Sample records for segmented chip formation

  1. Study of process parameter on mist lubrication of Titanium (Grade 5) alloy

    NASA Astrophysics Data System (ADS)

    Maity, Kalipada; Pradhan, Swastik

    2017-02-01

    This paper deals with the machinability of Ti-6Al-4V alloy with mist cooling lubrication using carbide inserts. The influence of process parameter on the cutting forces, evolution of tool wear, surface finish of the workpiece, material removal rate and chip reduction coefficient have been investigated. Weighted principal component analysis coupled with grey relational analysis optimization is applied to identify the optimum setting of the process parameter. Optimal condition of the process parameter was cutting speed at 160 m/min, feed at 0.16 mm/rev and depth of cut at 1.6 mm. Effects of cutting speed and depth of cut on the type of chips formation were observed. Most of the chips forms were long tubular and long helical type. Image analyses of the segmented chip were examined to study the shape and size of the saw tooth profile of serrated chips. It was found that by increasing cutting speed from 95 m/min to 160 m/min, the free surface lamella of the chips increased and the visibility of the saw tooth segment became clearer.

  2. Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB₂/7050Al MMC.

    PubMed

    Xiong, Yifeng; Wang, Wenhu; Jiang, Ruisong; Lin, Kunyang; Shao, Mingwei

    2018-04-15

    The in-situ TiB₂/7050Al composite is a new kind of Al-based metal matrix composite (MMC) with super properties, such as low density, improved strength, and wear resistance. This paper, for a deep insight into its cutting performance, involves a study of the chip formation process and finite element simulation during orthogonal cutting in-situ TiB₂/7050Al MMC. With chips, material properties, cutting forces, and tool geometry parameters, the Johnson-Cook (J-C) constitutive equation of in-situ TiB₂/7050Al composite was established. Then, the cutting simulation model was established by applying the Abaqus-Explicit method, and the serrated chip, shear plane, strain rate, and temperature were analyzed. The experimental and simulation results showed that the obtained material's constitutive equation was of high reliability, and the saw-tooth chips occurred commonly under either low or high cutting speed and small or large feed rate. From result analysis, it was found that the mechanisms of chip formation included plastic deformation, adiabatic shear, shearing slip, and crack extension. In addition, it was found that the existence of small, hard particles reduced the ductility of the MMC and resulted in segmental chips.

  3. Mechanisms and FEM Simulation of Chip Formation in Orthogonal Cutting In-Situ TiB2/7050Al MMC

    PubMed Central

    Wang, Wenhu; Jiang, Ruisong; Lin, Kunyang; Shao, Mingwei

    2018-01-01

    The in-situ TiB2/7050Al composite is a new kind of Al-based metal matrix composite (MMC) with super properties, such as low density, improved strength, and wear resistance. This paper, for a deep insight into its cutting performance, involves a study of the chip formation process and finite element simulation during orthogonal cutting in-situ TiB2/7050Al MMC. With chips, material properties, cutting forces, and tool geometry parameters, the Johnson–Cook (J–C) constitutive equation of in-situ TiB2/7050Al composite was established. Then, the cutting simulation model was established by applying the Abaqus–Explicit method, and the serrated chip, shear plane, strain rate, and temperature were analyzed. The experimental and simulation results showed that the obtained material’s constitutive equation was of high reliability, and the saw-tooth chips occurred commonly under either low or high cutting speed and small or large feed rate. From result analysis, it was found that the mechanisms of chip formation included plastic deformation, adiabatic shear, shearing slip, and crack extension. In addition, it was found that the existence of small, hard particles reduced the ductility of the MMC and resulted in segmental chips. PMID:29662047

  4. Generation of segmental chips in metal cutting modeled with the PFEM

    NASA Astrophysics Data System (ADS)

    Rodriguez Prieto, J. M.; Carbonell, J. M.; Cante, J. C.; Oliver, J.; Jonsén, P.

    2018-06-01

    The Particle Finite Element Method, a lagrangian finite element method based on a continuous Delaunay re-triangulation of the domain, is used to study machining of Ti6Al4V. In this work the method is revised and applied to study the influence of the cutting speed on the cutting force and the chip formation process. A parametric methodology for the detection and treatment of the rigid tool contact is presented. The adaptive insertion and removal of particles are developed and employed in order to sidestep the difficulties associated with mesh distortion, shear localization as well as for resolving the fine-scale features of the solution. The performance of PFEM is studied with a set of different two-dimensional orthogonal cutting tests. It is shown that, despite its Lagrangian nature, the proposed combined finite element-particle method is well suited for large deformation metal cutting problems with continuous chip and serrated chip formation.

  5. Generation of segmental chips in metal cutting modeled with the PFEM

    NASA Astrophysics Data System (ADS)

    Rodriguez Prieto, J. M.; Carbonell, J. M.; Cante, J. C.; Oliver, J.; Jonsén, P.

    2017-09-01

    The Particle Finite Element Method, a lagrangian finite element method based on a continuous Delaunay re-triangulation of the domain, is used to study machining of Ti6Al4V. In this work the method is revised and applied to study the influence of the cutting speed on the cutting force and the chip formation process. A parametric methodology for the detection and treatment of the rigid tool contact is presented. The adaptive insertion and removal of particles are developed and employed in order to sidestep the difficulties associated with mesh distortion, shear localization as well as for resolving the fine-scale features of the solution. The performance of PFEM is studied with a set of different two-dimensional orthogonal cutting tests. It is shown that, despite its Lagrangian nature, the proposed combined finite element-particle method is well suited for large deformation metal cutting problems with continuous chip and serrated chip formation.

  6. Vortex nozzle for segmenting and transporting metal chips from turning operations

    DOEpatents

    Bieg, L.F.

    1993-04-20

    Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.

  7. Fundamental investigation on influence of external heat on chip formation during thermal assisted machining

    NASA Astrophysics Data System (ADS)

    Alkali, A. U.; Ginta, T. L.; Abdulrani, A. M.; Elsiti, N. M.

    2018-04-01

    Various heat sources have been investigated by numerous researchers to reveal machinability benefits of thermally assisted machining (TAM) process. Fewer engineering materials have been tested. In the same vein, those researches continue to demonstrate effective performance of TAM in terms of bulk material removal rate, improved surface finish, prolong tool life and reduction of cutting forces among others. Experimental investigation on the strain-hardenability and flow stress of material removed with respect to increase in temperature in TAM has not been given attention in previous studies. This study investigated the pattern of chip morphology and segmentation giving close attention to influence of external heat source responsible for strain – hardenability of the material removed during TAM and dry machining at room temperature. Full immersion down cut milling was used throughout the machining conditions. Machining was conducted on AISI 316L using uncoated tungsten carbide end mill insert at varying cutting speeds (V) of 50, 79, and 100 m/min, and feed rates (f) of 0.15, 0.25, and 0.4 mm/tooth while the depth of cut was maintained at 0.2mm throughout the machining trials. The analyses of chip formation, segmentations and stain hardenability were carried out by using LMU light microscope, field emission microscopy and micro indentation. The study observed that build up edge is formed when a stagnation zone develops in front of tool tip which give rise to poor thermal gradient for conduction heat to be transferred within the bulk material during dry machining. This promotes varying strain – hardening of the material removed with evident high chips hardness and thickness, whereas TAM circumvents such impairment by softening the shear zone through local preheat.

  8. Flow-directed loading of block copolymer micelles with hydrophobic probes in a gas-liquid microreactor.

    PubMed

    Wang, Chih-Wei; Bains, Aman; Sinton, David; Moffitt, Matthew G

    2013-07-02

    We investigate the loading efficiencies of two chemically distinct hydrophobic fluorescent probes, pyrene and naphthalene, for self-assembly and loading of polystyrene-block-poly(acrylic acid) (PS-b-PAA) micelles in gas-liquid segmented microfluidic reactors under different chemical and flow conditions. On-chip loading efficiencies are compared to values obtained via off-chip dropwise water addition to a solution of copolymer and probe. On-chip, probe loading efficiencies depend strongly on the chemical probe, initial solvent, water content, and flow rate. For pyrene and naphthalene probes, maximum on-chip loading efficiencies of 73 ± 6% and 11 ± 3%, respectively, are obtained, in both cases using the more polar solvent (DMF), an intermediate water content (2 wt % above critical), and a low flow rate (∼5 μL/min); these values are compared to 81 ± 6% and 48 ± 2%, respectively, for off-chip loading. On-chip loading shows a significant improvement over the off-chip process where shear-induced formation of smaller micelles enables increased encapsulation of probe. As well, we show that on-chip loading allows off-chip release kinetics to be controlled via flow rate: compared to vehicles produced at ∼5 μL/min, pyrene release kinetics from vehicles produced at ∼50 μL/min showed a longer initial period of burst release, followed by slow release over a longer total period. These results demonstrate the necessity to match probes, solvents, and running conditions to achieve effective loading, which is essential information for further developing these on-chip platforms for manufacturing drug delivery formulations.

  9. Novel tool wear monitoring method in milling difficult-to-machine materials using cutting chip formation

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Guo, Y.; Wang, B.

    2017-05-01

    The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.

  10. Slot angle detecting method for fiber fixed chip

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaquan; Wang, Jiliang; Zhou, Chaochao

    2018-04-01

    The slot angle of fiber fixed chip has a significant impact on performance of photoelectric devices. In order to solve the actual engineering problem, this paper put forward a detecting method based on imaging processing. Because the images have very low contrast that is hardly segmented, so this paper proposes imaging segment methods based on edge character. Then get fixed chip edge line slope k2 and calculate the fiber fixed slot line slope k1, which can be used calculating the slot angle. Lastly, test the repeatability and accuracy of system, which show that this method has very fast operation speed and good robustness. Clearly, it is also satisfied to the actual demand of fiber fixed chip slot angle detection.

  11. The efficacy of porous hydroxyapatite bone chip as an extender of local bone graft in posterior lumbar interbody fusion.

    PubMed

    Kim, Hyoungmin; Lee, Choon-Ki; Yeom, Jin-Sup; Lee, Jae-Hyup; Lee, Ki-Ho; Chang, Bong-Soon

    2012-07-01

    To evaluate whether a synthetic bone chip made of porous hydroxyapatite can effectively extend local decompressed bone graft in instrumented posterior lumbar interbody fusion (PLIF). 130 patients, 165 segments, who had undergone PLIF with cages and instrumentation for single or double level due to degenerative conditions, were investigated retrospectively by independent blinded observer. According to the material of graft, patients were divided into three groups. HA group (19 patients, 25 segments): with hydroxyapatite bone chip in addition to autologous local decompressed bone, IBG group (25 patients, 28 segments): with autologous iliac crest bone graft in addition to local decompressed bone and LB group (86 patients, 112 segments): with local decompressed bone only. Radiologic and clinical outcome were compared among groups and postoperative complications, transfusion, time and cost of operation and duration of hospitalization were also investigated. Radiologic fusion rate and clinical outcome were not different. Economic cost, transfusion and hospital stay were also similar. But operation time was significantly longer in IBG group than in other groups. There were no lasting complications associated with HA and LB group with contrast to five cases with persisting donor site pain in IBG group. Porous hydroxyapatite bone chip is a useful bone graft extender in PLIF when used in conjunction with local decompressed bone.

  12. [Fluorescent signal detection of chromatographic chip by algorithms of pyramid connection and Gaussian mixture model].

    PubMed

    Hu, Beibei; Zhang, Xueqing; Chen, Haopeng; Cui, Daxiang

    2011-03-01

    We proposed a new algorithm for automatic identification of fluorescent signal. Based on the features of chromatographic chips, mathematic morphology in RGB color space was used to filter and enhance the images, pyramid connection was used to segment the areas of fluorescent signal, and then the method of Gaussian Mixture Model was used to detect the fluorescent signal. Finally we calculated the average fluorescent intensity in obtained fluorescent areas. Our results show that the algorithm has a good efficacy to segment the fluorescent areas, can detect the fluorescent signal quickly and accurately, and finally realize the quantitative detection of fluorescent signal in chromatographic chip.

  13. Combination of Ultrasonic Vibration and Cryogenic Cooling for Cutting Performance Improvement of Inconel 718 Turning

    NASA Astrophysics Data System (ADS)

    Lin, S. Y.; Chung, C. T.; Cheng, Y. Y.

    2011-01-01

    The main objective of this study is to develop a thermo-elastic-plastic coupling model, based on a combination skill of ultrasonically assisted cutting and cryogenic cooling, under large deformation for Inconel 718 alloy machining process. The improvement extent on cutting performance and tool life promotion may be examined from this investigation. The critical value of the strain energy density of the workpiece will be utilized as the chip separation and the discontinuous chip segmentation criteria. The forced convection cooling and a hydrodynamic lubrication model will be considered and formulated in the model. Finite element method will be applied to create a complete numerical solution for this ultrasonic vibration cutting model. During the analysis, the cutting tool is incrementally advanced forward with superimposed ultrasonic vibration in a back and forth step-by-step manner, from an incipient stage of tool-workpiece engagement to a steady state of chip formation, a whole simulation of orthogonal cutting process under plane strain deformation is thus undertaken. High shear strength induces a fluctuation phenomenon of shear angle, high shear strain rate, variation of chip types and chip morphology, tool-chip contact length variation, the temperature distributions within the workpiece, chip and tool, periodic fluctuation in cutting forces can be determined from the developed model. A complete comparison of machining characteristics between some different combinations of ultrasonically assisted cutting and cryogenic cooling with conventional cutting operation can be acquired. Finally, the high-speed turning experiment for Inconel 718 alloy will be taken in the laboratory to validate the accuracy of the model, and the progressive flank wear, crater wear, notching and chipping of the tool edge can also be measured in the experiments.

  14. Low voltage electrophoresis chip with multi-segments synchronized scanning

    NASA Astrophysics Data System (ADS)

    Gu, Wenwen; Wen, Zhiyu; Xu, Yi

    2017-03-01

    For low voltage electrophoresis chip, there is always a problem that the samples are truncated and peaks are broadened, as well as longer time for separation. In this paper, a low voltage electrophoresis separation model was established, and the separation conditions were discussed. A new driving mode was proposed for applying low voltage, which was called multi-segments synchronized scanning. By using this driving mode, the reversed electric field that existed between the multi-segments can enrich samples and shorten the sample zone. The low voltage electrophoresis experiments using multi-segments synchronized scanning were carried out by home-made silicon-PDMS-based chip. The fluorescein isothiocyanate (FITC) labeled lysine and phenylalanine mixed samples with the concentration of 10-4 mol/L were successfully separated under the optimal conditions of 10 mmol/L borax buffer (pH = 10.0), 200 V/cm separation electric field and electrode switch time of 2.5 s. The separation was completed with a resolution of 2.0, and the peak time for lysine and phenylalanine was 4 min and 6 min, respectively.

  15. The role of EEPROM devices in upcoming ISDN applications

    NASA Astrophysics Data System (ADS)

    Nette, Herbert L.

    1991-02-01

    Integrated Services Digital Network (ISDN) equipments are rapidly becoming a major market for semiconductor chips. Although at first glance this growing market appears to be geared at logic chips, nonvolatile memories represent important support chips and will become a significant segment of this market. Challenges in these applications consist in operating EEPROMs at lower voltages and lower power and embedding them on ever more complex communications processor chips.

  16. Deep learning for medical image segmentation - using the IBM TrueNorth neurosynaptic system

    NASA Astrophysics Data System (ADS)

    Moran, Steven; Gaonkar, Bilwaj; Whitehead, William; Wolk, Aidan; Macyszyn, Luke; Iyer, Subramanian S.

    2018-03-01

    Deep convolutional neural networks have found success in semantic image segmentation tasks in computer vision and medical imaging. These algorithms are executed on conventional von Neumann processor architectures or GPUs. This is suboptimal. Neuromorphic processors that replicate the structure of the brain are better-suited to train and execute deep learning models for image segmentation by relying on massively-parallel processing. However, given that they closely emulate the human brain, on-chip hardware and digital memory limitations also constrain them. Adapting deep learning models to execute image segmentation tasks on such chips, requires specialized training and validation. In this work, we demonstrate for the first-time, spinal image segmentation performed using a deep learning network implemented on neuromorphic hardware of the IBM TrueNorth Neurosynaptic System and validate the performance of our network by comparing it to human-generated segmentations of spinal vertebrae and disks. To achieve this on neuromorphic hardware, the training model constrains the coefficients of individual neurons to {-1,0,1} using the Energy Efficient Deep Neuromorphic (EEDN)1 networks training algorithm. Given the 1 million neurons and 256 million synapses, the scale and size of the neural network implemented by the IBM TrueNorth allows us to execute the requisite mapping between segmented images and non-uniform intensity MR images >20 times faster than on a GPU-accelerated network and using <0.1 W. This speed and efficiency implies that a trained neuromorphic chip can be deployed in intra-operative environments where real-time medical image segmentation is necessary.

  17. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft.

    PubMed

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-04-20

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft.

  18. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    PubMed Central

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  19. CHIP regulates bone mass by targeting multiple TRAF family members in bone marrow stromal cells.

    PubMed

    Wang, Tingyu; Li, Shan; Yi, Dan; Zhou, Guang-Qian; Chang, Zhijie; Ma, Peter X; Xiao, Guozhi; Chen, Di

    2018-01-01

    Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated that Chip deficient mice display bone loss phenotype due to increased osteoclast formation through enhancing TRAF6 activity in osteoclasts. In this study we provide novel evidence about the function of CHIP. We found that osteoblast differentiation and bone formation were also decreased in Chip KO mice. In bone marrow stromal (BMS) cells derived from Chip -/- mice, expression of a panel of osteoblast marker genes was significantly decreased. ALP activity and mineralized bone matrix formation were also reduced in Chip- deficient BMS cells. We also found that in addition to the regulation of TRAF6, CHIP also inhibits TNFα-induced NF-κB signaling through promoting TRAF2 and TRAF5 degradation. Specific deletion of Chip in BMS cells downregulated expression of osteoblast marker genes which could be reversed by the addition of NF-κB inhibitor. These results demonstrate that the osteopenic phenotype observed in Chip -/- mice was due to the combination of increased osteoclast formation and decreased osteoblast differentiation. Taken together, our findings indicate a significant role of CHIP in bone remodeling.

  20. Prediction of 3D chip formation in the facing cutting with lathe machine using FEM

    NASA Astrophysics Data System (ADS)

    Prasetyo, Yudhi; Tauviqirrahman, Mohamad; Rusnaldy

    2016-04-01

    This paper presents the prediction of the chip formation at the machining process using a lathe machine in a more specific way focusing on facing cutting (face turning). The main purpose is to propose a new approach to predict the chip formation with the variation of the cutting directions i.e., the backward and forward direction. In addition, the interaction between stress analysis and chip formation on cutting process was also investigated. The simulations were conducted using three dimensional (3D) finite element method based on ABAQUS software with aluminum and high speed steel (HSS) as the workpiece and the tool materials, respectively. The simulation result showed that the chip resulted using a backward direction depicts a better formation than that using a conventional (forward) direction.

  1. Modeling and analysis of the chip formation and transient cutting force during elliptical vibration cutting process

    NASA Astrophysics Data System (ADS)

    Lin, Jieqiong; Guan, Liang; Lu, Mingming; Han, Jinguo; Kan, Yudi

    2017-12-01

    In traditional diamond cutting, the cutting force is usually large and it will affect tool life and machining quality. Elliptical vibration cutting (EVC) as one of the ultra-precision machining technologies has a lot of advantages, such as reduces cutting force, extend tool life and so on. It's difficult to predict the transient cutting force of EVC due to its unique elliptical motion trajectory. Study on chip formation will helpfully to predict cutting force. The geometric feature of chip has important effects on cutting force, however, few scholars have studied the chip formation. In order to investigate the time-varying cutting force of EVC, the geometric feature model of chip is established based on analysis of chip formation, and the effects of cutting parameters on the geometric feature of chip are analyzed. To predict transient force quickly and effectively, the geometric feature of chip is introduced into the cutting force model. The calculated results show that the error between the predicted cutting force in this paper and that in the literature is less than 2%, which proves its feasibility.

  2. Adiabatic shear mechanisms for the hard cutting process

    NASA Astrophysics Data System (ADS)

    Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin

    2015-05-01

    The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.

  3. Ignition propagation and heat effects of propellant chips embedded in castable inhibitor using a laser flux test bomb

    NASA Technical Reports Server (NTRS)

    Bolton, Douglas E., Jr.

    1993-01-01

    A castable inhibitor is applied to the aft face of the Space Shuttle Redesigned Solid Rocket Motor (RSRM) forward segment propellant grain to control propellant surface burn area. During fabrication, the propellant surface is trimmed prior to the inhibitor application. This produces a potential for small propellant chips to remain undetected on the propellant surface and contaminate the inhibitor during application. The concern was that undetected propellant chips in the inhibitor might provide a fuse path for premature propellant ignition underneath the inhibitor. To evaluate the fuse path potential, testing was performed on inhibitor samples with embedded propellant. The internal motor environment was simulated with a calibrated CO2 laser beam directed onto a sample which was placed in a 4100 kPa (600 psi) nitrogen pressurized bomb (laser bomb). The testing showed definitive results pertaining to fuse path formation. Embedded propellant chips did not autoignite until the receding heat affected inhibitor surface reached, or passed, the propellant chip. Samples with embedded propellant chips in alignment did not propagate ignition from one chip to another with separation distances as small as 0.010 cm(0.004 inc) and some as little as 0.0051 cm (0.002 in). Propellant chips with volumes approximately less than 0.025 cu cm (0.0015 cu in) (which did not propagate ignition) did not increase the inhibitor material decomposition depth more than the resulting void cavity of the burned out propellant chip. In addition, the depth of this void cavity did not increase until it was overtaken by the surrounding material decomposition depth. This was due, in part, to the retention of the protective inhibitor char layer. Samples with embedded propellant strings, whose thicknesses were below 0.023 cm (0.009 in), did not propagate ignition. Propellant string thicknesses above 0.038 cm (0.015 in) did propagate ignition. Test sample char and heat affected layer measurements and observations compared well with those from the Space Shuttle Solid Rocket Motor (SRM) Technical Evaluation Motor no. 9(TEM-9).

  4. Design and prototyping of a chip-based multi-micro-organoid culture system for substance testing, predictive to human (substance) exposure.

    PubMed

    Sonntag, Frank; Schilling, Niels; Mader, Katja; Gruchow, Mathias; Klotzbach, Udo; Lindner, Gerd; Horland, Reyk; Wagner, Ilka; Lauster, Roland; Howitz, Steffen; Hoffmann, Silke; Marx, Uwe

    2010-07-01

    Dynamic miniaturized human multi-micro-organ bioreactor systems are envisaged as a possible solution for the embarrassing gap of predictive substance testing prior to human exposure. A rational approach was applied to simulate and design dynamic long-term cultures of the smallest possible functional human organ units, human "micro-organoids", on a chip the shape of a microscope slide. Each chip contains six identical dynamic micro-bioreactors with three different micro-organoid culture segments each, a feed supply and waste reservoirs. A liver, a brain cortex and a bone marrow micro-organoid segment were designed into each bioreactor. This design was translated into a multi-layer chip prototype and a routine manufacturing procedure was established. The first series of microscopable, chemically resistant and sterilizable chip prototypes was tested for matrix compatibility and primary cell culture suitability. Sterility and long-term human cell survival could be shown. Optimizing the applied design approach and prototyping tools resulted in a time period of only 3 months for a single design and prototyping cycle. This rapid prototyping scheme now allows for fast adjustment or redesign of inaccurate architectures. The designed chip platform is thus ready to be evaluated for the establishment and maintenance of the human liver, brain cortex and bone marrow micro-organoids in a systemic microenvironment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Use of a Corona Discharge to Selectively Pattern a Hydrophilic/Hydrophobic Interface for Integrating Segmented Flow with Microchip Electrophoresis and Electrochemical Detection

    PubMed Central

    Filla, Laura A.; Kirkpatrick, Douglas C.; Martin, R. Scott

    2011-01-01

    Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to “desegment” the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies where off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection. PMID:21718004

  6. K6 linked polyubiquitylation of FADD by CHIP prevents death inducing signaling complex formation suppressing cell death.

    PubMed

    Seo, Jinho; Lee, Eun-Woo; Shin, Jihye; Seong, Daehyeon; Nam, Young Woo; Jeong, Manhyung; Lee, Seon-Hyeong; Lee, Cheolju; Song, Jaewhan

    2018-05-23

    Fas-associated death domain (FADD) is an adaptor protein recruiting complexes of caspase 8 to death ligand receptors to induce extrinsic apoptotic cell death in response to a TNF superfamily member. Although, formation of the complex of FADD and caspase 8 upon death stimuli has been studied in detail, posttranslational modifications fine-tuning these processes have yet to be identified. Here we revealed that K6-linked polyubiquitylation of FADD on lysines 149 and 153 mediated by C terminus HSC70-interacting protein (CHIP) plays an important role in preventing formation of the death inducing signaling complex (DISC), thus leading to the suppression of cell death. Cells depleted of CHIP showed higher sensitivity toward death ligands such as FasL and TRAIL, leading to upregulation of DISC formation composed of a death receptor, FADD, and caspase 8. CHIP was able to bind to FADD, induce K6-linked polyubiquitylation of FADD, and suppress DISC formation. By mass spectrometry, lysines 149 and 153 of FADD were found to be responsible for CHIP-mediated FADD ubiquitylation. FADD mutated at these sites was capable of more potent cell death induction as compared with the wild type and was no longer suppressed by CHIP. On the other hand, CHIP deficient in E3 ligase activity was not capable of suppressing FADD function and of FADD ubiquitylation. CHIP depletion in ME-180 cells induced significant sensitization of these cells toward TRAIL in xenograft analyses. These results imply that K6-linked ubiquitylation of FADD by CHIP is a crucial checkpoint in cytokine-dependent extrinsic apoptosis.

  7. Method for protecting chip corners in wet chemical etching of wafers

    DOEpatents

    Hui, Wing C.

    1994-01-01

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible.

  8. Method for protecting chip corners in wet chemical etching of wafers

    DOEpatents

    Hui, W.C.

    1994-02-15

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible. 63 figures.

  9. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718.

    PubMed

    Wang, Bing; Liu, Zhanqiang; Hou, Xin; Zhao, Jinfu

    2018-03-21

    The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson-Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters.

  10. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718

    PubMed Central

    Hou, Xin; Zhao, Jinfu

    2018-01-01

    The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson–Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters. PMID:29561770

  11. Acrylamide formation in plantain (Musa paradisiaca) chips influenced by different ripening stages: A correlation study with respect to reducing sugars, amino acids and phenolic content.

    PubMed

    Shamla, L; Nisha, P

    2017-05-01

    The effect of ripening on the formation of acrylamide in deep fried plantain chips made from Nendran variety (Musa paradisiaca) was investigated. The precursors of acrylamide formation, reducing sugars (glucose and fructose) and ten major amino acids, were quantified during different stages of ripening using HPLC and correlated with acrylamide formation. The total phenolic content and total flavonoid content were also estimated and correlated with acrylamide formation. Both glucose and fructose increased during ripening and demonstrated a positive correlation on formation of acrylamide (correlation coefficient of r=0.95 and 0.94 respectively (p<0.05), whereas asparagine, was poorly correlated (p>0.05). The decreased levels of phenolic content during ripening of plantain were negatively correlated with acrylamide formation in the deep fried chips prepared. Thus the selection of proper ripening stage renders reduced formation of acrylamide in plantain chips to a reasonable extend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. On-chip liquid storage and dispensing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Bodén, Roger; Lehto, Marcus; Margell, Joakim; Hjort, Klas; Schweitz, Jan-Åke

    2008-07-01

    This work presents novel components for on-chip storage and dispensing inside a lab-on-a-chip (LOC) for applications in immunoassay point-of-care testing (POCT), where incubation and washing steps are essential. It involves easy-to-use on-chip solutions for the sequential thermo-hydraulic actuation of liquids. The novel concept of combining the use of a rubber plug, both as a non-return valve cap and as a liquid injection interface of a sealed reservoir, allows simple filling of a sterilized cavity, as well as the storage and dispensing of reagent and washing buffer liquids. Segmenting the flow with air spacers enables effective rinsing and the use of small volumes of on-chip stored liquids. The chip uses low-resistance resistors as heaters in the paraffin actuator, providing the low-voltage actuation that is preferred for handheld battery driven instruments.

  13. Enhanced tenogenic differentiation and tendon-like tissue formation by CHIP overexpression in tendon-derived stem cells.

    PubMed

    Han, Weifeng; Chen, Lei; Liu, Junpeng; Guo, Ai

    2017-04-01

    The carboxyl terminus of Hsc70-interacting protein (CHIP, also known as STUB1) plays critical roles in the proliferation and differentiation of many types of cells. The potential function of CHIP in tendon-derived stem cells (TDSCs) remains largely unknown at present. Here, we investigated the effects of CHIP on tenogenic differentiation of TDSCs via lentivirus-mediated overexpression. Forced expression of CHIP induced morphological changes and significantly enhanced cell proliferation, as well as tendon differentiation in vitro. Upon stimulation with differentiation induction medium, CHIP-overexpressing TDSCs displayed significant inhibition of differentiation into osteogenic and adipogenic lineages. Subsequent implantation of TDSCs overexpressing CHIP with collagen sponges into nude mice induced a marked increase in ectopic tendon formation in vivo, compared with the control group. Our findings collectively suggest that CHIP is an important contributory factor to tenogenic tissue formation. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay.

    PubMed

    Cai, Long-Fei; Zhu, Ying; Du, Guan-Sheng; Fang, Qun

    2012-01-03

    We described a microfluidic chip-based system capable of generating droplet array with a large scale concentration gradient by coupling flow injection gradient technique with droplet-based microfluidics. Multiple modules including sample injection, sample dispersion, gradient generation, droplet formation, mixing of sample and reagents, and online reaction within the droplets were integrated into the microchip. In the system, nanoliter-scale sample solution was automatically injected into the chip under valveless flow injection analysis mode. The sample zone was first dispersed in the microchannel to form a concentration gradient along the axial direction of the microchannel and then segmented into a linear array of droplets by immiscible oil phase. With the segmentation and protection of the oil phase, the concentration gradient profile of the sample was preserved in the droplet array with high fidelity. With a single injection of 16 nL of sample solution, an array of droplets with concentration gradient spanning 3-4 orders of magnitude could be generated. The present system was applied in the enzyme inhibition assay of β-galactosidase to preliminarily demonstrate its potential in high throughput drug screening. With a single injection of 16 nL of inhibitor solution, more than 240 in-droplet enzyme inhibition reactions with different inhibitor concentrations could be performed with an analysis time of 2.5 min. Compared with multiwell plate-based screening systems, the inhibitor consumption was reduced 1000-fold. © 2011 American Chemical Society

  15. Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation.

    PubMed

    Halford, Nigel G; Muttucumaru, Nira; Powers, Stephen J; Gillatt, Peter N; Hartley, Lee; Elmore, J Stephen; Mottram, Donald S

    2012-12-05

    Acrylamide forms during cooking and processing predominately from the reaction of free asparagine and reducing sugars in the Maillard reaction. The identification of low free asparagine and reducing sugar varieties of crops is therefore an important target. In this study, nine varieties of potato (French fry varieties Maris Piper (from two suppliers), Pentland Dell, King Edward, Daisy, and Markies; and chipping varieties Lady Claire, Lady Rosetta, Saturna, and Hermes) grown in the United Kingdom in 2009 were analyzed at monthly intervals through storage from November 2009 to July 2010. Acrylamide formation was measured in heated flour and chips fried in oil. Analysis of variance revealed significant interactions between varieties nested within type (French fry and chipping) and storage time for most free amino acids, glucose, fructose, and acrylamide formation. Acrylamide formed in chips correlated significantly with acrylamide formed in flour and with chip color. There were significant correlations between glucose or total reducing sugar concentration and acrylamide formation in both variety types, but with fructose the correlation was much stronger for chipping than for French fry varieties. Conversely, there were significant correlations with acrylamide formation for both total free amino acid and free asparagine concentration in the French fry but not chipping varieties. The study showed the potential of variety selection for preventing unacceptable levels of acrylamide formation in potato products and the variety-dependent effect of long-term storage on acrylamide risk. It also highlighted the complex relationship between precursor concentration and acrylamide risk in potatoes.

  16. Implementation of a Synchronized Oscillator Circuit for Fast Sensing and Labeling of Image Objects

    PubMed Central

    Kowalski, Jacek; Strzelecki, Michal; Kim, Hyongsuk

    2011-01-01

    We present an application-specific integrated circuit (ASIC) CMOS chip that implements a synchronized oscillator cellular neural network with a matrix size of 32 × 32 for object sensing and labeling in binary images. Networks of synchronized oscillators are a recently developed tool for image segmentation and analysis. Its parallel network operation is based on a “temporary correlation” theory that attempts to describe scene recognition as if performed by the human brain. The synchronized oscillations of neuron groups attract a person’s attention if he or she is focused on a coherent stimulus (image object). For more than one perceived stimulus, these synchronized patterns switch in time between different neuron groups, thus forming temporal maps that code several features of the analyzed scene. In this paper, a new oscillator circuit based on a mathematical model is proposed, and the network architecture and chip functional blocks are presented and discussed. The proposed chip is implemented in AMIS 0.35 μm C035M-D 5M/1P technology. An application of the proposed network chip for the segmentation of insulin-producing pancreatic islets in magnetic resonance liver images is presented. PMID:22163803

  17. Heteroassembled gold nanoparticles with sandwich-immunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg).

    PubMed

    Kim, Jinwoon; Oh, Seo Yeong; Shukla, Shruti; Hong, Seok Bok; Heo, Nam Su; Bajpai, Vivek K; Chun, Hyang Sook; Jo, Cheon-Ho; Choi, Bong Gill; Huh, Yun Suk; Han, Young-Kyu

    2018-06-01

    This study aimed to develop a more sensitive method for the detection of hepatitis B surface antigen (HBsAg) using heteroassembled gold nanoparticles (AuNPs). A single layered localized surface plasmon resonance (LSPR) chip format was developed with antigen-antibody reaction-based detection symmetry using AuNPs, which detected HBsAg at 10 pg/mL. To further improve the detection limit, a modified detection format was fabricated by fixing a secondary antibody (to form a heteroassembled sandwich format) to the AuNP monolayer, which enhanced the detection sensitivity by about 100 times. The developed heteroassembled AuNPs sandwich-immunoassay LSPR chip format was able to detect as little as 100 fg/mL of HBsAg within 10-15 min. In addition, the heteroassembled AuNPs sandwich-immunoassay LSPR chip format did not show any non-specific binding to other tested antigens, including alpha fetoprotein (AFP), C-reactive protein (CRP), and prostate-specific antigen (PSA). These findings confirm that the proposed detection strategy of heteroassembled AuNPs sandwich-immunoassay LSPR chip format may provide a new platform for early diagnosis of various human diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Investigating bone chip formation in craniotomy.

    PubMed

    Huiyu, He; Chengyong, Wang; Yue, Zhang; Yanbin, Zheng; Linlin, Xu; Guoneng, Xie; Danna, Zhao; Bin, Chen; Haoan, Chen

    2017-10-01

    In a craniotomy, the milling cutter is one of the most important cutting tools. The operating performance, tool durability and cutting damage to patients are influenced by the tool's sharpness, intensity and structure, whereas the cutting characteristics rely on interactions between the tool and the skull. In this study, an orthogonal cutting experiment during a craniotomy of fresh pig skulls was performed to investigate chip formation on the side cutting and face cutting of the skull using a high-speed camera. The cutting forces with different combinations of cutting parameters, such as the rake angle, clearance angle, depth of cut and cutting speed, were measured. The skull bone microstructure and cutting damage were observed by scanning electron microscope. Cutting models for different cutting approaches and various depths of cut were constructed and analyzed. The study demonstrated that the effects of shearing, tension and extrusion occur during chip formation. Various chip types, such as unit chips, splintering chips and continuous chips, were generated. Continuous pieces of chips, which are advisable for easy removal from the field of operation, were formed at greater depths of cut and tool rake angles greater than 10°. Cutting damage could be relieved with a faster recovery with clearance angles greater than 20°.

  19. Defect Inspection of Flip Chip Solder Bumps Using an Ultrasonic Transducer

    PubMed Central

    Su, Lei; Shi, Tielin; Xu, Zhensong; Lu, Xiangning; Liao, Guanglan

    2013-01-01

    Surface mount technology has spurred a rapid decrease in the size of electronic packages, where solder bump inspection of surface mount packages is crucial in the electronics manufacturing industry. In this study we demonstrate the feasibility of using a 230 MHz ultrasonic transducer for nondestructive flip chip testing. The reflected time domain signal was captured when the transducer scanning the flip chip, and the image of the flip chip was generated by scanning acoustic microscopy. Normalized cross-correlation was used to locate the center of solder bumps for segmenting the flip chip image. Then five features were extracted from the signals and images. The support vector machine was adopted to process the five features for classification and recognition. The results show the feasibility of this approach with high recognition rate, proving that defect inspection of flip chip solder bumps using the ultrasonic transducer has high potential in microelectronics packaging.

  20. High-power, format-flexible, 885-nm vertical-cavity surface-emitting laser arrays

    NASA Astrophysics Data System (ADS)

    Wang, Chad; Talantov, Fedor; Garrett, Henry; Berdin, Glen; Cardellino, Terri; Millenheft, David; Geske, Jonathan

    2013-03-01

    High-power, format flexible, 885 nm vertical-cavity surface-emitting laser (VCSEL) arrays have been developed for solid-state pumping and illumination applications. In this approach, a common VCSEL size format was designed to enable tiling into flexible formats and operating configurations. The fabrication of a common chip size on ceramic submount enables low-cost volume manufacturing of high-power VCSEL arrays. This base VCSEL chip was designed to be 5x3.33 mm2, and produced up to 50 Watts of peak continuous wave (CW) power. To scale to higher powers, multiple chips can be tiled into a combination of series or parallel configurations tailored to the application driver conditions. In actively cooled CW operation, the VCSEL array chips were packaged onto a single water channel cooler, and we have demonstrated 0.5x1, 1x1, and 1x3 cm2 formats, producing 150, 250, and 500 Watts of peak power, respectively, in under 130 A operating current. In QCW operation, the 1x3 cm2 VCSEL module, which contains 18 VCSEL array chips packaged on a single water cooler, produced over 1.3 kW of peak power. In passively cooled packages, multiple chip configurations have been developed for illumination applications, producing over 300 Watts of peak power in QCW operating conditions. These VCSEL chips use a substrate-removed structure to allow for efficient thermal heatsinking to enable high-power operation. This scalable, format flexible VCSEL architecture can be applied to wavelengths ranging from 800 to 1100 nm, and can be used to tailor emission spectral widths and build high-power hyperspectral sources.

  1. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation.

    PubMed

    Wu, Huei-Wen; Hsiao, Yi-Hsing; Chen, Chih-Chen; Yet, Shaw-Fang; Hsu, Chia-Hsien

    2016-07-06

    The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  2. Partial wetting gas-liquid segmented flow microreactor.

    PubMed

    Kazemi Oskooei, S Ali; Sinton, David

    2010-07-07

    A microfluidic reactor strategy for reducing plug-to-plug transport in gas-liquid segmented flow microfluidic reactors is presented. The segmented flow is generated in a wetting portion of the chip that transitions downstream to a partially wetting reaction channel that serves to disconnect the liquid plugs. The resulting residence time distributions show little dependence on channel length, and over 60% narrowing in residence time distribution as compared to an otherwise similar reactor. This partial wetting strategy mitigates a central limitation (plug-to-plug dispersion) while preserving the many attractive features of gas-liquid segmented flow reactors.

  3. GeneChip Resequencing of the Smallpox Virus Genome Can Identify Novel Strains: a Biodefense Application▿

    PubMed Central

    Sulaiman, Irshad M.; Tang, Kevin; Osborne, John; Sammons, Scott; Wohlhueter, Robert M.

    2007-01-01

    We developed a set of seven resequencing GeneChips, based on the complete genome sequences of 24 strains of smallpox virus (variola virus), for rapid characterization of this human-pathogenic virus. Each GeneChip was designed to analyze a divergent segment of approximately 30,000 bases of the smallpox virus genome. This study includes the hybridization results of 14 smallpox virus strains. Of the 14 smallpox virus strains hybridized, only 7 had sequence information included in the design of the smallpox virus resequencing GeneChips; similar information for the remaining strains was not tiled as a reference in these GeneChips. By use of variola virus-specific primers and long-range PCR, 22 overlapping amplicons were amplified to cover nearly the complete genome and hybridized with the smallpox virus resequencing GeneChip set. These GeneChips were successful in generating nucleotide sequences for all 14 of the smallpox virus strains hybridized. Analysis of the data indicated that the GeneChip resequencing by hybridization was fast and reproducible and that the smallpox virus resequencing GeneChips could differentiate the 14 smallpox virus strains characterized. This study also suggests that high-density resequencing GeneChips have potential biodefense applications and may be used as an alternate tool for rapid identification of smallpox virus in the future. PMID:17182757

  4. Lab on a Chip Packing of Submicron Particles for High Performance EOF Pumping

    DTIC Science & Technology

    2010-08-26

    and wet etching techniques, using a soda lime glass substrate coated with chromium and photoresist (Nanofilm, Westlake Village, CA). A weir structure...observed previously for these soda lime glass microchips [8]. Images of the three segments of different sized particles con- tainedwithin the packed... Silica beads High pressure Lab on a chip a b s t r a c t The packing of submicrometer sized silica beads inside a microchannel was enabled by a novel

  5. GridPix detectors: Production and beam test results

    NASA Astrophysics Data System (ADS)

    Koppert, W. J. C.; van Bakel, N.; Bilevych, Y.; Colas, P.; Desch, K.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N. P.; Kaminski, J.; Schmitz, J.; Schön, R.; Zappon, F.

    2013-12-01

    The innovative GridPix detector is a Time Projection Chamber (TPC) that is read out with a Timepix-1 pixel chip. By using wafer post-processing techniques an aluminium grid is placed on top of the chip. When operated, the electric field between the grid and the chip is sufficient to create electron induced avalanches which are detected by the pixels. The time-to-digital converter (TDC) records the drift time enabling the reconstruction of high precision 3D track segments. Recently GridPixes were produced on full wafer scale, to meet the demand for more reliable and cheaper devices in large quantities. In a recent beam test the contribution of both diffusion and time walk to the spatial and angular resolutions of a GridPix detector with a 1.2 mm drift gap are studied in detail. In addition long term tests show that in a significant fraction of the chips the protection layer successfully quenches discharges, preventing harm to the chip.

  6. The influence of collagen membrane and autogenous bone chips on bone augmentation in the anterior maxilla: a preclinical study.

    PubMed

    Janner, Simone F M; Bosshardt, Dieter D; Cochran, David L; Chappuis, Vivianne; Huynh-Ba, Guy; Jones, Archie A; Buser, Daniel

    2017-11-01

    To evaluate the effect of a resorbable collagen membrane and autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) on the healing of buccal dehiscence-type defects. The second incisors and the first premolars were extracted in the maxilla of eight mongrels. Reduced diameter, bone-level implants were placed 5 weeks later. Standardized buccal dehiscence-type defects were created and grafted at implant surgery. According to an allocation algorithm, the graft composition of each of the four maxillary sites was DBBM + membrane (group D + M), autogenous bone chips + DBBM + membrane (group A + D + M), DBBM alone (group D) or autogenous bone chips + DBBM (group A + D). Four animals were sacrificed after 3 weeks of healing and four animals after 12 weeks. Histological and histomorphometric analyses were performed on oro-facial sections. The pattern of bone formation and resorption within the grafted area showed high variability among the same group and healing time. The histomorphometric analysis of the 3-week specimens showed a positive effect of autogenous bone chips on both implant osseointegration and bone formation into the grafted region (P < 0.05). The presence of the collagen membrane correlated with greater bone formation around the DBBM particles and greater bone formation in the grafted region after 12 weeks of healing (P < 0.05). The oro-facial width of the augmented region at the level of the implant shoulder was significantly reduced in cases where damage of the protection splints occurred in the first week of healing (P < 0.05). The addition of autogenous bone chips and the presence of the collagen membrane increased bone formation around DBBM particles. Wound protection from mechanical noxa during early healing may be critical for bone formation within the grafted area. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. A novel three-dimensional bone chip organ culture.

    PubMed

    Kuttenberger, Johannes; Polska, Elzbieta; Schaefer, Birgit M

    2013-07-01

    The objective of this study was to develop a 3D bone chip organ culture model. We aimed to collect in vitro evidence of the ability of vital bone chips to promote new bone formation. We developed a 3D in vitro hypoxic bone chip organ culture model. Histology of the bone chips was performed before and after culture and immunohistochemistry after 3-week culture. The 3D culture supernatants were tested for the presence of pro-angiogenic growth factors, TGFβ1, GADPH, bone alkaline phosphatase, osteocalcin, osteonectin, osteopontin, bone sialoprotein and collagen type I. Histology after culture revealed bone chips in a matrix of fibrin remnants and a fibrous-appearing matter. Collagen type I- and IV-positive structures were also identified. Cells could be seen on the surface of the bone chips, with spindle-shaped cells bridging the bone chip particles. Pro-angiogenic growth factors and TGFβ1were detected in the 3D cell culture supernatants. The transcripts for osteocalcin, bone sialoprotein and collagen type I were revealed only via PCR. Our results indicate that bone chips in our 3D organ culture remain vital and may stimulate the growth of a bone-forming matrix. The use of autogenous bone chips for oral and maxillofacial bone augmentation procedures is widespread in clinical practice. The rationale for this is that if bone chips remain vital in vivo, they could provide an environment promoting new bone formation through growth factors and cells. This 3D culture method is an essential tool for investigating the behaviour of bone chips.

  8. Digital TV tri-state delta modulation system for Space Shuttle ku-band downlink

    NASA Technical Reports Server (NTRS)

    Udalov, S.; Huth, G. K.; Roberts, D.; Batson, B. H.

    1982-01-01

    A tri-state delta modulation/demodulation (TSDM) technique which provides for efficient run-length coding of constant-intensity segments of a TV picture is described. Aspects of the hardware implementation of a high-speed TSDM transmitter and receiver for black-and-white TV or field-sequential color or NTSC format color are reviewed. Run-length encoding of the TSDM output can consistently reduce the required channel data rate well below one bit per sample. As compared with a bistate delta modulation system, the present technique eliminates granularity in the reconstructed video without degrading rise or fall times. About 40 chips are used by TSDM when used to handle the luminance information in a color link. A possible overall space and ground functional configuration to accommodate Shuttle digital TV with scrambling for privacy is presented.

  9. Influence of the cutting edge angle of a titanium instrument on chip formation in the machining of trabecular and cortical bone.

    PubMed

    von See, Constantin; Stoetzer, Marcus; Ruecker, Martin; Wagner, Max; Schumann, Paul; Gellrich, Nils-Claudius

    2014-01-01

    The placement of self-tapping implants is associated with microfractures and the formation of bone chips along the cutting flutes. This study was conducted to investigate the effect of different cutting edge angles on chip formation during the machining of trabecular and cortical bone using instruments with a rough titanium surface. Mandibular cortical and trabecular bone specimens were obtained from freshly slaughtered domestic pigs. A predefined thrust force was applied to the specimens. Four specially designed cutting instruments that simulated dental implants and had a rough titanium surface were allowed to complete one full revolution at cutting edge angles of 55, 65, 75, and 85 degrees, respectively. Torque and thrust were measured during the cutting process. Bone chips were measured and weighed under a microscope. Different cutting edge angles did not lead to significant differences in torque. The lowest torque values were measured when the cutting edges were positioned at 65 degrees in trabecular bone and at 85 degrees in cortical bone. Bone chips were significantly larger and heavier at angles of 55 and 65 degrees than at angles of 75 and 85 degrees in trabecular bone. Instruments with a rough titanium surface show considerable angle-dependent differences in chip formation. In addition to bone density, the angle of the cutting edges should be taken into consideration during the placement of dental implants. Good results were obtained when the cutting edges were positioned at an angle of 65 degrees. This angle can have positive effects on osseointegration.

  10. Controlling the type and the form of chip when machining steel

    NASA Astrophysics Data System (ADS)

    Gruby, S. V.; Lasukov, A. A.; Nekrasov, R. Yu; Politsinsky, E. V.; Arkhipova, D. A.

    2016-08-01

    The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface.

  11. Docking-dependent Ubiquitination of the Interferon Regulatory Factor-1 Tumor Suppressor Protein by the Ubiquitin Ligase CHIP*

    PubMed Central

    Narayan, Vikram; Pion, Emmanuelle; Landré, Vivien; Müller, Petr; Ball, Kathryn L.

    2011-01-01

    Characteristically for a regulatory protein, the IRF-1 tumor suppressor turns over rapidly with a half-life of between 20–40 min. This allows IRF-1 to reach new steady state protein levels swiftly in response to changing environmental conditions. Whereas CHIP (C terminus of Hsc70-interacting protein), appears to chaperone IRF-1 in unstressed cells, formation of a stable IRF-1·CHIP complex is seen under specific stress conditions. Complex formation, in heat- or heavy metal-treated cells, is accompanied by a decrease in IRF-1 steady state levels and an increase in IRF-1 ubiquitination. CHIP binds directly to an intrinsically disordered domain in the central region of IRF-1 (residues 106–140), and this site is sufficient to form a stable complex with CHIP in cells and to compete in trans with full-length IRF-1, leading to a reduction in its ubiquitination. The study reveals a complex relationship between CHIP and IRF-1 and highlights the role that direct binding or “docking” of CHIP to its substrate(s) can play in its mechanism of action as an E3 ligase. PMID:20947504

  12. An Analysis of the Effects of Chip-groove Geometry on Machining Performance Using Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Ee, K. C.; Dillon, O. W.; Jawahir, I. S.

    2004-06-01

    This paper discusses the influence of major chip-groove parameters of a cutting tool on the chip formation process in orthogonal machining using finite element (FE) methods. In the FE formulation, a thermal elastic-viscoplastic material model is used together with a modified Johnson-Cook material law for the flow stress. The chip back-flow angle and the chip up-curl radius are calculated for a range of cutting conditions by varying the chip-groove parameters. The analysis provides greater understanding of the effectiveness of chip-groove configurations and points a way to correlate cutting conditions with tool-wear when machining with a grooved cutting tool.

  13. Self-assembly of microscopic chiplets at a liquid–liquid–solid interface forming a flexible segmented monocrystalline solar cell

    PubMed Central

    Knuesel, Robert J.; Jacobs, Heiko O.

    2010-01-01

    This paper introduces a method for self-assembling and electrically connecting small (20–60 micrometer) semiconductor chiplets at predetermined locations on flexible substrates with high speed (62500 chips/45 s), accuracy (0.9 micrometer, 0.14°), and yield (> 98%). The process takes place at the triple interface between silicone oil, water, and a penetrating solder-patterned substrate. The assembly is driven by a stepwise reduction of interfacial free energy where chips are first collected and preoriented at an oil-water interface before they assemble on a solder-patterned substrate that is pulled through the interface. Patterned transfer occurs in a progressing linear front as the liquid layers recede. The process eliminates the dependency on gravity and sedimentation of prior methods, thereby extending the minimal chip size to the sub-100 micrometer scale. It provides a new route for the field of printable electronics to enable the integration of microscopic high performance inorganic semiconductors on foreign substrates with the freedom to choose target location, pitch, and integration density. As an example we demonstrate a fault-tolerant segmented flexible monocrystalline silicon solar cell, reducing the amount of Si that is used when compared to conventional rigid cells. PMID:20080682

  14. Control and Automation of Fluid Flow, Mass Transfer and Chemical Reactions in Microscale Segmented Flow

    NASA Astrophysics Data System (ADS)

    Abolhasani, Milad

    Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a slow candidate reaction, the etching of gold nanorods during up to five hours, served to illustrate the utility of oscillatory segmented flows in assessing the shape evolution of colloidal nanomaterials on-chip via continuous optical interrogation at only one sensing location. The developed cruise control strategy will enable plug'n play operation of segmented flows in applications that include flow chemistry, material synthesis and in-flow analysis and screening.

  15. Effective treatment for suppression of acrylamide formation in fried potato chips using L-asparaginase from Bacillus subtilis.

    PubMed

    Onishi, Yohei; Prihanto, Asep A; Yano, Shigekazu; Takagi, Kazuyoshi; Umekawa, Midori; Wakayama, Mamoru

    2015-10-01

    It has been reported that acrylamide, a potential carcinogen, is formed from the reaction of L-asparagine (L-Asn) and reducing sugars contained in foods during heating processes and free asparagine is a limiting factor for acrylamide formation. It has been reported that potato products such as potato chips, which are made through heating processes, contain high levels of acrylamide. To decrease the amount of L-Asn in potatoes using L-asparaginase, effective treatment conditions of sliced potatoes with the enzyme have been investigated. By treating sliced potatoes with Bacillus subtilis L-asparaginase II (BAsnase; 4 U/g potato), appriximately 40 % of L-Asn in the sliced potatoes was converted into L-aspartic acid (L-Asp). To make this enzyme more effective, prior to enzymatic treatment, sliced potatoes were freeze-thawed, dried at 90 °C for 20 min, and vacuum treated for 10 min under decompressed condition, resulting in the hydrolysis of approximately 90 % of L-Asn to L-Asp. The acrylamide content of BAsnase-treated fried potato chips decreased to below 20 % of that of BAsnase-untreated fried potato chips. Treatment conditions examined in this study were found to be effective to suppress the formation of acrylamide in fried potato chips.

  16. Frequency non-degenerate phase-sensitive optical parametric amplification based on four-wave-mixing in width-modulated silicon waveguides.

    PubMed

    Wang, Zhaolu; Liu, Hongjun; Sun, Qibing; Huang, Nan; Li, Xuefeng

    2014-12-15

    A width-modulated silicon waveguide is proposed to realize non-degenerate phase sensitive optical parametric amplification. It is found that the relative phase at the input of the phase sensitive amplifier (PSA) θIn-PSA can be tuned by tailoring the width and length of the second segment of the width-modulated silicon waveguide, which will influence the gain in the parametric amplification process. The maximum gain of PSA is larger by 9 dB compared with the phase insensitive amplifier (PIA) gain, and the gain bandwidth of PSA is larger by 35 nm compared with the gain bandwidth of PIA. Our on-chip PSA can find important potential applications in highly integrated optical circuits for optical chip-to-chip communication and computers.

  17. On-Chip Synthesis of Protein Microarrays from DNA Microarrays Via Coupled In Vitro Transcription and Translation for Surface Plasmon Resonance Imaging Biosensor Applications

    PubMed Central

    Seefeld, Ting H.; Halpern, Aaron R.; Corn, Robert M.

    2012-01-01

    Protein microarrays are fabricated from double-stranded DNA (dsDNA) microarrays by a one-step, multiplexed enzymatic synthesis in an on-chip microfluidic format and then employed for antibody biosensing measurements with surface plasmon resonance imaging (SPRI). A microarray of dsDNA elements (denoted as generator elements) that encode either a His-tagged green fluorescent protein (GFP) or a His-tagged luciferase protein is utilized to create multiple copies of messenger RNA (mRNA) in a surface RNA polymerase reaction; the mRNA transcripts are then translated into proteins by cell-free protein synthesis in a microfluidic format. The His-tagged proteins diffuse to adjacent Cu(II)-NTA microarray elements (denoted as detector elements) and are specifically adsorbed. The net result is the on-chip, cell-free synthesis of a protein microarray that can be used immediately for SPRI protein biosensing. The dual element format greatly reduces any interference from the nonspecific adsorption of enzyme or proteins. SPRI measurements for the detection of the antibodies anti-GFP and anti-luciferase were used to verify the formation of the protein microarray. This convenient on-chip protein microarray fabrication method can be implemented for multiplexed SPRI biosensing measurements in both clinical and research applications. PMID:22793370

  18. Chip formation and surface integrity in high-speed machining of hardened steel

    NASA Astrophysics Data System (ADS)

    Kishawy, Hossam Eldeen A.

    Increasing demands for high production rates as well as cost reduction have emphasized the potential for the industrial application of hard turning technology during the past few years. Machining instead of grinding hardened steel components reduces the machining sequence, the machining time, and the specific cutting energy. Hard turning Is characterized by the generation of high temperatures, the formation of saw toothed chips, and the high ratio of thrust to tangential cutting force components. Although a large volume of literature exists on hard turning, the change in machined surface physical properties represents a major challenge. Thus, a better understanding of the cutting mechanism in hard turning is still required. In particular, the chip formation process and the surface integrity of the machined surface are important issues which require further research. In this thesis, a mechanistic model for saw toothed chip formation is presented. This model is based on the concept of crack initiation on the free surface of the workpiece. The model presented explains the mechanism of chip formation. In addition, experimental investigation is conducted in order to study the chip morphology. The effect of process parameters, including edge preparation and tool wear on the chip morphology, is studied using Scanning Electron Microscopy (SEM). The dynamics of chip formation are also investigated. The surface integrity of the machined parts is also investigated. This investigation focusses on residual stresses as well as surface and sub-surface deformation. A three dimensional thermo-elasto-plastic finite element model is developed to predict the machining residual stresses. The effect of flank wear is introduced during the analysis. Although residual stresses have complicated origins and are introduced by many factors, in this model only the thermal and mechanical factors are considered. The finite element analysis demonstrates the significant effect of the heat generated during cutting on the residual stresses. The machined specimens are also examined using x-ray diffraction technique to clarify the effect of different speeds, feeds and depths of cut as well as different edge preparations on the residual stress distribution beneath the machined surface. A reasonable agreement between the predicted and measured residual stress is obtained. The results obtained demonstrate the possibility of eliminating the existence of high tensile residual stresses in the workpiece surface by selecting the proper cutting conditions. The machined surfaces are examined using SEM to study the effect of different process parameters and edge preparations on the quality of the machined surface. The phenomenon of material side flow is investigated to clarify the mechanism of this phenomenon. The effect of process parameters and edge preparations on sub-surface deformation is also investigated.

  19. CHIP Regulates Osteoclast Formation through Promoting TRAF6 Protein Degradation

    PubMed Central

    Li, Shan; Shu, Bing; Zhang, Yanquan; Li, Jia; Guo, Junwei; Wang, Yinyin; Ren, Fangli; Xiao, Guozhi; Chang, Zhijie; Chen, Di

    2014-01-01

    Objective Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in tumor growth and metastasis. However, the role of CHIP in bone growth and bone remodeling in vivo has not been reported. The objective of this study is to investigate the role and mechanism of CHIP in regulation of bone mass and bone remodeling. Methods The bone phenotype of Chip−/− mice was examined by histology, histomorphometry and micro-CT analyses. The regulatory mechanism of CHIP on the degradation of TRAF6 and the inhibition of NF-κB signaling was examined by immunoprecipitation (IP), western blotting and luciferase reporter assays. Results In this study, we found that deletion of the Chip gene leads to osteopenic phenotype and increased osteoclast formation. We further found that TRAF6, as a novel substrate of CHIP, is up-regulated in Chip−/− osteoclasts. TRAF6 is critical for RANKL-induced osteoclastogenesis. TRAF6 is an adaptor protein which functions as an E3 ligase to regulate the activation of TAK1 and the I-κB kinase (IKK) and is a key regulator of NF-κB signaling. CHIP interacts with TRAF6 to promote TRAF6 ubiquitination and proteasome degradation. CHIP inhibits p65 nuclear translocation, leading to the repression of the TRAF6-mediated NF-κB transcription. Conclusion CHIP inhibits NF-κB signaling via promoting TRAF6 degradation and plays an important role in osteoclastogenesis and bone remodeling, suggesting that it may be a novel therapeutic target for the treatment of bone loss associated diseases. PMID:24578159

  20. Effects of calcium supplements on the quality and acrylamide content of puffed shrimp chips.

    PubMed

    Chen, Tai-Yuan; Luo, Hsuan-Min; Hsu, Pang-Hung; Sung, Wen-Chieh

    2016-01-01

    The quality and acrylamide content of deep-fried and microwave-puffed shrimp chips fortified with 0.1%, 0.5%, or 1.0% calcium salts (calcium lactate, calcium carbonate, calcium citrate, or calcium acetate) were investigated. Microwave-puffed shrimp chips contained higher amounts of acrylamide (130.43 ppb) than did deep-fried shrimp chips. The greatest mitigation of acrylamide formation in overfried chips was obtained with 0.1% calcium lactate. All browning indexes of fortified shrimp chips, whether deep-fried or microwave-puffed, were reduced. L* values of microwave-puffed shrimp chips were higher than those of deep-fried shrimp chips, whereas a* and b* values and browning indexes were lower. Color differences (ΔE) between deep-fried puffed shrimp chips fortified with calcium salts and a control sample were higher than 5, and the sensory scores of shrimp chips were significantly decreased by the addition of calcium lactate. Copyright © 2015. Published by Elsevier B.V.

  1. Plasmonically amplified fluorescence bioassay with microarray format

    NASA Astrophysics Data System (ADS)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  2. Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.

    2017-07-01

    This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.

  3. Electromigration induced high fraction of compound formation in SnAgCu flip chip solder joints with copper column

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Han, Jung-Kyu; Liang, Jarrett Jun; Tu, K. N.; Lai, Yi-Shao

    2008-06-01

    To overcome the effect of current crowding on electromigration-induced pancake-type void formation in flip chip solder joints, two types of Cu column in 90μm flip chip SnAgCu solder joints have been studied. They were (1) the solder contacts the Cu column at bottom and side walls and (2) the solder wets only the bottom surface of the copper column. With a current density of 1.6×104A/cm2 at 135°C, no failure was detected after 1290h. However, the resistance increased by about 10% due to the formation of a large fraction of intermetallic compounds. We found that electromigration has accelerated the consumption rate of copper column and converted almost the entire solder joint into intermetallic compound. Mechanically, drop impact test indicates a brittle fracture failure in the intermetallic. The electromigration critical product for the intermetallic is discussed.

  4. Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.

    PubMed

    Wu, Wenming; Kang, Kyung-Tae; Lee, Nae Yoon

    2011-06-07

    Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated.

  5. Development of a high-throughput Candida albicans biofilm chip.

    PubMed

    Srinivasan, Anand; Uppuluri, Priya; Lopez-Ribot, Jose; Ramasubramanian, Anand K

    2011-04-22

    We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  6. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways.

    PubMed

    Zhang, Li; Liu, Lianyong; He, Xiaohua; Shen, Yunling; Liu, Xuerong; Wei, Jing; Yu, Fang; Tian, Jianqing

    2016-08-26

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Our findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Determining Light Transmittance Characteristics of Wood and Bark Chips

    Treesearch

    Douglas B. Brumm; Robert C. Radcliffe; John A. Sturos

    1983-01-01

    Describes compter-assisted testing for measuring light transmittance of wood and bark chips. Electronic interface permitted the computer to collect physical data accurately and efficiently and to analyze and present the data in several tabular and grapical formats

  8. Expression and significance of CHIP in canine mammary gland tumors

    PubMed Central

    WANG, Huanan; YANG, Xu; JIN, Yipeng; PEI, Shimin; ZHANG, Di; MA, Wen; HUANG, Jian; QIU, Hengbin; ZHANG, Xinke; JIANG, Qiuyue; SUN, Weidong; ZHANG, Hong; LIN, Degui

    2015-01-01

    CHIP (Carboxy terminus of Hsc70 Interacting Protein) is an E3 ubiquitin ligase that can induce ubiquitination and degradation of several oncogenic proteins. The expression of CHIP is frequently lower in human breast cancer than in normal breast tissue. However, the expression and role of CHIP in the canine mammary gland tumor (CMGT) remain unclear. We investigated the potential correlation between CHIP expression and mammary gland tumor prognosis in female dogs. CHIP expression was measured in 54 dogs by immunohistochemistry and real-time RT-PCR. CHIP protein expression was significantly correlated with the histopathological diagnosis, outcome of disease and tumor classification. The transcriptional level of CHIP was significantly higher in normal tissues (P=0.001) and benign tumors (P=0.009) than it in malignant tumors. CHIP protein expression was significantly correlated with the transcriptional level of CHIP (P=0.0102). The log-rank test survival curves indicated that patients with low expression of CHIP had shorter overall periods of survival than those with higher CHIP protein expression (P=0.050). Our data suggest that CHIP may play an important role in the formation and development of CMGTs and serve as a valuable prognostic marker and potential target for genetic therapy. PMID:26156079

  9. The Energy Crisis

    NASA Astrophysics Data System (ADS)

    Hoefflinger, Bernd

    Chip-based electronics in 2010 consumed about 10% of the world's total electric power of ˜2 TW. We have seen throughout the book that all segments, processing, memory and communication, are expected to increase their performance or bandwidth by three orders of magnitude in the decade until 2020. If this progress would be realized, the world semiconductor revenue could grow by 50-100%, and the ICT industry by 43-66% in this decade (Fig. 6.1). Progress sustained at these levels certainly depends on investments and qualified manpower, but energy has become another roadblock almost overnight. In this chapter, we touch upon the life-cycle energy of chips by assessing the energy of Si wafer manufacturing, needed to bring the chips to life, and the power efficiencies in their respective operations. An outstanding segment of power-hungry chip operations is that of operating data centers, often called server farms. Their total operating power was ˜36 GW in 2010, and we look at their evolution under the prospect of a 1,000× growth in performance by 2020. One feasible scenario is that we succeed in improving the power efficiency of Processing 1,000×, Memory 1,000×, Communication 100×, within a decade. In this case, the total required power for the world's data centers would still increase 4× to 144 GW by 2020, equivalent to 40% of the total electrical power available in all of Europe. The power prospects for mobile/wireless as well as long-line cable/radio/satellite are equally serious. Any progression by less than the factors listed above will lead to economic growth smaller than the projections given above. This demands clearly that sustainable nanoelectronics must be minimum-energy (femtojoule) electronics.

  10. Impact of high-pressure coolant supply on chip formation in milling

    NASA Astrophysics Data System (ADS)

    Klocke, F.; Döbbeler, B.; Lakner, T.

    2017-10-01

    Machining of titanium alloys is considered as difficult, because of their high temperature strength, low thermal conductivity and low E-modulus, which contributes to high mechanical loads and high temperatures in the contact zone between tool and workpiece. The generated heat in the cutting zone can be dissipated only in a low extent. When cutting steel materials, up to 75% of the process heat is transported away by the chips, contrary to only 25% when machining titanium alloys. As a result, the cutting tool heats up, which leads to high tool wear. Therefore, machining of titanium alloys is only possible with relatively low cutting speeds. This leads to low levels of productivity for milling processes with titanium alloys. One way to increase productivity is to use more cutting edges in tools with the same diameter. However, the limiting factor of adding more cutting edges to a milling tool is the minimum size of the chip spaces, which are sufficient for a stable chip evacuation. This paper presents experimental results on the chip formation and chip size influenced by high-pressure coolant supply, which can lead to smaller chips and to smaller sizes of the chip spaces, respectively. Both influences, the pressure of the supplied coolant and the volumetric flow rate were individually examined. Alpha-beta annealed titanium TiAl6V4 was examined in relation to the reference material quenched and tempered steel 42CrMo4+QT (AISI 4140+QT). The work shows that with proper chip control due to high-pressure coolant supply in milling, the number of cutting edges on the same diameter tool can be increased, which leads to improved productivity.

  11. CHIP Regulates Aquaporin-2 Quality Control and Body Water Homeostasis.

    PubMed

    Wu, Qi; Moeller, Hanne B; Stevens, Donté A; Sanchez-Hodge, Rebekah; Childers, Gabrielle; Kortenoeven, Marleen L A; Cheng, Lei; Rosenbaek, Lena L; Rubel, Carrie; Patterson, Cam; Pisitkun, Trairak; Schisler, Jonathan C; Fenton, Robert A

    2018-03-01

    The importance of the kidney distal convoluted tubule (DCT) and cortical collecting duct (CCD) is highlighted by various water and electrolyte disorders that arise when the unique transport properties of these segments are disturbed. Despite this critical role, little is known about which proteins have a regulatory role in these cells and how these cells can be regulated by individual physiologic stimuli. By combining proteomics, bioinformatics, and cell biology approaches, we found that the E3 ubiquitin ligase CHIP is highly expressed throughout the collecting duct; is modulated in abundance by vasopressin; interacts with aquaporin-2 (AQP2), Hsp70, and Hsc70; and can directly ubiquitylate the water channel AQP2 in vitro shRNA knockdown of CHIP in CCD cells increased AQP2 protein t 1/2 and reduced AQP2 ubiquitylation, resulting in greater levels of AQP2 and phosphorylated AQP2. CHIP knockdown increased the plasma membrane abundance of AQP2 in these cells. Compared with wild-type controls, CHIP knockout mice or novel CRISPR/Cas9 mice without CHIP E3 ligase activity had greater AQP2 abundance and altered renal water handling, with decreased water intake and urine volume, alongside higher urine osmolality. We did not observe significant changes in other water- or sodium-transporting proteins in the gene-modified mice. In summary, these results suggest that CHIP regulates AQP2 and subsequently, renal water handling. Copyright © 2018 by the American Society of Nephrology.

  12. Controlling acrylamide in French fry and potato chip models and a mathematical model of acrylamide formation: acrylamide: acidulants, phytate and calcium.

    PubMed

    Park, Yeonhwa; Yang, Heewon; Storkson, Jayne M; Albright, Karen J; Liu, Wei; Lindsay, Robert C; Pariza, Michael W

    2005-01-01

    We previously reported that in potato chip and French fry models, the formation of acrylamide can be reduced by controlling pH during processing steps, either by organic (acidulants) or inorganic acids. Use of phytate, a naturally occurring chelator, with or without Ca++ (or divalent ions), can reduce acrylamide formation in both models. However, since phytate itself is acidic, the question remains as to whether the effect of phytate is due to pH alone or to additional effects. In the French fry model, the effects on acrylamide formation of pH, phytate, and/or Ca++ in various combinations were tested in either blanching or soaking (after blanching) steps. All treatments significantly reduced acrylamide levels compared to control. Among variables tested, pH may be the single most important factor for reducing acrylamide levels, while there were independent effects of phytate and/or Ca++ in this French fry model. We also developed a mathematical formula to estimate the final concentration of acrylamide in a potato chip model, using variables that can affect acrylamide formation: glucose and asparagine concentrations, cut potato surface area and shape, cooking temperature and time, and other processing conditions.

  13. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Li; Liu, Lianyong; Department of Endocrinology, Shanghai Punan Hospital, Shanghai 200125

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Ourmore » findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. - Highlights: • CHIP is significantly upregulated in thyroid cancer cells. • Overexpression of CHIP facilitates proliferation and tumorigenesis of thyroid cancer cells. • Silencing of CHIP inhibits the proliferation and tumorigenesis of thyroid cancer cells. • CHIP promotes thyroid cancer cell proliferation via activating the MAPK and AKT pathways.« less

  14. Sequence information signal processor for local and global string comparisons

    DOEpatents

    Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.

    1997-01-01

    A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.

  15. A monolithic integrated photonic microwave filter

    NASA Astrophysics Data System (ADS)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  16. Design and fabricate multi channel microfluidic mold on top of glass slide using SU-8

    NASA Astrophysics Data System (ADS)

    Azman, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.

    2017-09-01

    Microfluidic is the study of fluid in microscale. Microfluidics provides miniaturized fluidic networks for processing and analyzing liquids in the nanoliter to milliliter range. Microfluidic device comprises of some essential segments or structure that are micromixer, microchannel and microchamber. The SU-8 mold is known as the most used technique in microfluidic fabrication due to the characteristic of very gooey polymer that can be spread over a thickness. In this study, in order to reduce the fabrication cost, the development and fabrication of SU-8 mold is replace by using a glass plate instead of silicon wafer which is used in the previous research. We designed a microfluidic chip for use with an IDE sensors to conduct multiplex detection of multiple channels. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The multi-channel microfluidic chip was designed, including the fluid outlet and inlet. A multi-channel microfluidic chip was used for pathogen detection. This paper sum up the fabrication of lab SU-8 mold using glass slide.

  17. Reduction of 5-hydroxymethylfurfural formation by flavan-3-ols in Maillard reaction models and fried potato chips.

    PubMed

    Qi, Yajing; Zhang, Hao; Wu, Gangcheng; Zhang, Hui; Wang, Li; Qian, Haifeng; Qi, Xiguang

    2018-04-13

    5-Hydroxymethylfurfural (HMF) is regarded as a thermal process contaminant in foods. Six flavan-3-ol fractions were isolated or semisynthesized from sorghum, cranberry and grape seed. Their unit compositions, interflavan linkages and degree of polymerization (DP) were characterized. The aim of this study was to investigate the effect of flavan-3-ols on the formation of HMF in chemical reaction models and fried potato chips. Results showed that all flavan-3-ols significantly mitigated the HMF formation at concentrations of 50, 100 and 200 μg mL -1 in chemical model system, and the inhibition was positively related to dose. Using the food model, HMF content was reduced by about 50% when potato chips were soaked in an optimal concentration of 0.1 mg mL -1 flavan-3-ol solutions before frying. Based on the same mass concentration, B-type flavan-3-ols mitigated more HMF than A-type, and oligomeric proanthocyanidins had stronger inhibitory activity than polymers. At suitable addition levels (0.01-0.1 mg mL -1 ), the browning of auto-oxidized flavan-3-ols under high temperature compensated the anti-browning effect along with the supressing of Maillard reaction, therefore color of fried potato chips was not affected. The present study demonstrates that flavan-3-ols could be effective addtives for reducing HMF levels in fried potato chips without changing sensory properties. This article is protected by copyright. All rights reserved.

  18. Future lab-on-a-chip technologies for interrogating individual molecules.

    PubMed

    Craighead, Harold

    2006-07-27

    Advances in technology have allowed chemical sampling with high spatial resolution and the manipulation and measurement of individual molecules. Adaptation of these approaches to lab-on-a-chip formats is providing a new class of research tools for the investigation of biochemistry and life processes.

  19. A 16-Channel Nonparametric Spike Detection ASIC Based on EC-PC Decomposition.

    PubMed

    Wu, Tong; Xu, Jian; Lian, Yong; Khalili, Azam; Rastegarnia, Amir; Guan, Cuntai; Yang, Zhi

    2016-02-01

    In extracellular neural recording experiments, detecting neural spikes is an important step for reliable information decoding. A successful implementation in integrated circuits can achieve substantial data volume reduction, potentially enabling a wireless operation and closed-loop system. In this paper, we report a 16-channel neural spike detection chip based on a customized spike detection method named as exponential component-polynomial component (EC-PC) algorithm. This algorithm features a reliable prediction of spikes by applying a probability threshold. The chip takes raw data as input and outputs three data streams simultaneously: field potentials, band-pass filtered neural data, and spiking probability maps. The algorithm parameters are on-chip configured automatically based on input data, which avoids manual parameter tuning. The chip has been tested with both in vivo experiments for functional verification and bench-top experiments for quantitative performance assessment. The system has a total power consumption of 1.36 mW and occupies an area of 6.71 mm (2) for 16 channels. When tested on synthesized datasets with spikes and noise segments extracted from in vivo preparations and scaled according to required precisions, the chip outperforms other detectors. A credit card sized prototype board is developed to provide power and data management through a USB port.

  20. Human bone perivascular niche-on-a-chip for studying metastatic colonization.

    PubMed

    Marturano-Kruik, Alessandro; Nava, Michele Maria; Yeager, Keith; Chramiec, Alan; Hao, Luke; Robinson, Samuel; Guo, Edward; Raimondi, Manuela Teresa; Vunjak-Novakovic, Gordana

    2018-02-06

    Eight out of 10 breast cancer patients die within 5 years after the primary tumor has spread to the bones. Tumor cells disseminated from the breast roam the vasculature, colonizing perivascular niches around blood capillaries. Slow flows support the niche maintenance by driving the oxygen, nutrients, and signaling factors from the blood into the interstitial tissue, while extracellular matrix, endothelial cells, and mesenchymal stem cells regulate metastatic homing. Here, we show the feasibility of developing a perfused bone perivascular niche-on-a-chip to investigate the progression and drug resistance of breast cancer cells colonizing the bone. The model is a functional human triculture with stable vascular networks within a 3D native bone matrix cultured on a microfluidic chip. Providing the niche-on-a-chip with controlled flow velocities, shear stresses, and oxygen gradients, we established a long-lasting, self-assembled vascular network without supplementation of angiogenic factors. We further show that human bone marrow-derived mesenchymal stem cells, which have undergone phenotypical transition toward perivascular cell lineages, support the formation of capillary-like structures lining the vascular lumen. Finally, breast cancer cells exposed to interstitial flow within the bone perivascular niche-on-a-chip persist in a slow-proliferative state associated with increased drug resistance. We propose that the bone perivascular niche-on-a-chip with interstitial flow promotes the formation of stable vasculature and mediates cancer cell colonization.

  1. Membrane-on-a-chip: microstructured silicon/silicon-dioxide chips for high-throughput screening of membrane transport and viral membrane fusion.

    PubMed

    Kusters, Ilja; van Oijen, Antoine M; Driessen, Arnold J M

    2014-04-22

    Screening of transport processes across biological membranes is hindered by the challenge to establish fragile supported lipid bilayers and the difficulty to determine at which side of the membrane reactants reside. Here, we present a method for the generation of suspended lipid bilayers with physiological relevant lipid compositions on microstructured Si/SiO2 chips that allow for high-throughput screening of both membrane transport and viral membrane fusion. Simultaneous observation of hundreds of single-membrane channels yields statistical information revealing population heterogeneities of the pore assembly and conductance of the bacterial toxin α-hemolysin (αHL). The influence of lipid composition and ionic strength on αHL pore formation was investigated at the single-channel level, resolving features of the pore-assembly pathway. Pore formation is inhibited by a specific antibody, demonstrating the applicability of the platform for drug screening of bacterial toxins and cell-penetrating agents. Furthermore, fusion of H3N2 influenza viruses with suspended lipid bilayers can be observed directly using a specialized chip architecture. The presented micropore arrays are compatible with fluorescence readout from below using an air objective, thus allowing high-throughput screening of membrane transport in multiwell formats in analogy to plate readers.

  2. Chip design for thin-film deep ultraviolet LEDs fabricated by laser lift-off of the sapphire substrate

    NASA Astrophysics Data System (ADS)

    Cho, H. K.; Krüger, O.; Külberg, A.; Rass, J.; Zeimer, U.; Kolbe, T.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.

    2017-12-01

    We report on a chip design which allows the laser lift-off (LLO) of the sapphire substrate sustaining the epitaxial film of flip-chip mounted deep ultraviolet light emitting diodes. A nanosecond pulsed excimer laser with a wavelength of 248 nm was used for the LLO. A mechanically stable chip design was found to be the key to prevent crack formation in the epitaxial layers and material chipping during the LLO process. Stabilization was achieved by introducing a Ti/Au leveling layer that mechanically supports the fragile epitaxial film. The electrical and optical characterization of devices before and after the LLO process shows that the device performance did not degrade by the LLO.

  3. Quantitative phase imaging characterization of tumor-associated blood vessel formation on a chip

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Huang, Jing; Moses, Marsha A.

    2018-02-01

    Angiogenesis, the formation of new blood vessels from existing ones, is a biological process that has an essential role in solid tumor growth, development, and progression. Recent advances in Lab-on-a-Chip technology has created an opportunity for scientists to observe endothelial cell (EC) behaviors during the dynamic process of angiogenesis using a simple and economical in vitro platform that recapitulates in vivo blood vessel formation. Here, we use quantitative phase imaging (QPI) microscopy to continuously and non-invasively characterize the dynamic process of tumor cell-induced angiogenic sprout formation on a microfluidic chip. The live tumor cell-induced angiogenic sprouts are generated by multicellular endothelial sprouting into 3 dimensional (3D) Matrigel using human umbilical vein endothelial cells (HUVECs). By using QPI, we quantitatively measure a panel of cellular morphological and behavioral parameters of each individual EC participating in this sprouting. In this proof-of-principle study, we demonstrate that QPI is a powerful tool that can provide real-time quantitative analysis of biological processes in in vitro 3D biomimetic devices, which, in turn, can improve our understanding of the biology underlying functional tissue engineering.

  4. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow.

    PubMed

    El-Ali, Jamil; Gaudet, Suzanne; Günther, Axel; Sorger, Peter K; Jensen, Klavs F

    2005-06-01

    We describe a microfluidic device with rapid stimulus and lysis of mammalian cells for resolving fast transient responses in cell signaling networks. The device uses segmented gas-liquid flow to enhance mixing and has integrated thermoelectric heaters and coolers to control the temperature during cell stimulus and lysis. Potential negative effects of segmented flow on cell responses are investigated in three different cell types, with no morphological changes and no activation of the cell stress-sensitive mitogen activated protein kinases observed. Jurkat E6-1 cells are stimulated in the device using alpha-CD3, and the resulting activations of ERK and JNK are presented for different time points. Stimulation of cells performed on chip results in pathway activation identical to that of conventionally treated cells under the same conditions.

  5. Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip.

    PubMed

    Dongre, Chaitanya; van Weerd, Jasper; Besselink, Geert A J; Vazquez, Rebeca Martinez; Osellame, Roberto; Cerullo, Giulio; van Weeghel, Rob; van den Vlekkert, Hans H; Hoekstra, Hugo J W M; Pollnau, Markus

    2011-02-21

    We introduce a principle of parallel optical processing to an optofluidic lab-on-a-chip. During electrophoretic separation, the ultra-low limit of detection achieved with our set-up allows us to record fluorescence from covalently end-labeled DNA molecules. Different sets of exclusively color-labeled DNA fragments-otherwise rendered indistinguishable by spatio-temporal coincidence-are traced back to their origin by modulation-frequency-encoded multi-wavelength laser excitation, fluorescence detection with a single ultrasensitive, albeit color-blind photomultiplier, and Fourier analysis decoding. As a proof of principle, fragments obtained by multiplex ligation-dependent probe amplification from independent human genomic segments, associated with genetic predispositions to breast cancer and anemia, are simultaneously analyzed.

  6. A Study of Chip Formation Feedrates of Various Steels in Low-Speed Milling Process

    NASA Astrophysics Data System (ADS)

    Prasetyo, L.; Tauviqirrahman, M.; Rusnaldy

    2017-05-01

    Milling is a process of metal removal by feeding the workpiece a rotating multitoothed cutter. The objective of the study was to investigate the chip characteristics (chip length, width, and thickness) during the milling process by varying the feedrates and the types of materials used based on an experimental approach. The chosen materials were AISI 1020, AISI 1045, AISI 1090, AISI D2, and AISI 4340 with a high-speed steel (HSS) as a cutter. In this work, the feedrates were varied of 5, 10, and 15 mm/minutes with the depth of cut of 0.5 mm and a low spindle speed of 70 rpm. The results show that, in general, increasing the feedrate will lead to the growth of chip length, width, and thickness for all types of materials used. Also, related to the chip shape, AISI 1020 produces the discontinuous chip which can be related to its hardness value.

  7. Modeling and stress analysis of large format InSb focal plane arrays detector under thermal shock

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Wen; Meng, Qing-Duan; Zhang, Xiao-Ling; Yu, Qian; Lv, Yan-Qiu; Si, Jun-Jie

    2013-09-01

    Higher fracture probability, appearing in large format InSb infrared focal plane arrays detector under thermal shock loadings, limits its applicability and suitability for large format equipment, and has been an urgent problem to be solved. In order to understand the fracture mechanism and improve the reliability, three dimensional modeling and stress analysis of large format InSb detector is necessary. However, there are few reports on three dimensional modeling and simulation of large format InSb detector, due to huge meshing numbers and time-consuming operation to solve. To solve the problems, basing on the thermal mismatch displacement formula, an equivalent modeling method is proposed in this paper. With the proposed equivalent modeling method, employing the ANSYS software, three dimensional large format InSb detector is modeled, and the maximum Von Mises stress appearing in InSb chip dependent on array format is researched. According to the maximum Von Mises stress location shift and stress increasing tendency, the adaptability range of the proposed equivalent method is also derived, that is, for 16 × 16, 32 × 32 and 64 × 64 format, its adaptability ranges are not larger than 64 × 64, 256 × 256 and 1024 × 1024 format, respectively. Taking 1024 × 1024 InSb detector as an example, the Von Mises stress distribution appearing in InSb chip, Si readout integrated circuits and indium bump arrays are described, and the causes are discussed in detail. All these will provide a feasible research plan to identify the fracture origins of InSb chip and reduce fracture probability for large format InSb detector.

  8. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis.

    PubMed

    Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon

    2017-01-01

    This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf 2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco

    2017-10-01

    Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.

  10. Nitrogen Cycle Evaluation (NiCE) Chip for the Simultaneous Analysis of Multiple N-Cycle Associated Genes.

    PubMed

    Oshiki, Mamoru; Segawa, Takahiro; Ishii, Satoshi

    2018-02-02

    Various microorganisms play key roles in the Nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR-amplicon sequencing of the N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible in the N transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive especially when we analyze multiple samples and try to detect N cycle functional genes present at relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named as N cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine abundance and diversity of N cycle functional genes in wastewater samples. Although non-specific amplification was detected on the NiCE chip, this could be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples. Importance. We report a novel approach, namely Nitrogen Cycle Evaluation (NiCE) chip by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess diversities of the N cycle functional genes. The NiCE chip technology is applicable to analyze the temporal dynamics of the N cycle gene transcriptions in wastewater treatment bioreactors. The NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes. While there is a room for future improvement, this tool should significantly advance our ability to explore the N cycle in various environmental samples. Copyright © 2018 American Society for Microbiology.

  11. Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Molinari, A.; Soldani, X.; Miguélez, M. H.

    2013-11-01

    The phenomenon of adiabatic shear banding is analyzed theoretically in the context of metal cutting. The mechanisms of material weakening that are accounted for are (i) thermal softening and (ii) material failure related to a critical value of the accumulated plastic strain. Orthogonal cutting is viewed as a unique configuration where adiabatic shear bands can be experimentally produced under well controlled loading conditions by individually tuning the cutting speed, the feed (uncut chip thickness) and the tool geometry. The role of cutting conditions on adiabatic shear banding and chip serration is investigated by combining finite element calculations and analytical modeling. This leads to the characterization and classification of different regimes of shear banding and the determination of scaling laws which involve dimensionless parameters representative of thermal and inertia effects. The analysis gives new insights into the physical aspects of plastic flow instability in chip formation. The originality with respect to classical works on adiabatic shear banding stems from the various facets of cutting conditions that influence shear banding and from the specific role exercised by convective flow on the evolution of shear bands. Shear bands are generated at the tool tip and propagate towards the chip free surface. They grow within the chip formation region while being convected away by chip flow. It is shown that important changes in the mechanism of shear banding take place when the characteristic time of shear band propagation becomes equal to a characteristic convection time. Application to Ti-6Al-4V titanium are considered and theoretical predictions are compared to available experimental data in a wide range of cutting speeds and feeds. The fundamental knowledge developed in this work is thought to be useful not only for the understanding of metal cutting processes but also, by analogy, to similar problems where convective flow is also interfering with adiabatic shear banding as in impact mechanics and perforation processes. In that perspective, cutting speeds higher than those usually encountered in machining operations have been also explored.

  12. Development of advanced micromirror arrays by flip-chip assembly

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper presents the design, commercial prefabrication, modeling and testing of advanced micromirror arrays fabricated using a novel, simple and inexpensive flip-chip assembly technique. Several polar piston arrays and rectangular cantilever arrays were fabricated using flip-chip assembly by which the upper layers of the array are fabricated on a separate chip and then transferred to a receiving module containing the lower layers. Typical polar piston arrays boast 98.3% active surface area, highly planarized surfaces, low address potentials compatible with CMOS electronics, highly standardized actuation between devices, and complex segmentation of mirror surfaces which allows for custom aberration configurations. Typical cantilever arrays boast large angles of rotation as well as an average surface planarity of only 1.779 nm of RMS roughness across 100 +m mirrors. Continuous torsion devices offer stable operation through as much as six degrees of rotation while binary operation devices offer stable activated positions with as much as 20 degrees of rotation. All arrays have desirable features of costly fabrication services like five structural layers and planarized mirror surfaces, but are prefabricated in the less costly MUMPs process. Models are developed for all devices and used to compare empirical data.

  13. Electromigration Failure Mechanism in Sn-Cu Solder Alloys with OSP Cu Surface Finish

    NASA Astrophysics Data System (ADS)

    Chu, Ming-Hui; Liang, S. W.; Chen, Chih; Huang, Annie T.

    2012-09-01

    Organic solderable preservative (OSP) has been adopted as the Cu substrate surface finish in flip-chip solder joints for many years. In this study, the electromigration behavior of lead-free Sn-Cu solder alloys with thin-film under bump metallization and OSP surface finish was investigated. The results showed that severe damage occurred on the substrate side (cathode side), whereas the damage on the chip side (cathode side) was not severe. The damage on the substrate side included void formation, copper dissolution, and formation of intermetallic compounds (IMCs). The OSP Cu interface on the substrate side became the weakest point in the solder joint even when thin-film metallization was used on the chip side. Three-dimensional simulations were employed to investigate the current density distribution in the area between the OSP Cu surface finish and the solder. The results indicated that the current density was higher along the periphery of the bonding area between the solder and the Cu pad, consistent with the area of IMC and void formation in our experimental results.

  14. Neuromorphic vision sensors and preprocessors in system applications

    NASA Astrophysics Data System (ADS)

    Kramer, Joerg; Indiveri, Giacomo

    1998-09-01

    A partial review of neuromorphic vision sensors that are suitable for use in autonomous systems is presented. Interfaces are being developed to multiplex the high- dimensional output signals of arrays of such sensors and to communicate them in standard formats to off-chip devices for higher-level processing, actuation, storage and display. Alternatively, on-chip processing stages may be implemented to extract sparse image parameters, thereby obviating the need for multiplexing. Autonomous robots are used to test neuromorphic vision chips in real-world environments and to explore the possibilities of data fusion from different sensing modalities. Examples of autonomous mobile systems that use neuromorphic vision chips for line tracking and optical flow matching are described.

  15. Demonstration of Compact and Low-Loss Athermal Arrayed-Waveguide Grating Module Based on 2.5%-Δ Silica-Based Waveguides

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Abe, Yukio; Uetsuka, Hisato

    2008-10-01

    We demonstrated a compact and low-loss athermal arrayed-waveguide grating (AWG) module utilizing silica-based planar lightwave circuit (PLC) technology. Spot-size converters based on a vertical ridge-waveguide taper were integrated with a 2.5%-Δ athermal AWG to reduce the loss at chip-to-fiber interface. Spot-size converters based on a segmented core were formed around resin-filled trenches for athermalization formed in the slab to reduce the diffraction loss at the trenches. A 16-channel athermal AWG module with 100-GHz channel spacing was fabricated. The use of a 2.5%-Δ athermal chip with a single-side fiber array enabled a compact package of the size of 41.6×16.6×4.5 mm3. Athermal characteristics and a small insertion loss of 3.5-3.8 dB were obtained by virtue of low fiber-to-chip coupling loss and athermalization with low excess loss.

  16. Dust Emission Induced By Friction Modifications At Tool Chip Interface In Dry Machining In MMCp

    NASA Astrophysics Data System (ADS)

    Kremer, Arnaud; El Mansori, Mohamed

    2011-01-01

    This paper investigates the relationship between dust emission and tribological conditions at the tool-chip interface when machining Metal Matrix composite reinforced with particles (MMCp) in dry mode. Machining generates aerosols that can easily be inhaled by workers. Aerosols may be composed of oil mist, tool material or alloying elements of workpiece material. Bar turning tests were conducted on a 2009 aluminum alloy reinforced with different level of Silicon Carbide particles (15, 25 and 35% of SiCp). Variety of PCD tools and nanostructured diamond coatings were used to analyze their performances on air pollution. A spectrometer was used to detect airborne aerosol particles in the size range between 0.3μm to 20 μm and to sort them in 15 size channels in real time. It was used to compare the effects of test parameters on dust emission. Observations of tool face and chip morphology reveal the importance of friction phenomena. It was demonstrated that level of friction modifies chip curvature and dust emission. The increase of level of reinforcement increase the chip segmentation and decrease the contact length and friction area. A "running in" phenomenon with important dust emission appeared with PCD tool due to the tool rake face flatness. In addition dust generation is more sensitive to edge integrity than power consumption.

  17. Zebra Chip disease and potato biochemistry: Tuber physiological changes in response to ‘Candidatus Liberibacter solanacearum’ infection over time

    USDA-ARS?s Scientific Manuscript database

    Zebra chip disease (ZC), putatively caused by ‘Candidatus Liberibacter solanacearum’ (Lso), is of increasing concern to potato production in Mexico, the United States, and New Zealand. However, little is known about host tuber physiological changes that result in ZC symptom formation. This study exp...

  18. Preliminary Study for Measurement of Shear Stress and Hemocompatibility Using Commercialized Lab on a Chip.

    PubMed

    Lee, Joshua; Kim, In Gi; Oh, Young Min; Park, Chan-Hee; Kim, Cheol Sang

    2018-02-01

    We have investigated the effect of flow rate on shear stress and in turn thrombus formation on a lab-on-a-chip with a microchannel that is suitable for cell culture and growth. Using a combination of Arduino UNO, Arduino Motor Shield, and a SERVO stepper motor, we created a pump system that closely mimics the in vivo conditions of the human body. With this system, we achieved continuous flow of blood and observed attached platelets at the bottom of the collagen coated microslide, confirming that with shear stress, thrombus formation increases.

  19. Implementation of a pulse coupled neural network in FPGA.

    PubMed

    Waldemark, J; Millberg, M; Lindblad, T; Waldemark, K; Becanovic, V

    2000-06-01

    The Pulse Coupled neural network, PCNN, is a biologically inspired neural net and it can be used in various image analysis applications, e.g. time-critical applications in the field of image pre-processing like segmentation, filtering, etc. a VHDL implementation of the PCNN targeting FPGA was undertaken and the results presented here. The implementation contains many interesting features. By pipelining the PCNN structure a very high throughput of 55 million neuron iterations per second could be achieved. By making the coefficients re-configurable during operation, a complete recognition system could be implemented on one, or maybe two, chip(s). Reconsidering the ranges and resolutions of the constants may save a lot of hardware, since the higher resolution requires larger multipliers, adders, memories etc.

  20. Novel immunoassay formats for integrated microfluidic circuits: diffusion immunoassays (DIA)

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Hatch, Anson; Kamholz, Andrew E.; Yager, Paul

    2000-03-01

    Novel designs of integrated fluidic microchips allow separations, chemical reactions, and calibration-free analytical measurements to be performed directly in very small quantities of complex samples such as whole blood and contaminated environmental samples. This technology lends itself to applications such as clinical diagnostics, including tumor marker screening, and environmental sensing in remote locations. Lab-on-a-Chip based systems offer many *advantages over traditional analytical devices: They consume extremely low volumes of both samples and reagents. Each chip is inexpensive and small. The sampling-to-result time is extremely short. They perform all analytical functions, including sampling, sample pretreatment, separation, dilution, and mixing steps, chemical reactions, and detection in an integrated microfluidic circuit. Lab-on-a-Chip systems enable the design of small, portable, rugged, low-cost, easy to use, yet extremely versatile and capable diagnostic instruments. In addition, fluids flowing in microchannels exhibit unique characteristics ('microfluidics'), which allow the design of analytical devices and assay formats that would not function on a macroscale. Existing Lab-on-a-chip technologies work very well for highly predictable and homogeneous samples common in genetic testing and drug discovery processes. One of the biggest challenges for current Labs-on-a-chip, however, is to perform analysis in the presence of the complexity and heterogeneity of actual samples such as whole blood or contaminated environmental samples. Micronics has developed a variety of Lab-on-a-Chip assays that can overcome those shortcomings. We will now present various types of novel Lab- on-a-Chip-based immunoassays, including the so-called Diffusion Immunoassays (DIA) that are based on the competitive laminar diffusion of analyte molecules and tracer molecules into a region of the chip containing antibodies that target the analyte molecules. Advantages of this technique are a reduction in reagents, higher sensitivity, minimal preparation of complex samples such as blood, real-time calibration, and extremely rapid analysis.

  1. Hedgehog signaling regulates segment formation in the annelid Platynereis.

    PubMed

    Dray, Nicolas; Tessmar-Raible, Kristin; Le Gouar, Martine; Vibert, Laura; Christodoulou, Foteini; Schipany, Katharina; Guillou, Aurélien; Zantke, Juliane; Snyman, Heidi; Béhague, Julien; Vervoort, Michel; Arendt, Detlev; Balavoine, Guillaume

    2010-07-16

    Annelids and arthropods share a similar segmented organization of the body whose evolutionary origin remains unclear. The Hedgehog signaling pathway, prominent in arthropod embryonic segment patterning, has not been shown to have a similar function outside arthropods. We show that the ligand Hedgehog, the receptor Patched, and the transcription factor Gli are all expressed in striped patterns before the morphological appearance of segments in the annelid Platynereis dumerilii. Treatments with small molecules antagonistic to Hedgehog signaling disrupt segment formation. Platynereis Hedgehog is not necessary to establish early segment patterns but is required to maintain them. The molecular similarity of segment patterning functions of the Hedgehog pathway in an annelid and in arthropods supports a common origin of segmentation in protostomes.

  2. Progress in ion torrent semiconductor chip based sequencing.

    PubMed

    Merriman, Barry; Rothberg, Jonathan M

    2012-12-01

    In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hazardous effects of fried potato chips on the development of retina in albino rats.

    PubMed

    El-Sayyad, Hassan I; Sakr, Saber A; Badawy, Gamal M; Afify, Hanaa S

    2011-08-01

    To evaluate the hazardous effects of fried potato chips upon the retina of two developmental stages of the albino rats aged 7 and 14 days from parturition. PREGNANT RATS WERE ARRANGED INTO TWO GROUPS: control pregnant rats and consequently their delivered newborns until reaching 7 and 14 days old from parturition and fried potato chips group in which pregnant rats at the 6th day of gestation maintained on diet formed of fried potato chips supplied from the market mixed with standard diet at a concentration of 50% per each till 7 and 14 post-partum. Three fold integrated approaches were adopted, namely, histological, ultrastructural and proteomic analysis. Histological examination of the retina of the experimental offsprings revealed many histopathological changes, including massive degeneration, vacuolization and cell loss in the ganglion cell layer, as well as general reduction in retinal size. At the ultrastructural level, the retina of experimental offsprings exhibited number of deformities, including ill differentiated and degenerated nuclear layer, malformed and vacuolated pigment epithelium with vesiculated and fragmented rough endoplasmic reticulum, degenerated outer segment of photoreceptors, as well as swollen choriocapillaris and loss of neuronal cells. Proteomic analysis of retina of the two experimental developmental stages showed variations in the expressed proteins as a result of intoxication which illustrated the adverse toxic effects of fried potato chips upon the retina. It can be concluded that the effect of fried potato chips on the development of retina in rats may be due to the presence of acrylamide or its metabolite.

  4. Fabrication and characteristics of MOSFET protein chip for detection of ribosomal protein.

    PubMed

    Park, Keun-Yong; Kim, Min-Suk; Choi, Sie-Young

    2005-04-15

    A metal oxide silicon field effect transistor (MOSFET) protein chip for the easy detection of protein was fabricated and its characteristics were investigated. Generally, the drain current of the MOSFET is varied by the gate potential. It is expected that the formation of an antibody-antigen complex on the gate of MOSFET would lead to a detectable change in the charge distribution and thus, directly modulate the drain current of MOSFET. As such, the drain current of the MOSFET protein chip can be varied by ribosomal proteins absorbed by the self-assembled monolayer (SAM) immobilized on the gate (Au) surface, as ribosomal protein has positive charge, and these current variations then used as the response of the protein chip. The gate of MOSFET protein chip is not directly biased by an external voltage source, so called open gate or floating gate MOSFET, but rather chemically modified by immobilized molecular receptors called self-assembled monolayer (SAM). In our experiments, the current variation in the proposed protein chip was about 8% with a protein concentration of 0.7 mM. As the protein concentration increased, the drain current also gradually increased. In addition, there were some drift of the drain current in the device. It is considered that these drift might be caused by the drift from the MOSFET itself or protein absorption procedures that are relied on the facile attachment of thiol (-S) ligands to the gate (Au) surface. We verified the formation of SAM on the gold surface and the absorption of protein through the surface plasmon resonance (SPR) measurement.

  5. Comprehensive Study of Microgel Electrode for On-Chip Electrophoretic Cell Sorting

    NASA Astrophysics Data System (ADS)

    Akihiro Hattori,; Kenji Yasuda,

    2010-06-01

    We have developed an on-chip cell sorting system and microgel electrode for applying electrostatic force in microfluidic pathways in the chip. The advantages of agarose electrodes are 1) current-driven electrostatic force generation, 2) stability against pH change and chemicals, and 3) no bubble formation caused by electrolysis. We examined the carrier ion type and concentration dependence of microgel electrode impedance, and found that CoCl2 has less than 1/10 of the impedance from NaCl, and the reduction of the impedance of NaCl gel electrode was plateaued at 0.5 M. The structure control of the microgel electrode exploiting the surface tension of sol-state agarose was also introduced. The addition of 1% (w/v) trehalose into the microgel electrode allowed the frozen storage of the microgel electrode chip. The experimental results demonstrate the potential of our system and microgel electrode for practical applications in microfluidic chips.

  6. Tool Forces and Chip Formation In Orthogonal Cutting Of Loblolly Pine

    Treesearch

    George E. Woodson; Peter Koch

    1970-01-01

    Specimens of earlywood and latewood of Pinus taeda L. were excised so that length along the grain was 3 inches and thickness was 0.1 inch. These specimens were cut orthogonally-as with a carpenter's plane-in the three major directions. Cutting velocity was 2 inches per minute. When cutting was in the planing (90-O) direction, thin chips,...

  7. Total Thrombus-formation Analysis System Predicts Periprocedural Bleeding Events in Patients With Coronary Artery Disease Undergoing Percutaneous Coronary Intervention.

    PubMed

    Oimatsu, Yu; Kaikita, Koichi; Ishii, Masanobu; Mitsuse, Tatsuro; Ito, Miwa; Arima, Yuichiro; Sueta, Daisuke; Takahashi, Aya; Iwashita, Satomi; Yamamoto, Eiichiro; Kojima, Sunao; Hokimoto, Seiji; Tsujita, Kenichi

    2017-04-24

    Periprocedural bleeding events are common after percutaneous coronary intervention. We evaluated the association of periprocedural bleeding events with thrombogenicity, which was measured quantitatively by the Total Thrombus-formation Analysis System equipped with microchips and thrombogenic surfaces (collagen, platelet chip [PL]; collagen plus tissue factor, atheroma chip [AR]). Between August 2013 and March 2016, 313 consecutive patients with coronary artery disease undergoing elective percutaneous coronary intervention were enrolled. They were divided into those with or without periprocedural bleeding events. We determined the bleeding events as composites of major bleeding events defined by the International Society on Thrombosis and Hemostasis and minor bleeding events (eg, minor hematoma, arteriovenous shunt and pseudoaneurysm). Blood samples obtained at percutaneous coronary intervention were analyzed for thrombus formation area under the curve (PL 24 -AUC 10 for PL chip; AR 10 -AUC 30 for AR chip) by the Total Thrombus-formation Analysis System and P2Y12 reaction unit by the VerifyNow system. Periprocedural bleeding events occurred in 37 patients. PL 24 -AUC 10 levels were significantly lower in patients with such events than those without ( P =0.002). Multiple logistic regression analyses showed association between low PL 24 -AUC 10 levels and periprocedural bleeding events (odds ratio, 2.71 [1.22-5.99]; P =0.01) and association between PL 24 -AUC 10 and periprocedural bleeding events in 176 patients of the femoral approach group (odds ratio, 2.88 [1.11-7.49]; P =0.03). However, PL 24 -AUC 10 levels in 127 patients of the radial approach group were not significantly different in patients with or without periprocedural bleeding events. PL 24 -AUC 10 measured by the Total Thrombus-formation Analysis System is a potentially useful predictor of periprocedural bleeding events in coronary artery disease patients undergoing elective percutaneous coronary intervention. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  8. Analyzing notochord segmentation and intervertebral disc formation using the twhh:gfp transgenic zebrafish model.

    PubMed

    Haga, Yutaka; Dominique, Vincent J; Du, Shao Jun

    2009-10-01

    To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.

  9. Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Xu, Na; Wang, Cheng; Pang, Dai-Wen; Zhang, Zhi-Ling

    2017-03-01

    Membrane nanotubes (MNTs) are physical connections for intercellular communication and induced by various viruses. However, the formation of vaccinia virus (VACV)-induced MNTs has never been studied. In this report, VACV-induced MNTs formation process was monitored on a microfluidic chip equipped with a series of side chambers, which protected MNTs from fluidic shear stress. MNTs were formed between susceptible cells and be facilitated by VACV infection through three patterns. The formed MNTs varied with cell migration and virus concentration. The length of MNTs was positively correlated with the distance of cell migration. With increasing virus titer, the peak value of the ratio of MNT-carried cell appeared earlier. The immunofluorescence assay indicated that the rearrangement of actin fibers induced by VACV infection may lead to the formation of MNTs. This study presents evidence for the formation of MNTs induced by virus and helps us to understand the relationship between pathogens and MNTs.

  10. Probability of conductive bond formation in a percolating network of nanowires with fusible tips

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Wang, Robert Y.

    2018-03-01

    Meeting the heat dissipation demands of microelectronic devices requires development of polymeric composites with high thermal conductivity. This property is drastically improved by percolation networks of metallic filler particles that have their particle-to-particle contact resistances reduced through thermal or electromagnetic fusing. However, composites with fused metallic fillers are electrically conductive, which prevents their application within the chip-board and the inter-chip gaps. Here, we propose that electrically insulating composites for these purposes can be achieved by the application of fusible metallic coatings to the tips of nanowires with thermally conductive but electrically insulating cores. We derive analytical models that relate the ratio of the coated and total nanowire lengths to the fraction of fused, and thus conductive, bonds within percolating networks of these structures. We consider two types of materials for these fusible coatings. First, we consider silver-like coatings, which form only conductive bonds when contacting the silver-like coating of another nanowire. Second, we consider liquid metal-like coatings, which form conductive bonds regardless of whether they contact a coated or an uncoated segment of another nanowire. These models were validated using Monte Carlo simulations, which also revealed that electrical short-circuiting is highly unlikely until most of the wire is coated. Furthermore, we demonstrate that switching the tip coating from silver- to liquid metal-like materials can double the fraction of conductive bonds. Consequently, this work provides motivation to develop scalable methods for fabrication of the hybrid liquid-coated nanowires, whose dispersion in a polymer matrix is predicted to yield highly thermally conductive but electrically insulating composites.

  11. Edible Astronomy Demonstrations

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald A.

    2007-12-01

    Astronomy demonstrations with edible ingredients are an effective way to increase student interest and knowledge of astronomical concepts. This approach has been successful with all age groups from elementary school through college students - and the students remember these demonstrations after they are presented. In this poster I describe edible demonstrations I have created to simulate the expansion of the universe (using big-bang chocolate chip cookies); differentiation during the formation of the Earth and planets (using chocolate or chocolate milk with marshmallows, cereal, candy pieces or nuts); and radioactivity/radioactive dating (using popcorn). Other possible demonstrations include: plate tectonics (crackers with peanut butter and jelly); convection (miso soup or hot chocolate); mud flows on Mars (melted chocolate poured over angel food cake); formation of the Galactic disk (pizza); formation of spiral arms (coffee with cream); the curvature of Space (Pringles); constellations patterns with chocolate chips and chocolate chip cookies; planet shaped cookies; star shaped cookies with different colored frostings; coffee or chocolate milk measurement of solar radiation; Oreo cookie lunar phases. Sometimes the students eat the results of the astronomical demonstrations. These demonstrations are an effective teaching tool and can be adapted for cultural, culinary, and ethnic differences among the students.

  12. A novel approach of high speed scratching on silicon wafers at nanoscale depths of cut

    PubMed Central

    Zhang, Zhenyu; Guo, Dongming; Wang, Bo; Kang, Renke; Zhang, Bi

    2015-01-01

    In this study, a novel approach of high speed scratching is carried out on silicon (Si) wafers at nanoscale depths of cut to investigate the fundamental mechanisms in wafering of solar cells. The scratching is conducted on a Si wafer of 150 mm diameter with an ultraprecision grinder at a speed of 8.4 to 15 m/s. Single-point diamonds of a tip radius of 174, 324, and 786 nm, respectively, are used in the study. The study finds that at the onset of chip formation, an amorphous layer is formed at the topmost of the residual scratch, followed by the pristine crystalline lattice beneath. This is different from the previous findings in low speed scratching and high speed grinding, in which there is an amorphous layer at the top and a damaged layer underneath. The final width and depth of the residual scratch at the onset of chip formation measured vary from 288 to 316 nm, and from 49 to 62 nm, respectively. High pressure phases are absent from the scratch at the onset of either chip or crack formation. PMID:26548771

  13. Potato processing scenario in India: Industrial constraints, future projections, challenges ahead and remedies - A review.

    PubMed

    Marwaha, R S; Pandey, S K; Kumar, Dinesh; Singh, S V; Kumar, Parveen

    2010-03-01

    Indian potato (Solanum tuberosum L.) processing industry has emerged fast due to economic liberalization coupled with growing urbanization, expanding market options and development of indegenous processing varieties. India's first potato processing varieties 'Kufri Chipsona-1' and 'Kufri Chipsona-2' were developed in 1998, followed by an improved processing variety 'Kufri Chipsona-3' in 2005 for the Indian plains and first chipping variety 'Kufri Himsona' for the hills. These varieties have >21% tuber dry matter content, contain low reducing sugars (<0.1% on fresh wt) and are most suitable for producing chips, French fries and dehydrated products. The availability of these varieties and standardization of storage techniques for processing potatoes at 10-12°C with sprout suppressant isopropyl N-(3-chlorophenyl) carbamate have revolutionized the processing scenario within a short span of 10 years. Currently about 4% of total potato produce is being processed in organized and unorganized sector. Potato processing industry mainly comprises 4 segments: potato chips, French fries, potato flakes/powder and other processed products. However, potato chips still continue to be the most popular processed product. The major challenge facing the industries lies in arranging round the year supply of processing varieties at reasonable price for their uninterrupted operation, besides several others which have been discussed at length and addressed with concrete solutions.

  14. Most mutations that cause spinocerebellar ataxia autosomal recessive type 16 (SCAR16) destabilize the protein quality-control E3 ligase CHIP.

    PubMed

    Kanack, Adam J; Newsom, Oliver J; Scaglione, Kenneth Matthew

    2018-02-23

    The accumulation of misfolded proteins promotes protein aggregation and neuronal death in many neurodegenerative diseases. To counteract misfolded protein accumulation, neurons have pathways that recognize and refold or degrade aggregation-prone proteins. One U-box-containing E3 ligase, C terminus of Hsc70-interacting protein (CHIP), plays a key role in this process, targeting misfolded proteins for proteasomal degradation. CHIP plays a protective role in mouse models of neurodegenerative disease, and in humans, mutations in CHIP cause spinocerebellar ataxia autosomal recessive type 16 (SCAR16), a fatal neurodegenerative disease characterized by truncal and limb ataxia that results in gait instability. Here, we systematically analyzed CHIP mutations that cause SCAR16 and found that most SCAR16 mutations destabilize CHIP. This destabilization caused mutation-specific defects in CHIP activity, including increased formation of soluble oligomers, decreased interactions with chaperones, diminished substrate ubiquitination, and reduced steady-state levels in cells. Consistent with decreased CHIP stability promoting its dysfunction in SCAR16, most mutant proteins recovered activity when the assays were performed below the mutants' melting temperature. Together, our results have uncovered the molecular basis of genetic defects in CHIP function that cause SCAR16. Our insights suggest that compounds that improve the thermostability of genetic CHIP variants may be beneficial for treating patients with SCAR16. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. [Atomic force microscopy fishing of gp120 on immobilized aptamer and its mass spectrometry identification].

    PubMed

    Bukharina, N S; Ivanov, Yu D; Pleshakova, T O; Frantsuzov, P A; Andreeva, E Yu; Kaysheva, A L; Izotov, A A; Pavlova, T I; Ziborov, V S; Radko, S P; Archakov, A I

    2015-01-01

    A method of atomic force microscopy-based fishing (AFM fishing) has been developed for protein detection in the analyte solution using a chip with an immobilized aptamer. This method is based on the biospecific fishing of a target protein from a bulk solution onto the small AFM chip area with the immobilized aptamer to this protein used as the molecular probe. Such aptamer-based approach allows to increase an AFM image contrast compared to the antibody-based approach. Mass spectrometry analysis used after the biospecific fishing to identify the target protein on the AFM chip has proved complex formation. Use of the AFM chip with the immobilized aptamer avoids interference of the antibody and target protein peaks in a mass spectrum.

  16. [Analysis of genomic copy number variations in two unrelated neonates with 8p deletion and duplication associated with congenital heart disease].

    PubMed

    Mei, Mei; Yang, Lin; Zhan, Guodong; Wang, Huijun; Ma, Duan; Zhou, Wenhao; Huang, Guoying

    2014-06-01

    To screen for genomic copy number variations (CNVs) in two unrelated neonates with multiple congenital abnormalities using Affymetrix SNP chip and try to find the critical region associated with congenital heart disease. Two neonates were tested for genomic copy number variations by using Cytogenetic SNP chip.Rare CNVs with potential clinical significance were selected of which deletion segments' size was larger than 50 kb and duplication segments' size was larger than 150 kb based on the analysis of ChAs software, without false positive CNVs and segments of normal population. The identified CNVs were compared with those of the cases in DECIPHER and ISCA databases. Eleven rare CNVs with size from 546.6-27 892 kb were identified in the 2 neonates. The deletion region and size of case 1 were 8p23.3-p23.1 (387 912-11 506 771 bp) and 11.1 Mb respectively, the duplication region and size of case 1 were 8p23.1-p11.1 (11 508 387-43 321 279 bp) and 31.8 Mb respectively. The deletion region and size of case 2 were 8p23.3-p23.1 (46 385-7 809 878 bp) and 7.8 Mb respectively, the duplication region and size of case 2 were 8p23.1-p11.21 (12 260 914-40 917 092 bp) and 28.7 Mb respectively. The comparison with Decipher and ISCA databases supported previous viewpoint that 8p23.1 had been associated with congenital heart disease and the region between 7 809 878-11 506 771 bp may play a role in the severe cardiac defects associated with 8p23.1 deletions. Case 1 had serious cardiac abnormalities whose GATA4 was located in the duplication segment and the copy number increased while SOX7 was located in the deletion segment and the copy number decreased. The region between 7 809 878-11 506 771 bp in 8p23.1 is associated with heart defects and copy number variants of SOX7 and GATA4 may result in congenital heart disease.

  17. Machining process influence on the chip form and surface roughness by neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Anicic, Obrad; Jović, Srđan; Aksić, Danilo; Skulić, Aleksandar; Nedić, Bogdan

    2017-04-01

    The main aim of the study was to analyze the influence of six machining parameters on the chip shape formation and surface roughness as well during turning of Steel 30CrNiMo8. Three components of cutting forces were used as inputs together with cutting speed, feed rate, and depth of cut. It is crucial for the engineers to use optimal machining parameters to get the best results or to high control of the machining process. Therefore, there is need to find the machining parameters for the optimal procedure of the machining process. Adaptive neuro-fuzzy inference system (ANFIS) was used to estimate the inputs influence on the chip shape formation and surface roughness. According to the results, the cutting force in direction of the depth of cut has the highest influence on the chip form. The testing error for the cutting force in direction of the depth of cut has testing error 0.2562. This cutting force determines the depth of cut. According to the results, the depth of cut has the highest influence on the surface roughness. Also the depth of cut has the highest influence on the surface roughness. The testing error for the cutting force in direction of the depth of cut has testing error 5.2753. Generally the depth of cut and the cutting force which provides the depth of cut are the most dominant factors for chip forms and surface roughness. Any small changes in depth of cut or in cutting force which provide the depth of cut could drastically affect the chip form or surface roughness of the working material.

  18. An electrochemical albumin-sensing system utilizing microfluidic technology

    NASA Astrophysics Data System (ADS)

    Huang, Chao-June; Lu, Chiu-Chun; Lin, Thong-Yueh; Chou, Tse-Chuan; Lee, Gwo-Bin

    2007-04-01

    This paper reports an integrated microfluidic chip capable of detecting the concentration of albumin in urine by using an electrochemical method in an automatic format. The integrated microfluidic chip was fabricated by using microelectromechanical system techniques. The albumin detection was conducted by using the electrochemical sensing method, in which the albumin in urine was detected by measuring the difference of peak currents between a bare reference electrode and an albumin-adsorption electrode. To perform the detection of the albumin in an automatic format, pneumatic microvalves and micropumps were integrated onto the microfluidic chip. The albumin sample and interference mixture solutions such as homovanillic acid, dopamine, norepinephrine and epinephrine were first stored in one of the three reservoirs. Then the solution comprising the albumin sample and interference solutions was transported to pass through the detection zone utilizing the pneumatic micropump. Experimental data showed that the developed system can successfully detect the concentration of the albumin in the existence of interference materials. When compared with the traditional albumin-sensing method, smaller amounts of samples were required to perform faster detection by using the integrated microfluidic chip. Additionally, the microfluidic chip integrated with pneumatic micropumps and microvalves facilitates the transportation of the samples in an automatic mode with lesser human intervention. The development of the integrated microfluidic albumin-sensing system may be promising for biomedical applications. Preliminary results of the current paper were presented at the 2nd International Meeting on Microsensors and Microsystems 2006 (National Cheng Kung University, Tainan, Taiwan, 15-18 January).

  19. Using conjoint and cluster analysis in developing new product for micro, small and medium enterprises (SMEs) based on customer preferences (Case study: Lampung province's banana chips)

    NASA Astrophysics Data System (ADS)

    Kosasih, Wilson; Salomon, Lithrone Laricha; Hutomo, Reynaldo

    2017-08-01

    This paper discusses the development of new products of Micro, Small and Medium Entreprises (SMEs) to identify what attributes are considered by consumers, as well as combinations of attributes that need to be analyzed into the main preferences of consumers. The purpose of this research is to increase the added value and competitiveness of SMEs through product innovation. The object of this study is banana chips produced by SMEs from the province of Lampung which it considered to be unique souvenirs of the province. The research data were collected by distributing questionnaires in Jakarta which has heterogeneous population, in order to develop banana chip's marketing and increase its market share in Indonesia. Data processing was performed using conjoint analysis and cluster analysis. Segmentation was performed using conjoint analysis based on the importance level of attributes and part-worth of level attributes of each cluster. Finally, characteristics and consumer preferences of each cluster will be a consideration in determining the product development and marketing strategies.

  20. Finite Element Simulation of Machining of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-05-01

    Titanium and its alloys are an important class of materials, especially for aerospace applications, due to their excellent combination of strength and fracture toughness as well as low density. However, these materials are generally regarded as difficult to machine because of their low thermal conductivity and high chemical reactivity with cutting tool materials. Moreover, the low thermal conductivity of Titanium inhibits dissipation of heat within the workpiece causing an higher temperature at the cutting edge and generating for higher cutting speed a rapid chipping at the cutting edge which leads to catastrophic failure. In addition, chip morphology significantly influences the thermo-mechanical behaviour at the workpiece/tool interface, which also affects the tool life. In this paper a finite element analysis of machining of TiAl6V4 is presented. In particular, cutting force, chip morphology and segmentation are taken into account due to their predominant roles to determine machinability and tool wear during the machining of these alloys. Results in terms of residual stresses are also presented. Moreover, the numerical results are compared with experimental ones.

  1. Prediction of metabolism-induced hepatotoxicity on three-dimensional hepatic cell culture and enzyme microarrays.

    PubMed

    Yu, Kyeong-Nam; Nadanaciva, Sashi; Rana, Payal; Lee, Dong Woo; Ku, Bosung; Roth, Alexander D; Dordick, Jonathan S; Will, Yvonne; Lee, Moo-Yeal

    2018-03-01

    Human liver contains various oxidative and conjugative enzymes that can convert nontoxic parent compounds to toxic metabolites or, conversely, toxic parent compounds to nontoxic metabolites. Unlike primary hepatocytes, which contain myriad drug-metabolizing enzymes (DMEs), but are difficult to culture and maintain physiological levels of DMEs, immortalized hepatic cell lines used in predictive toxicity assays are easy to culture, but lack the ability to metabolize compounds. To address this limitation and predict metabolism-induced hepatotoxicity in high-throughput, we developed an advanced miniaturized three-dimensional (3D) cell culture array (DataChip 2.0) and an advanced metabolizing enzyme microarray (MetaChip 2.0). The DataChip is a functionalized micropillar chip that supports the Hep3B human hepatoma cell line in a 3D microarray format. The MetaChip is a microwell chip containing immobilized DMEs found in the human liver. As a proof of concept for generating compound metabolites in situ on the chip and rapidly assessing their toxicity, 22 model compounds were dispensed into the MetaChip and sandwiched with the DataChip. The IC 50 values obtained from the chip platform were correlated with rat LD 50 values, human C max values, and drug-induced liver injury categories to predict adverse drug reactions in vivo. As a result, the platform had 100% sensitivity, 86% specificity, and 93% overall predictivity at optimum cutoffs of IC 50 and C max values. Therefore, the DataChip/MetaChip platform could be used as a high-throughput, early stage, microscale alternative to conventional in vitro multi-well plate platforms and provide a rapid and inexpensive assessment of metabolism-induced toxicity at early phases of drug development.

  2. User-assisted video segmentation system for visual communication

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  3. Timing Embryo Segmentation: Dynamics and Regulatory Mechanisms of the Vertebrate Segmentation Clock

    PubMed Central

    Resende, Tatiana P.; Andrade, Raquel P.; Palmeirim, Isabel

    2014-01-01

    All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations. PMID:24895605

  4. Laser direct writing of complex radially varying single-mode polymer waveguide structures

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Peng, Jie; Middlebrook, Christopher T.

    2015-07-01

    Increasing board-to-board and chip-to-chip computational data rates beyond 12.5 Gbs will require the use of single-mode polymer waveguides (WGs) that have high bandwidths and are able to be wavelength division multiplexed. Laser direct writing (LDW) of polymer WGs provides a scalable and reconfigurable maskless procedure compared to common photolithography fabrication. LDW of straights and radial curves are readily achieved using predefined drive commands of the two-axis direct drive linear stage system. Using the laser direct write process for advanced WG structures requires stage-drive programming techniques that account for specified polymer material exposure durations. Creating advanced structures such as WG S-bends into single-mode polymer WG builds provides designers with the ability to affect pitch control, optical coupling, and reduce footprint requirements. Fabrication of single-mode polymer WG segmented radial arcs is achieved through a smooth radial arc user-programmed defined mathematical algorithm. Cosine and raised-sine S-bends are realized through a segmentation method where the optimal incremental step length and bend dimensions are controlled to achieve minimal structure loss. Laser direct written S-bends are compared with previously published photolithographic S-bend results using theoretical bend loss models. Fabrication results show that LDW is a viable method in the fabrication of advanced polymer WG structures.

  5. Ubc13 and COOH Terminus of Hsp70-interacting Protein (CHIP) Are Required for Growth Hormone Receptor Endocytosis*

    PubMed Central

    Slotman, Johan A.; da Silva Almeida, Ana C.; Hassink, Gerco C.; van de Ven, Robert H. A.; van Kerkhof, Peter; Kuiken, Hendrik J.; Strous, Ger J.

    2012-01-01

    Growth hormone receptor (GHR) endocytosis is a highly regulated process that depends on the binding and activity of the multimeric ubiquitin ligase, SCFβTrCP (Skp Cullin F-box). Despite a specific interaction between β-transducin repeat-containing protein (βTrCP) and the GHR, and a strict requirement for ubiquitination activity, the receptor is not an obligatory target for SCFβTrCP-directed Lys48 polyubiquitination. We now show that also Lys63-linked ubiquitin chain formation is required for GHR endocytosis. We identified both the ubiquitin-conjugating enzyme Ubc13 and the ubiquitin ligase COOH terminus of Hsp70 interacting protein (CHIP) as being connected to this process. Ubc13 activity and its interaction with CHIP precede endocytosis of GHR. In addition to βTrCP, CHIP interacts specifically with the cytosolic tails of the dimeric GHR, identifying both Ubc13 and CHIP as novel factors in the regulation of cell surface availability of GHR. PMID:22433856

  6. Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization.

    PubMed

    Simsir, Hamza; Eltugral, Nurettin; Karagoz, Selhan

    2017-12-01

    In this work, the hydrothermal carbonization of glucose, cellulose, chitin, chitosan and wood chips at 200°C at processing times between 6 and 48h was studied. The carbonization degree of wood chips, cellulose and chitosan obviously increases as function of time. The heating value of glucose increases to 88% upon carbonization for 48h, while it is only 5% for chitin. It is calculated to be between 44 and 73% for wood chips, chitosan and cellulose. Glucose yielded complete formation of spherical hydrochar structures at a shorter processing time, as low as 12h. However, carbon spheres with narrow size (∼560nm) distribution were obtained upon 48h of residence time. Cellulose and wood chips yielded a similar morphology with an irregular size distribution. Chitin seemed not to undergo hydrothermal carbonization, whereas densely aggregated spheres of a uniform size around 42nm were obtained from chitosan after 18h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Formation of the insect head involves lateral contribution of the intercalary segment, which depends on Tc-labial function.

    PubMed

    Posnien, Nico; Bucher, Gregor

    2010-02-01

    The insect head is composed of several segments. During embryonic development, the segments fuse to form a rigid head capsule where obvious segmental boundaries are lacking. Hence, the assignment of regions of the insect head to specific segments is hampered, especially with respect to dorsal (vertex) and lateral (gena) parts. We show that upon Tribolium labial (Tc-lab) knock down, the intercalary segment is deleted but not transformed. Furthermore, we find that the intercalary segment contributes to lateral parts of the head cuticle in Tribolium. Based on several additional mutant and RNAi phenotypes that interfere with gnathal segment development, we show that these segments do not contribute to the dorsal head capsule apart from the dorsal ridge. Opposing the classical view but in line with findings in the vinegar fly Drosophila melanogaster and the milkweed bug Oncopeltus fasciatus, we propose a "bend and zipper" model for insect head capsule formation.

  8. FISH-in-CHIPS: A Microfluidic Platform for Molecular Typing of Cancer Cells.

    PubMed

    Perez-Toralla, Karla; Mottet, Guillaume; Tulukcuoglu-Guneri, Ezgi; Champ, Jérôme; Bidard, François-Clément; Pierga, Jean-Yves; Klijanienko, Jerzy; Draskovic, Irena; Malaquin, Laurent; Viovy, Jean-Louis; Descroix, Stéphanie

    2017-01-01

    Microfluidics offer powerful tools for the control, manipulation, and analysis of cells, in particular for the assessment of cell malignancy or the study of cell subpopulations. However, implementing complex biological protocols on chip remains a challenge. Sample preparation is often performed off chip using multiple manually performed steps, and protocols usually include different dehydration and drying steps that are not always compatible with a microfluidic format.Here, we report the implementation of a Fluorescence in situ Hybridization (FISH) protocol for the molecular typing of cancer cells in a simple and low-cost device. The geometry of the chip allows integrating the sample preparation steps to efficiently assess the genomic content of individual cells using a minute amount of sample. The FISH protocol can be fully automated, thus enabling its use in routine clinical practice.

  9. Mapping of transcription factor binding regions in mammalian cells by ChIP: Comparison of array- and sequencing-based technologies

    PubMed Central

    Euskirchen, Ghia M.; Rozowsky, Joel S.; Wei, Chia-Lin; Lee, Wah Heng; Zhang, Zhengdong D.; Hartman, Stephen; Emanuelsson, Olof; Stolc, Viktor; Weissman, Sherman; Gerstein, Mark B.; Ruan, Yijun; Snyder, Michael

    2007-01-01

    Recent progress in mapping transcription factor (TF) binding regions can largely be credited to chromatin immunoprecipitation (ChIP) technologies. We compared strategies for mapping TF binding regions in mammalian cells using two different ChIP schemes: ChIP with DNA microarray analysis (ChIP-chip) and ChIP with DNA sequencing (ChIP-PET). We first investigated parameters central to obtaining robust ChIP-chip data sets by analyzing STAT1 targets in the ENCODE regions of the human genome, and then compared ChIP-chip to ChIP-PET. We devised methods for scoring and comparing results among various tiling arrays and examined parameters such as DNA microarray format, oligonucleotide length, hybridization conditions, and the use of competitor Cot-1 DNA. The best performance was achieved with high-density oligonucleotide arrays, oligonucleotides ≥50 bases (b), the presence of competitor Cot-1 DNA and hybridizations conducted in microfluidics stations. When target identification was evaluated as a function of array number, 80%–86% of targets were identified with three or more arrays. Comparison of ChIP-chip with ChIP-PET revealed strong agreement for the highest ranked targets with less overlap for the low ranked targets. With advantages and disadvantages unique to each approach, we found that ChIP-chip and ChIP-PET are frequently complementary in their relative abilities to detect STAT1 targets for the lower ranked targets; each method detected validated targets that were missed by the other method. The most comprehensive list of STAT1 binding regions is obtained by merging results from ChIP-chip and ChIP-sequencing. Overall, this study provides information for robust identification, scoring, and validation of TF targets using ChIP-based technologies. PMID:17568005

  10. Development of a cell microarray chip for detection of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Yamamura, S.; Yatsushiro, S.; Abe, K.; Baba, Y.; Kataoka, M.

    2012-03-01

    Detection of circulating tumor cells (CTCs) in the peripheral blood of metastatic cancer patients has clinical significance in earlier diagnosis of metastases. In this study, a novel cell microarray chip for accurate and rapid detection of tumor cells from human leukocytes was developed. The chip with 20,944 microchambers (105 μm diameter and 50 μm depth) was made from polystyrene, and the surface was rendered to hydrophilic by means of reactive-ion etching, which led to the formation of mono-layers of leukocytes on the microchambers. As the model of CTCs detection, we spiked human bronchioalveolar carcinoma (H1650) cells into human T lymphoblastoid leukemia (CEM) cells suspension and detected H1650 cells using the chip. A CEM suspension contained with H1650 cells was dispersed on the chip surface, followed by 10 min standing to allow the cells to settle down into the microchambers. About 30 CEM cells were accommodated in each microchamber, over 600,000 CEM cells in total being on a chip. We could detect 1 H1650 cell per 106 CEM cells on the microarray by staining with fluorescence-conjugated antibody (Anti-Cytokeratin) and cell membrane marker (DiD). Thus, this cell microarray chip has highly potential to be a novel tool of accurate and rapid detection of CTCs.

  11. E3 ubiquitin ligase CHIP interacts with C-type lectin-like receptor CLEC-2 and promotes its ubiquitin-proteasome degradation.

    PubMed

    Shao, Miaomiao; Li, Lili; Song, Shushu; Wu, Weicheng; Peng, Peike; Yang, Caiting; Zhang, Mingming; Duan, Fangfang; Jia, Dongwei; Zhang, Jie; Wu, Hao; Zhao, Ran; Wang, Lan; Ruan, Yuanyuan; Gu, Jianxin

    2016-10-01

    C-type lectin-like receptor 2 (CLEC-2) was originally identified as a member of non-classical C-type lectin-like receptors in platelets and immune cells. Activation of CLEC-2 is involved in thrombus formation, lymphatic/blood vessel separation, platelet-mediated tumor metastasis and immune response. Nevertheless, the regulation of CLEC-2 expression is little understood. In this study, we identified that the C terminus of Hsc70-interacting protein (CHIP) interacted with CLEC-2 by mass spectrometry analysis, and CHIP decreased the protein expression of CLEC-2 through lysine-48-linked ubiquitination and proteasomal degradation. Deleted and point mutation also revealed that CHIP controlled CLEC-2 protein expression via both tetratricopeptide repeats (TPR) domain and Ubox domain in a HSP70/90-independent manner. Moreover, reduced CHIP expression was associated with decreased CLEC-2 polyubiquitination and increased CLEC-2 protein levels in PMA-induced differentiation of THP-1 monocytes into macrophages. These results indicate that CLEC-2 is the target substrate of E3 ubiquitin ligase CHIP, and suggest that the CHIP/CLEC-2 axis may play an important role in the modulation of immune response. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Quality assessment of SPR sensor chips; case study on L1 chips.

    PubMed

    Olaru, Andreea; Gheorghiu, Mihaela; David, Sorin; Polonschii, Cristina; Gheorghiu, Eugen

    2013-07-15

    Surface quality of the Surface Plasmon Resonance (SPR) chips is a major limiting issue in most SPR analyses, even more for supported lipid membranes experiments, where both the organization of the lipid matrix and the subsequent incorporation of the target molecule depend on the surface quality. A novel quantitative method to characterize the quality of SPR sensors chips is described for L1 chips subject to formation of lipid films, injection of membrane disrupting compounds, followed by appropriate regeneration procedures. The method consists in analysis of the SPR reflectivity curves for several standard solutions (e.g. PBS, HEPES or deionized water). This analysis reveals the decline of sensor surface as a function of the number of experimental cycles (consisting in biosensing assay and regeneration step) and enables active control of surface regeneration for enhanced reproducibility. We demonstrate that quantitative evaluation of the changes in reflectivity curves (shape of the SPR dip) and of the slope of the calibration curve provides a rapid and effective procedure for surface quality assessment. Whereas the method was tested on L1 SPR sensors chips, we stress on its amenability to assess the quality of other types of SPR chips, as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Novel chip coating approaches to improve white LED technology

    NASA Astrophysics Data System (ADS)

    Hartmann, Paul; Schweighart, Marko; Sommer, Christian; Wenzl, Franz-P.; Zinterl, Ernst; Hoschopf, Hans; Pachler, Peter; Tasch, Stefan

    2008-02-01

    Key market requirements for white LEDs, especially in the general lighting and automotive headlamp segments call for improved concepts and performance of white LEDs based on phosphor conversion. Major challenges are small emission areas, highest possible intensities, long-term color stability, and spatial homogeneity of color coordinates. On the other hand, the increasingly high radiation power of the blue LEDs poses problems for all involved materials. Various thick film coating technologies are widely used for applying the color conversion layer to the semiconductor chip. We present novel concepts based on Silicate phosphors with high performance in terms of spatial homogeneity of the emission and variability of the color temperature. Numerical calculation of the optical properties with the help of state-of-the-art simulation tools was used as a basis for the practical optimization of the layer geometries.

  14. Dynamics of growth zone patterning in the milkweed bug Oncopeltus fasciatus

    PubMed Central

    Weiss, Aryeh; Williams, Terri A.; Nagy, Lisa M.

    2017-01-01

    We describe the dynamic process of abdominal segment generation in the milkweed bug Oncopeltus fasciatus. We present detailed morphological measurements of the growing germband throughout segmentation. Our data are complemented by cell division profiles and expression patterns of key genes, including invected and even-skipped as markers for different stages of segment formation. We describe morphological and mechanistic changes in the growth zone and in nascent segments during the generation of individual segments and throughout segmentation, and examine the relative contribution of newly formed versus existing tissue to segment formation. Although abdominal segment addition is primarily generated through the rearrangement of a pool of undifferentiated cells, there is nonetheless proliferation in the posterior. By correlating proliferation with gene expression in the growth zone, we propose a model for growth zone dynamics during segmentation in which the growth zone is functionally subdivided into two distinct regions: a posterior region devoted to a slow rate of growth among undifferentiated cells, and an anterior region in which segmental differentiation is initiated and proliferation inhibited. PMID:28432218

  15. Read-In Integrated Circuits for Large-Format Multi-Chip Emitter Arrays

    DTIC Science & Technology

    2015-03-31

    chip has been designed and fabricated using ONSEMI C5N process to verify our approach. Keywords: Large scale arrays; Tiling; Mosaic; Abutment ...required. X and y addressing is not a sustainable and easily expanded addressing architecture nor will it work well with abutted RIICs. Abutment Method... Abutting RIICs into an array is challenging because of the precise positioning required to achieve a uniform image. This problem is a new design

  16. Moisture content of southern pine as related to thrust, torque, and chip formation in boring

    Treesearch

    Charles W. McMillin; George E. Woodson

    1972-01-01

    Holes 3-1/2 inches deep were bored with a 1-inch spur machine bit in southern pine having specific gravity of 0.53 (ovendry weight and volume at 10.4 percent moisture). The bit was rotated at 2,4000 rpm and removed chips 0.020 inch thick. For wood mositure contents ranging from ovendry to saturation, thrust was lower when boring along the grain (Average 98 pounds)...

  17. Biomimetic engineering of a generic cell-on-membrane architecture by microfluidic engraving for on-chip bioassays.

    PubMed

    Lee, Sang-Wook; Noh, Ji-Yoon; Park, Seung Chul; Chung, Jin-Ho; Lee, Byoungho; Lee, Sin-Doo

    2012-05-22

    We develop a biomimetic cell-on-membrane architecture in close-volume format which allows the interfacial biocompatibility and the reagent delivery capability for on-chip bioassays. The key concept lies in the microfluidic engraving of lipid membranes together with biological cells on a supported substrate with topographic patterns. The simultaneous engraving process of a different class of fluids is promoted by the front propagation of an air-water interface inside a flow-cell. This highly parallel, microfluidic cell-on-membrane approach opens a door to the natural biocompatibility in mimicking cellular stimuli-response behavior essential for diverse on-chip bioassays that can be precisely controlled in the spatial and temporal manner.

  18. Comparative embryology of eleven species of stony corals (Scleractinia).

    PubMed

    Okubo, Nami; Mezaki, Takuma; Nozawa, Yoko; Nakano, Yoshikatsu; Lien, Yi-Ting; Fukami, Hironobu; Hayward, David C; Ball, Eldon E

    2013-01-01

    A comprehensive understanding of coral reproduction and development is needed because corals are threatened in many ways by human activity. Major threats include the loss of their photosynthetic symbionts (Symbiodinium) caused by rising temperatures (bleaching), reduced ability to calcify caused by ocean acidification, increased storm severity associated with global climate change and an increase in predators caused by runoff from human agricultural activity. In spite of these threats, detailed descriptions of embryonic development are not available for many coral species. The current consensus is that there are two major groups of stony corals, the "complex" and the "robust". In this paper we describe the embryonic development of four "complex" species, Pseudosiderastrea tayamai, Galaxea fascicularis, Montipora hispida, and Pavona Decussata, and seven "robust" species, Oulastrea crispata, Platygyra contorta, Favites abdita, Echinophyllia aspera, Goniastrea favulus, Dipsastraea speciosa (previously Favia speciosa), and Phymastrea valenciennesi (previously Montastrea valenciennesi). Data from both histologically sectioned embryos and whole mounts are presented. One apparent difference between these two major groups is that before gastrulation the cells of the complex corals thus far described (mainly Acropora species) spread and flatten to produce the so-called prawn chip, which lacks a blastocoel. Our present broad survey of robust and complex corals reveals that prawn chip formation is not a synapomorphy of complex corals, as Pavona Decussata does not form a prawn chip and has a well-developed blastocoel. Although prawn chip formation cannot be used to separate the two clades, none of the robust corals which we surveyed has such a stage. Many robust coral embryos pass through two periods of invagination, separated by a return to a spherical shape. However, only the second of these periods is associated with endoderm formation. We have therefore termed the first invagination a pseudo-blastopore.

  19. Comparative Embryology of Eleven Species of Stony Corals (Scleractinia)

    PubMed Central

    Okubo, Nami; Mezaki, Takuma; Nozawa, Yoko; Nakano, Yoshikatsu; Lien, Yi-Ting; Fukami, Hironobu; Hayward, David C.; Ball, Eldon E.

    2013-01-01

    A comprehensive understanding of coral reproduction and development is needed because corals are threatened in many ways by human activity. Major threats include the loss of their photosynthetic symbionts (Symbiodinium) caused by rising temperatures (bleaching), reduced ability to calcify caused by ocean acidification, increased storm severity associated with global climate change and an increase in predators caused by runoff from human agricultural activity. In spite of these threats, detailed descriptions of embryonic development are not available for many coral species. The current consensus is that there are two major groups of stony corals, the "complex" and the "robust". In this paper we describe the embryonic development of four "complex" species, Pseudosiderastrea tayamai, Galaxea fascicularis, Montipora hispida, and Pavona Decussata, and seven "robust" species, Oulastrea crispata, Platygyra contorta, Favites abdita, Echinophyllia aspera, Goniastrea favulus, Dipsastraea speciosa (previously Favia speciosa), and Phymastrea valenciennesi (previously Montastrea valenciennesi). Data from both histologically sectioned embryos and whole mounts are presented. One apparent difference between these two major groups is that before gastrulation the cells of the complex corals thus far described (mainly Acropora species) spread and flatten to produce the so-called prawn chip, which lacks a blastocoel. Our present broad survey of robust and complex corals reveals that prawn chip formation is not a synapomorphy of complex corals, as Pavona Decussata does not form a prawn chip and has a well-developed blastocoel. Although prawn chip formation cannot be used to separate the two clades, none of the robust corals which we surveyed has such a stage. Many robust coral embryos pass through two periods of invagination, separated by a return to a spherical shape. However, only the second of these periods is associated with endoderm formation. We have therefore termed the first invagination a pseudo-blastopore. PMID:24367633

  20. Highly Sensitive, Label-Free Detection of 2,4-Dichlorophenoxyacetic Acid Using an Optofluidic Chip.

    PubMed

    Feng, Xueling; Zhang, Gong; Chin, Lip Ket; Liu, Ai Qun; Liedberg, Bo

    2017-07-28

    A highly sensitive approach for rapid and label-free detection of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) using an optofluidic chip is demonstrated. The optofluidic chip is prepared by covalent immobilization of 2,4-D-bovine serum albumin (2,4-D-BSA) conjugate to an integrated microring resonator. Subsequent detection of 2,4-D carried out in a competitive immunoreaction format enables selective detection of 2,4-D in different types of water samples, including bottled, tap, and lake water, at a limit of detection (LOD) of 4.5 pg/mL and in a quantitative range of 15-10 5 pg/mL. The microring resonator-based optofluidic chip is reusable with ultrahigh sensitivity that offers real-time and on-site detection of low-molecular-weight targets for potential applications in food safety and environmental monitoring.

  1. Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon.

    PubMed

    Grotmol, Sindre; Kryvi, Harald; Nordvik, Kari; Totland, Geir K

    2003-12-01

    This study indicates that the development of the vertebrae in the Atlantic salmon requires the orchestration of two sources of metameric patterning, derived from the notochord and the somite rows, respectively. Before segmentation of the salmon notochord, chordoblasts exhibit a well-defined cell axis that is uniformly aligned with the cranio-caudal axis. The morphology of these cells is characterised by a foot-like basal projection that rests on the notochordal sheath. Notochordal segments are initially formed within the chordoblast layer by metameric change in the axial orientation of groups of chordoblasts. This process results in the formation of circular bands of chordoblasts, with feet perpendicular to the cranio-caudal axis, the original chordoblast orientation. Each vertebra is defined by two such chordoblast bands, at the cranial and caudal borders, respectively. Formation of the chordoblast segments closely precedes formation of the chordacentra, which form as calcified rings within the adjacent notochordal sheath. Sclerotomal osteoblasts then differentiate on the surface of the chordacentra, using them as foundations for further vertebral growth. Thus, the morphogenesis of the rudiments of the vertebral bodies is initiated by a generation of segments within the chordoblast layer. This dual segmentation model for salmon, in which the segmental patterns of the neural and haemal arches are somite-derived, while the vertebral segments seem to be notochord-derived, contrasts with current models for avians and mammals.

  2. DNA concentration modulation on supported lipid bilayers switched by surface acoustic waves.

    PubMed

    Hennig, Martin; Wolff, Manuel; Neumann, Jürgen; Wixforth, Achim; Schneider, Matthias F; Rädler, Joachim O

    2011-12-20

    Spatially addressable arrays of molecules embedded in or anchored to supported lipid bilayers are important for on-chip screening and binding assays; however, methods to sort or accumulate components in a fluid membrane on demand are still limited. Here we apply in-plane surface acoustic shear waves (SAWs) to laterally accumulate double-stranded DNA segments electrostatically bound to a cationic supported lipid bilayer. The fluorescently labeled DNA segments are found to segregate into stripe patterns with a spatial frequency corresponding to the periodicity of the standing SAW wave (~10 μm). The DNA molecules are accumulated 10-fold in the regions of SAW antinodes. The superposition of two orthogonal sets of SAW sources creates checkerboard like arrays of DNA demonstrating the potential to generate arrayed fields dynamically. The pattern relaxation time of 0.58 s, which is independent of the segment length, indicates a sorting and relaxation mechanism dominated by lipid diffusion rather than DNA self-diffusion. © 2011 American Chemical Society

  3. Moisture content of southern pine as related to thrust, torque, and chip formation in boring

    Treesearch

    C. W. McMillin; G. E. Woodson

    1972-01-01

    Holes 3-1/2 inches deep were bored with a 1-inch spur machine bit in southern pine having specific gravity of 0.53 (ovendry weight and volume at 10.4 percent moisture). The bit was rotated at 2,400 rpm and removed chips 0.020 inch thick. For wood moisture contents ranging from ovendry to saturation, thrust was lower when boring along the grain (average 98 pounds) than...

  4. Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization

    NASA Astrophysics Data System (ADS)

    Choi, W. J.; Yeh, E. C. C.; Tu, K. N.

    2003-11-01

    Electromigration of eutectic SnPb flip chip solder joints and their mean-time-to-failure (MTTF) have been studied in the temperature range of 100 to 140 °C with current densities of 1.9 to 2.75×104 A/cm2. In these joints, the under-bump-metallization (UBM) on the chip side is a multilayer thin film of Al/Ni(V)/Cu, and the metallic bond-pad on the substrate side is a very thick, electroless Ni layer covered with 30 nm of Au. When stressed at the higher current densities, the MTTF was found to decrease much faster than what is expected from the published Black's equation. The failure occurred by interfacial void propagation at the cathode side, and it is due to current crowding near the contact interface between the solder bump and the thin-film UBM. The current crowding is confirmed by a simulation of current distribution in the solder joint. Besides the interfacial void formation, the intermetallic compounds formed on the UBM as well as the Ni(V) film in the UBM have been found to dissolve completely into the solder bump during electromigration. Therefore, the electromigation failure is a combination of the interfacial void formation and the loss of UBM. Similar findings in eutectic SnAgCu flip chip solder joints have also been obtained and compared.

  5. A novel bone scraper for intraoral harvesting: a device for filling small bone defects.

    PubMed

    Zaffe, Davide; D'Avenia, Ferdinando

    2007-08-01

    To evaluate histologically the morphology and characteristics of bone chips harvested intraorally by Safescraper, a specially designed cortical bone collector. Bone chips harvested near a bone defect or in other intraoral sites were grafted into a post-extractive socket or applied in procedures for maxillary sinus floor augmentation or guided bone regeneration. Core biopsies were performed at implant insertion. Undecalcified specimens embedded in PMMA were studied by histology, histochemistry and SEM. Intraoral harvesting by Safescraper provided a simple, clinically effective regenerative procedure with low morbidity for collecting cortical bone chips (0.9-1.7 mm in length, roughly 100 microm thick). Chips had an oblong or quadrangular shape and contained live osteocytes (mean viability: 45-72%). Bone chip grafting produced newly formed bone tissue suitable for implant insertion. Trabecular bone volume measured on biopsies decreased with time (from 45-55% to 23%). Grafted chips made up 50% or less of the calcified tissue in biopsies. Biopsies presented remodeling activities, new bone formation by apposition and live osteocytes (35% or higher). In conclusion, Safescraper is capable of collecting adequate amounts of cortical bone chips from different intraoral sites. The procedure is effective for treating alveolar defects for endosseous implant insertion and provides good healing of small bone defects after grafting with bone chips. The study indicates that Safescraper is a very useful device for in-office bone harvesting procedures in routine peri-implant bone regeneration.

  6. Acrylamide in Japanese processed foods and factors affecting acrylamide level in potato chips and tea.

    PubMed

    Yoshida, Mitsuru; Ono, Hiroshi; Chuda, Yoshihiro; Yada, Hiroshi; Ohnishi-Kameyama, Mayumi; Kobayashi, Hidetaka; Ohara-Takada, Akiko; Matsuura-Endo, Chie; Mori, Motoyuki; Hayashi, Nobuyuki; Yamaguchi, Yuichi

    2005-01-01

    Acrylamide concentrations in processed foods sold in Japanese markets were analyzed by LC-MS/MS and GC-MS methods. Most potato chips and whole potato-based fried snacks showed acrylamide concentration higher than 1000 microg/kg. The concentrations in non-whole potato based Japanese snacks, including rice crackers and candied sweet potatoes, were less tha. 350 microg/kg. Those in instant precooked noodles were less than 100 microg/kg with only one exception. The effect of storage condition of potato tubers on acrylamide concentration in potato chips after frying was also investigated. Sugar content in the tubers increased during cold storage, and the acrylamide concentration increased accordingly. The concentrations of asparagine and other amino acids, however, did not change during the cold storage. High correlations were observed between the acrylamide content in the chips and glucose and fructose contents in the tubers. This fact indicated that the limiting factor for acrylamide formation in potato chips is reducing sugar, not asparagine content in the tubers. Effects of roasting time and temperature on acrylamide concentration in roasted green tea are also described.

  7. Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.

    PubMed

    Nairn, John A

    2016-06-06

    A numerical model for orthogonal cutting using the material point method was applied to woodcutting using a bench plane. The cutting process was modelled by accounting for surface energy associated with wood fracture toughness for crack growth parallel to the grain. By using damping to deal with dynamic crack propagation and modelling all contact between wood and the plane, simulations could initiate chip formation and proceed into steady-state chip propagation including chip curling. Once steady-state conditions were achieved, the cutting forces became constant and could be determined as a function of various simulation variables. The modelling details included a cutting tool, the tool's rake and grinding angles, a chip breaker, a base plate and a mouth opening between the base plate and the tool. The wood was modelled as an anisotropic elastic-plastic material. The simulations were verified by comparison to an analytical model and then used to conduct virtual experiments on wood planing. The virtual experiments showed interactions between depth of cut, chip breaker location and mouth opening. Additional simulations investigated the role of tool grinding angle, tool sharpness and friction.

  8. Stress and Strain Distributions during Machining of Ti-6Al-4V at Ambient and Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Fahim

    Dry and liquid nitrogen pre-cooled Ti-6Al-4V samples were machined at a cutting speed of 43.2 m/min and at low (0.1 mm/rev) to high (0.4 mm/rev) feed rates for understanding the effects of temperature and strain rate on chip microstructures. During cryogenic machining, it was observed that between feed rates of 0.10 and 0.30 mm/rev, a 25% pressure reduction on tool occurred. Smaller number of chips and low tool/chip contact time and temperature were observed (compared to dry machining under ambient conditions). An in-situ set-up that consisted of a microscope and a lathe was constructed and helped to propose a novel serrated chip formation mechanism when microstructures (strain localization) and surface roughness were considered. Dimpled fracture surfaces observed in high-speed-machined chips were formed due to stable crack propagation that was also recorded during in-situ machining. An instability criterion was developed that showed easier strain localization within the 0.10-0.30mm/rev feed rate range.

  9. White LEDs and modules in chip-on-board technology for general lighting

    NASA Astrophysics Data System (ADS)

    Hartmann, Paul; Wenzl, Franz P.; Sommer, Christian; Pachler, Peter; Hoschopf, Hans; Schweighart, Marko; Hartmann, Martin; Kuna, Ladislav; Jakopic, Georg; Leising, Guenther; Tasch, Stefan

    2006-08-01

    At present, light-emitting diode (LED) modules in various shapes are developed and designed for the general lighting, advertisement, emergency lighting, design and architectural markets. To compete with and to surpass the performance of traditional lighting systems, enhancement of Lumen output and the white light quality as well as the thermal management and the luminary integration are key factors for success. Regarding these issues, white LEDs based on the chip-on-board (COB) technology show pronounced advantages. State-of-the-art LEDs exploiting this technology are now ready to enter the general lighting segments. We introduce and discuss the specific properties of the Tridonic COB technology dedicated for general lighting. This technology, in combination with a comprehensive set of tools to improve and to enhance the Lumen output and the white light quality, including optical simulation, is the scaffolding for the application of white LEDs in emerging areas, for which an outlook will be given.

  10. Baseball Bats and Chocolate Chip Cookies: The Judicial Treatment of DNA in the Myriad Genetics Litigation

    PubMed Central

    Binnie, Ian; Park-Thompson, Vanessa

    2015-01-01

    In June 2013, the U.S. Supreme Court rendered a controversial ruling that naturally occurring DNA segments are “products of nature” and therefore not patentable subject matter. At this intersection between science and law, in litigation of crucial importance to patients, science, and multibillion-dollar biotech enterprises, the appellate judges sidestepped genetics and engaged in a war of metaphors from diamonds to chocolate chip cookies. This case is not an outlier. Apprehensive judges and juries in both Canada and the United States find many convenient excuses to avoid coming to grips with the underlying science in patent cases. But this is simply not acceptable. Legal rulings must be, and must seem to be, well grounded, as a matter of both law and science. The legitimacy of court decisions in the eyes of the stakeholders and the broader public depends on it. PMID:25524722

  11. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGES

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  12. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  13. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  14. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    PubMed Central

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  15. Toxics Release Inventory Chemical Hazard Information Profiles (TRI-CHIP) Dataset

    EPA Pesticide Factsheets

    The Toxics Release Inventory (TRI) Chemical Hazard Information Profiles (TRI-CHIP) dataset contains hazard information about the chemicals reported in TRI. Users can use this XML-format dataset to create their own databases and hazard analyses of TRI chemicals. The hazard information is compiled from a series of authoritative sources including the Integrated Risk Information System (IRIS). The dataset is provided as a downloadable .zip file that when extracted provides XML files and schemas for the hazard information tables.

  16. Identification of conformational epitopes for human IgG on Chemotaxis inhibitory protein of Staphylococcus aureus

    PubMed Central

    Gustafsson, Erika; Haas, Pieter-Jan; Walse, Björn; Hijnen, Marcel; Furebring, Christina; Ohlin, Mats; van Strijp, Jos AG; van Kessel, Kok PM

    2009-01-01

    Background The Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) blocks the Complement fragment C5a receptor (C5aR) and formylated peptide receptor (FPR) and is thereby a potent inhibitor of neutrophil chemotaxis and activation of inflammatory responses. The majority of the healthy human population has antibodies against CHIPS that have been shown to interfere with its function in vitro. The aim of this study was to define potential epitopes for human antibodies on the CHIPS surface. We also initiate the process to identify a mutated CHIPS molecule that is not efficiently recognized by preformed anti-CHIPS antibodies and retains anti-inflammatory activity. Results In this paper, we panned peptide displaying phage libraries against a pool of CHIPS specific affinity-purified polyclonal human IgG. The selected peptides could be divided into two groups of sequences. The first group was the most dominant with 36 of the 48 sequenced clones represented. Binding to human affinity-purified IgG was verified by ELISA for a selection of peptide sequences in phage format. For further analysis, one peptide was chemically synthesized and antibodies affinity-purified on this peptide were found to bind the CHIPS molecule as studied by ELISA and Surface Plasmon Resonance. Furthermore, seven potential conformational epitopes responsible for antibody recognition were identified by mapping phage selected peptide sequences on the CHIPS surface as defined in the NMR structure of the recombinant CHIPS31–121 protein. Mapped epitopes were verified by in vitro mutational analysis of the CHIPS molecule. Single mutations introduced in the proposed antibody epitopes were shown to decrease antibody binding to CHIPS. The biological function in terms of C5aR signaling was studied by flow cytometry. A few mutations were shown to affect this biological function as well as the antibody binding. Conclusion Conformational epitopes recognized by human antibodies have been mapped on the CHIPS surface and amino acid residues involved in both antibody and C5aR interaction could be defined. This information has implications for the development of an effective anti-inflammatory agent based on a functional CHIPS molecule with low interaction with human IgG. PMID:19284584

  17. In situ visualization of metallurgical reactions in nanoscale Cu/Sn diffusion couples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Qiyue; Stach, Eric A.; Gao, Fan

    2015-02-10

    The Cu–Sn metallurgical soldering reaction in two-segmented Cu–Sn nanowires is visualized by in-situ transmission electron microscopy. By varying the relative lengths of Cu and Sn segments, we show that the metallurgical reaction starts at ~ 200 ° with the formation of a Cu–Sn solid solution for the Sn/Cu length ratio smaller than 1:5 while the formation of Cu–Sn intermetallic compounds (IMCs) for larger Sn/Cu length ratios. Upon heating the nanowires up to ~ 500 °C, two phase transformation pathways occur, η-Cu₆Sn₅ → ε-Cu₃Sn → δ-Cu₄₁Sn₁₁ for nanowires with a long Cu segment and η-Cu₆Sn₅ → ε-Cu₃Sn → γ-Cu₃Sn with amore » short Cu segment. The dynamic in situ TEM visualization of the evolution of Kirkendall voids demonstrates that Cu diffuses faster both in Sn and IMCs than that of Sn in Cu₃ and IMCs, which is the underlying cause of the dependence of the IMC formation and associated phase evolution on the relative lengths of the Cu and Sn segments.« less

  18. [Emission of organic substances from chip-boards].

    PubMed

    Deppe, H J

    1982-01-01

    A relatively small number of investigations on emissions of organic substances from chip-board is available up to now. The emissions known to date are caused by glues or other additives rather than by the wood itself. As concerns aminoplast glues (urea-formaldehyde or melamine-formaldehyde resins) the most important point of public interest has been the off-gassing of formaldehyde from chip-board. Chip-board with phenol-formaldehyde glues has been known in some cases to give off phenol. The formation of diamino diphenyl methane from isocyanate glues is still a matter of discussion. A further source for possible emissions are wood and fire protectives which are added during the manufacturing process. Finally, coating of chip-board may lead to emissions of organic substances. The lack of adequate detection methods has so far delayed the treatment of questions in relation to emissions from chip-board. Even now, there are numerous problems in this field especially when investigating isocyanate glues. Problems in relation to the origin of emissions due to the kind of glue used and the manufacturing process are discussed, and proposals are made how to solve some of these problems. The question of the health risk is dealt with from the view-point of the civil engineer and in an general economic context.

  19. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    PubMed

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  20. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments

    PubMed Central

    Qiu, Zhichang; Tu, Long; Huang, Liang; Zhu, Taoyuanmin; Nock, Volker; Yu, Enchao; Liu, Xiao; Wang, Wenhui

    2015-01-01

    Optogenetics has been recently applied to manipulate the neural circuits of Caenorhabditis elegans (C. elegans) to investigate its mechanosensation and locomotive behavior, which is a fundamental topic in model biology. In most neuron-related research, free C. elegans moves on an open area such as agar surface. However, this simple environment is different from the soil, in which C. elegans naturally dwells. To bridge up the gap, this paper presents integration of optogenetic illumination of C. elegans neural circuits and muscular force measurement in a structured microfluidic chip mimicking the C. elegans soil habitat. The microfluidic chip is essentially a ∼1 × 1 cm2 elastomeric polydimethylsiloxane micro-pillar array, configured in either form of lattice (LC) or honeycomb (HC) to mimic the environment in which the worm dwells. The integrated system has four key modules for illumination pattern generation, pattern projection, automatic tracking of the worm, and force measurement. Specifically, two optical pathways co-exist in an inverted microscope, including built-in bright-field illumination for worm tracking and pattern generation, and added-in optogenetic illumination for pattern projection onto the worm body segment. The behavior of a freely moving worm in the chip under optogenetic manipulation can be recorded for off-line force measurements. Using wild-type N2 C. elegans, we demonstrated optical illumination of C. elegans neurons by projecting light onto its head/tail segment at 14 Hz refresh frequency. We also measured the force and observed three representative locomotion patterns of forward movement, reversal, and omega turn for LC and HC configurations. Being capable of stimulating or inhibiting worm neurons and simultaneously measuring the thrust force, this enabling platform would offer new insights into the correlation between neurons and locomotive behaviors of the nematode under a complex environment. PMID:25759756

  1. The pivotal role of aristaless in development and evolution of diverse antennal morphologies in moths and butterflies.

    PubMed

    Ando, Toshiya; Fujiwara, Haruhiko; Kojima, Tetsuya

    2018-01-25

    Antennae are multi-segmented appendages and main odor-sensing organs in insects. In Lepidoptera (moths and butterflies), antennal morphologies have diversified according to their ecological requirements. While diurnal butterflies have simple, rod-shaped antennae, nocturnal moths have antennae with protrusions or lateral branches on each antennal segment for high-sensitive pheromone detection. A previous study on the Bombyx mori (silk moth) antenna, forming two lateral branches per segment, during metamorphosis has revealed the dramatic change in expression of antennal patterning genes to segmentally reiterated, branch-associated pattern and abundant proliferation of cells contributing almost all the dorsal half of the lateral branch. Thus, localized cell proliferation possibly controlled by the branch-associated expression of antennal patterning genes is implicated in lateral branch formation. Yet, actual gene function in lateral branch formation in Bombyx mori and evolutionary mechanism of various antennal morphologies in Lepidoptera remain elusive. We investigated the function of several genes and signaling specifically in lateral branch formation in Bombyx mori by the electroporation-mediated incorporation of siRNAs or morpholino oligomers. Knock down of aristaless, a homeobox gene expressed specifically in the region of abundant cell proliferation within each antennal segment, during metamorphosis resulted in missing or substantial shortening of lateral branches, indicating its importance for lateral branch formation. aristaless expression during metamorphosis was lost by knock down of Distal-less and WNT signaling but derepressed by knock down of Notch signaling, suggesting the strict determination of the aristaless expression domain within each antennal segment by the combinatorial action of them. In addition, analyses of pupal aristaless expression in antennae with various morphologies of several lepidopteran species revealed that the aristaless expression pattern has a striking correlation with antennal shapes, whereas the segmentally reiterated expression pattern was observed irrespective of antennal morphologies. Our results presented here indicate the significance of aristaless function in lateral branch formation in B. mori and imply that the diversification in the aristaless expression pattern within each antennal segment during metamorphosis is one of the significant determinants of antennal morphologies. According to these findings, we propose a mechanism underlying development and evolution of lepidopteran antennae with various morphologies.

  2. Market trends in the projection display industry

    NASA Astrophysics Data System (ADS)

    Dash, Sweta

    2000-04-01

    The projection display industry represents a multibillion- dollar market that includes four distinct technologies. High-volume consumer products and high-value business products drive the market, with different technologies being used in different application markets. The consumer market is dominated by rear CRT technology, especially in the projection television segment. But rear LCD (liquid crystal display) and rear reflective (DLP, or Digital Light ProcessingTM) televisions are slowly emerging as future competitors to rear CRT projectors. Front CRT projectors are still popular in the high-end home theater market. Front LCD technology and front DLP technology dominate the business market. Traditional light valve technology was the only solution for applications requiring high light outputs, but new three-chip DLP projectors meet the higher light output requirements at a lower price. In the last few years the strongest growth has been in the business market for multimedia presentation applications. This growth was due to the continued increase in display pixel formats, the continued reduction in projector weight, and the improved price/performance ratio. The projection display market will grow at a significant rate during the next five years, driven by the growth in ultraportable (< 10 pound) projectors and the shift in the consumer market to digital and HDTV products.

  3. An Experimental Study of Dependence of Optimum TBM Cutter Spacing on Pre-set Penetration Depth in Sandstone Fragmentation

    NASA Astrophysics Data System (ADS)

    Han, D. Y.; Cao, P.; Liu, J.; Zhu, J. B.

    2017-12-01

    Cutter spacing is an essential parameter in the TBM design. However, few efforts have been made to study the optimum cutter spacing incorporating penetration depth. To investigate the influence of pre-set penetration depth and cutter spacing on sandstone breakage and TBM performance, a series of sequential laboratory indentation tests were performed in a biaxial compression state. Effects of parameters including penetration force, penetration depth, chip mass, chip size distribution, groove volume, specific energy and maximum angle of lateral crack were investigated. Results show that the total mass of chips, the groove volume and the observed optimum cutter spacing increase with increasing pre-set penetration depth. It is also found that the total mass of chips could be an alternative means to determine optimum cutter spacing. In addition, analysis of chip size distribution suggests that the mass of large chips is dominated by both cutter spacing and pre-set penetration depth. After fractal dimension analysis, we found that cutter spacing and pre-set penetration depth have negligible influence on the formation of small chips and that small chips are formed due to squeezing of cutters and surface abrasion caused by shear failure. Analysis on specific energy indicates that the observed optimum spacing/penetration ratio is 10 for the sandstone, at which, the specific energy and the maximum angle of lateral cracks are smallest. The findings in this paper contribute to better understanding of the coupled effect of cutter spacing and pre-set penetration depth on TBM performance and rock breakage, and provide some guidelines for cutter arrangement.

  4. Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation

    PubMed Central

    Hood, R.R.; Vreeland, W. N.; DeVoe, D.L.

    2014-01-01

    Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug:lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care. PMID:25003823

  5. Sinuous flow in metals

    PubMed Central

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-01-01

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick “chip.” This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode—sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980

  6. Sinuous flow in metals.

    PubMed

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-08-11

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick "chip." This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode--sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect.

  7. Anatomic and hemodynamic evaluation of renal venous flow in varicocele formation using color Doppler sonography with emphasis on renal vein entrapment syndrome.

    PubMed

    Unlu, Murat; Orguc, Sebnem; Serter, Selim; Pekindil, Gokhan; Pabuscu, Yuksel

    2007-01-01

    To investigate the anatomic and hemodynamic properties of testicular venous drainage and its effects on varicocele formation and reflux using color Doppler ultrasound (US) with emphasis on renal vein entrapment syndrome. Upper abdominal and scrotal US examinations of 35 varicocele patients and 35 healthy male subjects were performed in the supine position during rest, during a Valsalva maneuver and in the erect position. The aortomesenteric angle and distance (AMA and AMD, respectively), peak mean velocities (PVs) and diameters of different segments of renal veins, testicular vein diameters and duration of flow inversion were measured. In the varicocele group, the lateral segment of the left renal vein (LRV) had a larger diameter and slower PV, and the medial segment of the LRV had a smaller diameter and faster PV. The diameter of the dominant draining vein correlated with the PV of the medial and lateral segments of the LRV, whereas there was no correlation between the diameter of the dominant draining vein and the diameters of the right renal vein (RRV) and the lateral segment of the LRV or the PV of the RRV. The duration of flow inversion correlated with the diameter and PV of the medial segment of the LRV. No correlation between the diameters and PVs of the RRV and the lateral segment of the LRV was detected. The decreases in the AMA, AMD, diameter of the medial segment of the LRV and PV of the lateral segment of the LRV, and the increases in the PV of the medial segment of the LRV and the diameter of the lateral segment of the LRV in varicocele patients in all positions suggest the entrapment or impingement of the left renal vein between the aorta and the superior mesenteric artery. This has been defined as the "nutcracker phenomenon", which is known to affect varicocele formation.

  8. Assay development and screening of a serine/threonine kinase in an on-chip mode using caliper nanofluidics technology.

    PubMed

    Perrin, Dominique; Frémaux, Christèle; Scheer, Alexander

    2006-06-01

    Kinases are key targets for drug discovery. In the field of screening in general and especially in the kinase area, because of considerations of efficiency and cost, radioactivity-based assays tend to be replaced by alternative, mostly fluorescence-based, assays. Today, the limiting factor is rarely the number of data points that can be obtained but rather the quality of the data, enzyme availability, and cost. In this article, the authors describe the development of an assay for a kinase screen based on the electrophoretic separation of fluorescent product and substrate using a Caliper-based nanofluidics environment in on-chip incubation mode. The authors present the results of screening a focused set of 32,000 compounds together with confirmation data obtained in a filtration assay. In addition, they have made a small-scale comparison between the on-chip and off-chip nanofluidics screening modes. In their hands, the screen in on-chip mode is characterized by high precision most likely due to the absence of liquid pipetting; an excellent confirmation rate (62%) in an independent assay format, namely, filtration; and good sensitivity. This study led to the identification of 4 novel chemical series of inhibitors.

  9. Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying.

    PubMed

    Ohara-Takada, Akiko; Matsuura-Endo, Chie; Chuda, Yoshihiro; Ono, Hiroshi; Yada, Hiroshi; Yoshida, Mitsuru; Kobayashi, Akira; Tsuda, Shogo; Takigawa, Shigenobu; Noda, Takahiro; Yamauchi, Hiroaki; Mori, Motoyuki

    2005-07-01

    Changes in the sugar and amino acid contents of potato tubers during short-term storage and the effect on the acrylamide level in chips after frying were investigated. The acrylamide content in chips began to increase after 3 days of storage at 2 degrees C in response to the increase of glucose and fructose contents in the tubers. There was strong correlation between the reducing sugar content and acrylamide level, R(2)=0.873 for fructose and R(2)=0.836 for glucose. The sucrose content had less correlation with the acrylamide content because of its decrease after 4 weeks of storage at 2 degrees C, while the reducing sugar in potato tubers and the acrylamide in chips continued to increase. The contents of the four amino acids, i.e., asparatic acid, asparagine, glutamic acid and glutamine, showed no significant correlation with the acrylamide level. These results suggest that the content of reducing sugars in potato tubers determined the degree of acrylamide formation in chips. The chip color, as evaluated by L* (lightness), was correlated well with the acrylamide content.

  10. On-chip microsystems in silicon: opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Wolffenbuttel, R. F.

    1996-03-01

    Integrated on-chip micro-instrumentation systems in silicon are complete data acquisition systems on a single chip. This concept has appeared to be the ultimate solution in many applications, as it enables in principle the metamorphosis of a basic sensing element, affected with many shortcomings, into an on-chip data acquisition unit that provides an output digital data stream in a standard format not corrupted by sensor non-idealities. Market acceptance would be maximum, as no special knowledge about the internal operation is required, self-test and self-calibration can be included and the dimensions are not different from those of the integrated circuit. The various aspects that are relevant in estimating the constraints for successful implementation of the integrated silicon smart sensor will be outlined in comparison with the properties of more conventional sensor fabrication technologies. It will be shown that the acceptance of on-chip functional integration in an application depends primarily on the added value in terms of improved specification or functionality that the resulting device provides in that application. The economic viability is therefore decisive rather than the technological constraints. This is in contrast to the traditional technology push prevailing in sensor research over market pull mechanisms.

  11. Lab-on-a-chip workshop activities for secondary school students

    PubMed Central

    Esfahani, Mohammad M. N.; Tarn, Mark D.; Choudhury, Tahmina A.; Hewitt, Laura C.; Mayo, Ashley J.; Rubin, Theodore A.; Waller, Mathew R.; Christensen, Martin G.; Dawson, Amy; Pamme, Nicole

    2016-01-01

    The ability to engage and inspire younger generations in novel areas of science is important for bringing new researchers into a burgeoning field, such as lab-on-a-chip. We recently held a lab-on-a-chip workshop for secondary school students, for which we developed a number of hands-on activities that explained various aspects of microfluidic technology, including fabrication (milling and moulding of microfluidic devices, and wax printing of microfluidic paper-based analytical devices, so-called μPADs), flow regimes (gradient formation via diffusive mixing), and applications (tissue analysis and μPADs). Questionnaires completed by the students indicated that they found the workshop both interesting and informative, with all activities proving successful, while providing feedback that could be incorporated into later iterations of the event. PMID:26865902

  12. Sequential and selective localized optical heating in water via on-chip dielectric nanopatterning.

    PubMed

    Morsy, Ahmed M; Biswas, Roshni; Povinelli, Michelle L

    2017-07-24

    We study the use of nanopatterned silicon membranes to obtain optically-induced heating in water. We show that by varying the detuning between an absorptive optical resonance of the patterned membrane and an illumination laser, both the magnitude and response time of the temperature rise can be controlled. This allows for either sequential or selective heating of different patterned areas on chip. We obtain a steady-state temperature of approximately 100 °C for a 805.5nm CW laser power density of 66 µW/μm 2 and observe microbubble formation. The ability to spatially and temporally control temperature on the microscale should enable the study of heat-induced effects in a variety of chemical and biological lab-on-chip applications.

  13. L-connect routing of die surface pads to the die edge for stacking in a 3D array

    DOEpatents

    Petersen, Robert W.

    2000-01-01

    Integrated circuit chips and method of routing the interface pads from the face of the chip or die to one or more sidewall surfaces of the die. The interconnection is routed from the face of the die to one or more edges of the die, then routed over the edge of the die and onto the side surface. A new pad is then formed on the sidewall surface, which allows multiple die or chips to be stacked in a three-dimensional array, while enabling follow-on signal routing from the sidewall pads. The routing of the interconnects and formation of the sidewall pads can be carried out in an L-connect or L-shaped routing configuration, using a metalization process such as laser pantography.

  14. Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft.

    PubMed

    Malak, Sharif F F; Anderson, Iain A

    2008-07-01

    Autogenous bone graft harvesting results in cell death within the graft and trauma at the donor site. The latter can be mitigated by using minimally invasive tools and techniques, while cell morbidity may be reduced by improving cutter design and cutting parameters. We have performed orthogonal cutting experiments on bovine cancellous bone samples, to gain a basic understanding of the cutting mechanism and to determine design guidelines for tooling. Measurements were performed at cutting speeds from 11.2 to 5000 mm/min, with tool rake angles of 23 degrees, 45 degrees and 60 degrees, and depths of cut in the range of 0.1-3.0 mm. Horizontal and vertical cutting forces were measured, and the chip formation process video recorded. Continuous chip formation was observed for rake angles of 45 degrees and 60 degrees , and depths of cut greater than 0.8 mm. Chip formation for depths of cut greater than 1.0 mm was accompanied by bone marrow extruding out of the free surfaces and away from the rake face. Specific cutting energies decreased with increasing rake angle, increasing depth of cut and increasing cutting speed. Our orthogonal cutting experiments showed that a rake angle of 60 degrees and a depth of cut of 1mm, will avoid excessive fragmentation, keep specific cutting energy low and promote bone marrow extrusion, which may be beneficial for cell survival. We demonstrate how drill bit clearance angle and feed rate can be calculated facilitating a 1mm depth of cut.

  15. Chevron formation of the zebrafish muscle segments

    PubMed Central

    Rost, Fabian; Eugster, Christina; Schröter, Christian; Oates, Andrew C.; Brusch, Lutz

    2014-01-01

    The muscle segments of fish have a folded shape, termed a chevron, which is thought to be optimal for the undulating body movements of swimming. However, the mechanism shaping the chevron during embryogenesis is not understood. Here, we used time-lapse microscopy of developing zebrafish embryos spanning the entire somitogenesis period to quantify the dynamics of chevron shape development. By comparing such time courses with the start of movements in wildtype zebrafish and analysing immobile mutants, we show that the previously implicated body movements do not play a role in chevron formation. Further, the monotonic increase of chevron angle along the anteroposterior axis revealed by our data constrains or rules out possible contributions by previously proposed mechanisms. In particular, we found that muscle pioneers are not required for chevron formation. We put forward a tension-and-resistance mechanism involving interactions between intra-segmental tension and segment boundaries. To evaluate this mechanism, we derived and analysed a mechanical model of a chain of contractile and resisting elements. The predictions of this model were verified by comparison with experimental data. Altogether, our results support the notion that a simple physical mechanism suffices to self-organize the observed spatiotemporal pattern in chevron formation. PMID:25267843

  16. ARL2BP, a protein linked to Retinitis Pigmentosa, is needed for normal photoreceptor cilia doublets and outer segment structure.

    PubMed

    Moye, Abigail R; Singh, Ratnesh; Kimler, Victoria A; Dilan, Tanya L; Munezero, Daniella; Saravanan, Thamaraiselvi; Goldberg, Andrew F X; Ramamurthy, Visvanathan

    2018-05-02

    The outer segment (OS) of photoreceptor cells is an elaboration of a primary cilium with organized stacks of membranous discs that contain the proteins needed for phototransduction and vision. Though cilia formation and function has been well characterized, little is known about the role of cilia in the development of photoreceptor OS. Nevertheless, progress has been made by studying mutations in ciliary proteins which often result in malformed outer segments and lead to blinding diseases. To investigate how ciliary proteins contribute to outer segment formation, we generated a knockout mouse model for ARL2BP, a ciliary protein linked to Retinitis Pigmentosa. The knockout mice display an early and progressive reduction in visual response. Prior to photoreceptor degeneration we observed disorganization of the photoreceptor OS, with vertically aligned discs and shortened axonemes. Interestingly, ciliary doublet microtubule structure was also impaired, displaying open B-tubule doublets, paired with loss of singlet microtubules. Based on results from this study, we conclude that ARL2BP is necessary for photoreceptor cilia doublet formation and axoneme elongation, which is required for outer segment morphogenesis and vision.

  17. A segmental pattern of alkaline phosphatase activity within the notochord coincides with the initial formation of the vertebral bodies.

    PubMed

    Grotmol, Sindre; Nordvik, Kari; Kryvi, Harald; Totland, Geir K

    2005-05-01

    This study shows that segmental expression of alkaline phosphatase (ALP) activity by the notochord of the Atlantic salmon (Salmo salar L.) coincides with the initial mineralization of the vertebral body (chordacentrum), and precedes ALP expression by presumed somite-derived cells external to the notochordal sheath. The early expression of ALP indicates that the notochord plays an instructive role in the segmental patterning of the vertebral column. The chordacentra form segmentally as mineralized rings within the notochordal sheath, and ALP activity spreads within the chordoblast layer from ventral to dorsal, displaying the same progression and spatial distribution as the mineralization process. No ALP activity was observed in sclerotomal mesenchyme surrounding the notochordal sheath during initial formation of the chordacentra. Our results support previous findings indicating that the chordoblasts initiate a segmental differentiation of the notochordal sheath into chordacentra and intervertebral regions.

  18. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  19. The Effect of Cutting Speed in Metallic Glass Grinding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serbest, Erdinc; Bakkal, Mustafa; Karipcin, Ilker

    2011-01-17

    In this paper, the effects of the cutting speed in metallic glass grinding were investigated in dry conditions. The results showed that grinding forces decrease as grinding energy increase with the increasing cutting speeds. The present investigations on ground surface and grinding chips morphologies -shows that material removal and surface formation of the BMG are mainly due to the ductile chip deformation and ploughing as well as brittle fracture of some particles from the edges of the tracks. The roughness values obtained with the Cubic Boron Nitride wheels are acceptable for the grinding operation.

  20. Automated imaging of cellular spheroids with selective plane illumination microscopy on a chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paiè, Petra; Bassi, Andrea; Bragheri, Francesca; Osellame, Roberto

    2017-02-01

    Selective plane illumination microscopy (SPIM) is an optical sectioning technique that allows imaging of biological samples at high spatio-temporal resolution. Standard SPIM devices require dedicated set-ups, complex sample preparation and accurate system alignment, thus limiting the automation of the technique, its accessibility and throughput. We present a millimeter-scaled optofluidic device that incorporates selective plane illumination and fully automatic sample delivery and scanning. To this end an integrated cylindrical lens and a three-dimensional fluidic network were fabricated by femtosecond laser micromachining into a single glass chip. This device can upgrade any standard fluorescence microscope to a SPIM system. We used SPIM on a CHIP to automatically scan biological samples under a conventional microscope, without the need of any motorized stage: tissue spheroids expressing fluorescent proteins were flowed in the microchannel at constant speed and their sections were acquired while passing through the light sheet. We demonstrate high-throughput imaging of the entire sample volume (with a rate of 30 samples/min), segmentation and quantification in thick (100-300 μm diameter) cellular spheroids. This optofluidic device gives access to SPIM analyses to non-expert end-users, opening the way to automatic and fast screening of a high number of samples at subcellular resolution.

  1. Searching for the molecular benchmark of physiological intestinal anastomotic healing in rats: an experimental study.

    PubMed

    Seifert, Gabriel J; Seifert, Michael; Kulemann, Birte; Holzner, Philipp A; Glatz, Torben; Timme, Sylvia; Sick, Olivia; Höppner, Jens; Hopt, Ulrich T; Marjanovic, Goran

    2014-01-01

    This investigation focuses on the physiological characteristics of gene transcription of intestinal tissue following anastomosis formation. In eight rats, end-to-end ileo-ileal anastomoses were performed (n = 2/group). The healthy intestinal tissue resected for this operation was used as a control. On days 0, 2, 4 and 8, 10-mm perianastomotic segments were resected. Control and perianastomotic segments were examined with an Affymetrix microarray chip to assess changes in gene regulation. Microarray findings were validated using real-time PCR for selected genes. In addition to screening global gene expression, we identified genes intensely regulated during healing and also subjected our data sets to an overrepresentation analysis using the Gene Ontology (GO) and Kyoto Encyclopedia for Genes and Genomes (KEGG). Compared to the control group, we observed that the number of differentially regulated genes peaked on day 2 with a total of 2,238 genes, decreasing by day 4 to 1,687 genes and to 1,407 genes by day 8. PCR validation for matrix metalloproteinases-3 and -13 showed not only identical transcription patterns but also analogous regulation intensity. When setting the cutoff of upregulation at 10-fold to identify genes likely to be relevant, the total gene count was significantly lower with 55, 45 and 37 genes on days 2, 4 and 8, respectively. A total of 947 GO subcategories were significantly overrepresented during anastomotic healing. Furthermore, 23 overrepresented KEGG pathways were identified. This study is the first of its kind that focuses explicitly on gene transcription during intestinal anastomotic healing under standardized conditions. Our work sets a foundation for further studies toward a more profound understanding of the physiology of anastomotic healing.

  2. Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring.

    PubMed

    Liu, Jiang; Zhang, Yu; Jiang, Min; Tian, Liping; Sun, Shiguo; Zhao, Na; Zhao, Feilang; Li, Yingchun

    2017-05-15

    In this work, a novel electrochemical detection platform was established by integrating molecularly imprinting technique with microfluidic chip and applied for trace measurement of three therapeutic drugs. The chip foundation is acrylic panel with designed grooves. In the detection cell of the chip, a Pt wire is used as the counter electrode and reference electrode, and a Au-Ag alloy microwire (NPAMW) with 3D nanoporous surface modified with electro-polymerized molecularly imprinted polymer (MIP) film as the working electrode. Detailed characterization of the chip and the working electrode was performed, and the properties were explored by cyclic voltammetry and electrochemical impedance spectroscopy. Two methods, respectively based on electrochemical catalysis and MIP/gate effect were employed for detecting warfarin sodium by using the prepared chip. The linearity of electrochemical catalysis method was in the range of 5×10 -6 -4×10 -4 M, which fails to meet clinical testing demand. By contrast, the linearity of gate effect was 2×10 -11 -4×10 -9 M with remarkably low detection limit of 8×10 -12 M (S/N=3), which is able to satisfy clinical assay. Then the system was applied for 24-h monitoring of drug concentration in plasma after administration of warfarin sodium in rabbit, and the corresponding pharmacokinetic parameters were obtained. In addition, the microfluidic chip was successfully adopted to analyze cyclophosphamide and carbamazepine, implying its good versatile ability. It is expected that this novel electrochemical microfluidic chip can act as a promising format for point-of-care testing via monitoring different analytes sensitively and conveniently. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Formulation of Saudi Propolis into Biodegradable Chitosan Chips for Vital Pulpotomy.

    PubMed

    Balata, Gihan F; Abdelhady, Mohamed I S; Mahmoud, Ghada M; Matar, Moustafa A; Abd El-Latif, Amani N

    2018-01-01

    Propolis has been widely used to treat oral cavity disorders, such as endodontal and periodontal diseases and microbial infections. The study aimed at the formulation of commercial Saudi propolis into biodegradable chitosan chips and evaluation of its effectiveness as a pulpotomy agent. The standardization of 80% ethanolic propolis extract was performed regarding its total phenolic content, total flavonoid content, quantitative estimation of main polyphenolic constituents and antioxidant activity. Chitosan chips containing propolis extract were prepared by the solvent/ casting method. The investigated variables were % of chitosan polymer (2, 2.5 and 3%), % of plasticizer (1, 5 and 10%) and incorporation of different concentrations of hydroxypropyl methylcellulose (5, 10 and 20% of polymer weight). The chips were characterized for weight and thickness uniformity, content uniformity, pH, percentage moisture loss, swelling index, tensile strength and in vitro propolis release. The optimal propolis chip formulation was further investigated in dogs regarding the short term response of primary dental pulp to propolis chips compared with the most commonly used formocresol preparation. The prepared films were flexible and demonstrated satisfactory physicochemical characteristics. The optimal formulation showed an initial release of about 41.7% of the loaded propolis followed by a sustained release extended up to 7 days. The kinetics study demonstrated that propolis release was controlled by Fick´s diffusion. The optimal propolis chip formulation resulted in less pulpal inflammation compared to formocresol, and produced hard tissue formation in all specimens. Formulation of commercial Saudi propolis as a biodegradable chitosan chip is an effective alternative to the commercially available chemical agents for the treatment of vital pulpotomy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.

    PubMed

    Yang, Chia-Chun; Andrews, Erik H; Chen, Min-Hsuan; Wang, Wan-Yu; Chen, Jeremy J W; Gerstein, Mark; Liu, Chun-Chi; Cheng, Chao

    2016-08-12

    Chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) or microarray hybridization (ChIP-chip) has been widely used to determine the genomic occupation of transcription factors (TFs). We have previously developed a probabilistic method, called TIP (Target Identification from Profiles), to identify TF target genes using ChIP-seq/ChIP-chip data. To achieve high specificity, TIP applies a conservative method to estimate significance of target genes, with the trade-off being a relatively low sensitivity of target gene identification compared to other methods. Additionally, TIP's output does not render binding-peak locations or intensity, information highly useful for visualization and general experimental biological use, while the variability of ChIP-seq/ChIP-chip file formats has made input into TIP more difficult than desired. To improve upon these facets, here we present are fined TIP with key extensions. First, it implements a Gaussian mixture model for p-value estimation, increasing target gene identification sensitivity and more accurately capturing the shape of TF binding profile distributions. Second, it enables the incorporation of TF binding-peak data by identifying their locations in significant target gene promoter regions and quantifies their strengths. Finally, for full ease of implementation we have incorporated it into a web server ( http://syslab3.nchu.edu.tw/iTAR/ ) that enables flexibility of input file format, can be used across multiple species and genome assembly versions, and is freely available for public use. The web server additionally performs GO enrichment analysis for the identified target genes to reveal the potential function of the corresponding TF. The iTAR web server provides a user-friendly interface and supports target gene identification in seven species, ranging from yeast to human. To facilitate investigating the quality of ChIP-seq/ChIP-chip data, the web server generates the chart of the characteristic binding profiles and the density plot of normalized regulatory scores. The iTAR web server is a useful tool in identifying TF target genes from ChIP-seq/ChIP-chip data and discovering biological insights.

  5. SNPchiMp: a database to disentangle the SNPchip jungle in bovine livestock.

    PubMed

    Nicolazzi, Ezequiel Luis; Picciolini, Matteo; Strozzi, Francesco; Schnabel, Robert David; Lawley, Cindy; Pirani, Ali; Brew, Fiona; Stella, Alessandra

    2014-02-11

    Currently, six commercial whole-genome SNP chips are available for cattle genotyping, produced by two different genotyping platforms. Technical issues need to be addressed to combine data that originates from the different platforms, or different versions of the same array generated by the manufacturer. For example: i) genome coordinates for SNPs may refer to different genome assemblies; ii) reference genome sequences are updated over time changing the positions, or even removing sequences which contain SNPs; iii) not all commercial SNP ID's are searchable within public databases; iv) SNPs can be coded using different formats and referencing different strands (e.g. A/B or A/C/T/G alleles, referencing forward/reverse, top/bottom or plus/minus strand); v) Due to new information being discovered, higher density chips do not necessarily include all the SNPs present in the lower density chips; and, vi) SNP IDs may not be consistent across chips and platforms. Most researchers and breed associations manage SNP data in real-time and thus require tools to standardise data in a user-friendly manner. Here we present SNPchiMp, a MySQL database linked to an open access web-based interface. Features of this interface include, but are not limited to, the following functions: 1) referencing the SNP mapping information to the latest genome assembly, 2) extraction of information contained in dbSNP for SNPs present in all commercially available bovine chips, and 3) identification of SNPs in common between two or more bovine chips (e.g. for SNP imputation from lower to higher density). In addition, SNPchiMp can retrieve this information on subsets of SNPs, accessing such data either via physical position on a supported assembly, or by a list of SNP IDs, rs or ss identifiers. This tool combines many different sources of information, that otherwise are time consuming to obtain and difficult to integrate. The SNPchiMp not only provides the information in a user-friendly format, but also enables researchers to perform a large number of operations with a few clicks of the mouse. This significantly reduces the time needed to execute the large number of operations required to manage SNP data.

  6. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.

    PubMed

    Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence

    2017-10-25

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.

  7. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part

    PubMed Central

    Fox-Rabinovich, German; Wagg, Terry

    2017-01-01

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405

  8. Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips.

    PubMed

    Jourdes, Michaël; Michel, Julien; Saucier, Cédric; Quideau, Stéphane; Teissedre, Pierre-Louis

    2011-09-01

    The C-glucosidic ellagitannins are found in wine as a result of its aging in oak barrels or in stainless steel tanks with oak chips. Once dissolved in this slightly acidic solution, the C-glucosidic ellagitannins vescalagin can react with nucleophilic entities present in red wine, such as ethanol, catechin, and epicatechin, to generate condensed hybrid products such as the β-1-O-ethylvescalagin and the flavano-ellagitannins (acutissimin A/B and epiacutissimin A/B), respectively. During this study, we first monitored the extraction kinetic and the evolution of the eight major oak-derived C-glucosidic ellagitannins in red wines aged in oak barrels or in stainless steel tank with oak chips. Their extraction rates appeared to be faster during red wine aging in stainless steel tanks with oak chips. However, their overall concentrations in wines were found higher in the wine aged in barrels. The formation rates of the vescalagin-coupled derivatives were also estimated for the first time under both red wine aging conditions (i.e., oak barrels or stainless steel tanks with oak chips). As observed for the oak-native C-glucosidic ellagitannins, the concentrations of these vescalagin derivatives were higher in the red wine aged in oak barrels than in stainless steel tanks with oak chips. Despite these differences, their relative composition was similar under both red wine aging conditions. Finally, the impact of the oak chips size and toasting level on the C-glucosidic ellagitannins concentration in wine was also investigated.

  9. Lensfree super-resolution holographic microscopy using wetting films on a chip

    NASA Astrophysics Data System (ADS)

    Mudanyali, Onur; Bishara, Waheb; Ozcan, Aydogan

    2011-08-01

    We investigate the use of wetting films to significantly improve the imaging performance of lensfree pixel super-resolution on-chip microscopy, achieving < 1 μm spatial resolution over a large imaging area of ~24 mm2. Formation of an ultra-thin wetting film over the specimen effectively creates a micro-lens effect over each object, which significantly improves the signal-to-noise-ratio and therefore the resolution of our lensfree images. We validate the performance of this approach through lensfree on-chip imaging of various objects having fine morphological features (with dimensions of e.g., ≤0.5 μm) such as Escherichia coli (E. coli), human sperm, Giardia lamblia trophozoites, polystyrene micro beads as well as red blood cells. These results are especially important for the development of highly sensitive field-portable microscopic analysis tools for resource limited settings.

  10. Computer-assisted design/computer-assisted manufacturing zirconia implant fixed complete prostheses: clinical results and technical complications up to 4 years of function.

    PubMed

    Papaspyridakos, Panos; Lal, Kunal

    2013-06-01

    To report the clinical results and technical complications with computer-assisted design/computer-assisted manufacturing (CAD/CAM) zirconia, implant fixed complete dental prostheses (IFCDPs) after 2-4 years in function. Fourteen consecutive edentulous patients (16 edentulous arches) were included in this study. Ten of the patients were women and four were men, with an average age of 58 years (range: 35-71). Ten mandibular and six maxillary arches were restored with porcelain fused to zirconia (PFZ) IFCDPs. Of the 16 arches, 14 received one-piece and 2 received segmented two-piece IFCDPs, respectively. The mean clinical follow-up period was 3 years (range: 2-4). At the last recall appointment, biological and technical parameters of dental implant treatment were evaluated. The implant and prosthesis survival rate following prosthesis insertion was 100% up to 4-year follow-up. The prostheses in 11 of the 16 restored arches were structurally sound, exhibited favorable soft tissue response, esthetics, and patient satisfaction. Five IFCDPs (31.25%) in four patients exhibited porcelain veneer chipping. Chipping was minor in three prostheses (three patients) and was addressed intraorally with polishing (one prosthesis) or composite resin (two prostheses). One patient with maxillary and mandibular zirconia IFCDP exhibited major porcelain chipping fractures which had to be repaired in the laboratory. Function, esthetics, and patient satisfaction were not affected in three of the four fracture incidents. Median crestal bone loss was 0.1 mm (0.01-0.2 mm). The presence of parafunctional activity, the IFCDP as opposing dentition, and the absence of occlusal night guard were associated with all the incidents of ceramic chipping. CAD/CAM zirconia IFCDPs are viable prosthetic treatment after 2-4 years in function, but not without complications. The porcelain chipping/fracture was the most frequent technical complication, with a 31.25% chipping rate at the prosthesis level. Despite the technical complications, increased patient satisfaction was noted. © 2012 John Wiley & Sons A/S.

  11. Improved autologous cortical bone harvest and viability with 2Flute otologic burs.

    PubMed

    Roth, Adam A; Tang, Pei-Ciao; Ye, Michael J; Mohammad, Khalid S; Nelson, Rick F

    2018-01-01

    To determine if 2Flute (Stryker Corporation, Kalamazoo, MI) otologic burs improve the size, cellular content, and bone healing of autologous cortical bone grafts harvested during canal wall reconstruction (CWR) tympanomastoidectomy with mastoid obliteration. Institutional review board-approved prospective cohort study. Human autologous cortical bone chips were harvested using various burs (4 and 6 mm diameter; multiflute, and 2Flute [Stryker Corporation]) from patients undergoing CWR tympanomastoidectomy for the treatment of chronic otitis media with cholesteatoma. Bone chip size, cell counts, cellular gene expression, and new bone formation were quantified. Bone chips were significantly larger when harvested with 2Flute (Stryker Corporation) bur compared to multiflute burs at both 6 mm diameter (113 ± 14 μm 2 vs. 66 ± 8 μm 2 ; P < 0.05) and 4 mm diameter (70 ± 8 μm 2 vs. 50 ± 3 μm 2 ; P < 0.05). After 2 weeks in culture, cell numbers were significantly higher when harvested with 2Flute (Stryker Corporation) bur compared to multiflute burs at both 6 mm diameter (48.7 ± 3 vs. 31.8 ± 3 cells/μg bone; P < 0.05) and 4 mm diameter (27.6 ± 1.2 vs. 8.8 ± 1.2 cells/μg bone; P < 0.05). Bone-derived cells express osteoblast markers (alkaline phosphatase, osteocalcin). Cultured cells are able to form new bone in culture, and bone formation is facilitated by the presence of bone chips. Use of 2Flute (Stryker Corporation) otologic burs for human autologous cortical bone harvest results in more viable bone fragments, with larger bone chips and more osteoblasts. Future studies are needed to determine if this leads to improved bone healing. NA. Laryngoscope, 128:E41-E46, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Direct biosensor detection of botulinum neurotoxin endopeptidase activity in sera from patients with type A botulism.

    PubMed

    Lévêque, Christian; Ferracci, Géraldine; Maulet, Yves; Mazuet, Christelle; Popoff, Michel; Seagar, Michael; El Far, Oussama

    2014-07-15

    Botulinum neurotoxin A (BoNT/A) has intrinsic endoprotease activity specific for SNAP-25, a key protein for presynaptic neurotransmitter release. The inactivation of SNAP-25 by BoNT/A underlies botulism, a rare but potentially fatal disease. There is a crucial need for a rapid and sensitive in vitro serological test for BoNT/A to replace the current in vivo mouse bioassay. Cleavage of SNAP-25 by BoNT/A generates neo-epitopes which can be detected by binding of a monoclonal antibody (mAb10F12) and thus measured by surface plasmon resonance (SPR). We have explored two SPR assay formats, with either mAb10F12 or His6-SNAP-25 coupled to the biosensor chip. When BoNT/A was incubated with SNAP-25 in solution and the reaction products were captured on a mAb-coated chip, a sensitivity of 5 fM (0.1LD50/ml serum) was obtained. However, this configuration required prior immunoprecipitation of BoNT/A. A sensitivity of 0.5 fM in 10% serum (0.1 LD50/ml serum) was attained when SNAP-25 was coupled directly to the chip, followed by sequential injection of BoNT/A samples and mAb10F12 into the flow system to achieve on-chip cleavage and detection, respectively. This latter format detected BoNT/A endoprotease activity in 50-100 µl serum samples from all patients (11/11) with type A botulism within 5h. No false positives occurred in sera from healthy subjects or patients with other neurological diseases. The automated chip-based procedure has excellent specificity and sensitivity, with significant advantages over the mouse bioassay in terms of rapidity, required sample volume and animal ethics. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  14. A 6-bit 4 GS/s pseudo-thermometer segmented CMOS DAC

    NASA Astrophysics Data System (ADS)

    Yijun, Song; Wenyuan, Li

    2014-06-01

    A 6-bit 4 GS/s, high-speed and power-efficient DAC for ultra-high-speed transceivers in 60 GHz band millimeter wave technology is presented. A novel pseudo-thermometer architecture is proposed to realize a good compromise between the fast conversion speed and the chip area. Symmetrical and compact floor planning and layout techniques including tree-like routing, cross-quading and common-centroid method are adopted to guarantee the chip is fully functional up to near-Nyquist frequency in a standard 0.18 μm CMOS process. Post simulation results corroborate the feasibility of the designed DAC, which canperform good static and dynamic linearity without calibration. DNL errors and INL errors can be controlled within ±0.28 LSB and ±0.26 LSB, respectively. SFDR at 4 GHz clock frequency for a 1.9 GHz near-Nyquist sinusoidal output signal is 40.83 dB and the power dissipation is less than 37 mW.

  15. Epitope-cavities generated by molecularly imprinted films measure the coincident response to anthrax protective antigen and its segments.

    PubMed

    Tai, Dar-Fu; Jhang, Ming-Hong; Chen, Guan-Yu; Wang, Sue-Chen; Lu, Kuo-Hao; Lee, Yu-Der; Liu, Hsin-Tzu

    2010-03-15

    A molecularly imprinted film was fabricated, in the presence of epitope-peptides, onto a quartz crystal microbalance (QCM) chip. These five peptides are known linear or conformational epitopes of the anthrax protective antigen PA(83). Imprinting resulted in an epitope-cavity with affinity for the corresponding template. With the use of a basic monomer, the binding-effect was further enhanced increasing the affinity to nanomolar levels. The affinities of the peptide to their corresponding molecularly induced polymers (MIPs) were more closely related to the molecular weight of the analyte than to the number of residues. All epitope-cavities differentiated their epitope region on the protective antigen PA(83) as well as the corresponding furin cleavage fragments PA(63) and PA(20). The QCM chip differential response to the protective antigen fragment was observed in the picomolar range, thus demonstrating a method to manipulate protein on the surface with defined orientation.

  16. Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity

    PubMed Central

    Shih, Nathan P.; François, Paul; Delaune, Emilie A.; Amacher, Sharon L.

    2015-01-01

    The formation of reiterated somites along the vertebrate body axis is controlled by the segmentation clock, a molecular oscillator expressed within presomitic mesoderm (PSM) cells. Although PSM cells oscillate autonomously, they coordinate with neighboring cells to generate a sweeping wave of cyclic gene expression through the PSM that has a periodicity equal to that of somite formation. The velocity of each wave slows as it moves anteriorly through the PSM, although the dynamics of clock slowing have not been well characterized. Here, we investigate segmentation clock dynamics in the anterior PSM in developing zebrafish embryos using an in vivo clock reporter, her1:her1-venus. The her1:her1-venus reporter has single-cell resolution, allowing us to follow segmentation clock oscillations in individual cells in real-time. By retrospectively tracking oscillations of future somite boundary cells, we find that clock reporter signal increases in anterior PSM cells and that the periodicity of reporter oscillations slows to about ∼1.5 times the periodicity in posterior PSM cells. This gradual slowing of the clock in the anterior PSM creates peaks of clock expression that are separated at a two-segment periodicity both spatially and temporally, a phenomenon we observe in single cells and in tissue-wide analyses. These results differ from previous predictions that clock oscillations stop or are stabilized in the anterior PSM. Instead, PSM cells oscillate until they incorporate into somites. Our findings suggest that the segmentation clock may signal somite formation using a phase gradient with a two-somite periodicity. PMID:25968314

  17. Simultaneous wavelength conversion of ASK and DPSK signals based on four-wave-mixing in dispersion engineered silicon waveguides.

    PubMed

    Xu, Lin; Ophir, Noam; Menard, Michael; Lau, Ryan Kin Wah; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren

    2011-06-20

    We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.

  18. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) One or more electronic format documents may be submitted for storage in the non-public EDGAR data... data storage area at any time, not to exceed a total of one megabyte of digital information. If an...-public EDGAR data storage area for assembly as a segmented filing. (2) Segments shall be submitted no...

  19. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) One or more electronic format documents may be submitted for storage in the non-public EDGAR data... data storage area at any time, not to exceed a total of one megabyte of digital information. If an...-public EDGAR data storage area for assembly as a segmented filing. (2) Segments shall be submitted no...

  20. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) One or more electronic format documents may be submitted for storage in the non-public EDGAR data... data storage area at any time, not to exceed a total of one megabyte of digital information. If an...-public EDGAR data storage area for assembly as a segmented filing. (2) Segments shall be submitted no...

  1. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) One or more electronic format documents may be submitted for storage in the non-public EDGAR data... data storage area at any time, not to exceed a total of one megabyte of digital information. If an...-public EDGAR data storage area for assembly as a segmented filing. (2) Segments shall be submitted no...

  2. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) One or more electronic format documents may be submitted for storage in the non-public EDGAR data... data storage area at any time, not to exceed a total of one megabyte of digital information. If an...-public EDGAR data storage area for assembly as a segmented filing. (2) Segments shall be submitted no...

  3. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    NASA Astrophysics Data System (ADS)

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  4. [The development of reagents set in the format of DNA-chip for genetic typing of strains of Vibrio cholerae].

    PubMed

    Pudova, E A; Markelov, M L; Dedkov, V G; Tchekanova, T A; Sadjin, A I; Kirdiyashkina, N P; Bekova, M V; Deviyatkin, A A

    2014-05-01

    The necessity of development of methods of genic diagnostic of cholera is conditioned by continuation of the Seventh pandemic of cholera, taxonomic variability of strains of Vibrio cholerae involved into pandemic and also permanent danger of delivery of disease to the territory of the Russian Federation. The methods of genic diagnostic of cholera make it possible in a comparatively short time to maximally minutely characterize strains isolated from patients or their environment. The article presents information about working out reagents set for genetic typing of agents of cholera using DNA-chip. The makeup of DNA-chip included oligonucleotide probes making possible to differentiate strains of V. cholerae on serogroups and biovars and to determine their pathogenicity. The single DNA-chip makes it possible to genetically type up to 12 samples concurrently. At that, duration of analysis without accounting stage of DNA separation makes up to 5 hours. In the progress of work, 23 cholera and non-cholera strains were analyzed. The full compliance of DNA-chip typing results to previously known characteristics of strains. Hence, there is a reason to consider availability of further development of reagents set and possibility of its further application in laboratories of regional level and reference centers.

  5. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments.

    PubMed

    Li, Yun-He; Zhang, Hong-Na; Wu, Qing-Song; Muday, Gloria K

    2017-06-01

    A total of 74,745 unigenes were generated and 1975 DEGs were identified. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment were revealed. Adventitious root formation is a crucial step in plant vegetative propagation, but the molecular mechanism of adventitious root formation remains unclear. Adventitious roots formed only at the proximal cut surface (PCS) of mango cotyledon segments, whereas no roots were formed on the opposite, distal cut surface (DCS). To identify the transcript abundance changes linked to adventitious root development, RNA was isolated from PCS and DCS at 0, 4 and 7 days after culture, respectively. Illumina sequencing of libraries generated from these samples yielded 62.36 Gb high-quality reads that were assembled into 74,745 unigenes with an average sequence length of 807 base pairs, and 33,252 of the assembled unigenes at least had homologs in one of the public databases. Comparative analysis of these transcriptome databases revealed that between the different time points at PCS there were 1966 differentially expressed genes (DEGs), while there were only 51 DEGs for the PCS vs. DCS when time-matched samples were compared. Of these DEGs, 1636 were assigned to gene ontology (GO) classes, the majority of that was involved in cellular processes, metabolic processes and single-organism processes. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment are predicted to encode polar auxin transport carriers, auxin-regulated proteins, cell wall remodeling enzymes and ethylene-related proteins. In order to validate RNA-sequencing results, we further analyzed the expression profiles of 20 genes by quantitative real-time PCR. This study expands the transcriptome information for Mangifera indica and identifies candidate genes involved in adventitious root formation in cotyledon segments of mango.

  6. Ductile-regime turning of germanium and silicon

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Scattergood, Ronald O.

    1989-01-01

    Single-point diamond turning of silicon and germanium was investigated in order to clarify the role of cutting depth in coaxing a ductile chip formation in normally brittle substances. Experiments based on the rapid withdrawal of the tool from the workpiece have shown that microfracture damage is a function of the effective depth of cut (as opposed to the nominal cutting depth). In essence, damage created by the leading edge of the tool is removed several revolutions later by lower sections of the tool edge, where the effective cutting depth is less. It appears that a truly ductile cutting response can be achieved only when the effective cutting depth, or critical chip thickness, is less than about 20 nm. Factors such as tool rake angle are significant in that they will affect the actual value of the critical chip thickness for transition from brittle to ductile response. It is concluded that the critical chip thickness is an excellent parameter for measuring the effects of machining conditions on the ductility of the cut and for designing tool-workpiece geometry in both turning and grinding.

  7. Double-cross hydrostatic pressure sample injection for chip CE: variable sample plug volume and minimum number of electrodes.

    PubMed

    Luo, Yong; Wu, Dapeng; Zeng, Shaojiang; Gai, Hongwei; Long, Zhicheng; Shen, Zheng; Dai, Zhongpeng; Qin, Jianhua; Lin, Bingcheng

    2006-09-01

    A novel sample injection method for chip CE was presented. This injection method uses hydrostatic pressure, generated by emptying the sample waste reservoir, for sample loading and electrokinetic force for dispensing. The injection was performed on a double-cross microchip. One cross, created by the sample and separation channels, is used for formation of a sample plug. Another cross, formed by the sample and controlling channels, is used for plug control. By varying the electric field in the controlling channel, the sample plug volume can be linearly adjusted. Hydrostatic pressure takes advantage of its ease of generation on a microfluidic chip, without any electrode or external pressure pump, thus allowing a sample injection with a minimum number of electrodes. The potential of this injection method was demonstrated by a four-separation-channel chip CE system. In this system, parallel sample separation can be achieved with only two electrodes, which is otherwise impossible with conventional injection methods. Hydrostatic pressure maintains the sample composition during the sample loading, allowing the injection to be free of injection bias.

  8. On-chip dual-comb source for spectroscopy.

    PubMed

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal

    2018-03-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (<10 kHz) microwave beat notes. We further use one comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz).

  9. Chevron formation of the zebrafish muscle segments.

    PubMed

    Rost, Fabian; Eugster, Christina; Schröter, Christian; Oates, Andrew C; Brusch, Lutz

    2014-11-01

    The muscle segments of fish have a folded shape, termed a chevron, which is thought to be optimal for the undulating body movements of swimming. However, the mechanism shaping the chevron during embryogenesis is not understood. Here, we used time-lapse microscopy of developing zebrafish embryos spanning the entire somitogenesis period to quantify the dynamics of chevron shape development. By comparing such time courses with the start of movements in wildtype zebrafish and analysing immobile mutants, we show that the previously implicated body movements do not play a role in chevron formation. Further, the monotonic increase of chevron angle along the anteroposterior axis revealed by our data constrains or rules out possible contributions by previously proposed mechanisms. In particular, we found that muscle pioneers are not required for chevron formation. We put forward a tension-and-resistance mechanism involving interactions between intra-segmental tension and segment boundaries. To evaluate this mechanism, we derived and analysed a mechanical model of a chain of contractile and resisting elements. The predictions of this model were verified by comparison with experimental data. Altogether, our results support the notion that a simple physical mechanism suffices to self-organize the observed spatiotemporal pattern in chevron formation. © 2014. Published by The Company of Biologists Ltd.

  10. Separation of phospholipids in microfluidic chip device: application to high-throughput screening assays for lipid-modifying enzymes.

    PubMed

    Lin, Sansan; Fischl, Anthony S; Bi, Xiahui; Parce, Wally

    2003-03-01

    Phospholipid molecules such as ceramide and phosphoinositides play crucial roles in signal transduction pathways. Lipid-modifying enzymes including sphingomyelinase and phosphoinositide kinases regulate the generation and degradation of these lipid-signaling molecules and are important therapeutic targets in drug discovery. We now report a sensitive and convenient method to separate these lipids using microfluidic chip-based technology. The method takes advantage of the high-separation power of the microchips that separate lipids based on micellar electrokinetic capillary chromatography (MEKC) and the high sensitivity of fluorescence detection. We further exploited the method to develop a homogenous assay to monitor activities of lipid-modifying enzymes. The assay format consists of two steps: an on-plate enzymatic reaction using fluorescently labeled substrates followed by an on-chip MEKC separation of the reaction products from the substrates. The utility of the assay format for high-throughput screening (HTS) is demonstrated using phospholipase A(2) on the Caliper 250 HTS system: throughput of 80min per 384-well plate can be achieved with unattended running time of 5.4h. This enabling technology for assaying lipid-modifying enzymes is ideal for HTS because it avoids the use of radioactive substrates and complicated separation/washing steps and detects both substrate and product simultaneously.

  11. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  12. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity

    PubMed Central

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-01-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity. PMID:26646790

  13. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity.

    PubMed

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-12-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity.

  14. Digital PCR on a SlipChip.

    PubMed

    Shen, Feng; Du, Wenbin; Kreutz, Jason E; Fok, Alice; Ismagilov, Rustem F

    2010-10-21

    This paper describes a SlipChip to perform digital PCR in a very simple and inexpensive format. The fluidic path for introducing the sample combined with the PCR mixture was formed using elongated wells in the two plates of the SlipChip designed to overlap during sample loading. This fluidic path was broken up by simple slipping of the two plates that removed the overlap among wells and brought each well in contact with a reservoir preloaded with oil to generate 1280 reaction compartments (2.6 nL each) simultaneously. After thermal cycling, end-point fluorescence intensity was used to detect the presence of nucleic acid. Digital PCR on the SlipChip was tested quantitatively by using Staphylococcus aureus genomic DNA. As the concentration of the template DNA in the reaction mixture was diluted, the fraction of positive wells decreased as expected from the statistical analysis. No cross-contamination was observed during the experiments. At the extremes of the dynamic range of digital PCR the standard confidence interval determined using a normal approximation of the binomial distribution is not satisfactory. Therefore, statistical analysis based on the score method was used to establish these confidence intervals. The SlipChip provides a simple strategy to count nucleic acids by using PCR. It may find applications in research applications such as single cell analysis, prenatal diagnostics, and point-of-care diagnostics. SlipChip would become valuable for diagnostics, including applications in resource-limited areas after integration with isothermal nucleic acid amplification technologies and visual readout.

  15. Numerical Investigation of Delamination in Drilling of Carbon Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Tang, Wenliang; Chen, Yan; Yang, Haojun; Wang, Hua; Yao, Qiwei

    2018-03-01

    Drilling of carbon fiber reinforced polymer (CFRP) is a challenging task in modern manufacturing sector and machining induced delamination is one of the major problems affecting assembly precision. In this work, a new three-dimensional (3D) finite element model is developed to study the chip formation and entrance delamination in drilling of CFRP composites on the microscopic level. Fiber phase, matrix phase and equivalent homogeneous phase in the multi-phase model have different constitutive behaviors, respectively. A comparative drilling test, in which the cement carbide drill and unidirectional CFRP laminate are employed, is conducted to validate the proposedmodel in terms of the delamination and the similar changing trend is obtained. Microscopic mechanism of entrance delamination together with the chip formation process at four special fiber cutting angles (0°, 45°, 90° and 135°) is investigated. Moreover, the peeling force is also predicted. The results show that the delamination occurrence and the chip formation are both strongly dependent on the fiber cutting angle. The length of entrance delamination rises with increasing fiber cutting angles. Negligible delamination at 0° is attributed to the compression by the minor flank face. For 45° and 90°, the delamination resulted from the mode III fracture. At 135°, serious delamination which is driven by the mode I and III fractures is more inclined to occur and the peeling force reaches its maximum. Such numerical models can help understand the mechanism of hole entrance delamination further and provide guidance for the damage-free drilling of CFRP.

  16. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    PubMed

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  17. Enhancing Results of Microarray Hybridizations Through Microagitation

    PubMed Central

    Toegl, Andreas; Kirchner, Roland; Gauer, Christoph; Wixforth, Achim

    2003-01-01

    Protein and DNA microarrays have become a standard tool in proteomics/genomics research. In order to guarantee fast and reproducible hybridization results, the diffusion limit must be overcome. Surface acoustic wave (SAW) micro-agitation chips efficiently agitate the smallest sample volumes (down to 10 μL and below) without introducing any dead volume. The advantages are reduced reaction time, increased signal-to-noise ratio, improved homogeneity across the microarray, and better slide-to-slide reproducibility. The SAW micromixer chips are the heart of the Advalytix ArrayBooster, which is compatible with all microarrays based on the microscope slide format. PMID:13678150

  18. Storage Media for Microcomputers.

    ERIC Educational Resources Information Center

    Trautman, Rodes

    1983-01-01

    Reviews computer storage devices designed to provide additional memory for microcomputers--chips, floppy disks, hard disks, optical disks--and describes how secondary storage is used (file transfer, formatting, ingredients of incompatibility); disk/controller/software triplet; magnetic tape backup; storage volatility; disk emulator; and…

  19. Digital Microfluidics Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  20. Providing Cryptographic Security and Evidentiary Chain-of-Custody with the Advanced Forensic Format, Library, and Tools

    DTIC Science & Technology

    2008-08-19

    1 hash of the page page%d sha256 The segment for the SHA256 hash of the page Bad Sector Management: badsectors The number of sectors in the image...written, AFFLIB can automatically compute the page’s MD5, SHA-1, and/or SHA256 hash and write an associated segment containing the hash value. The...are written into segments themselves, with the segment name being name/ sha256 where name is the original segment name sha256 is the hash algorithm used

  1. Nanophotonics for Lab-on-Chip Applications

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    Optical methods are the preferred measurement techniques for biosensors and lab-on-chip applications. Their key properties are sensitivity, selectivity and robustness. To simplify the systems and their operation, it is desirable to employ label-free optical methods, requiring the functionalization of interfaces. Evanescent electromagnetic waves are probing the optical proper ties near the interfaces, a few 100 nm deep into the sample fluid. The sensitivity of these measurements can be improved with optical micro-resonators, in particular whispering gallery mode devices. Q factors as high as 2x108 have been achieved in practice. The resulting narrow-linewidth resonances and an unexpected thermo-optic effect make it possible to detect single biomolecules using a label-free biosensor principle. Future generations of biosensors and labs-on-chip for point-of-care and high-troughput screening applications will require large numbers of parallel measurement channels, necessitating optical micro-resonators in array format produced very cost-effectively.

  2. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy E; Singh, Anup K; Throckmorton, Daniel J

    2015-02-24

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  3. Microchannel gel electrophoretic separation systems and methods for preparing and using

    DOEpatents

    Herr, Amy; Singh, Anup K; Throckmorton, Daniel J

    2013-09-03

    A micro-analytical platform for performing electrophoresis-based immunoassays was developed by integrating photopolymerized cross-linked polyacrylamide gels within a microfluidic device. The microfluidic immunoassays are performed by gel electrophoretic separation and quantifying analyte concentration based upon conventional polyacrylamide gel electrophoresis (PAGE). To retain biological activity of proteins and maintain intact immune complexes, native PAGE conditions were employed. Both direct (non-competitive) and competitive immunoassay formats are demonstrated in microchips for detecting toxins and biomarkers (cytokines, c-reactive protein) in bodily fluids (serum, saliva, oral fluids). Further, a description of gradient gels fabrication is included, in an effort to describe methods we have developed for further optimization of on-chip PAGE immunoassays. The described chip-based PAGE immunoassay method enables immunoassays that are fast (minutes) and require very small amounts of sample (less than a few microliters). Use of microfabricated chips as a platform enables integration, parallel assays, automation and development of portable devices.

  4. Flip chip bumping technology—Status and update

    NASA Astrophysics Data System (ADS)

    Juergen Wolf, M.; Engelmann, Gunter; Dietrich, Lothar; Reichl, Herbert

    2006-09-01

    Flip chip technology is a key driver for new complex system architectures and high-density packaging, e.g. sensor or pixel devices. Bumped wafers/dice as key elements become very important in terms of general availability at low cost, high yield and quality level. Today, different materials, e.g. Au, Ni, AuSn, SnAg, SnAgCu, SnCu, etc., are used for flip chip interconnects and different bumping approaches are available. Electroplating is the technology of choice for high-yield wafer bumping for small bump sizes and pitches. Lead-free solder bumps require an increase in knowledge in the field of under bump metallization (UBM) and the interaction of bump and substrate metallization, the formation and growth of intermetallic compounds (IMCs) during liquid- and solid-phase reactions. Results of a new bi-layer UBM of Ni-Cu which is especially designed for small-sized lead-free solder bumps will be discussed.

  5. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    PubMed Central

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  6. Canine hippocampal formation composited into three-dimensional structure using MPRAGE.

    PubMed

    Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong

    2010-07-01

    This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.

  7. Investigation of Mechanisms of Viscoelastic Behavior of Collagen Molecule

    PubMed Central

    Ghodsi, Hossein; Darvish, Kurosh

    2015-01-01

    Unique mechanical properties of collagen molecule make it one of the most important and abundant proteins in animals. Many tissues such as connective tissues rely on these properties to function properly. In the past decade, molecular dynamics (MD) simulations have been used extensively to study the mechanical behavior of molecules. For collagen, MD simulations were primarily used to determine its elastic properties. In this study, constant force steered MD simulations were used to perform creep tests on collagen molecule segments. The mechanical behavior of the segments, with lengths of approximately 20 (1X), 38 (2X), 74 (4X), and 290 nm (16X), was characterized using a quasi-linear model to describe the observed viscoelastic responses. To investigate the mechanisms of the viscoelastic behavior, hydrogen bonds (H-bonds) rupture/formation time history of the segments were analyzed and it was shown that the formation growth rate of H-bonds in the system is correlated with the creep growth rate of the segment ( β = 2.41 βH). In addition, a linear relationship between H-bonds formation growth rate and the length of the segment was quantified. Based on these findings, a general viscoelastic model was developed and verified where, using the smallest segment as a building block, the viscoelastic properties of larger segments could be predicted. In addition, the effect of temperature control methods on the mechanical properties were studied, and it was shown that application of Langevin Dynamics had adverse effect on these properties while the Lowe-Anderson method was shown to be more appropriate for this application. This study provides information that is essential for multi-scale modeling of collagen fibrils using a bottom-up approach. PMID:26256473

  8. Investigation of mechanisms of viscoelastic behavior of collagen molecule.

    PubMed

    Ghodsi, Hossein; Darvish, Kurosh

    2015-11-01

    Unique mechanical properties of collagen molecule make it one of the most important and abundant proteins in animals. Many tissues such as connective tissues rely on these properties to function properly. In the past decade, molecular dynamics (MD) simulations have been used extensively to study the mechanical behavior of molecules. For collagen, MD simulations were primarily used to determine its elastic properties. In this study, constant force steered MD simulations were used to perform creep tests on collagen molecule segments. The mechanical behavior of the segments, with lengths of approximately 20 (1X), 38 (2X), 74 (4X), and 290 nm (16X), was characterized using a quasi-linear model to describe the observed viscoelastic responses. To investigate the mechanisms of the viscoelastic behavior, hydrogen bonds (H-bonds) rupture/formation time history of the segments were analyzed and it was shown that the formation growth rate of H-bonds in the system is correlated with the creep growth rate of the segment (β=2.41βH). In addition, a linear relationship between H-bonds formation growth rate and the length of the segment was quantified. Based on these findings, a general viscoelastic model was developed and verified here, using the smallest segment as a building block, the viscoelastic properties of larger segments could be predicted. In addition, the effect of temperature control methods on the mechanical properties were studied, and it was shown that application of Langevin Dynamics had adverse effect on these properties while the Lowe-Anderson method was shown to be more appropriate for this application. This study provides information that is essential for multi-scale modeling of collagen fibrils using a bottom-up approach. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A UWB Radar Signal Processing Platform for Real-Time Human Respiratory Feature Extraction Based on Four-Segment Linear Waveform Model.

    PubMed

    Hsieh, Chi-Hsuan; Chiu, Yu-Fang; Shen, Yi-Hsiang; Chu, Ta-Shun; Huang, Yuan-Hao

    2016-02-01

    This paper presents an ultra-wideband (UWB) impulse-radio radar signal processing platform used to analyze human respiratory features. Conventional radar systems used in human detection only analyze human respiration rates or the response of a target. However, additional respiratory signal information is available that has not been explored using radar detection. The authors previously proposed a modified raised cosine waveform (MRCW) respiration model and an iterative correlation search algorithm that could acquire additional respiratory features such as the inspiration and expiration speeds, respiration intensity, and respiration holding ratio. To realize real-time respiratory feature extraction by using the proposed UWB signal processing platform, this paper proposes a new four-segment linear waveform (FSLW) respiration model. This model offers a superior fit to the measured respiration signal compared with the MRCW model and decreases the computational complexity of feature extraction. In addition, an early-terminated iterative correlation search algorithm is presented, substantially decreasing the computational complexity and yielding negligible performance degradation. These extracted features can be considered the compressed signals used to decrease the amount of data storage required for use in long-term medical monitoring systems and can also be used in clinical diagnosis. The proposed respiratory feature extraction algorithm was designed and implemented using the proposed UWB radar signal processing platform including a radar front-end chip and an FPGA chip. The proposed radar system can detect human respiration rates at 0.1 to 1 Hz and facilitates the real-time analysis of the respiratory features of each respiration period.

  10. Low-power grating detection system chip for high-speed low-cost length and angle precision measurement

    NASA Astrophysics Data System (ADS)

    Hou, Ligang; Luo, Rengui; Wu, Wuchen

    2006-11-01

    This paper forwards a low power grating detection chip (EYAS) on length and angle precision measurement. Traditional grating detection method, such as resister chain divide or phase locked divide circuit are difficult to design and tune. The need of an additional CPU for control and display makes these methods' implementation more complex and costly. Traditional methods also suffer low sampling speed for the complex divide circuit scheme and CPU software compensation. EYAS is an application specific integrated circuit (ASIC). It integrates micro controller unit (MCU), power management unit (PMU), LCD controller, Keyboard interface, grating detection unit and other peripherals. Working at 10MHz, EYAS can afford 5MHz internal sampling rate and can handle 1.25MHz orthogonal signal from grating sensor. With a simple control interface by keyboard, sensor parameter, data processing and system working mode can be configured. Two LCD controllers can adapt to dot array LCD or segment bit LCD, which comprised output interface. PMU alters system between working and standby mode by clock gating technique to save power. EYAS in test mode (system action are more frequently than real world use) consumes 0.9mw, while 0.2mw in real world use. EYAS achieved the whole grating detection system function, high-speed orthogonal signal handling in a single chip with very low power consumption.

  11. Protein determination by microchip capillary electrophoresis using an asymmetric squarylium dye: noncovalent labeling and nonequilibrium measurement of association constants.

    PubMed

    Sloat, Amy L; Roper, Michael G; Lin, Xiuli; Ferrance, Jerome P; Landers, James P; Colyer, Christa L

    2008-08-01

    In response to a growing interest in the use of smaller, faster microchip (mu-chip) methods for the separation of proteins, advancements are proposed that employ the asymmetric squarylium dye Red-1c as a noncovalent label in mu-chip CE separations. This work compares on-column and precolumn labeling methods for the proteins BSA, beta-lactoglobulin B (beta-LB), and alpha-lactalbumin (alpha-LA). Nonequilibrium CE of equilibrium mixtures (NECEEM) represents an efficient method to determine equilibrium parameters associated with the formation of intermolecular complexes, such as those formed between the dye and proteins in this work, and it allows for the use of weak affinity probes in protein quantitation. In particular, nonequilibrium methods employing both mu-chip and conventional CE systems were implemented to determine association constants governing the formation of noncovalent complexes of the red luminescent squarylium dye Red-1c with BSA and beta-LB. By our mu-chip NECEEM method, the association constants K(assoc) for beta-LB and BSA complexes with Red-1c were found to be 3.53 x 10(3) and 1.65 x 10(5) M(-1), respectively, whereas association constants found by our conventional CE-LIF NECEEM method for these same protein-dye systems were some ten times higher. Despite discrepancies between the two methods, both confirmed the preferential interaction of Red-1c with BSA. In addition, the effect of protein concentration on measured association constant was assessed by conventional CE methods. Although a small decrease in K(assoc) was observed with the increase in protein concentration, our studies indicate that absolute protein concentration may affect the equilibrium determination less than the relative concentration of protein-to-dye.

  12. Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications

    NASA Astrophysics Data System (ADS)

    Mark, D.; Haeberle, S.; Roth, G.; Von Stetten, F.; Zengerle, R.

    This review summarizes recent developments in microfluidic platform approaches. In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the implementation of different application-specific (bio-) chemical processes, automated by microfluidic process integration [1]. A brief introduction into technical advances, major market segments and promising applications is followed by a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electro-kinetics, electrowetting, surface acoustic waves, and systems for massively parallel analysis. The review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposable, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols.

  13. New Insights into the Provenance of the Southern Junggar Basin in the Jurassic from Heavy Mineral Analysis and Sedimentary Characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, T. Q.; Wu, C.; Zhu, W.

    2017-12-01

    Being a vital component of foreland basin of Central-western China, Southern Junggar Basin has observed solid evidences of oil and gas in recent years without a considerable advancement. The key reason behind this is the lack of systematic study on sedimentary provenance analysis of the Southern Junggar basin. Three parts of the Southern Junggar basin, including the western segment (Sikeshu Sag), the central segment (Qigu Fault-Fold Belt) and the eastern segment (Fukang Fault Zone), possess varied provenance systems, giving rise to difficulties for oil-gas exploration. In this study, 3468 heavy minerals data as well as the sedimentary environment analysis of 10 profiles and 7 boreholes were used to investigate the provenances of the deposits in the southern Junggar basin . Based on this research, it reveals that: Sikeshu sag initially shaped the foreland basin prototype in the Triassic and its provenance area of the sediments from the Sikeshu sag has primarily been situated in zhongguai uplift-chepaizi uplift depositional systems located in the northwestern margin of the Junggar Basin. From the early Jurassic, the key sources were likely to be late Carboniferous to early Permain post-collisional volcanic rocks from the North Tian Shan block to Centrao Tian Shan. In the Xishanyao formation, Abundant lithic metamorphic, epidote and garnet that suggests the source rocks were possibly late Carboniferous subduction-related arc volcanic rocks of the Central Tian Shan. In the Toutunhe formation, Bogda Mountains began uplifting and gradually becoming the major provenance. Moreover, the sedimentary boundaries of Junggar basin have also shifted towards the North Tian Shan again. In the late Jurassic, the conglomerates of the Kalazha formation directly overlie the fine-grained red beds of Qigu formation, which throw light on the rapid tectonic uplift of the North Tian Shan. In the eastern segment, meandering river delta and shore-lacustrine environments were fully developed in Badaowan formation indicating that the provenance of sediments mainly derived from the Kelameili Mountains. During the late Jurassic, the rapid uplift of Bogda Mountains could result into the distinct difference in heavy mineral assemblages between the eastern segment and the central segments.

  14. Parietal Epithelial Cells Participate in the Formation of Sclerotic Lesions in Focal Segmental Glomerulosclerosis

    PubMed Central

    Smeets, Bart; Kuppe, Christoph; Sicking, Eva-Maria; Fuss, Astrid; Jirak, Peggy; van Kuppevelt, Toin H.; Endlich, Karlhans; Wetzels, Jack F.M.; Gröne, Hermann-Josef; Floege, Jürgen

    2011-01-01

    The pathogenesis of the development of sclerotic lesions in focal segmental glomerulosclerosis (FSGS) remains unknown. Here, we selectively tagged podocytes or parietal epithelial cells (PECs) to determine whether PECs contribute to sclerosis. In three distinct models of FSGS (5/6-nephrectomy + DOCA-salt; the murine transgenic chronic Thy1.1 model; or the MWF rat) and in human biopsies, the primary injury to induce FSGS associated with focal activation of PECs and the formation of cellular adhesions to the capillary tuft. From this entry site, activated PECs invaded the affected segment of the glomerular tuft and deposited extracellular matrix. Within the affected segment, podocytes were lost and mesangial sclerosis developed within the endocapillary compartment. In conclusion, these results demonstrate that PECs contribute to the development and progression of the sclerotic lesions that define FSGS, but this pathogenesis may be relevant to all etiologies of glomerulosclerosis. PMID:21719782

  15. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish.

    PubMed

    Raghupathy, Rakesh K; Zhang, Xun; Alhasani, Reem H; Zhou, Xinzhi; Mullin, Margaret; Reilly, James; Li, Wenchang; Liu, Mugen; Shu, Xinhua

    2016-08-01

    Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Formation of rings from segments of HeLa-cell nuclear deoxyribonucleic acid

    PubMed Central

    Hardman, Norman

    1974-01-01

    Duplex segments of HeLa-cell nuclear DNA were generated by cleavage with DNA restriction endonuclease from Haemophilus influenzae. About 20–25% of the DNA segments produced, when partly degraded with exonuclease III and annealed, were found to form rings visible in the electron microscope. A further 5% of the DNA segments formed structures that were branched in configuration. Similar structures were generated from HeLa-cell DNA, without prior treatment with restriction endonuclease, when the complementary polynucleotide chains were exposed by exonuclease III action at single-chain nicks. After exposure of an average single-chain length of 1400 nucleotides per terminus at nicks in HeLa-cell DNA by exonuclease III, followed by annealing, the physical length of ring closures was estimated and found to be 0.02–0.1μm, or 50–300 base pairs. An almost identical distribution of lengths was recorded for the regions of complementary base sequence responsible for branch formation. It is proposed that most of the rings and branches are formed from classes of reiterated base sequence with an average length of 180 base pairs arranged intermittenly in HeLa-cell DNA. From the rate of formation of branched structures when HeLa-cell DNA segments were heat-denatured and annealed, it is estimated that the reiterated sequences are in families containing approximately 2400–24000 copies. ImagesPLATE 2PLATE 1 PMID:4462738

  17. Promotion of osteoblast differentiation in 3D biomaterial micro-chip arrays comprising fibronectin-coated poly(methyl methacrylate) polycarbonate.

    PubMed

    Altmann, Brigitte; Steinberg, Thorsten; Giselbrecht, Stefan; Gottwald, Eric; Tomakidi, Pascal; Bächle-Haas, Maria; Kohal, Ralf-Joachim

    2011-12-01

    Due to the architecture of solid body tissues including bone, three-dimensional (3D) in vitro microenvironments appear favorable, since herein cell growth proceeds under more physiological conditions compared to conventional 2D systems. In the present study we show that a 3D microenvironment comprising a fibronectin-coated PMMA/PC-based micro-chip promotes differentiation of primary human osteoblasts as reflected by the densely-packed 3D bone cell aggregates and expression of biomarkers indicating osteoblast differentiation. Morphogenesis and fluorescence dye-based live/dead staining revealed homogenous cell coverage of the microcavities of the chip array, whereat cells showed high viability up to 14 days. Moreover, Azur II staining proved formation of uniform sized multilayered aggregates, exhibiting progressive intracellular deposition of extracellular bone matrix constituents comprising fibronectin, osteocalcin and osteonectin from day 7 on. Compared to 2D monolayers, osteoblasts grown in the 3D chip environment displayed differential mostly higher gene expression for osteocalcin, osteonectin, and alkaline phosphatase, while collagen type I remained fairly constant in both culture environments. Our results indicate that the 3D microenvironment, based on the PMMA biomaterial chip array promotes osteoblast differentiation, and hereby renders a promising tool for tissue-specific in vitro preconditioning of osteoblasts designated for clinically-oriented bone augmentation or regeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Macromolecular Crystal Growth by Means of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  19. Printing Peptide arrays with a complementary metal oxide semiconductor chip.

    PubMed

    Loeffler, Felix F; Cheng, Yun-Chien; Muenster, Bastian; Striffler, Jakob; Liu, Fanny C; Ralf Bischoff, F; Doersam, Edgar; Breitling, Frank; Nesterov-Mueller, Alexander

    2013-01-01

    : In this chapter, we discuss the state-of-the-art peptide array technologies, comparing the spot technique, lithographical methods, and microelectronic chip-based approaches. Based on this analysis, we describe a novel peptide array synthesis method with a microelectronic chip printer. By means of a complementary metal oxide semiconductor chip, charged bioparticles can be patterned on its surface. The bioparticles serve as vehicles to transfer molecule monomers to specific synthesis spots. Our chip offers 16,384 pixel electrodes on its surface with a spot-to-spot pitch of 100 μm. By switching the voltage of each pixel between 0 and 100 V separately, it is possible to generate arbitrary particle patterns for combinatorial molecule synthesis. Afterwards, the patterned chip surface serves as a printing head to transfer the particle pattern from its surface to a synthesis substrate. We conducted a series of proof-of-principle experiments to synthesize high-density peptide arrays. Our solid phase synthesis approach is based on the 9-fluorenylmethoxycarbonyl protection group strategy. After melting the particles, embedded monomers diffuse to the surface and participate in the coupling reaction to the surface. The method demonstrated herein can be easily extended to the synthesis of more complicated artificial molecules by using bioparticles with artificial molecular building blocks. The possibility of synthesizing artificial peptides was also shown in an experiment in which we patterned biotin particles in a high-density array format. These results open the road to the development of peptide-based functional modules for diverse applications in biotechnology.

  20. Deciphering the glycosaminoglycan code with the help of microarrays.

    PubMed

    de Paz, Jose L; Seeberger, Peter H

    2008-07-01

    Carbohydrate microarrays have become a powerful tool to elucidate the biological role of complex sugars. Microarrays are particularly useful for the study of glycosaminoglycans (GAGs), a key class of carbohydrates. The high-throughput chip format enables rapid screening of large numbers of potential GAG sequences produced via a complex biosynthesis while consuming very little sample. Here, we briefly highlight the most recent advances involving GAG microarrays built with synthetic or naturally derived oligosaccharides. These chips are powerful tools for characterizing GAG-protein interactions and determining structure-activity relationships for specific sequences. Thereby, they contribute to decoding the information contained in specific GAG sequences.

  1. Determination of pore-scale hydrate phase equilibria in sediments using lab-on-a-chip technology.

    PubMed

    Almenningen, Stian; Flatlandsmo, Josef; Kovscek, Anthony R; Ersland, Geir; Fernø, Martin A

    2017-11-21

    We present an experimental protocol for fast determination of hydrate stability in porous media for a range of pressure and temperature (P, T) conditions. Using a lab-on-a-chip approach, we gain direct optical access to dynamic pore-scale hydrate formation and dissociation events to study the hydrate phase equilibria in sediments. Optical pore-scale observations of phase behavior reproduce the theoretical hydrate stability line with methane gas and distilled water, and demonstrate the accuracy of the new method. The procedure is applicable for any kind of hydrate transitions in sediments, and may be used to map gas hydrate stability zones in nature.

  2. A microfluidic system with integrated molecular imprinting polymer films for surface plasmon resonance detection

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chiang; Lee, Gwo-Bin; Chien, Fan-Ching; Chen, Shean-Jen; Chen, Wen-Janq; Yang, Ming-Chang

    2006-07-01

    This paper presents a novel microfluidic system with integrated molecular imprinting polymer (MIP) films designed for surface plasmon resonance (SPR) biosensing of multiple nanoscale biomolecules. The innovative microfluidic chip uses pneumatic microvalves and micropumps to transport a precise amount of the biosample through multiple microchannels to sensing regions containing the locally spin-coated MIP films. The signals of SPR biosensing are basically proportional to the number of molecules adsorbed on the MIP films. Hence, a precise control of flow rates inside microchannels is important to determine the adsorption amount of the molecules in the SPR/MIP chips. The integration of micropumps and microvalves can automate the sample introduction process and precisely control the amount of the sample injection to the microfluidic system. The proposed biochip enables the label-free biosensing of biomolecules in an automatic format, and provides a highly sensitive, highly specific and high-throughput detection performance. Three samples, i.e. progesterone, cholesterol and testosterone, are successfully detected using the developed system. The experimental results show that the proposed SPR/MIP microfluidic chip provides a comparable sensitivity to that of large-scale SPR techniques, but with reduced sample consumption and an automatic format. As such, the developed biochip has significant potential for a wide variety of nanoscale biosensing applications. The preliminary results of the current paper were presented at Transducers 2005, Seoul, Korea, 5-9 June 2005.

  3. An integrated eddy current detection and imaging system on a silicon chip

    NASA Technical Reports Server (NTRS)

    Henderson, H. Thurman; Kartalia, K. P.; Dury, Joseph D.

    1991-01-01

    Eddy current probes have been used for many years for numerous sensing applications including crack detection in metals. However, these applications have traditionally used the eddy current effect in the form of a physically wound single or different probe pairs which of necessity must be made quite large compared to microelectronics dimensions. Also, the traditional wound probe can only take a point reading, although that point might include tens of individual cracks or crack arrays; thus, conventional eddy current probes are beset by two major problems: (1) no detailed information can be obtained about the crack or crack array; and (2) for applications such as quality assurance, a vast amount of time must be taken to scan a complete surface. Laboratory efforts have been made to fabricate linear arrays of single turn probes in a thick film format on a ceramic substrate as well as in a flexible cable format; however, such efforts inherently suffer from relatively large size requirements as well as sensitivity issues. Preliminary efforts to fully extend eddy current probing from a point or single dimensional level to a two dimensional micro-eddy current format on a silicon chip, which might overcome all of the above problems, are presented.

  4. About Small Streams and Shiny Rocks: Macromolecular Crystal Growth in Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We are developing a novel technique with which we have grown diffraction quality protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. With this technology volumes smaller than achievable with any laboratory pipette can be dispensed with high accuracy. We have performed a feasibility study in which we crystallized several proteins with the aid of a LabChip device. The protein crystals are of excellent quality as shown by X-ray diffraction. The advantages of this new technology include improved accuracy of dispensing for small volumes, complete mixing of solution constituents without bubble formation, highly repeatable recipe and growth condition replication, and easy automation of the method. We have designed a first LabChip device specifically for protein crystallization in batch mode and can reliably dispense and mix from a range of solution constituents. We are currently testing this design. Upon completion additional crystallization techniques, such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility aboard the International Space Station.

  5. On-chip dual-comb source for spectroscopy

    PubMed Central

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L.; Lipson, Michal

    2018-01-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (<10 kHz) microwave beat notes. We further use one comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz). PMID:29511733

  6. Segmentation of dermoscopy images using wavelet networks.

    PubMed

    Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeed; Gheissari, Niloofar; Mokhtari, Mojgan; Kolahdouzan, Farzaneh

    2013-04-01

    This paper introduces a new approach for the segmentation of skin lesions in dermoscopic images based on wavelet network (WN). The WN presented here is a member of fixed-grid WNs that is formed with no need of training. In this WN, after formation of wavelet lattice, determining shift and scale parameters of wavelets with two screening stage and selecting effective wavelets, orthogonal least squares algorithm is used to calculate the network weights and to optimize the network structure. The existence of two stages of screening increases globality of the wavelet lattice and provides a better estimation of the function especially for larger scales. R, G, and B values of a dermoscopy image are considered as the network inputs and the network structure formation. Then, the image is segmented and the skin lesions exact boundary is determined accordingly. The segmentation algorithm were applied to 30 dermoscopic images and evaluated with 11 different metrics, using the segmentation result obtained by a skilled pathologist as the ground truth. Experimental results show that our method acts more effectively in comparison with some modern techniques that have been successfully used in many medical imaging problems.

  7. Enhanced Bone Formation in Segmental Defects with BMP2 in a Biologically Relevant Molecular Context

    DTIC Science & Technology

    2016-10-16

    gun shots . These do not heal on their own once a ‘critical size’ segment of bone is missing. One strategy to induce healing is to use bone-inducing...accelerate BMP2-induced bone formation by presenting the growth factor in a more biologically relevant context. This is based on our observation...that manganese increases the binding of BMP2 to COMP. The next steps are to validate these observations using BMP2:COMP on HA/PLG scaffolds in-vitro

  8. Implantation of Autologous Cartilage Chips Improves Cartilage Repair Tissue Quality in Osteochondral Defects: A Study in Göttingen Minipigs.

    PubMed

    Christensen, Bjørn Borsøe; Foldager, Casper Bindzus; Olesen, Morten Lykke; Hede, Kris Chadwick; Lind, Martin

    2016-06-01

    Osteochondral injuries have poor endogenous healing potential, and no standard treatment has been established. The use of combined layered autologous bone and cartilage chips for treatment of osteochondral defects has shown promising short-term clinical results. This study aimed to investigate the role of cartilage chips by comparing combined layered autologous bone and cartilage chips with autologous bone implantation alone in a Göttingen minipig model. The hypothesis was that the presence of cartilage chips would improve the quality of the repair tissue. Controlled laboratory study. Twelve Göttingen minipigs received 2 osteochondral defects in each knee. The defects were randomized to autologous bone graft (ABG) combined with autologous cartilage chips (autologous dual-tissue transplantation [ADTT]) or ABG alone. Six animals were euthanized at 6 months and 6 animals were euthanized at 12 months. Follow-up evaluation consisted of histomorphometry, immunohistochemistry, semiquantitative scoring (International Cartilage Repair Society II), and computed tomography. There was significantly more hyaline cartilage in the ADTT group (25.8%) compared with the ABG group (12.8%) at 6 months after treatment. At 12 months, the fraction of hyaline cartilage in the ABG group had significantly decreased to 4.8%, whereas the fraction of hyaline cartilage in the ADTT group was unchanged (20.1%). At 6 and 12 months, there was significantly more fibrocartilage in the ADTT group (44% and 60.8%) compared with the ABG group (24.5% and 41%). The fraction of fibrous tissue was significantly lower in the ADTT group compared with the ABG group at both 6 and 12 months. The implanted cartilage chips stained >75% positive for collagen type 4 and laminin at both 6 and 12 months. Significant differences were found in a number of International Cartilage Repair Society II subcategories. The volume of the remaining bone defect significantly decreased from 6 to 12 months in both treatment groups; however, no difference in volume was found between the groups at either 6 or 12 months. The presence of cartilage chips in an osteochondral defect facilitated the formation of fibrocartilage as opposed to fibrous tissue at both 6 and 12 months posttreatment. The implanted chips were present in the defect and viable after 12 months. This study substantiates the chondrogenic role of cartilage chips in osteochondral defects. © 2016 The Author(s).

  9. Stratigraphic reconnaissance of the Middle Jurassic Red Glacier Formation, Tuxedni Group, at Red Glacier, Cook Inlet, Alaska

    USGS Publications Warehouse

    LePain, David L.; Stanley, Richard G.

    2015-01-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) and U.S. Geological Survey (USGS) are implementing ongoing programs to characterize the petroleum potential of Cook Inlet basin. Since 2009 this program has included work on the Mesozoic stratigraphy of lower Cook Inlet, including the Middle Jurassic Tuxedni Group between Tuxedni and Iniskin bays (LePain and others, 2013; Stanley and others, 2013; fig. 5-1). The basal unit in the group, the Red Glacier Formation (fig. 5-2), is thought to be the principal source rock for oil produced in upper Cook Inlet, and available geochemical data support this contention (Magoon and Anders, 1992; Magoon, 1994). Despite its economic significance very little has been published on the formation since Detterman and Hartsock’s (1966) seminal contribution on the geology of the Iniskin–Tuxedni area nearly 50 years ago. Consequently its stratigraphy, contact relations with bounding formations, and source rock characteristics are poorly known. During the 2014 field season, a nearly continuous stratigraphic section through the Red Glacier Formation in its type area at Red Glacier was located and measured to characterize sedimentary facies and to collect a suite of samples for analyses of biostratigraphy, Rock-Eval pyrolysis, vitrinite reflectance, and sandstone composition (fig. 5-3).The poorly known nature of the Red Glacier Formation is likely due to its remote location, steep terrain, and the fact that the type section is split into two segments that are more than 3 km apart. The lower 375 m segment of the formation is on the ridge between Red Glacier and Lateral Glacier and the upper 1,009 m segment is on the ridge between Red Glacier and Boulder Creek (fig. 5-3). Structural complications in the area add to the difficulty in understanding how these two segments fit together.

  10. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.

    PubMed

    Frey, Olivier; Misun, Patrick M; Fluri, David A; Hengstler, Jan G; Hierlemann, Andreas

    2014-06-30

    Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.

  11. Optical biosensor system with integrated microfluidic sample preparation and TIRF based detection

    NASA Astrophysics Data System (ADS)

    Gilli, Eduard; Scheicher, Sylvia R.; Suppan, Michael; Pichler, Heinz; Rumpler, Markus; Satzinger, Valentin; Palfinger, Christian; Reil, Frank; Hajnsek, Martin; Köstler, Stefan

    2013-05-01

    There is a steadily growing demand for miniaturized bioanalytical devices allowing for on-site or point-of-care detection of biomolecules or pathogens in applications like diagnostics, food testing, or environmental monitoring. These, so called labs-on-a-chip or micro-total analysis systems (μ-TAS) should ideally enable convenient sample-in - result-out type operation. Therefore, the entire process from sample preparation, metering, reagent incubation, etc. to detection should be performed on a single disposable device (on-chip). In the early days such devices were mainly fabricated using glass or silicon substrates and adapting established fabrication technologies from the electronics and semiconductor industry. More recently, the development focuses on the use of thermoplastic polymers as they allow for low-cost high volume fabrication of disposables. One of the most promising materials for the development of plastic based lab-on-achip systems are cyclic olefin polymers and copolymers (COP/COC) due to their excellent optical properties (high transparency and low autofluorescence) and ease of processing. We present a bioanalytical system for whole blood samples comprising a disposable plastic chip based on TIRF (total internal reflection fluorescence) optical detection. The chips were fabricated by compression moulding of COP and microfluidic channels were structured by hot embossing. These microfluidic structures integrate several sample pretreatment steps. These are the separation of erythrocytes, metering of sample volume using passive valves, and reagent incubation for competitive bioassays. The surface of the following optical detection zone is functionalized with specific capture probes in an array format. The plastic chips comprise dedicated structures for simple and effective coupling of excitation light from low-cost laser diodes. This enables TIRF excitation of fluorescently labeled probes selectively bound to detection spots at the microchannel surface. The fluorescence of these detection arrays is imaged using a simple set-up based on a digital consumer camera. Image processing for spot detection and intensity calculation is accomplished using customized software. Using this combined TIRF excitation and imaging based detection approach allowes for effective suppression of background fluorescence from the sample, multiplexed detection in an array format, as well as internal calibration and background correction.

  12. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock

    PubMed Central

    Lleras Forero, Laura; Narayanan, Rachna; Huitema, Leonie FA; VanBergen, Maaike; Apschner, Alexander; Peterson-Maduro, Josi; Logister, Ive; Valentin, Guillaume

    2018-01-01

    Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord. PMID:29624170

  13. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation.

    PubMed

    Hahn, C; Weber, G; Märtin, R; Höfer, S; Kämpfer, T; Stöhlker, Th

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays - such as laser-generated plasmas - is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  14. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    NASA Astrophysics Data System (ADS)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  15. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    NASA Astrophysics Data System (ADS)

    Hahn, C.; Weber, G.; Märtin, R.; Höfer, S.; Kämpfer, T.; Stöhlker, Th.

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  16. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, C., E-mail: christoph.hahn@uni-jena.de; Höfer, S.; Kämpfer, T.

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy.more » Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.« less

  17. Analysis of Europan Cycloid Morphology and Implications for Formation Mechanisms

    NASA Technical Reports Server (NTRS)

    Marshall, S. T.; Kattenhorn, S. A.

    2004-01-01

    Europa's highly fractured crust has been shown to contain features with a range of differing morphologies. Most lineaments on Europa are believed to have initiated as cracks, although the type of cracking (e.g. tensile vs. shear) remains unclear and may vary for different morphologies. Arcuate lineaments, called cycloids or flexi, have been observed in nearly all imaged regions of Europa and have been modeled as tensile fractures that were initiated in response to diurnal variations in tides. Despite this hypothesis about the formation mechanism, there have been no detailed analyses of the variable morphologies of cycloids. We have examined Galileo images of numerous locations on Europa to develop a catalog of the different morphologies of cycloids. This study focuses on variations in morphology along individual cycloid segments and differences in cusp styles between segments, while illustrating how morphologic evidence can help unravel formation mechanisms. In so doing, we present evidence for cycloid cusps forming due to secondary fracturing during strike-slip sliding on pre-existing cycloid segments.

  18. The Brain/MINDS 3D digital marmoset brain atlas

    PubMed Central

    Woodward, Alexander; Hashikawa, Tsutomu; Maeda, Masahide; Kaneko, Takaaki; Hikishima, Keigo; Iriki, Atsushi; Okano, Hideyuki; Yamaguchi, Yoko

    2018-01-01

    We present a new 3D digital brain atlas of the non-human primate, common marmoset monkey (Callithrix jacchus), with MRI and coregistered Nissl histology data. To the best of our knowledge this is the first comprehensive digital 3D brain atlas of the common marmoset having normalized multi-modal data, cortical and sub-cortical segmentation, and in a common file format (NIfTI). The atlas can be registered to new data, is useful for connectomics, functional studies, simulation and as a reference. The atlas was based on previously published work but we provide several critical improvements to make this release valuable for researchers. Nissl histology images were processed to remove illumination and shape artifacts and then normalized to the MRI data. Brain region segmentation is provided for both hemispheres. The data is in the NIfTI format making it easy to integrate into neuroscience pipelines, whereas the previous atlas was in an inaccessible file format. We also provide cortical, mid-cortical and white matter boundary segmentations useful for visualization and analysis. PMID:29437168

  19. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor

    PubMed Central

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-01-01

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation. PMID:27983714

  20. A Real-Time Marker-Based Visual Sensor Based on a FPGA and a Soft Core Processor.

    PubMed

    Tayara, Hilal; Ham, Woonchul; Chong, Kil To

    2016-12-15

    This paper introduces a real-time marker-based visual sensor architecture for mobile robot localization and navigation. A hardware acceleration architecture for post video processing system was implemented on a field-programmable gate array (FPGA). The pose calculation algorithm was implemented in a System on Chip (SoC) with an Altera Nios II soft-core processor. For every frame, single pass image segmentation and Feature Accelerated Segment Test (FAST) corner detection were used for extracting the predefined markers with known geometries in FPGA. Coplanar PosIT algorithm was implemented on the Nios II soft-core processor supplied with floating point hardware for accelerating floating point operations. Trigonometric functions have been approximated using Taylor series and cubic approximation using Lagrange polynomials. Inverse square root method has been implemented for approximating square root computations. Real time results have been achieved and pixel streams have been processed on the fly without any need to buffer the input frame for further implementation.

  1. Web-based Visualization and Query of semantically segmented multiresolution 3D Models in the Field of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Auer, M.; Agugiaro, G.; Billen, N.; Loos, L.; Zipf, A.

    2014-05-01

    Many important Cultural Heritage sites have been studied over long periods of time by different means of technical equipment, methods and intentions by different researchers. This has led to huge amounts of heterogeneous "traditional" datasets and formats. The rising popularity of 3D models in the field of Cultural Heritage in recent years has brought additional data formats and makes it even more necessary to find solutions to manage, publish and study these data in an integrated way. The MayaArch3D project aims to realize such an integrative approach by establishing a web-based research platform bringing spatial and non-spatial databases together and providing visualization and analysis tools. Especially the 3D components of the platform use hierarchical segmentation concepts to structure the data and to perform queries on semantic entities. This paper presents a database schema to organize not only segmented models but also different Levels-of-Details and other representations of the same entity. It is further implemented in a spatial database which allows the storing of georeferenced 3D data. This enables organization and queries by semantic, geometric and spatial properties. As service for the delivery of the segmented models a standardization candidate of the OpenGeospatialConsortium (OGC), the Web3DService (W3DS) has been extended to cope with the new database schema and deliver a web friendly format for WebGL rendering. Finally a generic user interface is presented which uses the segments as navigation metaphor to browse and query the semantic segmentation levels and retrieve information from an external database of the German Archaeological Institute (DAI).

  2. Essential roles for lines in mediating leg and antennal proximodistal patterning and generating a stable Notch signaling interface at segment borders.

    PubMed

    Greenberg, Lina; Hatini, Victor

    2009-06-01

    The Drosophila leg imaginal disc provides a paradigm with which to understand the fundamental developmental mechanisms that generate an intricate appendage structure. Leg formation depends on the subdivision of the leg proximodistal (PD) axis into broad domains by the leg gap genes. The leg gap genes act combinatorially to initiate the expression of the Notch ligands Delta (Dl) and Serrate (Ser) in a segmental pattern. Dl and Ser induce the expression of a set of transcriptional regulators along the segment border, which mediate leg segment growth and joint morphogenesis. Here we show that Lines accumulates in nuclei in the presumptive tarsus and the inter-joints of proximal leg segments and governs the formation of these structures by destabilizing the nuclear protein Bowl. Across the presumptive tarsus, lines modulates the opposing expression landscapes of the leg gap gene dachshund (dac) and the tarsal PD genes, bric-a-brac 2 (bab), apterous (ap) and BarH1 (Bar). In this manner, lines inhibits proximal tarsal fates and promotes medial and distal tarsal fates. Across proximal leg segments, lines antagonizes bowl to promote Dl expression by relief-of-repression. In turn, Dl signals asymmetrically to stabilize Bowl in adjacent distal cells. Bowl, then, acts cell-autonomously, together with one or more redundant factors, to repress Dl expression. Together, lines and bowl act as a binary switch to generate a stable Notch signaling interface between Dl-expressing cells and adjacent distal cell. lines plays analogous roles in developing antennae, which are serially homologous to legs, suggesting evolutionarily conserved roles for lines in ventral appendage formation.

  3. Microoptical device for efficient read-out of active WGM resonators

    NASA Astrophysics Data System (ADS)

    Wienhold, Tobias; Brammer, Marko; Grossmann, Tobias; Schneider, Marc; Kalt, Heinz; Mappes, Timo

    2012-06-01

    Whispering-gallery mode (WGM) resonators are known to offer outstanding properties for applications in photonics and telecommunication. Despite their promising performance, one major obstacle for the use of WGM resonators in industrial products is the need of expensive components and high-precision setups for their operation, requiring a controlled lab environment. For industrial applications technically simpler and more robust realizations are desired. Active WGM resonators utilize an optical gain medium for light amplification within the resonator and may be operated as lasers. They offer several advantages over their passive counterparts, such as cheap pump sources, free space excitation of resonator modes, and potentially narrower line widths. However, collection of the light emitted from the resonator still bears several challenges. Emission occurs in plane of the resonator and radiation is emitted isotropically along the circumference. Thus, detectors positioned in plane of the resonator may collect only a limited angular segment of the resonator's light emission. We report on a microoptical device which is integrated on the resonator chip and redirects all in-plane emission of active WGM resonators into a defined off-plane direction. Redirected light can easily be collected using a standard detector. Contrary to other approaches our microoptical device does not decrease the quality factor (Q factor) of the resonator. As light from all angular segments of the resonator is collected, the detected signal-to-noise ratio is expected to be largely improved. Our microoptical device therefore offers a promising approach towards mass-producible integration of active WGM resonators, e. g. into a Lab-on-a-Chip, for sensor applications, where smallest possible frequency shifts need to be read out by a highly sensitive detector.

  4. Performance benefits and limitations of a camera network

    NASA Astrophysics Data System (ADS)

    Carr, Peter; Thomas, Paul J.; Hornsey, Richard

    2005-06-01

    Visual information is of vital significance to both animals and artificial systems. The majority of mammals rely on two images, each with a resolution of 107-108 'pixels' per image. At the other extreme are insect eyes where the field of view is segmented into 103-105 images, each comprising effectively one pixel/image. The great majority of artificial imaging systems lie nearer to the mammalian characteristics in this parameter space, although electronic compound eyes have been developed in this laboratory and elsewhere. If the definition of a vision system is expanded to include networks or swarms of sensor elements, then schools of fish, flocks of birds and ant or termite colonies occupy a region where the number of images and the pixels/image may be comparable. A useful system might then have 105 imagers, each with about 104-105 pixels. Artificial analogs to these situations include sensor webs, smart dust and co-ordinated robot clusters. As an extreme example, we might consider the collective vision system represented by the imminent existence of ~109 cellular telephones, each with a one-megapixel camera. Unoccupied regions in this resolution-segmentation parameter space suggest opportunities for innovative artificial sensor network systems. Essential for the full exploitation of these opportunities is the availability of custom CMOS image sensor chips whose characteristics can be tailored to the application. Key attributes of such a chip set might include integrated image processing and control, low cost, and low power. This paper compares selected experimentally determined system specifications for an inward-looking array of 12 cameras with the aid of a camera-network model developed to explore the tradeoff between camera resolution and the number of cameras.

  5. On measurement noise in the European TWSTFT network.

    PubMed

    Piester, Dirk; Bauch, Andreas; Becker, Jürgen; Staliuniene, Egle; Schlunegger, Christian

    2008-09-01

    Two-way satellite time and frequency transfer (TWSTFT) using geostationary telecommunication satellites is widely used in the timing community today and has also been chosen as the primary means to effect synchronization of elements of the ground segment of the European satellite navigation system Galileo. We investigated the link performance in a multistation network based on operational parameters such as the number of simultaneously transmitting stations, transmit and receive power, and chip rates of the pseudorandom noise modulation of the transmitted signals. Our work revealed that TWSTFT through a "quiet" transponder channel (2 stations transmitting only) leads to a measurement noise, expressed by the 1 pps jitter, reduced by a factor of 1.4 compared with a busy transponder carrying signals of 12 stations. The frequency transfer capability expressed by the Allan deviation is reduced at short averaging times by the same amount. At averaging times of >1 d, no such reduction could be observed, which points to the fact that other noise sources dominate at such averaging times. We also found that higher transmit power increases the carrier-to-noise density ratio at the receive station and thus entails lower jitter but causes interference with other station's signals. In addition, the use of lower chip rates, which could be accommodated by a reduced assigned bandwidth on the satellite transponder, is not recommended. The 1 pps jitter would go up by a factor of 2.5 when going from 2.5 MCh/s to 1 MCh/s. The 2 Galileo precise timing facilities (PTFs) can be included in the currently operated network of 12 stations in Europe and all requirements on the TWSTFT performance can be met, provided that suitable ground equipment will be installed in the Galileo ground segment.

  6. In vitro RNA release from a human rhinovirus monitored by means of a molecular beacon and chip electrophoresis.

    PubMed

    Weiss, Victor U; Bliem, Christina; Gösler, Irene; Fedosyuk, Sofiya; Kratzmeier, Martin; Blaas, Dieter; Allmaier, Günter

    2016-06-01

    Liquid-phase electrophoresis either in the classical capillary format or miniaturized (chip CE) is a valuable tool for quality control of virus preparations and for targeting questions related to conformational changes of viruses during infection. We present an in vitro assay to follow the release of the RNA genome from a human rhinovirus (common cold virus) by using a molecular beacon (MB) and chip CE. The MB, a probe that becomes fluorescent upon hybridization to a complementary sequence, was designed to bind close to the 3' end of the viral genome. Addition of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a well-known additive for reduction of bleaching and blinking of fluorophores in fluorescence microscopy, to the background electrolyte increased the sensitivity of our chip CE set-up. Hence, a fast, sensitive and straightforward method for the detection of viral RNA is introduced. Additionally, challenges of our assay will be discussed. In particular, we found that (i) desalting of virus preparations prior to analysis increased the recorded signal and (ii) the MB-RNA complex signal decreased with the time of virus storage at -70 °C. This suggests that 3'-proximal sequences of the viral RNA, if not the whole genome, underwent degradation during storage and/or freezing and thawing. In summary, we demonstrate, for two independent virus batches, that chip electrophoresis can be used to monitor MB hybridization to RNA released upon incubation of the native virus at 56 °C. Graphical Abstract Schematic of the study strategy: RNA released from HRV-A2 is detected by chip electrophoresis through the increase in fluorescence after genom complexation to a cognate molecular beacon.

  7. Stacked Fresnel Zone Plates for High Energy X-rays

    NASA Astrophysics Data System (ADS)

    Snigireva, Irina; Snigirev, Anatoly; Vaughan, Gavin; Di Michiel, Marco; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim

    2007-01-01

    A stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates (FZP) at high energies. Two identical Si chips each of which containing 9 FZPs were used for stacking. Alignment of the chips was achieved by on-line observation of the moiré pattern. The formation of moiré patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips were bonded together with slow solidification speed epoxy glue. A technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were experimentally tested to focus 15 and 50 keV x rays. The gain in the efficiency by factor 2.5 was demonstrated at 15 keV. The focal spot of 1.8 μm vertically and 14 μm horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing FZPs was discussed.

  8. Hard X-ray focusing by stacked Fresnel zone plates

    NASA Astrophysics Data System (ADS)

    Snigireva, Irina; Snigirev, Anatoly; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim; Kuznetsov, Serguei; Vaughan, Gavin; Di Michiel, Marco

    2007-09-01

    Stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates at high energies. Two identical Si chips each of which containing Fresnel zone plates were used for stacking. Alignment of the chips was achieved by on-line observation of the moiré pattern from the two zone plates. The formation of moiré patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips with zone plates were bonded together with slow solidification speed epoxy glue. Technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were produced and experimentally tested to focus 15 and 50 keV X-rays. Gain in the efficiency by factor 2.5 was demonstrated at 15 keV. Focal spot of 1.8 μm vertically and 14 μm horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing Fresnel zone plates was discussed.

  9. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae.

    PubMed

    Hendriksen, Hanne V; Kornbrust, Beate A; Østergaard, Peter R; Stringer, Mary A

    2009-05-27

    Asparaginase, an enzyme that hydrolyzes asparagine to aspartic acid, presents a potentially very effective means for reducing acrylamide formation in foods via removal of the precursor, asparagine, from the primary ingredients. An extracellular asparaginase amenable to industrial production was cloned and expressed in Aspergillus oryzae . This asparaginase was tested in a range of food products, including semisweet biscuits, ginger biscuits, crisp bread, French fries, and sliced potato chips. In dough-based applications, addition of asparaginase resulted in reduction of acrylamide content in the final products of 34-92%. Enzyme dose, dough resting time, and water content were identified as critical parameters. Treating French fries and sliced potato chips was more challenging as the solid nature of these whole-cut products limits enzyme-substrate contact. However, by treating potato pieces with asparaginase after blanching, the acrylamide levels in French fries could be lowered by 60-85% and that in potato chips by up to 60%.

  10. nDEP-driven cell patterning and bottom-up construction of cell aggregates using a new bioelectronic chip.

    PubMed

    Menad, S; Franqueville, L; Haddour, N; Buret, F; Frenea-Robin, M

    2015-04-01

    Creating cell aggregates of controlled size and shape and patterning cells on substrates using a bottom-up approach constitutes important challenges for tissue-engineering applications and studies of cell-cell interactions. In this paper, we report nDEP (negative dielectrophoresis) driven assembly of cells as compact aggregates or onto defined areas using a new bioelectronic chip. This chip is composed of a quadripolar electrode array obtained using coplanar electrodes partially covered with a thin, micropatterned PDMS membrane. This thin PDMS layer was coated with poly-L-lysine and played the role of adhesive substrate for cell patterning. For the formation of detachable cell aggregates, the PDMS was not pretreated and cells were simply immobilized into assemblies maintained by cell-cell adhesion after the electric field removal. Cell viability after exposition to DEP buffer was also assessed, as well as cell spreading activity following DEP-driven assembly. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, TImothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nicholas P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  12. Molecular self assembly of mixed comb-like dextran surfactant polymers for SPR virus detection.

    PubMed

    Mai-Ngam, Katanchalee; Kiatpathomchai, Wansika; Arunrut, Narong; Sansatsadeekul, Jitlada

    2014-11-04

    The synthesis of two comb-like dextran surfactant polymers, that are different in their dextran molecular weight (MW) distribution and the presence of carboxylic groups, and their characterization are reported. A bimodal carboxylic dextran surfactant polymer consists of poly(vinyl amine) (PVAm) backbone with carboxyl higher MW dextran, non-functionalized lower MW dextran and hydrophobic hexyl branches; while a monomodal dextran surfactant polymer is PVAm grafted with non-functionalized lower MW dextran and hexyl branches. Layer formation of non-covalently attached dextran chains with bimodal MW distributions on a surface plasmon resonance (SPR) chip was investigated from the perspective of mixed physisorption of the bimodal and monomodal surfactant polymers. Separation distances between the carboxylic longer dextran side chains within the bimodal surfactant polymer and between the whole bimodal surfactant molecules on the chip surface could be well-controlled. SPR analysis of shrimp yellow head virus using our mixed surfactant chips showed dependence on synergetic adjustment of these separation distances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation

    PubMed Central

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R.

    2014-01-01

    Recently, “meltless” recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach. PMID:28788153

  14. An investigation of force components in orthogonal cutting of medical grade cobalt-chromium alloy (ASTM F1537).

    PubMed

    Baron, Szymon; Ahearne, Eamonn

    2017-04-01

    An ageing population, increased physical activity and obesity are identified as lifestyle changes that are contributing to the ongoing growth in the use of in-vivo prosthetics for total hip and knee arthroplasty. Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, due to their mechanical properties and excellent biocompatibility, qualify as a class of materials that meet the stringent functional requirements of these devices. To cost effectively assure the required dimensional and geometric tolerances, manufacturers rely on high-precision machining. However, a comprehensive literature review has shown that there has been limited research into the fundamental mechanisms in mechanical cutting of these alloys. This article reports on the determination of the basic cutting-force coefficients in orthogonal cutting of medical grade Co-Cr-Mo alloy ASTM F1537 over an extended range of cutting speeds ([Formula: see text]) and levels of undeformed chip thickness ([Formula: see text]). A detailed characterisation of the segmented chip morphology over this range is also reported, allowing for an estimation of the shear plane angle and, overall, providing a basis for macro-mechanic modelling of more complex cutting processes. The results are compared with a baseline medical grade titanium alloy, Ti-6Al-4V ASTM F136, and it is shown that the tangential and thrust-force components generated were, respectively, ≈35% and ≈84% higher, depending primarily on undeformed chip thickness but with some influence of the cutting speed.

  15. Test beam demonstration of silicon microstrip modules with transverse momentum discrimination for the future CMS tracking detector

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Postiau, N.; Randle-Conde, A.; Seva, T.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Wang, Q.; Yang, Y.; Zenoni, F.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Cabrera Jamoulle, J.; De Favereau De Jeneret, J.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Dutta, S.; Chowdhury, S. Roy; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Braga, D.; Coughlan, J. A.; Harder, K.; Jones, L.; Ilic, J.; Murray, P.; Prydderch, M.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Patel, R.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.

    2018-03-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeemVem/emc positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 emVem/emc was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.

  16. Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation.

    PubMed

    Paraskevas, Dimos; Vanmeensel, Kim; Vleugels, Jef; Dewulf, Wim; Deng, Yelin; Duflou, Joost R

    2014-08-06

    Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.

  17. Multienzyme-nanoparticles amplification for sensitive virus genotyping in microfluidic microbeads array using Au nanoparticle probes and quantum dots as labels.

    PubMed

    Zhang, He; Liu, Lian; Li, Cheuk-Wing; Fu, Huayang; Chen, Yao; Yang, Mengsu

    2011-11-15

    A novel microfluidic device with microbeads array was developed and sensitive genotyping of human papillomavirus was demonstrated using a multiple-enzyme labeled oligonucleotide-Au nanoparticle bioconjugate as the detection tool. This method utilizes microbeads as sensing platform that was functionalized with the capture probes and modified electron rich proteins, and uses the horseradish peroxidase (HRP)-functionalized gold nanoparticles as label with a secondary DNA probe. The functionalized microbeads were independently introduced into the arrayed chambers using the loading chip slab. A single channel was used to generate weir structures to confine the microbeads and make the beads array accessible by microfluidics. Through "sandwich" hybridization, the enzyme-functionalized Au nanoparticles labels were brought close to the surface of microbeads. The oxidation of biotin-tyramine by hydrogen peroxide resulted in the deposition of multiple biotin moieties onto the surface of beads. This deposition is markedly increased in the presence of immobilized electron rich proteins. Streptavidin-labeled quantum dots were then allowed to bind to the deposited biotin moieties and displayed the signal. Enhanced detection sensitivity was achieved where the large surface area of Au nanoparticle carriers increased the amount HRP bound per sandwiched hybridization. The on-chip genotyping method could discriminate as low as 1fmol/L (10zmol/chip, SNR>3) synthesized HPV oligonucleotides DNA. The chip-based signal enhancement of the amplified assay resulted in 1000 times higher sensitivity than that of off-chip test. In addition, this on-chip format could discriminate and genotype 10copies/μL HPV genomic DNA using the PCR products. These results demonstrated that this on-chip approach can achieve highly sensitive detection and genotyping of target DNA and can be further developed for detection of disease-related biomolecules at the lowest level at their earliest incidence. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Disposable MoS2-Arrayed MALDI MS Chip for High-Throughput and Rapid Quantification of Sulfonamides in Multiple Real Samples.

    PubMed

    Zhao, Yaju; Tang, Minmin; Liao, Qiaobo; Li, Zhoumin; Li, Hui; Xi, Kai; Tan, Li; Zhang, Mei; Xu, Danke; Chen, Hong-Yuan

    2018-04-27

    In this work, we demonstrate, for the first time, the development of a disposable MoS 2 -arrayed matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) chip combined with an immunoaffinity enrichment method for high-throughput, rapid, and simultaneous quantitation of multiple sulfonamides (SAs). The disposable MALDI MS chip was designed and fabricated by MoS 2 array formation on a commercial indium tin oxide (ITO) glass slide. A series of SAs were analyzed, and clear deprotonated signals were obtained in negative-ion mode. Compared with MoS 2 -arrayed commercial steel plate, the prepared MALDI MS chip exhibited comparable LDI efficiency, providing a good alternative and disposable substrate for MALDI MS analysis. Furthermore, internal standard (IS) was previously deposited onto the MoS 2 array to simplify the experimental process for MALDI MS quantitation. 96 sample spots could be analyzed within 10 min in one single chip to perform quantitative analysis, recovery studies, and real foodstuff detection. Upon targeted extraction and enrichment by antibody conjugated magnetic beads, five SAs were quantitatively determined by the IS-first method with the linear range of 0.5-10 ng/mL ( R 2 > 0.990). Good recoveries and repeatability were obtained for spiked pork, egg, and milk samples. SAs in several real foodstuffs were successfully identified and quantified. The developed method may provide a promising tool for the routine analysis of antibiotic residues in real samples.

  19. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips.

    PubMed

    Zhong, Xiao-Bo; Reynolds, Robert; Kidd, Judith R; Kidd, Kenneth K; Jenison, Robert; Marlar, Richard A; Ward, David C

    2003-09-30

    Single-nucleotide polymorphisms (SNPs) constitute the bulk of human genetic variation and provide excellent markers to identify genetic factors contributing to complex disease susceptibility. A rapid, sensitive, and inexpensive assay is important for large-scale SNP scoring. Here we report the development of a multiplex SNP detection system using silicon chips coated to create a thin-film optical biosensor. Allele-discriminating, aldehyde-labeled oligonucleotides are arrayed and covalently attached to a hydrazinederivatized chip surface. Target sequences (e.g., PCR amplicons) then are hybridized in the presence of a mixture of biotinylated detector probes, one for each SNP, and a thermostable DNA ligase. After a stringent wash (0.01 M NaOH), ligation of biotinylated detector probes to perfectly matched capture oligomers is visualized as a color change on the chip surface (gold to blue/purple) after brief incubations with an anti-biotin IgG-horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate. Testing of PCR fragments is completed in 30-40 min. Up to several hundred SNPs can be assayed on a 36-mm2 chip, and SNP scoring can be done by eye or with a simple digital-camera system. This assay is extremely robust, exhibits high sensitivity and specificity, and is format-flexible and economical. In studies of mutations associated with risk for venous thrombosis and genotyping/haplotyping of African-American samples, we document high-fidelity analysis with 0 misassignments in 500 assays performed in duplicate.

  20. Segmentation of financial seals and its implementation on a DSP-based system

    NASA Astrophysics Data System (ADS)

    He, Jin; Liu, Tiegen; Guo, Jingjing; Zhang, Hao

    2009-11-01

    Automatic seal imprint identification is an important part of modern financial security. Accurate segmentation is the basis of correct identification. In this paper, a DSP (digital signal processor) based identification system was designed, and an adaptive algorithm was proposed to extract binary seal images from financial instruments. As the kernel of the identification system, a DSP chip of TMS320DM642 was used to implement image processing, controlling and coordinating works of each system module. The proposed algorithm consisted of three stages, including extraction of grayscale seal image, denoising and binarization. A grayscale seal image was extracted by color transform from a financial instrument image. Adaptive morphological operations were used to highlight details of the extracted grayscale seal image and smooth the background. After median filter for noise elimination, the filtered seal image was binarized by Otsu's method. The algorithm was developed based on the DSP development environment CCS and real-time operation system DSP/BIOS. To simplify the implementation of the proposed algorithm, the calibration of white balance and the coarse positioning of the seal imprint were implemented by TMS320DM642 controlling image acquisition. IMGLIB of TMS320DM642 was used for the efficiency improvement. The experiment result showed that financial seal imprints, even with intricate and dense strokes can be correctly segmented by the proposed algorithm. Adhesion and incompleteness distortions in the segmentation results were reduced, even when the original seal imprint had a poor quality.

  1. Real-time road detection in infrared imagery

    NASA Astrophysics Data System (ADS)

    Andre, Haritini E.; McCoy, Keith

    1990-09-01

    Automatic road detection is an important part in many scene recognition applications. The extraction of roads provides a means of navigation and position update for remotely piloted vehicles or autonomous vehicles. Roads supply strong contextual information which can be used to improve the performance of automatic target recognition (ATh) systems by directing the search for targets and adjusting target classification confidences. This paper will describe algorithmic techniques for labeling roads in high-resolution infrared imagery. In addition, realtime implementation of this structural approach using a processor array based on the Martin Marietta Geometric Arithmetic Parallel Processor (GAPPTh) chip will be addressed. The algorithm described is based on the hypothesis that a road consists of pairs of line segments separated by a distance "d" with opposite gradient directions (antiparallel). The general nature of the algorithm, in addition to its parallel implementation in a single instruction, multiple data (SIMD) machine, are improvements to existing work. The algorithm seeks to identify line segments meeting the road hypothesis in a manner that performs well, even when the side of the road is fragmented due to occlusion or intersections. The use of geometrical relationships between line segments is a powerful yet flexible method of road classification which is independent of orientation. In addition, this approach can be used to nominate other types of objects with minor parametric changes.

  2. Regulation of proximal-distal intercalation during limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-12-01

    Intercalation is the process whereby cells located at the boundary of a wound interact to stimulate proliferation and the restoration of the structures between the boundaries that were lost during wounding. Thus, intercalation is widely considered to be the mechanism of regeneration. When a salamander limb is amputated, the entire cascade of regeneration events is activated, and the missing limb segments and their boundaries (joints) as well as the structures within each segment are regenerated. Therefore, in an amputated limb it is not possible to distinguish between intersegmental regeneration (formation of new segments/joints) and intrasegmental regeneration (formation of structures within a given segment), and it is not possible to study the differential regulation of these two processes. We have used two models for regeneration that allow us to study these two processes independently, and report that inter- and intrasegmental regeneration are different processes regulated by different signaling pathways. New limb segments/joints can be regenerated from cells that dedifferentiate to form blastema cells in response to signaling that is mediated in part by fibroblast growth factor. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.

  3. As-built design specification for segment map (Sgmap) program

    NASA Technical Reports Server (NTRS)

    Tompkins, M. A. (Principal Investigator)

    1981-01-01

    The segment map program (SGMAP), which is part of the CLASFYT package, is described in detail. This program is designed to output symbolic maps or numerical dumps from LANDSAT cluster/classification files or aircraft ground truth/processed ground truth files which are in 'universal' format.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M.

    Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they willmore » be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)« less

  5. Design, development, and validation of a segment support actuator for the prototype segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Deshmukh, Prasanna Gajanan; Mandal, Amaresh; Parihar, Padmakar S.; Nayak, Dayananda; Mishra, Deepta Sundar

    2018-01-01

    Segmented mirror telescopes (SMT) are built using several small hexagonal mirrors positioned and aligned by the three actuators and six edge sensors per segment to maintain the shape of the primary mirror. The actuators are responsible for maintaining and tracking the mirror segments to the desired position, in the presence of external disturbances introduced by wind, vibration, gravity, and temperature. The present paper describes our effort to develop a soft actuator and the actuator controller for prototype SMT at Indian Institute of Astrophysics, Bangalore. The actuator designed, developed, and validated is a soft actuator based on the voice coil motor and flexural elements. It is designed for the range of travel of ±1.5 mm and the force range of 25 N along with an offloading mechanism to reduce the power consumption. A precision controller using a programmable system on chip (PSoC 5Lp) and a customized drive board has also been developed for this actuator. The close loop proportional-integral-derivative (PID) controller implemented in the PSoC gets position feedback from a high-resolution linear optical encoder. The optimum PID gains are derived using relay tuning method. In the laboratory, we have conducted several experiments to test the performance of the prototype soft actuator as well as the controller. We could achieve 5.73- and 10.15-nm RMS position errors in the steady state as well as tracking with a constant speed of 350 nm/s, respectively. We also present the outcome of various performance tests carried out when off-loader is in action as well as the actuator is subjected to dynamic wind loading.

  6. DEPSCOR06: A Dispersed Monopropellant Microslug Approach for Discrete Satellite Micropropulsion

    DTIC Science & Technology

    2010-08-01

    microfluidics , a controlled slug formation process represents a virtual ’self- valving ’ mechanism which affords finer resolution than a micro- valve for a... microfluidic flow system to study the effects of geometry and material properties on the microslug formation phenomena. The inspiration for this work is derived...the-shelf microfluidic chip, manufactured by Micralyne, Inc. was used as shown in Figure A-1.1. Figure 1.A.1: Geometry of the Micralyne 50 µm x 20 µm

  7. Gradient microfluidics enables rapid bacterial growth inhibition testing.

    PubMed

    Li, Bing; Qiu, Yong; Glidle, Andrew; McIlvenna, David; Luo, Qian; Cooper, Jon; Shi, Han-Chang; Yin, Huabing

    2014-03-18

    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask).

  8. Investigation of the Effect of Tool Edge Geometry upon Cutting Variables, Tool Wear and Burr Formation Using Finite Element Simulation — A Progress Report

    NASA Astrophysics Data System (ADS)

    Sartkulvanich, Partchapol; Al-Zkeri, Ibrahim; Yen, Yung-Chang; Altan, Taylan

    2004-06-01

    This paper summarizes some of the progress made on FEM simulations of metal cutting processes conducted at the Engineering Research Center (ERC/NSM). Presented research focuses on the performance of various cutting edge geometries (hone and chamfer edges) for different tool materials and specifically on: 1) the effect of round and chamfer edge geometries on the cutting variables in machining carbon steels and 2) the effect of the edge hone size upon the flank wear and burr formation behavior in face milling of A356-T6 aluminum alloy. In the second task, an innovative design of edge preparation with varying hone size around the tool nose is also explored using FEM. In order to model three-dimensional conventional turning and face milling with two-dimensional orthogonal cutting simulations, 2D simulation cross-sections consisting of the cutting speed direction and chip flow direction are selected at different locations along the tool nose radius. Then the geometries of the hone and chamfer edges and their associated tool angles as well as uncut chip thickness are determined on these planes and employed in cutting simulations. The chip flow direction on the tool rake face are obtained by examining the wear grooves on the experimental inserts or estimated by using Oxley's approximation theory of oblique cutting. Simulation results are compared with the available experimental results (e.g. cutting forces) both qualitatively and quantitatively.

  9. Controls on mid-ocean ridge segmentation and transform fault formation from laboratory experiments using fluids of complex rheology.

    NASA Astrophysics Data System (ADS)

    Sibrant, A.; Mittelstaedt, E. L.; Davaille, A.

    2017-12-01

    Mid-ocean ridges are tectonically segmented at scales of 10s to 100s of kilometers by several types of offsets including transform faults (TF), overlapping spreading centers (OSC), and slow-spreading non-transform offsets (NTO). Differences in segmentation along axis have been attributed to changes in numerous processes including magma supply from the upwelling mantle, viscous flow in the asthenosphere, ridge migration, and plate spreading direction. The wide variety of proposed mechanisms demonstrate that the origin of tectonic offsets and their relationship to segment-scale magmatic processes remain actively debated; each of the above processes, however, invoke combinations of tectonic and magmatic processes to explain changes in segmentation. To address the role of tectonic deformation and magmatic accretion on the development of ridge offsets, we present a series of analogue experiments using colloidal silica dispersions as an Earth analogue. Saline water solutions placed in contact with these fluids, cause formation of a skin through salt diffusion, whose rheology evolves from purely viscous to elastic and brittle with increasing salinity. Experiments are performed in a Plexiglas tank with two Plexiglas plates suspended above the base of the tank. The tank is filled with the colloidal fluid to just above the suspended plates, a thin layer of saline water is spread across the surface, and spreading initiated by moving the suspended Plexiglas plates apart at a fixed rate. Results show formation of OSCs, NTOs, and TFs. For parameters corresponding to the Earth, TF offsets are < 5 mm and form at all spreading velocities, corresponding to transform offsets of < 100 km on Earth. Measured TF offset size and ridge segment lengths exhibit a Poisson-type distribution with no apparent dependence on spreading rate. Observations of TF offset size on Earth show a similar distribution for TFs <100 km long and supports the hypothesis that TFform spontaneously through a mechanical instability of the axis. Here, we present an analysis of the magmatic and tectonic controls on axis instability leading to the formation of TFs, OSCs, and NTOs, and their implications for the evolution of mid-ocean ridges.

  10. Chip breaking system for automated machine tool

    DOEpatents

    Arehart, Theodore A.; Carey, Donald O.

    1987-01-01

    The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.

  11. A microchip-based flow injection-amperometry system with mercaptopropionic acid modified electroless gold microelectrode for the selective determination of dopamine.

    PubMed

    Wang, Yi; Luo, Jie; Chen, Hengwu; He, Qiaohong; Gan, Nin; Li, Tianhua

    2008-09-12

    A novel chip-based flow injection analysis (FIA) system has been developed for automatic, rapid and selective determination of dopamine (DA) in the presence of ascorbic acid (AA). The system is composed of a polycarbonate (PC) microfluidic chip with an electrochemical detector (ED), a gravity pump, and an automatic sample loading and injection unit. The selectivity of the ED was improved by modification of the gold working microelectrode, which was fabricated on the PC chip by UV-directed electroless gold plating, with a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA). Postplating treatment methods for cleaning the surface of electroless gold microelectrodes were investigated to ensure the formation of high quality SAMs. The effects of detection potential, flow rate, and sampling volume on the performance of the chip-based FIA system were studied. Under optimum conditions, a detection limit of 74 nmol L(-1) for DA was achieved at the sample throughput rate of 180 h(-1). A RSD of 0.9% for peak heights was observed for 19 runs of a 100 micromol L(-1) DA solution. Interference-free determination of DA could be conducted if the concentration ratio of AA-DA was no more than 10.

  12. NANOG priming before full reprogramming may generate germ cell tumours.

    PubMed

    Grad, I; Hibaoui, Y; Jaconi, M; Chicha, L; Bergström-Tengzelius, R; Sailani, M R; Pelte, M F; Dahoun, S; Mitsiadis, T A; Töhönen, V; Bouillaguet, S; Antonarakis, S E; Kere, J; Zucchelli, M; Hovatta, O; Feki, A

    2011-11-09

    Reprogramming somatic cells into a pluripotent state brings patient-tailored, ethical controversy-free cellular therapy closer to reality. However, stem cells and cancer cells share many common characteristics; therefore, it is crucial to be able to discriminate between them. We generated two induced pluripotent stem cell (iPSC) lines, with NANOG pre-transduction followed by OCT3/4, SOX2, and LIN28 overexpression. One of the cell lines, CHiPS W, showed normal pluripotent stem cell characteristics, while the other, CHiPS A, though expressing pluripotency markers, failed to differentiate and gave rise to germ cell-like tumours in vivo. Comparative genomic hybridisation analysis of the generated iPS lines revealed that they were genetically more stable than human embryonic stem cell counterparts. This analysis proved to be predictive for the differentiation potential of analysed cells. Moreover, the CHiPS A line expressed a lower ratio of p53/p21 when compared to CHiPS W. NANOG pre-induction followed by OCT3/4, SOX2, MYC, and KLF4 induction resulted in the same tumour-inducing phenotype. These results underline the importance of a re-examination of the role of NANOG during reprogramming. Moreover, this reprogramming method may provide insights into primordial cell tumour formation and cancer stem cell transformation.

  13. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets.

    PubMed

    Hufnagel, Hansjörg; Huebner, Ansgar; Gülch, Carina; Güse, Katharina; Abell, Chris; Hollfelder, Florian

    2009-06-07

    We present a modular system of microfluidic PDMS devices designed to incorporate the steps necessary for cell biological assays based on mammalian tissue culture 'on-chip'. The methods described herein include the on-chip immobilization and culturing of cells as well as their manipulation by transfection. Assessment of cell viability by flow cytrometry suggests low attrition rates (<3%) and excellent growth properties in the device for up to 7 days for CHO-K1 cells. To demonstrate that key procedures from the repertoire of cell biology are possible in this format, transfection of a reporter gene (encoding green fluorescent protein) was carried out. The modular design enables efficient detachment and recollection of cells and allows assessment of the success of transfection achieved on-chip. The transfection levels (20%) are comparable to standard large scale procedures and more than 500 cells could be transfected. Finally, cells are transferred into microfluidic microdoplets, where in principle a wide range of subsequent assays can be carried out at the single cell level in droplet compartments. The procedures developed for this modular device layout further demonstrate that commonly used methods in cell biology involving mammalian cells can be reliably scaled down to allow single cell investigations in picolitre volumes.

  14. Evaluation of the antithrombotic abilities of non-vitamin K antagonist oral anticoagulants using the Total Thrombus-formation Analysis System®.

    PubMed

    Idemoto, Yoshiaki; Miura, Shin-Ichiro; Norimatsu, Kenji; Suematsu, Yasunori; Hitaka, Yuka; Shiga, Yuhei; Morii, Joji; Imaizumi, Satoshi; Kuwano, Takashi; Iwata, Atsushi; Zhang, Bo; Ogawa, Masahiro; Saku, Keijiro

    2017-03-01

    The Total Thrombus-formation Analysis System (T-TAS ® ) is a novel automated microchip flow-chamber system for the quantitative evaluation of thrombus formation under blood flow conditions. T-TAS ® uses two types of microchip to evaluate thrombus formation: the AR-chip quantifies white thrombus formation and the PL-chip quantifies platelet thrombus formation. We assessed the antithrombotic abilities of various non-vitamin K antagonist oral anticoagulants (NOACs) using T-TAS ® . One hundred and three consecutive patients who were hospitalized with cardiovascular diseases were enrolled. We divided the patients into 2 groups; a control group that did not receive an anticoagulant (non-AC group) and an anticoagulant group (AC group). The AC group was further divided into warfarin, dabigatran, rivaroxaban and apixaban groups. We performed common coagulation tests and evaluated the area under the flow pressure curve (AR-AUC and PL-AUC) to quantify antithrombotic ability using T-TAS ® at the trough. There were no significant differences in patient characteristics between the non-AC and AC groups. Only 55.1 % of patients in the AC group achieved the target blood pressure (BP) of less than 130/80 mmHg. Compared with the non-AC group, AR-AUC was significantly decreased in the AC, warfarin, dabigatran and apixaban groups. Only the rivaroxaban group did not show a significant decrease in AR-AUC. NOACs showed a significant decrease in PL-AUC compared with the non-AC group. In conclusion, T-TAS ® was a useful tool for evaluating anticoagulation activity. NOACs was significantly effective as an antiplatelet agent. BP control should be a higher priority than the selection of an anticoagulant drug, especially NOACs.

  15. Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays.

    PubMed

    Qureshi, Anjum; Niazi, Javed H; Kallempudi, Saravan; Gurbuz, Yasar

    2010-06-15

    In this study, a highly sensitive and label-free multianalyte capacitive immunosensor was developed based on gold interdigitated electrodes (GID) capacitor arrays to detect a panel of disease biomarkers. C-reactive protein (CRP), TNFalpha, and IL6 have strong and consistent relationships between markers of inflammation and future cardiovascular risk (CVR) events. Early detection of a panel of biomarkers for a disease could enable accurate prediction of a disease risk. The detection of protein biomarkers was based on relative change in capacitive/dielectric properties. Two different lab-on-a-chip formats were employed for multiple biomarker detection on GID-capacitors. In format I, capacitor arrays were immobilized with pure forms of anti-CRP, -TNFalpha, and -IL6 antibodies in which each capacitor array contained a different immobilized antibody. Here, the CRP and IL6 were detected in the range 25 pg/ml to 25 ng/ml and 25 pg/ml to 1 ng/ml for TNFalpha in format I. Sensitive detection was achieved with chips co-immobilized (diluted) with equimolar mixtures of anti-CRP, -IL6, and -TNFalpha antibodies (format II) in which all capacitors in an array were identical and tested for biomarkers with sequential incubation. The resulting response to CRP, IL6, and TNFalpha in format II for all biomarkers was found to be within 25 pg/ml to 25 ng/ml range. The capacitive biosensor for panels of inflammation and CVR markers show significant clinical value and provide great potential for detection of biomarker panel in suspected subjects for early diagnosis. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock.

    PubMed

    Lleras Forero, Laura; Narayanan, Rachna; Huitema, Leonie Fa; VanBergen, Maaike; Apschner, Alexander; Peterson-Maduro, Josi; Logister, Ive; Valentin, Guillaume; Morelli, Luis G; Oates, Andrew C; Schulte-Merker, Stefan

    2018-04-06

    Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord. © 2018, Lleras Forero et al.

  17. Design and fabrication of Ni nanowires having periodically hollow nanostructures

    NASA Astrophysics Data System (ADS)

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-09-01

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating. Electronic supplementary information (ESI) available: Information on the current profile during pulsed-electroplating, the histogram for the Ni and nanopores, and STEM images of obtained nanowires. See DOI: 10.1039/c4nr02625j

  18. Design and fabrication of a foldable 3D silicon based package for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Sokolovskij, R.; Liu, P.; van Zeijl, H. W.; Mimoun, B.; Zhang, G. Q.

    2015-05-01

    Miniaturization of solid state lighting (SSL) luminaires as well as reduction of packaging and assembly costs are of prime interest for the SSL lighting industry. A novel silicon based LED package for lighting applications is presented in this paper. The proposed design consists of 5 rigid Si tiles connected by flexible polyimide hinges with embedded interconnects (ICs). Electrical, optical and thermal characteristics were taken into consideration during design. The fabrication process involved polyimide (PI) application and patterning, aluminium interconnect integration in the flexible hinge, LED reflector cavity formation and metalization followed by through wafer DRIE etching for chip formation and release. A method to connect chip front to backside without TSVs was also integrated into the process. Post-fabrication wafer level assembly included LED mounting and wirebond, phosphor-based colour conversion and silicone encapsulation. The package formation was finalized by vacuum assisted wrapping around an assembly structure to form a 3D geometry, which is beneficial for omnidirectional lighting. Bending tests were performed on the flexible ICs and optical performance at different temperatures was evaluated. It is suggested that 3D packages can be expanded to platforms for miniaturized luminaire applications by combining monolithic silicon integration and system-in-package (SiP) technologies.

  19. A biomimetic algorithm for the improved detection of microarray features

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V., Jr.; Nicolau, Dan V.; Maini, Philip K.

    2007-02-01

    One the major difficulties of microarray technology relate to the processing of large and - importantly - error-loaded images of the dots on the chip surface. Whatever the source of these errors, those obtained in the first stage of data acquisition - segmentation - are passed down to the subsequent processes, with deleterious results. As it has been demonstrated recently that biological systems have evolved algorithms that are mathematically efficient, this contribution attempts to test an algorithm that mimics a bacterial-"patented" algorithm for the search of available space and nutrients to find, "zero-in" and eventually delimitate the features existent on the microarray surface.

  20. Process for structural geologic analysis of topography and point data

    DOEpatents

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  1. Testosterone Delivered with a Scaffold Is as Effective as Bone Morphologic Protein-2 in Promoting the Repair of Critical-Size Segmental Defect of Femoral Bone in Mice

    PubMed Central

    Cheng, Bi-Hua; Chu, Tien-Min G.; Chang, Chawnshang; Kang, Hong-Yo; Huang, Ko-En

    2013-01-01

    Loss of large bone segments due to fracture resulting from trauma or tumor removal is a common clinical problem. The goal of this study was to evaluate the use of scaffolds containing testosterone, bone morphogenetic protein-2 (BMP-2), or a combination of both for treatment of critical-size segmental bone defects in mice. A 2.5-mm wide osteotomy was created on the left femur of wildtype and androgen receptor knockout (ARKO) mice. Testosterone, BMP-2, or both were delivered locally using a scaffold that bridged the fracture. Results of X-ray imaging showed that in both wildtype and ARKO mice, BMP-2 treatment induced callus formation within 14 days after initiation of the treatment. Testosterone treatment also induced callus formation within 14 days in wildtype but not in ARKO mice. Micro-computed tomography and histological examinations revealed that testosterone treatment caused similar degrees of callus formation as BMP-2 treatment in wildtype mice, but had no such effect in ARKO mice, suggesting that the androgen receptor is required for testosterone to initiate fracture healing. These results demonstrate that testosterone is as effective as BMP-2 in promoting the healing of critical-size segmental defects and that combination therapy with testosterone and BMP-2 is superior to single therapy. Results of this study may provide a foundation to develop a cost effective and efficient therapeutic modality for treatment of bone fractures with segmental defects. PMID:23940550

  2. High performance digital read out integrated circuit (DROIC) for infrared imaging

    NASA Astrophysics Data System (ADS)

    Mizuno, Genki; Olah, Robert; Oduor, Patrick; Dutta, Achyut K.; Dhar, Nibir K.

    2016-05-01

    Banpil Photonics has developed a high-performance Digital Read-Out Integrated Circuit (DROIC) for image sensors and camera systems targeting various military, industrial and commercial Infrared (IR) imaging applications. The on-chip digitization of the pixel output eliminates the necessity for an external analog-to-digital converter (ADC), which not only cuts costs, but also enables miniaturization of packaging to achieve SWaP-C camera systems. In addition, the DROIC offers new opportunities for greater on-chip processing intelligence that are not possible in conventional analog ROICs prevalent today. Conventional ROICs, which typically can enhance only one high performance attribute such as frame rate, power consumption or noise level, fail when simultaneously targeting the most aggressive performance requirements demanded in imaging applications today. Additionally, scaling analog readout circuits to meet such requirements leads to expensive, high-power consumption with large and complex systems that are untenable in the trend towards SWaP-C. We present the implementation of a VGA format (640x512 pixels 15μm pitch) capacitivetransimpedance amplifier (CTIA) DROIC architecture that incorporates a 12-bit ADC at the pixel level. The CTIA pixel input circuitry has two gain modes with programmable full-well capacity values of 100K e- and 500K e-. The DROIC has been developed with a system-on-chip architecture in mind, where all the timing and biasing are generated internally without requiring any critical external inputs. The chip is configurable with many parameters programmable through a serial programmable interface (SPI). It features a global shutter, low power, and high frame rates programmable from 30 up 500 frames per second in full VGA format supported through 24 LVDS outputs. This DROIC, suitable for hybridization with focal plane arrays (FPA) is ideal for high-performance uncooled camera applications ranging from near IR (NIR) and shortwave IR (SWIR) to mid-wave IR (MWIR) and long-wave IR (LWIR) spectral bands.

  3. FLIS Procedures Manual. Document Identifier Code Input/Output Formats (Fixed Length). Volume 8.

    DTIC Science & Technology

    1997-04-01

    DATA ELE- MENTS. SEGMENT R MAY BE REPEATED A MAXIMUM OF THREE (3) TIMES IN ORDER TO ACQUIRE THE REQUIRED MIX OF SEGMENTS OR INDIVIDUAL DATA ELEMENTS TO...preceding record. Marketing input DICs. QI Next DRN of appropriate segment will be QF The assigned NSN or PSCN being can- reflected in accordance with Table...Classified KFC Notification of Possible Duplicate (Sub- KRP Characteristics Data mitter) Follow-Up Interrogation LFU Notification of Return, SSR Transaction

  4. Propensities of peptides containing the Asn-Gly segment to form β-turn and β-hairpin structures.

    PubMed

    Kang, Young Kee; Yoo, In Kee

    2016-09-01

    The propensities of peptides that contain the Asn-Gly segment to form β-turn and β-hairpin structures were explored using the density functional methods and the implicit solvation model in CH2 Cl2 and water. The populations of preferred β-turn structures varied depending on the sequence and solvent polarity. In solution, β-hairpin structures with βI' turn motifs were most preferred for the heptapeptides containing the Asn-Gly segment regardless of the sequence of the strands. These preferences in solution are consistent with the corresponding X-ray structures. The sequence, H-bond strengths, solvent polarity, and conformational flexibility appeared to interact to determine the preferred β-hairpin structure of each heptapeptide, although the β-turn segments played a role in promoting the formation of β-hairpin structures and the β-hairpin propensity varied. In the heptapeptides containing the Asn-Gly segment, the β-hairpin formation was enthalpically favored and entropically disfavored at 25°C in water. The calculated results for β-turns and β-hairpins containing the Asn-Gly segment imply that these structural preferences may be useful for the design of bioactive macrocyclic peptides containing β-hairpin mimics and the design of binding epitopes for protein-protein and protein-nucleic acid recognitions. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 653-664, 2016. © 2016 Wiley Periodicals, Inc.

  5. Stability of local secondary structure determines selectivity of viral RNA chaperones.

    PubMed

    Bravo, Jack P K; Borodavka, Alexander; Barth, Anders; Calabrese, Antonio N; Mojzes, Peter; Cockburn, Joseph J B; Lamb, Don C; Tuma, Roman

    2018-05-18

    To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.

  6. Software and Algorithms for Biomedical Image Data Processing and Visualization

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Lambert, James; Lam, Raymond

    2004-01-01

    A new software equipped with novel image processing algorithms and graphical-user-interface (GUI) tools has been designed for automated analysis and processing of large amounts of biomedical image data. The software, called PlaqTrak, has been specifically used for analysis of plaque on teeth of patients. New algorithms have been developed and implemented to segment teeth of interest from surrounding gum, and a real-time image-based morphing procedure is used to automatically overlay a grid onto each segmented tooth. Pattern recognition methods are used to classify plaque from surrounding gum and enamel, while ignoring glare effects due to the reflection of camera light and ambient light from enamel regions. The PlaqTrak system integrates these components into a single software suite with an easy-to-use GUI (see Figure 1) that allows users to do an end-to-end run of a patient s record, including tooth segmentation of all teeth, grid morphing of each segmented tooth, and plaque classification of each tooth image. The automated and accurate processing of the captured images to segment each tooth [see Figure 2(a)] and then detect plaque on a tooth-by-tooth basis is a critical component of the PlaqTrak system to do clinical trials and analysis with minimal human intervention. These features offer distinct advantages over other competing systems that analyze groups of teeth or synthetic teeth. PlaqTrak divides each segmented tooth into eight regions using an advanced graphics morphing procedure [see results on a chipped tooth in Figure 2(b)], and a pattern recognition classifier is then used to locate plaque [red regions in Figure 2(d)] and enamel regions. The morphing allows analysis within regions of teeth, thereby facilitating detailed statistical analysis such as the amount of plaque present on the biting surfaces on teeth. This software system is applicable to a host of biomedical applications, such as cell analysis and life detection, or robotic applications, such as product inspection or assembly of parts in space and industry.

  7. Multifractal-based nuclei segmentation in fish images.

    PubMed

    Reljin, Nikola; Slavkovic-Ilic, Marijeta; Tapia, Coya; Cihoric, Nikola; Stankovic, Srdjan

    2017-09-01

    The method for nuclei segmentation in fluorescence in-situ hybridization (FISH) images, based on the inverse multifractal analysis (IMFA) is proposed. From the blue channel of the FISH image in RGB format, the matrix of Holder exponents, with one-by-one correspondence with the image pixels, is determined first. The following semi-automatic procedure is proposed: initial nuclei segmentation is performed automatically from the matrix of Holder exponents by applying predefined hard thresholding; then the user evaluates the result and is able to refine the segmentation by changing the threshold, if necessary. After successful nuclei segmentation, the HER2 (human epidermal growth factor receptor 2) scoring can be determined in usual way: by counting red and green dots within segmented nuclei, and finding their ratio. The IMFA segmentation method is tested over 100 clinical cases, evaluated by skilled pathologist. Testing results show that the new method has advantages compared to already reported methods.

  8. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.

  9. Pangea break-up: from passive to active margin in the Colombian Caribbean Realm

    NASA Astrophysics Data System (ADS)

    Gómez, Cristhian; Kammer, Andreas

    2017-04-01

    The break-up of Western Pangea has lead to a back-arc type tectonic setting along the periphery of Gondwana, with the generation of syn-rift basins filled with sedimentary and volcanic sequences during the Middle to Late Triassic. The Indios and Corual formations in the Santa Marta massif of Northern Andes were deposited in this setting. In this contribution we elaborate a stratigraphic model for both the Indios and Corual formations, based on the description and classification of sedimentary facies and their architecture and a provenance analysis. Furthermore, geotectonic environments for volcanic and volcanoclastic rock of both units are postulated. The Indios Formation is a shallow-marine syn-rift basin fill and contains gravity flows deposits. This unit is divided into three segments; the lower and upper segments are related to fan-deltas, while the middle segment is associated to offshore deposits with lobe incursions of submarine fans. Volcanoclastic and volcanic rocks of the Indios and Corual formations are bimodal in composition and are associated to alkaline basalts. Volcanogenic deposits comprise debris, pyroclastic and lava flows of both effusive and explosive eruptions. These units record multiple phases of rifting and reveal together a first stage in the break-up of Pangea during Middle and Late Triassic in North Colombia.

  10. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products

    USDA-ARS?s Scientific Manuscript database

    Acrylamide is produced in a wide variety of carbohydrate-rich foods during high temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to ...

  11. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna.

    PubMed

    Ku, Hui-Yu; Sun, Y Henry

    2017-07-01

    Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields.

  12. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna

    PubMed Central

    2017-01-01

    Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields. PMID:28708823

  13. Attractive design: an elution solvent optimization platform for magnetic-bead-based fractionation using digital microfluidics and design of experiments.

    PubMed

    Lafrenière, Nelson M; Mudrik, Jared M; Ng, Alphonsus H C; Seale, Brendon; Spooner, Neil; Wheeler, Aaron R

    2015-04-07

    There is great interest in the development of integrated tools allowing for miniaturized sample processing, including solid phase extraction (SPE). We introduce a new format for microfluidic SPE relying on C18-functionalized magnetic beads that can be manipulated in droplets in a digital microfluidic platform. This format provides the opportunity to tune the amount (and potentially the type) of stationary phase on-the-fly, and allows the removal of beads after the extraction (to enable other operations in same device-space), maintaining device reconfigurability. Using the new method, we employed a design of experiments (DOE) operation to enable automated on-chip optimization of elution solvent composition for reversed phase SPE of a model system. Further, conditions were selected to enable on-chip fractionation of multiple analytes. Finally, the method was demonstrated to be useful for online cleanup of extracts from dried blood spot (DBS) samples. We anticipate this combination of features will prove useful for separating a wide range of analytes, from small molecules to peptides, from complex matrices.

  14. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.

    PubMed

    Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier

    2015-11-07

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.

  15. The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms.

    PubMed

    Ingham, Colin J; Sprenkels, Ad; Bomer, Johan; Molenaar, Douwe; van den Berg, Albert; van Hylckama Vlieg, Johan E T; de Vos, Willem M

    2007-11-13

    A miniaturized, disposable microbial culture chip has been fabricated by microengineering a highly porous ceramic sheet with up to one million growth compartments. This versatile culture format, with discrete compartments as small as 7 x 7 mum, allowed the growth of segregated microbial samples at an unprecedented density. The chip has been used for four complementary applications in microbiology. (i) As a fast viable counting system that showed a dynamic range of over 10,000, a low degree of bias, and a high culturing efficiency. (ii) In high-throughput screening, with the recovery of 1 fluorescent microcolony in 10,000. (iii) In screening for an enzyme-based, nondominant phenotype by the targeted recovery of Escherichia coli transformed with the plasmid pUC18, based on expression of the lacZ reporter gene without antibiotic-resistance selection. The ease of rapid, successive changes in the environment of the organisms on the chip, needed for detection of beta-galactosidase activity, highlights an advantageous feature that was also used to screen a metagenomic library for the same activity. (iv) In high-throughput screening of >200,000 isolates from Rhine water based on metabolism of a fluorogenic organophosphate compound, resulting in the recovery of 22 microcolonies with the desired phenotype. These isolates were predicted, on the basis of rRNA sequence, to include six new species. These four applications suggest that the potential for such simple, readily manufactured chips to impact microbial culture is extensive and may facilitate the full automation and multiplexing of microbial culturing, screening, counting, and selection.

  16. Enhancement of local surface plasmon resonance (LSPR) effect by biocompatible metal clustering based on ZnO nanorods in Raman measurements.

    PubMed

    Lee, Sanghwa; Lee, Seung Ho; Paulson, Bjorn; Lee, Jae-Chul; Kim, Jun Ki

    2018-06-20

    The development of size-selective and non-destructive detection techniques for nanosized biomarkers has many reasons, including the study of living cells and diagnostic applications. We present an approach for Raman signal enhancement on biocompatible sensing chips based on surface enhancement Raman spectroscopy (SERS). A sensing chip was fabricated by forming a ZnO-based nanorod structure so that the Raman enhancement occurred at a gap of several tens to several hundred nanometers. The effect of coffee-ring formation was eliminated by introducing the porous ZnO nanorods for the bio-liquid sample. A peculiarity of this approach is that the gold sputtered on the ZnO nanorods initially grows at their heads forming clusters, as confirmed by secondary electron microscopy. This clustering was verified by finite element analysis to be the main factor for enhancement of local surface plasmon resonance (LSPR). This clustering property and the ability to adjust the size of the nanorods enabled the signal acquisition points to be refined using confocal based Raman spectroscopy, which could be applied directly to the sensor chip based on the optimization process in this experiment. It was demonstrated by using common cancer cell lines that cell growth was high on these gold-clad ZnO nanorod-based surface-enhanced Raman substrates. The porosity of the sensing chip, the improved structure for signal enhancement, and the cell assay make these gold-coated ZnO nanorods substrates promising biosensing chips with excellent potential for detecting nanometric biomarkers secreted by cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Thrombus formation in the interrupted segment of the aorta.

    PubMed

    Karavelioğlu, Yusuf; Kalçık, Macit; Yetim, Mucahit; Doğan, Tolga; Gölbaşı, Zehra

    2017-06-01

    Interrupted aorta is a very rare heart defect in which there is a gap between the ascending and the descending thoracic aorta. It is usually associated with other cardiac anomalies, including ventricular septal defect, ductus arteriosus, and truncus arteriosus. Severe cases present with serious complications such as hypertension, heart failure, or intracranial hemorrhage. Neurological complications are very rare form of presentation and commonly associated with intracranial aneurysms. We have reported a case of interrupted aorta who presented with transient ischemic attack due to thrombus formation in the interrupted segment of the aorta. © 2017, Wiley Periodicals, Inc.

  18. Evaluation of segmental left ventricular wall motion by equilibrium gated radionuclide ventriculography.

    PubMed

    Van Nostrand, D; Janowitz, W R; Holmes, D R; Cohen, H A

    1979-01-01

    The ability of equilibrium gated radionuclide ventriculography to detect segmental left ventricular (LV) wall motion abnormalities was determined in 26 patients undergoing cardiac catheterization. Multiple gated studies obtained in 30 degrees right anterior oblique and 45 degrees left anterior oblique projections, played back in a movie format, were compared to the corresponding LV ventriculograms. The LV wall in the two projections was divided into eight segments. Each segment was graded as normal, hypokinetic, akinetic, dyskinetic, or indeterminate. Thirteen percent of the segments in the gated images were indeterminate; 24 out of 27 of these were proximal or distal inferior wall segments. There was exact agreement in 86% of the remaining segments. The sensitivity of the radionuclide technique for detecting normal versus any abnormal wall motion was 71%, with a specificity of 99%. Equilibrium gated ventriculography is an excellent noninvasive technique for evaluating segmental LV wall motion. It is least reliable in assessing the proximal inferior wall and interventricular septum.

  19. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation.

    PubMed

    Blakeley, Lorie R; Chen, Chunhe; Chen, Ching-Kang; Chen, Jeannie; Crouch, Rosalie K; Travis, Gabriel H; Koutalos, Yiannis

    2011-06-01

    The reactive aldehyde all-trans retinal is released in rod photoreceptor outer segments by photoactivated rhodopsin and is eliminated through reduction to all-trans retinol. This study was undertaken to determine whether all-trans retinol formation depends on Abca4, arrestin, rhodopsin kinase, and the palmitylation of rhodopsin, all of which are factors that affect the release and sequestration of all-trans retinal. Experiments were performed in isolated retinas and single living rods derived from 129/sv wild-type mice and Abca4-, arrestin-, and rhodopsin kinase-deficient mice and in genetically modified mice containing unpalmitylated rhodopsin. Formation of all-trans retinol was measured by imaging its fluorescence and by HPLC of retina extracts. The release of all-trans retinal from photoactivated rhodopsin was measured in purified rod outer segment membranes according to the increase in tryptophan fluorescence. All experiments were performed at 37°C. The kinetics of all-trans retinol formation in the different types of genetically modified mice are in reasonable agreement with those in wild-type animals. The kinetics of all-trans retinol formation in 129/sv mice are similar to those in C57BL/6, although the latter are known to regenerate rhodopsin much more slowly. The release of all-trans retinal from rhodopsin in purified membranes is significantly faster than the formation of all-trans retinol in intact cells and is independent of the presence of the palmitate groups. The regeneration of rhodopsin and the recycling of its chromophore are not strongly coupled. Neither the activities of Abca4, rhodopsin kinase, and arrestin, nor the palmitylation of rhodopsin affects the formation of all-trans retinol.

  20. Design and fabrication of Ni nanowires having periodically hollow nanostructures.

    PubMed

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-10-07

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag 'barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 ± 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni(2+) for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.

  1. Validation of Reference Genes for Gene Expression by Quantitative Real-Time RT-PCR in Stem Segments Spanning Primary to Secondary Growth in Populus tomentosa.

    PubMed

    Wang, Ying; Chen, Yajuan; Ding, Liping; Zhang, Jiewei; Wei, Jianhua; Wang, Hongzhi

    2016-01-01

    The vertical segments of Populus stems are an ideal experimental system for analyzing the gene expression patterns involved in primary and secondary growth during wood formation. Suitable internal control genes are indispensable to quantitative real time PCR (qRT-PCR) assays of gene expression. In this study, the expression stability of eight candidate reference genes was evaluated in a series of vertical stem segments of Populus tomentosa. Analysis through software packages geNorm, NormFinder and BestKeeper showed that genes ribosomal protein (RP) and tubulin beta (TUBB) were the most unstable across the developmental stages of P. tomentosa stems, and the combination of the three reference genes, eukaryotic translation initiation factor 5A (eIF5A), Actin (ACT6) and elongation factor 1-beta (EF1-beta) can provide accurate and reliable normalization of qRT-PCR analysis for target gene expression in stem segments undergoing primary and secondary growth in P. tomentosa. These results provide crucial information for transcriptional analysis in the P. tomentosa stem, which may help to improve the quality of gene expression data in these vertical stem segments, which constitute an excellent plant system for the study of wood formation.

  2. Modeling of Particle Emission During Dry Orthogonal Cutting

    NASA Astrophysics Data System (ADS)

    Khettabi, Riad; Songmene, Victor; Zaghbani, Imed; Masounave, Jacques

    2010-08-01

    Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit ( D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.

  3. Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    PubMed Central

    Maijenburg, A. Wouter; Rodijk, Eddy J.B.; Maas, Michiel G.; ten Elshof, Johan E.

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  4. 2D simulations of orthogonal cutting of CFRP: Effect of tool angles on parameters of cut and chip morphology

    NASA Astrophysics Data System (ADS)

    Benhassine, Mehdi; Rivière-Lorphèvre, Edouard; Arrazola, Pedro-Jose; Gobin, Pierre; Dumas, David; Madhavan, Vinay; Aizpuru, Ohian; Ducobu, François

    2018-05-01

    Carbon-fiber reinforced composites (CFRP) are attractive materials for lightweight designs in applications needing good mechanical properties. Machining of such materials can be harder than metals due to their anisotropic behavior. In addition, the combination of the fibers and resin mechanical properties must also include the fiber orientation. In the case of orthogonal cutting, the tool inclination, rake angle or cutting angle usually influence the cutting process but such a detailed investigation is currently lacking in a 2D configuration. To address this issue, a model has been developed with Abaqus Explicit including Hashin damage. This model has been validated with experimental results from the literature. The effects of the tool parameters (rake angle, clearance angle) on the tool cutting forces, CFRP chip morphology and surface damage are herewith studied. It is shown that 90° orientation for the CFRP increases the surface damage. The rake angle has a minimal effect on the cutting forces but modifies the chip formation times. The feed forces are increased with increasing rake angle.

  5. Exclusive data-based modeling of neutron-nuclear reactions below 20 MeV

    NASA Astrophysics Data System (ADS)

    Savin, Dmitry; Kosov, Mikhail

    2017-09-01

    We are developing CHIPS-TPT physics library for exclusive simulation of neutron-nuclear reactions below 20 MeV. Exclusive modeling reproduces each separate scattering and thus requires conservation of energy, momentum and quantum numbers in each reaction. Inclusive modeling reproduces only selected values while averaging over the others and imposes no such constraints. Therefore the exclusive modeling allows to simulate additional quantities like secondary particle correlations and gamma-lines broadening and avoid artificial fluctuations. CHIPS-TPT is based on the formerly included in Geant4 CHIPS library, which follows the exclusive approach, and extends it to incident neutrons with the energy below 20 MeV. The NeutronHP model for neutrons below 20 MeV included in Geant4 follows the inclusive approach like the well known MCNP code. Unfortunately, the available data in this energy region is mostly presented in ENDF-6 format and semi-inclusive. Imposing additional constraints on secondary particles complicates modeling but also allows to detect inconsistencies in the input data and to avoid errors that may remain unnoticed in inclusive modeling.

  6. Thin glass based packaging and photonic single-mode waveguide integration by ion-exchange technology on board and module level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Lang, Günter; Schröder, Henning

    2011-01-01

    The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.

  7. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nick P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit patbs by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabric.ted parts were hybridized using a Suss FCI50 flip chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  8. Rapid growth of some major segments of continental crust

    NASA Astrophysics Data System (ADS)

    Reymer, Arthur; Schubert, Gerald

    1986-04-01

    Some major segments of continental crust display a narrow range of Sm-Nd crustal formation ages. The sizes of the Canadian shield, the Svecokarelian province of northern Europe, the west-central United States, and the Arabian-Nubian shield suggest rapid crustal growth. Island-arc accretion models rank among the most favored tectonic models for the formation of these areas. A quantitative comparison of the growth rates of these crustal segments to Mesozoic-Cenozoic arc-addition rates shows, however, that island-arc accretion alone seems insufficient to account for the amount of crust that was produced in each of these terrains. Other additional mechanisms, such as hot-spot volcanism and underplating, may have been active in addition to arc accretion. Alternatively, large amounts of preexisting basement have gone so far undetected. *Present address: Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina 27695-8202

  9. Reconfigurable virtual electrowetting channels.

    PubMed

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  10. Wines in contact with oak wood: the impact of the variety (Carménère and Cabernet Sauvignon), format (barrels, chips and staves) and aging time on the phenolic composition.

    PubMed

    Laqui-Estaña, Jaime; López-Solís, Remigio; Peña-Neira, Álvaro; Medel-Marabolí, Marcela; Obreque-Slier, Elías

    2018-06-13

    This study characterized the flavonoid and non-flavonoid phenolic composition of Carménère and Cabernet Sauvignon wines that were in contact with barrels, chips and staves during a 12-month aging period. The wines were evaluated by spectrophotometric (for total phenols, anthocyanins and tannins, colorant intensity, hue, CIElab parameters and fractionation into mono-, oligo- and polymer of proanthocyanidins) and HPLC-DAD analyses (for ellagitannins, gallotannins, anthocyanins and low molecular weight phenols). Wines in contact with oak wood presented a strong enrichment with non-flavonoid compounds, such as caffeic, gallic, ellagic acids and ellagitannins. Wines in contact with staves stood out for the increased presence of total phenols, vanillic acid and higher color intensity, while wines aged in contact with chips showed large contents of proanthocyanidin gallates. Wines aged in barrels exhibited high contents of ellagitannins and ethyl gallates. The effect of wood on the phenolic composition was mostly associated to the original and intrinsic characteristics of each grape variety. Extraction of phenolic compounds from oak wood during wine aging is closely related to the wood format, grape variety (Carménère or Cabernet Sauvignon) and aging time. The final effect of wood on wine would be related not just to the transference of polyphenols from wood but also to structural modifications of grape polyphenols. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Determining the folding and unfolding rate constants of nucleic acids by biosensor. Application to telomere G-quadruplex.

    PubMed

    Zhao, Yong; Kan, Zhong-yuan; Zeng, Zhi-xiong; Hao, Yu-hua; Chen, Hua; Tan, Zheng

    2004-10-20

    Nucleic acid molecules may fold into secondary structures, and the formation of such structures is involved in many biological processes and technical applications. The folding and unfolding rate constants define the kinetics of conformation interconversion and the stability of these structures and is important in realizing their functions. We developed a method to determine these kinetic parameters using an optical biosensor based on surface plasmon resonance. The folding and unfolding of a nucleic acid is coupled with a hybridization reaction by immobilization of the target nucleic acid on a sensor chip surface and injection of a complementary probe nucleic acid over the sensor chip surface. By monitoring the time course of duplex formation, both the folding and unfolding rate constants for the target nucleic acid and the association and dissociation rate constants for the target-probe duplex can all be derived from the same measurement. We applied this method to determine the folding and unfolding rate constants of the G-quadruplex of human telomere sequence (TTAGGG)(4) and its association and dissociation rate constants with the complementary strand (CCCTAA)(4). The results show that both the folding and unfolding occur on the time scale of minutes at physiological concentration of K(+). We speculate that this property might be important for telomere elongation. A complete set of the kinetic parameters for both of the structures allows us to study the competition between the formation of the quadruplex and the duplex. Calculations indicate that the formation of both the quadruplex and the duplex is strand concentration-dependent, and the quadruplex can be efficiently formed at low strand concentration. This property may provide the basis for the formation of the quadruplex in vivo in the presence of a complementary strand.

  12. Major Element Analysis of the Target Rocks at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Hoerz, Friedrich; Mittlefehldt, David W.; Varley, Laura; Mertzman, Stan; Roddy, David

    2002-01-01

    We collected approximately 400 rock chips in continuous vertical profile at Meteor Crater, Arizona, representing, from bottom to top, the Coconino, Toroweap, Kaibab, and Moenkopi Formations to support ongoing compositional analyses of the impact melts and their stratigraphic source depth(s) and other studies at Meteor Crater that depend on the composition of the target rocks. These rock chips were subsequently pooled into 23 samples for compositional analysis by XRF (x ray fluorescence) methods, each sample reflecting a specific stratigraphic "subsection" approximately 5-10 in thick. We determined the modal abundance of quartz, dolomite, and calcite for the entire Kaibab Formation at vertical resolutions of 1-2 meters. The Coconino Formation composes the lower half of the crater cavity. It is an exceptionally pure sandstone. The Toroweap is only two inches thick and compositionally similar to Coconino, therefore, it is not a good compositional marker horizon. The Kaibab Formation is approximately 80 in thick. XRD (x ray diffraction) studies show that the Kaibab Formation is dominated by dolomite and quartz, albeit in highly variable proportions; calcite is a minor phase at best. The Kaibab at Meteor Crater is therefore a sandy dolomite rather than a limestone, consistent with pronounced facies changes in the Permian of SE Arizona over short vertical and horizontal distances. The Moenkopi forms the 12 in thick cap rock and has the highest Al2O3 and FeO concentrations of all target rocks. With several examples, we illustrate how this systematic compositional and modal characterization of the target ideologies may contribute to an understanding of Meteor Crater, such as the depth of its melt zone, and to impact cratering in general, such as the liberation of CO2 from shocked carbonates.

  13. Real-time bacterial microcolony counting using on-chip microscopy

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hee; Lee, Jung Eun

    2016-02-01

    Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery.

  14. Ferric plasmonic nanoparticles, aptamers, and magnetofluidic chips: toward the development of diagnostic surface-enhanced Raman spectroscopy assays

    NASA Astrophysics Data System (ADS)

    Marks, Haley; Huang, Po-Jung; Mabbott, Samuel; Graham, Duncan; Kameoka, Jun; Coté, Gerard

    2016-12-01

    Conjugation of aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound nanoclusters that cause a measurable change in the colloid's optical properties. The optimization of a surface-enhanced Raman spectroscopy (SERS) competitive binding assay utilizing plasmonic "target" and magnetic "probe" nanoparticles for the detection of the toxin bisphenol-A (BPA) is presented. These assay nanoclusters were housed inside three types of optofluidic chips patterned with magnetically activated nickel pads, in either a straight or array pattern. Both Fe2O3 and Fe2CoO4 were compared as potential magnetic cores for the silver-coated probe nanoparticles. We found that the Ag@Fe2O3 particles were, on average, more uniform in size and more stable than Ag@Fe2CoO4, whereas the addition of cobalt significantly improved the collection time of particles. Using Raman mapping of the assay housed within the magnetofluidic chips, it was determined that a 1×5 array of 50 μm square nickel pads provided the most uniform SERS enhancement of the assay (coefficient of variation ˜25%) within the magnetofluidic chip. Additionally, the packaged assay demonstrated the desired response to BPA, verifying the technology's potential to translate magnetic nanoparticle assays into a user-free optical analysis platform.

  15. Real-time bacterial microcolony counting using on-chip microscopy

    PubMed Central

    Jung, Jae Hee; Lee, Jung Eun

    2016-01-01

    Observing microbial colonies is the standard method for determining the microbe titer and investigating the behaviors of microbes. Here, we report an automated, real-time bacterial microcolony-counting system implemented on a wide field-of-view (FOV), on-chip microscopy platform, termed ePetri. Using sub-pixel sweeping microscopy (SPSM) with a super-resolution algorithm, this system offers the ability to dynamically track individual bacterial microcolonies over a wide FOV of 5.7 mm × 4.3 mm without requiring a moving stage or lens. As a demonstration, we obtained high-resolution time-series images of S. epidermidis at 20-min intervals. We implemented an image-processing algorithm to analyze the spatiotemporal distribution of microcolonies, the development of which could be observed from a single bacterial cell. Test bacterial colonies with a minimum diameter of 20 μm could be enumerated within 6 h. We showed that our approach not only provides results that are comparable to conventional colony-counting assays but also can be used to monitor the dynamics of colony formation and growth. This microcolony-counting system using on-chip microscopy represents a new platform that substantially reduces the detection time for bacterial colony counting. It uses chip-scale image acquisition and is a simple and compact solution for the automation of colony-counting assays and microbe behavior analysis with applications in antibacterial drug discovery. PMID:26902822

  16. A programmable microsystem using system-on-chip for real-time biotelemetry.

    PubMed

    Wang, Lei; Johannessen, Erik A; Hammond, Paul A; Cui, Li; Reid, Stuart W J; Cooper, Jonathan M; Cumming, David R S

    2005-07-01

    A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future projects. The present system was optimized for low-power and included mixed-signal sensor circuits, a programmable digital system, a feedback clock control loop and RF circuits integrated on a 5 mm x 5 mm silicon chip using a 0.6 microm, 3.3 V CMOS process. Undesirable signal coupling between circuit components has been investigated and current injection into sensitive instrumentation nodes was minimized by careful floor-planning. The chip, the sensors, a magnetic induction-based transmitter and two silver oxide cells were packaged into a 36 mm x 12 mm capsule format. A base station was built in order to retrieve the data from the microsystem in real-time. The base station was designed to be adaptive and timing tolerant since the microsystem design was simplified to reduce power consumption and size. The telemetry system was found to have a packet error rate of 10(-3) using an asynchronous simplex link. Trials in animal carcasses were carried out to show that the transmitter was as effective as a conventional RF device whilst consuming less power.

  17. Ferric plasmonic nanoparticles, aptamers, and magnetofluidic chips: toward the development of diagnostic surface-enhanced Raman spectroscopy assays

    PubMed Central

    Marks, Haley; Huang, Po-Jung; Mabbott, Samuel; Graham, Duncan; Kameoka, Jun; Coté, Gerard

    2016-01-01

    Abstract. Conjugation of aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound nanoclusters that cause a measurable change in the colloid’s optical properties. The optimization of a surface-enhanced Raman spectroscopy (SERS) competitive binding assay utilizing plasmonic “target” and magnetic “probe” nanoparticles for the detection of the toxin bisphenol-A (BPA) is presented. These assay nanoclusters were housed inside three types of optofluidic chips patterned with magnetically activated nickel pads, in either a straight or array pattern. Both Fe2O3 and Fe2CoO4 were compared as potential magnetic cores for the silver-coated probe nanoparticles. We found that the Ag@Fe2O3 particles were, on average, more uniform in size and more stable than Ag@Fe2CoO4, whereas the addition of cobalt significantly improved the collection time of particles. Using Raman mapping of the assay housed within the magnetofluidic chips, it was determined that a 1×5 array of 50  μm square nickel pads provided the most uniform SERS enhancement of the assay (coefficient of variation ∼25%) within the magnetofluidic chip. Additionally, the packaged assay demonstrated the desired response to BPA, verifying the technology’s potential to translate magnetic nanoparticle assays into a user-free optical analysis platform. PMID:27997017

  18. Cruise control for segmented flow.

    PubMed

    Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel

    2012-11-21

    Capitalizing on the benefits of microscale segmented flows, e.g., enhanced mixing and reduced sample dispersion, so far requires specialist training and accommodating a few experimental inconveniences. For instance, microscale gas-liquid flows in many current setups take at least 10 min to stabilize and iterative manual adjustments are needed to achieve or maintain desired mixing or residence times. Here, we report a cruise control strategy that overcomes these limitations and allows microscale gas-liquid (bubble) and liquid-liquid (droplet) flow conditions to be rapidly "adjusted" and maintained. Using this strategy we consistently establish bubble and droplet flows with dispersed phase (plug) velocities of 5-300 mm s(-1), plug lengths of 0.6-5 mm and continuous phase (slug) lengths of 0.5-3 mm. The mixing times (1-5 s), mass transfer times (33-250 ms) and residence times (3-300 s) can therefore be directly imposed by dynamically controlling the supply of the dispersed and the continuous liquids either from external pumps or from local pressurized reservoirs. In the latter case, no chip-external pumps, liquid-perfused tubes or valves are necessary while unwanted dead volumes are significantly reduced.

  19. What Contributes to the Split-Attention Effect? The Role of Text Segmentation, Picture Labelling, and Spatial Proximity

    ERIC Educational Resources Information Center

    Florax, Mareike; Ploetzner, Rolf

    2010-01-01

    In the split-attention effect spatial proximity is frequently considered to be pivotal. The transition from a spatially separated to a spatially integrated format not only involves changes in spatial proximity, but commonly necessitates text segmentation and picture labelling as well. In an experimental study, we investigated the influence of…

  20. Ultrasonic Vibration Assisted Grinding of Bio-ceramic Materials: Modeling, Simulation, and Experimental Investigations on Edge Chipping

    NASA Astrophysics Data System (ADS)

    Tesfay, Hayelom D.

    Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava, and Alumina) were conducted. Based on the experimental results, analytical models for UVAG and CG (conventional grinding without ultrasonic vibration) processes were developed. As for the numerical study, an extended finite element method (XFEM) based on Virtual Crack Closure Technique (VCCT) in ABAQUS was used to model the formation of edge chippings both for UVAG and CG processes. The experimental results are compared against the numerical FEA and the analytical models. The experimental, theoretical, and computational simulation results revealed that the edge chipping size of bioceramics can be significantly reduced with the assistance of ultrasonic vibration. The investigation procedures and the results obtained in this dissertation would be used as a reference and practical guidance for choosing reasonable process variables as well as designing mathematical (analytical and numerical) models in manufacturing industries and academic institutions when the edge chippings of brittle materials are expected to be controlled.

  1. Spine Patterning Is Guided by Segmentation of the Notochord Sheath.

    PubMed

    Wopat, Susan; Bagwell, Jennifer; Sumigray, Kaelyn D; Dickson, Amy L; Huitema, Leonie F A; Poss, Kenneth D; Schulte-Merker, Stefan; Bagnat, Michel

    2018-02-20

    The spine is a segmented axial structure made of alternating vertebral bodies (centra) and intervertebral discs (IVDs) assembled around the notochord. Here, we show that, prior to centra formation, the outer epithelial cell layer of the zebrafish notochord, the sheath, segments into alternating domains corresponding to the prospective centra and IVD areas. This process occurs sequentially in an anteroposterior direction via the activation of Notch signaling in alternating segments of the sheath, which transition from cartilaginous to mineralizing domains. Subsequently, osteoblasts are recruited to the mineralized domains of the notochord sheath to form mature centra. Tissue-specific manipulation of Notch signaling in sheath cells produces notochord segmentation defects that are mirrored in the spine. Together, our findings demonstrate that notochord sheath segmentation provides a template for vertebral patterning in the zebrafish spine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Sequential pattern formation governed by signaling gradients

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Oates, Andrew C.; Jülicher, Frank

    2016-10-01

    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.

  3. Segmental maxillary distraction with a novel device for closure of a wide alveolar cleft

    PubMed Central

    Bousdras, Vasilios A.; Liyanage, Chandra; Mars, Michael; Ayliffe, Peter R

    2014-01-01

    Treatment of a wide alveolar cleft with initial application of segmental distraction osteogenesis is reported, in order to minimise cleft size prior to secondary alveolar bone grafting. The lesser maxillary segment was mobilised with osteotomy at Le Fort I level and, a novel distractor, facilitated horizontal movement of the dental/alveolar segment along the curvature of the maxillary dental arch. Following a latency period of 4 days distraction was applied for 7 days at a rate of 0.5 mm twice daily. Radiographic, ultrasonographic and clinical assessment revealed new bone and soft tissue formation 8 weeks after completion of the distraction phase. Overall the maxillary segment did move minimising the width of the cleft, which allowed successful closure with a secondary alveolar bone graft. PMID:24987601

  4. Segmental maxillary distraction with a novel device for closure of a wide alveolar cleft.

    PubMed

    Bousdras, Vasilios A; Liyanage, Chandra; Mars, Michael; Ayliffe, Peter R

    2014-01-01

    Treatment of a wide alveolar cleft with initial application of segmental distraction osteogenesis is reported, in order to minimise cleft size prior to secondary alveolar bone grafting. The lesser maxillary segment was mobilised with osteotomy at Le Fort I level and, a novel distractor, facilitated horizontal movement of the dental/alveolar segment along the curvature of the maxillary dental arch. Following a latency period of 4 days distraction was applied for 7 days at a rate of 0.5 mm twice daily. Radiographic, ultrasonographic and clinical assessment revealed new bone and soft tissue formation 8 weeks after completion of the distraction phase. Overall the maxillary segment did move minimising the width of the cleft, which allowed successful closure with a secondary alveolar bone graft.

  5. Role of contact force in ischemic scar-related ventricular tachycardia ablation; optimal force required and impact of left ventricular access route.

    PubMed

    Elsokkari, Ihab; Sapp, John L; Doucette, Steve; Parkash, Ratika; Gray, Christopher J; Gardner, Martin J; Macintyre, Ciorsti; AbdelWahab, Amir M

    2018-06-26

    Contact force-sensing technology has become a widely used addition to catheter ablation procedures. Neither the optimal contact force required to achieve adequate lesion formation in the ventricle, nor the impact of left ventricular access route on contact force has been fully clarified. Consecutive patients (n = 24) with ischemic cardiomyopathy who underwent ablation for scar-related ventricular tachycardia were included in the study. All ablations (n = 25) were performed using irrigated contact force-sensing catheters (Smart Touch, Biosense Webster). Effective lesion formation was defined as electrical unexcitability post ablation at sites which were electrically excitable prior to ablation (unipolar pacing at 10 mA, 2 ms pulse width). We explored the contact force which achieved effective lesion formation and the impact of left ventricular access route (retrograde aortic or transseptal) on the contact force achieved in various segments of the left ventricle. Scar zone was defined as bipolar signal amplitude < 0.5 mV. Among 427 ablation points, effective lesion formation was achieved at 201 points (47.1%). Contact force did not predict effective lesion formation in the overall group. However, within the scar zone, mean contact force ≥ 10 g was significantly associated with effective lesion formation [OR 3.21 (1.43, 7.19) P = 0.005]. In the 12-segment model of the left ventricle, the retrograde approach was associated with higher median contact force in the apical anterior segment (31 vs 19 g; P = 0.045) while transseptal approach had higher median force in the basal inferior segment (25 vs 15 g; P = 0.021). In the 4-segment model, the retrograde approach had higher force in the anterior wall (28 vs 16 g; P = 0.004) while the transseptal approach had higher force in the lateral wall (21 vs 18 g; P = 0.032). There was a trend towards higher force in the inferior wall with the transseptal approach, but this was not statistically significant (20 vs 15 g; P = 0.063). In patients with ischemic cardiomyopathy, a mean contact force of 10 g or more within the scar zone had the best correlation with electrical unexcitability post ablation in our study. The retrograde aortic approach was associated with better contact force over the anterior wall while use of a transseptal approach had better contact force over the lateral wall.

  6. The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite.

    PubMed

    Cai, Dongyu; Yusoh, Kamal; Song, Mo

    2009-02-25

    Significant reinforcement of polyurethane (PU) using graphite oxide nanoplatelets (GONPs) is reported. Morphologic study shows that, due to the formation of chemical bonding, there is a strong interaction between the GONPs and the hard segment of the PU, which allows effective load transfer. The GONPs can prevent the formation of crystalline hard segments due to their two-dimensional structure. With the incorporation of 4.4 wt% of GONPs, the Young's modulus and hardness of the PU are significantly increased by approximately 900% and approximately 327%, respectively. The resultant high resistance to scratching indicates promise for application of these composite materials in surface coating.

  7. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis.

    PubMed

    Saudemont, Alexandra; Dray, Nicolas; Hudry, Bruno; Le Gouar, Martine; Vervoort, Michel; Balavoine, Guillaume

    2008-05-15

    NK genes are related pan-metazoan homeobox genes. In the fruitfly, NK genes are clustered and involved in patterning various mesodermal derivatives during embryogenesis. It was therefore suggested that the NK cluster emerged in evolution as an ancestral mesodermal patterning cluster. To test this hypothesis, we cloned and analysed the expression patterns of the homologues of NK cluster genes Msx, NK4, NK3, Lbx, Tlx, NK1 and NK5 in the marine annelid Platynereis dumerilii, a representative of trochozoans, the third great branch of bilaterian animals alongside deuterostomes and ecdysozoans. We found that most of these genes are involved, as they are in the fly, in the specification of distinct mesodermal derivatives, notably subsets of muscle precursors. The expression of the homologue of NK4/tinman in the pulsatile dorsal vessel of Platynereis strongly supports the hypothesis that the vertebrate heart derived from a dorsal vessel relocated to a ventral position by D/V axis inversion in a chordate ancestor. Additionally and more surprisingly, NK4, Lbx, Msx, Tlx and NK1 orthologues are expressed in complementary sets of stripes in the ectoderm and/or mesoderm of forming segments, suggesting an involvement in the segment formation process. A potentially ancient role of the NK cluster genes in segment formation, unsuspected from vertebrate and fruitfly studies so far, now deserves to be investigated in other bilaterian species, especially non-insect arthropods and onychophorans.

  8. Quantitative Comparison of 21 Protocols for Labeling Hippocampal Subfields and Parahippocampal Subregions in In Vivo MRI: Towards a Harmonized Segmentation Protocol

    PubMed Central

    Yushkevich, Paul A.; Amaral, Robert S. C.; Augustinack, Jean C.; Bender, Andrew R.; Bernstein, Jeffrey D.; Boccardi, Marina; Bocchetta, Martina; Burggren, Alison C.; Carr, Valerie A.; Chakravarty, M. Mallar; Chetelat, Gael; Daugherty, Ana M.; Davachi, Lila; Ding, Song-Lin; Ekstrom, Arne; Geerlings, Mirjam I.; Hassan, Abdul; Huang, Yushan; Iglesias, Eugenio; La Joie, Renaud; Kerchner, Geoffrey A.; LaRocque, Karen F.; Libby, Laura A.; Malykhin, Nikolai; Mueller, Susanne G.; Olsen, Rosanna K.; Palombo, Daniela J.; Parekh, Mansi B; Pluta, John B.; Preston, Alison R.; Pruessner, Jens C.; Ranganath, Charan; Raz, Naftali; Schlichting, Margaret L.; Schoemaker, Dorothee; Singh, Sachi; Stark, Craig E. L.; Suthana, Nanthia; Tompary, Alexa; Turowski, Marta M.; Van Leemput, Koen; Wagner, Anthony D.; Wang, Lei; Winterburn, Julie L.; Wisse, Laura E.M.; Yassa, Michael A.; Zeineh, Michael M.

    2015-01-01

    OBJECTIVE An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1–3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. METHOD MRI scans of a single healthy adult human subject were acquired both at 3 Tesla and 7 Tesla. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. RESULTS The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. CONCLUSIONS The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies. PMID:25596463

  9. Biochemical analysis with microfluidic systems.

    PubMed

    Bilitewski, Ursula; Genrich, Meike; Kadow, Sabine; Mersal, Gaber

    2003-10-01

    Microfluidic systems are capillary networks of varying complexity fabricated originally in silicon, but nowadays in glass and polymeric substrates. Flow of liquid is mainly controlled by use of electroosmotic effects, i.e. application of electric fields, in addition to pressurized flow, i.e. application of pressure or vacuum. Because electroosmotic flow rates depend on the charge densities on the walls of capillaries, they are influenced by substrate material, fabrication processes, surface pretreatment procedures, and buffer additives. Microfluidic systems combine the properties of capillary electrophoretic systems and flow-through analytical systems, and thus biochemical analytical assays have been developed utilizing and integrating both aspects. Proteins, peptides, and nucleic acids can be separated because of their different electrophoretic mobility; detection is achieved with fluorescence detectors. For protein analysis, in particular, interfaces between microfluidic chips and mass spectrometers were developed. Further levels of integration of required sample-treatment steps were achieved by integration of protein digestion by immobilized trypsin and amplification of nucleic acids by the polymerase chain reaction. Kinetic constants of enzyme reactions were determined by adjusting different degrees of dilution of enzyme substrates or inhibitors within a single chip utilizing mainly the properties of controlled dosing and mixing liquids within a chip. For analysis of kinase reactions, however, a combination of a reaction step (enzyme with substrate and inhibitor) and a separation step (enzyme substrate and reaction product) was required. Microfluidic chips also enable separation of analytes from sample matrix constituents, which can interfere with quantitative determination, if they have different electrophoretic mobilities. In addition to analysis of nucleic acids and enzymes, immunoassays are the third group of analytical assays performed in microfluidic chips. They utilize either affinity capillary electrophoresis as a homogeneous assay format, or immobilized antigens or antibodies in heterogeneous assays with serial supply of reagents and washing solutions.

  10. A compressive-sensing Fourier-transform on-chip Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Podmore, Hugh; Scott, Alan; Lee, Regina

    2018-02-01

    We demonstrate a novel compressive sensing Fourier-transform spectrometer (FTS) for snapshot Raman spectroscopy in a compact format. The on-chip FTS consists of a set of planar-waveguide Mach-Zehnder interferometers (MZIs) arrayed on a photonic chip, effecting a discrete Fourier-transform of the input spectrum. Incoherence between the sampling domain (time), and the spectral domain (frequency) permits compressive sensing retrieval using undersampled interferograms for sparse spectra such as Raman emission. In our fabricated device we retain our chosen bandwidth and resolution while reducing the number of MZIs, e.g. the size of the interferogram, to 1/4th critical sampling. This architecture simultaneously reduces chip footprint and concentrates the interferogram in fewer pixels to improve the signal to noise ratio. Our device collects interferogram samples simultaneously, therefore a time-gated detector may be used to separate Raman peaks from sample fluorescence. A challenge for FTS waveguide spectrometers is to achieve multi-aperture high throughput broadband coupling to a large number of single-mode waveguides. A multi-aperture design allows one to increase the bandwidth and spectral resolution without sacrificing optical throughput. In this device, multi-aperture coupling is achieved using an array of microlenses bonded to the surface of the chip, and aligned with a grid of vertically illuminated waveguide apertures. The microlens array accepts a collimated beam with near 100% fill-factor, and the resulting spherical wavefronts are coupled into the single-mode waveguides using 45& mirrors etched into the waveguide layer via focused ion-beam (FIB). The interferogram from the waveguide outputs is imaged using a CCD, and inverted via l1-norm minimization to correctly retrieve a sparse input spectrum.

  11. Cohort analysis of a single nucleotide polymorphism on DNA chips.

    PubMed

    Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F

    2004-11-15

    A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.

  12. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.

    PubMed

    Atabaki, Amir H; Moazeni, Sajjad; Pavanello, Fabio; Gevorgyan, Hayk; Notaros, Jelena; Alloatti, Luca; Wade, Mark T; Sun, Chen; Kruger, Seth A; Meng, Huaiyu; Al Qubaisi, Kenaish; Wang, Imbert; Zhang, Bohan; Khilo, Anatol; Baiocco, Christopher V; Popović, Miloš A; Stojanović, Vladimir M; Ram, Rajeev J

    2018-04-01

    Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions 1,2 . This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing 3,4 . By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip' 1,6-8 . As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge 10,11 , this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.

  13. Analysis of Surface and Subsurface Damage Morphology in Rotary Ultrasonic Machining of BK7 Glass

    NASA Astrophysics Data System (ADS)

    Hong-xiang, Wang; Chu, Wang; Jun-liang, Liu; Shi, Gao; Wen-Jie, Zhai

    2017-11-01

    This paper investigates the formation process of surface/subsurface damage in the rotary ultrasonic machining of BK7 glass. The results show that during the milling using the end face of the tool, the cutting depth and the residual height between the abrasive grains constantly change with the high-frequency vibration, generating lots of cracks on both sides of the scratches. The high-frequency vibration accelerates the chips falling from the surface, so that the chips and thermal damage are reduced, causing the grinding surface quality better. A plastic deformation area is formed during the grinding, due to the non-uniform cutting force on the material surface, and the residual stress is produced in the deformation area, inducing the median/lateral cracks.

  14. The Orthogonal In-Situ Machining of Single and Polycrystalline Aluminum and Copper, Volume 1. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Cohen, P. H.

    1982-01-01

    Metal cutting is a unique deformation process characterized by large strains, exceptionally high strain rates and few constraints to the deformation. These factors, along with the difficulty of directly measuring the shear angle, make chip formation difficult to model and understand. One technique for skirting the difficulty of post mortem chip measurement is to perform a cutting experiment dynamically in a scanning electron microscope. The performance of the in-situ experiment with full instrumentation allows for component force measurement, orientation measurement (on a round single crystal disk) and a timing device, all superimposed below the deformation on the TV monitor and recorded for future viewing. This allows the sher angle to be directly measured for the screen along with the other needed information.

  15. Soliton microcomb range measurement

    NASA Astrophysics Data System (ADS)

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.

  16. Design and implementation of H.264 based embedded video coding technology

    NASA Astrophysics Data System (ADS)

    Mao, Jian; Liu, Jinming; Zhang, Jiemin

    2016-03-01

    In this paper, an embedded system for remote online video monitoring was designed and developed to capture and record the real-time circumstances in elevator. For the purpose of improving the efficiency of video acquisition and processing, the system selected Samsung S5PV210 chip as the core processor which Integrated graphics processing unit. And the video was encoded with H.264 format for storage and transmission efficiently. Based on S5PV210 chip, the hardware video coding technology was researched, which was more efficient than software coding. After running test, it had been proved that the hardware video coding technology could obviously reduce the cost of system and obtain the more smooth video display. It can be widely applied for the security supervision [1].

  17. High power cladding light stripper using segmented corrosion method: theoretical and experimental studies.

    PubMed

    Yin, Lu; Yan, Mingjian; Han, Zhigang; Wang, Hailin; Shen, Hua; Zhu, Rihong

    2017-04-17

    We present the segmented corrosion method that uses hydrofluoric acid to etch the fiber of a fiber laser for removing high-power cladding light to improve stripping uniformity and power handling capability. For theoretical guidelines, we propose a simulation model of etched-fiber stripping to evaluate the relationship between the etched-fiber parameters and cladding light attenuation and to analyze the stripping uniformity achieved with segmented corrosion. A two-segment etched fiber is fabricated with cladding light attenuation of 19.8 dB and power handling capability up to 670 W. We find that the cladding light is stripped uniformly and the temperature distribution is uniform without the formation of hot spots.

  18. Degradation of Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Crumpler, L. S.; Parker, T. J.; Golombek, M. P.; Wilson, S. A.; Mittlefehldt, D. W.

    2015-01-01

    The Opportunity rover has traversed portions of two western rim segments of Endeavour, a 22 km-diameter crater in Meridiani Planum, for the past three years. The resultant data enables the evaluation of the geologic expression and degradation state of the crater. Endeavour is Noa-chian-aged, complex in morphology, and originally may have appeared broadly similar to the more pristine 20.5 km-diameter Santa Fe complex crater in Lunae Palus (19.5degN, 312.0degE). By contrast, Endeavour is considerably subdued and largely buried by younger sulfate-rich plains. Exposed rim segments dubbed Cape York (CY) and Solander Point/Murray Ridge/Pillinger Point (MR) located approximately1500 m to the south reveal breccias interpreted as remnants of the ejecta deposit, dubbed the Shoemaker Formation. At CY, the Shoemaker Formation overlies the pre-impact rocks, dubbed the Matijevic Formation.

  19. Effects of Nerve Injury and Segmental Regeneration on the Cellular Correlates of Neural Morphallaxis

    PubMed Central

    Martinez, Veronica G.; Manson, Josiah M.B.; Zoran, Mark J.

    2009-01-01

    Functional recovery of neural networks after injury requires a series of signaling events similar to the embryonic processes that governed initial network construction. Neural morphallaxis, a form of nervous system regeneration, involves reorganization of adult neural connectivity patterns. Neural morphallaxis in the worm, Lumbriculus variegatus, occurs during asexual reproduction and segmental regeneration, as body fragments acquire new positional identities along the anterior–posterior axis. Ectopic head (EH) formation, induced by ventral nerve cord lesion, generated morphallactic plasticity including the reorganization of interneuronal sensory fields and the induction of a molecular marker of neural morphallaxis. Morphallactic changes occurred only in segments posterior to an EH. Neither EH formation, nor neural morphallaxis was observed after dorsal body lesions, indicating a role for nerve cord injury in morphallaxis induction. Furthermore, a hierarchical system of neurobehavioral control was observed, where anterior heads were dominant and an EH controlled body movements only in the absence of the anterior head. Both suppression of segmental regeneration and blockade of asexual fission, after treatment with boric acid, disrupted the maintenance of neural morphallaxis, but did not block its induction. Therefore, segmental regeneration (i.e., epimorphosis) may not be required for the induction of morphallactic remodeling of neural networks. However, on-going epimorphosis appears necessary for the long-term consolidation of cellular and molecular mechanisms underlying the morphallaxis of neural circuitry. PMID:18561185

  20. On the role of the notochord in somite formation and the possible evolutionary significance of the concomitant cell re-orientation.

    PubMed

    Burgess, A M

    1983-06-01

    Homoplastic grafts of re-orientated unsegmented paraxial mesoderm transplanted from stage 20 Xenopus embryos into host embryos of the same age resulted in segmentation and the formation of somites in the same axis as if they had been left in situ. Because grafts transplanted with various orientations came under the stretching effect of the notochord in different directions but never the less maintained their original pattern and direction of segmentation, it would appear that the notochord has no effect on somite formation which thus emerges as an autonomous process independent of the elongation of the embryo. The re-alignment of cells which occurs as the somites are formed and which, in normal unimpeded development, results in the long axis of the cells lying parallel to that of the notochord, is considered in the light of the evolution of sinusoid locomotion and it is suggested that it may be the primary process with the formation of somite blocks as one of its consequences.

  1. Software for browsing sectioned images of a dog body and generating a 3D model.

    PubMed

    Park, Jin Seo; Jung, Yong Wook

    2016-01-01

    The goals of this study were (1) to provide accessible and instructive browsing software for sectioned images and a portable document format (PDF) file that includes three-dimensional (3D) models of an entire dog body and (2) to develop techniques for segmentation and 3D modeling that would enable an investigator to perform these tasks without the aid of a computer engineer. To achieve these goals, relatively important or large structures in the sectioned images were outlined to generate segmented images. The sectioned and segmented images were then packaged into browsing software. In this software, structures in the sectioned images are shown in detail and in real color. After 3D models were made from the segmented images, the 3D models were exported into a PDF file. In this format, the 3D models could be manipulated freely. The browsing software and PDF file are available for study by students, for lecture for teachers, and for training for clinicians. These files will be helpful for anatomical study by and clinical training of veterinary students and clinicians. Furthermore, these techniques will be useful for researchers who study two-dimensional images and 3D models. © 2015 Wiley Periodicals, Inc.

  2. Congenital scoliosis - presentation of three severe cases treated conservatively.

    PubMed

    Weiss, H-R

    2008-01-01

    In view of the very limited data about conservative treatment of patients with congenital scoliosis (CS) available, early surgery is suggested already in mild cases with formation failures in the first three years of life. It is common sense that patients with failures of segmentation will not benefit from conservative treatment at all and the same applies to failures of formation with curves of >50 degrees in infancy. Two patients with rib synostosis denied surgery before entering the pubertal growth spurt. These patients have been treated conservatively with braces and Scoliosis In-Patient Rehabilitation (SIR) and now are beyond the pubertal growth spurt. One patient with a formation failure and a curve of >50 degrees lumbar has been treated with the help of braces and physiotherapy from 1.6 years on and is still under treatment now at the age of 15 years. Severe decompensation was prevented in the two patients with failure of segmentation, however a severe thoracic deformity is evident with underdeveloped lung function and severe restrictive ventilation disorder. The patient with failure of formation is well developed, now without cosmetic or physical complaints although his curve progressed at the end of the growth spurt due to final mal-compliance. Failures of segmentation should be advised to have surgery before entering the pubertal growth spurt. In case they deny, conservative treatment can at least in part be beneficial. For patients with failures of formation conservative treatment should be suggested in the first place because long-term outcomes of early surgery beyond pubertal growth spurt are not yet revealed.

  3. Chain and mirophase-separated structures of ultrathin polyurethane films

    NASA Astrophysics Data System (ADS)

    Kojio, Ken; Uchiba, Yusuke; Yamamoto, Yasunori; Motokucho, Suguru; Furukawa, Mutsuhisa

    2009-08-01

    Measurements are presented how chain and microphase-separated structures of ultrathin polyurethane (PU) films are controlled by the thickness. The film thickness is varied by a solution concentration for spin coating. The systems are PUs prepared from commercial raw materials. Fourier-transform infrared spectroscopic measurement revealed that the degree of hydrogen bonding among hard segment chains decreased and increased with decreasing film thickness for strong and weak microphase separation systems, respectively. The microphase-separated structure, which is formed from hard segment domains and a surrounding soft segment matrix, were observed by atomic force microscopy. The size of hard segment domains decreased with decreasing film thickness, and possibility of specific orientation of the hard segment chains was exhibited for both systems. These results are due to decreasing space for the formation of the microphase-separated structure.

  4. A mathematical model for Vertical Attitude Takeoff and Landing (VATOL) aircraft simulation. Volume 2: Model equations and base aircraft data

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    Equations incorporated in a VATOL six degree of freedom off-line digital simulation program and data for the Vought SF-121 VATOL aircraft concept which served as the baseline for the development of this program are presented. The equations and data are intended to facilitate the development of a piloted VATOL simulation. The equation presentation format is to state the equations which define a particular model segment. Listings of constants required to quantify the model segment, input variables required to exercise the model segment, and output variables required by other model segments are included. In several instances a series of input or output variables are followed by a section number in parentheses which identifies the model segment of origination or termination of those variables.

  5. The Role of Technology in EC Teacher Education: Global Perspectives

    ERIC Educational Resources Information Center

    Fox, Selena; Donohue, Chip

    2009-01-01

    The first Working Forum for Teacher Educators was held in Auckland, New Zealand, in May 2008. Working Forum hosts Selena Fox, Chip Donohue, and Bonnie and Roger Neugebauer, organized the three-day event and created a format in which conversations on a variety of topics related to teacher education helped to organize and guide the Working Forum.…

  6. Multimodality image integration for radiotherapy treatment: an easy approach

    NASA Astrophysics Data System (ADS)

    Santos, Andres; Pascau, Javier; Desco, Manuel; Santos, Juan A.; Calvo, Felipe A.; Benito, Carlos; Garcia-Barreno, Rafael

    2001-05-01

    The interest of using combined MR and CT information for radiotherapy planning is well documented. However, many planning workstations do not allow to use MR images, nor import predefined contours. This paper presents a new simple approach for transferring segmentation results from MRI to a CT image that will be used for radiotherapy planning, using the same original CT format. CT and MRI images of the same anatomical area are registered using mutual information (MI) algorithm. Targets and organs at risk are segmented by the physician on the MR image, where their contours are easy to track. A locally developed software running on PC is used for this step, with several facilities for the segmentation process. The result is transferred onto the CT by slightly modifying up and down the original Hounsfield values of some points of the contour. This is enough to visualize the contour on the CT, but does not affect dose calculations. The CT is then stored using the original file format of the radiotherapy planning workstation, where the technician uses the segmented contour to design the correct beam positioning. The described method has been tested in five patients. Simulations and patient results show that the dose distribution is not affected by the small modification of pixels of the CT image, while the segmented structures can be tracked in the radiotherapy planning workstation-using adequate window/level settings. The presence of the physician is not requires at the planning workstation, and he/she can perform the segmentation process using his/her own PC. This new approach makes it possible to take advantage from the anatomical information present on the MRI and to transfer the segmentation to the CT used for planning, even when the planning workstation does not allow to import external contours. The physician can draw the limits of the target and areas at risk off-line, thus separating in time the segmentation and planning tasks and increasing the efficiency.

  7. Continuous Microfluidics (Ecology-on-a-Chip) Experiments for Long Term Observation of Bacteria at Liquid-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Miranda, Michael; White, Andrew; Jalali, Maryam; Sheng, Jian

    2017-11-01

    A microfluidic bioassay incorporating a peristaltic pump and chemostat capable of continuously culturing a bacterial suspension through a microchannel for an extended period of time relevant to ecological processes is presented. A single crude oil droplet is dispensed on-chip and subsequently pinned to the top and bottom surfaces of the microchannel to establish a vertical curved oil-water interface to observe bacteria without boundary interference. The accumulation of extracellular polymeric substances (EPS), microbial film formation, and aggregation is provided by DIC microscopy with an EMCCD camera at an interval of 30 sec. Cell-interface interactions such as cell translational and angular motilities as well as encountering, attachment, detachment to the interface are obtained by a high speed camera at 1000 fps with a sampling interval of 10 min. Experiments on Pseudomonas sp. (P62) and isolated EPS suspensions from Sagitulla Stelleta and Roseobacter show rapid formation of bacterial aggregates including EPS streamers stretching tens of drop diameters long. These results provide crucial insights into environmentally relevant processes such as the initiation of marine oil snow, an alternative mode of biodegradation to conventional bioconsumption. Funded by GoMRI, NSF, ARO.

  8. Determination of Specific Forces and Tool Deflections in Micro-milling of Ti-6Al-4V alloy using Finite Element Simulations and Analysis

    NASA Astrophysics Data System (ADS)

    Farina, Simone; Thepsonti, Thanongsak; Ceretti, Elisabetta; Özel, Tugrul

    2011-05-01

    Titanium alloys offer superb properties in strength, corrosion resistance and biocompatibility and are commonly utilized in medical devices and implants. Micro-end milling process is a direct and rapid fabrication method for manufacturing medical devices and implants in titanium alloys. Process performance and quality depend upon an understanding of the relationship between cutting parameters and forces and resultant tool deflections to avoid tool breakage. For this purpose, FE simulations of chip formation during micro-end milling of Ti-6Al-4V alloy with an ultra-fine grain solid carbide two-flute micro-end mill are investigated using DEFORM software. At first, specific forces in tangential and radial directions of cutting during micro-end milling for varying feed advance and rotational speeds have been determined using designed FE simulations for chip formation process. Later, these forces are applied to the micro-end mill geometry along the axial depth of cut in 3D analysis of ABAQUS. Consequently, 3D distributions for tool deflections & von Misses stress are determined. These analyses will yield in establishing integrated multi-physics process models for high performance micro-end milling and a leap-forward to process improvements.

  9. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    PubMed

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  10. Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†

    PubMed Central

    Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier

    2017-01-01

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602

  11. Effects of temperature and NaCl on the formation of 3-MCPD esters and glycidyl esters in refined, bleached and deodorized palm olein during deep-fat frying of potato chips.

    PubMed

    Wong, Yu Hua; Muhamad, Halimah; Abas, Faridah; Lai, Oi Ming; Nyam, Kar Lin; Tan, Chin Ping

    2017-03-15

    The effects of frying duration, frying temperature and concentration of sodium chloride on the formation of 3-monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GEs) of refined, bleached and deodorized (RBD) palm olein during deep-fat frying (at 160°C and 180°C) of potato chips (0%, 1%, 3% and 5% NaCl) for 100min/d for five consecutive days in eight systems were compared in this study. All oil samples collected after each frying cycle were analyzed for 3-MCPD esters, GEs, free fatty acid (FFA) contents, specific extinction at 232 and 268 nm (K 232 and K 268 ), p-anisidine value (pAV), and fatty acid composition. The 3-MCPD ester trend was decreasing when the frying duration increased, whereas the trend was increasing when frying temperature and concentration of NaCl increased. The GEs trend was increasing when the frying temperature, frying duration and concentration of NaCl increased. All of the oil qualities were within the safety limit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization

    PubMed Central

    Girard, Laurie D.; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G.

    2014-01-01

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have a high complexity cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotidesequence-dependent segment and a unique “target sequence-independent” 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets. PMID:25489607

  13. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    PubMed

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design of lab-on-chip microfluidic devices, while also reducing consumable costs. At term, it will allow the cost-effective automation of highly multiplexed assays for detection and identification of genetic targets.

  14. Object Recognition using Feature- and Color-Based Methods

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Duong, Vu; Stubberud, Allen

    2008-01-01

    An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.

  15. Coupling image processing and stress analysis for damage identification in a human premolar tooth.

    PubMed

    Andreaus, U; Colloca, M; Iacoviello, D

    2011-08-01

    Non-carious cervical lesions are characterized by the loss of dental hard tissue at the cement-enamel junction (CEJ). Exceeding stresses are therefore generated in the cervical region of the tooth that cause disruption of the bonds between the hydroxyapatite crystals, leading to crack formation and eventual loss of enamel and the underlying dentine. Damage identification was performed by image analysis techniques and allowed to quantitatively assess changes in teeth. A computerized two-step procedure was generated and applied to the first left maxillary human premolar. In the first step, dental images were digitally processed by a segmentation method in order to identify the damage. The considered morphological properties were the enamel thickness and total area, the number of fragments in which the enamel is chipped. The information retrieved by the data processing of the section images allowed to orient the stress investigation toward selected portions of the tooth. In the second step, a three-dimensional finite element model based on CT images of both the tooth and the periodontal ligament was employed to compare the changes occurring in the stress distributions in normal occlusion and malocclusion. The stress states were analyzed exclusively in the critical zones designated in the first step. The risk of failure at the CEJ and of crack initiation at the dentin-enamel junction through the quantification of first and third principal stresses, von Mises stress, and normal and tangential stresses, were also estimated. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Vessel formation is induced prior to the appearance of cartilage in BMP-2-mediated heterotopic ossification

    USDA-ARS?s Scientific Manuscript database

    Heterotopic ossification (HO), or endochondral bone formation at nonskeletal sites, often results from traumatic injury and can lead to devastating consequences. Alternatively, the ability to harness this phenomenon would greatly enhance current orthopedic tools for treating segmental bone defects. ...

  17. Charge Collection Efficiency in a segmented semiconductor detector interstrip region

    NASA Astrophysics Data System (ADS)

    Alarcon-Diez, V.; Vickridge, I.; Jakšić, M.; Grilj, V.; Schmidt, B.; Lange, H.

    2017-09-01

    Charged particle semiconductor detectors have been used in Ion Beam Analysis (IBA) for over four decades without great changes in either design or fabrication. However one area where improvement is desirable would be to increase the detector solid angle so as to improve spectrum statistics for a given incident beam fluence. This would allow the use of very low fluences opening the way, for example, to increase the time resolution in real-time RBS or for analysis of materials that are highly sensitive to beam damage. In order to achieve this goal without incurring the costs of degraded resolution due to kinematic broadening or large detector capacitance, a single-chip segmented detector (SEGDET) was designed and built within the SPIRIT EU infrastructure project. In this work we present the Charge Collection Efficiency (CCE) in the vicinity between two adjacent segments focusing on the interstrip zone. Microbeam Ion Beam Induced Charge (IBIC) measurements with different ion masses and energies were used to perform X-Y mapping of (CCE), as a function of detector operating conditions (bias voltage changes, detector housing possibilities and guard ring configuration). We show the (CCE) in the edge region of the active area and have also mapped the charge from the interstrip region, shared between adjacent segments. The results indicate that the electrical extent of the interstrip region is very close to the physical extent of the interstrip and guard ring structure with interstrip impacts contributing very little to the complete spectrum. The interstrip contributions to the spectra that do occur, can be substantially reduced by an offline anti-coincidence criterion applied to list mode data, which should also be easy to implement directly in the data acquisition software.

  18. Data-Driven Multiresolution Camera Using the Foveal Adaptive Pyramid

    PubMed Central

    González, Martin; Sánchez-Pedraza, Antonio; Marfil, Rebeca; Rodríguez, Juan A.; Bandera, Antonio

    2016-01-01

    There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution, while the rest of the image is captured at a lower resolution. In these systems, this fovea must be moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual objects. Segmentation and attention are then intimately tied together: while the segmentation process is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore, this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream of generated foveal images. The whole hardware/software architecture has been designed to be embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the data port for exchanging information between the mapping and attention parts of the architecture and the good performance rates of the mapping procedure. Experimental evaluation also demonstrates that the segmentation method and the attention model provide results comparable to other more computationally-expensive algorithms. PMID:27898029

  19. Data-Driven Multiresolution Camera Using the Foveal Adaptive Pyramid.

    PubMed

    González, Martin; Sánchez-Pedraza, Antonio; Marfil, Rebeca; Rodríguez, Juan A; Bandera, Antonio

    2016-11-26

    There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution, while the rest of the image is captured at a lower resolution. In these systems, this fovea must be moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual objects. Segmentation and attention are then intimately tied together: while the segmentation process is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore, this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream of generated foveal images. The whole hardware/software architecture has been designed to be embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the data port for exchanging information between the mapping and attention parts of the architecture and the good performance rates of the mapping procedure. Experimental evaluation also demonstrates that the segmentation method and the attention model provide results comparable to other more computationally-expensive algorithms.

  20. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    NASA Astrophysics Data System (ADS)

    Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei

    2017-10-01

    In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  1. High-definition video display based on the FPGA and THS8200

    NASA Astrophysics Data System (ADS)

    Qian, Jia; Sui, Xiubao

    2014-11-01

    This paper presents a high-definition video display solution based on the FPGA and THS8200. THS8200 is a video decoder chip launched by TI company, this chip has three 10-bit DAC channels which can capture video data in both 4:2:2 and 4:4:4 formats, and its data synchronization can be either through the dedicated synchronization signals HSYNC and VSYNC, or extracted from the embedded video stream synchronization information SAV / EAV code. In this paper, we will utilize the address and control signals generated by FPGA to access to the data-storage array, and then the FPGA generates the corresponding digital video signals YCbCr. These signals combined with the synchronization signals HSYNC and VSYNC that are also generated by the FPGA act as the input signals of THS8200. In order to meet the bandwidth requirements of the high-definition TV, we adopt video input in the 4:2:2 format over 2×10-bit interface. THS8200 is needed to be controlled by FPGA with I2C bus to set the internal registers, and as a result, it can generate the synchronous signal that is satisfied with the standard SMPTE and transfer the digital video signals YCbCr into analog video signals YPbPr. Hence, the composite analog output signals YPbPr are consist of image data signal and synchronous signal which are superimposed together inside the chip THS8200. The experimental research indicates that the method presented in this paper is a viable solution for high-definition video display, which conforms to the input requirements of the new high-definition display devices.

  2. Wnt-dependent epithelial transitions drive pharyngeal pouch formation

    PubMed Central

    Choe, Chong Pyo; Collazo, Andres; Trinh, Le A.; Pan, Luyuan; Moens, Cecilia B.; Crump, J. Gage

    2013-01-01

    SUMMARY The pharyngeal pouches, which form by budding of the foregut endoderm, are essential for segmentation of the vertebrate face. To date, the cellular mechanism and segmental nature of such budding have remained elusive. Here, we find that Wnt11r and Wnt4a from the head mesoderm and ectoderm, respectively, play distinct roles in the segmental formation of pouches in zebrafish. Time-lapse microscopy, combined with mutant and tissue-specific transgenic experiments, reveal requirements of Wnt signaling in two phases of endodermal epithelial transitions. Initially, Wnt11r and Rac1 destabilize the endodermal epithelium to promote the lateral movement of pouch-forming cells. Next, Wnt4a and Cdc42 signaling induce the rearrangement of maturing pouch cells into bilayers through junctional localization of the Alcama immunoglobulin-domain protein, which functions to restabilize adherens junctions. We propose that this dynamic control of epithelial morphology by Wnt signaling may be a common theme for the budding of organ anlagen from the endoderm. PMID:23375584

  3. Three-dimensional visualization of the craniofacial patient: volume segmentation, data integration and animation.

    PubMed

    Enciso, R; Memon, A; Mah, J

    2003-01-01

    The research goal at the Craniofacial Virtual Reality Laboratory of the School of Dentistry in conjunction with the Integrated Media Systems Center, School of Engineering, University of Southern California, is to develop computer methods to accurately visualize patients in three dimensions using advanced imaging and data acquisition devices such as cone-beam computerized tomography (CT) and mandibular motion capture. Data from these devices were integrated for three-dimensional (3D) patient-specific visualization, modeling and animation. Generic methods are in development that can be used with common CT image format (DICOM), mesh format (STL) and motion data (3D position over time). This paper presents preliminary descriptive studies on: 1) segmentation of the lower and upper jaws with two types of CT data--(a) traditional whole head CT data and (b) the new dental Newtom CT; 2) manual integration of accurate 3D tooth crowns with the segmented lower jaw 3D model; 3) realistic patient-specific 3D animation of the lower jaw.

  4. Spaceflight reduces somatic embryogenesis in orchardgrass (Poaceae)

    NASA Technical Reports Server (NTRS)

    Conger, B. V.; Tomaszewski, Z. Jr; McDaniel, J. K.; Vasilenko, A.

    1998-01-01

    Somatic embryos initiate and develop from single mesophyll cells in in vitro cultured leaf segments of orchard-grass (Dactylis glomerata L.). Segments were plated at time periods ranging from 21 to 0.9 d (21 h) prior to launch on an 11 d spaceflight (STS-64). Using a paired t-test, there was no significant difference in embryogenesis from preplating periods of 14 d and 21 d. However, embryogenesis was reduced by 70% in segments plated 21 h before launch and this treatment was significant at P=0.0001. The initial cell divisions leading to embryo formation would be taking place during flight in this treatment. A higher ratio of anticlinal:periclinal first cell divisions observed in the flight compared to the control tissue suggests that microgravity affects axis determination and embryo polarity at a very early stage. A similar reduction in zygotic embryogenesis would reduce seed formation and have important implications for long-term space flight or colonization where seeds would be needed either for direct consumption or to grow another generation of plants.

  5. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    NASA Astrophysics Data System (ADS)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  6. Atypical postcesarean epithelioid trophoblastic lesion with cyst formation: a case report and literature review.

    PubMed

    Zhou, Feng; Lin, Kaiqing; Shi, Haiyan; Qin, Jiale; Lu, Bingjian; Huang, Lili

    2015-07-01

    We report an extremely rare case of atypical postcesarean epithelioid trophoblastic lesion with cyst formation. A 41-year-old Chinese woman presented with lower abdominal pain and menstrual disorder. Her serum human chorionic gonadotropin (hCG) was low (0.373 IU/L), and her urine hCG was negative. Ultrasound images showed a 3.7×2.8×2.5 cm(3) mass on the surface of the lower uterine segment, and a laparoscopy indicated a cystic mass in the serosal surface of the lower uterine segment. Histology indicated a cystic lesion consisting of epithelioid trophoblastic cells with an intermediate pattern between a classical placental site nodule and an epithelioid trophoblastic tumor; thus, the term atypical postcesarean epithelioid trophoblastic lesion with cyst formation was appropriate. As in atypical placental site nodule, serum hCG monitoring after treatment is necessary. Copyright © 2015. Published by Elsevier Inc.

  7. Carbon-ionogel supercapacitors for integrated microelectronics.

    PubMed

    Leung, Greg; Smith, Leland; Lau, Jonathan; Dunn, Bruce; Chui, Chi On

    2016-01-22

    To exceed the performance limits of dielectric capacitors in microelectronic circuit applications, we design and demonstrate on-chip coplanar electric double-layer capacitors (EDLCs), or supercapacitors, employing carbon-coated gold electrodes with ionogel electrolyte. The formation of carbon-coated microelectrodes is accomplished by solution processing and results in a ten-fold increase in EDLC capacitance compared to bare gold electrodes without carbon. At frequencies up to 10 Hz, an areal capacitance of 2.1 pF μm(-2) is achieved for coplanar carbon-ionogel EDLCs with 10 μm electrode gaps and 0.14 mm(2) electrode area. Our smallest devices, comprised of 5 μm electrode gaps and 80 μm(2) of active electrode area, reach areal capacitance values of ∼0.3 pF μm(-2) at frequencies up to 1 kHz, even without carbon. To our knowledge, these are the highest reported values to date for on-chip EDLCs with sub-mm(2) areas. A physical EDLC model is developed through the use of computer-aided simulations for design exploration and optimization of coplanar EDLCs. Through modeling and comparison with experimental data, we highlight the importance of reducing the electrode gap and electrolyte resistance to achieve maximum performance from on-chip EDLCs.

  8. Carbon-ionogel supercapacitors for integrated microelectronics

    NASA Astrophysics Data System (ADS)

    Leung, Greg; Smith, Leland; Lau, Jonathan; Dunn, Bruce; Chui, Chi On

    2016-01-01

    To exceed the performance limits of dielectric capacitors in microelectronic circuit applications, we design and demonstrate on-chip coplanar electric double-layer capacitors (EDLCs), or supercapacitors, employing carbon-coated gold electrodes with ionogel electrolyte. The formation of carbon-coated microelectrodes is accomplished by solution processing and results in a ten-fold increase in EDLC capacitance compared to bare gold electrodes without carbon. At frequencies up to 10 Hz, an areal capacitance of 2.1 pF μm-2 is achieved for coplanar carbon-ionogel EDLCs with 10 μm electrode gaps and 0.14 mm2 electrode area. Our smallest devices, comprised of 5 μm electrode gaps and 80 μm2 of active electrode area, reach areal capacitance values of ˜0.3 pF μm-2 at frequencies up to 1 kHz, even without carbon. To our knowledge, these are the highest reported values to date for on-chip EDLCs with sub-mm2 areas. A physical EDLC model is developed through the use of computer-aided simulations for design exploration and optimization of coplanar EDLCs. Through modeling and comparison with experimental data, we highlight the importance of reducing the electrode gap and electrolyte resistance to achieve maximum performance from on-chip EDLCs.

  9. Cell Patterning Chip for Controlling the Stem Cell Microenvironment

    PubMed Central

    Rosenthal, Adam; Macdonald, Alice; Voldman, Joel

    2007-01-01

    Cell-cell signaling is an important component of the stem cell microenvironment, affecting both differentiation and self-renewal. However, traditional cell-culture techniques do not provide precise control over cell-cell interactions, while existing cell patterning technologies are limited when used with proliferating or motile cells. To address these limitations, we created the Bio Flip Chip (BFC), a microfabricated polymer chip containing thousands of microwells, each sized to trap down to a single stem cell. We have demonstrated the functionality of the BFC by patterning a 50×50 grid of murine embryonic stem cells (mESCs), with patterning efficiencies > 75%, onto a variety of substrates – a cell-culture dish patterned with gelatin, a 3-D substrate, and even another layer of cells. We also used the BFC to pattern small groups of cells, with and without cell-cell contact, allowing incremental and independent control of contact-mediated signaling. We present quantitative evidence that cell-cell contact plays an important role in depressing mESC colony formation, and show that E-cadherin is involved in this negative regulatory pathway. Thus, by allowing exquisite control of the cellular microenvironment, we provide a technology that enables new applications in tissue engineering and regenerative medicine. PMID:17434582

  10. Regenerable immuno-biochip for screening ochratoxin A in green coffee extract using an automated microarray chip reader with chemiluminescence detection.

    PubMed

    Sauceda-Friebe, Jimena C; Karsunke, Xaver Y Z; Vazac, Susanna; Biselli, Scarlett; Niessner, Reinhard; Knopp, Dietmar

    2011-03-18

    Ochratoxin A (OTA) can contaminate foodstuffs in the ppb to ppm range and once formed, it is difficult to remove. Because of its toxicity and potential risks to human health, the need exists for rapid, efficient detection methods that comply with legal maximum residual limits. In this work we have synthesized an OTA conjugate functionalized with a water-soluble peptide for covalent immobilization on a glass biochip by means of contact spotting. The chip was used for OTA determination with an indirect competitive immunoassay format with flow-through reagent addition and chemiluminescence detection, carried out with the stand-alone automated Munich Chip Reader 3 (MCR 3) platform. A buffer model and real green coffee extracts were used for this purpose. At the present, covalent conjugate immobilization allowed for at least 20 assay-regeneration cycles of the biochip surface. The total analysis time for a single sample, including measurement and surface regeneration, was 12 min and the LOQ of OTA in green coffee extract was 0.3 μg L(-1) which corresponds to 7 μg kg(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. RNA–protein binding kinetics in an automated microfluidic reactor

    PubMed Central

    Ridgeway, William K.; Seitaridou, Effrosyni; Phillips, Rob; Williamson, James R.

    2009-01-01

    Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA–protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic ‘Riboreactor’ has been designed and constructed to facilitate the study of kinetics of RNA–protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA–protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome. PMID:19759214

  12. Morphometry of A1 segment of the anterior cerebral artery and its clinical importance.

    PubMed

    Krishnamurthy, A; Nayak, S R; Bagoji, I B; D'Costa, S; Pai, M M; Jiji, P J; Kumar, C G; Rai, R

    2010-01-01

    Anterior cerebral artery, one of the terminal branches of the internal carotid artery is an important vessel taking part in the formation of circle of Willis. It supplies a large part of the medial surface of the cerebral hemisphere containing the areas of motor and somatosensory cortices of the lower limb. Aim of this study was the morphometry of A1 segment of the anterior cerebral artery. 93 formalin fixed brain specimen of either sex and of Indian origin were studied. The mean length, mean external diameter and the anomalies present in A1 segment of the vessel were studied in detail and photographed. The mean length of A1 segment of the vessel was 14.49+/-0.28 mm and 14.22+/-0.22 mm on right and left side respectively. The mean external diameter of the vessel on right and left side was 2.12+/-0.07 mm and 2.32+/-0.06 mm respectively. Narrowing, aneurysm formation, buttonhole formation and median anterior cerebral artery were the anomalies seen with an occurrence of 15.05%, 5.37%, 3.22% and 12.9%, respectively. The above anomalies did not have any sex or side predilection. Knowledge of morphometry of the vessel will be of use to neurosurgeons while performing the shunt operation, in assessing the feasibility of such operations and in the choice of patients. From this study we infer that the morphometry of anterior cerebral artery varies in different population and that the neurosurgeons operating should have a thorough knowledge of the possible variations.

  13. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.

    PubMed

    Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman

    2013-06-01

    Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.

  14. Event segmentation improves event memory up to one month later.

    PubMed

    Flores, Shaney; Bailey, Heather R; Eisenberg, Michelle L; Zacks, Jeffrey M

    2017-08-01

    When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer this question, participants viewed movies of naturalistic activity with instructions to remember the activity for a later test, and in some conditions additionally pressed a button to segment the movies into meaningful events or performed a control condition that required button-pressing but not attending to segmentation. In 5 experiments, memory for the movies was assessed at intervals ranging from immediately following viewing to 1 month later. Performing the event segmentation task led to superior memory at delays ranging from 10 min to 1 month. Further, individual differences in segmentation ability predicted individual differences in memory performance for up to a month following encoding. This study provides the first evidence that manipulating event segmentation affects memory over long delays and that individual differences in event segmentation are related to differences in memory over long delays. These effects suggest that attending to how an activity breaks down into meaningful events contributes to memory formation. Instructing people to more effectively segment events may serve as a potential intervention to alleviate everyday memory complaints in aging and clinical populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. New Embedded Denotes Fuzzy C-Mean Application for Breast Cancer Density Segmentation in Digital Mammograms

    NASA Astrophysics Data System (ADS)

    Othman, Khairulnizam; Ahmad, Afandi

    2016-11-01

    In this research we explore the application of normalize denoted new techniques in advance fast c-mean in to the problem of finding the segment of different breast tissue regions in mammograms. The goal of the segmentation algorithm is to see if new denotes fuzzy c- mean algorithm could separate different densities for the different breast patterns. The new density segmentation is applied with multi-selection of seeds label to provide the hard constraint, whereas the seeds labels are selected based on user defined. New denotes fuzzy c- mean have been explored on images of various imaging modalities but not on huge format digital mammograms just yet. Therefore, this project is mainly focused on using normalize denoted new techniques employed in fuzzy c-mean to perform segmentation to increase visibility of different breast densities in mammography images. Segmentation of the mammogram into different mammographic densities is useful for risk assessment and quantitative evaluation of density changes. Our proposed methodology for the segmentation of mammograms on the basis of their region into different densities based categories has been tested on MIAS database and Trueta Database.

  16. Multiresolution saliency map based object segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Xin; Dai, ZhenYou

    2015-11-01

    Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.

  17. Fully "Eqwipped" to See the Heat

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Developed by NASA's Jet Propulsion Laboratory over the past decade with an excess of $15 million of government research and development investment, quantum well infrared photodetectors (QWIPs) are infrared imaging sensors that can operate in the long wavelength portion of the electromagnetic spectrum, where objects at an ambient temperature emit the most energy. QWIPTECH was formed in July 1998 to offer JPL's QWIPs in a commercial format. The company currently holds an exclusive worldwide license to manufacture and sell the infrared photodetector sensors as part of a focal plane array called a QWIP Chip(TM). The QWIP Chip provides high thermal sensitivity (0.001 C) and possesses a broad dynamic range, permitting precise observations over a wide range of temperatures. Since the technology uses heat rather than light, it can "see" in complete darkness and through conditions such as dust, smoke, and light fog.

  18. Team of rivals: alliance formation in territorial songbirds is predicted by vocal signal structure

    PubMed Central

    Goodwin, Sarah E.; Podos, Jeffrey

    2014-01-01

    Cooperation and conflict are regarded as diametric extremes of animal social behaviour, yet the two may intersect under rare circumstances. We here report that territorial competitors in a common North American songbird species, the chipping sparrow (Spizella passerina), sometimes form temporary coalitions in the presence of simulated territorial intruders. Moreover, analysis of birds’ vocal mating signals (songs) reveals that coalitions occur nearly exclusively under specific triadic relationships, in which vocal performances of allies and simulated intruders exceed those of residents. Our results provide the first evidence that animals like chipping sparrows rely on precise assessments of mating signal features, as well as relative comparisons of signal properties among multiple animals in communication networks, when deciding when and with whom to form temporary alliances against a backdrop of competition and rivalry. PMID:24573153

  19. Team of rivals: alliance formation in territorial songbirds is predicted by vocal signal structure.

    PubMed

    Goodwin, Sarah E; Podos, Jeffrey

    2014-02-01

    Cooperation and conflict are regarded as diametric extremes of animal social behaviour, yet the two may intersect under rare circumstances. We here report that territorial competitors in a common North American songbird species, the chipping sparrow (Spizella passerina), sometimes form temporary coalitions in the presence of simulated territorial intruders. Moreover, analysis of birds' vocal mating signals (songs) reveals that coalitions occur nearly exclusively under specific triadic relationships, in which vocal performances of allies and simulated intruders exceed those of residents. Our results provide the first evidence that animals like chipping sparrows rely on precise assessments of mating signal features, as well as relative comparisons of signal properties among multiple animals in communication networks, when deciding when and with whom to form temporary alliances against a backdrop of competition and rivalry.

  20. Coherent ultra-violet to near-infrared generation in silica ridge waveguides

    PubMed Central

    Yoon Oh, Dong; Yang, Ki Youl; Fredrick, Connor; Ycas, Gabriel; Diddams, Scott A.; Vahala, Kerry J.

    2017-01-01

    Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology. PMID:28067233

  1. Spectrally reconfigurable integrated multi-spot particle trap.

    PubMed

    Leake, Kaelyn D; Olson, Michael A B; Ozcelik, Damla; Hawkins, Aaron R; Schmidt, Holger

    2015-12-01

    Optical manipulation of small particles in the form of trapping, pushing, or sorting has developed into a vast field with applications in the life sciences, biophysics, and atomic physics. Recently, there has been increasing effort toward integration of particle manipulation techniques with integrated photonic structures on self-contained optofluidic chips. Here, we use the wavelength dependence of multi-spot pattern formation in multimode interference (MMI) waveguides to create a new type of reconfigurable, integrated optical particle trap. Interfering lateral MMI modes create multiple trapping spots in an intersecting fluidic channel. The number of trapping spots can be dynamically controlled by altering the trapping wavelength. This novel, spectral reconfigurability is utilized to deterministically move single and multiple particles between different trapping locations along the channel. This fully integrated multi-particle trap can form the basis of high throughput biophotonic assays on a chip.

  2. Electromigration and thermomigration in lead-free tin-silver-copper and eutectic tin-lead flip chip solder joints

    NASA Astrophysics Data System (ADS)

    Ou Yang, Fan-Yi

    Phase separation and microstructure change of eutectic SnPb and SnAgCu flip chip solder joint were investigated under thermomigration, electromigration, stressmigration and the combination of these effects. Different morphological behaviors under DC and AC electromigration were seen. Phase separation with Pb rich phase migration to the anode was observed when current density is below 1.6 x 104 A/cm2 at 100°C. For some cases, phase separation of Pb-rich phase and Su-rich phase as well as refinement of lamellar microstructure has also been observed. We propose that the refinement is due to recrystallization. On the other hand, time-dependent melting of eutectic SnPb flip chip solder joints has been observed to occur frequently with current density above 1.6 x 104 A/cm 2at 100°C. It has been found that it is due to joule heating of the on-chip Al interconnects. We found that electromigration has especially generated voids at the anode of the Al. This damage has greatly increased the resistance of the Al, which produces the heat needed to melt the solder joint. Owing to the line-to-bump configuration in flip chip solder joints, current crowding occurs when electrons enters into or exits from the solder bump. At the cathode contact, current crowding induced pancake-type void formation was observed widely. Furthermore, at the anode contact, we note that hillock or whisker forms. The cross-sectioned surface in SnPb showed dimple and bulge after electromigration, while that of SnAgCu remained flat. The difference is due to a larger back stress in the SnAgCu, consequently electromigration in SnAgCu is slower than that in SnPb. For thermomigration in eutectic SnPb flip chip solder joints, phase separation of Sn and Pb occurred, with Pb moving to the cold end. Both Sn and Pb have a stepwise concentration profile across solder bump. Refinement of lamellar microstructure was observed, indicating recrystallization. Also, thermomigration in eutectic SnAgCu flip chip solder joint were presented. It seems that vacancy flux plays a dominant role in thermomigration in Pb-free solder bumps; voids formed on the cold end and Sn moved to the hot end.

  3. Market trends in the projection display industry

    NASA Astrophysics Data System (ADS)

    Dash, Sweta

    2001-03-01

    The projection display industry represents a multibillion- dollar market that includes four distinct technologies. High-volume consumer products and high-value business products drive the market, with different technologies being used in different application markets. The consumer market is dominated by rear CRT technology, especially in the projection TV segment. Rear LCD (liquid crystal display), MEMS/DLP (or Digital Light Processing TM) and LCOS (Liquid-crystal-on-silicon) TVs are slowly emerging as future competitors to rear CRT projectors. Front CRT projectors are also facing challenges from LCD and DLP technology for the home theater market while the business market is completely dominated by front LCD and DLP technology. Three-chip DLP projectors have replaced liquid crystal light valves in large venue applications where projectors have higher light output requirements. In recent years front LCD and LCOS projectors have been increasingly competing with 3-chip DLP projectors especially at the low end of the large venue application market. Within the next five years the projection market will experience very fast growth. Sales and presentation applications, which are the fastest growing applications in the business market, will continue to be the major driving force for the growth for front projectors, and the shift in the consumer market to digital and HDTV products will drive the rear projection market.

  4. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.

    PubMed

    Li, Yun-He; Zou, Ming-Hong; Feng, Bi-Hong; Huang, Xia; Zhang, Zhi; Sun, Guang-Ming

    2012-06-01

    Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    NASA Astrophysics Data System (ADS)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  6. The herpetofauna of the cloud forests of Honduras

    PubMed Central

    2003-01-01

    The cloud forest amphibians and reptiles constitute the most important herpetofaunal segment in Honduras, due to the prevalence of endemic and Nuclear Middle American-restricted species. This segment, however, is subject to severe environmental threats due to the actions of humans. Of the 334 species of amphibians and reptiles currently known from Honduras, 122 are known to be distributed in cloud forest habitats. Cloud forest habitats are found throughout the mountainous interior of Honduras. They are subject to a Highland Wet climate, which features annual precipitation of >1500 mm and a mean annual temperature of <18°C. Cloud forest vegetation falls into two Holdridge formations, the Lower Montane Wet Forest and Lower Montane Moist Forest. The Lower Montane Wet Forest formation generally occurs at elevations in excess of 1500 m, although it may occur as low as 1300+ m at some localities. The Lower Montane Moist Forest formation generally occurs at 1700+ m elevation. Of the 122 cloud forest species, 18 are salamanders, 38 are anurans, 27 are lizards, and 39 are snakes. Ninety-eight of these 122 species are distributed in the Lower Montane Wet Forest formation and 45 in the Lower Montane Moist Forest formation. Twenty species are distributed in both formations. The cloud forest species are distributed among restricted, widespread, and peripheral distributional categories. The restricted species range as a group in elevation from 1340 to 2700 m, the species that are widespread in at least one of the two cloud forest formations range as a group from sea level to 2744 m, and the peripheral species range as a group from sea level to 1980 m. The 122 cloud forest species exemplify ten broad distributional patterns ranging from species whose northern and southern range termini are in the United States (or Canada) and South America, respectively, to those species that are endemic to Honduras. The largest segment of the herpetofauna falls into the endemic category, with the next largest segment being restricted in distribution to Nuclear Middle America, but not endemic to Honduras. Cloud forest species are distributed among eight ecophysiographic areas, with the largest number being found in the Northwestern Highlands, followed by the North-Central Highlands and the Southwestern Highlands. The greatest significance of the Honduran herpetofauna lies in its 125 species that are either Honduran endemics or otherwise Nuclear Middle American-restricted species, of which 83 are distributed in the country's cloud forests. This segment of the herpetofauna is seriously endangered as a consequence of exponentially increasing habitat destruction resulting from deforestation, even given the existence of several biotic reserves established in cloud forest. Other, less clearly evident environmental factors also appear to be implicated. As a consequence, slightly over half of these 83 species (50.6%) have populations that are in decline or that have disappeared from Honduran cloud forests. These species possess biological, conservational, and economic significance, all of which appear in danger of being lost. PMID:15029253

  7. Weathering of iron sulfides under Mars surface ambient conditions

    NASA Technical Reports Server (NTRS)

    Blackburn, T. R.

    1981-01-01

    The study of iron sulfide surface alternation reactions under Mars' surface ambient conditions begun during 1980 was extended through improved irradiation design and experimental protocols. A wider range of humidities and more intense irradiation were incorporated in the study. X-ray photoelectron spectra of irradiated chips suggest formation of FeSO4, FeCO3, and an iron oxide on the iron sulfide substrates studied.

  8. Integrated power passives

    NASA Technical Reports Server (NTRS)

    Xie, Huikai (Inventor); Ngo, Khai D. T. (Inventor)

    2013-01-01

    A multi-layer film-stack and method for forming the multilayer film-stack is given where a series of alternating layers of conducting and dielectric materials are deposited such that the conducting layers can be selectively addressed. The use of the method to form integratable high capacitance density capacitors and complete the formation of an integrated power system-on-a-chip device including transistors, conductors, inductors, and capacitors is also given.

  9. Carboxyhaemoglobin formation and ECG changes during hysteroscopic surgery, transurethral prostatectomy and tonsillectomy using bipolar diathermy.

    PubMed

    Overdijk, L E; van Kesteren, P J M; de Haan, P; Schellekens, N C J; Dijksman, L M; Hovius, M C; van den Berg, R G; Bakkum, E A; Rademaker, B M P

    2015-03-01

    Diathermy is known to produce a mixture of waste products including carbon monoxide. During transcervical hysteroscopic surgery, carbon monoxide might enter the circulation leading to the formation of carboxyhaemoglobin. In 20 patients scheduled for transcervical hysteroscopic resection of myoma or endometrium, carboxyhaemoglobin was measured before and at the end of the surgical procedure, and compared with levels measured in 20 patients during transurethral prostatectomy, and in 20 patients during tonsillectomy. Haemodynamic data, including ST-segment changes, were recorded. Levels of carboxyhaemoglobin increased significantly during hysteroscopic surgery from median (IQR [range]) 1.0% (0.7-1.4 [0.5-4.9])% to 3.5% (2.0-6.1 [1.3-10.3]%, p < 0.001), compared with levels during prostatectomy or tonsillectomy. Significant ST-segment changes were observed in 50% of the patients during hysteroscopic surgery. Significant correlations were observed between the increase in carboxyhaemoglobin and the maximum ST-segment change (ρ = -0.707, p < 0.01), between the increase in carboxyhaemoglobin and intravasation (ρ = 0.625; p < 0.01), and between intravasation and the maximum ST-segment change (ρ = -0.761; p < 0.01). The increased carboxyhaemoglobin levels during hysteroscopic surgery appear to be related to the amount of intravasation and this could potentially be a contributing factor to the observed ST-segment changes. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  10. Automated Forensic Animal Family Identification by Nested PCR and Melt Curve Analysis on an Off-the-Shelf Thermocycler Augmented with a Centrifugal Microfluidic Disk Segment.

    PubMed

    Keller, Mark; Naue, Jana; Zengerle, Roland; von Stetten, Felix; Schmidt, Ulrike

    2015-01-01

    Nested PCR remains a labor-intensive and error-prone biomolecular analysis. Laboratory workflow automation by precise control of minute liquid volumes in centrifugal microfluidic Lab-on-a-Chip systems holds great potential for such applications. However, the majority of these systems require costly custom-made processing devices. Our idea is to augment a standard laboratory device, here a centrifugal real-time PCR thermocycler, with inbuilt liquid handling capabilities for automation. We have developed a microfluidic disk segment enabling an automated nested real-time PCR assay for identification of common European animal groups adapted to forensic standards. For the first time we utilize a novel combination of fluidic elements, including pre-storage of reagents, to automate the assay at constant rotational frequency of an off-the-shelf thermocycler. It provides a universal duplex pre-amplification of short fragments of the mitochondrial 12S rRNA and cytochrome b genes, animal-group-specific main-amplifications, and melting curve analysis for differentiation. The system was characterized with respect to assay sensitivity, specificity, risk of cross-contamination, and detection of minor components in mixtures. 92.2% of the performed tests were recognized as fluidically failure-free sample handling and used for evaluation. Altogether, augmentation of the standard real-time thermocycler with a self-contained centrifugal microfluidic disk segment resulted in an accelerated and automated analysis reducing hands-on time, and circumventing the risk of contamination associated with regular nested PCR protocols.

  11. Effects of Pore Size on the Osteoconductivity and Mechanical Properties of Calcium Phosphate Cement in a Rabbit Model.

    PubMed

    Zhao, Yi-Nan; Fan, Jun-Jun; Li, Zhi-Quan; Liu, Yan-Wu; Wu, Yao-Ping; Liu, Jian

    2017-02-01

    Calcium phosphate cement (CPC) porous scaffold is widely used as a suitable bone substitute to repair bone defect, but the optimal pore size is unclear yet. The current study aimed to evaluate the effect of different pore sizes on the processing of bone formation in repairing segmental bone defect of rabbits using CPC porous scaffolds. Three kinds of CPC porous scaffolds with 5 mm diameters and 12 mm length were prepared with the same porosity but different pore sizes (Group A: 200-300 µm, Group B: 300-450 µm, Group C: 450-600 µm, respectively). Twelve millimeter segmental bone defects were created in the middle of the radius bone and filled with different kinds of CPC cylindrical scaffolds. After 4, 12, and 24 weeks, alkaline phosphatase (ALP), histological assessment, and mechanical properties evaluation were performed in all three groups. After 4 weeks, ALP activity increased in all groups but was highest in Group A with smallest pore size. The new bone formation within the scaffolds was not obvious in all groups. After 12 weeks, the new bone formation within the scaffolds was obvious in each group and highest in Group A. At 24 weeks, no significant difference in new bone formation was observed among different groups. Besides the osteoconductive effect, Group A with smallest pore size also had the best mechanical properties in vivo at 12 weeks. We demonstrate that pore size has a significant effect on the osteoconductivity and mechanical properties of calcium phosphate cement porous scaffold in vivo. Small pore size favors the bone formation in the early stage and may be more suitable for repairing segmental bone defect in vivo. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Discrimination between platelet-mediated and coagulation-mediated mechanisms in a model of complex thrombus formation in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadroy, Y.; Horbett, T.A.; Hanson, S.R.

    1989-04-01

    To study mechanisms of complex thrombus formation in vivo, and to compare the relative antithrombotic effects of anticoagulants and antiplatelet agents, a model was developed in baboons. Segments of collagen-coated tubing followed by two sequentially placed expansion chambers exhibiting disturbed flow patterns were exposed to native blood under laminar flow conditions. The device was incorporated for 1 hour into an exteriorized arteriovenous shunt in baboons under controlled blood flow (20 ml/min). Morphologic evaluation by scanning electron microscopy showed that thrombi associated with collagen were relatively rich in platelets but thrombi in the chambers were rich in fibrin and red cells.more » Deposition of indium 111-labeled platelets was continuously measured with a scintillation camera. Platelet deposition increased in a linear (collagen-coated segment) or exponential (chambers 1 and 2) fashion over time, with values after 40 minutes averaging 24.1 +/- 3.3 x 10(8) platelets (collagen segment), 16.7 +/- 3.4 x 10(8) platelets (chamber 1), and 8.4 +/- 2.4 x 10(8) platelets (chamber 2). Total fibrinogen deposition after 40 minutes was determined by using iodine 125-labeled baboon fibrinogen and averaged 0.58 +/- 0.14 mg in the collagen segment, 1.51 +/- 0.27 mg in chamber 1, and 0.95 +/- 0.25 mg in chamber 2. Plasma levels of beta-thromboglobulin (beta TG), platelet-factor 4 (PF4), and fibrinopeptide A (FPA) increased fourfold to fivefold after 60 minutes of blood exposure to the thrombotic device. Platelet deposition onto the collagen segment, chamber 1, and chamber 2 was linearly dependent on the circulating platelet count. Platelet accumulation in chamber 1 and chamber 2 was also dependent on the presence of the proximal collagen segment.« less

  13. In situ imaging of the soldering reactions in nanoscale Cu/Sn/Cu and Sn/Cu/Sn diffusion couples

    NASA Astrophysics Data System (ADS)

    Yin, Qiyue; Gao, Fan; Gu, Zhiyong; Wang, Jirui; Stach, Eric A.; Zhou, Guangwen

    2018-01-01

    The soldering reactions of three-segmented Sn/Cu/Sn and Cu/Sn/Cu diffusion couples are monitored by in-situ transmission electron microscopy to reveal the metallurgical reaction mechanism and the associated phase transformation pathway. For Sn/Cu/Sn diffusion couples, there is no ɛ-Cu3Sn formation due to the relatively insufficient Cu as compared to Sn. Kirkendall voids form initially in the Cu segment and then disappear due to the volume expansion associated with the continued intermetallic compound (IMC) formation as the reaction progresses. The incoming Sn atoms react with Cu to form η-Cu6Sn5, and the continuous reaction then transforms the entire nanowire to η-Cu6Sn5 grains with remaining Sn. With continued heating slightly above the melting point of Sn, an Sn-rich liquid phase forms between η-Cu6Sn5 grains. By contrast, the reaction in the Cu/Sn/Cu diffusion couples results in the intermetallic phases of both Cu3Sn and Cu6Sn5 and the development of Cu6Sn5 bulges on Cu3Sn grains. Kirkendall voids form in the two Cu segments, which grow and eventually break the nanowire into multiple segments.

  14. Race and gender moderation of the relationship between cessation beliefs and intentions: is race or gender message segmentation necessary in anti-smoking campaigns?

    PubMed

    Parvanta, S; Gibson, L; Moldovan-Johnson, M; Mallya, G; Hornik, R C

    2013-10-01

    Debate persists over whether different message strategies in anti-smoking campaigns are needed for audiences of different races or genders. This study considers the need for 'message segmentation', which is the process of differentiating the beliefs that might be the focus of messages for population subgroups. We have two aims: (i) lay out an approach that yields evidence about the necessity for message segmentation and (ii) demonstrate and assess findings from this approach using the formative evaluation for the Philadelphia Anti-Smoking Campaign. We examine whether associations between beliefs about quitting smoking and intention to quit are moderated by race (black/white) or gender. Data came from a representative sample of 501 adult smokers (46% black; 56% female) surveyed in July 2010 for the campaign's formative evaluation. Out of 26 beliefs about cessation, 8 were significantly related to cessation intention regardless of subgroup affiliation, suggesting that these would be promising beliefs for messages in a unified campaign. Four beliefs were significant for white smokers only, and three beliefs were significant for female smokers only. The evidence justified a unified message approach because subgroups shared enough beliefs that could become message strategies to increase cessation across smokers without the added costs associated with message segmentation.

  15. Image-based characterization of thrombus formation in time-lapse DIC microscopy

    PubMed Central

    Brieu, Nicolas; Navab, Nassir; Serbanovic-Canic, Jovana; Ouwehand, Willem H.; Stemple, Derek L.; Cvejic, Ana; Groher, Martin

    2012-01-01

    The characterization of thrombus formation in time-lapse DIC microscopy is of increased interest for identifying genes which account for atherothrombosis and coronary artery diseases (CADs). In particular, we are interested in large-scale studies on zebrafish, which result in large amount of data, and require automatic processing. In this work, we present an image-based solution for the automatized extraction of parameters quantifying the temporal development of thrombotic plugs. Our system is based on the joint segmentation of thrombotic and aortic regions over time. This task is made difficult by the low contrast and the high dynamic conditions observed in vivo DIC microscopic scenes. Our key idea is to perform this segmentation by distinguishing the different motion patterns in image time series rather than by solving standard image segmentation tasks in each image frame. Thus, we are able to compensate for the poor imaging conditions. We model motion patterns by energies based on the idea of dynamic textures, and regularize the model by two prior energies on the shape of the aortic region and on the topological relationship between the thrombus and the aorta. We demonstrate the performance of our segmentation algorithm by qualitative and quantitative experiments on synthetic examples as well as on real in vivo microscopic sequences. PMID:22482997

  16. An algorithm for automating the registration of USDA segment ground data to LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Graham, M. H. (Principal Investigator)

    1981-01-01

    The algorithm is referred to as the Automatic Segment Matching Algorithm (ASMA). The ASMA uses control points or the annotation record of a P-format LANDSAT compter compatible tape as the initial registration to relate latitude and longitude to LANDSAT rows and columns. It searches a given area of LANDSAT data with a 2x2 sliding window and computes gradient values for bands 5 and 7 to match the segment boundaries. The gradient values are held in memory during the shifting (or matching) process. The reconstructed segment array, containing ones (1's) for boundaries and zeros elsewhere are computer compared to the LANDSAT array and the best match computed. Initial testing of the ASMA indicates that it has good potential for replacing the manual technique.

  17. Appropriate suppression of Notch signaling by Mesp factors is essential for stripe pattern formation leading to segment boundary formation.

    PubMed

    Takahashi, Yu; Yasuhiko, Yukuto; Kitajima, Satoshi; Kanno, Jun; Saga, Yumiko

    2007-04-15

    Mesp1 and Mesp2 are homologous transcription factors that are co-expressed in the anterior presomitic mesoderm (PSM) during mouse somitogenesis. The loss of Mesp2 alone in our conventional Mesp2-null mice results in the complete disruption of somitogenesis, including segment border formation, rostro-caudal patterning and epithelialization of somitic mesoderm. This has led us to interpret that Mesp2 is solely responsible for somitogenesis. Our novel Mesp2 knock-in alleles, however, exhibit a remarkable upregulation of Mesp1. Removal of the pgk-neo cassette from the new allele leads to localization of Mesp1 and several gene expression, and somite formation in the tail region. Moreover, a reduction in the gene dosage of Mesp1 by one copy disrupts somite formation, confirming the involvement of Mesp1 in the rescue events. Furthermore, we find that activated Notch1 knock-in significantly upregulates Mesp1 expression, even in the absence of a Notch signal mediator, Psen1. This indicates that the Psen1-independent effects of activated Notch1 are mostly attributable to the induction of Mesp1. However, we have also confirmed that Mesp2 enhances the expression of the Notch1 receptor in the anterior PSM. The activation and subsequent suppression of Notch signaling might thus be a crucial event for both stripe pattern formation and boundary formation.

  18. Design and validation of Segment--freely available software for cardiovascular image analysis.

    PubMed

    Heiberg, Einar; Sjögren, Jane; Ugander, Martin; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2010-01-11

    Commercially available software for cardiovascular image analysis often has limited functionality and frequently lacks the careful validation that is required for clinical studies. We have already implemented a cardiovascular image analysis software package and released it as freeware for the research community. However, it was distributed as a stand-alone application and other researchers could not extend it by writing their own custom image analysis algorithms. We believe that the work required to make a clinically applicable prototype can be reduced by making the software extensible, so that researchers can develop their own modules or improvements. Such an initiative might then serve as a bridge between image analysis research and cardiovascular research. The aim of this article is therefore to present the design and validation of a cardiovascular image analysis software package (Segment) and to announce its release in a source code format. Segment can be used for image analysis in magnetic resonance imaging (MRI), computed tomography (CT), single photon emission computed tomography (SPECT) and positron emission tomography (PET). Some of its main features include loading of DICOM images from all major scanner vendors, simultaneous display of multiple image stacks and plane intersections, automated segmentation of the left ventricle, quantification of MRI flow, tools for manual and general object segmentation, quantitative regional wall motion analysis, myocardial viability analysis and image fusion tools. Here we present an overview of the validation results and validation procedures for the functionality of the software. We describe a technique to ensure continued accuracy and validity of the software by implementing and using a test script that tests the functionality of the software and validates the output. The software has been made freely available for research purposes in a source code format on the project home page http://segment.heiberg.se. Segment is a well-validated comprehensive software package for cardiovascular image analysis. It is freely available for research purposes provided that relevant original research publications related to the software are cited.

  19. Ancestral Patterning of Tergite Formation in a Centipede Suggests Derived Mode of Trunk Segmentation in Trilobites

    PubMed Central

    Ortega-Hernández, Javier; Brena, Carlo

    2012-01-01

    Trilobites have a rich and abundant fossil record, but little is known about the intrinsic mechanisms that orchestrate their body organization. To date, there is disagreement regarding the correspondence, or lack thereof, of the segmental units that constitute the trilobite trunk and their associated exoskeletal elements. The phylogenetic position of trilobites within total-group Euarthropoda, however, allows inferences about the underlying organization in these extinct taxa to be made, as some of the fundamental genetic processes for constructing the trunk segments are remarkably conserved among living arthropods. One example is the expression of the segment polarity gene engrailed, which at embryonic and early postembryonic stages is expressed in extant panarthropods (i.e. tardigrades, onychophorans, euarthropods) as transverse stripes that define the posteriormost region of each trunk segment. Due to its conservative morphology and allegedly primitive trunk tagmosis, we have utilized the centipede Strigamia maritima to study the correspondence between the expression of engrailed during late embryonic to postembryonic stages, and the development of the dorsal exoskeletal plates (i.e. tergites). The results corroborate the close correlation between the formation of the tergite borders and the dorsal expression of engrailed, and suggest that this association represents a symplesiomorphy within Euarthropoda. This correspondence between the genetic and phenetic levels enables making accurate inferences about the dorsoventral expression domains of engrailed in the trunk of exceptionally preserved trilobites and their close relatives, and is suggestive of the widespread occurrence of a distinct type of genetic segmental mismatch in these extinct arthropods. The metameric organization of the digestive tract in trilobites provides further support to this new interpretation. The wider evolutionary implications of these findings suggest the presence of a derived morphogenetic patterning mechanism responsible for the reiterated occurrence of different types of trunk dorsoventral segmental mismatch in several phylogenetically distant, extinct and extant, arthropod groups. PMID:23285116

  20. Differences in 3D vs. 2D analysis in lumbar spinal fusion simulations.

    PubMed

    Hsu, Hung-Wei; Bashkuev, Maxim; Pumberger, Matthias; Schmidt, Hendrik

    2018-04-27

    Lumbar interbody fusion is currently the gold standard in treating patients with disc degeneration or segmental instability. Despite it having been used for several decades, the non-union rate remains high. A failed fusion is frequently attributed to an inadequate mechanical environment after instrumentation. Finite element (FE) models can provide insights into the mechanics of the fusion process. Previous fusion simulations using FE models showed that the geometries and material of the cage can greatly influence the fusion outcome. However, these studies used axisymmetric models which lacked realistic spinal geometries. Therefore, different modeling approaches were evaluated to understand the bone-formation process. Three FE models of the lumbar motion segment (L4-L5) were developed: 2D, Sym-3D and Nonsym-3D. The fusion process based on existing mechano-regulation algorithms using the FE simulations to evaluate the mechanical environment was then integrated into these models. In addition, the influence of different lordotic angles (5, 10 and 15°) was investigated. The volume of newly formed bone, the axial stiffness of the whole segment and bone distribution inside and surrounding the cage were evaluated. In contrast to the Nonsym-3D, the 2D and Sym-3D models predicted excessive bone formation prior to bridging (peak values with 36 and 9% higher than in equilibrium, respectively). The 3D models predicted a more uniform bone distribution compared to the 2D model. The current results demonstrate the crucial role of the realistic 3D geometry of the lumbar motion segment in predicting bone formation after lumbar spinal fusion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips.

    PubMed

    Pensabene, Virginia; Costa, Lino; Terekhov, Alexander Y; Gnecco, Juan S; Wikswo, John P; Hofmeister, William H

    2016-08-31

    The basal lamina or basement membrane (BM) is a key physiological system that participates in physicochemical signaling between tissue types. Its formation and function are essential in tissue maintenance, growth, angiogenesis, disease progression, and immunology. In vitro models of the BM (e.g., Boyden and transwell chambers) are common in cell biology and lab-on-a-chip devices where cells require apical and basolateral polarization. Extravasation, intravasation, membrane transport of chemokines, cytokines, chemotaxis of cells, and other key functions are routinely studied in these models. The goal of the present study was to integrate a semipermeable ultrathin polymer membrane with precisely positioned pores of 2 μm diameter in a microfluidic device with apical and basolateral chambers. We selected poly(l-lactic acid) (PLLA), a transparent biocompatible polymer, to prepare the semipermeable ultrathin membranes. The pores were generated by pattern transfer using a three-step method coupling femtosecond laser machining, polymer replication, and spin coating. Each step of the fabrication process was characterized by scanning electron microscopy to investigate reliability of the process and fidelity of pattern transfer. In order to evaluate the compatibility of the fabrication method with organs-on-a-chip technology, porous PLLA membranes were embedded in polydimethylsiloxane (PDMS) microfluidic devices and used to grow human umbilical vein endothelial cells (HUVECS) on top of the membrane with perfusion through the basolateral chamber. Viability of cells, optical transparency of membranes and strong adhesion of PLLA to PDMS were observed, thus confirming the suitability of the prepared membranes for use in organs-on-a-chip devices.

  2. Simultaneous nanocalorimetry and fast XRD measurements to study the silicide formation in Pd/a-Si bilayers.

    PubMed

    Molina-Ruiz, Manel; Ferrando-Villalba, Pablo; Rodríguez-Tinoco, Cristian; Garcia, Gemma; Rodríguez-Viejo, Javier; Peral, Inma; Lopeandía, Aitor F

    2015-05-01

    The use of a membrane-based chip nanocalorimeter in a powder diffraction beamline is described. Simultaneous wide-angle X-ray scattering and scanning nanocalorimetric measurements are performed on a thin-film stack of palladium/amorphous silicon (Pd/a-Si) at heating rates from 0.1 to 10 K s(-1). The nanocalorimeter works under a power-compensation scheme previously developed by the authors. Kinetic and structural information of the consumed and created phases can be obtained from the combined techniques. The formation of Pd2Si produces a broad calorimetric peak that contains overlapping individual processes. It is shown that Pd consumption precedes the formation of the crystalline Pd2Si phase and that the crystallite size depends on the heating rate of the experiment.

  3. Migratory gold resistive shorts - Chemical aspects of a failure mechanism

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Griswold, T. W.; Clendening, P. J.

    1975-01-01

    Integrated-circuit devices using the Ti/W/Au metal system are subject to failure mechanisms based on electrolytic corrosion. The migratory gold resistive short (MGRS) failure mode is one example of this mechanism and results in the formation of filamentary or dendritic deposits of gold between adjacent stripes on the IC chip. This reaction requires the presence of a sufficient amount of water, a bias voltage between adjacent stripes, and the activation of the cathodic (-) stripe. Gold ions are transported from anode to cathode through a film of moisture adsorbed on the surface of the chip; halide ions are probably involved in the transfer. Their presence is verified experimentally by X-ray photoelectron spectroscopy. Some of the chemical and electrostatic factors involved in the MGRS mechanism are discussed in this paper, including the questions of a threshold level of moisture and contamination.

  4. Smart CMOS image sensor for lightning detection and imaging.

    PubMed

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  5. Multiplexed analysis of protein-ligand interactions by fluorescence anisotropy in a microfluidic platform.

    PubMed

    Cheow, Lih Feng; Viswanathan, Ramya; Chin, Chee-Sing; Jennifer, Nancy; Jones, Robert C; Guccione, Ernesto; Quake, Stephen R; Burkholder, William F

    2014-10-07

    Homogeneous assay platforms for measuring protein-ligand interactions are highly valued due to their potential for high-throughput screening. However, the implementation of these multiplexed assays in conventional microplate formats is considerably expensive due to the large amounts of reagents required and the need for automation. We implemented a homogeneous fluorescence anisotropy-based binding assay in an automated microfluidic chip to simultaneously interrogate >2300 pairwise interactions. We demonstrated the utility of this platform in determining the binding affinities between chromatin-regulatory proteins and different post-translationally modified histone peptides. The microfluidic chip assay produces comparable results to conventional microtiter plate assays, yet requires 2 orders of magnitude less sample and an order of magnitude fewer pipetting steps. This approach enables one to use small samples for medium-scale screening and could ease the bottleneck of large-scale protein purification.

  6. MEAs and 3D nanoelectrodes: electrodeposition as tool for a precisely controlled nanofabrication.

    PubMed

    Weidlich, Sabrina; Krause, Kay J; Schnitker, Jan; Wolfrum, Bernhard; Offenhäusser, Andreas

    2017-01-31

    Microelectrode arrays (MEAs) are gaining increasing importance for the investigation of signaling processes between electrogenic cells. However, efficient cell-chip coupling for robust and long-term electrophysiological recording and stimulation still remains a challenge. A possible approach for the improvement of the cell-electrode contact is the utilization of three-dimensional structures. In recent years, various 3D electrode geometries have been developed, but we are still lacking a fabrication approach that enables the formation of different 3D structures on a single chip in a controlled manner. This, however, is needed to enable a direct and reliable comparison of the recording capabilities of the different structures. Here, we present a method for a precisely controlled deposition of nanoelectrodes, enabling the fabrication of multiple, well-defined types of structures on our 64 electrode MEAs towards a rapid-prototyping approach to 3D electrodes.

  7. Microfluidic chips with multi-junctions: an advanced tool in recovering proteins from inclusion bodies

    PubMed Central

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2015-01-01

    Active recombinant proteins are used for studying the biological functions of genes and for the development of therapeutic drugs. Overexpression of recombinant proteins in bacteria often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. Protein refolding is an important process for obtaining active recombinant proteins from inclusion bodies. However, the conventional refolding method of dialysis or dilution is time-consuming and recovered active protein yields are often low, and a cumbersome trial-and-error process is required to achieve success. To circumvent these difficulties, we used controllable diffusion through laminar flow in microchannels to regulate the denaturant concentration. This method largely aims at reducing protein aggregation during the refolding procedure. This Commentary introduces the principles of the protein refolding method using microfluidic chips and the advantage of our results as a tool for rapid and efficient recovery of active recombinant proteins from inclusion bodies. PMID:25531187

  8. Microfluidic chips with multi-junctions: an advanced tool in recovering proteins from inclusion bodies.

    PubMed

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2015-01-01

    Active recombinant proteins are used for studying the biological functions of genes and for the development of therapeutic drugs. Overexpression of recombinant proteins in bacteria often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. Protein refolding is an important process for obtaining active recombinant proteins from inclusion bodies. However, the conventional refolding method of dialysis or dilution is time-consuming and recovered active protein yields are often low, and a cumbersome trial-and-error process is required to achieve success. To circumvent these difficulties, we used controllable diffusion through laminar flow in microchannels to regulate the denaturant concentration. This method largely aims at reducing protein aggregation during the refolding procedure. This Commentary introduces the principles of the protein refolding method using microfluidic chips and the advantage of our results as a tool for rapid and efficient recovery of active recombinant proteins from inclusion bodies.

  9. Soliton microcomb range measurement.

    PubMed

    Suh, Myoung-Gyun; Vahala, Kerry J

    2018-02-23

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. A Review of Some Superconducting Technologies for AtLAST: Parametric Amplifiers, Kinetic Inductance Detectors, and On-Chip Spectrometers

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid

    2018-01-01

    The current state of the art for some superconducting technologies will be reviewed in the context of a future single-dish submillimeter telescope called AtLAST. The technologies reviews include: 1) Kinetic Inductance Detectors (KIDs), which have now been demonstrated in large-format kilo-pixel arrays with photon background-limited sensitivity suitable for large field of view cameras for wide-field imaging. 2) Parametric amplifiers - specifically the Traveling-Wave Kinetic Inductance (TKIP) amplifier - which has enormous potential to increase sensitivity, bandwidth, and mapping speed of heterodyne receivers, and 3) On-chip spectrometers, which combined with sensitive direct detectors such as KIDs or TESs could be used as Multi-Object Spectrometers on the AtLAST focal plane, and could provide low-medium resolution spectroscopy of 100 objects at a time in each field of view.

  11. Effect of current crowding on whisker growth at the anode in flip chip solder joints

    NASA Astrophysics Data System (ADS)

    Ouyang, Fan-Yi; Chen, Kai; Tu, K. N.; Lai, Yi-Shao

    2007-12-01

    Owing to the line-to-bump configuration in flip chip solder joints, current crowding occurs when electrons enter into or exit from the solder bump. At the cathode contact, where electrons enter into the bump, current crowding induced pancake-type void formation has now been observed widely. At the anode contact, where electrons exit from the bump, we report here that whisker is formed. Results of both eutectic SnPb and SnAgCu solder joints are presented and compared. The cross-sectioned surface in SnPb showed dimple and bulge after electromigration, while that of SnAgCu remained flat. The difference is due to a larger back stress in the SnAgCu, consequently, electromigration in SnAgCu is slower than that in SnPb. Nanoindentation markers were used to measure the combined atomic fluxes of back stress and electromigration.

  12. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a hybrid packaging process and design issues are discussed.

  13. Framework for reanalysis of publicly available Affymetrix® GeneChip® data sets based on functional regions of interest.

    PubMed

    Saka, Ernur; Harrison, Benjamin J; West, Kirk; Petruska, Jeffrey C; Rouchka, Eric C

    2017-12-06

    Since the introduction of microarrays in 1995, researchers world-wide have used both commercial and custom-designed microarrays for understanding differential expression of transcribed genes. Public databases such as ArrayExpress and the Gene Expression Omnibus (GEO) have made millions of samples readily available. One main drawback to microarray data analysis involves the selection of probes to represent a specific transcript of interest, particularly in light of the fact that transcript-specific knowledge (notably alternative splicing) is dynamic in nature. We therefore developed a framework for reannotating and reassigning probe groups for Affymetrix® GeneChip® technology based on functional regions of interest. This framework addresses three issues of Affymetrix® GeneChip® data analyses: removing nonspecific probes, updating probe target mapping based on the latest genome knowledge and grouping probes into gene, transcript and region-based (UTR, individual exon, CDS) probe sets. Updated gene and transcript probe sets provide more specific analysis results based on current genomic and transcriptomic knowledge. The framework selects unique probes, aligns them to gene annotations and generates a custom Chip Description File (CDF). The analysis reveals only 87% of the Affymetrix® GeneChip® HG-U133 Plus 2 probes uniquely align to the current hg38 human assembly without mismatches. We also tested new mappings on the publicly available data series using rat and human data from GSE48611 and GSE72551 obtained from GEO, and illustrate that functional grouping allows for the subtle detection of regions of interest likely to have phenotypical consequences. Through reanalysis of the publicly available data series GSE48611 and GSE72551, we profiled the contribution of UTR and CDS regions to the gene expression levels globally. The comparison between region and gene based results indicated that the detected expressed genes by gene-based and region-based CDFs show high consistency and regions based results allows us to detection of changes in transcript formation.

  14. Lab-on-a-Chip Sensor for Monitoring Perchlorate in Ground and Surface Water

    DTIC Science & Technology

    2012-02-01

    uses zwitterionic surfactants was immobilized on either a conventional or membrane-based stationary phase (electrostatic ion chromatography ) em...substantially higher than that of drinking water. A novel extraction method incorporat- ing the fundamentals of electrostatic ion chromatography (EIC) was...electrostatic ion chromatography (EIC), is presented as a way to overcome this challenge. Two extraction formats, employing either a packed bed or a monolith

  15. Qualitative and quantitative evaluation of avian demineralized bone matrix in heterotopic beds.

    PubMed

    Reza Sanaei, M; Abu, Jalila; Nazari, Mojgan; A B, Mohd Zuki; Allaudin, Zeenathul N

    2013-11-01

    To evaluate the osteogenic potential of avian demineralized bone matrix (DBM) in the context of implant geometry. Experimental. Rock pigeons (n = 24). Tubular and chipped forms of DBM were prepared by acid demineralization of long bones from healthy allogeneic donors and implanted bilaterally into the pectoral region of 24 pigeons. After euthanasia at 1, 4, 6, 8, 10, and 12 weeks, explants were evaluated histologically and compared by means of quantitative (bone area) and semi quantitative measures (scores). All explants had new bone at retrieval with the exception of tubular implants at the end of week 1. The most reactive part in both implants was the interior region between the periosteal and endosteal surfaces followed by the area at the implant-muscle interface. Quantitative measurements demonstrated a significantly (P = .012) greater percentage of new bone formation induced by tubular implants (80.28 ± 8.94) compared with chip implants (57.64 ± 3.12). There was minimal inflammation. Avian DBM initiates heterotopic bone formation in allogeneic recipients with low grades of immunogenicity. Implant geometry affects this phenomenon as osteoconduction appeared to augment the magnitude of the effects in larger tubular implants. © Copyright 2013 by The American College of Veterinary Surgeons.

  16. An SPR biosensor for the detection of microcystins in drinking water.

    PubMed

    Herranz, Sonia; Bocková, Markéta; Marazuela, María Dolores; Homola, Jiří; Moreno-Bondi, María Cruz

    2010-11-01

    A surface plasmon resonance (SPR) biosensor for the detection of microcystins (MCs) in drinking water has been developed. Several assay formats have been evaluated. The selected format is based on a competitive inhibition assay, in which microcystin-LR (MCLR) has been covalently immobilized onto the surface of an SPR chip functionalized with a self-assembled monolayer. The influence of several factors affecting sensor performance, such as the nature and concentration of the antibody, the composition of the carrier buffer, and the blocking and regeneration solutions, has been evaluated. The optimized SPR biosensor provides an IC(50) 0.67 ± 0.09 µg L(-1), a detection limit of 73 ± 8 ng L(-1), and a dynamic range from 0.2 to 2.0 µg L(-1) for MCLR. Cross-reactivity to other related MCs, such as microcystin-RR (88%) and microcystin-YR (94%), has also been measured. The SPR biosensor can perform four simultaneous determinations in 60 min, and each SPR chip can be reused for at least 40 assay-regeneration cycles without significant binding capacity loss. The biosensor has been successfully applied to the direct analysis of MCLR in drinking water samples, below the provisional guideline value of 1 µg L(-1) established by the World Health Organization for drinking water.

  17. Polyplanar optical display electronics

    NASA Astrophysics Data System (ADS)

    DeSanto, Leonard; Biscardi, Cyrus

    1997-07-01

    The polyplanar optical display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid- state laser at 532 nm as its light source. To produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the digital micromirror device (DMD) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD chip is operated remotely from the Texas Instruments circuit board. We discuss the operation of the DMD divorced from the light engine and the interfacing of the DMD board with various video formats including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  18. Shape-tunable wax microparticle synthesis via microfluidics and droplet impact

    PubMed Central

    Lee, Doojin; Beesabathuni, Shilpa N.; Shen, Amy Q.

    2015-01-01

    Spherical and non-spherical wax microparticles are generated by employing a facile two-step droplet microfluidic process which consists of the formation of molten wax microdroplets in a flow-focusing microchannel and their subsequent off-chip crystallization and deformation via microdroplet impingement on an immiscible liquid interface. Key parameters on the formation of molten wax microdroplets in a microfluidic channel are the viscosity of the molten wax and the interfacial tension between the dispersed and continuous fluids. A cursory phase diagram of wax morphology transition is depicted depending on the Capillary number and the Stefan number during the impact process. A combination of numerical simulation and analytical modeling is carried out to understand the physics underlying the deformation and crystallization process of the molten wax. The deformation of wax microdroplets is dominated by the viscous and thermal effects rather than the gravitational and buoyancy effects. Non-isothermal crystallization kinetics of the wax illustrates the time dependent thermal effects on the droplet deformation and crystallization. The work presented here will benefit those interested in the design and production criteria of soft non-spherical particles (i.e., alginate gels, wax, and polymer particles) with the aid of time and temperature mediated solidification and off-chip crosslinking. PMID:26697124

  19. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode

    PubMed Central

    Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon

    2016-01-01

    Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0–1 μm and 1–12 μm. These ranges can be attributed to different pore formation mechanisms. PMID:27456201

  20. Silver flip chip interconnect technology and solid state bonding

    NASA Astrophysics Data System (ADS)

    Sha, Chu-Hsuan

    In this dissertation, fluxless transient liquid phase (TLP) bonding and solid state bonding between thermal expansion mismatch materials have been developed using Ag-In binary systems, pure Au, Ag, and Cu-Ag composite. In contrast to the conventional soldering process, fluxless bonding technique eliminates any corrosion and contamination problems caused by flux. Without flux, it is possible to fabricate high quality joints in large bonding areas where the flux is difficult to clean entirely. High quality joints are crucial to bonding thermal expansion mismatch materials since shear stress develops in the bonded pair. Stress concentration at voids in joints could increases breakage probability. In addition, intermetallic compound (IMC) formation between solder and underbump metallurgy (UBM) is essential for interconnect joint formation in conventional soldering process. However, the interface between IMC and solder is shown to be the weak interface that tends to break first during thermal cycling and drop tests. In our solid state bonding technique, there is no IMC involved in the bonding between Au to Au, Ag and Cu, and Ag and Au. All the reliability issues related to IMC or IMC growth is not our concern. To sum up, ductile bonding media, such as Ag or Au, and proper metallic layered structure are utilized in this research to produce high quality joints. The research starts with developing a low temperature fluxless bonding process using electroplated Ag/In/Ag multilayer structures between Si chip and 304 stainless steel (304SS) substrate. Because the outer thin Ag layer effectively protects inner In layer from oxidation, In layer dissolves Ag layer and joints to Ag layer on the to-be-bonded Si chip when temperature reaches the reflow temperature of 166ºC. Joints consist of mainly Ag-rich Ag-In solid solution and Ag2In. Using this fluxless bonding technique, two 304SS substrates can be bonded together as well. From the high magnification SEM images taken at cross-section, there is no void or gap observed. The new bonding technique presented should be valuable in packaging high power electronic devices for high temperature operations. It should also be useful to bond two 304SS parts together at low bonding temperature of 190ºC. Solid state bonding technique is then introduced to bond semiconductor chips, such as Si, to common substrates, such as Cu or alumina, using pure Ag and Au at a temperature matching the typical reflow temperature used in packaging industries, 260°C. In bonding, we realize the possibilities of solid state bonding of Au to Au, Au to Ag, and Ag to Cu. The idea comes from that Cu, Ag, and Au are located in the same column on periodic table, meaning that they have similar electronic configuration. They therefore have a better chance to share electrons. Also, the crystal lattice of Cu, Ag, and Au is the same, face-centered cubic. In the project, the detailed bonding mechanism is beyond the scope and here we determine the bonding by the experimental result. Ag is chosen as the joint material because of its superior physical properties. It has the highest electrical and thermal conductivities among all metals. It has low yield strength and is relatively ductile. Au is considered as well because its excellent ductility and fatigue resistance. Thus, the Ag or Au joints can deform to accommodate the shear strain caused by CTE mismatch between Si and Cu. Ag and Au have melting temperatures higher than 950°C, so the pure Ag or Au joints are expected to sustain in high operating temperature. The resulting joints do not contain any intermetallic compound. Thus, all reliability issues associated with intermetallic growth in commonly used solder joints do not exist anymore. We finally move to the applications of solid state Ag bonding in flip chip interconnects design. At present, nearly all large-scale integrated circuit (IC) chips are packaged with flip-chip technology. This means that the chip is flipped over and the active (front) side is connected to the package using a large number of tiny solder joints, which provide mechanical support, electrical connection, and heat conduction. For chip-to-package level interconnects, a challenge is the severe mismatch in coefficient of thermal expansion (CTE) between chips and package substrates. The interconnect material thus needs to be compliant to deal with the CTE mismatch. At present, nearly all flip-chip interconnects in electronic industries are made of lead-free Sn-based solders. Soft solders are chosen due to high ductility, low yield strength, relatively low melting temperature, and reasonably good electrical and thermal conductivities. In the never ending scaling down trend, more and more transistors are placed on the same Si chip size. This results in larger pin-out numbers and smaller solder joints. According to International Technology Roadmap for Semiconductors (ITRS), by 2018, the pitch in flip-chip interconnects will become smaller than 70mum for high performance applications. Two problems occur. The first is increase in shear strain. The aspect ratio of flip-chip joints is constrained to 0.7 because it goes through molten phase in the reflow process. Therefore, smaller joints become shorter as well, resulting in larger shear strain arising from CTE mismatch between Si chips and package substrates. The second is increase in stress in the joints. Since intermetallic (IMC) thickness in the joint does not scale down with joint size, ratio of IMC thickness to joint height increases. This further enlarges the shear stress because the IMC does not deform as the soft solder does to accommodate CTE mismatch. In this research, the smallest dimension we achieve for Ag flip chip interconnect joint is 15mum in diameter. The ten advantages of Ag flip chip interconnect technology can be identified as (a) High electrical conductivity, 7.7 times of that of Pb-free solders, (b) High thermal conductivity, 5.2 times of that of Pb-free solders, (c) Completely fluxless, (d) No IMCs; all reliability issues associated with IMC and IMC growth do not exist, (e) Ag is very ductile and can manage CTE mismatch between chips and packages, (f) Ag joints can sustain at very high operation temperature because Ag has high melting temperature of 961°C, (g) No molten phase involved; the bump can better keep its shape and geometry, (h) No molten phase involved; bridging of adjacent bumps is less likely to occur, i. Aspect ratio of bumps can be made greater than 1, (j) The size of the bumps is only limited by the lithographic process. Cu-Ag composite flip chip interconnect joints is developed based on three reasons. The first is lower material cost. The second is to strengthen the columns because the yield strength of Cu is 6 times of that of Ag. The third is to avoid possible Ag migration between Ag electrodes under voltage at temperatures above 250°C. This Cu-Ag composite design presents a solution in the path to the scale down roadmap.

  1. Understanding heterogeneity among elderly consumers: an evaluation of segmentation approaches in the functional food market.

    PubMed

    van der Zanden, Lotte D T; van Kleef, Ellen; de Wijk, René A; van Trijp, Hans C M

    2014-06-01

    It is beneficial for both the public health community and the food industry to meet nutritional needs of elderly consumers through product formats that they want. The heterogeneity of the elderly market poses a challenge, however, and calls for market segmentation. Although many researchers have proposed ways to segment the elderly consumer population, the elderly food market has received surprisingly little attention in this respect. Therefore, the present paper reviewed eight potential segmentation bases on their appropriateness in the context of functional foods aimed at the elderly: cognitive age, life course, time perspective, demographics, general food beliefs, food choice motives, product attributes and benefits sought, and past purchase. Each of the segmentation bases had strengths as well as weaknesses regarding seven evaluation criteria. Given that both product design and communication are useful tools to increase the appeal of functional foods, we argue that elderly consumers in this market may best be segmented using a preference-based segmentation base that is predictive of behaviour (for example, attributes and benefits sought), combined with a characteristics-based segmentation base that describes consumer characteristics (for example, demographics). In the end, the effectiveness of (combinations of) segmentation bases for elderly consumers in the functional food market remains an empirical matter. We hope that the present review stimulates further empirical research that substantiates the ideas presented in this paper.

  2. Formation Flying: The Future of Remote Sensing from Space

    NASA Technical Reports Server (NTRS)

    Leitner, Jesse

    2004-01-01

    Over the next two decades a revolution is likely to occur in how remote sensing of Earth, other planets or bodies, and a range of phenomena in the universe is performed from space. In particular, current launch vehicle fairing volume and mass constraints will continue to restrict the size of monolithic telescope apertures which can be launched to little or no greater size than that of the Hubble Space Telescope, the largest aperture currently flying in space. Systems under formulation today, such as the James Webb Space Telescope will be able to increase aperture size and, hence, imaging resolution, by deploying segmented optics. However, this approach is limited as well, by our ability to control such segments to optical tolerances over long distances with highly uncertain structural dynamics connecting them. Consequently, for orders of magnitude improved resolution as required for imaging black holes, imaging planets, or performing asteroseismology, the only viable approach will be to fly a collection of spacecraft in formation to synthesize a virtual segmented telescope or interferometer with very large baselines. This paper provides some basic definitions in the area of formation flying, describes some of the strategic science missions planned in the National Aeronautics and Space Administration, and identifies some of the critical technologies needed to enable some of the most challenging space missions ever conceived which have realistic hopes of flying.

  3. The role of character positional frequency on Chinese word learning during natural reading.

    PubMed

    Liang, Feifei; Blythe, Hazel I; Bai, Xuejun; Yan, Guoli; Li, Xin; Zang, Chuanli; Liversedge, Simon P

    2017-01-01

    Readers' eye movements were recorded to examine the role of character positional frequency on Chinese lexical acquisition during reading and its possible modulation by word spacing. In Experiment 1, three types of pseudowords were constructed based on each character's positional frequency, providing congruent, incongruent, and no positional word segmentation information. Each pseudoword was embedded into two sets of sentences, for the learning and the test phases. In the learning phase, half the participants read sentences in word-spaced format, and half in unspaced format. In the test phase, all participants read sentences in unspaced format. The results showed an inhibitory effect of character positional frequency upon the efficiency of word learning when processing incongruent pseudowords both in the learning and test phase, and also showed facilitatory effect of word spacing in the learning phase, but not at test. Most importantly, these two characteristics exerted independent influences on word segmentation. In Experiment 2, three analogous types of pseudowords were created whilst controlling for orthographic neighborhood size. The results of the two experiments were consistent, except that the effect of character positional frequency was absent in the test phase in Experiment 2. We argue that the positional frequency of a word's constituent characters may influence the character-to-word assignment in a process that likely incorporates both lexical segmentation and identification.

  4. Fault zone processes in mechanically layered mudrock and chalk

    NASA Astrophysics Data System (ADS)

    Ferrill, David A.; Evans, Mark A.; McGinnis, Ronald N.; Morris, Alan P.; Smart, Kevin J.; Wigginton, Sarah S.; Gulliver, Kirk D. H.; Lehrmann, Daniel; de Zoeten, Erich; Sickmann, Zach

    2017-04-01

    A 1.5 km long natural cliff outcrop of nearly horizontal Eagle Ford Formation in south Texas exposes northwest and southeast dipping normal faults with displacements of 0.01-7 m cutting mudrock, chalk, limestone, and volcanic ash. These faults provide analogs for both natural and hydraulically-induced deformation in the productive Eagle Ford Formation - a major unconventional oil and gas reservoir in south Texas, U.S.A. - and other mechanically layered hydrocarbon reservoirs. Fault dips are steep to vertical through chalk and limestone beds, and moderate through mudrock and clay-rich ash, resulting in refracted fault profiles. Steeply dipping fault segments contain rhombohedral calcite veins that cross the fault zone obliquely, parallel to shear segments in mudrock. The vertical dimensions of the calcite veins correspond to the thickness of offset competent beds with which they are contiguous, and the slip parallel dimension is proportional to fault displacement. Failure surface characteristics, including mixed tensile and shear segments, indicate hybrid failure in chalk and limestone, whereas shear failure predominates in mudrock and ash beds - these changes in failure mode contribute to variation in fault dip. Slip on the shear segments caused dilation of the steeper hybrid segments. Tabular sheets of calcite grew by repeated fault slip, dilation, and cementation. Fluid inclusion and stable isotope geochemistry analyses of fault zone cements indicate episodic reactivation at 1.4-4.2 km depths. The results of these analyses document a dramatic bed-scale lithologic control on fault zone architecture that is directly relevant to the development of porosity and permeability anisotropy along faults.

  5. Detection of cystic fibrosis mutations in a GeneChip{trademark} assay format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyada, C.G.; Cronin, M.T.; Kim, S.M.

    1994-09-01

    We are developing assays for the detection of cystic fibrosis mutations based on DNA hybridization. A DNA sample is amplified by PCR, labeled by incorporating a fluorescein-tagged dNTP, enzymatically treated to produce smaller fragments and hybridized to a series of short (13-16 bases) oligonucleotides synthesized on a glass surface via photolithography. The hybrids are detected by eqifluorescence and mutations are identified by the specific pattern of hybridization. In a GeneChip assay, the chip surface is composed of a series of subarrays, each being specific for a particular mutation. Each subarray is further subdivided into a series of probes (40 total),more » half based on the mutant sequence and the remainder based on the wild-type sequence. For each of the subarrays, there is a redundancy in the number of probes that should hybridize to either a wild-type or a mutant target. The multiple probe strategy provides sequence information for a short five base region overlapping the mutation site. In addition, homozygous wild-type and mutant as well as heterozygous samples are each identified by a specific pattern of hybridization. The small size of each probe feature (250 x 250 {mu}m{sup 2}) permits the inclusion of additional probes required to generate sequence information by hybridization.« less

  6. 640 X 480 MOS PtSi IR sensor

    NASA Astrophysics Data System (ADS)

    Sauer, Donald J.; Shallcross, Frank V.; Hseuh, Fu-Lung; Meray, Grazyna M.; Levine, Peter A.; Gilmartin, Harvey R.; Villani, Thomas S.; Esposito, Benjamin J.; Tower, John R.

    1991-12-01

    The design of a 1st and 2nd generation 640(H) X 480(V) element PtSi Schottky-barrier infrared image sensor employing a low-noise MOS X-Y addressable readout multiplexer and on-chip low-noise output amplifier is described. Measured performance characteristics for Gen 1 devices are presented along with calculated performance for the Gen 2 design. A multiplexed horizontal/vertical input address port and on-chip decoding is used to load scan data into CMOS horizontal and vertical scanning registers. This allows random access to any sub-frame in the 640 X 480 element focal plane array. By changing the digital pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or non- interlaced format, and the integration time may be varied over a wide range (60 microsecond(s) to > 30 ms, for RS170 operation) resulting in a form of 'electronic shutter,' or variable exposure control. The pixel size of 24-micrometers X 24-micrometers results in a fill factor of 38% for 1.5-micrometers process design rules. The overall die size for the IR imager is 13.7 mm X 17.2 mm. All digital inputs to the chip are TTL compatible and include ESD protection.

  7. Investigation of image distortion due to MCP electronic readout misalignment and correction via customized GUI application

    NASA Astrophysics Data System (ADS)

    Vitucci, G.; Minniti, T.; Tremsin, A. S.; Kockelmann, W.; Gorini, G.

    2018-04-01

    The MCP-based neutron counting detector is a novel device that allows high spatial resolution and time-resolved neutron radiography and tomography with epithermal, thermal and cold neutrons. Time resolution is possible by the high readout speeds of ~ 1200 frames/sec, allowing high resolution event counting with relatively high rates without spatial resolution degradation due to event overlaps. The electronic readout is based on a Timepix sensor, a CMOS pixel readout chip developed at CERN. Currently, a geometry of a quad Timepix detector is used with an active format of 28 × 28 mm2 limited by the size of the Timepix quad (2 × 2 chips) readout. Measurements of a set of high-precision micrometers test samples have been performed at the Imaging and Materials Science & Engineering (IMAT) beamline operating at the ISIS spallation neutron source (U.K.). The aim of these experiments was the full characterization of the chip misalignment and of the gaps between each pad in the quad Timepix sensor. Such misalignment causes distortions of the recorded shape of the sample analyzed. We present in this work a post-processing image procedure that considers and corrects these effects. Results of the correction will be discussed and the efficacy of this method evaluated.

  8. Segmental dilatation of the ileum covered almost entirely by gastric mucosa: report of a case.

    PubMed

    Kobayashi, Tsutomu; Uchida, Nobuyuki; Shiojima, Masayuki; Sasamoto, Hajime; Shimura, Tatsuo; Takahasi, Atsusi; Kuwano, Hiroyuki

    2007-01-01

    A 13-year-old boy was referred to our hospital for investigation of intermittent abdominal colic pain and vomiting. He underwent an emergency laparotomy, which revealed a volvulus and segmental dilatation of the ileum. The dilated intestine was not associated with poor intestinal circulation. Because the dilated ileum did not seem to be the cause of the volvulus, we simply released the volvulus. However, after surgery, the patient still suffered from persistent abdominal pain, further episodes of volvulus, and invagination of the dilated ileum. Thus, we performed a second operation to resect the segmental dilatation of the ileum. Pathological examination revealed that most of the mucosa of the dilated ileum was composed of ectopic gastric mucosa. We postulate that the ectopic gastric mucosa led to the formation of segmental dilatation of the ileum.

  9. Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments.

    PubMed

    Schukfeh, M I; Storm, K; Hansen, A; Thelander, C; Hinze, P; Beyer, A; Weimann, T; Samuelson, L; Tornow, M

    2014-11-21

    We present a method to fabricate nanometer scale gaps within InAs nanowires by selectively etching InAs/InP heterostructure nanowires. We used vapor-liquid-solid grown InAs nanowires with embedded InP segments of 10-60 nm length and developed an etching recipe to selectively remove the InP segment. A photo-assisted wet etching process in a mixture of acetic acid and hydrobromic acid gave high selectivity, with accurate removal of InP segments down to 20 nm, leaving the InAs wire largely unattacked, as verified using scanning electron and transmission electron microscopy. The obtained nanogaps in InAs wires have potential as semiconducting electrodes to investigate electronic transport in nanoscale objects. We demonstrate this functionality by dielectrophoretically trapping 30 nm diameter gold nanoparticles into the gap.

  10. Software for hyperspectral, joint photographic experts group (.JPG), portable network graphics (.PNG) and tagged image file format (.TIFF) segmentation

    NASA Astrophysics Data System (ADS)

    Bruno, L. S.; Rodrigo, B. P.; Lucio, A. de C. Jorge

    2016-10-01

    This paper presents a system developed by an application of a neural network Multilayer Perceptron for drone acquired agricultural image segmentation. This application allows a supervised user training the classes that will posteriorly be interpreted by neural network. These classes will be generated manually with pre-selected attributes in the application. After the attribute selection a segmentation process is made to allow the relevant information extraction for different types of images, RGB or Hyperspectral. The application allows extracting the geographical coordinates from the image metadata, geo referencing all pixels on the image. In spite of excessive memory consume on hyperspectral images regions of interest, is possible to perform segmentation, using bands chosen by user that can be combined in different ways to obtain different results.

  11. Black strings, low viscosity fluids, and violation of cosmic censorship.

    PubMed

    Lehner, Luis; Pretorius, Frans

    2010-09-03

    We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship.

  12. The evolving role of the orphan nuclear receptor ftz-f1, a pair-rule segmentation gene.

    PubMed

    Heffer, Alison; Grubbs, Nathaniel; Mahaffey, James; Pick, Leslie

    2013-01-01

    Segmentation is a critical developmental process that occurs by different mechanisms in diverse taxa. In insects, there are three common modes of embryogenesis-short-, intermediate-, and long-germ development-which differ in the number of segments specified at the blastoderm stage. While genes involved in segmentation have been extensively studied in the long-germ insect Drosophila melanogaster (Dm), it has been found that their expression and function in segmentation in short- and intermediate-germ insects often differ. Drosophila ftz-f1 encodes an orphan nuclear receptor that functions as a maternally expressed pair-rule segmentation gene, responsible for the formation of alternate body segments during Drosophila embryogenesis. Here we investigated the expression and function of ftz-f1 in the short-germ beetle, Tribolium castaneum (Tc). We found that Tc-ftz-f1 is expressed in stripes in Tribolium embryos. These stripes overlap alternate Tc-Engrailed (Tc-En) stripes, indicative of a pair-rule expression pattern. To test whether Tc-ftz-f1 has pair-rule function, we utilized embryonic RNAi, injecting double-stranded RNA corresponding to Tc-ftz-f1 coding or non-coding regions into early Tribolium embryos. Knockdown of Tc-ftz-f1 produced pair-rule segmentation defects, evidenced by loss of expression of alternate En stripes. In addition, a later role for Tc-ftz-f1 in cuticle formation was revealed. These results identify a new pair-rule gene in Tribolium and suggest that its role in segmentation may be shared among holometabolous insects. Interestingly, while Tc-ftz-f1 is expressed in pair-rule stripes, the gene is ubiquitously expressed in Drosophila embryos. Thus, the pair-rule function of ftz-f1 is conserved despite differences in expression patterns of ftz-f1 genes in different lineages. This suggests that ftz-f1 expression changed after the divergence of lineages leading to extant beetles and flies, likely due to differences in cis-regulatory sequences. We propose that the dependence of Dm-Ftz-F1 on interaction with the homeodomain protein Ftz which is expressed in stripes in Drosophila, loosened constraints on Dm-ftz-f1 expression, allowing for ubiquitous expression of this pair-rule gene in Drosophila. © 2013 Wiley Periodicals, Inc.

  13. The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation.

    PubMed

    Sham, M H; Vesque, C; Nonchev, S; Marshall, H; Frain, M; Gupta, R D; Whiting, J; Wilkinson, D; Charnay, P; Krumlauf, R

    1993-01-29

    The zinc finger gene Krox20 and many Hox homeobox genes are expressed in segment-restricted domains in the hindbrain. The restricted expression patterns appear before morphological segmentation, suggesting that these transcription factors may play an early role in the establishment and identity of rhombomeric segments. In this paper, we show that the HoxB2 (Hox2.8) gene is normally upregulated in rhombomeres (r) 3, 4, and 5, and we identify an enhancer region upstream of the gene that imposes r3/r5 expression in transgenic mice. This enhancer contains three Krox20-binding sites required in vitro for complex formation with Krox20 protein and in vivo for rhombomere-restricted expression. In transgenic mice, Krox20 expressed in ectopic domains can transactivate a reporter construct containing the HoxB2 r3/r5 enhancer. These data demonstrate that Krox20 is a part of the upstream transcriptional cascade that directly regulates HoxB2 expression during hindbrain segmentation.

  14. Origin of the Early Sial Crust and U-Pb Isotope-Geochemical Heterogeneity of the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Mishkin, M. A.; Nozhkin, A. D.; Vovna, G. M.; Sakhno, V. G.; Veldemar, A. A.

    2018-02-01

    It is shown that presence of the Early Precambrian sial crust in the Indo-Atlantic segment of the Earth and its absence in the Pacific has been caused by geochemical differences in the mantle underlying these segments. These differences were examined on the basis of Nd-Hf and U-Pb isotopes in modern basalts. The U-Pb isotope system is of particular interest, since uranium is a member of a group of heat-generating radioactive elements providing heat for plumes. It is shown that in the Indo-Atlantic segment, a distribution of areas of the modern HIMU type mantle is typical, while it is almost completely absent in the Pacific segment. In the Archean, in the upper HIMU type paleo-mantle areas, plume generation and formation of the primordial basic crust occurred; this was followed by its remelting resulting in the appearance of an early sial crust forming cratons of the Indo-Atlantic segment.

  15. Axially adjustable magnetic properties in arrays of multilayered Ni/Cu nanowires with variable segment sizes

    NASA Astrophysics Data System (ADS)

    Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.

  16. Field programmable gate arrays-based number plate binarization and adjustment for automatic number plate recognition systems

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaojun; Bensaali, Faycal; Sotudeh, Reza

    2013-01-01

    Number plate (NP) binarization and adjustment are important preprocessing stages in automatic number plate recognition (ANPR) systems and are used to link the number plate localization (NPL) and character segmentation stages. Successfully linking these two stages will improve the performance of the entire ANPR system. We present two optimized low-complexity NP binarization and adjustment algorithms. Efficient area/speed architectures based on the proposed algorithms are also presented and have been successfully implemented and tested using the Mentor Graphics RC240 FPGA development board, which together require only 9% of the available on-chip resources of a Virtex-4 FPGA, run with a maximum frequency of 95.8 MHz and are capable of processing one image in 0.07 to 0.17 ms.

  17. Angular resolution of the gaseous micro-pixel detector Gossip

    NASA Astrophysics Data System (ADS)

    Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-06-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  18. Severe intellectual disability, West syndrome, Dandy-Walker malformation, and syndactyly in a patient with partial tetrasomy 17q25.3.

    PubMed

    Hackmann, Karl; Stadler, Anja; Schallner, Jens; Franke, Kathlen; Gerlach, Eva-Maria; Schrock, Evelin; Rump, Andreas; Fauth, Christine; Tinschert, Sigrid; Oexle, Konrad

    2013-12-01

    We report on a de novo 0.5 Mb triplication (partial tetrasomy) of chromosome 17q25.3 in a 10-year-old girl with severe intellectual disability, infantile seizures (West syndrome), moderate hearing loss, Dandy-Walker malformation, microcephaly, craniofacial dysmorphism, striking cutaneous syndactyly (hands 3-4, feet 2-3), joint laxity, and short stature. The triplication resulted from the unusual combination of a terminal duplication at 17qter and a cryptic translocation of an extra copy of the same segment onto chromosome 10qter. The breakpoint at 17q25.3 was located within the FOXK2 gene. SNP chip analysis suggested that the rearrangement occurred during paternal meiosis involving both paternal chromosomes 17. © 2013 Wiley Periodicals, Inc.

  19. A phase-based stereo vision system-on-a-chip.

    PubMed

    Díaz, Javier; Ros, Eduardo; Sabatini, Silvio P; Solari, Fabio; Mota, Sonia

    2007-02-01

    A simple and fast technique for depth estimation based on phase measurement has been adopted for the implementation of a real-time stereo system with sub-pixel resolution on an FPGA device. The technique avoids the attendant problem of phase warping. The designed system takes full advantage of the inherent processing parallelism and segmentation capabilities of FPGA devices to achieve a computation speed of 65megapixels/s, which can be arranged with a customized frame-grabber module to process 211frames/s at a size of 640x480 pixels. The processing speed achieved is higher than conventional camera frame rates, thus allowing the system to extract multiple estimations and be used as a platform to evaluate integration schemes of a population of neurons without increasing hardware resource demands.

  20. DRhoGEF2 and Diaphanous Regulate Contractile Force during Segmental Groove Morphogenesis in the Drosophila Embryo

    PubMed Central

    Mulinari, Shai; Barmchi, Mojgan Padash

    2008-01-01

    Morphogenesis of the Drosophila embryo is associated with dynamic rearrangement of the actin cytoskeleton mediated by small GTPases of the Rho family. These GTPases act as molecular switches that are activated by guanine nucleotide exchange factors. One of these factors, DRhoGEF2, plays an important role in the constriction of actin filaments during pole cell formation, blastoderm cellularization, and invagination of the germ layers. Here, we show that DRhoGEF2 is equally important during morphogenesis of segmental grooves, which become apparent as tissue infoldings during mid-embryogenesis. Examination of DRhoGEF2-mutant embryos indicates a role for DRhoGEF2 in the control of cell shape changes during segmental groove morphogenesis. Overexpression of DRhoGEF2 in the ectoderm recruits myosin II to the cell cortex and induces cell contraction. At groove regression, DRhoGEF2 is enriched in cells posterior to the groove that undergo apical constriction, indicating that groove regression is an active process. We further show that the Formin Diaphanous is required for groove formation and strengthens cell junctions in the epidermis. Morphological analysis suggests that Dia regulates cell shape in a way distinct from DRhoGEF2. We propose that DRhoGEF2 acts through Rho1 to regulate acto-myosin constriction but not Diaphanous-mediated F-actin nucleation during segmental groove morphogenesis. PMID:18287521

  1. A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates.

    PubMed

    Parker, Hugo J; Bronner, Marianne E; Krumlauf, Robb

    2014-10-23

    A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.

  2. Coherent Fiber Optic Links

    DTIC Science & Technology

    1990-12-01

    since drift is common to both signal and local oscillator. However because of the Fabry - Perot cavity of the phase -6.9- Electrical delay 5.429077 ns___...Phase modulation gives intensity modulation of the guided light of .13dB max. This is due to formation of a Fabry - Perot cavity between the two fibre/chip...modulation sidebands using an optical spectrum analyser (scanning a Fabry - Perot interferometer), while monitoring the r.f. drive power incident on the

  3. Optimal Data Transmission on MIMO OFDM Channels

    DTIC Science & Technology

    2008-12-01

    Channel State Information dB decibel DFT Discrete Fourier Transform DWTS Digital Wideband Transmission System ETSI European Telecommunications...me facultaram durante a minha infância e juventude , que em conjunto com seu permanente apoio e amor me permitiram sonhar e voar tão alto. Agradeço...transmitter, it is far simpler to build such a system using an IDFT chip, generate the overall OFDM signal in baseband and digital format, and finally

  4. Automated Forensic Animal Family Identification by Nested PCR and Melt Curve Analysis on an Off-the-Shelf Thermocycler Augmented with a Centrifugal Microfluidic Disk Segment

    PubMed Central

    Zengerle, Roland; von Stetten, Felix; Schmidt, Ulrike

    2015-01-01

    Nested PCR remains a labor-intensive and error-prone biomolecular analysis. Laboratory workflow automation by precise control of minute liquid volumes in centrifugal microfluidic Lab-on-a-Chip systems holds great potential for such applications. However, the majority of these systems require costly custom-made processing devices. Our idea is to augment a standard laboratory device, here a centrifugal real-time PCR thermocycler, with inbuilt liquid handling capabilities for automation. We have developed a microfluidic disk segment enabling an automated nested real-time PCR assay for identification of common European animal groups adapted to forensic standards. For the first time we utilize a novel combination of fluidic elements, including pre-storage of reagents, to automate the assay at constant rotational frequency of an off-the-shelf thermocycler. It provides a universal duplex pre-amplification of short fragments of the mitochondrial 12S rRNA and cytochrome b genes, animal-group-specific main-amplifications, and melting curve analysis for differentiation. The system was characterized with respect to assay sensitivity, specificity, risk of cross-contamination, and detection of minor components in mixtures. 92.2% of the performed tests were recognized as fluidically failure-free sample handling and used for evaluation. Altogether, augmentation of the standard real-time thermocycler with a self-contained centrifugal microfluidic disk segment resulted in an accelerated and automated analysis reducing hands-on time, and circumventing the risk of contamination associated with regular nested PCR protocols. PMID:26147196

  5. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  6. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition

    PubMed Central

    Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish

    2018-01-01

    Purpose: The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Methods: Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Conclusion: Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching. PMID:29283133

  7. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition.

    PubMed

    Khanduja, Sumeet; Sampangi, Raju; Hemlatha, B C; Singh, Satvir; Lall, Ashish

    2018-01-01

    The purpose of this study is to describe the use of commercial digital single light reflex (DSLR) for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD) camera. Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a) anterior segment surgery, (b) surgery under direct viewing system, and (c) surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better) in DSLR camera. Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching.

  8. Controversies Surrounding Segments and Parasegments in Onychophora: Insights from the Expression Patterns of Four “Segment Polarity Genes” in the Peripatopsid Euperipatoides rowelli

    PubMed Central

    Franke, Franziska Anni; Mayer, Georg

    2014-01-01

    Arthropods typically show two types of segmentation: the embryonic parasegments and the adult segments that lie out of register with each other. Such a dual nature of body segmentation has not been described from Onychophora, one of the closest arthropod relatives. Hence, it is unclear whether onychophorans have segments, parasegments, or both, and which of these features was present in the last common ancestor of Onychophora and Arthropoda. To address this issue, we analysed the expression patterns of the “segment polarity genes” engrailed, cubitus interruptus, wingless and hedgehog in embryos of the onychophoran Euperipatoides rowelli. Our data revealed that these genes are expressed in repeated sets with a specific anterior-to-posterior order along the body in embryos of E. rowelli. In contrast to arthropods, the expression occurs after the segmental boundaries have formed. Moreover, the initial segmental furrow retains its position within the engrailed domain throughout development, whereas no new furrow is formed posterior to this domain. This suggests that no re-segmentation of the embryo occurs in E. rowelli. Irrespective of whether or not there is a morphological or genetic manifestation of parasegments in Onychophora, our data clearly show that parasegments, even if present, cannot be regarded as the initial metameric units of the onychophoran embryo, because the expression of key genes that define the parasegmental boundaries in arthropods occurs after the segmental boundaries have formed. This is in contrast to arthropods, in which parasegments rather than segments are the initial metameric units of the embryo. Our data further revealed that the expression patterns of “segment polarity genes” correspond to organogenesis rather than segment formation. This is in line with the concept of segmentation as a result of concerted evolution of individual periodic structures rather than with the interpretation of ‘segments’ as holistic units. PMID:25470738

  9. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.

    PubMed

    Iglesias, Juan Eugenio; Augustinack, Jean C; Nguyen, Khoa; Player, Christopher M; Player, Allison; Wright, Michelle; Roy, Nicole; Frosch, Matthew P; McKee, Ann C; Wald, Lawrence L; Fischl, Bruce; Van Leemput, Koen

    2015-07-15

    Automated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise delineations were made possible by the extraordinary resolution of the scans. In addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single computational atlas of the hippocampal formation with a novel atlas building algorithm based on Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal subregions in structural MRI images, using an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer's disease subjects and elderly controls with 88% accuracy in standard resolution (1mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and classification based on whole hippocampal volume (82% accuracy). Copyright © 2015. Published by Elsevier Inc.

  10. Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum.

    PubMed

    Königsmann, Tatiana; Turetzek, Natascha; Pechmann, Matthias; Prpic, Nikola-Michael

    2017-11-01

    Zinc finger transcription factors of the Sp6-9 group are evolutionarily conserved in all metazoans and have important functions in, e.g., limb formation and heart development. The function of Sp6-9-related genes has been studied in a number of vertebrates and invertebrates, but data from chelicerates (spiders and allies) was lacking so far. We have isolated the ortholog of Sp6-9 from the common house spider Parasteatoda tepidariorum and the cellar spider Pholcus phalangioides. We show that the Sp6-9 gene in these spider species is expressed in the developing appendages thus suggesting a conserved role in limb formation. Indeed, RNAi with Sp6-9 in P. tepidariorum leads not only to strong limb defects, but also to the loss of body segments and head defects in more strongly affected animals. Together with a new expression domain in the early embryo, these data suggest that Sp6-9 has a dual role P. tepidariorum. The early role in head and body segment formation is not known from other arthropods, but the role in limb formation is evolutionarily highly conserved.

  11. Acrylamide: formation, occurrence in food products, detection methods, and legislation.

    PubMed

    Arvanitoyannis, Ioannis S; Dionisopoulou, Niki

    2014-01-01

    This review aims at summarizing the most recent updates in the field of acrylamide (AA) formation (mechanism, conditions) and the determination of AA in a number of foods (fried or baked potatoes, chips, coffee, bread, etc). The methods applied for AA detection [Capillary Electrophoresis-Mass Spectrometry (CE-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), Non-Aqueous Capillary Electrophoresis (NACE), High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS), Pressurized Fluid Extraction (PFE), Matrix Solid-Phase Dispersion (MSPD), Gas Chromatography-Mass Spectrometry (GC-MS), Solid-Phase MicroExtraction-Gas Chromatography (SPME-GC), Enzyme Linked Immunosorbent Assay (ELISA), and MicroEmulsion ElectroKinetic Chromatography (MEEKC) are presented and commented. Several informative figures and tables are included to show the effect of conditions (temperature, time) on the AA formation. A section is also included related to AA legislation in EU and US.

  12. The Inhibition of Escherichia coli Biofilm Formation by Gallium Nitrate-Modified Titanium.

    PubMed

    Zhu, Yuanyuan; Qiu, Yan; Chen, Ruiqi; Liao, Lianming

    2015-08-01

    Periprosthetic infections are notoriously difficult to treat due to biofilm formation. Previously, we reported that gallium-EDTA attached to PVC (polyvinyl chloride) surface could prevent bacterial colonization. Herein we examined the effect of this gallium-EDTA complex on Escherichia coli biofilm formation on titanium. It was clearly demonstrated that gallium nitrate significantly inhibited the growth and auto-aggregation of Escherichia coli. Furthermore, titanium with gallium-EDTA coating resisted bacterial colonization as indicated by crystal violet staining. When the chips were immersed in human serum and incubated at 37 °C, they demonstrated significant antimicrobial activity after more than 28 days of incubation. These findings indicate that gallium-EDTA coating of implants can result in a surface that can resist bacterial colonization. This technology holds great promise for the prevention and treatment of periprosthetic infections.

  13. Morphotectonic analysis and 10Be dating of the Kyngarga river terraces (southwestern flank of the Baikal rift system, South Siberia)

    NASA Astrophysics Data System (ADS)

    Arzhannikova, A.; Arzhannikov, S.; Braucher, R.; Jolivet, M.; Aumaître, G.; Bourlès, D.; Keddadouche, K.

    2018-02-01

    The formation of the Baikal rift system basins is controlled by active faults separating each basin from the adjacent horsts. The kinematics of these faults is mainly explored through investigation of complex sequences of the fault-intersecting river terraces that record both tectonic and climatic events. This study focuses on the northern margin of the major Tunka basin that develops south-west of Lake Baikal. The development of the basin is controlled by the segmented Tunka fault. We performed a detailed mapping of the Kyngarga river terraces, the best preserved terraces staircase in Baikal rift system, at their intersection with the Tunka fault. In order to decipher the chronology of seismic events and the slip rates along that segment of the fault, key terraces were dated using in situ produced cosmogenic 10Be. We demonstrate that the formation of the terrace staircase occurred entirely during MIS1-MIS2. The obtained data allowed us to estimate the rate of incision at different stages of the terrace staircase formation and the relationship between the vertical and horizontal slip rates along this sub-latitudinal segment of the Tunka fault making respectively 0.8 and 1.12 mm yr- 1 over the past 12.5 ka. Analysis of the paleoseismology and paleoclimate data together with terrace dating provided the possibility to estimate the influence of tectonic and climatic factors on the terrace formation. Our proposed model of the Kyngarga river terrace development shows that the incisions into terraces T3 and T6 were induced by the abrupt climatic warming episodes GI-1 and GI-2, respectively, whereas terraces T5, T4 and T2 were abandoned due to the vertical tectonic displacement along the Tunka fault caused by coseismic ruptures.

  14. Web-accessible cervigram automatic segmentation tool

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2010-03-01

    Uterine cervix image analysis is of great importance to the study of uterine cervix cancer, which is among the leading cancers affecting women worldwide. In this paper, we describe our proof-of-concept, Web-accessible system for automated segmentation of significant tissue regions in uterine cervix images, which also demonstrates our research efforts toward promoting collaboration between engineers and physicians for medical image analysis projects. Our design and implementation unifies the merits of two commonly used languages, MATLAB and Java. It circumvents the heavy workload of recoding the sophisticated segmentation algorithms originally developed in MATLAB into Java while allowing remote users who are not experienced programmers and algorithms developers to apply those processing methods to their own cervicographic images and evaluate the algorithms. Several other practical issues of the systems are also discussed, such as the compression of images and the format of the segmentation results.

  15. A survey of total hydrocyanic acid content in ready-to-eat cassava-based chips obtained in the Australian market in 2008.

    PubMed

    Miles, David; Jansson, Edward; Mai, My Chi; Azer, Mounir; Day, Peter; Shadbolt, Craig; Stitt, Victoria; Kiermeier, Andreas; Szabo, Elizabeth

    2011-06-01

    Cassava (Manihot esculenta Crantz) is a widely consumed food in the tropics that naturally contains cyanogenic glycosides (cyanogens, mainly composed of linamarin, acetone cyanohydrin, and hydrocyanic acid). If cassava is not adequately processed to reduce the level of cyanogens prior to consumption, these compounds can lead to the formation of hydrocyanic acid in the gut. Exposure to hydrocyanic acid can cause symptoms ranging from vomiting and abdominal pain to coma and death. In 2008, a survey of ready-to-eat (RTE) cassava-based snack foods was undertaken to determine levels of cyanogens measured as total hydrocyanic acid. This survey was undertaken in response to the New South Wales Food Authority being alerted to the detection of elevated levels of cyanogens in an RTE cassava-based snack food. This survey took 374 samples of RTE cassava chips available in the Australian marketplace. Significant variation in the levels of total hydrocyanic acid were observed in the 317 samples testing positive for cyanogens, with levels ranging from 13 to 165 mg of HCN equivalents per kg (mean value, 64.2 mg of HCN eq/kg for positive samples). The results from this survey serve as a timely warning for manufacturers of RTE cassava chips and other cassava-based snack foods to ensure there is tight control over the levels of cyanogens in the cassava ingredient. Evidence from this survey contributed to an amendment to the Australia New Zealand Food Standards Code, which now prescribes a maximum level for hydrocyanic acid in RTE cassava chips of 10 mg of HCN eq/kg, which aligns with the Codex Alimentarius Commission international standard for edible cassava flour.

  16. Portable and Reliable Surface-Enhanced Raman Scattering Silicon Chip for Signal-On Detection of Trace Trinitrotoluene Explosive in Real Systems.

    PubMed

    Chen, Na; Ding, Pan; Shi, Yu; Jin, Tengyu; Su, Yuanyuan; Wang, Houyu; He, Yao

    2017-05-02

    There is an increasing interest in the development of surface-enhanced Raman scattering (SERS) sensors for rapid and accurate on-site detection of hidden explosives. However, portable SERS methods for trace explosive detection in real systems remain scarce, mainly due to their relatively poor reliability and portability. Herein, we present the first demonstration of a portable silicon-based SERS analytical platform for signal-on detection of trace trinitrotoluene (TNT) explosives, which is made of silver nanoparticle (AgNP)-decorated silicon wafer chip (0.5 cm × 0.5 cm). In principle, under 514 nm excitation, the Raman signals of p-aminobenzenethiol (PABT) modified on the AgNP surface could be largely lit up due to the formation of electronic resonance-active TNT-PABT complex. In addition, the surface of AgNPs and silicon substrate-induced plasmon resonances also contribute the total SERS enhancement. For quantitative evaluation, the as-prepared chip features ultrahigh sensitivity [limit of detection is down to ∼1 pM (∼45.4 fg/cm 2 )] and adaptable reproducibility (relative standard deviation is less than 15%) in the detection of TNT standard solutions. More importantly, the developed chip can couple well with a hand-held Raman spectroscopic device using 785 nm excitation, suitable for qualitative analysis of trace TNT even at ∼10 -8 M level from environmental samples including lake water, soil, envelope, and liquor with a short data acquisition time (∼1 min). Furthermore, TNT vapors diffusing from TNT residues (∼10 -6 M) can be detected by using such a portable device, indicating its feasibility in determination of hidden samples.

  17. RNase reverses segment sequence in the anterior of a beetle egg (Callosobruchus maculatus, Coleoptera).

    PubMed

    van der Meer, Jitse M

    2018-01-01

    The genetic regulation of anterior-posterior segment pattern development has been elucidated in detail for Drosophila, but it is not canonical for insects. A surprising diversity of regulatory mechanisms is being uncovered not only between insect orders, but also within the order of the Diptera. The question is whether the same diversity of regulatory mechanisms exists within other insect orders. I show that anterior puncture of the egg of the pea beetle Callosobruchus maculatus submerged in RNase can induce double abdomen development suggesting a role for maternal mRNA. In a double abdomen, anterior segments are replaced by posterior segments oriented in mirror image symmetry to the original posterior segments. This effect is specific for RNase activity, for treatment of the anterior egg pole and for cytoplasmic RNA. Yield depends on developmental stage, enzyme concentration, and temperature. A maximum of 30% of treated eggs reversed segment sequence after submersion and puncture in 10 μg/mL RNase S reconstituted from S-protein and S-peptide at 30°C. This result sets the stage for an analysis of the genetic regulation of segment pattern formation in the long germ embryo of the coleopteran Callosobruchus and for comparison with the short germ embryo of the coleopteran Tribolium. © 2018 Wiley Periodicals, Inc.

  18. Echogenicity based approach to detect, segment and track the common carotid artery in 2D ultrasound images.

    PubMed

    Narayan, Nikhil S; Marziliano, Pina

    2015-08-01

    Automatic detection and segmentation of the common carotid artery in transverse ultrasound (US) images of the thyroid gland play a vital role in the success of US guided intervention procedures. We propose in this paper a novel method to accurately detect, segment and track the carotid in 2D and 2D+t US images of the thyroid gland using concepts based on tissue echogenicity and ultrasound image formation. We first segment the hypoechoic anatomical regions of interest using local phase and energy in the input image. We then make use of a Hessian based blob like analysis to detect the carotid within the segmented hypoechoic regions. The carotid artery is segmented by making use of least squares ellipse fit for the edge points around the detected carotid candidate. Experiments performed on a multivendor dataset of 41 images show that the proposed algorithm can segment the carotid artery with high sensitivity (99.6 ±m 0.2%) and specificity (92.9 ±m 0.1%). Further experiments on a public database containing 971 images of the carotid artery showed that the proposed algorithm can achieve a detection accuracy of 95.2% with a 2% increase in performance when compared to the state-of-the-art method.

  19. A statistical pixel intensity model for segmentation of confocal laser scanning microscopy images.

    PubMed

    Calapez, Alexandre; Rosa, Agostinho

    2010-09-01

    Confocal laser scanning microscopy (CLSM) has been widely used in the life sciences for the characterization of cell processes because it allows the recording of the distribution of fluorescence-tagged macromolecules on a section of the living cell. It is in fact the cornerstone of many molecular transport and interaction quantification techniques where the identification of regions of interest through image segmentation is usually a required step. In many situations, because of the complexity of the recorded cellular structures or because of the amounts of data involved, image segmentation either is too difficult or inefficient to be done by hand and automated segmentation procedures have to be considered. Given the nature of CLSM images, statistical segmentation methodologies appear as natural candidates. In this work we propose a model to be used for statistical unsupervised CLSM image segmentation. The model is derived from the CLSM image formation mechanics and its performance is compared to the existing alternatives. Results show that it provides a much better description of the data on classes characterized by their mean intensity, making it suitable not only for segmentation methodologies with known number of classes but also for use with schemes aiming at the estimation of the number of classes through the application of cluster selection criteria.

  20. Biofilms and Physical Deposits on Nasolacrimal Silastic Stents Following Dacryocystorhinostomy: Is There a Difference Between Ocular and Nasal Segments?

    PubMed

    Ali, Mohammad Javed; Baig, Farhana; Lakshman, Mekala; Naik, Milind N

    2015-01-01

    The aims of this study were to examine the presence of biofilms and physical deposits on ocular and nasal segments of silastic nasolacrimal duct stents inserted after dacryocystorhinostomy and to document any differences. A prospective interventional study was performed on a series of patients undergoing dacryocystorhinostomy with Crawford stent insertion. All the patient samples were retrieved 4 weeks after an endoscopic dacryocystorhinostomy. None of the patients had any evidence of postoperative infection. The ocular and nasal segments were separated during retrieval. After removal, the stent segments were subjected to biofilm and physical deposit analysis using standard protocols of scanning electron microscopy. These stent segments were compared against sterile stents which acted as controls. A total of 11 stents were studied. Nine were consecutive patient samples and 2 were sterile stents. The ocular and nasal segments of all the stents demonstrated evidence of biofilm formation and physical deposits. However, the deposits and biofilms were thicker and extensive in the ocular segment, although more focal in nature. In contrast, the nasal segments showed thinner biofilms and sparser deposits but were more diffuse in nature. The presence of different-sized organisms within the exopolysaccharide matrix and in between the deposits suggests the existence of polymicrobial communities. This is the first study to report the differences between ocular and nasal segments of lacrimal stents. These differences could propel further studies on stent biomechanics and their interactions with ocular and nasal tissues, following a dacryocystorhinostomy.

  1. Federal Logistics Information System (FLIS) Procedures Manual. Volume 8. Document Identifier Code Input/Output Formats (Fixed Length)

    DTIC Science & Technology

    1994-07-01

    REQUIRED MIX OF SEGMENTS OR INDIVIDUAL DATA ELEMENTS TO BE EXTRACTED. IN SEGMENT R ON AN INTERROGATION TRANSACTION (LTI), DATA RECORD NUMBER (DRN 0950) ONLY...and zation and Marketing input DICs. insert the Continuation Indicator Code (DRN 8555) in position 80 of this record. Maximum of OF The assigned NSN...for Procurement KFR, File Data Minus Security Classified Characteristics Data KFC 8.5-2 DoD 4100.39-M Volume 8 CHAPTER 5 ALPHABETIC INDEX OF DIC

  2. Rift-Related Sediments of the Passive Continental Margin of the Paleo-Asian Ocean (Baikal Segment)

    NASA Astrophysics Data System (ADS)

    Mazukabzov, A. M.; Stanevich, A. M.; Gladkochub, D. P.; Donskaya, T. V.; Khubanov, V. B.; Motova, Z. L.; Kornilova, T. A.

    2018-02-01

    The geological position, composition, and age of detrital zircons of sedimentary deposits of the Nugan Formation of the Western Baikal region underlying the Golousta Formation of the Baikal series of Ediacaran age have been studied. The formation of both stratigraphic units due to the same sources of detrital material, located within the southern flank of the Siberian Craton, has been proved. The deposits of the Nugan Formation have been demonstrated to mark the rifting stage of the formation of the passive margin of the Paleo-Asiatic Ocean: their accumulation occurred in the Late Cryogenian during the interval 720-640 Ma.

  3. Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment.

    PubMed

    Fréal, Amélie; Fassier, Coralie; Le Bras, Barbara; Bullier, Erika; De Gois, Stéphanie; Hazan, Jamilé; Hoogenraad, Casper C; Couraud, François

    2016-04-20

    The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding protein ankyrin-G is the master-organizer of the AIS. Microtubules and their interactors, particularly end-binding proteins (EBs), have emerged as potential key players in AIS formation. Here, we show that the longest isoform of ankyrin-G (480AnkG) selectively associates with EBs via its specific tail domain and that this interaction is crucial for AIS formation and neuronal polarity in cultured rodent hippocampal neurons. EBs are essential for 480AnkG localization and stabilization at the AIS, whereas 480AnkG is required for the specific accumulation of EBs in the proximal axon. Our findings thus provide a conceptual framework for understanding how the cooperative relationship between 480AnkG and EBs induces the assembly of microtubule-AIS structures in the proximal axon. Neuronal polarity is crucial for the proper function of neurons. The assembly of the axon initial segment (AIS), which is the hallmark of early neuronal polarization, relies on the longest 480 kDa ankyrin-G isoform. The microtubule cytoskeleton and its interacting proteins were suggested to be early key players in the process of AIS formation. In this study, we show that the crosstalk between 480 kDa ankyrin-G and the microtubule plus-end tracking proteins, EBs, at the proximal axon is decisive for AIS assembly and neuronal polarity. Our work thus provides insight into the functional mechanisms used by 480 kDa ankyrin-G to drive the AIS formation and thereby to establish neuronal polarity. Copyright © 2016 the authors 0270-6474/16/364421-13$15.00/0.

  4. End-to-end workflow for finite element analysis of tumor treating fields in glioblastomas

    NASA Astrophysics Data System (ADS)

    Timmons, Joshua J.; Lok, Edwin; San, Pyay; Bui, Kevin; Wong, Eric T.

    2017-11-01

    Tumor Treating Fields (TTFields) therapy is an approved modality of treatment for glioblastoma. Patient anatomy-based finite element analysis (FEA) has the potential to reveal not only how these fields affect tumor control but also how to improve efficacy. While the automated tools for segmentation speed up the generation of FEA models, multi-step manual corrections are required, including removal of disconnected voxels, incorporation of unsegmented structures and the addition of 36 electrodes plus gel layers matching the TTFields transducers. Existing approaches are also not scalable for the high throughput analysis of large patient volumes. A semi-automated workflow was developed to prepare FEA models for TTFields mapping in the human brain. Magnetic resonance imaging (MRI) pre-processing, segmentation, electrode and gel placement, and post-processing were all automated. The material properties of each tissue were applied to their corresponding mask in silico using COMSOL Multiphysics (COMSOL, Burlington, MA, USA). The fidelity of the segmentations with and without post-processing was compared against the full semi-automated segmentation workflow approach using Dice coefficient analysis. The average relative differences for the electric fields generated by COMSOL were calculated in addition to observed differences in electric field-volume histograms. Furthermore, the mesh file formats in MPHTXT and NASTRAN were also compared using the differences in the electric field-volume histogram. The Dice coefficient was less for auto-segmentation without versus auto-segmentation with post-processing, indicating convergence on a manually corrected model. An existent but marginal relative difference of electric field maps from models with manual correction versus those without was identified, and a clear advantage of using the NASTRAN mesh file format was found. The software and workflow outlined in this article may be used to accelerate the investigation of TTFields in glioblastoma patients by facilitating the creation of FEA models derived from patient MRI datasets.

  5. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.

    PubMed

    Prinyakupt, Jaroonrut; Pluempitiwiriyawej, Charnchai

    2015-06-30

    Blood smear microscopic images are routinely investigated by haematologists to diagnose most blood diseases. However, the task is quite tedious and time consuming. An automatic detection and classification of white blood cells within such images can accelerate the process tremendously. In this paper we propose a system to locate white blood cells within microscopic blood smear images, segment them into nucleus and cytoplasm regions, extract suitable features and finally, classify them into five types: basophil, eosinophil, neutrophil, lymphocyte and monocyte. Two sets of blood smear images were used in this study's experiments. Dataset 1, collected from Rangsit University, were normal peripheral blood slides under light microscope with 100× magnification; 555 images with 601 white blood cells were captured by a Nikon DS-Fi2 high-definition color camera and saved in JPG format of size 960 × 1,280 pixels at 15 pixels per 1 μm resolution. In dataset 2, 477 cropped white blood cell images were downloaded from CellaVision.com. They are in JPG format of size 360 × 363 pixels. The resolution is estimated to be 10 pixels per 1 μm. The proposed system comprises a pre-processing step, nucleus segmentation, cell segmentation, feature extraction, feature selection and classification. The main concept of the segmentation algorithm employed uses white blood cell's morphological properties and the calibrated size of a real cell relative to image resolution. The segmentation process combined thresholding, morphological operation and ellipse curve fitting. Consequently, several features were extracted from the segmented nucleus and cytoplasm regions. Prominent features were then chosen by a greedy search algorithm called sequential forward selection. Finally, with a set of selected prominent features, both linear and naïve Bayes classifiers were applied for performance comparison. This system was tested on normal peripheral blood smear slide images from two datasets. Two sets of comparison were performed: segmentation and classification. The automatically segmented results were compared to the ones obtained manually by a haematologist. It was found that the proposed method is consistent and coherent in both datasets, with dice similarity of 98.9 and 91.6% for average segmented nucleus and cell regions, respectively. Furthermore, the overall correction rate in the classification phase is about 98 and 94% for linear and naïve Bayes models, respectively. The proposed system, based on normal white blood cell morphology and its characteristics, was applied to two different datasets. The results of the calibrated segmentation process on both datasets are fast, robust, efficient and coherent. Meanwhile, the classification of normal white blood cells into five types shows high sensitivity in both linear and naïve Bayes models, with slightly better results in the linear classifier.

  6. Progressive epicardial coronary blood flow reduction fails to produce ST-segment depression at normal heart rates.

    PubMed

    de Chantal, Marilyn; Diodati, Jean G; Nasmith, James B; Amyot, Robert; LeBlanc, A Robert; Schampaert, Erick; Pharand, Chantal

    2006-12-01

    ST-segment depression is commonly seen in patients with acute coronary syndromes. Most authors have attributed it to transient reductions in coronary blood flow due to nonocclusive thrombus formation on a disrupted atherosclerotic plaque and dynamic focal vasospasm at the site of coronary artery stenosis. However, ST-segment depression was never reproduced in classic animal models of coronary stenosis without the presence of tachycardia. We hypothesized that ST-segment depression occurring during acute coronary syndromes is not entirely explained by changes in epicardial coronary artery resistance and thus evaluated the effect of a slow, progressive epicardial coronary artery occlusion on the ECG and regional myocardial blood flow in anesthetized pigs. Slow, progressive occlusion over 72 min (SD 27) of the left anterior descending coronary artery in 20 anesthetized pigs led to a 90% decrease in coronary blood flow and the development of ST-segment elevation associated with homogeneous and transmural myocardial blood flow reductions, confirmed by microspheres and myocardial contrast echocardiography. ST-segment depression was not observed in any ECG lead before the development of ST-segment elevation. At normal heart rates, progressive epicardial stenosis of a coronary artery results in myocardial ischemia associated with homogeneous, transmural reduction in regional myocardial blood flow and ST-segment elevation, without preceding ST-segment depression. Thus, in coronary syndromes with ST-segment depression and predominant subendocardial ischemia, factors other than mere increases in epicardial coronary resistance must be invoked to explain the heterogeneous parietal distribution of flow and associated ECG changes.

  7. Developing neurons use a putative pioneer's peripheral arbor to establish their terminal fields.

    PubMed

    Gan, W B; Macagno, E R

    1995-05-01

    Pioneer neurons are known to guide later developing neurons during the initial phases of axonal outgrowth. To determine whether they are also important in the formation of terminal fields by the follower cells, we studied the role of a putative leech pioneer neuron, the pressure-sensitive (PD) neuron, in the establishment of other neurons' peripheral arbors. The PD neuron has a major axon that exits from its segmental ganglion to grow along the dorsal-posterior (DP) nerve to the dorsal body wall, where it arborizes extensively mainly in its own segment. It also has two minor axons that project to the two adjacent segments but branch to a lesser degree. We found that the peripheral projections of several later developing neurons, including the AP motor neuron and the TD sensory neuron, followed, with great precision, the major axon and peripheral arbor of the consegmental PD neuron, up to its fourth-order branches. When a PD neuron was ablated before it had grown to the body wall, the AP and TD axons grew normally toward and reached the target area, but then formed terminal arbors that were greatly reduced in size and abnormal in morphology. Further, if the ablation of a PD neuron was accompanied by the induction, in the same segment, of greater outgrowth of the minor axon of a PD neuron from the adjacent segment, the arbors of the same AP neurons grew along these novel PD neuron branches. These results demonstrate that the peripheral arbor of a PD neuron is a both necessary and sufficient template for the formation of normal terminal fields by certain later growing follower neurons.

  8. Effect of the Age Cross-Link Breaker Alagebrium on Anterior Segment Physiology, Morphology, and Ocular Age and Rage

    PubMed Central

    Kiland, Julie A.; Gabelt, B’Ann T.; Tezel, Gülgün; Lütjen-Drecoll, Elke; Kaufman, Paul L.

    2009-01-01

    Purpose: To determine the effects of the advanced glycation end product (AGE) cross-link breaker alagebrium on intraocular pressure (IOP), accommodation (ACC), outflow facility (OF), anterior segment morphology, and ocular AGE and receptors for AGE (RAGE) in older rhesus monkeys. Methods: Six rhesus monkeys (aged 19 to 20 years) received 3 or 4 intracameral and intravitreal (final concentration, 1 mM) injections of alagebrium to one eye over 2.5 to 3 weeks and vehicle to the opposite eye. ACC and OF responses to intramuscular or intravenous pilocarpine were measured at baseline and at 1 to 2 weeks and 2, 4, and 6 months postinjection. IOP was measured prior to all injections, ACC, and OF measurements. Monkeys were euthanized 3 to 6 months after the last injection, the eyes were enucleated, and anterior and posterior segments were examined by electron microscopy or immunohistochemistry. Results: No significant differences were found in ACC or IOP at any time point after alagebrium treatment. Baseline OF was higher (37.0 ± 6.0%; P ≤ .005) in alagebrium-treated vs control eyes at 6 months postinjection. In 3 monkeys, alagebrium-treated eyes, compared to control eyes, showed greater focal plaque formation, similar to that seen in primary open-angle glaucoma, in the juxtacanalicular meshwork/inner wall of Schlemm’s canal. No changes in anterior segment AGE or RAGE were detectable. However, some areas of the retina and optic nerve head exhibited decreased AGE and increased RAGE immunostaining. Conclusions: Intraocular injection of AGE cross-link breakers is an unlikely approach for glaucoma therapy. However, it may generate a model for further study of glaucomatous-like plaque formation. Immunohistochemical changes in the posterior segment in response to alagebrium warrant further functional studies. PMID:20126491

  9. Dynamic patterning by the Drosophila pair-rule network reconciles long-germ and short-germ segmentation

    PubMed Central

    2017-01-01

    Drosophila segmentation is a well-established paradigm for developmental pattern formation. However, the later stages of segment patterning, regulated by the “pair-rule” genes, are still not well understood at the system level. Building on established genetic interactions, I construct a logical model of the Drosophila pair-rule system that takes into account the demonstrated stage-specific architecture of the pair-rule gene network. Simulation of this model can accurately recapitulate the observed spatiotemporal expression of the pair-rule genes, but only when the system is provided with dynamic “gap” inputs. This result suggests that dynamic shifts of pair-rule stripes are essential for segment patterning in the trunk and provides a functional role for observed posterior-to-anterior gap domain shifts that occur during cellularisation. The model also suggests revised patterning mechanisms for the parasegment boundaries and explains the aetiology of the even-skipped null mutant phenotype. Strikingly, a slightly modified version of the model is able to pattern segments in either simultaneous or sequential modes, depending only on initial conditions. This suggests that fundamentally similar mechanisms may underlie segmentation in short-germ and long-germ arthropods. PMID:28953896

  10. Automated segmentation and tracking for large-scale analysis of focal adhesion dynamics.

    PubMed

    Würflinger, T; Gamper, I; Aach, T; Sechi, A S

    2011-01-01

    Cell adhesion, a process mediated by the formation of discrete structures known as focal adhesions (FAs), is pivotal to many biological events including cell motility. Much is known about the molecular composition of FAs, although our knowledge of the spatio-temporal recruitment and the relative occupancy of the individual components present in the FAs is still incomplete. To fill this gap, an essential prerequisite is a highly reliable procedure for the recognition, segmentation and tracking of FAs. Although manual segmentation and tracking may provide some advantages when done by an expert, its performance is usually hampered by subjective judgement and the long time required in analysing large data sets. Here, we developed a model-based segmentation and tracking algorithm that overcomes these problems. In addition, we developed a dedicated computational approach to correct segmentation errors that may arise from the analysis of poorly defined FAs. Thus, by achieving accurate and consistent FA segmentation and tracking, our work establishes the basis for a comprehensive analysis of FA dynamics under various experimental regimes and the future development of mathematical models that simulate FA behaviour. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  11. Meckelin 3 Is Necessary for Photoreceptor Outer Segment Development in Rat Meckel Syndrome

    PubMed Central

    Tiwari, Sarika; Hudson, Scott; Gattone, Vincent H.; Miller, Caroline; Chernoff, Ellen A. G.; Belecky-Adams, Teri L.

    2013-01-01

    Ciliopathies lead to multiorgan pathologies that include renal cysts, deafness, obesity and retinal degeneration. Retinal photoreceptors have connecting cilia joining the inner and outer segment that are responsible for transport of molecules to develop and maintain the outer segment process. The present study evaluated meckelin (MKS3) expression during outer segment genesis and determined the consequences of mutant meckelin on photoreceptor development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using immunohistochemistry, analysis of cell death and electron microscopy. MKS3 was ubiquitously expressed throughout the retina at postnatal day 10 (P10) and P21. However, in the mature retina, MKS3 expression was restricted to photoreceptors and the retinal ganglion cell layer. At P10, both the wild type and homozygous Wpk mutant retina had all retinal cell types. In contrast, by P21, cells expressing rod- and cone-specific markers were fewer in number and expression of opsins appeared to be abnormally localized to the cell body. Cell death analyses were consistent with the disappearance of photoreceptor-specific markers and showed that the cells were undergoing caspase-dependent cell death. By electron microscopy, P10 photoreceptors showed rudimentary outer segments with an axoneme, but did not develop outer segment discs that were clearly present in the wild type counterpart. At p21 the mutant outer segments appeared much the same as the P10 mutant outer segments with only a short axoneme, while the wild-type controls had developed outer segments with many well-organized discs. We conclude that MKS3 is not important for formation of connecting cilium and rudimentary outer segments, but is critical for the maturation of outer segment processes. PMID:23516626

  12. Enhanced Mantle Upwelling/Melting Caused Segment Propagation, Oceanic Core Complex Die Off, and the Death of a Transform Fault: The Mid-Atlantic Ridge at 21.5°N

    NASA Astrophysics Data System (ADS)

    Dannowski, A.; Morgan, J. P.; Grevemeyer, I.; Ranero, C. R.

    2018-02-01

    Crustal structure provides the key to understand the interplay of magmatism and tectonism, while oceanic crust is constructed at Mid-Ocean Ridges (MORs). At slow spreading rates, magmatic processes dominate central areas of MOR segments, whereas segment ends are highly tectonized. The TAMMAR segment at the Mid-Atlantic Ridge (MAR) between 21°25'N and 22°N is a magmatically active segment. At 4.5 Ma this segment started to propagate south, causing the termination of the transform fault at 21°40'N. This stopped long-lived detachment faulting and caused the migration of the ridge offset to the south. Here a segment center with a high magmatic budget has replaced a transform fault region with limited magma supply. We present results from seismic refraction profiles that mapped the crustal structure across the ridge crest of the TAMMAR segment. Seismic data yield crustal structure changes at the segment center as a function of melt supply. Seismic Layer 3 underwent profound changes in thickness and became rapidly thicker 5 Ma. This correlates with the observed "Bull's Eye" gravimetric anomaly in that region. Our observations support a temporal change from thick lithosphere with oceanic core complex formation and transform faulting to thin lithosphere with focused mantle upwelling and segment growth. Temporal changes in crustal construction are connected to variations in the underlying mantle. We propose that there is a link between the neighboring segments at a larger scale within the asthenosphere, to form a long, highly magmatically active macrosegment, here called the TAMMAR-Kane Macrosegment.

  13. Intradomain phase transitions in flexible block copolymers with self-aligning segments.

    PubMed

    Burke, Christopher J; Grason, Gregory M

    2018-05-07

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ε). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ε needed to induce this intra-domain phase transition.

  14. Intradomain phase transitions in flexible block copolymers with self-aligning segments

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.; Grason, Gregory M.

    2018-05-01

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ɛ). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ɛ needed to induce this intra-domain phase transition.

  15. The Enigmatic Bench Unit of Endeavour Crater Rim in Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Ruff, S. W.

    2013-12-01

    For the first 2680 sols of its mission, the Mars Exploration Rover Opportunity traversed across essentially the same rocks: sulfur-rich sandstones known as the Burns formation. On August 8, 2011 Opportunity completed a ~21 km traverse from Victoria crater to the rim of the ~22 km diameter Endeavour crater where it crossed a slightly raised smooth bench unit that surrounds an interior core of higher standing and more rugged terrain on a rim segment named Cape York. As recognized by its distinctive morphologic character evident in orbital images, the inward sloping bench feature is found associated with portions of other segments of the discontinuous raised rim of Endeavour crater. Viewed by Opportunity, it appears as platy, fractured, relatively light-toned outcrop that is fine-grained, lacks hematite concretions and in places hosts veins of Ca- and S-rich composition, likely due to precipitation of gypsum in fractures that cut the bench unit (1). The bench outcrop target named Grasberg included a grind using the Rock Abrasion Tool (RAT) to obtain a cleaner surface for the Alpha Particle X-ray Spectrometer chemistry measurement compared with the initially investigated target named Deadwood. In addition to its greater strength than Burns formation as determined by the RAT grind operation, Grasberg and other examples of the bench unit have lower S, higher Cl and other elemental characteristics that depart from typical Burns formation. Thus the 'Grasberg unit' clearly represents a distinct rock type compared to the Meridiani plains. A second unit makes up the exposed core of the Cape York rim segment. Known as Shoemaker formation, it is composed of breccias that are recognized as a suevite deposit produced from the Endeavour impact event (1). The Shoemaker formation appears to be onlapped by the Grasberg unit with Burns formation onlapping it (1). However, a well-exposed section observed in a wedge-shaped fracture known as Whim Creek on the northeast portion of the Cape York bench clearly presents Grasberg rocks above Burns rocks. Erosion of a plunging synclinal form could explain this apparent inverted relationship, or it reveals that the Grasberg unit is younger than Burns formation. But this latter interpretation implies that Grasberg rocks, which have been observed only at the Endeavour rim, have been stripped off of Burns formation everywhere else. The Grasberg bench unit has recently been encountered in an isthmus setting between two low knobs of presumed Shoemaker formation called Nobbys Head and Sutherland Point just south of Cape York. The isthmus also presents Grasberg as topographically elevated above the Burns formation rocks. Despite its broad, smooth exposure, no remnants of Burns formation have been found on top of Grasberg at this location or anywhere on the Cape York bench. So the stratigraphic relationship between Grasberg and Burns rocks remains enigmatic. At the time of writing, Opportunity is at the edge of Solander Point, another bench feature on the northern tip of a rim segment known as Cape Tribulation. The erosional expression of this example appears different from those examined previously and perhaps offers the best chance to understand stratigraphic relationships. 1. S. W. Squyres et al., Ancient impact and aqueous processes at Endeavour Crater, Mars. Science 336, 570 (2012).

  16. Genetics Home Reference: atelosteogenesis type 3

    MedlinePlus

    ... in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet. 2004 Apr; ... Celebrates Its 15th Anniversary Genetic Information Non-Discrimination Act (GINA) Turns 10 All Bulletins Features What is ...

  17. Genetics Home Reference: boomerang dysplasia

    MedlinePlus

    ... in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet. 2004 Apr; ... Celebrates Its 15th Anniversary Genetic Information Non-Discrimination Act (GINA) Turns 10 All Bulletins Features What is ...

  18. Genetics Home Reference: atelosteogenesis type 1

    MedlinePlus

    ... in the gene encoding filamin B disrupt vertebral segmentation, joint formation and skeletogenesis. Nat Genet. 2004 Apr; ... Celebrates Its 15th Anniversary Genetic Information Non-Discrimination Act (GINA) Turns 10 All Bulletins Features What is ...

  19. Efficient dispatching in a terminal city network

    DOT National Transportation Integrated Search

    2001-01-01

    This report describes new optimization and simulation tools to address several problems in transportation, specifically driver dispatching and tour formation in full truckload trucking. In this segment of transportation industry, one of the problems ...

  20. Nucleation Process of a Fibril Precursor in the C-Terminal Segment of Amyloid-β

    NASA Astrophysics Data System (ADS)

    Baftizadeh, Fahimeh; Pietrucci, Fabio; Biarnés, Xevi; Laio, Alessandro

    2013-04-01

    By extended atomistic simulations in explicit solvent and bias-exchange metadynamics, we study the aggregation process of 18 chains of the C-terminal segment of amyloid-β, an intrinsically disordered protein involved in Alzheimer’s disease and prone to form fibrils. Starting from a disordered aggregate, we are able to observe the formation of an ordered nucleus rich in beta sheets. The rate limiting step in the nucleation pathway involves crossing a barrier of approximately 40kcal/mol and is associated with the formation of a very specific interdigitation of the side chains belonging to different sheets. This structural pattern is different from the one observed experimentally in a microcrystal of the same system, indicating that the structure of a “nascent” fibril may differ from the one of an “extended” fibril.

Top