, and ice/snow; (3) the polygon neighbor analysis separates melt ponds and submerged ice based on spatial relationship; and (4) pressure ridge features are extracted from shadow based on local illumination geometry. The producer's accuracy of 90.8% and user's accuracy of 91.8% are achieved for melt pond detection, and shadow shows a user's accuracy of 88.9% and producer's accuracies of 91.4%. Finally, pond density, pond fraction, ice floes, mean ice concentration, average ridge height, ridge profile, and ridge frequency are extracted from batch processing of aerial photos, and their uncertainties are estimated.
Multiresolution saliency map based object segmentation
NASA Astrophysics Data System (ADS)
Yang, Jian; Wang, Xin; Dai, ZhenYou
2015-11-01
Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.
NASA Astrophysics Data System (ADS)
Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi
2010-03-01
In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.
NASA Astrophysics Data System (ADS)
Alkilani, Amjad; Shirkhodaie, Amir
2013-05-01
Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.
Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen
2014-01-01
Prognosis and diagnosis of cardiac diseases frequently require quantitative evaluation of the ventricle volume, mass, and ejection fraction. The delineation of the myocardial wall is involved in all of these evaluations, which is a challenging task due to large variations in myocardial shapes and image quality. In this work, we present an automatic method for extracting the myocardial wall of the left and right ventricles from cardiac CT images. In the method, the left and right ventricles are located sequentially, in which each ventricle is detected by first identifying the endocardium and then segmenting the epicardium. To this end, the endocardium is localized by utilizing its geometric features obtained on-line from a CT image. After that, a variational region-growing model is employed to extract the epicardium of the ventricles. In particular, the location of the endocardium of the left ventricle is determined via using an active contour model on the blood-pool surface. To localize the right ventricle, the active contour model is applied on a heart surface extracted based on the left ventricle segmentation result. The robustness and accuracy of the proposed approach is demonstrated by experimental results from 33 human and 12 pig CT images. PMID:23744658
Memari, Nogol; Ramli, Abd Rahman; Bin Saripan, M Iqbal; Mashohor, Syamsiah; Moghbel, Mehrdad
2017-01-01
The structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE) method and the inhomogeneity is corrected using Retinex approach. Then, the blood vessels are enhanced using a combination of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statistical features are computed on a pixel-wise basis and used in an AdaBoost classifier to extract the blood vessel network inside the image. Finally, the segmented images are postprocessed to remove the misclassified pixels and regions. The proposed method was validated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE), Structured Analysis of the Retina (STARE) and Child Heart and Health Study in England (CHASE_DB1) datasets commonly used for determining the accuracy of retinal vessel segmentation methods. The accuracy of the proposed segmentation method was comparable to other state of the art methods while being very close to the manual segmentation provided by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in DRIVE, STARE and CHASE_DB1 datasets, respectively.
Computer-aided detection of bladder masses in CT urography (CTU)
NASA Astrophysics Data System (ADS)
Cha, Kenny H.; Hadjiiski, Lubomir M.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Weizer, Alon; Samala, Ravi K.
2017-03-01
We are developing a computer-aided detection system for bladder cancer in CT urography (CTU). We have previously developed methods for detection of bladder masses within the contrast-enhanced and the non-contrastenhanced regions of the bladder individually. In this study, we investigated methods for detection of bladder masses within the entire bladder. The bladder was segmented using our method that combined deep-learning convolutional neural network with level sets. The non-contrast-enhanced region was separated from the contrast-enhanced region with a maximum-intensity-projection-based method. The non-contrast region was smoothed and gray level threshold was applied to the contrast and non-contrast regions separately to extract the bladder wall and potential masses. The bladder wall was transformed into a straightened thickness profile, which was analyzed to identify lesion candidates in a prescreening step. The candidates were mapped back to the 3D CT volume and segmented using our auto-initialized cascaded level set (AI-CALS) segmentation method. Twenty-seven morphological features were extracted for each candidate. A data set of 57 patients with 71 biopsy-proven bladder lesions was used, which was split into independent training and test sets: 42 training cases with 52 lesions, and 15 test cases with 19 lesions. Using the training set, feature selection was performed and a linear discriminant (LDA) classifier was designed to merge the selected features for classification of bladder lesions and false positives. The trained classifier was evaluated with the test set. FROC analysis showed that the system achieved a sensitivity of 86.5% at 3.3 FPs/case for the training set, and 84.2% at 3.7 FPs/case for the test set.
ARCOCT: Automatic detection of lumen border in intravascular OCT images.
Cheimariotis, Grigorios-Aris; Chatzizisis, Yiannis S; Koutkias, Vassilis G; Toutouzas, Konstantinos; Giannopoulos, Andreas; Riga, Maria; Chouvarda, Ioanna; Antoniadis, Antonios P; Doulaverakis, Charalambos; Tsamboulatidis, Ioannis; Kompatsiaris, Ioannis; Giannoglou, George D; Maglaveras, Nicos
2017-11-01
Intravascular optical coherence tomography (OCT) is an invaluable tool for the detection of pathological features on the arterial wall and the investigation of post-stenting complications. Computational lumen border detection in OCT images is highly advantageous, since it may support rapid morphometric analysis. However, automatic detection is very challenging, since OCT images typically include various artifacts that impact image clarity, including features such as side branches and intraluminal blood presence. This paper presents ARCOCT, a segmentation method for fully-automatic detection of lumen border in OCT images. ARCOCT relies on multiple, consecutive processing steps, accounting for image preparation, contour extraction and refinement. In particular, for contour extraction ARCOCT employs the transformation of OCT images based on physical characteristics such as reflectivity and absorption of the tissue and, for contour refinement, local regression using weighted linear least squares and a 2nd degree polynomial model is employed to achieve artifact and small-branch correction as well as smoothness of the artery mesh. Our major focus was to achieve accurate contour delineation in the various types of OCT images, i.e., even in challenging cases with branches and artifacts. ARCOCT has been assessed in a dataset of 1812 images (308 from stented and 1504 from native segments) obtained from 20 patients. ARCOCT was compared against ground-truth manual segmentation performed by experts on the basis of various geometric features (e.g. area, perimeter, radius, diameter, centroid, etc.) and closed contour matching indicators (the Dice index, the Hausdorff distance and the undirected average distance), using standard statistical analysis methods. The proposed method was proven very efficient and close to the ground-truth, exhibiting non statistically-significant differences for most of the examined metrics. ARCOCT allows accurate and fully-automated lumen border detection in OCT images. Copyright © 2017 Elsevier B.V. All rights reserved.
Onomatopoeia characters extraction from comic images using constrained Delaunay triangulation
NASA Astrophysics Data System (ADS)
Liu, Xiangping; Shoji, Kenji; Mori, Hiroshi; Toyama, Fubito
2014-02-01
A method for extracting onomatopoeia characters from comic images was developed based on stroke width feature of characters, since they nearly have a constant stroke width in a number of cases. An image was segmented with a constrained Delaunay triangulation. Connected component grouping was performed based on the triangles generated by the constrained Delaunay triangulation. Stroke width calculation of the connected components was conducted based on the altitude of the triangles generated with the constrained Delaunay triangulation. The experimental results proved the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Mori, Kensaku
2015-03-01
This paper presents a method for torso organ segmentation from abdominal CT images using structured perceptron and dual decomposition. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. This paper proposes an organ segmentation method using structured output learning. Our method utilizes a graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weights of the graphical model by structured perceptron and estimate the best organ label for a given image by dynamic programming and dual decomposition. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 4.4%. The DICE coefficients of left lung, right lung, heart, liver, spleen, pancreas, left kidney, right kidney, and gallbladder were 0.91, 0.95, 0.77, 0.81, 0.74, 0.08, 0.83, 0.84, and 0.03, respectively.
Tsai, Yu Hsin; Stow, Douglas; Weeks, John
2013-01-01
The goal of this study was to map and quantify the number of newly constructed buildings in Accra, Ghana between 2002 and 2010 based on high spatial resolution satellite image data. Two semi-automated feature detection approaches for detecting and mapping newly constructed buildings based on QuickBird very high spatial resolution satellite imagery were analyzed: (1) post-classification comparison; and (2) bi-temporal layerstack classification. Feature Analyst software based on a spatial contextual classifier and ENVI Feature Extraction that uses a true object-based image analysis approach of image segmentation and segment classification were evaluated. Final map products representing new building objects were compared and assessed for accuracy using two object-based accuracy measures, completeness and correctness. The bi-temporal layerstack method generated more accurate results compared to the post-classification comparison method due to less confusion with background objects. The spectral/spatial contextual approach (Feature Analyst) outperformed the true object-based feature delineation approach (ENVI Feature Extraction) due to its ability to more reliably delineate individual buildings of various sizes. Semi-automated, object-based detection followed by manual editing appears to be a reliable and efficient approach for detecting and enumerating new building objects. A bivariate regression analysis was performed using neighborhood-level estimates of new building density regressed on a census-derived measure of socio-economic status, yielding an inverse relationship with R2 = 0.31 (n = 27; p = 0.00). The primary utility of the new building delineation results is to support spatial analyses of land cover and land use and demographic change. PMID:24415810
Computer-aided diagnostic approach of dermoscopy images acquiring relevant features
NASA Astrophysics Data System (ADS)
Castillejos-Fernández, H.; Franco-Arcega, A.; López-Ortega, O.
2016-09-01
In skin cancer detection, automated analysis of borders, colors, and structures of a lesion relies upon an accurate segmentation process and it is an important first step in any Computer-Aided Diagnosis (CAD) system. However, irregular and disperse lesion borders, low contrast, artifacts in images and variety of colors within the interest region make the problem difficult. In this paper, we propose an efficient approach of automatic classification which considers specific lesion features. First, for the selection of lesion skin we employ the segmentation algorithm W-FCM.1 Then, in the feature extraction stage we consider several aspects: the area of the lesion, which is calculated by correlating axes and we calculate the specific the value of asymmetry in both axes. For color analysis we employ an ensemble of clusterers including K-Means, Fuzzy K-Means and Kohonep maps, all of which estimate the presence of one or more colors defined in ABCD rule and the values for each of the segmented colors. Another aspect to consider is the type of structures that appear in the lesion Those are defined by using the ell-known GLCM method. During the classification stage we compare several methods in order to define if the lesion is benign or malignant. An important contribution of the current approach in segmentation-classification problem resides in the use of information from all color channels together, as well as the measure of each color in the lesion and the axes correlation. The segmentation and classification measures have been performed using sensibility, specificity, accuracy and AUC metric over a set of dermoscopy images from ISDIS data set
NASA Astrophysics Data System (ADS)
Selva Bhuvaneswari, K.; Geetha, P.
2017-05-01
Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.
A functional-based segmentation of human body scans in arbitrary postures.
Werghi, Naoufel; Xiao, Yijun; Siebert, Jan Paul
2006-02-01
This paper presents a general framework that aims to address the task of segmenting three-dimensional (3-D) scan data representing the human form into subsets which correspond to functional human body parts. Such a task is challenging due to the articulated and deformable nature of the human body. A salient feature of this framework is that it is able to cope with various body postures and is in addition robust to noise, holes, irregular sampling and rigid transformations. Although whole human body scanners are now capable of routinely capturing the shape of the whole body in machine readable format, they have not yet realized their potential to provide automatic extraction of key body measurements. Automated production of anthropometric databases is a prerequisite to satisfying the needs of certain industrial sectors (e.g., the clothing industry). This implies that in order to extract specific measurements of interest, whole body 3-D scan data must be segmented by machine into subsets corresponding to functional human body parts. However, previously reported attempts at automating the segmentation process suffer from various limitations, such as being restricted to a standard specific posture and being vulnerable to scan data artifacts. Our human body segmentation algorithm advances the state of the art to overcome the above limitations and we present experimental results obtained using both real and synthetic data that confirm the validity, effectiveness, and robustness of our approach.
Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks
Ibragimov, Bulat; Xing, Lei
2017-01-01
Purpose Accurate segmentation of organs-at-risks (OARs) is the key step for efficient planning of radiation therapy for head and neck (HaN) cancer treatment. In the work, we proposed the first deep learning-based algorithm, for segmentation of OARs in HaN CT images, and compared its performance against state-of-the-art automated segmentation algorithms, commercial software and inter-observer variability. Methods Convolutional neural networks (CNNs) – a concept from the field of deep learning – were used to study consistent intensity patterns of OARs from training CT images and to segment the OAR in a previously unseen test CT image. For CNN training, we extracted a representative number of positive intensity patches around voxels that belong to the OAR of interest in training CT images, and negative intensity patches around voxels that belong to the surrounding structures. These patches then passed through a sequence of CNN layers that captured local image features such as corners, end-points and edges, and combined them into more complex high-order features that can efficiently describe the OAR. The trained network was applied to classify voxels in a region of interest in the test image where the corresponding OAR is expected to be located. We then smoothed the obtained classification results by using Markov random fields algorithm. We finally extracted the largest connected component of the smoothed voxels classified as the OAR by CNN, performed dilate-erode operations to remov cavities of the component, which resulted in segmentation of the OAR in the test image. Results The performance of CNNs was validated on segmentation of spinal cord, mandible, parotid glands, submandibular glands, larynx, pharynx, eye globes, optic nerves and optic chiasm using 50 CT images. The obtained segmentation results varied from 37.4% Dice coefficient (DSC) for chiasm to 89.5% DSC for mandible. We also analyzed the performance of state-of-the-art algorithms and commercial software reported in the literature, and observed that CNNs demonstrate similar or superior performance on segmentation of spinal cord, mandible, parotid glands, larynx, pharynx, eye globes and optic nerves, but inferior performance on segmentation of submandibular glands and optic chiasm. Conclusion We concluded that convolution neural networks can accurately segment most of OARs using a representative database of 50 HaN CT images. At the same time, inclusion of additional information, e.g. MR images, may be beneficial for some OARs with poorly-visible boundaries. PMID:28205307
Automated analysis and classification of melanocytic tumor on skin whole slide images.
Xu, Hongming; Lu, Cheng; Berendt, Richard; Jha, Naresh; Mandal, Mrinal
2018-06-01
This paper presents a computer-aided technique for automated analysis and classification of melanocytic tumor on skin whole slide biopsy images. The proposed technique consists of four main modules. First, skin epidermis and dermis regions are segmented by a multi-resolution framework. Next, epidermis analysis is performed, where a set of epidermis features reflecting nuclear morphologies and spatial distributions is computed. In parallel with epidermis analysis, dermis analysis is also performed, where dermal cell nuclei are segmented and a set of textural and cytological features are computed. Finally, the skin melanocytic image is classified into different categories such as melanoma, nevus or normal tissue by using a multi-class support vector machine (mSVM) with extracted epidermis and dermis features. Experimental results on 66 skin whole slide images indicate that the proposed technique achieves more than 95% classification accuracy, which suggests that the technique has the potential to be used for assisting pathologists on skin biopsy image analysis and classification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Estimation of degree of sea ice ridging based on dual-polarized C-band SAR data
NASA Astrophysics Data System (ADS)
Gegiuc, Alexandru; Similä, Markku; Karvonen, Juha; Lensu, Mikko; Mäkynen, Marko; Vainio, Jouni
2018-01-01
For ship navigation in the Baltic Sea ice, parameters such as ice edge, ice concentration, ice thickness and degree of ridging are usually reported daily in manually prepared ice charts. These charts provide icebreakers with essential information for route optimization and fuel calculations. However, manual ice charting requires long analysis times, and detailed analysis of large areas (e.g. Arctic Ocean) is not feasible. Here, we propose a method for automatic estimation of the degree of ice ridging in the Baltic Sea region, based on RADARSAT-2 C-band dual-polarized (HH/HV channels) SAR texture features and sea ice concentration information extracted from Finnish ice charts. The SAR images were first segmented and then several texture features were extracted for each segment. Using the random forest method, we classified them into four classes of ridging intensity and compared them to the reference data extracted from the digitized ice charts. The overall agreement between the ice-chart-based degree of ice ridging and the automated results varied monthly, being 83, 63 and 81 % in January, February and March 2013, respectively. The correspondence between the degree of ice ridging reported in the ice charts and the actual ridge density was validated with data collected during a field campaign in March 2011. In principle the method can be applied to the seasonal sea ice regime in the Arctic Ocean.
Real-time implementation of camera positioning algorithm based on FPGA & SOPC
NASA Astrophysics Data System (ADS)
Yang, Mingcao; Qiu, Yuehong
2014-09-01
In recent years, with the development of positioning algorithm and FPGA, to achieve the camera positioning based on real-time implementation, rapidity, accuracy of FPGA has become a possibility by way of in-depth study of embedded hardware and dual camera positioning system, this thesis set up an infrared optical positioning system based on FPGA and SOPC system, which enables real-time positioning to mark points in space. Thesis completion include: (1) uses a CMOS sensor to extract the pixel of three objects with total feet, implemented through FPGA hardware driver, visible-light LED, used here as the target point of the instrument. (2) prior to extraction of the feature point coordinates, the image needs to be filtered to avoid affecting the physical properties of the system to bring the platform, where the median filtering. (3) Coordinate signs point to FPGA hardware circuit extraction, a new iterative threshold selection method for segmentation of images. Binary image is then segmented image tags, which calculates the coordinates of the feature points of the needle through the center of gravity method. (4) direct linear transformation (DLT) and extreme constraints method is applied to three-dimensional reconstruction of the plane array CMOS system space coordinates. using SOPC system on a chip here, taking advantage of dual-core computing systems, which let match and coordinate operations separately, thus increase processing speed.
A Method for Extracting Important Segments from Documents Using Support Vector Machines
NASA Astrophysics Data System (ADS)
Suzuki, Daisuke; Utsumi, Akira
In this paper we propose an extraction-based method for automatic summarization. The proposed method consists of two processes: important segment extraction and sentence compaction. The process of important segment extraction classifies each segment in a document as important or not by Support Vector Machines (SVMs). The process of sentence compaction then determines grammatically appropriate portions of a sentence for a summary according to its dependency structure and the classification result by SVMs. To test the performance of our method, we conducted an evaluation experiment using the Text Summarization Challenge (TSC-1) corpus of human-prepared summaries. The result was that our method achieved better performance than a segment-extraction-only method and the Lead method, especially for sentences only a part of which was included in human summaries. Further analysis of the experimental results suggests that a hybrid method that integrates sentence extraction with segment extraction may generate better summaries.
Brain Tumor Segmentation Using Deep Belief Networks and Pathological Knowledge.
Zhan, Tianming; Chen, Yi; Hong, Xunning; Lu, Zhenyu; Chen, Yunjie
2017-01-01
In this paper, we propose an automatic brain tumor segmentation method based on Deep Belief Networks (DBNs) and pathological knowledge. The proposed method is targeted against gliomas (both low and high grade) obtained in multi-sequence magnetic resonance images (MRIs). Firstly, a novel deep architecture is proposed to combine the multi-sequences intensities feature extraction with classification to get the classification probabilities of each voxel. Then, graph cut based optimization is executed on the classification probabilities to strengthen the spatial relationships of voxels. At last, pathological knowledge of gliomas is applied to remove some false positives. Our method was validated in the Brain Tumor Segmentation Challenge 2012 and 2013 databases (BRATS 2012, 2013). The performance of segmentation results demonstrates our proposal providing a competitive solution with stateof- the-art methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
ProFound: Source Extraction and Application to Modern Survey Data
NASA Astrophysics Data System (ADS)
Robotham, A. S. G.
2018-04-01
ProFound detects sources in noisy images, generates segmentation maps identifying the pixels belonging to each source, and measures statistics like flux, size, and ellipticity. These inputs are key requirements of ProFit (ascl:1612.004), our galaxy profiling package; these two packages used in unison semi-automatically profile large samples of galaxies. The key novel feature introduced in ProFound is that all photometry is executed on dilated segmentation maps that fully contain the identifiable flux, rather than using more traditional circular or ellipse-based photometry. Also, to be less sensitive to pathological segmentation issues, the de-blending is made across saddle points in flux. ProFound offers good initial parameter estimation for ProFit, and also segmentation maps that follow the sometimes complex geometry of resolved sources, whilst capturing nearly all of the flux. A number of bulge-disc decomposition projects are already making use of the ProFound and ProFit pipeline.
NASA Astrophysics Data System (ADS)
Xu, Chao; Zhou, Dongxiang; Zhai, Yongping; Liu, Yunhui
2015-12-01
This paper realizes the automatic segmentation and classification of Mycobacterium tuberculosis with conventional light microscopy. First, the candidate bacillus objects are segmented by the marker-based watershed transform. The markers are obtained by an adaptive threshold segmentation based on the adaptive scale Gaussian filter. The scale of the Gaussian filter is determined according to the color model of the bacillus objects. Then the candidate objects are extracted integrally after region merging and contaminations elimination. Second, the shape features of the bacillus objects are characterized by the Hu moments, compactness, eccentricity, and roughness, which are used to classify the single, touching and non-bacillus objects. We evaluated the logistic regression, random forest, and intersection kernel support vector machines classifiers in classifying the bacillus objects respectively. Experimental results demonstrate that the proposed method yields to high robustness and accuracy. The logistic regression classifier performs best with an accuracy of 91.68%.
NASA Astrophysics Data System (ADS)
Modiri, M.; Salehabadi, A.; Mohebbi, M.; Hashemi, A. M.; Masumi, M.
2015-12-01
The use of UAV in the application of photogrammetry to obtain cover images and achieve the main objectives of the photogrammetric mapping has been a boom in the region. The images taken from REGGIOLO region in the province of, Italy Reggio -Emilia by UAV with non-metric camera Canon Ixus and with an average height of 139.42 meters were used to classify urban feature. Using the software provided SURE and cover images of the study area, to produce dense point cloud, DSM and Artvqvtv spatial resolution of 10 cm was prepared. DTM area using Adaptive TIN filtering algorithm was developed. NDSM area was prepared with using the difference between DSM and DTM and a separate features in the image stack. In order to extract features, using simultaneous occurrence matrix features mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation for each of the RGB band image was used Orthophoto area. Classes used to classify urban problems, including buildings, trees and tall vegetation, grass and vegetation short, paved road and is impervious surfaces. Class consists of impervious surfaces such as pavement conditions, the cement, the car, the roof is stored. In order to pixel-based classification and selection of optimal features of classification was GASVM pixel basis. In order to achieve the classification results with higher accuracy and spectral composition informations, texture, and shape conceptual image featureOrthophoto area was fencing. The segmentation of multi-scale segmentation method was used.it belonged class. Search results using the proposed classification of urban feature, suggests the suitability of this method of classification complications UAV is a city using images. The overall accuracy and kappa coefficient method proposed in this study, respectively, 47/93% and 84/91% was.
Robust tumor morphometry in multispectral fluorescence microscopy
NASA Astrophysics Data System (ADS)
Tabesh, Ali; Vengrenyuk, Yevgen; Teverovskiy, Mikhail; Khan, Faisal M.; Sapir, Marina; Powell, Douglas; Mesa-Tejada, Ricardo; Donovan, Michael J.; Fernandez, Gerardo
2009-02-01
Morphological and architectural characteristics of primary tissue compartments, such as epithelial nuclei (EN) and cytoplasm, provide important cues for cancer diagnosis, prognosis, and therapeutic response prediction. We propose two feature sets for the robust quantification of these characteristics in multiplex immunofluorescence (IF) microscopy images of prostate biopsy specimens. To enable feature extraction, EN and cytoplasm regions were first segmented from the IF images. Then, feature sets consisting of the characteristics of the minimum spanning tree (MST) connecting the EN and the fractal dimension (FD) of gland boundaries were obtained from the segmented compartments. We demonstrated the utility of the proposed features in prostate cancer recurrence prediction on a multi-institution cohort of 1027 patients. Univariate analysis revealed that both FD and one of the MST features were highly effective for predicting cancer recurrence (p <= 0.0001). In multivariate analysis, an MST feature was selected for a model incorporating clinical and image features. The model achieved a concordance index (CI) of 0.73 on the validation set, which was significantly higher than the CI of 0.69 for the standard multivariate model based solely on clinical features currently used in clinical practice (p < 0.0001). The contributions of this work are twofold. First, it is the first demonstration of the utility of the proposed features in morphometric analysis of IF images. Second, this is the largest scale study of the efficacy and robustness of the proposed features in prostate cancer prognosis.
Inferior vena cava segmentation with parameter propagation and graph cut.
Yan, Zixu; Chen, Feng; Wu, Fa; Kong, Dexing
2017-09-01
The inferior vena cava (IVC) is one of the vital veins inside the human body. Accurate segmentation of the IVC from contrast-enhanced CT images is of great importance. This extraction not only helps the physician understand its quantitative features such as blood flow and volume, but also it is helpful during the hepatic preoperative planning. However, manual delineation of the IVC is time-consuming and poorly reproducible. In this paper, we propose a novel method to segment the IVC with minimal user interaction. The proposed method performs the segmentation block by block between user-specified beginning and end masks. At each stage, the proposed method builds the segmentation model based on information from image regional appearances, image boundaries, and a prior shape. The intensity range and the prior shape for this segmentation model are estimated based on the segmentation result from the last block, or from user- specified beginning mask if at first stage. Then, the proposed method minimizes the energy function and generates the segmentation result for current block using graph cut. Finally, a backward tracking step from the end of the IVC is performed if necessary. We have tested our method on 20 clinical datasets and compared our method to three other vessel extraction approaches. The evaluation was performed using three quantitative metrics: the Dice coefficient (Dice), the mean symmetric distance (MSD), and the Hausdorff distance (MaxD). The proposed method has achieved a Dice of [Formula: see text], an MSD of [Formula: see text] mm, and a MaxD of [Formula: see text] mm, respectively, in our experiments. The proposed approach can achieve a sound performance with a relatively low computational cost and a minimal user interaction. The proposed algorithm has high potential to be applied for the clinical applications in the future.
NASA Astrophysics Data System (ADS)
Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri
2016-03-01
Pulmonary tuberculosis is a deadly infectious disease which occurs in many countries in Asia and Africa. In Indonesia, many people with tuberculosis disease are examined in the community health center. Examination of pulmonary tuberculosis is done through sputum smear with Ziehl - Neelsen staining using conventional light microscope. The results of Ziehl - Neelsen staining will give effect to the appearance of tuberculosis (TB) bacteria in red color and sputum background in blue color. The first examination is to detect the presence of TB bacteria from its color, then from the morphology of the TB bacteria itself. The results of Ziehl - Neelsen staining in sputum smear give the complex color images, so that the clinicians have difficulty when doing slide examination manually because it is time consuming and needs highly training to detect the presence of TB bacteria accurately. The clinicians have heavy workload to examine many sputum smear slides from the patients. To assist the clinicians when reading the sputum smear slide, this research built computer aided diagnose with color image segmentation, feature extraction, and classification method. This research used K-means clustering with patch technique to segment digital sputum smear images which separated the TB bacteria images from the background images. This segmentation method gave the good accuracy 97.68%. Then, feature extraction based on geometrical shape of TB bacteria was applied to this research. The last step, this research used neural network with back propagation method to classify TB bacteria and non TB bacteria images in sputum slides. The classification result of neural network back propagation are learning time (42.69±0.02) second, the number of epoch 5000, error rate of learning 15%, learning accuracy (98.58±0.01)%, and test accuracy (96.54±0.02)%.
Feature detection in satellite images using neural network technology
NASA Technical Reports Server (NTRS)
Augusteijn, Marijke F.; Dimalanta, Arturo S.
1992-01-01
A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.
Vidaurre, D.; Rodríguez, E. E.; Bielza, C.; Larrañaga, P.; Rudomin, P.
2012-01-01
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods. PMID:22929924
Vidaurre, D; Rodríguez, E E; Bielza, C; Larrañaga, P; Rudomin, P
2012-10-01
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.
Automated retinal vessel type classification in color fundus images
NASA Astrophysics Data System (ADS)
Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.
2013-02-01
Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.
Nouredanesh, Mina; Kukreja, Sunil L; Tung, James
2016-08-01
Loss of balance is prevalent in older adults and populations with gait and balance impairments. The present paper aims to develop a method to automatically distinguish compensatory balance responses (CBRs) from normal gait, based on activity patterns of muscles involved in maintaining balance. In this study, subjects were perturbed by lateral pushes while walking and surface electromyography (sEMG) signals were recorded from four muscles in their right leg. To extract sEMG time domain features, several filtering characteristics and segmentation approaches are examined. The performance of three classification methods, i.e., k-nearest neighbor, support vector machines, and random forests, were investigated for accurate detection of CBRs. Our results show that features extracted in the 50-200Hz band, segmented using peak sEMG amplitudes, and a random forest classifier detected CBRs with an accuracy of 92.35%. Moreover, our results support the important role of biceps femoris and rectus femoris muscles in stabilization and consequently discerning CBRs. This study contributes towards the development of wearable sensor systems to accurately and reliably monitor gait and balance control behavior in at-home settings (unsupervised conditions), over long periods of time, towards personalized fall risk assessment tools.
Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network.
Li, Yuexiang; Shen, Linlin
2018-02-11
Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved.
Correlative feature analysis on FFDM
Yuan, Yading; Giger, Maryellen L.; Li, Hui; Sennett, Charlene
2008-01-01
Identifying the corresponding images of a lesion in different views is an essential step in improving the diagnostic ability of both radiologists and computer-aided diagnosis (CAD) systems. Because of the nonrigidity of the breasts and the 2D projective property of mammograms, this task is not trivial. In this pilot study, we present a computerized framework that differentiates between corresponding images of the same lesion in different views and noncorresponding images, i.e., images of different lesions. A dual-stage segmentation method, which employs an initial radial gradient index (RGI) based segmentation and an active contour model, is applied to extract mass lesions from the surrounding parenchyma. Then various lesion features are automatically extracted from each of the two views of each lesion to quantify the characteristics of density, size, texture and the neighborhood of the lesion, as well as its distance to the nipple. A two-step scheme is employed to estimate the probability that the two lesion images from different mammographic views are of the same physical lesion. In the first step, a correspondence metric for each pairwise feature is estimated by a Bayesian artificial neural network (BANN). Then, these pairwise correspondence metrics are combined using another BANN to yield an overall probability of correspondence. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the individual features and the selected feature subset in the task of distinguishing corresponding pairs from noncorresponding pairs. Using a FFDM database with 123 corresponding image pairs and 82 noncorresponding pairs, the distance feature yielded an area under the ROC curve (AUC) of 0.81±0.02 with leave-one-out (by physical lesion) evaluation, and the feature metric subset, which included distance, gradient texture, and ROI-based correlation, yielded an AUC of 0.87±0.02. The improvement by using multiple feature metrics was statistically significant compared to single feature performance. PMID:19175108
Pedestrian detection based on redundant wavelet transform
NASA Astrophysics Data System (ADS)
Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun
2016-10-01
Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.
Asymmetry and irregularity border as discrimination factor between melanocytic lesions
NASA Astrophysics Data System (ADS)
Sbrissa, David; Pratavieira, Sebastião.; Salvio, Ana Gabriela; Kurachi, Cristina; Bagnato, Vanderlei Salvadori; Costa, Luciano Da Fontoura; Travieso, Gonzalo
2015-06-01
Image processing tools have been widely used in systems supporting medical diagnosis. The use of mobile devices for the diagnosis of melanoma can assist doctors and improve their diagnosis of a melanocytic lesion. This study proposes a method of image analysis for melanoma discrimination from other types of melanocytic lesions, such as regular and atypical nevi. The process is based on extracting features related with asymmetry and border irregularity. It were collected 104 images, from medical database of two years. The images were obtained with standard digital cameras without lighting and scale control. Metrics relating to the characteristics of shape, asymmetry and curvature of the contour were extracted from segmented images. Linear Discriminant Analysis was performed for dimensionality reduction and data visualization. Segmentation results showed good efficiency in the process, with approximately 88:5% accuracy. Validation results presents sensibility and specificity 85% and 70% for melanoma detection, respectively.
Variable Selection for Road Segmentation in Aerial Images
NASA Astrophysics Data System (ADS)
Warnke, S.; Bulatov, D.
2017-05-01
For extraction of road pixels from combined image and elevation data, Wegner et al. (2015) proposed classification of superpixels into road and non-road, after which a refinement of the classification results using minimum cost paths and non-local optimization methods took place. We believed that the variable set used for classification was to a certain extent suboptimal, because many variables were redundant while several features known as useful in Photogrammetry and Remote Sensing are missed. This motivated us to implement a variable selection approach which builds a model for classification using portions of training data and subsets of features, evaluates this model, updates the feature set, and terminates when a stopping criterion is satisfied. The choice of classifier is flexible; however, we tested the approach with Logistic Regression and Random Forests, and taylored the evaluation module to the chosen classifier. To guarantee a fair comparison, we kept the segment-based approach and most of the variables from the related work, but we extended them by additional, mostly higher-level features. Applying these superior features, removing the redundant ones, as well as using more accurately acquired 3D data allowed to keep stable or even to reduce the misclassification error in a challenging dataset.
Audio-video feature correlation: faces and speech
NASA Astrophysics Data System (ADS)
Durand, Gwenael; Montacie, Claude; Caraty, Marie-Jose; Faudemay, Pascal
1999-08-01
This paper presents a study of the correlation of features automatically extracted from the audio stream and the video stream of audiovisual documents. In particular, we were interested in finding out whether speech analysis tools could be combined with face detection methods, and to what extend they should be combined. A generic audio signal partitioning algorithm as first used to detect Silence/Noise/Music/Speech segments in a full length movie. A generic object detection method was applied to the keyframes extracted from the movie in order to detect the presence or absence of faces. The correlation between the presence of a face in the keyframes and of the corresponding voice in the audio stream was studied. A third stream, which is the script of the movie, is warped on the speech channel in order to automatically label faces appearing in the keyframes with the name of the corresponding character. We naturally found that extracted audio and video features were related in many cases, and that significant benefits can be obtained from the joint use of audio and video analysis methods.
Segmentation of mosaicism in cervicographic images using support vector machines
NASA Astrophysics Data System (ADS)
Xue, Zhiyun; Long, L. Rodney; Antani, Sameer; Jeronimo, Jose; Thoma, George R.
2009-02-01
The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating a large digital repository of cervicographic images for the study of uterine cervix cancer prevention. One of the research goals is to automatically detect diagnostic bio-markers in these images. Reliable bio-marker segmentation in large biomedical image collections is a challenging task due to the large variation in image appearance. Methods described in this paper focus on segmenting mosaicism, which is an important vascular feature used to visually assess the degree of cervical intraepithelial neoplasia. The proposed approach uses support vector machines (SVM) trained on a ground truth dataset annotated by medical experts (which circumvents the need for vascular structure extraction). We have evaluated the performance of the proposed algorithm and experimentally demonstrated its feasibility.
Video rate color region segmentation for mobile robotic applications
NASA Astrophysics Data System (ADS)
de Cabrol, Aymeric; Bonnin, Patrick J.; Hugel, Vincent; Blazevic, Pierre; Chetto, Maryline
2005-08-01
Color Region may be an interesting image feature to extract for visual tasks in robotics, such as navigation and obstacle avoidance. But, whereas numerous methods are used for vision systems embedded on robots, only a few use this segmentation mainly because of the processing duration. In this paper, we propose a new real-time (ie. video rate) color region segmentation followed by a robust color classification and a merging of regions, dedicated to various applications such as RoboCup four-legged league or an industrial conveyor wheeled robot. Performances of this algorithm and confrontation with other methods, in terms of result quality and temporal performances are provided. For better quality results, the obtained speed up is between 2 and 4. For same quality results, the it is up to 10. We present also the outlines of the Dynamic Vision System of the CLEOPATRE Project - for which this segmentation has been developed - and the Clear Box Methodology which allowed us to create the new color region segmentation from the evaluation and the knowledge of other well known segmentations.
A novel multiphoton microscopy images segmentation method based on superpixel and watershed.
Wu, Weilin; Lin, Jinyong; Wang, Shu; Li, Yan; Liu, Mingyu; Liu, Gaoqiang; Cai, Jianyong; Chen, Guannan; Chen, Rong
2017-04-01
Multiphoton microscopy (MPM) imaging technique based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) shows fantastic performance for biological imaging. The automatic segmentation of cellular architectural properties for biomedical diagnosis based on MPM images is still a challenging issue. A novel multiphoton microscopy images segmentation method based on superpixels and watershed (MSW) is presented here to provide good segmentation results for MPM images. The proposed method uses SLIC superpixels instead of pixels to analyze MPM images for the first time. The superpixels segmentation based on a new distance metric combined with spatial, CIE Lab color space and phase congruency features, divides the images into patches which keep the details of the cell boundaries. Then the superpixels are used to reconstruct new images by defining an average value of superpixels as image pixels intensity level. Finally, the marker-controlled watershed is utilized to segment the cell boundaries from the reconstructed images. Experimental results show that cellular boundaries can be extracted from MPM images by MSW with higher accuracy and robustness. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distribution and Features of the Six Classes of Peroxiredoxins
Poole, Leslie B.; Nelson, Kimberly J.
2016-01-01
Peroxiredoxins are cysteine-dependent peroxide reductases that group into 6 different, structurally discernable classes. In 2011, our research team reported the application of a bioinformatic approach called active site profiling to extract active site-proximal sequence segments from the 29 distinct, structurally-characterized peroxiredoxins available at the time. These extracted sequences were then used to create unique profiles for the six groups which were subsequently used to search GenBank(nr), allowing identification of ∼3500 peroxiredoxin sequences and their respective subgroups. Summarized in this minireview are the features and phylogenetic distributions of each of these peroxiredoxin subgroups; an example is also provided illustrating the use of the web accessible, searchable database known as PREX to identify subfamily-specific peroxiredoxin sequences for the organism Vitis vinifera (grape). PMID:26810075
Extraction of object skeletons in multispectral imagery by the orthogonal regression fitting
NASA Astrophysics Data System (ADS)
Palenichka, Roman M.; Zaremba, Marek B.
2003-03-01
Accurate and automatic extraction of skeletal shape of objects of interest from satellite images provides an efficient solution to such image analysis tasks as object detection, object identification, and shape description. The problem of skeletal shape extraction can be effectively solved in three basic steps: intensity clustering (i.e. segmentation) of objects, extraction of a structural graph of the object shape, and refinement of structural graph by the orthogonal regression fitting. The objects of interest are segmented from the background by a clustering transformation of primary features (spectral components) with respect to each pixel. The structural graph is composed of connected skeleton vertices and represents the topology of the skeleton. In the general case, it is a quite rough piecewise-linear representation of object skeletons. The positions of skeleton vertices on the image plane are adjusted by means of the orthogonal regression fitting. It consists of changing positions of existing vertices according to the minimum of the mean orthogonal distances and, eventually, adding new vertices in-between if a given accuracy if not yet satisfied. Vertices of initial piecewise-linear skeletons are extracted by using a multi-scale image relevance function. The relevance function is an image local operator that has local maximums at the centers of the objects of interest.
A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories.
Yang, Wei; Ai, Tinghua; Lu, Wei
2018-04-19
Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality.
A Method for Extracting Road Boundary Information from Crowdsourcing Vehicle GPS Trajectories
Yang, Wei
2018-01-01
Crowdsourcing trajectory data is an important approach for accessing and updating road information. In this paper, we present a novel approach for extracting road boundary information from crowdsourcing vehicle traces based on Delaunay triangulation (DT). First, an optimization and interpolation method is proposed to filter abnormal trace segments from raw global positioning system (GPS) traces and interpolate the optimization segments adaptively to ensure there are enough tracking points. Second, constructing the DT and the Voronoi diagram within interpolated tracking lines to calculate road boundary descriptors using the area of Voronoi cell and the length of triangle edge. Then, the road boundary detection model is established integrating the boundary descriptors and trajectory movement features (e.g., direction) by DT. Third, using the boundary detection model to detect road boundary from the DT constructed by trajectory lines, and a regional growing method based on seed polygons is proposed to extract the road boundary. Experiments were conducted using the GPS traces of taxis in Beijing, China, and the results show that the proposed method is suitable for extracting the road boundary from low-frequency GPS traces, multi-type road structures, and different time intervals. Compared with two existing methods, the automatically extracted boundary information was proved to be of higher quality. PMID:29671792
NASA Astrophysics Data System (ADS)
Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J.
2018-04-01
The RF method based on grid-search parameter optimization could achieve a classification accuracy of 88.16 % in the classification of images with multiple feature variables. This classification accuracy was higher than that of SVM and ANN under the same feature variables. In terms of efficiency, the RF classification method performs better than SVM and ANN, it is more capable of handling multidimensional feature variables. The RF method combined with object-based analysis approach could highlight the classification accuracy further. The multiresolution segmentation approach on the basis of ESP scale parameter optimization was used for obtaining six scales to execute image segmentation, when the segmentation scale was 49, the classification accuracy reached the highest value of 89.58 %. The classification accuracy of object-based RF classification was 1.42 % higher than that of pixel-based classification (88.16 %), and the classification accuracy was further improved. Therefore, the RF classification method combined with object-based analysis approach could achieve relatively high accuracy in the classification and extraction of land use information for industrial and mining reclamation areas. Moreover, the interpretation of remotely sensed imagery using the proposed method could provide technical support and theoretical reference for remotely sensed monitoring land reclamation.
Automatic Sea Bird Detection from High Resolution Aerial Imagery
NASA Astrophysics Data System (ADS)
Mader, S.; Grenzdörffer, G. J.
2016-06-01
Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.
An improved approach for the segmentation of starch granules in microscopic images
2010-01-01
Background Starches are the main storage polysaccharides in plants and are distributed widely throughout plants including seeds, roots, tubers, leaves, stems and so on. Currently, microscopic observation is one of the most important ways to investigate and analyze the structure of starches. The position, shape, and size of the starch granules are the main measurements for quantitative analysis. In order to obtain these measurements, segmentation of starch granules from the background is very important. However, automatic segmentation of starch granules is still a challenging task because of the limitation of imaging condition and the complex scenarios of overlapping granules. Results We propose a novel method to segment starch granules in microscopic images. In the proposed method, we first separate starch granules from background using automatic thresholding and then roughly segment the image using watershed algorithm. In order to reduce the oversegmentation in watershed algorithm, we use the roundness of each segment, and analyze the gradient vector field to find the critical points so as to identify oversegments. After oversegments are found, we extract the features, such as the position and intensity of the oversegments, and use fuzzy c-means clustering to merge the oversegments to the objects with similar features. Experimental results demonstrate that the proposed method can alleviate oversegmentation of watershed segmentation algorithm successfully. Conclusions We present a new scheme for starch granules segmentation. The proposed scheme aims to alleviate the oversegmentation in watershed algorithm. We use the shape information and critical points of gradient vector flow (GVF) of starch granules to identify oversegments, and use fuzzy c-mean clustering based on prior knowledge to merge these oversegments to the objects. Experimental results on twenty microscopic starch images demonstrate the effectiveness of the proposed scheme. PMID:21047380
Palanisamy, Vinupritha; Mariamichael, Anburajan
2016-10-01
Background and Aim: Diabetes mellitus is a metabolic disorder characterized by varying hyperglycemias either due to insufficient secretion of insulin by the pancreas or improper utilization of glucose. The study was aimed to investigate the association of morphological features of erythrocytes among normal and diabetic subjects and its gender-based changes and thereby to develop a computer aided tool to diagnose diabetes using features extracted from RBC. Materials and Methods: The study involved 138 normal and 144 diabetic subjects. The blood was drawn from the subjects and the blood smear prepared was digitized using Zeiss fluorescent microscope. The digitized images were pre-processed and texture segmentation was performed to extract the various morphological features. The Pearson correlation test was performed and subsequently, classification of subjects as normal and diabetes was carried out by a neural network classifier based on the features that demonstrated significance at the level of P <0.05. Result: The proposed system demonstrated an overall accuracy, sensitivity, specificity, positive predictive value and negative predictive value of 93.3, 93.71, 92.8, 93.1 and 93.5% respectively. Conclusion: The morphological features exhibited a statistically significant difference (P<0.01) between the normal and diabetic cells, suggesting that it could be helpful in the diagnosis of Diabetes mellitus using a computer aided system. © Georg Thieme Verlag KG Stuttgart · New York.
Beef quality grading using machine vision
NASA Astrophysics Data System (ADS)
Jeyamkondan, S.; Ray, N.; Kranzler, Glenn A.; Biju, Nisha
2000-12-01
A video image analysis system was developed to support automation of beef quality grading. Forty images of ribeye steaks were acquired. Fat and lean meat were differentiated using a fuzzy c-means clustering algorithm. Muscle longissimus dorsi (l.d.) was segmented from the ribeye using morphological operations. At the end of each iteration of erosion and dilation, a convex hull was fitted to the image and compactness was measured. The number of iterations was selected to yield the most compact l.d. Match between the l.d. muscle traced by an expert grader and that segmented by the program was 95.9%. Marbling and color features were extracted from the l.d. muscle and were used to build regression models to predict marbling and color scores. Quality grade was predicted using another regression model incorporating all features. Grades predicted by the model were statistically equivalent to the grades assigned by expert graders.
Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification
NASA Astrophysics Data System (ADS)
Li, R.; Zhang, T.; Geng, R.; Wang, L.
2018-04-01
In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.
NASA Astrophysics Data System (ADS)
Argyropoulou, Evangelia
2015-04-01
The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.
NASA Astrophysics Data System (ADS)
Radhakrishnan, Regunathan; Divakaran, Ajay; Xiong, Ziyou; Otsuka, Isao
2006-12-01
We propose a content-adaptive analysis and representation framework to discover events using audio features from "unscripted" multimedia such as sports and surveillance for summarization. The proposed analysis framework performs an inlier/outlier-based temporal segmentation of the content. It is motivated by the observation that "interesting" events in unscripted multimedia occur sparsely in a background of usual or "uninteresting" events. We treat the sequence of low/mid-level features extracted from the audio as a time series and identify subsequences that are outliers. The outlier detection is based on eigenvector analysis of the affinity matrix constructed from statistical models estimated from the subsequences of the time series. We define the confidence measure on each of the detected outliers as the probability that it is an outlier. Then, we establish a relationship between the parameters of the proposed framework and the confidence measure. Furthermore, we use the confidence measure to rank the detected outliers in terms of their departures from the background process. Our experimental results with sequences of low- and mid-level audio features extracted from sports video show that "highlight" events can be extracted effectively as outliers from a background process using the proposed framework. We proceed to show the effectiveness of the proposed framework in bringing out suspicious events from surveillance videos without any a priori knowledge. We show that such temporal segmentation into background and outliers, along with the ranking based on the departure from the background, can be used to generate content summaries of any desired length. Finally, we also show that the proposed framework can be used to systematically select "key audio classes" that are indicative of events of interest in the chosen domain.
Ye-Lin, Yiyao; Alberola-Rubio, José; Perales, Alfredo
2014-01-01
Electrohysterography (EHG) is a noninvasive technique for monitoring uterine electrical activity. However, the presence of artifacts in the EHG signal may give rise to erroneous interpretations and make it difficult to extract useful information from these recordings. The aim of this work was to develop an automatic system of segmenting EHG recordings that distinguishes between uterine contractions and artifacts. Firstly, the segmentation is performed using an algorithm that generates the TOCO-like signal derived from the EHG and detects windows with significant changes in amplitude. After that, these segments are classified in two groups: artifacted and nonartifacted signals. To develop a classifier, a total of eleven spectral, temporal, and nonlinear features were calculated from EHG signal windows from 12 women in the first stage of labor that had previously been classified by experts. The combination of characteristics that led to the highest degree of accuracy in detecting artifacts was then determined. The results showed that it is possible to obtain automatic detection of motion artifacts in segmented EHG recordings with a precision of 92.2% using only seven features. The proposed algorithm and classifier together compose a useful tool for analyzing EHG signals and would help to promote clinical applications of this technique. PMID:24523828
Ye-Lin, Yiyao; Garcia-Casado, Javier; Prats-Boluda, Gema; Alberola-Rubio, José; Perales, Alfredo
2014-01-01
Electrohysterography (EHG) is a noninvasive technique for monitoring uterine electrical activity. However, the presence of artifacts in the EHG signal may give rise to erroneous interpretations and make it difficult to extract useful information from these recordings. The aim of this work was to develop an automatic system of segmenting EHG recordings that distinguishes between uterine contractions and artifacts. Firstly, the segmentation is performed using an algorithm that generates the TOCO-like signal derived from the EHG and detects windows with significant changes in amplitude. After that, these segments are classified in two groups: artifacted and nonartifacted signals. To develop a classifier, a total of eleven spectral, temporal, and nonlinear features were calculated from EHG signal windows from 12 women in the first stage of labor that had previously been classified by experts. The combination of characteristics that led to the highest degree of accuracy in detecting artifacts was then determined. The results showed that it is possible to obtain automatic detection of motion artifacts in segmented EHG recordings with a precision of 92.2% using only seven features. The proposed algorithm and classifier together compose a useful tool for analyzing EHG signals and would help to promote clinical applications of this technique.
Prabha, S; Suganthi, S S; Sujatha, C M
2015-01-01
Breast thermography is a potential imaging method for the early detection of breast cancer. The pathological conditions can be determined by measuring temperature variations in the abnormal breast regions. Accurate delineation of breast tissues is reported as a challenging task due to inherent limitations of infrared images such as low contrast, low signal to noise ratio and absence of clear edges. Segmentation technique is attempted to delineate the breast tissues by detecting proper lower breast boundaries and inframammary folds. Characteristic features are extracted to analyze the asymmetrical thermal variations in normal and abnormal breast tissues. An automated analysis of thermal variations of breast tissues is attempted using nonlinear adaptive level sets and Riesz transform. Breast thermal images are initially subjected to Stein's unbiased risk estimate based orthonormal wavelet denoising. These denoised images are enhanced using contrast-limited adaptive histogram equalization method. The breast tissues are then segmented using non-linear adaptive level set method. The phase map of enhanced image is integrated into the level set framework for final boundary estimation. The segmented results are validated against the corresponding ground truth images using overlap and regional similarity metrics. The segmented images are further processed with Riesz transform and structural texture features are derived from the transformed coefficients to analyze pathological conditions of breast tissues. Results show that the estimated average signal to noise ratio of denoised images and average sharpness of enhanced images are improved by 38% and 6% respectively. The interscale consideration adopted in the denoising algorithm is able to improve signal to noise ratio by preserving edges. The proposed segmentation framework could delineate the breast tissues with high degree of correlation (97%) between the segmented and ground truth areas. Also, the average segmentation accuracy and sensitivity are found to be 98%. Similarly, the maximum regional overlap between segmented and ground truth images obtained using volume similarity measure is observed to be 99%. Directionality as a feature, showed a considerable difference between normal and abnormal tissues which is found to be 11%. The proposed framework for breast thermal image analysis that is aided with necessary preprocessing is found to be useful in assisting the early diagnosis of breast abnormalities.
Hierarchical image feature extraction by an irregular pyramid of polygonal partitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N
2008-01-01
We present an algorithmic framework for hierarchical image segmentation and feature extraction. We build a successive fine-to-coarse hierarchy of irregular polygonal partitions of the original image. This multiscale hierarchy forms the basis for object-oriented image analysis. The framework incorporates the Gestalt principles of visual perception, such as proximity and closure, and exploits spectral and textural similarities of polygonal partitions, while iteratively grouping them until dissimilarity criteria are exceeded. Seed polygons are built upon a triangular mesh composed of irregular sized triangles, whose spatial arrangement is adapted to the image content. This is achieved by building the triangular mesh on themore » top of detected spectral discontinuities (such as edges), which form a network of constraints for the Delaunay triangulation. The image is then represented as a spatial network in the form of a graph with vertices corresponding to the polygonal partitions and edges reflecting their relations. The iterative agglomeration of partitions into object-oriented segments is formulated as Minimum Spanning Tree (MST) construction. An important characteristic of the approach is that the agglomeration of polygonal partitions is constrained by the detected edges; thus the shapes of agglomerated partitions are more likely to correspond to the outlines of real-world objects. The constructed partitions and their spatial relations are characterized using spectral, textural and structural features based on proximity graphs. The framework allows searching for object-oriented features of interest across multiple levels of details of the built hierarchy and can be generalized to the multi-criteria MST to account for multiple criteria important for an application.« less
NASA Astrophysics Data System (ADS)
Ahmad Fauzi, Mohammad Faizal; Gokozan, Hamza Numan; Elder, Brad; Puduvalli, Vinay K.; Otero, Jose J.; Gurcan, Metin N.
2014-03-01
Brain cancer surgery requires intraoperative consultation by neuropathology to guide surgical decisions regarding the extent to which the tumor undergoes gross total resection. In this context, the differential diagnosis between glioblastoma and metastatic cancer is challenging as the decision must be made during surgery in a short time-frame (typically 30 minutes). We propose a method to classify glioblastoma versus metastatic cancer based on extracting textural features from the non-nuclei region of cytologic preparations. For glioblastoma, these regions of interest are filled with glial processes between the nuclei, which appear as anisotropic thin linear structures. For metastasis, these regions correspond to a more homogeneous appearance, thus suitable texture features can be extracted from these regions to distinguish between the two tissue types. In our work, we use the Discrete Wavelet Frames to characterize the underlying texture due to its multi-resolution capability in modeling underlying texture. The textural characterization is carried out in primarily the non-nuclei regions after nuclei regions are segmented by adapting our visually meaningful decomposition segmentation algorithm to this problem. k-nearest neighbor method was then used to classify the features into glioblastoma or metastasis cancer class. Experiment on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7% for glioblastoma, 87.5% for metastasis and 88.7% overall. Further studies are underway to incorporate nuclei region features into classification on an expanded dataset, as well as expanding the classification to more types of cancers.
Teodoro, George; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Saltz, Joel
2014-01-01
We study and characterize the performance of operations in an important class of applications on GPUs and Many Integrated Core (MIC) architectures. Our work is motivated by applications that analyze low-dimensional spatial datasets captured by high resolution sensors, such as image datasets obtained from whole slide tissue specimens using microscopy scanners. Common operations in these applications involve the detection and extraction of objects (object segmentation), the computation of features of each extracted object (feature computation), and characterization of objects based on these features (object classification). In this work, we have identify the data access and computation patterns of operations in the object segmentation and feature computation categories. We systematically implement and evaluate the performance of these operations on modern CPUs, GPUs, and MIC systems for a microscopy image analysis application. Our results show that the performance on a MIC of operations that perform regular data access is comparable or sometimes better than that on a GPU. On the other hand, GPUs are significantly more efficient than MICs for operations that access data irregularly. This is a result of the low performance of MICs when it comes to random data access. We also have examined the coordinated use of MICs and CPUs. Our experiments show that using a performance aware task strategy for scheduling application operations improves performance about 1.29× over a first-come-first-served strategy. This allows applications to obtain high performance efficiency on CPU-MIC systems - the example application attained an efficiency of 84% on 192 nodes (3072 CPU cores and 192 MICs). PMID:25419088
NASA Astrophysics Data System (ADS)
Kharazmi, Pegah; Lui, Harvey; Stoecker, William V.; Lee, Tim
2015-03-01
Vascular structures are one of the most important features in the diagnosis and assessment of skin disorders. The presence and clinical appearance of vascular structures in skin lesions is a discriminating factor among different skin diseases. In this paper, we address the problem of segmentation of vascular patterns in dermoscopy images. Our proposed method is composed of three parts. First, based on biological properties of human skin, we decompose the skin to melanin and hemoglobin component using independent component analysis of skin color images. The relative quantities and pure color densities of each component were then estimated. Subsequently, we obtain three reference vectors of the mean RGB values for normal skin, pigmented skin and blood vessels from the hemoglobin component by averaging over 100000 pixels of each group outlined by an expert. Based on the Euclidean distance thresholding, we generate a mask image that extracts the red regions of the skin. Finally, Frangi measure was applied to the extracted red areas to segment the tubular structures. Finally, Otsu's thresholding was applied to segment the vascular structures and get a binary vessel mask image. The algorithm was implemented on a set of 50 dermoscopy images. In order to evaluate the performance of our method, we have artificially extended some of the existing vessels in our dermoscopy data set and evaluated the performance of the algorithm to segment the newly added vessel pixels. A sensitivity of 95% and specificity of 87% were achieved.
Ludeña-Choez, Jimmy; Quispe-Soncco, Raisa; Gallardo-Antolín, Ascensión
2017-01-01
Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally been based on parametric representations that were specifically developed for speech signals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination capabilities of these features for ABSC could be enhanced by accounting for the vocal production mechanisms of birds, and, in particular, the spectro-temporal structure of bird sounds. In this paper, a new front-end for ABSC is proposed that incorporates this specific information through the non-negative decomposition of bird sound spectrograms. It consists of the following two different stages: short-time feature extraction and temporal feature integration. In the first stage, which aims at providing a better spectral representation of bird sounds on a frame-by-frame basis, two methods are evaluated. In the first method, cepstral-like features (NMF_CC) are extracted by using a filter bank that is automatically learned by means of the application of Non-Negative Matrix Factorization (NMF) on bird audio spectrograms. In the second method, the features are directly derived from the activation coefficients of the spectrogram decomposition as performed through NMF (H_CC). The second stage summarizes the most relevant information contained in the short-time features by computing several statistical measures over long segments. The experiments show that the use of NMF_CC and H_CC in conjunction with temporal integration significantly improves the performance of a Support Vector Machine (SVM)-based ABSC system with respect to conventional MFCC.
Quispe-Soncco, Raisa
2017-01-01
Feature extraction for Acoustic Bird Species Classification (ABSC) tasks has traditionally been based on parametric representations that were specifically developed for speech signals, such as Mel Frequency Cepstral Coefficients (MFCC). However, the discrimination capabilities of these features for ABSC could be enhanced by accounting for the vocal production mechanisms of birds, and, in particular, the spectro-temporal structure of bird sounds. In this paper, a new front-end for ABSC is proposed that incorporates this specific information through the non-negative decomposition of bird sound spectrograms. It consists of the following two different stages: short-time feature extraction and temporal feature integration. In the first stage, which aims at providing a better spectral representation of bird sounds on a frame-by-frame basis, two methods are evaluated. In the first method, cepstral-like features (NMF_CC) are extracted by using a filter bank that is automatically learned by means of the application of Non-Negative Matrix Factorization (NMF) on bird audio spectrograms. In the second method, the features are directly derived from the activation coefficients of the spectrogram decomposition as performed through NMF (H_CC). The second stage summarizes the most relevant information contained in the short-time features by computing several statistical measures over long segments. The experiments show that the use of NMF_CC and H_CC in conjunction with temporal integration significantly improves the performance of a Support Vector Machine (SVM)-based ABSC system with respect to conventional MFCC. PMID:28628630
NASA Astrophysics Data System (ADS)
Poux, F.; Neuville, R.; Billen, R.
2017-08-01
Reasoning from information extraction given by point cloud data mining allows contextual adaptation and fast decision making. However, to achieve this perceptive level, a point cloud must be semantically rich, retaining relevant information for the end user. This paper presents an automatic knowledge-based method for pre-processing multi-sensory data and classifying a hybrid point cloud from both terrestrial laser scanning and dense image matching. Using 18 features including sensor's biased data, each tessera in the high-density point cloud from the 3D captured complex mosaics of Germigny-des-prés (France) is segmented via a colour multi-scale abstraction-based featuring extracting connectivity. A 2D surface and outline polygon of each tessera is generated by a RANSAC plane extraction and convex hull fitting. Knowledge is then used to classify every tesserae based on their size, surface, shape, material properties and their neighbour's class. The detection and semantic enrichment method shows promising results of 94% correct semantization, a first step toward the creation of an archaeological smart point cloud.
Chen, Li; Mossa-Basha, Mahmud; Balu, Niranjan; Canton, Gador; Sun, Jie; Pimentel, Kristi; Hatsukami, Thomas S; Hwang, Jenq-Neng; Yuan, Chun
2018-06-01
To develop a quantitative intracranial artery measurement technique to extract comprehensive artery features from time-of-flight MR angiography (MRA). By semiautomatically tracing arteries based on an open-curve active contour model in a graphical user interface, 12 basic morphometric features and 16 basic intensity features for each artery were identified. Arteries were then classified as one of 24 types using prediction from a probability model. Based on the anatomical structures, features were integrated within 34 vascular groups for regional features of vascular trees. Eight 3D MRA acquisitions with intracranial atherosclerosis were assessed to validate this technique. Arterial tracings were validated by an experienced neuroradiologist who checked agreement at bifurcation and stenosis locations. This technique achieved 94% sensitivity and 85% positive predictive values (PPV) for bifurcations, and 85% sensitivity and PPV for stenosis. Up to 1,456 features, such as length, volume, and averaged signal intensity for each artery, as well as vascular group in each of the MRA images, could be extracted to comprehensively reflect characteristics, distribution, and connectivity of arteries. Length for the M1 segment of the middle cerebral artery extracted by this technique was compared with reviewer-measured results, and the intraclass correlation coefficient was 0.97. A semiautomated quantitative method to trace, label, and measure intracranial arteries from 3D-MRA was developed and validated. This technique can be used to facilitate quantitative intracranial vascular research, such as studying cerebrovascular adaptation to aging and disease conditions. Magn Reson Med 79:3229-3238, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.
NASA Astrophysics Data System (ADS)
Al-Temeemy, Ali A.
2018-03-01
A descriptor is proposed for use in domiciliary healthcare monitoring systems. The descriptor is produced from chromatic methodology to extract robust features from the monitoring system's images. It has superior discrimination capabilities, is robust to events that normally disturb monitoring systems, and requires less computational time and storage space to achieve recognition. A method of human region segmentation is also used with this descriptor. The performance of the proposed descriptor was evaluated using experimental data sets, obtained through a series of experiments performed in the Centre for Intelligent Monitoring Systems, University of Liverpool. The evaluation results show high recognition performance for the proposed descriptor in comparison to traditional descriptors, such as moments invariant. The results also show the effectiveness of the proposed segmentation method regarding distortion effects associated with domiciliary healthcare systems.
Weakly supervised image semantic segmentation based on clustering superpixels
NASA Astrophysics Data System (ADS)
Yan, Xiong; Liu, Xiaohua
2018-04-01
In this paper, we propose an image semantic segmentation model which is trained from image-level labeled images. The proposed model starts with superpixel segmenting, and features of the superpixels are extracted by trained CNN. We introduce a superpixel-based graph followed by applying the graph partition method to group correlated superpixels into clusters. For the acquisition of inter-label correlations between the image-level labels in dataset, we not only utilize label co-occurrence statistics but also exploit visual contextual cues simultaneously. At last, we formulate the task of mapping appropriate image-level labels to the detected clusters as a problem of convex minimization. Experimental results on MSRC-21 dataset and LableMe dataset show that the proposed method has a better performance than most of the weakly supervised methods and is even comparable to fully supervised methods.
Foreground extraction for moving RGBD cameras
NASA Astrophysics Data System (ADS)
Junejo, Imran N.; Ahmed, Naveed
2017-02-01
In this paper, we propose a simple method to perform foreground extraction for a moving RGBD camera. These cameras have now been available for quite some time. Their popularity is primarily due to their low cost and ease of availability. Although the field of foreground extraction or background subtraction has been explored by the computer vision researchers since a long time, the depth-based subtraction is relatively new and has not been extensively addressed as of yet. Most of the current methods make heavy use of geometric reconstruction, making the solutions quite restrictive. In this paper, we make a novel use RGB and RGBD data: from the RGB frame, we extract corner features (FAST) and then represent these features with the histogram of oriented gradients (HoG) descriptor. We train a non-linear SVM on these descriptors. During the test phase, we make used of the fact that the foreground object has distinct depth ordering with respect to the rest of the scene. That is, we use the positively classified FAST features on the test frame to initiate a region growing to obtain the accurate segmentation of the foreground object from just the RGBD data. We demonstrate the proposed method of a synthetic datasets, and demonstrate encouraging quantitative and qualitative results.
Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment
Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.
2016-01-01
We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457
Multiple hypotheses image segmentation and classification with application to dietary assessment.
Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J
2015-01-01
We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.
NASA Astrophysics Data System (ADS)
Wu, Jing; Gerendas, Bianca S.; Waldstein, Sebastian M.; Simader, Christian; Schmidt-Erfurth, Ursula
2014-03-01
Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high reso- lution, three-dimensional (3D) cross sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD) and glaucoma.1 Disease diagnosis, assessment, and treatment requires a patient to undergo multiple OCT scans, possibly using different scanning devices, to accurately and precisely gauge disease activity, progression and treatment success. However, the use of OCT imaging devices from different vendors, combined with patient movement may result in poor scan spatial correlation, potentially leading to incorrect patient diagnosis or treatment analysis. Image registration can be used to precisely compare disease states by registering differing 3D scans to one another. In order to align 3D scans from different time- points and vendors using registration, landmarks are required, the most obvious being the retinal vasculature. Presented here is a fully automated cross-vendor method to acquire retina vessel locations for OCT registration from fovea centred 3D SD-OCT scans based on vessel shadows. Noise filtered OCT scans are flattened based on vendor retinal layer segmentation, to extract the retinal pigment epithelium (RPE) layer of the retina. Voxel based layer profile analysis and k-means clustering is used to extract candidate vessel shadow regions from the RPE layer. In conjunction, the extracted RPE layers are combined to generate a projection image featuring all candidate vessel shadows. Image processing methods for vessel segmentation of the OCT constructed projection image are then applied to optimize the accuracy of OCT vessel shadow segmentation through the removal of false positive shadow regions such as those caused by exudates and cysts. Validation of segmented vessel shadows uses ground truth vessel shadow regions identified by expert graders at the Vienna Reading Center (VRC). The results presented here are intended to show the feasibility of this method for the accurate and precise extraction of suitable retinal vessel shadows from multiple vendor 3D SD-OCT scans for use in intra-vendor and cross-vendor 3D OCT registration, 2D fundus registration and actual retinal vessel segmentation. The resulting percentage of true vessel shadow segments to false positive segments identified by the proposed system compared to mean grader ground truth is 95%.
Texture analysis based on the Hermite transform for image classification and segmentation
NASA Astrophysics Data System (ADS)
Estudillo-Romero, Alfonso; Escalante-Ramirez, Boris; Savage-Carmona, Jesus
2012-06-01
Texture analysis has become an important task in image processing because it is used as a preprocessing stage in different research areas including medical image analysis, industrial inspection, segmentation of remote sensed imaginary, multimedia indexing and retrieval. In order to extract visual texture features a texture image analysis technique is presented based on the Hermite transform. Psychovisual evidence suggests that the Gaussian derivatives fit the receptive field profiles of mammalian visual systems. The Hermite transform describes locally basic texture features in terms of Gaussian derivatives. Multiresolution combined with several analysis orders provides detection of patterns that characterizes every texture class. The analysis of the local maximum energy direction and steering of the transformation coefficients increase the method robustness against the texture orientation. This method presents an advantage over classical filter bank design because in the latter a fixed number of orientations for the analysis has to be selected. During the training stage, a subset of the Hermite analysis filters is chosen in order to improve the inter-class separability, reduce dimensionality of the feature vectors and computational cost during the classification stage. We exhaustively evaluated the correct classification rate of real randomly selected training and testing texture subsets using several kinds of common used texture features. A comparison between different distance measurements is also presented. Results of the unsupervised real texture segmentation using this approach and comparison with previous approaches showed the benefits of our proposal.
The correlation study of parallel feature extractor and noise reduction approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewi, Deshinta Arrova; Sundararajan, Elankovan; Prabuwono, Anton Satria
2015-05-15
This paper presents literature reviews that show variety of techniques to develop parallel feature extractor and finding its correlation with noise reduction approaches for low light intensity images. Low light intensity images are normally displayed as darker images and low contrast. Without proper handling techniques, those images regularly become evidences of misperception of objects and textures, the incapability to section them. The visual illusions regularly clues to disorientation, user fatigue, poor detection and classification performance of humans and computer algorithms. Noise reduction approaches (NR) therefore is an essential step for other image processing steps such as edge detection, image segmentation,more » image compression, etc. Parallel Feature Extractor (PFE) meant to capture visual contents of images involves partitioning images into segments, detecting image overlaps if any, and controlling distributed and redistributed segments to extract the features. Working on low light intensity images make the PFE face challenges and closely depend on the quality of its pre-processing steps. Some papers have suggested many well established NR as well as PFE strategies however only few resources have suggested or mentioned the correlation between them. This paper reviews best approaches of the NR and the PFE with detailed explanation on the suggested correlation. This finding may suggest relevant strategies of the PFE development. With the help of knowledge based reasoning, computational approaches and algorithms, we present the correlation study between the NR and the PFE that can be useful for the development and enhancement of other existing PFE.« less
An Efficient Algorithm for Server Thermal Fault Diagnosis Based on Infrared Image
NASA Astrophysics Data System (ADS)
Liu, Hang; Xie, Ting; Ran, Jian; Gao, Shan
2017-10-01
It is essential for a data center to maintain server security and stability. Long-time overload operation or high room temperature may cause service disruption even a server crash, which would result in great economic loss for business. Currently, the methods to avoid server outages are monitoring and forecasting. Thermal camera can provide fine texture information for monitoring and intelligent thermal management in large data center. This paper presents an efficient method for server thermal fault monitoring and diagnosis based on infrared image. Initially thermal distribution of server is standardized and the interest regions of the image are segmented manually. Then the texture feature, Hu moments feature as well as modified entropy feature are extracted from the segmented regions. These characteristics are applied to analyze and classify thermal faults, and then make efficient energy-saving thermal management decisions such as job migration. For the larger feature space, the principal component analysis is employed to reduce the feature dimensions, and guarantee high processing speed without losing the fault feature information. Finally, different feature vectors are taken as input for SVM training, and do the thermal fault diagnosis after getting the optimized SVM classifier. This method supports suggestions for optimizing data center management, it can improve air conditioning efficiency and reduce the energy consumption of the data center. The experimental results show that the maximum detection accuracy is 81.5%.
Lashkari, AmirEhsan; Pak, Fatemeh; Firouzmand, Mohammad
2016-01-01
Breast cancer is the most common type of cancer among women. The important key to treat the breast cancer is early detection of it because according to many pathological studies more than 75% – 80% of all abnormalities are still benign at primary stages; so in recent years, many studies and extensive research done to early detection of breast cancer with higher precision and accuracy. Infra-red breast thermography is an imaging technique based on recording temperature distribution patterns of breast tissue. Compared with breast mammography technique, thermography is more suitable technique because it is noninvasive, non-contact, passive and free ionizing radiation. In this paper, a full automatic high accuracy technique for classification of suspicious areas in thermogram images with the aim of assisting physicians in early detection of breast cancer has been presented. Proposed algorithm consists of four main steps: pre-processing & segmentation, feature extraction, feature selection and classification. At the first step, using full automatic operation, region of interest (ROI) determined and the quality of image improved. Using thresholding and edge detection techniques, both right and left breasts separated from each other. Then relative suspected areas become segmented and image matrix normalized due to the uniqueness of each person's body temperature. At feature extraction stage, 23 features, including statistical, morphological, frequency domain, histogram and Gray Level Co-occurrence Matrix (GLCM) based features are extracted from segmented right and left breast obtained from step 1. To achieve the best features, feature selection methods such as minimum Redundancy and Maximum Relevance (mRMR), Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential Floating Forward Selection (SFFS), Sequential Floating Backward Selection (SFBS) and Genetic Algorithm (GA) have been used at step 3. Finally to classify and TH labeling procedures, different classifiers such as AdaBoost, Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Naïve Bayes (NB) and probability Neural Network (PNN) are assessed to find the best suitable one. These steps are applied on different thermogram images degrees. The results obtained on native database showed the best and significant performance of the proposed algorithm in comprise to the similar studies. According to experimental results, GA combined with AdaBoost with the mean accuracy of 85.33% and 87.42% on the left and right breast images with 0 degree, GA combined with AdaBoost with mean accuracy of 85.17% on the left breast images with 45 degree and mRMR combined with AdaBoost with mean accuracy of 85.15% on the right breast images with 45 degree, and also GA combined with AdaBoost with a mean accuracy of 84.67% and 86.21%, on the left and right breast images with 90 degree, are the best combinations of feature selection and classifier for evaluation of breast images. PMID:27014608
Automatic lumen segmentation in IVOCT images using binary morphological reconstruction
2013-01-01
Background Atherosclerosis causes millions of deaths, annually yielding billions in expenses round the world. Intravascular Optical Coherence Tomography (IVOCT) is a medical imaging modality, which displays high resolution images of coronary cross-section. Nonetheless, quantitative information can only be obtained with segmentation; consequently, more adequate diagnostics, therapies and interventions can be provided. Since it is a relatively new modality, many different segmentation methods, available in the literature for other modalities, could be successfully applied to IVOCT images, improving accuracies and uses. Method An automatic lumen segmentation approach, based on Wavelet Transform and Mathematical Morphology, is presented. The methodology is divided into three main parts. First, the preprocessing stage attenuates and enhances undesirable and important information, respectively. Second, in the feature extraction block, wavelet is associated with an adapted version of Otsu threshold; hence, tissue information is discriminated and binarized. Finally, binary morphological reconstruction improves the binary information and constructs the binary lumen object. Results The evaluation was carried out by segmenting 290 challenging images from human and pig coronaries, and rabbit iliac arteries; the outcomes were compared with the gold standards made by experts. The resultant accuracy was obtained: True Positive (%) = 99.29 ± 2.96, False Positive (%) = 3.69 ± 2.88, False Negative (%) = 0.71 ± 2.96, Max False Positive Distance (mm) = 0.1 ± 0.07, Max False Negative Distance (mm) = 0.06 ± 0.1. Conclusions In conclusion, by segmenting a number of IVOCT images with various features, the proposed technique showed to be robust and more accurate than published studies; in addition, the method is completely automatic, providing a new tool for IVOCT segmentation. PMID:23937790
Automatic co-segmentation of lung tumor based on random forest in PET-CT images
NASA Astrophysics Data System (ADS)
Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian
2016-03-01
In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.
Myocardial scar segmentation from magnetic resonance images using convolutional neural network
NASA Astrophysics Data System (ADS)
Zabihollahy, Fatemeh; White, James A.; Ukwatta, Eranga
2018-02-01
Accurate segmentation of the myocardial fibrosis or scar may provide important advancements for the prediction and management of malignant ventricular arrhythmias in patients with cardiovascular disease. In this paper, we propose a semi-automated method for segmentation of myocardial scar from late gadolinium enhancement magnetic resonance image (LGE-MRI) using a convolutional neural network (CNN). In contrast to image intensitybased methods, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of high-level features from a combination of convolutional, detection and pooling layers. Our developed algorithm was trained using 2,336,703 image patches extracted from 420 slices of five 3D LGE-MR datasets, then validated on 2,204,178 patches from a testing dataset of seven 3D LGE-MR images including 624 slices, all obtained from patients with chronic myocardial infarction. For evaluation of the algorithm, we compared the algorithmgenerated segmentations to manual delineations by experts. Our CNN-based method reported an average Dice similarity coefficient (DSC), precision, and recall of 94.50 +/- 3.62%, 96.08 +/- 3.10%, and 93.96 +/- 3.75% as the accuracy of segmentation, respectively. As compared to several intensity threshold-based methods for scar segmentation, the results of our developed method have a greater agreement with manual expert segmentation.
Classification of wet aged related macular degeneration using optical coherence tomographic images
NASA Astrophysics Data System (ADS)
Haq, Anam; Mir, Fouwad Jamil; Yasin, Ubaid Ullah; Khan, Shoab A.
2013-12-01
Wet Age related macular degeneration (AMD) is a type of age related macular degeneration. In order to detect Wet AMD we look for Pigment Epithelium detachment (PED) and fluid filled region caused by choroidal neovascularization (CNV). This form of AMD can cause vision loss if not treated in time. In this article we have proposed an automated system for detection of Wet AMD in Optical coherence tomographic (OCT) images. The proposed system extracts PED and CNV from OCT images using segmentation and morphological operations and then detailed feature set are extracted. These features are then passed on to the classifier for classification. Finally performance measures like accuracy, sensitivity and specificity are calculated and the classifier delivering the maximum performance is selected as a comparison measure. Our system gives higher performance using SVM as compared to other methods.
Use of Landsat-derived temporal profiles for corn-soybean feature extraction and classification
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Carnes, J. G.; Austin, W. W.
1982-01-01
A physical model is presented, which has been derived from multitemporal-multispectral data acquired by Landsat satellites to describe the behavior and new features that are crop specific. A feasibility study over 40 sites was performed to classify the segment pixels into those of corn, soybeans, and others using the new features and a linear classifier. Results agree well with other existing methods, and it is shown the multitemporal-multispectral scanner data can be transformed into two parameters that are closely related to the target of interest and thus can be used in classification. The approach is less time intensive than other techniques and requires labeling of only pure pixels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, X; Gao, H; Sharp, G
Purpose: Accurate image segmentation is a crucial step during image guided radiation therapy. This work proposes multi-atlas machine learning (MAML) algorithm for automated segmentation of head-and-neck CT images. Methods: As the first step, the algorithm utilizes normalized mutual information as similarity metric, affine registration combined with multiresolution B-Spline registration, and then fuses together using the label fusion strategy via Plastimatch. As the second step, the following feature selection strategy is proposed to extract five feature components from reference or atlas images: intensity (I), distance map (D), box (B), center of gravity (C) and stable point (S). The box feature Bmore » is novel. It describes a relative position from each point to minimum inscribed rectangle of ROI. The center-of-gravity feature C is the 3D Euclidean distance from a sample point to the ROI center of gravity, and then S is the distance of the sample point to the landmarks. Then, we adopt random forest (RF) in Scikit-learn, a Python module integrating a wide range of state-of-the-art machine learning algorithms as classifier. Different feature and atlas strategies are used for different ROIs for improved performance, such as multi-atlas strategy with reference box for brainstem, and single-atlas strategy with reference landmark for optic chiasm. Results: The algorithm was validated on a set of 33 CT images with manual contours using a leave-one-out cross-validation strategy. Dice similarity coefficients between manual contours and automated contours were calculated: the proposed MAML method had an improvement from 0.79 to 0.83 for brainstem and 0.11 to 0.52 for optic chiasm with respect to multi-atlas segmentation method (MA). Conclusion: A MAML method has been proposed for automated segmentation of head-and-neck CT images with improved performance. It provides the comparable result in brainstem and the improved result in optic chiasm compared with MA. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).« less
Defining the Optimal Region of Interest for Hyperemia Grading in the Bulbar Conjunctiva
Sánchez Brea, María Luisa; Mosquera González, Antonio; Evans, Katharine; Pena-Verdeal, Hugo
2016-01-01
Conjunctival hyperemia or conjunctival redness is a symptom that can be associated with a broad group of ocular diseases. Its levels of severity are represented by standard photographic charts that are visually compared with the patient's eye. This way, the hyperemia diagnosis becomes a nonrepeatable task that depends on the experience of the grader. To solve this problem, we have proposed a computer-aided methodology that comprises three main stages: the segmentation of the conjunctiva, the extraction of features in this region based on colour and the presence of blood vessels, and, finally, the transformation of these features into grading scale values by means of regression techniques. However, the conjunctival segmentation can be slightly inaccurate mainly due to illumination issues. In this work, we analyse the relevance of different features with respect to their location within the conjunctiva in order to delimit a reliable region of interest for the grading. The results show that the automatic procedure behaves like an expert using only a limited region of interest within the conjunctiva. PMID:28096890
Computer-assisted diagnosis of melanoma.
Fuller, Collin; Cellura, A Paul; Hibler, Brian P; Burris, Katy
2016-03-01
The computer-assisted diagnosis of melanoma is an exciting area of research where imaging techniques are combined with diagnostic algorithms in an attempt to improve detection and outcomes for patients with skin lesions suspicious for malignancy. Once an image has been acquired, it undergoes a processing pathway which includes preprocessing, enhancement, segmentation, feature extraction, feature selection, change detection, and ultimately classification. Practicality for everyday clinical use remains a vital question. A successful model must obtain results that are on par or outperform experienced dermatologists, keep costs at a minimum, be user-friendly, and be time efficient with high sensitivity and specificity. ©2015 Frontline Medical Communications.
Gait recognition based on Gabor wavelets and modified gait energy image for human identification
NASA Astrophysics Data System (ADS)
Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang
2013-10-01
This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.
Continuous EEG signal analysis for asynchronous BCI application.
Hsu, Wei-Yen
2011-08-01
In this study, we propose a two-stage recognition system for continuous analysis of electroencephalogram (EEG) signals. An independent component analysis (ICA) and correlation coefficient are used to automatically eliminate the electrooculography (EOG) artifacts. Based on the continuous wavelet transform (CWT) and Student's two-sample t-statistics, active segment selection then detects the location of active segment in the time-frequency domain. Next, multiresolution fractal feature vectors (MFFVs) are extracted with the proposed modified fractal dimension from wavelet data. Finally, the support vector machine (SVM) is adopted for the robust classification of MFFVs. The EEG signals are continuously analyzed in 1-s segments, and every 0.5 second moves forward to simulate asynchronous BCI works in the two-stage recognition architecture. The segment is first recognized as lifted or not in the first stage, and then is classified as left or right finger lifting at stage two if the segment is recognized as lifting in the first stage. Several statistical analyses are used to evaluate the performance of the proposed system. The results indicate that it is a promising system in the applications of asynchronous BCI work.
Automatic segmentation of triaxial accelerometry signals for falls risk estimation.
Redmond, Stephen J; Scalzi, Maria Elena; Narayanan, Michael R; Lord, Stephen R; Cerutti, Sergio; Lovell, Nigel H
2010-01-01
Falls-related injuries in the elderly population represent one of the most significant contributors to rising health care expense in developed countries. In recent years, falls detection technologies have become more common. However, very few have adopted a preferable falls prevention strategy through unsupervised monitoring in the free-living environment. The basis of the monitoring described herein was a self-administered directed-routine (DR) comprising three separate tests measured by way of a waist-mounted triaxial accelerometer. Using features extracted from the manually segmented signals, a reasonable estimate of falls risk can be achieved. We describe here a series of algorithms for automatically segmenting these recordings, enabling the use of the DR assessment in the unsupervised and home environments. The accelerometry signals, from 68 subjects performing the DR, were manually annotated by an observer. Using the proposed signal segmentation routines, an good agreement was observed between the manually annotated markers and the automatically estimated values. However, a decrease in the correlation with falls risk to 0.73 was observed using the automatic segmentation, compared to 0.81 when using markers manually placed by an observer.
Automatic liver volume segmentation and fibrosis classification
NASA Astrophysics Data System (ADS)
Bal, Evgeny; Klang, Eyal; Amitai, Michal; Greenspan, Hayit
2018-02-01
In this work, we present an automatic method for liver segmentation and fibrosis classification in liver computed-tomography (CT) portal phase scans. The input is a full abdomen CT scan with an unknown number of slices, and the output is a liver volume segmentation mask and a fibrosis grade. A multi-stage analysis scheme is applied to each scan, including: volume segmentation, texture features extraction and SVM based classification. Data contains portal phase CT examinations from 80 patients, taken with different scanners. Each examination has a matching Fibroscan grade. The dataset was subdivided into two groups: first group contains healthy cases and mild fibrosis, second group contains moderate fibrosis, severe fibrosis and cirrhosis. Using our automated algorithm, we achieved an average dice index of 0.93 ± 0.05 for segmentation and a sensitivity of 0.92 and specificity of 0.81for classification. To the best of our knowledge, this is a first end to end automatic framework for liver fibrosis classification; an approach that, once validated, can have a great potential value in the clinic.
Automotive System for Remote Surface Classification.
Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail
2017-04-01
In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions.
Automotive System for Remote Surface Classification
Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail
2017-01-01
In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions. PMID:28368297
Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng
2015-12-01
We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.
Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection.
Jalalian, Afsaneh; Mashohor, Syamsiah; Mahmud, Rozi; Karasfi, Babak; Saripan, M Iqbal B; Ramli, Abdul Rahman B
2017-01-01
Breast cancer is the most prevalent cancer that affects women all over the world. Early detection and treatment of breast cancer could decline the mortality rate. Some issues such as technical reasons, which related to imaging quality and human error, increase misdiagnosis of breast cancer by radiologists. Computer-aided detection systems (CADs) are developed to overcome these restrictions and have been studied in many imaging modalities for breast cancer detection in recent years. The CAD systems improve radiologists' performance in finding and discriminating between the normal and abnormal tissues. These procedures are performed only as a double reader but the absolute decisions are still made by the radiologist. In this study, the recent CAD systems for breast cancer detection on different modalities such as mammography, ultrasound, MRI, and biopsy histopathological images are introduced. The foundation of CAD systems generally consist of four stages: Pre-processing, Segmentation, Feature extraction, and Classification. The approaches which applied to design different stages of CAD system are summarised. Advantages and disadvantages of different segmentation, feature extraction and classification techniques are listed. In addition, the impact of imbalanced datasets in classification outcomes and appropriate methods to solve these issues are discussed. As well as, performance evaluation metrics for various stages of breast cancer detection CAD systems are reviewed.
Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network
2018-01-01
Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved. PMID:29439500
Foundation and methodologies in computer-aided diagnosis systems for breast cancer detection
Jalalian, Afsaneh; Mashohor, Syamsiah; Mahmud, Rozi; Karasfi, Babak; Saripan, M. Iqbal B.; Ramli, Abdul Rahman B.
2017-01-01
Breast cancer is the most prevalent cancer that affects women all over the world. Early detection and treatment of breast cancer could decline the mortality rate. Some issues such as technical reasons, which related to imaging quality and human error, increase misdiagnosis of breast cancer by radiologists. Computer-aided detection systems (CADs) are developed to overcome these restrictions and have been studied in many imaging modalities for breast cancer detection in recent years. The CAD systems improve radiologists' performance in finding and discriminating between the normal and abnormal tissues. These procedures are performed only as a double reader but the absolute decisions are still made by the radiologist. In this study, the recent CAD systems for breast cancer detection on different modalities such as mammography, ultrasound, MRI, and biopsy histopathological images are introduced. The foundation of CAD systems generally consist of four stages: Pre-processing, Segmentation, Feature extraction, and Classification. The approaches which applied to design different stages of CAD system are summarised. Advantages and disadvantages of different segmentation, feature extraction and classification techniques are listed. In addition, the impact of imbalanced datasets in classification outcomes and appropriate methods to solve these issues are discussed. As well as, performance evaluation metrics for various stages of breast cancer detection CAD systems are reviewed. PMID:28435432
Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion
Zhao, Yuanshen; Gong, Liang; Huang, Yixiang; Liu, Chengliang
2016-01-01
Automatic recognition of mature fruits in a complex agricultural environment is still a challenge for an autonomous harvesting robot due to various disturbances existing in the background of the image. The bottleneck to robust fruit recognition is reducing influence from two main disturbances: illumination and overlapping. In order to recognize the tomato in the tree canopy using a low-cost camera, a robust tomato recognition algorithm based on multiple feature images and image fusion was studied in this paper. Firstly, two novel feature images, the a*-component image and the I-component image, were extracted from the L*a*b* color space and luminance, in-phase, quadrature-phase (YIQ) color space, respectively. Secondly, wavelet transformation was adopted to fuse the two feature images at the pixel level, which combined the feature information of the two source images. Thirdly, in order to segment the target tomato from the background, an adaptive threshold algorithm was used to get the optimal threshold. The final segmentation result was processed by morphology operation to reduce a small amount of noise. In the detection tests, 93% target tomatoes were recognized out of 200 overall samples. It indicates that the proposed tomato recognition method is available for robotic tomato harvesting in the uncontrolled environment with low cost. PMID:26840313
Integrating shape into an interactive segmentation framework
NASA Astrophysics Data System (ADS)
Kamalakannan, S.; Bryant, B.; Sari-Sarraf, H.; Long, R.; Antani, S.; Thoma, G.
2013-02-01
This paper presents a novel interactive annotation toolbox which extends a well-known user-steered segmentation framework, namely Intelligent Scissors (IS). IS, posed as a shortest path problem, is essentially driven by lower level image based features. All the higher level knowledge about the problem domain is obtained from the user through mouse clicks. The proposed work integrates one higher level feature, namely shape up to a rigid transform, into the IS framework, thus reducing the burden on the user and the subjectivity involved in the annotation procedure, especially during instances of occlusions, broken edges, noise and spurious boundaries. The above mentioned scenarios are commonplace in medical image annotation applications and, hence, such a tool will be of immense help to the medical community. As a first step, an offline training procedure is performed in which a mean shape and the corresponding shape variance is computed by registering training shapes up to a rigid transform in a level-set framework. The user starts the interactive segmentation procedure by providing a training segment, which is a part of the target boundary. A partial shape matching scheme based on a scale-invariant curvature signature is employed in order to extract shape correspondences and subsequently predict the shape of the unsegmented target boundary. A `zone of confidence' is generated for the predicted boundary to accommodate shape variations. The method is evaluated on segmentation of digital chest x-ray images for lung annotation which is a crucial step in developing algorithms for screening Tuberculosis.
Segmentation of the Speaker's Face Region with Audiovisual Correlation
NASA Astrophysics Data System (ADS)
Liu, Yuyu; Sato, Yoichi
The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.
Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine.
Lao, Zhiqiang; Shen, Dinggang; Liu, Dengfeng; Jawad, Abbas F; Melhem, Elias R; Launer, Lenore J; Bryan, R Nick; Davatzikos, Christos
2008-03-01
Brain lesions, especially white matter lesions (WMLs), are associated with cardiac and vascular disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is becoming more and more important. In this article, we present a computer-assisted WML segmentation method, based on local features extracted from multiparametric magnetic resonance imaging (MRI) sequences (ie, T1-weighted, T2-weighted, proton density-weighted, and fluid attenuation inversion recovery MRI scans). A support vector machine classifier is first trained on expert-defined WMLs, and is then used to classify new scans. Postprocessing analysis further reduces false positives by using anatomic knowledge and measures of distance from the training set. Cross-validation on a population of 35 patients from three different imaging sites with WMLs of varying sizes, shapes, and locations tests the robustness and accuracy of the proposed segmentation method, compared with the manual segmentation results from two experienced neuroradiologists.
NASA Astrophysics Data System (ADS)
You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.
2013-01-01
Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a multimodal (text and image) biomedical article retrieval system. Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method, and subsequently reported improvements made on our initial approach involving the use of Active Shape Models (ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods contributed to improving the recall of pointer recognition but not much to the precision. The method discussed in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and compared with other pointer segmentation methods show significantly improved precision and the highest F1 score.
Toward accurate and fast iris segmentation for iris biometrics.
He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao
2009-09-01
Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.
A multiscale decomposition approach to detect abnormal vasculature in the optic disc.
Agurto, Carla; Yu, Honggang; Murray, Victor; Pattichis, Marios S; Nemeth, Sheila; Barriga, Simon; Soliz, Peter
2015-07-01
This paper presents a multiscale method to detect neovascularization in the optic disc (NVD) using fundus images. Our method is applied to a manually selected region of interest (ROI) containing the optic disc. All the vessels in the ROI are segmented by adaptively combining contrast enhancement methods with a vessel segmentation technique. Textural features extracted using multiscale amplitude-modulation frequency-modulation, morphological granulometry, and fractal dimension are used. A linear SVM is used to perform the classification, which is tested by means of 10-fold cross-validation. The performance is evaluated using 300 images achieving an AUC of 0.93 with maximum accuracy of 88%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Automatic extraction of road features in urban environments using dense ALS data
NASA Astrophysics Data System (ADS)
Soilán, Mario; Truong-Hong, Linh; Riveiro, Belén; Laefer, Debra
2018-02-01
This paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, P; Wang, J; Zhong, H
Purpose: To evaluate the reproducibility of radiomics features by repeating computed tomographic (CT) scans in rectal cancer. To choose stable radiomics features for rectal cancer. Methods: 40 rectal cancer patients were enrolled in this study, each of whom underwent two CT scans within average 8.7 days (5 days to 17 days), before any treatment was delivered. The rectal gross tumor volume (GTV) was distinguished and segmented by an experienced oncologist in both CTs. Totally, more than 2000 radiomics features were defined in this study, which were divided into four groups (I: GLCM, II: GLRLM III: Wavelet GLCM and IV: Waveletmore » GLRLM). For each group, five types of features were extracted (Max slice: features from the largest slice of target images, Max value: features from all slices of target images and choose the maximum value, Min value: minimum value of features for all slices, Average value: average value of features for all slices, Matrix sum: all slices of target images translate into GLCM and GLRLM matrices and superpose all matrices, then extract features from the superposed matrix). Meanwhile a LOG (Laplace of Gauss) filter with different parameters was applied to these images. Concordance correlation coefficients (CCC) and inter-class correlation coefficients (ICC) were calculated to assess the reproducibility. Results: 403 radiomics features were extracted from each type of patients’ medical images. Features of average type are the most reproducible. Different filters have little effect for radiomics features. For the average type features, 253 out of 403 features (62.8%) showed high reproducibility (ICC≥0.8), 133 out of 403 features (33.0%) showed medium reproducibility (0.8≥ICC≥0.5) and 17 out of 403 features (4.2%) showed low reproducibility (ICC≥0.5). Conclusion: The average type radiomics features are the most stable features in rectal cancer. Further analysis of these features of rectal cancer can be warranted for treatment monitoring and prognosis prediction.« less
Super-pixel extraction based on multi-channel pulse coupled neural network
NASA Astrophysics Data System (ADS)
Xu, GuangZhu; Hu, Song; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun
2018-04-01
Super-pixel extraction techniques group pixels to form over-segmented image blocks according to the similarity among pixels. Compared with the traditional pixel-based methods, the image descripting method based on super-pixel has advantages of less calculation, being easy to perceive, and has been widely used in image processing and computer vision applications. Pulse coupled neural network (PCNN) is a biologically inspired model, which stems from the phenomenon of synchronous pulse release in the visual cortex of cats. Each PCNN neuron can correspond to a pixel of an input image, and the dynamic firing pattern of each neuron contains both the pixel feature information and its context spatial structural information. In this paper, a new color super-pixel extraction algorithm based on multi-channel pulse coupled neural network (MPCNN) was proposed. The algorithm adopted the block dividing idea of SLIC algorithm, and the image was divided into blocks with same size first. Then, for each image block, the adjacent pixels of each seed with similar color were classified as a group, named a super-pixel. At last, post-processing was adopted for those pixels or pixel blocks which had not been grouped. Experiments show that the proposed method can adjust the number of superpixel and segmentation precision by setting parameters, and has good potential for super-pixel extraction.
Breast cancer Ki67 expression preoperative discrimination by DCE-MRI radiomics features
NASA Astrophysics Data System (ADS)
Ma, Wenjuan; Ji, Yu; Qin, Zhuanping; Guo, Xinpeng; Jian, Xiqi; Liu, Peifang
2018-02-01
To investigate whether quantitative radiomics features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are associated with Ki67 expression of breast cancer. In this institutional review board approved retrospective study, we collected 377 cases Chinese women who were diagnosed with invasive breast cancer in 2015. This cohort included 53 low-Ki67 expression (Ki67 proliferation index less than 14%) and 324 cases with high-Ki67 expression (Ki67 proliferation index more than 14%). A binary-classification of low- vs. high- Ki67 expression was performed. A set of 52 quantitative radiomics features, including morphological, gray scale statistic, and texture features, were extracted from the segmented lesion area. Three most common machine learning classification methods, including Naive Bayes, k-Nearest Neighbor and support vector machine with Gaussian kernel, were employed for the classification and the least absolute shrink age and selection operator (LASSO) method was used to select most predictive features set for the classifiers. Classification performance was evaluated by the area under receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity. The model that used Naive Bayes classification method achieved the best performance than the other two methods, yielding 0.773 AUC value, 0.757 accuracy, 0.777 sensitivity and 0.769 specificity. Our study showed that quantitative radiomics imaging features of breast tumor extracted from DCE-MRI are associated with breast cancer Ki67 expression. Future larger studies are needed in order to further evaluate the findings.
NASA Astrophysics Data System (ADS)
Khodaverdi zahraee, N.; Rastiveis, H.
2017-09-01
Earthquake is one of the most divesting natural events that threaten human life during history. After the earthquake, having information about the damaged area, the amount and type of damage can be a great help in the relief and reconstruction for disaster managers. It is very important that these measures should be taken immediately after the earthquake because any negligence could be more criminal losses. The purpose of this paper is to propose and implement an automatic approach for mapping destructed buildings after an earthquake using pre- and post-event high resolution satellite images. In the proposed method after preprocessing, segmentation of both images is performed using multi-resolution segmentation technique. Then, the segmentation results are intersected with ArcGIS to obtain equal image objects on both images. After that, appropriate textural features, which make a better difference between changed or unchanged areas, are calculated for all the image objects. Finally, subtracting the extracted textural features from pre- and post-event images, obtained values are applied as an input feature vector in an artificial neural network for classifying the area into two classes of changed and unchanged areas. The proposed method was evaluated using WorldView2 satellite images, acquired before and after the 2010 Haiti earthquake. The reported overall accuracy of 93% proved the ability of the proposed method for post-earthquake buildings change detection.
Automated diagnosis of Alzheimer's disease with multi-atlas based whole brain segmentations
NASA Astrophysics Data System (ADS)
Luo, Yuan; Tang, Xiaoying
2017-03-01
Voxel-based analysis is widely used in quantitative analysis of structural brain magnetic resonance imaging (MRI) and automated disease detection, such as Alzheimer's disease (AD). However, noise at the voxel level may cause low sensitivity to AD-induced structural abnormalities. This can be addressed with the use of a whole brain structural segmentation approach which greatly reduces the dimension of features (the number of voxels). In this paper, we propose an automatic AD diagnosis system that combines such whole brain segmen- tations with advanced machine learning methods. We used a multi-atlas segmentation technique to parcellate T1-weighted images into 54 distinct brain regions and extract their structural volumes to serve as the features for principal-component-analysis-based dimension reduction and support-vector-machine-based classification. The relationship between the number of retained principal components (PCs) and the diagnosis accuracy was systematically evaluated, in a leave-one-out fashion, based on 28 AD subjects and 23 age-matched healthy subjects. Our approach yielded pretty good classification results with 96.08% overall accuracy being achieved using the three foremost PCs. In addition, our approach yielded 96.43% specificity, 100% sensitivity, and 0.9891 area under the receiver operating characteristic curve.
Context-based automated defect classification system using multiple morphological masks
Gleason, Shaun S.; Hunt, Martin A.; Sari-Sarraf, Hamed
2002-01-01
Automatic detection of defects during the fabrication of semiconductor wafers is largely automated, but the classification of those defects is still performed manually by technicians. This invention includes novel digital image analysis techniques that generate unique feature vector descriptions of semiconductor defects as well as classifiers that use these descriptions to automatically categorize the defects into one of a set of pre-defined classes. Feature extraction techniques based on multiple-focus images, multiple-defect mask images, and segmented semiconductor wafer images are used to create unique feature-based descriptions of the semiconductor defects. These feature-based defect descriptions are subsequently classified by a defect classifier into categories that depend on defect characteristics and defect contextual information, that is, the semiconductor process layer(s) with which the defect comes in contact. At the heart of the system is a knowledge database that stores and distributes historical semiconductor wafer and defect data to guide the feature extraction and classification processes. In summary, this invention takes as its input a set of images containing semiconductor defect information, and generates as its output a classification for the defect that describes not only the defect itself, but also the location of that defect with respect to the semiconductor process layers.
Data Exploration using Unsupervised Feature Extraction for Mixed Micro-Seismic Signals
NASA Astrophysics Data System (ADS)
Meyer, Matthias; Weber, Samuel; Beutel, Jan
2017-04-01
We present a system for the analysis of data originating in a multi-sensor and multi-year experiment focusing on slope stability and its underlying processes in fractured permafrost rock walls undertaken at 3500m a.s.l. on the Matterhorn Hörnligrat, (Zermatt, Switzerland). This system incorporates facilities for the transmission, management and storage of large-scales of data ( 7 GB/day), preprocessing and aggregation of multiple sensor types, machine-learning based automatic feature extraction for micro-seismic and acoustic emission data and interactive web-based visualization of the data. Specifically, a combination of three types of sensors are used to profile the frequency spectrum from 1 Hz to 80 kHz with the goal to identify the relevant destructive processes (e.g. micro-cracking and fracture propagation) leading to the eventual destabilization of large rock masses. The sensors installed for this profiling experiment (2 geophones, 1 accelerometers and 2 piezo-electric sensors for detecting acoustic emission), are further augmented with sensors originating from a previous activity focusing on long-term monitoring of temperature evolution and rock kinematics with the help of wireless sensor networks (crackmeters, cameras, weather station, rock temperature profiles, differential GPS) [Hasler2012]. In raw format, the data generated by the different types of sensors, specifically the micro-seismic and acoustic emission sensors, is strongly heterogeneous, in part unsynchronized and the storage and processing demand is large. Therefore, a purpose-built signal preprocessing and event-detection system is used. While the analysis of data from each individual sensor follows established methods, the application of all these sensor types in combination within a field experiment is unique. Furthermore, experience and methods from using such sensors in laboratory settings cannot be readily transferred to the mountain field site setting with its scale and full exposure to the natural environment. Consequently, many state-of-the-art algorithms for big data analysis and event classification requiring a ground truth dataset cannot be applied. The above mentioned challenges require a tool for data exploration. In the presented system, data exploration is supported by unsupervised feature learning based on convolutional neural networks, which is used to automatically extract common features for preliminary clustering and outlier detection. With this information, an interactive web-tool allows for a fast identification of interesting time segments on which segment-selective algorithms for visualization, feature extraction and statistics can be applied. The combination of manual labeling based and unsupervised feature extraction provides an event catalog for classification of different characteristic events related to internal progression of micro-crack in steep fractured bedrock permafrost. References Hasler, A., S. Gruber, and J. Beutel (2012), Kinematics of steep bedrock permafrost, J. Geophys. Res., 117, F01016, doi:10.1029/2011JF001981.
Model-Based Learning of Local Image Features for Unsupervised Texture Segmentation
NASA Astrophysics Data System (ADS)
Kiechle, Martin; Storath, Martin; Weinmann, Andreas; Kleinsteuber, Martin
2018-04-01
Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images.
Chen, Jia-Mei; Li, Yan; Xu, Jun; Gong, Lei; Wang, Lin-Wei; Liu, Wen-Lou; Liu, Juan
2017-03-01
With the advance of digital pathology, image analysis has begun to show its advantages in information analysis of hematoxylin and eosin histopathology images. Generally, histological features in hematoxylin and eosin images are measured to evaluate tumor grade and prognosis for breast cancer. This review summarized recent works in image analysis of hematoxylin and eosin histopathology images for breast cancer prognosis. First, prognostic factors for breast cancer based on hematoxylin and eosin histopathology images were summarized. Then, usual procedures of image analysis for breast cancer prognosis were systematically reviewed, including image acquisition, image preprocessing, image detection and segmentation, and feature extraction. Finally, the prognostic value of image features and image feature-based prognostic models was evaluated. Moreover, we discussed the issues of current analysis, and some directions for future research.
Walsh-Hadamard transform kernel-based feature vector for shot boundary detection.
Lakshmi, Priya G G; Domnic, S
2014-12-01
Video shot boundary detection (SBD) is the first step of video analysis, summarization, indexing, and retrieval. In SBD process, videos are segmented into basic units called shots. In this paper, a new SBD method is proposed using color, edge, texture, and motion strength as vector of features (feature vector). Features are extracted by projecting the frames on selected basis vectors of Walsh-Hadamard transform (WHT) kernel and WHT matrix. After extracting the features, based on the significance of the features, weights are calculated. The weighted features are combined to form a single continuity signal, used as input for Procedure Based shot transition Identification process (PBI). Using the procedure, shot transitions are classified into abrupt and gradual transitions. Experimental results are examined using large-scale test sets provided by the TRECVID 2007, which has evaluated hard cut and gradual transition detection. To evaluate the robustness of the proposed method, the system evaluation is performed. The proposed method yields F1-Score of 97.4% for cut, 78% for gradual, and 96.1% for overall transitions. We have also evaluated the proposed feature vector with support vector machine classifier. The results show that WHT-based features can perform well than the other existing methods. In addition to this, few more video sequences are taken from the Openvideo project and the performance of the proposed method is compared with the recent existing SBD method.
Segmenting Images for a Better Diagnosis
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.
Shape-Constrained Segmentation Approach for Arctic Multiyear Sea Ice Floe Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Brucker, Ludovic; Ivanoff, Alvaro; Tilton, James C.
2013-01-01
The melting of sea ice is correlated to increases in sea surface temperature and associated climatic changes. Therefore, it is important to investigate how rapidly sea ice floes melt. For this purpose, a new Tempo Seg method for multi temporal segmentation of multi year ice floes is proposed. The microwave radiometer is used to track the position of an ice floe. Then,a time series of MODIS images are created with the ice floe in the image center. A Tempo Seg method is performed to segment these images into two regions: Floe and Background.First, morphological feature extraction is applied. Then, the central image pixel is marked as Floe, and shape-constrained best merge region growing is performed. The resulting tworegionmap is post-filtered by applying morphological operators.We have successfully tested our method on a set of MODIS images and estimated the area of a sea ice floe as afunction of time.
Mutual information-based feature selection for radiomics
NASA Astrophysics Data System (ADS)
Oubel, Estanislao; Beaumont, Hubert; Iannessi, Antoine
2016-03-01
Background The extraction and analysis of image features (radiomics) is a promising field in the precision medicine era, with applications to prognosis, prediction, and response to treatment quantification. In this work, we present a mutual information - based method for quantifying reproducibility of features, a necessary step for qualification before their inclusion in big data systems. Materials and Methods Ten patients with Non-Small Cell Lung Cancer (NSCLC) lesions were followed over time (7 time points in average) with Computed Tomography (CT). Five observers segmented lesions by using a semi-automatic method and 27 features describing shape and intensity distribution were extracted. Inter-observer reproducibility was assessed by computing the multi-information (MI) of feature changes over time, and the variability of global extrema. Results The highest MI values were obtained for volume-based features (VBF). The lesion mass (M), surface to volume ratio (SVR) and volume (V) presented statistically significant higher values of MI than the rest of features. Within the same VBF group, SVR showed also the lowest variability of extrema. The correlation coefficient (CC) of feature values was unable to make a difference between features. Conclusions MI allowed to discriminate three features (M, SVR, and V) from the rest in a statistically significant manner. This result is consistent with the order obtained when sorting features by increasing values of extrema variability. MI is a promising alternative for selecting features to be considered as surrogate biomarkers in a precision medicine context.
Ahmed, Shaheen; Iftekharuddin, Khan M; Vossough, Arastoo
2011-03-01
Our previous works suggest that fractal texture feature is useful to detect pediatric brain tumor in multimodal MRI. In this study, we systematically investigate efficacy of using several different image features such as intensity, fractal texture, and level-set shape in segmentation of posterior-fossa (PF) tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques, respectively, to discriminate tumor regions from normal tissue in multimodal brain MRI. We further study the selective fusion of these features for improved PF tumor segmentation. Our result suggests that Kullback-Leibler divergence measure for feature ranking and selection and the expectation maximization algorithm for feature fusion and tumor segmentation offer the best results for the patient data in this study. We show that for T1 and fluid attenuation inversion recovery (FLAIR) MRI modalities, the best PF tumor segmentation is obtained using the texture feature such as multifractional Brownian motion (mBm) while that for T2 MRI is obtained by fusing level-set shape with intensity features. In multimodality fused MRI (T1, T2, and FLAIR), mBm feature offers the best PF tumor segmentation performance. We use different similarity metrics to evaluate quality and robustness of these selected features for PF tumor segmentation in MRI for ten pediatric patients.
NASA Astrophysics Data System (ADS)
Lasaponara, Rosa; Masini, Nicola
2018-06-01
The identification and quantification of disturbance of archaeological sites has been generally approached by visual inspection of optical aerial or satellite pictures. In this paper, we briefly summarize the state of the art of the traditionally satellite-based approaches for looting identification and propose a new automatic method for archaeological looting feature extraction approach (ALFEA). It is based on three steps: the enhancement using spatial autocorrelation, unsupervised classification, and segmentation. ALFEA has been applied to Google Earth images of two test areas, selected in desert environs in Syria (Dura Europos), and in Peru (Cahuachi-Nasca). The reliability of ALFEA was assessed through field surveys in Peru and visual inspection for the Syrian case study. Results from the evaluation procedure showed satisfactory performance from both of the two analysed test cases with a rate of success higher than 90%.
Multiclass feature selection for improved pediatric brain tumor segmentation
NASA Astrophysics Data System (ADS)
Ahmed, Shaheen; Iftekharuddin, Khan M.
2012-03-01
In our previous work, we showed that fractal-based texture features are effective in detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. We exploited an information theoretic approach such as Kullback-Leibler Divergence (KLD) for feature selection and ranking different texture features. We further incorporated the feature selection technique with segmentation method such as Expectation Maximization (EM) for segmentation of tumor T and non tumor (NT) tissues. In this work, we extend the two class KLD technique to multiclass for effectively selecting the best features for brain tumor (T), cyst (C) and non tumor (NT). We further obtain segmentation robustness for each tissue types by computing Bay's posterior probabilities and corresponding number of pixels for each tissue segments in MRI patient images. We evaluate improved tumor segmentation robustness using different similarity metric for 5 patients in T1, T2 and FLAIR modalities.
Texture Feature Analysis for Different Resolution Level of Kidney Ultrasound Images
NASA Astrophysics Data System (ADS)
Kairuddin, Wan Nur Hafsha Wan; Mahmud, Wan Mahani Hafizah Wan
2017-08-01
Image feature extraction is a technique to identify the characteristic of the image. The objective of this work is to discover the texture features that best describe a tissue characteristic of a healthy kidney from ultrasound (US) image. Three ultrasound machines that have different specifications are used in order to get a different quality (different resolution) of the image. Initially, the acquired images are pre-processed to de-noise the speckle to ensure the image preserve the pixels in a region of interest (ROI) for further extraction. Gaussian Low- pass Filter is chosen as the filtering method in this work. 150 of enhanced images then are segmented by creating a foreground and background of image where the mask is created to eliminate some unwanted intensity values. Statistical based texture features method is used namely Intensity Histogram (IH), Gray-Level Co-Occurance Matrix (GLCM) and Gray-level run-length matrix (GLRLM).This method is depends on the spatial distribution of intensity values or gray levels in the kidney region. By using One-Way ANOVA in SPSS, the result indicated that three features (Contrast, Difference Variance and Inverse Difference Moment Normalized) from GLCM are not statistically significant; this concludes that these three features describe a healthy kidney characteristics regardless of the ultrasound image quality.
Multi-Atlas Based Segmentation of Brainstem Nuclei from MR Images by Deep Hyper-Graph Learning.
Dong, Pei; Guo, Yangrong; Gao, Yue; Liang, Peipeng; Shi, Yonghong; Wang, Qian; Shen, Dinggang; Wu, Guorong
2016-10-01
Accurate segmentation of brainstem nuclei (red nucleus and substantia nigra) is very important in various neuroimaging applications such as deep brain stimulation and the investigation of imaging biomarkers for Parkinson's disease (PD). Due to iron deposition during aging, image contrast in the brainstem is very low in Magnetic Resonance (MR) images. Hence, the ambiguity of patch-wise similarity makes the recently successful multi-atlas patch-based label fusion methods have difficulty to perform as competitive as segmenting cortical and sub-cortical regions from MR images. To address this challenge, we propose a novel multi-atlas brainstem nuclei segmentation method using deep hyper-graph learning. Specifically, we achieve this goal in three-fold. First , we employ hyper-graph to combine the advantage of maintaining spatial coherence from graph-based segmentation approaches and the benefit of harnessing population priors from multi-atlas based framework. Second , besides using low-level image appearance, we also extract high-level context features to measure the complex patch-wise relationship. Since the context features are calculated on a tentatively estimated label probability map, we eventually turn our hyper-graph learning based label propagation into a deep and self-refining model. Third , since anatomical labels on some voxels (usually located in uniform regions) can be identified much more reliably than other voxels (usually located at the boundary between two regions), we allow these reliable voxels to propagate their labels to the nearby difficult-to-label voxels. Such hierarchical strategy makes our proposed label fusion method deep and dynamic. We evaluate our proposed label fusion method in segmenting substantia nigra (SN) and red nucleus (RN) from 3.0 T MR images, where our proposed method achieves significant improvement over the state-of-the-art label fusion methods.
NASA Astrophysics Data System (ADS)
Suryani, Esti; Wiharto; Palgunadi, Sarngadi; Nurcahya Pradana, TP
2017-01-01
This study uses image processing to analyze white blood cell with leukemia indicated that includes the identification, analysis of shapes and sizes, as well as white blood cell count indicated the symptoms of leukemia. A case study in this research was blood cells, from the type of leukemia Acute Myelogenous Leukemia (AML), M2 and M3 in particular. Image processing operations used for segmentation by utilizing the color conversion from RGB (Red, Green dab Blue) to obtain white blood cell candidates. Furthermore, the white blood cells candidates are separated by other cells with active contour without edge. WBC (White Blood Cell) results still have intersected or overlap condition. Watershed distance transform method can separate overlap of WBC. Furthermore, the separation of the nucleus from the cytoplasm using the HSI (Hue Saturation Intensity). The further characteristic extraction process is done by calculating the area WBC, WBC edge, roundness, the ratio of the nucleus, the mean and standard deviation of pixel intensities. The feature extraction results are used for training and testing in determining the classification of AML: M2 and M3 by using the momentum backpropagation algorithm. The classification process is done by testing the numeric data input from the feature extraction results that have been entered in the database. K-Fold validation is used to divide the amount of training data and to test the classification of AML M2 and M3. The experiment results of eight images trials, the result, was 94.285% per cell accuracy and 75% per image accuracy
Zuluaga, Maria A; Rodionov, Roman; Nowell, Mark; Achhala, Sufyan; Zombori, Gergely; Mendelson, Alex F; Cardoso, M Jorge; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sébastien
2015-08-01
Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying significantly associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer-assisted planning systems that can optimise the safety profile of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Twelve paired data sets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coefficient was 0.89 ± 0.04, representing a statistically significantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ± 0.03). Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity.
Thermal imaging to detect physiological indicators of stress in humans
NASA Astrophysics Data System (ADS)
Cross, Carl B.; Skipper, Julie A.; Petkie, Douglas T.
2013-05-01
Real-time, stand-off sensing of human subjects to detect emotional state would be valuable in many defense, security and medical scenarios. We are developing a multimodal sensor platform that incorporates high-resolution electro-optical and mid-wave infrared (MWIR) cameras and a millimeter-wave radar system to identify individuals who are psychologically stressed. Recent experiments have aimed to: 1) assess responses to physical versus psychological stressors; 2) examine the impact of topical skin products on thermal signatures; and 3) evaluate the fidelity of vital signs extracted from thermal imagery and radar signatures. Registered image and sensor data were collected as subjects (n=32) performed mental and physical tasks. In each image, the face was segmented into 29 non-overlapping segments based on fiducial points automatically output by our facial feature tracker. Image features were defined that facilitated discrimination between psychological and physical stress states. To test the ability to intentionally mask thermal responses indicative of anxiety or fear, subjects applied one of four topical skin products to one half of their face before performing tasks. Finally, we evaluated the performance of two non-contact techniques to detect respiration and heart rate: chest displacement extracted from the radar signal and temperature fluctuations at the nose tip and regions near superficial arteries to detect respiration and heart rates, respectively, extracted from the MWIR imagery. Our results are very satisfactory: classification of physical versus psychological stressors is repeatedly greater than 90%, thermal masking was almost always ineffective, and accurate heart and respiration rates are detectable in both thermal and radar signatures.
NASA Astrophysics Data System (ADS)
Sheng, Yehua; Zhang, Ka; Ye, Chun; Liang, Cheng; Li, Jian
2008-04-01
Considering the problem of automatic traffic sign detection and recognition in stereo images captured under motion conditions, a new algorithm for traffic sign detection and recognition based on features and probabilistic neural networks (PNN) is proposed in this paper. Firstly, global statistical color features of left image are computed based on statistics theory. Then for red, yellow and blue traffic signs, left image is segmented to three binary images by self-adaptive color segmentation method. Secondly, gray-value projection and shape analysis are used to confirm traffic sign regions in left image. Then stereo image matching is used to locate the homonymy traffic signs in right image. Thirdly, self-adaptive image segmentation is used to extract binary inner core shapes of detected traffic signs. One-dimensional feature vectors of inner core shapes are computed by central projection transformation. Fourthly, these vectors are input to the trained probabilistic neural networks for traffic sign recognition. Lastly, recognition results in left image are compared with recognition results in right image. If results in stereo images are identical, these results are confirmed as final recognition results. The new algorithm is applied to 220 real images of natural scenes taken by the vehicle-borne mobile photogrammetry system in Nanjing at different time. Experimental results show a detection and recognition rate of over 92%. So the algorithm is not only simple, but also reliable and high-speed on real traffic sign detection and recognition. Furthermore, it can obtain geometrical information of traffic signs at the same time of recognizing their types.
NASA Astrophysics Data System (ADS)
Novelli, Antonio; Aguilar, Manuel A.; Nemmaoui, Abderrahim; Aguilar, Fernando J.; Tarantino, Eufemia
2016-10-01
This paper shows the first comparison between data from Sentinel-2 (S2) Multi Spectral Instrument (MSI) and Landsat 8 (L8) Operational Land Imager (OLI) headed up to greenhouse detection. Two closely related in time scenes, one for each sensor, were classified by using Object Based Image Analysis and Random Forest (RF). The RF input consisted of several object-based features computed from spectral bands and including mean values, spectral indices and textural features. S2 and L8 data comparisons were also extended using a common segmentation dataset extracted form VHR World-View 2 (WV2) imagery to test differences only due to their specific spectral contribution. The best band combinations to perform segmentation were found through a modified version of the Euclidian Distance 2 index. Four different RF classifications schemes were considered achieving 89.1%, 91.3%, 90.9% and 93.4% as the best overall accuracies respectively, evaluated over the whole study area.
Zhang, Xinzheng; Rad, Ahmad B; Wong, Yiu-Kwong
2012-01-01
This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.
Automated detection of neovascularization for proliferative diabetic retinopathy screening.
Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K
2016-08-01
Neovascularization is the primary manifestation of proliferative diabetic retinopathy (PDR) that can lead to acquired blindness. This paper presents a novel method that classifies neovascularizations in the 1-optic disc (OD) diameter region (NVD) and elsewhere (NVE) separately to achieve low false positive rates of neovascularization classification. First, the OD region and blood vessels are extracted. Next, the major blood vessel segments in the 1-OD diameter region are classified for NVD, and minor blood vessel segments elsewhere are classified for NVE. For NVD and NVE classifications, optimal region-based feature sets of 10 and 6 features, respectively, are used. The proposed method achieves classification sensitivity, specificity and accuracy for NVD and NVE of 74%, 98.2%, 87.6%, and 61%, 97.5%, 92.1%, respectively. Also, the proposed method achieves 86.4% sensitivity and 76% specificity for screening images with PDR from public and local data sets. Thus, the proposed NVD and NVE detection methods can play a key role in automated screening and prioritization of patients with diabetic retinopathy.
Recognition of speaker-dependent continuous speech with KEAL
NASA Astrophysics Data System (ADS)
Mercier, G.; Bigorgne, D.; Miclet, L.; Le Guennec, L.; Querre, M.
1989-04-01
A description of the speaker-dependent continuous speech recognition system KEAL is given. An unknown utterance, is recognized by means of the followng procedures: acoustic analysis, phonetic segmentation and identification, word and sentence analysis. The combination of feature-based, speaker-independent coarse phonetic segmentation with speaker-dependent statistical classification techniques is one of the main design features of the acoustic-phonetic decoder. The lexical access component is essentially based on a statistical dynamic programming technique which aims at matching a phonemic lexical entry containing various phonological forms, against a phonetic lattice. Sentence recognition is achieved by use of a context-free grammar and a parsing algorithm derived from Earley's parser. A speaker adaptation module allows some of the system parameters to be adjusted by matching known utterances with their acoustical representation. The task to be performed, described by its vocabulary and its grammar, is given as a parameter of the system. Continuously spoken sentences extracted from a 'pseudo-Logo' language are analyzed and results are presented.
Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery
Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel
2016-01-01
Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134
Das, D K; Maiti, A K; Chakraborty, C
2015-03-01
In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Elleithy, Khaled; Elleithy, Abdelrahman
2018-01-01
Eye exam can be as efficacious as physical one in determining health concerns. Retina screening can be the very first clue for detecting a variety of hidden health issues including pre-diabetes and diabetes. Through the process of clinical diagnosis and prognosis; ophthalmologists rely heavily on the binary segmented version of retina fundus image; where the accuracy of segmented vessels, optic disc, and abnormal lesions extremely affects the diagnosis accuracy which in turn affect the subsequent clinical treatment steps. This paper proposes an automated retinal fundus image segmentation system composed of three segmentation subsystems follow same core segmentation algorithm. Despite of broad difference in features and characteristics; retinal vessels, optic disc, and exudate lesions are extracted by each subsystem without the need for texture analysis or synthesis. For sake of compact diagnosis and complete clinical insight, our proposed system can detect these anatomical structures in one session with high accuracy even in pathological retina images. The proposed system uses a robust hybrid segmentation algorithm combines adaptive fuzzy thresholding and mathematical morphology. The proposed system is validated using four benchmark datasets: DRIVE and STARE (vessels), DRISHTI-GS (optic disc), and DIARETDB1 (exudates lesions). Competitive segmentation performance is achieved, outperforming a variety of up-to-date systems and demonstrating the capacity to deal with other heterogeneous anatomical structures. PMID:29888146
2011-01-01
Background Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction. Methods A proposed method with anisotropic diffusion as pre-processing and a novel Bounded Area Elimination (BAE) post-processing algorithm to improve the algorithm of ossification site localization technique are designed with the intent of improving the adaptive segmentation result and the region-of interest (ROI) localization accuracy. Results The results are then evaluated by quantitative analysis and qualitative analysis using texture feature evaluation. The result indicates that the image homogeneity after anisotropic diffusion has improved averagely on each age group for 17.59%. Results of experiments showed that the smoothness has been improved averagely 35% after BAE algorithm and the improvement of ROI localization has improved for averagely 8.19%. The MSSIM has improved averagely 10.49% after performing the BAE algorithm on the adaptive segmented hand radiograph. Conclusions The result indicated that hand radiographs which have undergone anisotropic diffusion have greatly reduced the noise in the segmented image and the result as well indicated that the BAE algorithm proposed is capable of removing the artifacts generated in adaptive segmentation. PMID:21952080
Egmose, Ida; Varni, Giovanna; Cordes, Katharina; Smith-Nielsen, Johanne; Væver, Mette S.; Køppe, Simo; Cohen, David; Chetouani, Mohamed
2017-01-01
Bodily movements are an essential component of social interactions. However, the role of movement in early mother-infant interaction has received little attention in the research literature. The aim of the present study was to investigate the relationship between automatically extracted motion features and interaction quality in mother-infant interactions at 4 and 13 months. The sample consisted of 19 mother-infant dyads at 4 months and 33 mother-infant dyads at 13 months. The coding system Coding Interactive Behavior (CIB) was used for rating the quality of the interactions. Kinetic energy of upper-body, arms and head motion was calculated and used as segmentation in order to extract coarse- and fine-grained motion features. Spearman correlations were conducted between the composites derived from the CIB and the coarse- and fine-grained motion features. At both 4 and 13 months, longer durations of maternal arm motion and infant upper-body motion were associated with more aversive interactions, i.e., more parent-led interactions and more infant negativity. Further, at 4 months, the amount of motion silence was related to more adaptive interactions, i.e., more sensitive and child-led interactions. Analyses of the fine-grained motion features showed that if the mother coordinates her head movements with her infant's head movements, the interaction is rated as more adaptive in terms of less infant negativity and less dyadic negative states. We found more and stronger correlations between the motion features and the interaction qualities at 4 compared to 13 months. These results highlight that motion features are related to the quality of mother-infant interactions. Factors such as infant age and interaction set-up are likely to modify the meaning and importance of different motion features. PMID:29326626
Egmose, Ida; Varni, Giovanna; Cordes, Katharina; Smith-Nielsen, Johanne; Væver, Mette S; Køppe, Simo; Cohen, David; Chetouani, Mohamed
2017-01-01
Bodily movements are an essential component of social interactions. However, the role of movement in early mother-infant interaction has received little attention in the research literature. The aim of the present study was to investigate the relationship between automatically extracted motion features and interaction quality in mother-infant interactions at 4 and 13 months. The sample consisted of 19 mother-infant dyads at 4 months and 33 mother-infant dyads at 13 months. The coding system Coding Interactive Behavior (CIB) was used for rating the quality of the interactions. Kinetic energy of upper-body, arms and head motion was calculated and used as segmentation in order to extract coarse- and fine-grained motion features. Spearman correlations were conducted between the composites derived from the CIB and the coarse- and fine-grained motion features. At both 4 and 13 months, longer durations of maternal arm motion and infant upper-body motion were associated with more aversive interactions, i.e., more parent-led interactions and more infant negativity. Further, at 4 months, the amount of motion silence was related to more adaptive interactions, i.e., more sensitive and child-led interactions. Analyses of the fine-grained motion features showed that if the mother coordinates her head movements with her infant's head movements, the interaction is rated as more adaptive in terms of less infant negativity and less dyadic negative states. We found more and stronger correlations between the motion features and the interaction qualities at 4 compared to 13 months. These results highlight that motion features are related to the quality of mother-infant interactions. Factors such as infant age and interaction set-up are likely to modify the meaning and importance of different motion features.
Ship detection in panchromatic images: a new method and its DSP implementation
NASA Astrophysics Data System (ADS)
Yao, Yuan; Jiang, Zhiguo; Zhang, Haopeng; Wang, Mengfei; Meng, Gang
2016-03-01
In this paper, a new ship detection method is proposed after analyzing the characteristics of panchromatic remote sensing images and ship targets. Firstly, AdaBoost(Adaptive Boosting) classifiers trained by Haar features are utilized to make coarse detection of ship targets. Then LSD (Line Segment Detector) is adopted to extract the line features in target slices to make fine detection. Experimental results on a dataset of panchromatic remote sensing images with a spatial resolution of 2m show that the proposed algorithm can achieve high detection rate and low false alarm rate. Meanwhile, the algorithm can meet the needs of practical applications on DSP (Digital Signal Processor).