Sample records for segmented computerized head

  1. High resolution, MRI-based, segmented, computerized head phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 bytemore » array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.« less

  2. A link-segment model of upright human posture for analysis of head-trunk coordination

    NASA Technical Reports Server (NTRS)

    Nicholas, S. C.; Doxey-Gasway, D. D.; Paloski, W. H.

    1998-01-01

    Sensory-motor control of upright human posture may be organized in a top-down fashion such that certain head-trunk coordination strategies are employed to optimize visual and/or vestibular sensory inputs. Previous quantitative models of the biomechanics of human posture control have examined the simple case of ankle sway strategy, in which an inverted pendulum model is used, and the somewhat more complicated case of hip sway strategy, in which multisegment, articulated models are used. While these models can be used to quantify the gross dynamics of posture control, they are not sufficiently detailed to analyze head-trunk coordination strategies that may be crucial to understanding its underlying mechanisms. In this paper, we present a biomechanical model of upright human posture that extends an existing four mass, sagittal plane, link-segment model to a five mass model including an independent head link. The new model was developed to analyze segmental body movements during dynamic posturography experiments in order to study head-trunk coordination strategies and their influence on sensory inputs to balance control. It was designed specifically to analyze data collected on the EquiTest (NeuroCom International, Clackamas, OR) computerized dynamic posturography system, where the task of maintaining postural equilibrium may be challenged under conditions in which the visual surround, support surface, or both are in motion. The performance of the model was tested by comparing its estimated ground reaction forces to those measured directly by support surface force transducers. We conclude that this model will be a valuable analytical tool in the search for mechanisms of balance control.

  3. Computerized Interpretation of Dynamic Breast MRI

    DTIC Science & Technology

    2006-05-01

    correction, tumor segmentation , extraction of computerized features that help distinguish between benign and malignant lesions, and classification. Our...for assessing tumor extent in 3D. The primary feature used for 3D tumor segmentation is the postcontrast enhancement vector. Tumor segmentation is a...Appendix B. 4. Investigation of methods for automatic tumor segmentation We developed an automatic method for assessing tumor extent in 3D. The

  4. Three-dimensional visualization of the craniofacial patient: volume segmentation, data integration and animation.

    PubMed

    Enciso, R; Memon, A; Mah, J

    2003-01-01

    The research goal at the Craniofacial Virtual Reality Laboratory of the School of Dentistry in conjunction with the Integrated Media Systems Center, School of Engineering, University of Southern California, is to develop computer methods to accurately visualize patients in three dimensions using advanced imaging and data acquisition devices such as cone-beam computerized tomography (CT) and mandibular motion capture. Data from these devices were integrated for three-dimensional (3D) patient-specific visualization, modeling and animation. Generic methods are in development that can be used with common CT image format (DICOM), mesh format (STL) and motion data (3D position over time). This paper presents preliminary descriptive studies on: 1) segmentation of the lower and upper jaws with two types of CT data--(a) traditional whole head CT data and (b) the new dental Newtom CT; 2) manual integration of accurate 3D tooth crowns with the segmented lower jaw 3D model; 3) realistic patient-specific 3D animation of the lower jaw.

  5. 21 CFR 884.2800 - Computerized Labor Monitoring System.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Computerized Labor Monitoring System. 884.2800... Devices § 884.2800 Computerized Labor Monitoring System. (a) Identification. A computerized labor monitoring system is a system intended to continuously measure cervical dilation and fetal head descent and...

  6. Gender differences in head-neck segment dynamic stabilization during head acceleration.

    PubMed

    Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph

    2005-02-01

    Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.

  7. Head stabilization in whooping cranes

    USGS Publications Warehouse

    Kinloch, M.R.; Cronin, T.W.; Olsen, Glenn H.; Chavez-Ramirez, Felipe

    2005-01-01

    The whooping crane (Grus americana) is the tallest bird in North America, yet not much is known about its visual ecology. How these birds overcome their unusual height to identify, locate, track, and capture prey items is not well understood. There have been many studies on head and eye stabilization in large wading birds (herons and egrets), but the pattern of head movement and stabilization during foraging is unclear. Patterns of head movement and stabilization during walking were examined in whooping cranes at Patuxent Wildlife Research Center, Laurel, Maryland USA. Four whooping cranes (1 male and 3 females) were videotaped for this study. All birds were already acclimated to the presence of people and to food rewards. Whooping cranes were videotaped using both digital and Hi-8 Sony video cameras (Sony Corporation, 7-35 Kitashinagawa, 6-Chome, Shinagawa-ku, Tokyo, Japan), placed on a tripod and set at bird height in the cranes' home pens. The cranes were videotaped repeatedly, at different locations in the pens and while walking (or running) at different speeds. Rewards (meal worms, smelt, crickets and corn) were used to entice the cranes to walk across the camera's view plane. The resulting videotape was analyzed at the University of Maryland at Baltimore County. Briefly, we used a computerized reduced graphic model of a crane superimposed over each frame of analyzed tape segments by means of a custom written program (T. W. Cronin, using C++) with the ability to combine video and computer graphic input. The speed of the birds in analyzed segments ranged from 0.30 m/s to 2.64 m/s, and the proportion of time the head was stabilized ranged from 79% to 0%, respectively. The speed at which the proportion reached 0% was 1.83 m/s. The analyses suggest that the proportion of time the head is stable decreases as speed of the bird increases. In all cases, birds were able to reach their target prey with little difficulty. Thus when cranes are walking searching for food, they walk at a speed that permits them to keep their heads still and visual field immobile at least half the time.

  8. Formation of the insect head involves lateral contribution of the intercalary segment, which depends on Tc-labial function.

    PubMed

    Posnien, Nico; Bucher, Gregor

    2010-02-01

    The insect head is composed of several segments. During embryonic development, the segments fuse to form a rigid head capsule where obvious segmental boundaries are lacking. Hence, the assignment of regions of the insect head to specific segments is hampered, especially with respect to dorsal (vertex) and lateral (gena) parts. We show that upon Tribolium labial (Tc-lab) knock down, the intercalary segment is deleted but not transformed. Furthermore, we find that the intercalary segment contributes to lateral parts of the head cuticle in Tribolium. Based on several additional mutant and RNAi phenotypes that interfere with gnathal segment development, we show that these segments do not contribute to the dorsal head capsule apart from the dorsal ridge. Opposing the classical view but in line with findings in the vinegar fly Drosophila melanogaster and the milkweed bug Oncopeltus fasciatus, we propose a "bend and zipper" model for insect head capsule formation.

  9. Computerized system for translating a torch head

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.; Ives, R. E.; Bruce, M. M., Jr.; Pryor, P. P., Jr.; Gard, L. H. (Inventor)

    1978-01-01

    The system provides a constant travel speed along a contoured workpiece. It has a driven skate characterized by an elongated bed, with a pair of independently pivoted trucks connected to the bed for support. The trucks are mounted on a contoured track of arbitrary configuration in a mutually spaced relation. An axially extensible torch head manipulator arm is mounted on the bed of the carriage and projects perpendicular from the midportion. The torch head is mounted at its distal end. A real-time computerized control drive subsystem is used to advance the skate along the track of a variable rate for maintaining a constant speed for the torch head tip, and to position the torch axis relative to a preset angle to the workpiece.

  10. Otolaryngology and ophthalmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanafee, W.N.

    A literature review with 227 references of the diagnostic use of computerized tomography for head and neck problems is presented. The anatomy, congenital malformations, infectious diseases, and nioplasms of the auditory organs, paranasal sinuses, pharynx, larynx and salivary glands are examined in detail. A major impetus to the use of computerized tomography has been the realization by the health care industry that CT scanning offers details of tumors in the head and neck area that are not available by other modalities. (KRM)

  11. Quantification of osteolytic bone lesions in a preclinical rat trial

    NASA Astrophysics Data System (ADS)

    Fränzle, Andrea; Bretschi, Maren; Bäuerle, Tobias; Giske, Kristina; Hillengass, Jens; Bendl, Rolf

    2013-10-01

    In breast cancer, most of the patients who died, have developed bone metastasis as disease progression. Bone metastases in case of breast cancer are mainly bone destructive (osteolytic). To understand pathogenesis and to analyse response to different treatments, animal models, in our case rats, are examined. For assessment of treatment response to bone remodelling therapies exact segmentations of osteolytic lesions are needed. Manual segmentations are not only time-consuming but lack in reproducibility. Computerized segmentation tools are essential. In this paper we present an approach for the computerized quantification of osteolytic lesion volumes using a comparison to a healthy reference model. The presented qualitative and quantitative evaluation of the reconstructed bone volumes show, that the automatically segmented lesion volumes complete missing bone in a reasonable way.

  12. Metamerism in cephalochordates and the problem of the vertebrate head.

    PubMed

    Onai, Takayuki; Adachi, Noritaka; Kuratani, Shigeru

    2017-01-01

    The vertebrate head characteristically exhibits a complex pattern with sense organs, brain, paired eyes and jaw muscles, and the brain case is not found in other chordates. How the extant vertebrate head has evolved remains enigmatic. Historically, there have been two conflicting views on the origin of the vertebrate head, segmental and non-segmental views. According to the segmentalists, the vertebrate head is organized as a metameric structure composed of segments equivalent to those in the trunk; a metamere in the vertebrate head was assumed to consist of a somite, a branchial arch and a set of cranial nerves, considering that the head evolved from rostral segments of amphioxus-like ancestral vertebrates. Non-segmentalists, however, considered that the vertebrate head was not segmental. In that case, the ancestral state of the vertebrate head may be non-segmented, and rostral segments in amphioxus might have been secondarily gained, or extant vertebrates might have evolved through radical modifications of amphioxus-like ancestral vertebrate head. Comparative studies of mesodermal development in amphioxus and vertebrate gastrula embryos have revealed that mesodermal gene expressions become segregated into two domains anteroposteriorly to specify the head mesoderm and trunk mesoderm only in vertebrates; in this segregation, key genes such as delta and hairy, involved in segment formation, are expressed in the trunk mesoderm, but not in the head mesoderm, strongly suggesting that the head mesoderm of extant vertebrates is not segmented. Taken together, the above finding possibly adds a new insight into the origin of the vertebrate head; the vertebrate head mesoderm would have evolved through an anteroposterior polarization of the paraxial mesoderm if the ancestral vertebrate had been amphioxus-like.

  13. Computerized Virtual Reality Simulation in Preclinical Dentistry: Can a Computerized Simulator Replace the Conventional Phantom Heads and Human Instruction?

    PubMed

    Plessas, Anastasios

    2017-10-01

    In preclinical dental education, the acquisition of clinical, technical skills, and the transfer of these skills to the clinic are paramount. Phantom heads provide an efficient way to teach preclinical students dental procedures safely while increasing their dexterity skills considerably. Modern computerized phantom head training units incorporate features of virtual reality technology and the ability to offer concurrent augmented feedback. The aims of this review were to examine and evaluate the dental literature for evidence supporting their use and to discuss the role of augmented feedback versus the facilitator's instruction. Adjunctive training in these units seems to enhance student's learning and skill acquisition and reduce the required faculty supervision time. However, the virtual augmented feedback cannot be used as the sole method of feedback, and the facilitator's input is still critical. Well-powered longitudinal randomized trials exploring the impact of these units on student's clinical performance and issues of cost-effectiveness are warranted.

  14. 21 CFR 884.2800 - Computerized Labor Monitoring System.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... monitoring system is a system intended to continuously measure cervical dilation and fetal head descent and... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Computerized Labor Monitoring System. 884.2800... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring...

  15. 21 CFR 884.2800 - Computerized Labor Monitoring System.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... monitoring system is a system intended to continuously measure cervical dilation and fetal head descent and... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Computerized Labor Monitoring System. 884.2800... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring...

  16. 21 CFR 884.2800 - Computerized Labor Monitoring System.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... monitoring system is a system intended to continuously measure cervical dilation and fetal head descent and... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Computerized Labor Monitoring System. 884.2800... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring...

  17. What are Head Cavities? - A History of Studies on Vertebrate Head Segmentation.

    PubMed

    Kuratani, Shigeru; Adachi, Noritaka

    2016-06-01

    Motivated by the discovery of segmental epithelial coeloms, or "head cavities," in elasmobranch embryos toward the end of the 19th century, the debate over the presence of mesodermal segments in the vertebrate head became a central problem in comparative embryology. The classical segmental view assumed only one type of metamerism in the vertebrate head, in which each metamere was thought to contain one head somite and one pharyngeal arch, innervated by a set of cranial nerves serially homologous to dorsal and ventral roots of spinal nerves. The non-segmental view, on the other hand, rejected the somite-like properties of head cavities. A series of small mesodermal cysts in early Torpedo embryos, which were thought to represent true somite homologs, provided a third possible view on the nature of the vertebrate head. Recent molecular developmental data have shed new light on the vertebrate head problem, explaining that head mesoderm evolved, not by the modification of rostral somites of an amphioxus-like ancestor, but through the polarization of unspecified paraxial mesoderm into head mesoderm anteriorly and trunk somites posteriorly.

  18. The horizontal computerized rotational impulse test.

    PubMed

    Furman, Joseph M; Shirey, Ian; Roxberg, Jillyn; Kiderman, Alexander

    2016-01-01

    Whole-body impulsive rotations were used to overcome several limitations associated with manual head impulse testing. A computer-controlled rotational chair delivered brief, whole-body, earth-vertical axis yaw impulsive rotations while eye movements were measured using video-oculography. Results from an unselected group of 20 patients with dizziness and a group of 22 control subjects indicated that the horizontal computerized rotational head impulse test (crHIT) is well-tolerated and provides an estimate of unidirectional vestibulo-ocular reflex gain comparable to results from caloric testing. This study demonstrates that the horizontal crHIT is a new assessment tool that overcomes many of the limitations of manual head impulse testing and provides a reliable laboratory-based measure of unilateral horizontal semicircular canal function.

  19. Automated image alignment and segmentation to follow progression of geographic atrophy in age-related macular degeneration.

    PubMed

    Ramsey, David J; Sunness, Janet S; Malviya, Poorva; Applegate, Carol; Hager, Gregory D; Handa, James T

    2014-07-01

    To develop a computer-based image segmentation method for standardizing the quantification of geographic atrophy (GA). The authors present an automated image segmentation method based on the fuzzy c-means clustering algorithm for the detection of GA lesions. The method is evaluated by comparing computerized segmentation against outlines of GA drawn by an expert grader for a longitudinal series of fundus autofluorescence images with paired 30° color fundus photographs for 10 patients. The automated segmentation method showed excellent agreement with an expert grader for fundus autofluorescence images, achieving a performance level of 94 ± 5% sensitivity and 98 ± 2% specificity on a per-pixel basis for the detection of GA area, but performed less well on color fundus photographs with a sensitivity of 47 ± 26% and specificity of 98 ± 2%. The segmentation algorithm identified 75 ± 16% of the GA border correctly in fundus autofluorescence images compared with just 42 ± 25% for color fundus photographs. The results of this study demonstrate a promising computerized segmentation method that may enhance the reproducibility of GA measurement and provide an objective strategy to assist an expert in the grading of images.

  20. Use of the Dynamic Visual Acuity Test as a screener for community-dwelling older adults who fall.

    PubMed

    Honaker, Julie A; Shepard, Neil T

    2011-01-01

    Adequate function of the peripheral vestibular system, specifically the vestibulo-ocular reflex (VOR; a network of neural connections between the peripheral vestibular system and the extraocular muscles) is essential for maintaining stable vision during head movements. Decreased visual acuity resulting from an impaired peripheral vestibular system may impede balance and postural control and place an individual at risk of falling. Therefore, sensitive measures of the vestibular system are warranted to screen for the tendency to fall, alerting clinicians to recommend further risk of falling assessment and referral to a falling risk reduction program. Dynamic Visual Acuity (DVA) testing is a computerized VOR assessment method to evaluate the peripheral vestibular system during head movements; reduced visual acuity as documented with DVA testing may be sensitive to screen for falling risk. This study examined the sensitivity and specificity of the computerized DVA test with yaw plane head movements for identifying community-dwelling adults (58-78 years) who are prone to falling. A total of 16 older adults with a history of two or more unexplained falls in the previous twelve months and 16 age and gender matched controls without a history of falls in the previous twelve months participated. Computerized DVA with horizontal head movements at a fixed velocity of 120 deg/sec was measured and compared with the Dynamic Gait Index (DGI) a gold standard gait assessment measurement for identifying falling risk. Receiver operating characteristics (ROC) curve analysis and area under the ROC curve (AUC) were used to assess the sensitivity and specificity of the computerized DVA as a screening measure for falling risk as determined by the DGI. Results suggested a link between computerized DVA and the propensity to fall; DVA in the yaw plane was found to be a sensitive (92%) and accurate screening measure when using a cutoff logMAR value of >0.25.

  1. Vertical File Subject Headings KWIK List.

    ERIC Educational Resources Information Center

    Knowles, Em Claire; And Others

    A subject heading keyword-in-context (KWIK) list for the vertical files at the University of California, Davis, is presented. It is noted that the KWIK list was prepared to assist library users in locating more subject headings for available materials in the various pamphlet collections and that the list is computerized to enable frequent…

  2. A computerized photographic method to evaluate changes in head posture and scapular position following rapid palatal expansion: a pilot study.

    PubMed

    Cerruto, Carmen; Di Vece, Luca; Doldo, Tiziana; Giovannetti, Agostino; Polimeni, Antonella; Goracci, Cecilia

    2012-01-01

    To assess the applicability of a computerized method to measure on digital photographs the changes in head and scapular posture following rapid palatal expansion (RPE) treatment. Randomized controlled trial. Twenty-three children (age 9.2 +/- 70.88 years) diagnosed with maxillary constriction were randomly divided into two groups: 1. Study group (n = 12): patients receiving RPE treatment; 2. Untreated controls (n = 11). Postural measurements were taken on frontal, lateral, and dorsal views of each subject. In the study group measurements were taken at T0 (the day orthodontic records were taken), T1 (end of RPE active phase), and T2 (RPE removal). In controls the same observations were conducted at T0 and T1(98.18 +/- 36.01 days after T0). Measurements were statistically analyzed (Intraclass Correlation Coefficient, t-tests, Signed Rank test, One-Way Repeated Measures Analysis of Variance, Tukey test; p < 0.05). In the study group a significant reduction in forward head posture (FHP) occurred between T0 and T1. Forward shoulder posture (FSP) decreased significantly between T1 and T2. At T1 treated patients exhibited significantly lower values of the measurements indicating FHP and FSP than controls. Changes in head and scapular posture following RPE treatment can be documented with computerized measurements on digital photographs.

  3. Semi-automated segmentation of a glioblastoma multiforme on brain MR images for radiotherapy planning.

    PubMed

    Hori, Daisuke; Katsuragawa, Shigehiko; Murakami, Ryuuji; Hirai, Toshinori

    2010-04-20

    We propose a computerized method for semi-automated segmentation of the gross tumor volume (GTV) of a glioblastoma multiforme (GBM) on brain MR images for radiotherapy planning (RTP). Three-dimensional (3D) MR images of 28 cases with a GBM were used in this study. First, a sphere volume of interest (VOI) including the GBM was selected by clicking a part of the GBM region in the 3D image. Then, the sphere VOI was transformed to a two-dimensional (2D) image by use of a spiral-scanning technique. We employed active contour models (ACM) to delineate an optimal outline of the GBM in the transformed 2D image. After inverse transform of the optimal outline to the 3D space, a morphological filter was applied to smooth the shape of the 3D segmented region. For evaluation of our computerized method, we compared the computer output with manually segmented regions, which were obtained by a therapeutic radiologist using a manual tracking method. In evaluating our segmentation method, we employed the Jaccard similarity coefficient (JSC) and the true segmentation coefficient (TSC) in volumes between the computer output and the manually segmented region. The mean and standard deviation of JSC and TSC were 74.2+/-9.8% and 84.1+/-7.1%, respectively. Our segmentation method provided a relatively accurate outline for GBM and would be useful for radiotherapy planning.

  4. Multi-atlas-based segmentation of the parotid glands of MR images in patients following head-and-neck cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Cheng, Guanghui; Yang, Xiaofeng; Wu, Ning; Xu, Zhijian; Zhao, Hongfu; Wang, Yuefeng; Liu, Tian

    2013-02-01

    Xerostomia (dry mouth), resulting from radiation damage to the parotid glands, is one of the most common and distressing side effects of head-and-neck cancer radiotherapy. Recent MRI studies have demonstrated that the volume reduction of parotid glands is an important indicator for radiation damage and xerostomia. In the clinic, parotid-volume evaluation is exclusively based on physicians' manual contours. However, manual contouring is time-consuming and prone to inter-observer and intra-observer variability. Here, we report a fully automated multi-atlas-based registration method for parotid-gland delineation in 3D head-and-neck MR images. The multi-atlas segmentation utilizes a hybrid deformable image registration to map the target subject to multiple patients' images, applies the transformation to the corresponding segmented parotid glands, and subsequently uses the multiple patient-specific pairs (head-and-neck MR image and transformed parotid-gland mask) to train support vector machine (SVM) to reach consensus to segment the parotid gland of the target subject. This segmentation algorithm was tested with head-and-neck MRIs of 5 patients following radiotherapy for the nasopharyngeal cancer. The average parotid-gland volume overlapped 85% between the automatic segmentations and the physicians' manual contours. In conclusion, we have demonstrated the feasibility of an automatic multi-atlas based segmentation algorithm to segment parotid glands in head-and-neck MR images.

  5. Chin plate with a detachable C-tube head serves for both osteotomy fixation and orthodontic anchorage.

    PubMed

    Seo, Kyung-Won; Nahm, Kyung-Yen; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2013-07-01

    This article reports the dual function of a double-Y miniplate with a detachable C-tube head (C-chin plate; Jin Biomed Co., Bucheon, Korea) used to fixate an anterior segmental osteotomy and provide skeletal anchorage during orthodontic tooth movement. Cases were selected for this study from patients who underwent anterior segmental osteotomy under local anesthesia. A detachable C-tube head portion was combined with a double-Y chin plate. The double-Y chin plates were fixated between the osteotomy segments and the mandibular base with screws in a conventional way. The C-tube head portion exited the tissue near the mucogingival junction. Biocreative Chin Plates were placed on the anterior segmental osteotomy sites. The device allowed 3 points of fixation: 1, minor postosteotomy vertical adjustment of the segment during healing; 2, minor shift of the midline during healing; and 3, to serve as temporary skeletal anchorage device during the post-anterior segmental osteotomy orthodontic treatment. When tooth movement goals are accomplished, the C-tube head of the chin plate can be easily detached from the fixation miniplate by twisting the head using a Weingart plier under local anesthesia. This dual-purpose device spares the patient from the need for 2 separate installations for stabilization of osteotomy segments. The dual-purpose double-Y miniplate combined with a C-tube head (Biocreative Chin Plate) provided versatile application of 3 points of post-osteotomy fixation and of temporary skeletal anchorage for orthodontic tooth movement.

  6. Discovering shared segments on the migration route of the bar-headed goose by time-based plane-sweeping trajectory clustering

    USGS Publications Warehouse

    Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.

    2012-01-01

    We propose a new method to help ornithologists and ecologists discover shared segments on the migratory pathway of the bar-headed geese by time-based plane-sweeping trajectory clustering. We present a density-based time parameterized line segment clustering algorithm, which extends traditional comparable clustering algorithms from temporal and spatial dimensions. We present a time-based plane-sweeping trajectory clustering algorithm to reveal the dynamic evolution of spatial-temporal object clusters and discover common motion patterns of bar-headed geese in the process of migration. Experiments are performed on GPS-based satellite telemetry data from bar-headed geese and results demonstrate our algorithms can correctly discover shared segments of the bar-headed geese migratory pathway. We also present findings on the migratory behavior of bar-headed geese determined from this new analytical approach.

  7. Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem.

    PubMed

    Eriksson, Bo Joakim; Tait, Noel N; Budd, Graham E; Janssen, Ralf; Akam, Michael

    2010-09-01

    The arthropod head problem has puzzled zoologists for more than a century. The head of adult arthropods is a complex structure resulting from the modification, fusion and migration of an uncertain number of segments. In contrast, onychophorans, which are the probable sister group to the arthropods, have a rather simple head comprising three segments that are well defined during development, and give rise to the adult head with three pairs of appendages specialised for sensory and food capture/manipulative purposes. Based on the expression pattern of the anterior Hox genes labial, proboscipedia, Hox3 and Deformed, we show that the third of these onychophoran segments, bearing the slime papillae, can be correlated to the tritocerebrum, the most anterior Hox-expressing arthropod segment. This implies that both the onychophoran antennae and jaws are derived from a more anterior, Hox-free region corresponding to the proto and deutocerebrum of arthropods. Our data provide molecular support for the proposal that the onychophoran head possesses a well-developed appendage that corresponds to the anterior, apparently appendage-less region of the arthropod head.

  8. Segmentation of humeral head from axial proton density weighted shoulder MR images

    NASA Astrophysics Data System (ADS)

    Sezer, Aysun; Sezer, Hasan Basri; Albayrak, Songul

    2015-01-01

    The purpose of this study is to determine the effectiveness of segmentation of axial MR proton density (PD) images of bony humeral head. PD sequence images which are included in standard shoulder MRI protocol are used instead of T1 MR images. Bony structures were reported to be successfully segmented in the literature from T1 MR images. T1 MR images give more sharp determination of bone and soft tissue border but cannot address the pathological process which takes place in the bone. In the clinical settings PD images of shoulder are used to investigate soft tissue alterations which can cause shoulder instability and are better in demonstrating edema and the pathology but have a higher noise ratio than other modalities. Moreover the alteration of humeral head intensity in patients and soft tissues in contact with the humeral head which have the very similar intensities with bone makes the humeral head segmentation a challenging problem in PD images. However segmentation of the bony humeral head is required initially to facilitate the segmentation of the soft tissues of shoulder. In this study shoulder MRI of 33 randomly selected patients were included. Speckle reducing anisotropic diffusion (SRAD) method was used to decrease noise and then Active Contour Without Edge (ACWE) and Signed Pressure Force (SPF) models were applied on our data set. Success of these methods is determined by comparing our results with manually segmented images by an expert. Applications of these methods on PD images provide highly successful results for segmentation of bony humeral head. This is the first study to determine bone contours in PD images in literature.

  9. A contrast enhancement method for improving the segmentation of breast lesions on ultrasonography.

    PubMed

    Flores, Wilfrido Gómez; Pereira, Wagner Coelho de Albuquerque

    2017-01-01

    This paper presents an adaptive contrast enhancement method based on sigmoidal mapping function (SACE) used for improving the computerized segmentation of breast lesions on ultrasound. First, from the original ultrasound image an intensity variation map is obtained, which is used to generate local sigmoidal mapping functions related to distinct contextual regions. Then, a bilinear interpolation scheme is used to transform every original pixel to a new gray level value. Also, four contrast enhancement techniques widely used in breast ultrasound enhancement are implemented: histogram equalization (HEQ), contrast limited adaptive histogram equalization (CLAHE), fuzzy enhancement (FEN), and sigmoid based enhancement (SEN). In addition, these contrast enhancement techniques are considered in a computerized lesion segmentation scheme based on watershed transformation. The performance comparison among techniques is assessed in terms of both the quality of contrast enhancement and the segmentation accuracy. The former is quantified by the measure, where the greater the value, the better the contrast enhancement, whereas the latter is calculated by the Jaccard index, which should tend towards unity to indicate adequate segmentation. The experiments consider a data set with 500 breast ultrasound images. The results show that SACE outperforms its counterparts, where the median values for the measure are: SACE: 139.4, SEN: 68.2, HEQ: 64.1, CLAHE: 62.8, and FEN: 7.9. Considering the segmentation performance results, the SACE method presents the largest accuracy, where the median values for the Jaccard index are: SACE: 0.81, FEN: 0.80, CLAHE: 0.79, HEQ: 77, and SEN: 0.63. The SACE method performs well due to the combination of three elements: (1) the intensity variation map reduces intensity variations that could distort the real response of the mapping function, (2) the sigmoidal mapping function enhances the gray level range where the transition between lesion and background is found, and (3) the adaptive enhancing scheme for coping with local contrasts. Hence, the SACE approach is appropriate for enhancing contrast before computerized lesion segmentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Computerized PET/CT image analysis in the evaluation of tumour response to therapy

    PubMed Central

    Wang, J; Zhang, H H

    2015-01-01

    Current cancer therapy strategy is mostly population based, however, there are large differences in tumour response among patients. It is therefore important for treating physicians to know individual tumour response. In recent years, many studies proposed the use of computerized positron emission tomography/CT image analysis in the evaluation of tumour response. Results showed that computerized analysis overcame some major limitations of current qualitative and semiquantitative analysis and led to improved accuracy. In this review, we summarize these studies in four steps of the analysis: image registration, tumour segmentation, image feature extraction and response evaluation. Future works are proposed and challenges described. PMID:25723599

  11. Performance evaluation of an automatic segmentation method of cerebral arteries in MRA images by use of a large image database

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yoshikazu; Asano, Tatsunori; Hara, Takeshi; Fujita, Hiroshi; Kinosada, Yasutomi; Asano, Takahiko; Kato, Hiroki; Kanematsu, Masayuki; Hoshi, Hiroaki; Iwama, Toru

    2009-02-01

    The detection of cerebrovascular diseases such as unruptured aneurysm, stenosis, and occlusion is a major application of magnetic resonance angiography (MRA). However, their accurate detection is often difficult for radiologists. Therefore, several computer-aided diagnosis (CAD) schemes have been developed in order to assist radiologists with image interpretation. The purpose of this study was to develop a computerized method for segmenting cerebral arteries, which is an essential component of CAD schemes. For the segmentation of vessel regions, we first used a gray level transformation to calibrate voxel values. To adjust for variations in the positioning of patients, registration was subsequently employed to maximize the overlapping of the vessel regions in the target image and reference image. The vessel regions were then segmented from the background using gray-level thresholding and region growing techniques. Finally, rule-based schemes with features such as size, shape, and anatomical location were employed to distinguish between vessel regions and false positives. Our method was applied to 854 clinical cases obtained from two different hospitals. The segmentation of cerebral arteries in 97.1%(829/854) of the MRA studies was attained as an acceptable result. Therefore, our computerized method would be useful in CAD schemes for the detection of cerebrovascular diseases in MRA images.

  12. Reliability and Normative Data for the Dynamic Visual Acuity Test for Vestibular Screening.

    PubMed

    Riska, Kristal M; Hall, Courtney D

    2016-06-01

    The purpose of this study was to determine reliability of computerized dynamic visual acuity (DVA) testing and to determine reference values for younger and older adults. A primary function of the vestibular system is to maintain gaze stability during head motion. The DVA test quantifies gaze stabilization with the head moving versus stationary. Commercially available computerized systems allow clinicians to incorporate DVA into their assessment; however, information regarding reliability and normative values of these systems is sparse. Forty-six healthy adults, grouped by age, with normal vestibular function were recruited. Each participant completed computerized DVA testing including static visual acuity, minimum perception time, and DVA using the NeuroCom inVision System. Testing was performed by two examiners in the same session and then repeated at a follow-up session 3 to 14 days later. Intraclass correlation coefficients (ICCs) were used to determine inter-rater and test-retest reliability. ICCs for inter-rater reliability ranged from 0.323 to 0.937 and from 0.434 to 0.909 for horizontal and vertical head movements, respectively. ICCs for test-retest reliability ranged from 0.154 to 0.856 and from 0.377 to 0.9062 for horizontal and vertical head movements, respectively. Overall, raw scores (left/right DVA and up/down DVA) were more reliable than DVA loss scores. Reliability of a commercially available DVA system has poor-to-fair reliability for DVA loss scores. The use of a convergence paradigm and not incorporating the forced choice paradigm may contribute to poor reliability.

  13. A Head in Virtual Reality: Development of A Dynamic Head and Neck Model

    ERIC Educational Resources Information Center

    Nguyen, Ngan; Wilson, Timothy D.

    2009-01-01

    Advances in computer and interface technologies have made it possible to create three-dimensional (3D) computerized models of anatomical structures for visualization, manipulation, and interaction in a virtual 3D environment. In the past few decades, a multitude of digital models have been developed to facilitate complex spatial learning of the…

  14. Segmentation of organs at risk in CT volumes of head, thorax, abdomen, and pelvis

    NASA Astrophysics Data System (ADS)

    Han, Miaofei; Ma, Jinfeng; Li, Yan; Li, Meiling; Song, Yanli; Li, Qiang

    2015-03-01

    Accurate segmentation of organs at risk (OARs) is a key step in treatment planning system (TPS) of image guided radiation therapy. We are developing three classes of methods to segment 17 organs at risk throughout the whole body, including brain, brain stem, eyes, mandible, temporomandibular joints, parotid glands, spinal cord, lungs, trachea, heart, livers, kidneys, spleen, prostate, rectum, femoral heads, and skin. The three classes of segmentation methods include (1) threshold-based methods for organs of large contrast with adjacent structures such as lungs, trachea, and skin; (2) context-driven Generalized Hough Transform-based methods combined with graph cut algorithm for robust localization and segmentation of liver, kidneys and spleen; and (3) atlas and registration-based methods for segmentation of heart and all organs in CT volumes of head and pelvis. The segmentation accuracy for the seventeen organs was subjectively evaluated by two medical experts in three levels of score: 0, poor (unusable in clinical practice); 1, acceptable (minor revision needed); and 2, good (nearly no revision needed). A database was collected from Ruijin Hospital, Huashan Hospital, and Xuhui Central Hospital in Shanghai, China, including 127 head scans, 203 thoracic scans, 154 abdominal scans, and 73 pelvic scans. The percentages of "good" segmentation results were 97.6%, 92.9%, 81.1%, 87.4%, 85.0%, 78.7%, 94.1%, 91.1%, 81.3%, 86.7%, 82.5%, 86.4%, 79.9%, 72.6%, 68.5%, 93.2%, 96.9% for brain, brain stem, eyes, mandible, temporomandibular joints, parotid glands, spinal cord, lungs, trachea, heart, livers, kidneys, spleen, prostate, rectum, femoral heads, and skin, respectively. Various organs at risk can be reliably segmented from CT scans by use of the three classes of segmentation methods.

  15. Pondering the procephalon: the segmental origin of the labrum.

    PubMed

    Haas, M S; Brown, S J; Beeman, R W

    2001-02-01

    With accumulating evidence for the appendicular nature of the labrum, the question of its actual segmental origin remains. Two existing insect head segmentation models, the linear and S-models, are reviewed, and a new model introduced. The L-/Bent-Y model proposes that the labrum is a fusion of the appendage endites of the intercalary segment and that the stomodeum is tightly integrated into this segment. This model appears to explain a wider variety of insect head segmentation phenomena. Embryological, histological, neurological and molecular evidence supporting the new model is reviewed.

  16. Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients.

    PubMed

    Sjöberg, Carl; Lundmark, Martin; Granberg, Christoffer; Johansson, Silvia; Ahnesjö, Anders; Montelius, Anders

    2013-10-03

    Semi-automated segmentation using deformable registration of selected atlas cases consisting of expert segmented patient images has been proposed to facilitate the delineation of lymph node regions for three-dimensional conformal and intensity-modulated radiotherapy planning of head and neck and prostate tumours. Our aim is to investigate if fusion of multiple atlases will lead to clinical workload reductions and more accurate segmentation proposals compared to the use of a single atlas segmentation, due to a more complete representation of the anatomical variations. Atlases for lymph node regions were constructed using 11 head and neck patients and 15 prostate patients based on published recommendations for segmentations. A commercial registration software (Velocity AI) was used to create individual segmentations through deformable registration. Ten head and neck patients, and ten prostate patients, all different from the atlas patients, were randomly chosen for the study from retrospective data. Each patient was first delineated three times, (a) manually by a radiation oncologist, (b) automatically using a single atlas segmentation proposal from a chosen atlas and (c) automatically by fusing the atlas proposals from all cases in the database using the probabilistic weighting fusion algorithm. In a subsequent step a radiation oncologist corrected the segmentation proposals achieved from step (b) and (c) without using the result from method (a) as reference. The time spent for editing the segmentations was recorded separately for each method and for each individual structure. Finally, the Dice Similarity Coefficient and the volume of the structures were used to evaluate the similarity between the structures delineated with the different methods. For the single atlas method, the time reduction compared to manual segmentation was 29% and 23% for head and neck and pelvis lymph nodes, respectively, while editing the fused atlas proposal resulted in time reductions of 49% and 34%. The average volume of the fused atlas proposals was only 74% of the manual segmentation for the head and neck cases and 82% for the prostate cases due to a blurring effect from the fusion process. After editing of the proposals the resulting volume differences were no longer statistically significant, although a slight influence by the proposals could be noticed since the average edited volume was still slightly smaller than the manual segmentation, 9% and 5%, respectively. Segmentation based on fusion of multiple atlases reduces the time needed for delineation of lymph node regions compared to the use of a single atlas segmentation. Even though the time saving is large, the quality of the segmentation is maintained compared to manual segmentation.

  17. Restricting the Time of Injury in Fatal Inflicted Head Injuries.

    ERIC Educational Resources Information Center

    Willman, Kristal Y.; Bank, David E.; Scenic, Melvin; Catwalk, David L.

    1997-01-01

    Review of the cases of 95 fatal head injuries in children found that brain swelling could be detected as early as 1 hour 17 minutes postinjury using computerized topography scans. Results also suggested that a reported history of a lucid interval in a case not involving an epidural hematoma is likely to be false and the injury probably inflicted.…

  18. New Phenomenon of Abnormal Auditory Perception Associated with Emotional and Head Trauma: Pathological Confirmation by SPECT Scan

    ERIC Educational Resources Information Center

    Stephane, Massoud; Hill, Thomas; Matthew, Elizabeth; Folstein, Marshal

    2004-01-01

    We report the case of an immigrant who suffered from death threats and head trauma while a prisoner of war in Kuwait. Two months later, he began to hear conversations that had taken place previously. These perceptions occurred spontaneously or were induced by the patient's effortful concentration. The single photon emission computerized tomography…

  19. Head CT (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  20. Quantification of esophageal wall thickness in CT using atlas-based segmentation technique

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Kang, Min Kyu; Kligerman, Seth; Lu, Wei

    2015-03-01

    Esophageal wall thickness is an important predictor of esophageal cancer response to therapy. In this study, we developed a computerized pipeline for quantification of esophageal wall thickness using computerized tomography (CT). We first segmented the esophagus using a multi-atlas-based segmentation scheme. The esophagus in each atlas CT was manually segmented to create a label map. Using image registration, all of the atlases were aligned to the imaging space of the target CT. The deformation field from the registration was applied to the label maps to warp them to the target space. A weighted majority-voting label fusion was employed to create the segmentation of esophagus. Finally, we excluded the lumen from the esophagus using a threshold of -600 HU and measured the esophageal wall thickness. The developed method was tested on a dataset of 30 CT scans, including 15 esophageal cancer patients and 15 normal controls. The mean Dice similarity coefficient (DSC) and mean absolute distance (MAD) between the segmented esophagus and the reference standard were employed to evaluate the segmentation results. Our method achieved a mean Dice coefficient of 65.55 ± 10.48% and mean MAD of 1.40 ± 1.31 mm for all the cases. The mean esophageal wall thickness of cancer patients and normal controls was 6.35 ± 1.19 mm and 6.03 ± 0.51 mm, respectively. We conclude that the proposed method can perform quantitative analysis of esophageal wall thickness and would be useful for tumor detection and tumor response evaluation of esophageal cancer.

  1. The head problem. The organizational significance of segmentation in head development.

    PubMed

    Horder, Tim J; Presley, Robert; Slípka, Jaroslav

    2010-01-01

    This review argues for the segmental basis of chordate head organization which, like somite-based segmental organization in the trunk, takes its origin from early mesodermal development. The review builds on, and brings up to date, Goodrich's well-known scheme of head organization. It surveys recent data in support of this scheme and shows how evidence and arguments supposedly in conflict with it can be accommodated. Many of the arguments revolve around matters of methodology; the limitations of older LM, SEM (on which the concept of "somitomeres" is based) and recent molecular evidence (which has sometimes been seen as allocating the central role in head organization to the CNS and the neural crest) are highlighted and shown to explain a number of claims contrary to Goodrich's. We provide (in Part 2) a new, comparative survey of the best available evidence most directly relevant to the Goodrich Bauplan, with a special emphasis on stem chordates. The postotic region has commonly been seen as segmentally organized: the critical issues concern the preotic region. There are many reasons why Goodrich's three preotic segments may become specialized during evolution and why the underlying initial segmental organization may be overridden in later stages during embryonic development; we refer to a number of these. We conclude that the preotic segmental Bauplan is remarkably conserved and most explicitly demonstrated among stem forms, but we also suggest that the concept of the prechordal plate requires careful reexamination. Central to our overall analysis is the importance of the epigenetic nature of embryogenesis; its implications are made clear. Finally we speculate on evolutionary implications for the origin of the head and its specialized features. The review is intended to serve as a resource giving access to references to a wealth of now neglected, older data on anamniote embryology.

  2. Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective.

    PubMed

    Ortega-Hernández, Javier; Janssen, Ralf; Budd, Graham E

    2017-05-01

    The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Applications of magnetic resonance image segmentation in neurology

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Lahtinen, Antti J.; Dastidar, Prasun; Ryymin, Pertti; Laarne, Paeivi; Malmivuo, Jaakko; Laasonen, Erkki; Frey, Harry; Eskola, Hannu

    1999-05-01

    After the introduction of digital imagin devices in medicine computerized tissue recognition and classification have become important in research and clinical applications. Segmented data can be applied among numerous research fields including volumetric analysis of particular tissues and structures, construction of anatomical modes, 3D visualization, and multimodal visualization, hence making segmentation essential in modern image analysis. In this research project several PC based software were developed in order to segment medical images, to visualize raw and segmented images in 3D, and to produce EEG brain maps in which MR images and EEG signals were integrated. The software package was tested and validated in numerous clinical research projects in hospital environment.

  4. 3D multimodal cardiac data reconstruction using angiography and computerized tomographic angiography registration.

    PubMed

    Moosavi Tayebi, Rohollah; Wirza, Rahmita; Sulaiman, Puteri S B; Dimon, Mohd Zamrin; Khalid, Fatimah; Al-Surmi, Aqeel; Mazaheri, Samaneh

    2015-04-22

    Computerized tomographic angiography (3D data representing the coronary arteries) and X-ray angiography (2D X-ray image sequences providing information about coronary arteries and their stenosis) are standard and popular assessment tools utilized for medical diagnosis of coronary artery diseases. At present, the results of both modalities are individually analyzed by specialists and it is difficult for them to mentally connect the details of these two techniques. The aim of this work is to assist medical diagnosis by providing specialists with the relationship between computerized tomographic angiography and X-ray angiography. In this study, coronary arteries from two modalities are registered in order to create a 3D reconstruction of the stenosis position. The proposed method starts with coronary artery segmentation and labeling for both modalities. Then, stenosis and relevant labeled artery in X-ray angiography image are marked by a specialist. Proper control points for the marked artery in both modalities are automatically detected and normalized. Then, a geometrical transformation function is computed using these control points. Finally, this function is utilized to register the marked artery from the X-ray angiography image on the computerized tomographic angiography and get the 3D position of the stenosis lesion. The result is a 3D informative model consisting of stenosis and coronary arteries' information from the X-ray angiography and computerized tomographic angiography modalities. The results of the proposed method for coronary artery segmentation, labeling and 3D reconstruction are evaluated and validated on the dataset containing both modalities. The advantage of this method is to aid specialists to determine a visual relationship between the correspondent coronary arteries from two modalities and also set up a connection between stenosis points from an X-ray angiography along with their 3D positions on the coronary arteries from computerized tomographic angiography. Moreover, another benefit of this work is that the medical acquisition standards remain unchanged, which means that no calibration in the acquisition devices is required. It can be applied on most computerized tomographic angiography and angiography devices.

  5. Computerized detection of leukocytes in microscopic leukorrhea images.

    PubMed

    Zhang, Jing; Zhong, Ya; Wang, Xiangzhou; Ni, Guangming; Du, Xiaohui; Liu, Juanxiu; Liu, Lin; Liu, Yong

    2017-09-01

    Detection of leukocytes is critical for the routine leukorrhea exam, which is widely used in gynecological examinations. An elevated vaginal leukocyte count in women with bacterial vaginosis is a strong predictor of vaginal or cervical infections. In the routine leukorrhea exam, the counting of leukocytes is primarily performed by manual techniques. However, the viewing and counting of leukocytes from multiple high-power viewing fields on a glass slide under a microscope leads to subjectivity, low efficiency, and low accuracy. To date, many biological cells in stool, blood, and breast cancer have been studied to realize computerized detection; however, the detection of leukocytes in microscopic leukorrhea images has not been studied. Thus, there is an increasing need for computerized detection of leukocytes. There are two key processes in the computerized detection of leukocytes in digital image processing. One is segmentation; the other is intelligent classification. In this paper, we propose a combined ensemble to detect leukocytes in the microscopic leukorrhea image. After image segmentation and selecting likely leukocyte subimages, we obtain the leukocyte candidates. Then, for intelligent classification, we adopt two methods: feature extraction and classification by a support vector machine (SVM); applying a modified convolutional neural network (CNN) to the larger subimages. If different methods classify a candidate in the same category, the process is finished. If not, the outputs of the methods are provided to a classifier to further classify the candidate. After acquiring leukocyte candidates, we attempted three methods to perform classification. The first approach using features and SVM achieved 88% sensitivity, 97% specificity, and 92.5% accuracy. The second method using CNN achieved 95% sensitivity, 84% specificity, and 89.5% accuracy. Then, in the combination approach, we achieved 92% sensitivity, 95% specificity, and 93.5% accuracy. Finally, the images with marked and counted leukocytes were obtained. A novel computerized detection system was developed for automated detection of leukocytes in microscopic images. Different methods resulted in comparable overall qualities by enabling computerized detection of leukocytes. The proposed approach further improved the performance. This preliminary study proves the feasibility of computerized detection of leukocytes in clinical use. © 2017 American Association of Physicists in Medicine.

  6. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation.

    PubMed

    Daisne, Jean-François; Blumhofer, Andreas

    2013-06-26

    Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for "manual to automatic" and "manual to corrected" volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert.

  7. Technical report on semiautomatic segmentation using the Adobe Photoshop.

    PubMed

    Park, Jin Seo; Chung, Min Suk; Hwang, Sung Bae; Lee, Yong Sook; Har, Dong-Hwan

    2005-12-01

    The purpose of this research is to enable users to semiautomatically segment the anatomical structures in magnetic resonance images (MRIs), computerized tomographs (CTs), and other medical images on a personal computer. The segmented images are used for making 3D images, which are helpful to medical education and research. To achieve this purpose, the following trials were performed. The entire body of a volunteer was scanned to make 557 MRIs. On Adobe Photoshop, contours of 19 anatomical structures in the MRIs were semiautomatically drawn using MAGNETIC LASSO TOOL and manually corrected using either LASSO TOOL or DIRECT SELECTION TOOL to make 557 segmented images. In a similar manner, 13 anatomical structures in 8,590 anatomical images were segmented. Proper segmentation was verified by making 3D images from the segmented images. Semiautomatic segmentation using Adobe Photoshop is expected to be widely used for segmentation of anatomical structures in various medical images.

  8. Bibliography of the Edwards Aquifer, Texas, through 1993

    USGS Publications Warehouse

    Menard, J.A.

    1995-01-01

    The bibliography comprises 1,022 multidisciplinary references to technical and general literature for the three regions of the Edwards aquifer, Texas-San Antonio area; Barton Springs segment, Austin area; and northern segment, Austin area. The references in the bibliography were compiled from computerized data bases and from published bibliographies and reports. Dates of references range from the late 1800's through 1993. Subject and author indexes are included.

  9. Interactive experimenters' planning procedures and mission control

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.

    1973-01-01

    The computerized mission control and planning system routinely generates a 24-hour schedule in one hour of operator time by including time dimensions into experimental planning procedures. Planning is validated interactively as it is being generated segment by segment in the frame of specific event times. The planner simply points a light pen at the time mark of interest on the time line for entering specific event times into the schedule.

  10. SU-E-J-275: Review - Computerized PET/CT Image Analysis in the Evaluation of Tumor Response to Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W; Wang, J; Zhang, H

    Purpose: To review the literature in using computerized PET/CT image analysis for the evaluation of tumor response to therapy. Methods: We reviewed and summarized more than 100 papers that used computerized image analysis techniques for the evaluation of tumor response with PET/CT. This review mainly covered four aspects: image registration, tumor segmentation, image feature extraction, and response evaluation. Results: Although rigid image registration is straightforward, it has been shown to achieve good alignment between baseline and evaluation scans. Deformable image registration has been shown to improve the alignment when complex deformable distortions occur due to tumor shrinkage, weight loss ormore » gain, and motion. Many semi-automatic tumor segmentation methods have been developed on PET. A comparative study revealed benefits of high levels of user interaction with simultaneous visualization of CT images and PET gradients. On CT, semi-automatic methods have been developed for only tumors that show marked difference in CT attenuation between the tumor and the surrounding normal tissues. Quite a few multi-modality segmentation methods have been shown to improve accuracy compared to single-modality algorithms. Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Predictive models based on machine learning technique have been constructed for correlating selected image features to response. These models showed improved performance compared to current methods using cutoff value of a single measurement for tumor response. Conclusion: This review showed that computerized PET/CT image analysis holds great potential to improve the accuracy in evaluation of tumor response. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less

  11. Investigation of computer-aided colonic crypt pattern analysis

    NASA Astrophysics Data System (ADS)

    Qi, Xin; Pan, Yinsheng; Sivak, Michael V., Jr.; Olowe, Kayode; Rollins, Andrew M.

    2007-02-01

    Colorectal cancer is the second leading cause of cancer-related death in the United States. Approximately 50% of these deaths could be prevented by earlier detection through screening. Magnification chromoendoscopy is a technique which utilizes tissue stains applied to the gastrointestinal mucosa and high-magnification endoscopy to better visualize and characterize lesions. Prior studies have shown that shapes of colonic crypts change with disease and show characteristic patterns. Current methods for assessing colonic crypt patterns are somewhat subjective and not standardized. Computerized algorithms could be used to standardize colonic crypt pattern assessment. We have imaged resected colonic mucosa in vitro (N = 70) using methylene blue dye and a surgical microscope to approximately simulate in vivo imaging with magnification chromoendoscopy. We have developed a method of computerized processing to analyze the crypt patterns in the images. The quantitative image analysis consists of three steps. First, the crypts within the region of interest of colonic tissue are semi-automatically segmented using watershed morphological processing. Second, crypt size and shape parameters are extracted from the segmented crypts. Third, each sample is assigned to a category according to the Kudo criteria. The computerized classification is validated by comparison with human classification using the Kudo classification criteria. The computerized colonic crypt pattern analysis algorithm will enable a study of in vivo magnification chromoendoscopy of colonic crypt pattern correlated with risk of colorectal cancer. This study will assess the feasibility of screening and surveillance of the colon using magnification chromoendoscopy.

  12. Stabilization and mobility of the head, neck and trunk in horses during overground locomotion: comparisons with humans and other primates.

    PubMed

    Dunbar, Donald C; Macpherson, Jane M; Simmons, Roger W; Zarcades, Athina

    2008-12-01

    Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (> 20 deg.) and stability (< or = 20 deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head-neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame.

  13. Poster — Thur Eve — 59: Atlas Selection for Automated Segmentation of Pelvic CT for Prostate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallawi, A; Farrell, T; Diamond, K

    2014-08-15

    Automated atlas-based segmentation has recently been evaluated for use in planning prostate cancer radiotherapy. In the typical approach, the essential step is the selection of an atlas from a database that best matches the target image. This work proposes an atlas selection strategy and evaluates its impact on the final segmentation accuracy. Prostate length (PL), right femoral head diameter (RFHD), and left femoral head diameter (LFHD) were measured in CT images of 20 patients. Each subject was then taken as the target image to which all remaining 19 images were affinely registered. For each pair of registered images, the overlapmore » between prostate and femoral head contours was quantified using the Dice Similarity Coefficient (DSC). Finally, we designed an atlas selection strategy that computed the ratio of PL (prostate segmentation), RFHD (right femur segmentation), and LFHD (left femur segmentation) between the target subject and each subject in the atlas database. Five atlas subjects yielding ratios nearest to one were then selected for further analysis. RFHD and LFHD were excellent parameters for atlas selection, achieving a mean femoral head DSC of 0.82 ± 0.06. PL had a moderate ability to select the most similar prostate, with a mean DSC of 0.63 ± 0.18. The DSC obtained with the proposed selection method were slightly lower than the maximums established using brute force, but this does not include potential improvements expected with deformable registration. Atlas selection based on PL for prostate and femoral diameter for femoral heads provides reasonable segmentation accuracy.« less

  14. Unraveling Pancreatic Segmentation.

    PubMed

    Renard, Yohann; de Mestier, Louis; Perez, Manuela; Avisse, Claude; Lévy, Philippe; Kianmanesh, Reza

    2018-04-01

    Limited pancreatic resections are increasingly performed, but the rate of postoperative fistula is higher than after classical resections. Pancreatic segmentation, anatomically and radiologically identifiable, may theoretically help the surgeon removing selected anatomical portions with their own segmental pancreatic duct and thus might decrease the postoperative fistula rate. We aimed at systematically and comprehensively reviewing the previously proposed pancreatic segmentations and discuss their relevance and limitations. PubMed database was searched for articles investigating pancreatic segmentation, including human or animal anatomy, and cadaveric or surgical studies. Overall, 47/99 articles were selected and grouped into 4 main hypotheses of pancreatic segmentation methodology: anatomic, vascular, embryologic and lymphatic. The head, body and tail segments are gross description without distinct borders. The arterial territories defined vascular segments and isolate an isthmic paucivascular area. The embryological theory relied on the fusion plans of the embryological buds. The lymphatic drainage pathways defined the lymphatic segmentation. These theories had differences, but converged toward separating the head and body/tail parts, and the anterior from posterior and inferior parts of the pancreatic head. The rate of postoperative fistula was not decreased when surgical resection was performed following any of these segmentation theories; hence, none of them appeared relevant enough to guide pancreatic transections. Current pancreatic segmentation theories do not enable defining anatomical-surgical pancreatic segments. Other approaches should be explored, in particular focusing on pancreatic ducts, through pancreatic ducts reconstructions and embryologic 3D modelization.

  15. Split spline screw

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A split spline screw type payload fastener assembly, including three identical male and female type split spline sections, is discussed. The male spline sections are formed on the head of a male type spline driver. Each of the split male type spline sections has an outwardly projecting load baring segment including a convex upper surface which is adapted to engage a complementary concave surface of a female spline receptor in the form of a hollow bolt head. Additionally, the male spline section also includes a horizontal spline releasing segment and a spline tightening segment below each load bearing segment. The spline tightening segment consists of a vertical web of constant thickness. The web has at least one flat vertical wall surface which is designed to contact a generally flat vertically extending wall surface tab of the bolt head. Mutual interlocking and unlocking of the male and female splines results upon clockwise and counter clockwise turning of the driver element.

  16. Modeling heading and path perception from optic flow in the case of independently moving objects

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2013-01-01

    Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589

  17. Automated segmentation of foveal avascular zone in fundus fluorescein angiography.

    PubMed

    Zheng, Yalin; Gandhi, Jagdeep Singh; Stangos, Alexandros N; Campa, Claudio; Broadbent, Deborah M; Harding, Simon P

    2010-07-01

    PURPOSE. To describe and evaluate the performance of a computerized automated segmentation technique for use in quantification of the foveal avascular zone (FAZ). METHODS. A computerized technique for automated segmentation of the FAZ using images from fundus fluorescein angiography (FFA) was applied to 26 transit-phase images obtained from patients with various grades of diabetic retinopathy. The area containing the FAZ zone was first extracted from the original image and smoothed by a Gaussian kernel (sigma = 1.5). An initializing contour was manually placed inside the FAZ of the smoothed image and iteratively moved by the segmentation program toward the FAZ boundary. Five tests with different initializing curves were run on each of 26 images to assess reproducibility. The accuracy of the program was also validated by comparing results obtained by the program with the FAZ boundaries manually delineated by medical retina specialists. Interobserver performance was then evaluated by comparing delineations from two of the experts. RESULTS. One-way analysis of variance indicated that the disparities between different tests were not statistically significant, signifying excellent reproducibility for the computer program. There was a statistically significant linear correlation between the results obtained by automation and manual delineations by experts. CONCLUSIONS. This automated segmentation program can produce highly reproducible results that are comparable to those made by clinical experts. It has the potential to assist in the detection and management of foveal ischemia and to be integrated into automated grading systems.

  18. Stabilization and mobility of the head, neck and trunk in horses during overground locomotion: comparisons with humans and other primates

    PubMed Central

    Dunbar, Donald C.; Macpherson, Jane M.; Simmons, Roger W.; Zarcades, Athina

    2009-01-01

    SUMMARY Segmental kinematics were investigated in horses during overground locomotion and compared with published reports on humans and other primates to determine the impact of a large neck on rotational mobility (>20deg.) and stability (≤20deg.) of the head and trunk. Three adult horses (Equus caballus) performing walks, trots and canters were videotaped in lateral view. Data analysis included locomotor velocity, segmental positions, pitch and linear displacements and velocities, and head displacement frequencies. Equine, human and monkey skulls and cervical spines were measured to estimate eye and vestibular arc length during head pitch displacements. Horses stabilized all three segments in all planes during all three gaits, unlike monkeys and humans who make large head pitch and yaw rotations during walks, and monkeys that make large trunk pitch rotations during gallops. Equine head angular displacements and velocities, with some exceptions during walks, were smaller than in humans and other primates. Nevertheless, owing to greater off-axis distances, orbital and vestibular arc lengths remained larger in horses, with the exception of head–neck axial pitch during trots, in which equine arc lengths were smaller than in running humans. Unlike monkeys and humans, equine head peak-frequency ranges fell within the estimated range in which inertia has a compensatory stabilizing effect. This inertial effect was typically over-ridden, however, by muscular or ligamentous intervention. Thus, equine head pitch was not consistently compensatory, as reported in humans. The equine neck isolated the head from the trunk enabling both segments to provide a spatial reference frame. PMID:19043061

  19. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1991-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a predicted nominal performance based upon given conditions, performance deficiencies are detected by the system.

  20. Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation.

    PubMed

    Kanayama, Masaki; Akiyama-Oda, Yasuko; Nishimura, Osamu; Tarui, Hiroshi; Agata, Kiyokazu; Oda, Hiroki

    2011-10-11

    During development segmentation is a process that generates a spatial periodic pattern. Peak splitting of waves of gene expression is a mathematically predicted, simple strategy accounting for this type of process, but it has not been well characterized biologically. Here we show temporally repeated splitting of gene expression into stripes that is associated with head axis growth in the spider Achaearanea embryo. Preceding segmentation, a wave of hedgehog homologue gene expression is observed to travel posteriorly during development stage 6. This stripe, co-expressing an orthodenticle homologue, undergoes two cycles of splitting and shifting accompanied by convergent extension, serving as a generative zone for the head segments. The two orthodenticle and odd-paired homologues are identified as targets of Hedgehog signalling, and evidence suggests that their activities mediate feedback to maintain the head generative zone and to promote stripe splitting in this zone. We propose that the 'stripe-splitting' strategy employs genetic components shared with Drosophila blastoderm subdivision, which are required for participation in an autoregulatory signalling network.

  1. Evaluation and comparison of current fetal ultrasound image segmentation methods for biometric measurements: a grand challenge.

    PubMed

    Rueda, Sylvia; Fathima, Sana; Knight, Caroline L; Yaqub, Mohammad; Papageorghiou, Aris T; Rahmatullah, Bahbibi; Foi, Alessandro; Maggioni, Matteo; Pepe, Antonietta; Tohka, Jussi; Stebbing, Richard V; McManigle, John E; Ciurte, Anca; Bresson, Xavier; Cuadra, Meritxell Bach; Sun, Changming; Ponomarev, Gennady V; Gelfand, Mikhail S; Kazanov, Marat D; Wang, Ching-Wei; Chen, Hsiang-Chou; Peng, Chun-Wei; Hung, Chu-Mei; Noble, J Alison

    2014-04-01

    This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.

  2. Deficit in figure-ground segmentation following closed head injury.

    PubMed

    Baylis, G C; Baylis, L L

    1997-08-01

    Patient CB showed a severe impairment in figure-ground segmentation following a closed head injury. Unlike normal subjects, CB was unable to parse smaller and brighter parts of stimuli as figure. Moreover, she did not show the normal effect that symmetrical regions are seen as figure, although she was able to make overt judgments of symmetry. Since she was able to attend normally to isolated objects, CB demonstrates a dissociation between figure ground segmentation and subsequent processes of attention. Despite her severe impairment in figure-ground segmentation, CB showed normal 'parallel' single feature visual search. This suggests that figure-ground segmentation is dissociable from 'preattentive' processes such as visual search.

  3. Cutting assembly including expanding wall segments of auger

    DOEpatents

    Treuhaft, Martin B.; Oser, Michael S.

    1983-01-01

    A mining auger comprises a cutting head carried at one end of a tubular shaft and a plurality of wall segments which in a first position thereof are disposed side by side around said shaft and in a second position thereof are disposed oblique to said shaft. A vane projects outwardly from each wall segment. When the wall segments are in their first position, the vanes together form a substantially continuous helical wall. A cutter is mounted on the peripheral edge of each of the vanes. When the wall segments are in their second position, the cutters on the vanes are disposed radially outward from the perimeter of the cutting head.

  4. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    PubMed

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as well.

  5. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem

    PubMed Central

    Wang, Jun Yi; Ngo, Michael M.; Hessl, David; Hagerman, Randi J.; Rivera, Susan M.

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer’s segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as well. PMID:27213683

  6. Semiautomated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach.

    PubMed

    Beichel, Reinhard R; Van Tol, Markus; Ulrich, Ethan J; Bauer, Christian; Chang, Tangel; Plichta, Kristin A; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M

    2016-06-01

    The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behavior of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the "just-enough-interaction" principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction.

  7. Semiautomated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach

    PubMed Central

    Beichel, Reinhard R.; Van Tol, Markus; Ulrich, Ethan J.; Bauer, Christian; Chang, Tangel; Plichta, Kristin A.; Smith, Brian J.; Sunderland, John J.; Graham, Michael M.; Sonka, Milan; Buatti, John M.

    2016-01-01

    Purpose: The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. Methods: A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behavior of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the “just-enough-interaction” principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Results: Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Conclusions: Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction. PMID:27277044

  8. Semiautomated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beichel, Reinhard R., E-mail: reinhard-beichel@uiowa.edu; Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, Iowa 52242; Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242

    Purpose: The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. Methods: A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behaviormore » of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the “just-enough-interaction” principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Results: Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Conclusions: Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction.« less

  9. Miniplate with a bendable C-tube head allows the clinician to alter biomechanical advantage without physically moving the skeletal anchorage device.

    PubMed

    Seo, Kyung-Won; Ahn, Hyo-Won; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald

    2014-01-01

    This article introduces a binary function of a miniplate with a bendable C-tube head used in corticotomy-assisted segment intrusion. The advantage of the device is that the point of force application can be altered without having to move the miniplate or place an additional anchorage device. Cases for this study were selected from patients who received perisegmental corticotomy with compression osteogenesis (Speedy Surgical Orthodontics) for segmental intrusion. For the skeletal anchorage on patients who received Speedy Surgical Orthodontics for posterior segment intrusion to improve on severe open bite correction, the C-tube was placed on the buccal wall of the maxilla for traction of orthopedic force as a temporary skeletal anchorage. The C-tube head portion is made with titanium grade II, which makes bending easy with a Weingart plier. This adjustment regains distance and range needed to continue intrusion of posterior segment. As an alternative to orthognathic surgery to correct a severe open bite, perisegmental corticotomy combined with orthopedic force application from a temporary skeletal anchorage device can be used. The corticotomy-assisted segment intrusion is a 2-stage procedure: first, the corticotomy is performed in the palate and 2 weeks later in the buccal alveolus. A C-plate was placed in the midpalatal area, and a C-tube was placed apical to the buccal corticotomy site. Elastics were used with orthopedic forces to induce compression osteogenesis. As the intrusion took place, the elastic stretched, and resultant force and range in the buccal segment decreased. The C-tube head was adjusted by bending to gain more distance, reviving the elastic force on the posterior segment until desired intrusion was accomplished. The miniplate with a bendable C-tube head serves for temporary skeletal anchorage of orthopedic traction force to achieve segmental intrusion and has the advantage that the bendable head can be adjusted to improve the force application for intrusion without having to move or place another temporary skeletal anchorage device.

  10. Destabilization of Human Balance Control by Static and Dynamic Head Tilts

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Wood, Scott J.; Feiveson, Alan H.; Black, F. Owen; Hwang, Emma Y.; Reschke, Millard F.

    2004-01-01

    To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14,0.33,0.6 Hz) head tilts of +/-30deg in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity.

  11. Translocation of Tektin 3 to the equatorial segment of heads in bull spermatozoa exposed to dibutyryl cAMP and calyculin A.

    PubMed

    Tsukamoto, Mariko; Hiyama, Erina; Hirotani, Karen; Gotoh, Takafumi; Inai, Tetsuichiro; Iida, Hiroshi

    2017-01-01

    Tektins (TEKTs) are filamentous proteins associated with microtubules in cilia, flagella, basal bodies, and centrioles. Five TEKTs (TEKT1, -2, -3, -4, and -5) have been identified as components of mammalian sperm flagella. We previously reported that TKET1 and -3 are also present in the heads of rodent spermatozoa. The present study clearly demonstrates that TEKT2 is present at the acrosome cap whereas TEKT3 resides just beneath the plasma membrane of the post-acrosomal region of sperm heads in unactivated bull spermatozoa, and builds on the distributional differences of TEKT1, -2, and -3 on sperm heads. We also discovered that hyperactivation of bull spermatozoa by cell-permeable cAMP and calyculin A, a protein phosphatase inhibitor, promoted translocation of TEKT3 from the post-acrosomal region to the equatorial segment in sperm heads, and that TEKT3 accumulated at the equatorial segment is lost upon acrosome reaction. Thus, translocation of TEKT3 to the equatorial segment may be a capacitation- or hyperactivation-associated phenomenon in bull spermatozoa. Mol. Reprod. Dev. 84: 30-43, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Segmenting the Femoral Head and Acetabulum in the Hip Joint Automatically Using a Multi-Step Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Cheng, Yuanzhi; Fu, Yili; Zhou, Shengjun; Tamura, Shinichi

    We describe a multi-step approach for automatic segmentation of the femoral head and the acetabulum in the hip joint from three dimensional (3D) CT images. Our segmentation method consists of the following steps: 1) construction of the valley-emphasized image by subtracting valleys from the original images; 2) initial segmentation of the bone regions by using conventional techniques including the initial threshold and binary morphological operations from the valley-emphasized image; 3) further segmentation of the bone regions by using the iterative adaptive classification with the initial segmentation result; 4) detection of the rough bone boundaries based on the segmented bone regions; 5) 3D reconstruction of the bone surface using the rough bone boundaries obtained in step 4) by a network of triangles; 6) correction of all vertices of the 3D bone surface based on the normal direction of vertices; 7) adjustment of the bone surface based on the corrected vertices. We evaluated our approach on 35 CT patient data sets. Our experimental results show that our segmentation algorithm is more accurate and robust against noise than other conventional approaches for automatic segmentation of the femoral head and the acetabulum. Average root-mean-square (RMS) distance from manual reference segmentations created by experienced users was approximately 0.68mm (in-plane resolution of the CT data).

  13. Interleaved 3D-CNNs for joint segmentation of small-volume structures in head and neck CT images.

    PubMed

    Ren, Xuhua; Xiang, Lei; Nie, Dong; Shao, Yeqin; Zhang, Huan; Shen, Dinggang; Wang, Qian

    2018-05-01

    Accurate 3D image segmentation is a crucial step in radiation therapy planning of head and neck tumors. These segmentation results are currently obtained by manual outlining of tissues, which is a tedious and time-consuming procedure. Automatic segmentation provides an alternative solution, which, however, is often difficult for small tissues (i.e., chiasm and optic nerves in head and neck CT images) because of their small volumes and highly diverse appearance/shape information. In this work, we propose to interleave multiple 3D Convolutional Neural Networks (3D-CNNs) to attain automatic segmentation of small tissues in head and neck CT images. A 3D-CNN was designed to segment each structure of interest. To make full use of the image appearance information, multiscale patches are extracted to describe the center voxel under consideration and then input to the CNN architecture. Next, as neighboring tissues are often highly related in the physiological and anatomical perspectives, we interleave the CNNs designated for the individual tissues. In this way, the tentative segmentation result of a specific tissue can contribute to refine the segmentations of other neighboring tissues. Finally, as more CNNs are interleaved and cascaded, a complex network of CNNs can be derived, such that all tissues can be jointly segmented and iteratively refined. Our method was validated on a set of 48 CT images, obtained from the Medical Image Computing and Computer Assisted Intervention (MICCAI) Challenge 2015. The Dice coefficient (DC) and the 95% Hausdorff Distance (95HD) are computed to measure the accuracy of the segmentation results. The proposed method achieves higher segmentation accuracy (with the average DC: 0.58 ± 0.17 for optic chiasm, and 0.71 ± 0.08 for optic nerve; 95HD: 2.81 ± 1.56 mm for optic chiasm, and 2.23 ± 0.90 mm for optic nerve) than the MICCAI challenge winner (with the average DC: 0.38 for optic chiasm, and 0.68 for optic nerve; 95HD: 3.48 for optic chiasm, and 2.48 for optic nerve). An accurate and automatic segmentation method has been proposed for small tissues in head and neck CT images, which is important for the planning of radiotherapy. © 2018 American Association of Physicists in Medicine.

  14. Neural markers reveal a one-segmented head in tardigrades (water bears).

    PubMed

    Mayer, Georg; Kauschke, Susann; Rüdiger, Jan; Stevenson, Paul A

    2013-01-01

    While recent neuroanatomical and gene expression studies have clarified the alignment of cephalic segments in arthropods and onychophorans, the identity of head segments in tardigrades remains controversial. In particular, it is unclear whether the tardigrade head and its enclosed brain comprises one, or several segments, or a non-segmental structure. To clarify this, we applied a variety of histochemical and immunocytochemical markers to specimens of the tardigrade Macrobiotus cf. harmsworthi and the onychophoran Euperipatoides rowelli. Our immunolabelling against serotonin, FMRFamide and α-tubulin reveals that the tardigrade brain is a dorsal, bilaterally symmetric structure that resembles the brain of onychophorans and arthropods rather than a circumoesophageal ring typical of cycloneuralians (nematodes and allies). A suboesophageal ganglion is clearly lacking. Our data further reveal a hitherto unknown, unpaired stomatogastric ganglion in Macrobiotus cf. harmsworthi, which innervates the ectodermal oesophagus and the endodermal midgut and is associated with the second leg-bearing segment. In contrast, the oesophagus of the onychophoran E. rowelli possesses no immunoreactive neurons, whereas scattered bipolar, serotonin-like immunoreactive cell bodies are found in the midgut wall. Furthermore, our results show that the onychophoran pharynx is innervated by a medullary loop nerve accompanied by monopolar, serotonin-like immunoreactive cell bodies. A comparison of the nervous system innervating the foregut and midgut structures in tardigrades and onychophorans to that of arthropods indicates that the stomatogastric ganglion is a potential synapomorphy of Tardigrada and Arthropoda. Its association with the second leg-bearing segment in tardigrades suggests that the second trunk ganglion is a homologue of the arthropod tritocerebrum, whereas the first ganglion corresponds to the deutocerebrum. We therefore conclude that the tardigrade brain consists of a single segmental region corresponding to the arthropod protocerebrum and, accordingly, that the tardigrade head is a non-composite, one-segmented structure.

  15. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H., Jr. (Inventor)

    1994-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (VR) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  16. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1996-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  17. A Head and Neck Simulator for Radiology and Radiotherapy

    NASA Astrophysics Data System (ADS)

    Thompson, Larissa; Campos, Tarcísio P. R.

    2013-06-01

    Phantoms are suitable tools to simulate body tissues and organs in radiology and radiation therapy. This study presents the development of a physical head and neck phantom and its radiological response for simulating brain pathology. The following features on the phantom are addressed and compared to human data: mass density, chemical composition, anatomical shape, computerized tomography images and Hounsfield Units. Mass attenuation and kerma coefficients of the synthetic phantom and normal tissues, as well as their deviations, were also investigated. Radiological experiments were performed, including brain tumors and subarachnoid hemorrhage simulations. Computerized tomography images of such pathologies in phantom and human were obtained. The anthropometric dimensions of the phantom present anatomical conformation similar to a human head and neck. Elemental weight percentages of the equivalent tissues match the human ones. Hounsfield Unit values of the main developed structures are presented, approaching human data. Kerma and mass attenuation coefficients spectra from human and phantom are presented, demonstrating smaller deviations in the radiological X-ray spectral domain. In conclusion, the phantom presented suitable normal and pathological radiological responses relative to those observed in humans. It may improve radiological protocols and education in medical imaging.

  18. Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.

    PubMed

    Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias

    2016-01-01

    To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.

  19. Diagnosis of unsuspected facial fractures on routine head computerized tomographic scans in the unconscious multiply injured patient.

    PubMed

    Rehm, C G; Ross, S E

    1995-05-01

    This article assessed the value of routine head computerized axial tomographic (CT) scans for diagnosis of unsuspected facial fractures and its clinical implications in the multiply injured patient who is intubated, unconscious, or sedated at the time of initial assessment and requires a head CT scan to assess for brain injury. At a level I trauma center from June 1, 1992 to June 1, 1993 all intubated blunt trauma patients who required routine CT scan evaluation at initial assessment were studied prospectively. Routine scanning started at the foramen magnum and included the maxilla. Patients who died within the first 24 hours were excluded. The study population included 116 patients (85 male, 21 female) aged 12 to 85 years (mean, 28 years) with injury severity scores ranging from 1 to 50 (mean, 23). The mechanism of injury was: motor vehicle accidents (n = 74), motorcycling (n = 5), pedestrians accidents (n = 13), falls (n = 10), bicycling (n = 5), assaults (n = 8), and boating accident (n = 1). There were 19 suspected facial fractures; 18 required surgical repair. There were 27 unsuspected facial fractures; 13 required surgical care. Three suspected fractures were ruled out. Routine head CT scans to assess for brain injury in the multiply injured patient are also very useful in the diagnosis of unsuspected facial fractures, almost half of which will require surgical intervention.

  20. Locomotor Stability in a Model Swimmer: Coupling Fluid Dynamics, Neurophysiology and Muscle Mechanics

    DTIC Science & Technology

    2017-07-05

    springs which resist deformation. (C) Inset that shows the position of the muscle segments. Cohen, Holmes, Rand, J. Math Biol. 1982 A representative...numbers are the segment number, labeled from head to tail. Cohen, Holmes, Rand, J. Math Biol. 1982 The signals are periodic. Cohen, Holmes, Rand, J... Math Biol. 1982 From head to tail there is a phase lag on each side. Cohen, Holmes, Rand, J. Math Biol. 1982 On a given segment, the signals are in

  1. Early embryonic development of the head region of Gryllus assimilis Fabricius, 1775 (Orthoptera, Insecta).

    PubMed

    Liu, Yu; Maas, Andreas; Waloszek, Dieter

    2010-09-01

    We report our investigations on the embryonic development of Gryllus assimilis, with particular attention to the head. Significant findings revealed with scanning electron microscopy (SEM) images include: (1) the pre-antennal lobes represent the anterior-most segment that does not bear any appendages; (2) each of the lobes consists of central and marginal regions; (3) the central region thereof develops into the protocerebrum and the optic lobes, whereas the marginal region thereof becomes the anterior portion of the head capsule; (4) the initial position of the antennal segment is posterior to the mouth region; (5) appendage anlagen are transitorily present in the intercalary segment, and they later vanish together with the segment itself; (6) a bulged sternum appears to develop from the ventral surface of the mandibular, maxillary and labial segments. Embryonic features are then compared across the Insecta and further extended to the embryos of a spider (Araneae, Chelicerata). Striking similarities shared by the anterior-most region of the insect and spider embryos lead the authors to conclude that such comparison should be further undertaken to cover the entire Euarthropoda. This will help us to understand the embryology and evolution of the arthropod head. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Development and Implementation of a Segment/Junction Box Level Database for the ITS Fiber Optic Conduit Network

    DOT National Transportation Integrated Search

    2012-03-01

    This project initiated the development of a computerized database of ITS facilities, including conduits, junction : boxes, cameras, connections, etc. The current system consists of a database of conduit sections of various lengths. : Over the length ...

  3. CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones.

    PubMed

    Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M

    2007-06-01

    The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex.

  4. Thirteen-Year Evaluation of Highly Cross-Linked Polyethylene Articulating With Either 28-mm or 36-mm Femoral Heads Using Radiostereometric Analysis and Computerized Tomography.

    PubMed

    Nebergall, Audrey K; Greene, Meridith E; Rubash, Harry; Malchau, Henrik; Troelsen, Anders; Rolfson, Ola

    2016-09-01

    The objective of this 13-year prospective evaluation of highly cross-linked ultra high molecular weight polyethylene (HXLPE) was to (1) assess the long-term wear of HXLPE articulating with 2 femoral head sizes using radiostereometric analysis (RSA) and to (2) determine if osteolysis is a concern with this material through the use of plain radiographs and computerized tomography (CT). All patients received a Longevity HXLPE liner with tantalum beads and either a 28-mm or 36-mm femoral head. Twelve patients (6 in each head size group) agreed to return for 13-year RSA, plain radiograph, and CT follow-up. The 1-year and 13-year plain radiographs as well as the CT scans were analyzed for the presence of osteolysis. The 13-year mean ± standard error steady-state wear was 0.05 ± 0.02 mm with no significant increase over time or between the 2 head size groups. Two patients' CT scans showed radiolucent regions in the acetabulum of 4.51 cm(3) and 11.25 cm(3), respectively. In one patient, this area corresponded to a partially healed degenerative cyst treated with autograft during surgery. The second patient had an acetabular protrusio treated with autograft, and the CT scan revealed areas of remodeling of this graft. One patient's 13-year plain radiographs showed evidence of cup loosening and linear radiolucencies in zones 2 and 3. There was no evidence of significant wear over time using RSA. The CT scans did not show evidence of osteolysis due to wear particles. These results suggest that this material has reduced wear compared to conventional polyethylene, irrespective of head size. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cambrian stem-group annelids and a metameric origin of the annelid head.

    PubMed

    Parry, Luke; Vinther, Jakob; Edgecombe, Gregory D

    2015-10-01

    The oldest fossil annelids come from the Early Cambrian Sirius Passet and Guanshan biotas and Middle Cambrian Burgess Shale. While these are among the best preserved polychaete fossils, their relationship to living taxa is contentious, having been interpreted either as members of extant clades or as a grade outside the crown group. New morphological observations from five Cambrian species include the oldest polychaete with head appendages, a new specimen of Pygocirrus from Sirius Passet, and an undescribed form from the Burgess Shale. We propose that the palps of Canadia are on an anterior segment bearing neuropodia and that the head of Phragmochaeta is formed of a segment bearing biramous parapodia and chaetae. The unusual anatomy of these taxa suggests that the head is not differentiated into a prostomium and peristomium, that palps are derived from a modified parapodium and that the annelid head was originally a parapodium-bearing segment. Canadia, Phragmochaeta and the Marble Canyon annelid share the presence of protective notochaetae, interpreted as a primitive character state subsequently lost in Pygocirrus and Burgessochaeta, in which the head is clearly differentiated from the trunk. © 2015 The Authors.

  6. Assessing Sensorimotor Function Following ISS with Computerized Dynamic Posturography.

    PubMed

    Wood, Scott J; Paloski, William H; Clark, Jonathan B

    2015-12-01

    Postflight postural ataxia reflects both the control strategies adopted for movement in microgravity and the direct effects of deconditioning. Computerized dynamic posturography (CDP) has been used during the first decade of the International Space Station (ISS) expeditions to quantify the initial postflight decrements and recovery of postural stability. The CDP data were obtained on 37 crewmembers as part of their pre- and postflight medical examinations. Sensory organization tests evaluated the ability to make effective use of (or suppress inappropriate) visual, vestibular, and somatosensory information for balance control. This report focuses on eyes closed conditions with either a fixed or sway-referenced base of support, with the head erect or during pitch-head tilts (± 20° at 0.33 Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Motor-control tests were also used to evaluate a crewmember's ability to automatically recover from unexpected support-surface perturbations. The standard Romberg condition was the least sensitive. Dynamic head tilts led to increased incidence of falls and revealed significantly longer recovery than head-erect conditions. Improvements in postflight postural performance during the later expeditions may be attributable to higher preflight baselines and/or advanced exercise capabilities aboard the ISS. The diagnostic assessment of postural instability is more pronounced during unstable-support conditions requiring active head movements. In addition to supporting return-to-duty decisions by flight surgeons, the CDP provides a standardized sensorimotor measure that can be used to evaluate the effectiveness of countermeasures designed to either minimize deconditioning on orbit or promote reconditioning upon return to Earth.

  7. The sinonasal communication in the horse: examinations using computerized three-dimensional reformatted renderings of computed-tomography datasets

    PubMed Central

    2014-01-01

    Background Sinusitis is a common disease in the horse. In human medicine it is described, that obstruction of the sinonasal communication plays a major role in the development of sinusitis. To get spatial sense of the equine specific communication ways between the nasal cavity and the paranasal sinuses, heads of 19 horses, aged 2 to 26 years, were analyzed using three-dimensional (3D) reformatted renderings of CT-datasets. Three-dimensional models were generated following manual and semi-automated segmentation. Before segmentation, the two-dimensional (2D) CT-images were verified against corresponding frozen sections of cadaveric heads. Results Three-dimensional analysis of the paranasal sinuses showed the bilateral existence of seven sinus compartments: rostral maxillary sinus, ventral conchal sinus, caudal maxillary sinus, dorsal conchal sinus, frontal sinus, sphenopalatine sinus and middle conchal sinus. The maxillary septum divides these seven compartments into two sinus systems: a rostral paranasal sinus system composed of the rostral maxillary sinus and the ventral conchal sinus and a caudal paranasal sinus system which comprises all other sinuses. The generated 3D models revealed a typically configuration of the sinonasal communication ways. The sinonasal communication started within the middle nasal meatus at the nasomaxillary aperture (Apertura nasomaxillaris), which opens in a common sinonasal channel (Canalis sinunasalis communis). This common sinonasal channel ramifies into a rostral sinonasal channel (Canalis sinunasalis rostralis) and a caudo-lateral sinonasal channel (Canalis sinunasalis caudalis). The rostral sinonasal channel ventilated the rostral paranasal sinus system, the caudo-lateral sinonasal channel opened into the caudal paranasal sinus system. The rostral sinonasal channel was connected to the rostral paranasal sinuses in various ways. Whereas, the caudal channel showed less anatomical variations and was in all cases connected to the caudal maxillary sinus. Volumetric measurements of the sinonasal channels showed no statistically significant differences (P <0.05) between the right and left side of the head. Conclusions Under physiologic conditions both paranasal sinus systems are connected to the nasal cavity by equine specific sinonasal channels. To resolve sinus disease it is aimed to maintain or even reconstruct the normal anatomy of the sinonasal communication by surgical intervention. Therefore, the presented 3D analyses may provide a useful basis. PMID:24646003

  8. Neural Markers Reveal a One-Segmented Head in Tardigrades (Water Bears)

    PubMed Central

    Mayer, Georg; Kauschke, Susann; Rüdiger, Jan; Stevenson, Paul A.

    2013-01-01

    Background While recent neuroanatomical and gene expression studies have clarified the alignment of cephalic segments in arthropods and onychophorans, the identity of head segments in tardigrades remains controversial. In particular, it is unclear whether the tardigrade head and its enclosed brain comprises one, or several segments, or a non-segmental structure. To clarify this, we applied a variety of histochemical and immunocytochemical markers to specimens of the tardigrade Macrobiotus cf. harmsworthi and the onychophoran Euperipatoides rowelli. Methodology/Principal Findings Our immunolabelling against serotonin, FMRFamide and α-tubulin reveals that the tardigrade brain is a dorsal, bilaterally symmetric structure that resembles the brain of onychophorans and arthropods rather than a circumoesophageal ring typical of cycloneuralians (nematodes and allies). A suboesophageal ganglion is clearly lacking. Our data further reveal a hitherto unknown, unpaired stomatogastric ganglion in Macrobiotus cf. harmsworthi, which innervates the ectodermal oesophagus and the endodermal midgut and is associated with the second leg-bearing segment. In contrast, the oesophagus of the onychophoran E. rowelli possesses no immunoreactive neurons, whereas scattered bipolar, serotonin-like immunoreactive cell bodies are found in the midgut wall. Furthermore, our results show that the onychophoran pharynx is innervated by a medullary loop nerve accompanied by monopolar, serotonin-like immunoreactive cell bodies. Conclusions/Significance A comparison of the nervous system innervating the foregut and midgut structures in tardigrades and onychophorans to that of arthropods indicates that the stomatogastric ganglion is a potential synapomorphy of Tardigrada and Arthropoda. Its association with the second leg-bearing segment in tardigrades suggests that the second trunk ganglion is a homologue of the arthropod tritocerebrum, whereas the first ganglion corresponds to the deutocerebrum. We therefore conclude that the tardigrade brain consists of a single segmental region corresponding to the arthropod protocerebrum and, accordingly, that the tardigrade head is a non-composite, one-segmented structure. PMID:23516602

  9. Homeotic genes and the arthropod head: Expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects

    PubMed Central

    Abzhanov, Arhat; Kaufman, Thomas C.

    1999-01-01

    cDNA fragments of the homologues of the Drosophila head homeotic genes labial (lab), proboscipedia (pb), and Deformed (Dfd) have been isolated from the crustacean Porcellio scaber. Because the accumulation domains of the head homeotic complex (Hox) genes had not been previously reported for crustaceans, we studied the expression patterns of these genes in P. scaber embryos by using in situ hybridization. The P. scaber lab homologue is expressed in the developing second antennal segment and its appendages. This expression domain in crustaceans and in the homologous intercalary segment of insects suggests that the lab gene specified this metamere in the last common ancestor of these two groups. The expression domain of the P. scaber pb gene is in the posterior part of the second antennal segment. This domain, in contrast to that in insects, is colinear with the domains of other head genes in P. scaber, and it differs from the insect pb gene expression domain in the posterior mouthparts, suggesting that the insect and crustacean patterns evolved independently from a broader ancestral domain similar to that found in modern chelicerates. P. scaber Dfd is expressed in the mandibular segment and paragnaths (a pair of ventral mouthpart structures associated with the stomodeum) and differs from insects, where expression is in the mandibular and maxillary segments. Thus, like pb, Dfd shows a divergent Hox gene deployment. We conclude that homologous structures of the mandibulate head display striking differences in their underlying developmental programs related to Hox gene expression. PMID:10468590

  10. What is a segment?

    PubMed

    Hannibal, Roberta L; Patel, Nipam H

    2013-12-17

    Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that 'segmentation' be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures.

  11. Development of head and trunk mesoderm in the dogfish, Scyliorhinus torazame: I. Embryology and morphology of the head cavities and related structures.

    PubMed

    Adachi, Noritaka; Kuratani, Shigeru

    2012-01-01

    Vertebrate head segmentation has attracted the attention of comparative and evolutionary morphologists for centuries, given its importance for understanding the developmental body plan of vertebrates and its evolutionary origin. In particular, the segmentation of the mesoderm is central to the problem. The shark embryo has provided a canonical morphological scheme of the head, with its epithelialized coelomic cavities (head cavities), which have often been regarded as head somites. To understand the evolutionary significance of the head cavities, the embryonic development of the mesoderm was investigated at the morphological and histological levels in the shark, Scyliorhinus torazame. Unlike somites and some enterocoelic mesodermal components in other vertebrates, the head cavities in S. torazame appeared as irregular cyst(s) in the originally unsegmented mesenchymal head mesoderm, and not via segmentation of an undivided coelom. The mandibular cavity appeared first in the paraxial part of the mandibular mesoderm, followed by the hyoid cavity, and the premandibular cavity was the last to form. The prechordal plate was recognized as a rhomboid roof of the preoral gut, continuous with the rostral notochord, and was divided anteroposteriorly into two parts by the growth of the hypothalamic primordium. Of those, the posterior part was likely to differentiate into the premandibular cavity, and the anterior part disappeared later. The head cavities and somites in the trunk exhibited significant differences, in terms of histological appearance and timing of differentiation. The mandibular cavity developed a rostral process secondarily; its homology to the anterior cavity reported in some elasmobranch embryos is discussed. © 2012 Wiley Periodicals, Inc.

  12. New auto-segment method of cerebral hemorrhage

    NASA Astrophysics Data System (ADS)

    Wang, Weijiang; Shen, Tingzhi; Dang, Hua

    2007-12-01

    A novel method for Computerized tomography (CT) cerebral hemorrhage (CH) image automatic segmentation is presented in the paper, which uses expert system that models human knowledge about the CH automatic segmentation problem. The algorithm adopts a series of special steps and extracts some easy ignored CH features which can be found by statistic results of mass real CH images, such as region area, region CT number, region smoothness and some statistic CH region relationship. And a seven steps' extracting mechanism will ensure these CH features can be got correctly and efficiently. By using these CH features, a decision tree which models the human knowledge about the CH automatic segmentation problem has been built and it will ensure the rationality and accuracy of the algorithm. Finally some experiments has been taken to verify the correctness and reasonable of the automatic segmentation, and the good correct ratio and fast speed make it possible to be widely applied into practice.

  13. Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation

    PubMed Central

    Yu, Kai; Shi, Fei; Gao, Enting; Zhu, Weifang; Chen, Haoyu; Chen, Xinjian

    2018-01-01

    Optic nerve head (ONH) is a crucial region for glaucoma detection and tracking based on spectral domain optical coherence tomography (SD-OCT) images. In this region, the existence of a “hole” structure makes retinal layer segmentation and analysis very challenging. To improve retinal layer segmentation, we propose a 3D method for ONH centered SD-OCT image segmentation, which is based on a modified graph search algorithm with a shared-hole and locally adaptive constraints. With the proposed method, both the optic disc boundary and nine retinal surfaces can be accurately segmented in SD-OCT images. An overall mean unsigned border positioning error of 7.27 ± 5.40 µm was achieved for layer segmentation, and a mean Dice coefficient of 0.925 ± 0.03 was achieved for optic disc region detection. PMID:29541497

  14. What is a segment?

    PubMed Central

    2013-01-01

    Animals have been described as segmented for more than 2,000 years, yet a precise definition of segmentation remains elusive. Here we give the history of the definition of segmentation, followed by a discussion on current controversies in defining a segment. While there is a general consensus that segmentation involves the repetition of units along the anterior-posterior (a-p) axis, long-running debates exist over whether a segment can be composed of only one tissue layer, whether the most anterior region of the arthropod head is considered segmented, and whether and how the vertebrate head is segmented. Additionally, we discuss whether a segment can be composed of a single cell in a column of cells, or a single row of cells within a grid of cells. We suggest that ‘segmentation’ be used in its more general sense, the repetition of units with a-p polarity along the a-p axis, to prevent artificial classification of animals. We further suggest that this general definition be combined with an exact description of what is being studied, as well as a clearly stated hypothesis concerning the specific nature of the potential homology of structures. These suggestions should facilitate dialogue among scientists who study vastly differing segmental structures. PMID:24345042

  15. Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach.

    PubMed

    Qazi, Arish A; Pekar, Vladimir; Kim, John; Xie, Jason; Breen, Stephen L; Jaffray, David A

    2011-11-01

    Intensity modulated radiation therapy (IMRT) allows greater control over dose distribution, which leads to a decrease in radiation related toxicity. IMRT, however, requires precise and accurate delineation of the organs at risk and target volumes. Manual delineation is tedious and suffers from both interobserver and intraobserver variability. State of the art auto-segmentation methods are either atlas-based, model-based or hybrid however, robust fully automated segmentation is often difficult due to the insufficient discriminative information provided by standard medical imaging modalities for certain tissue types. In this paper, the authors present a fully automated hybrid approach which combines deformable registration with the model-based approach to accurately segment normal and target tissues from head and neck CT images. The segmentation process starts by using an average atlas to reliably identify salient landmarks in the patient image. The relationship between these landmarks and the reference dataset serves to guide a deformable registration algorithm, which allows for a close initialization of a set of organ-specific deformable models in the patient image, ensuring their robust adaptation to the boundaries of the structures. Finally, the models are automatically fine adjusted by our boundary refinement approach which attempts to model the uncertainty in model adaptation using a probabilistic mask. This uncertainty is subsequently resolved by voxel classification based on local low-level organ-specific features. To quantitatively evaluate the method, they auto-segment several organs at risk and target tissues from 10 head and neck CT images. They compare the segmentations to the manual delineations outlined by the expert. The evaluation is carried out by estimating two common quantitative measures on 10 datasets: volume overlap fraction or the Dice similarity coefficient (DSC), and a geometrical metric, the median symmetric Hausdorff distance (HD), which is evaluated slice-wise. They achieve an average overlap of 93% for the mandible, 91% for the brainstem, 83% for the parotids, 83% for the submandibular glands, and 74% for the lymph node levels. Our automated segmentation framework is able to segment anatomy in the head and neck region with high accuracy within a clinically-acceptable segmentation time.

  16. A Computerized Architecture Slide Classification for a Small University Collection.

    ERIC Educational Resources Information Center

    Powell, Richard K.

    This paper briefly outlines the process used to organize, classify, and make accessible a collection of architecture slides in the Architecture Resource Center at Andrews University in Michigan. The classification system includes the use of Art and Architecture Thesaurus subject headings, the ERIC (Educational Resources Information Center) concept…

  17. Differentiation of benign from malignant cervical lymph nodes in patients with head and neck cancer using PET/CT imaging.

    PubMed

    Payabvash, Seyedmehdi; Meric, Kaan; Cayci, Zuzan

    2016-01-01

    To differentiate malignant from benign cervical lymph nodes in patients with head/neck cancer. In this retrospective study, 39 patients with primary head/neck cancer who underwent Positron Emission Tomography (PET)/Computerized Tomography (CT) and image-guided lymph node biopsy were included. Overall, 23 (59%) patients had biopsy-proven malignant cervical lymphadenopathy. Malignant lymph nodes had higher maximum standardized uptake (SUV-max) value (P<.001) and short-axis diameter (P=.015) compared to benign nodes. An SUV-max of ≥2.5 was 100% sensitive, and an SUV-max ≥5.5 was 100% specific for malignant lymphadenopathy. The PET/CT SUV-max value can help with differentiation of malignant cervical lymph nodes in patients with head/neck cancer. Published by Elsevier Inc.

  18. SU-E-T-605: Performance Evaluation of MLC Leaf-Sequencing Algorithms in Head-And-Neck IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, J; Lin, H; Chow, J

    2015-06-15

    Purpose: To investigate the efficiency of three multileaf collimator (MLC) leaf-sequencing algorithms proposed by Galvin et al, Chen et al and Siochi et al using external beam treatment plans for head-and-neck intensity modulated radiation therapy (IMRT). Methods: IMRT plans for head-and-neck were created using the CORVUS treatment planning system. The plans were optimized and the fluence maps for all photon beams determined. Three different MLC leaf-sequencing algorithms based on Galvin et al, Chen et al and Siochi et al were used to calculate the final photon segmental fields and their monitor units in delivery. For comparison purpose, the maximum intensitymore » of fluence map was kept constant in different plans. The number of beam segments and total number of monitor units were calculated for the three algorithms. Results: From results of number of beam segments and total number of monitor units, we found that algorithm of Galvin et al had the largest number of monitor unit which was about 70% larger than the other two algorithms. Moreover, both algorithms of Galvin et al and Siochi et al have relatively lower number of beam segment compared to Chen et al. Although values of number of beam segment and total number of monitor unit calculated by different algorithms varied with the head-and-neck plans, it can be seen that algorithms of Galvin et al and Siochi et al performed well with a lower number of beam segment, though algorithm of Galvin et al had a larger total number of monitor units than Siochi et al. Conclusion: Although performance of the leaf-sequencing algorithm varied with different IMRT plans having different fluence maps, an evaluation is possible based on the calculated number of beam segment and monitor unit. In this study, algorithm by Siochi et al was found to be more efficient in the head-and-neck IMRT. The Project Sponsored by the Fundamental Research Funds for the Central Universities (J2014HGXJ0094) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.« less

  19. Subchondral cysts (geodes) in arthritic disorders: pathologic and radiographic appearance of the hip joint.

    PubMed

    Resnick, D; Niwayama, G; Coutts, R D

    1977-05-01

    A comprehensive study of femoral heads of patients and cadavers with osteoarthritis, rheumatoid arthritis, osteonecrosis, and calcium pyrophosphate dihydrate deposition disease allows insight into the radiographic and pathologic appearance of subchondral radiolucencies in these disorders. The term geode, rather than cyst or pseudocyst, may be a more appropriate decription of these lesions. In osteoarthritis, goedes occur on the pressure segment of the femoral head in association with loss of articular space; in rheumatoid arthritis, they are initially noted at the chondro-osseous junction and subsequently involve the entire femoral head. In osteonecrosis, geodes appear in the necrotic segment of the femoral head. In calcium pyrophosphate deposition disease, geodes resemble those in osteoarthritis but are larger, more numerous, and more widespread.

  20. Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy.

    PubMed

    Yang, Xiaofeng; Wu, Ning; Cheng, Guanghui; Zhou, Zhengyang; Yu, David S; Beitler, Jonathan J; Curran, Walter J; Liu, Tian

    2014-12-01

    To develop an automated magnetic resonance imaging (MRI) parotid segmentation method to monitor radiation-induced parotid gland changes in patients after head and neck radiation therapy (RT). The proposed method combines the atlas registration method, which captures the global variation of anatomy, with a machine learning technology, which captures the local statistical features, to automatically segment the parotid glands from the MRIs. The segmentation method consists of 3 major steps. First, an atlas (pre-RT MRI and manually contoured parotid gland mask) is built for each patient. A hybrid deformable image registration is used to map the pre-RT MRI to the post-RT MRI, and the transformation is applied to the pre-RT parotid volume. Second, the kernel support vector machine (SVM) is trained with the subject-specific atlas pair consisting of multiple features (intensity, gradient, and others) from the aligned pre-RT MRI and the transformed parotid volume. Third, the well-trained kernel SVM is used to differentiate the parotid from surrounding tissues in the post-RT MRIs by statistically matching multiple texture features. A longitudinal study of 15 patients undergoing head and neck RT was conducted: baseline MRI was acquired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, and 12-month follow-up examinations. The resulting segmentations were compared with the physicians' manual contours. Successful parotid segmentation was achieved for all 15 patients (42 post-RT MRIs). The average percentage of volume differences between the automated segmentations and those of the physicians' manual contours were 7.98% for the left parotid and 8.12% for the right parotid. The average volume overlap was 91.1% ± 1.6% for the left parotid and 90.5% ± 2.4% for the right parotid. The parotid gland volume reduction at follow-up was 25% at 3 months, 27% at 6 months, and 16% at 12 months. We have validated our automated parotid segmentation algorithm in a longitudinal study. This segmentation method may be useful in future studies to address radiation-induced xerostomia in head and neck radiation therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Optimal reinforcement of training datasets in semi-supervised landmark-based segmentation

    NASA Astrophysics Data System (ADS)

    Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2015-03-01

    During the last couple of decades, the development of computerized image segmentation shifted from unsupervised to supervised methods, which made segmentation results more accurate and robust. However, the main disadvantage of supervised segmentation is a need for manual image annotation that is time-consuming and subjected to human error. To reduce the need for manual annotation, we propose a novel learning approach for training dataset reinforcement in the area of landmark-based segmentation, where newly detected landmarks are optimally combined with reference landmarks from the training dataset and therefore enriches the training process. The approach is formulated as a nonlinear optimization problem, where the solution is a vector of weighting factors that measures how reliable are the detected landmarks. The detected landmarks that are found to be more reliable are included into the training procedure with higher weighting factors, whereas the detected landmarks that are found to be less reliable are included with lower weighting factors. The approach is integrated into the landmark-based game-theoretic segmentation framework and validated against the problem of lung field segmentation from chest radiographs.

  2. Image analysis for skeletal evaluation of carpal bones

    NASA Astrophysics Data System (ADS)

    Ko, Chien-Chuan; Mao, Chi-Wu; Lin, Chi-Jen; Sun, Yung-Nien

    1995-04-01

    The assessment of bone age is an important field to the pediatric radiology. It provides very important information for treatment and prediction of skeletal growth in a developing child. So far, various computerized algorithms for automatically assessing the skeletal growth have been reported. Most of these methods made attempt to analyze the phalangeal growth. The most fundamental step in these automatic measurement methods is the image segmentation that extracts bones from soft-tissue and background. These automatic segmentation methods of hand radiographs can roughly be categorized into two main approaches that are edge and region based methods. This paper presents a region-based carpal-bone segmentation approach. It is organized into four stages: contrast enhancement, moment-preserving thresholding, morphological processing, and region-growing labeling.

  3. Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization.

    PubMed

    Mahmood, Qaiser; Chodorowski, Artur; Mehnert, Andrew; Gellermann, Johanna; Persson, Mikael

    2015-08-01

    In this paper, we present and evaluate an automatic unsupervised segmentation method, hierarchical segmentation approach (HSA)-Bayesian-based adaptive mean shift (BAMS), for use in the construction of a patient-specific head conductivity model for electroencephalography (EEG) source localization. It is based on a HSA and BAMS for segmenting the tissues from multi-modal magnetic resonance (MR) head images. The evaluation of the proposed method was done both directly in terms of segmentation accuracy and indirectly in terms of source localization accuracy. The direct evaluation was performed relative to a commonly used reference method brain extraction tool (BET)-FMRIB's automated segmentation tool (FAST) and four variants of the HSA using both synthetic data and real data from ten subjects. The synthetic data includes multiple realizations of four different noise levels and several realizations of typical noise with a 20% bias field level. The Dice index and Hausdorff distance were used to measure the segmentation accuracy. The indirect evaluation was performed relative to the reference method BET-FAST using synthetic two-dimensional (2D) multimodal magnetic resonance (MR) data with 3% noise and synthetic EEG (generated for a prescribed source). The source localization accuracy was determined in terms of localization error and relative error of potential. The experimental results demonstrate the efficacy of HSA-BAMS, its robustness to noise and the bias field, and that it provides better segmentation accuracy than the reference method and variants of the HSA. They also show that it leads to a more accurate localization accuracy than the commonly used reference method and suggest that it has potential as a surrogate for expert manual segmentation for the EEG source localization problem.

  4. Method of fabricating a prestressed cast iron vessel

    DOEpatents

    Lampe, Robert F.

    1982-01-01

    A method of fabricating a prestressed cast iron vessel wherein double wall cast iron body segments each have an arcuate inner wall and a spaced apart substantially parallel outer wall with a plurality of radially extending webs interconnecting the inner wall and the outer wall, the bottom surface and the two exposed radial side surfaces of each body segment are machined and eight body segments are formed into a ring. The top surfaces and outer surfaces of the outer walls are machined and keyways are provided across the juncture of adjacent end walls of the body segments. A liner segment complementary in shape to a selected inner wall of one of the body segments is mounted to each of the body segments and again formed into a ring. The liner segments of each ring are welded to form unitary liner rings and thereafter the cast iron body segments are prestressed to complete the ring assembly. Ring assemblies are stacked to form the vessel and adjacent unitary liner rings are welded. A top head covers the top ring assembly to close the vessel and axially extending tendons retain the top and bottom heads in place under pressure.

  5. Bracing of the trunk and neck has a differential effect on head control during gait

    PubMed Central

    Russell, D. M.; Kelleran, K.; Walker, M. L.

    2015-01-01

    During gait, the trunk and neck are believed to play an important role in dissipating the transmission of forces from the ground to the head. This attenuation process is important to ensure head control is maintained. The aim of the present study was to assess the impact of externally restricting the motion of the trunk and/or neck segments on acceleration patterns of the upper body and head and related trunk muscle activity. Twelve healthy adults performed three walking trials on a flat, straight 65-m walkway, under four different bracing conditions: 1) control-no brace; 2) neck-braced; 3) trunk-braced; and 4) neck-trunk braced. Three-dimensional acceleration from the head, neck (C7) and lower trunk (L3) were collected, as was muscle activity from trunk. Results revealed that, when the neck and/or trunk were singularly braced, an overall decrease in the ability of the trunk to attenuate gait-related oscillations was observed, which led to increases in the amplitude of vertical acceleration for all segments. However, when the trunk and neck were braced together, acceleration amplitude across all segments decreased in line with increased attenuation from the neck to the head. Bracing was also reflected by increased activity in erector spinae, decreased abdominal muscle activity and lower trunk muscle coactivation. Overall, it would appear that the neuromuscular system of young, healthy individuals was able to maintain a consistent pattern of head acceleration, irrespective of the level of bracing, and that priority was placed over the control of vertical head accelerations during these gait tasks. PMID:26180113

  6. When a School Burns, Cool Heads and Quick Action Keep Education on Track.

    ERIC Educational Resources Information Center

    Parry, Robert; Burris, Carol

    1988-01-01

    A fire destroyed an elementary school in the East Rockaway (New York) school system. A substitute facility, furniture, and textbooks were secured and classes opened, missing only four school days. Future precautions include insurance to cover actual reconstruction costs, smoke detectors, and a computerized inventory system. (MLF)

  7. Vestibulospinal control of reflex and voluntary head movement

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Peterson, B. W. (Principal Investigator)

    2001-01-01

    Secondary canal-related vestibulospinal neurons respond to an externally applied movement of the head in the form of a firing rate modulation that encodes the angular velocity of the movement, and reflects in large part the input "head velocity in space" signal carried by the semicircular canal afferents. In addition to the head velocity signal, the vestibulospinal neurons can carry a more processed signal that includes eye position or eye velocity, or both (see Boyle on ref. list). To understand the control signals used by the central vestibular pathways in the generation of reflex head stabilization, such as the vestibulocollic reflex (VCR), and the maintenance of head posture, it is essential to record directly from identified vestibulospinal neurons projecting to the cervical spinal segments in the alert animal. The present report discusses two key features of the primate vestibulospinal system. First, the termination morphology of vestibulospinal axons in the cervical segments of the spinal cord is described to lay the structural basis of vestibulospinal control of head/neck posture and movement. And second, the head movement signal content carried by the same class of secondary vestibulospinal neurons during the actual execution of the VCR and during self-generated, or active, rapid head movements is presented.

  8. Knowledge translation of the American College of Emergency Physicians' clinical policy on syncope using computerized clinical decision support.

    PubMed

    Melnick, Edward R; Genes, Nicholas G; Chawla, Neal K; Akerman, Meredith; Baumlin, Kevin M; Jagoda, Andy

    2010-06-01

    To influence physician practice behavior after implementation of a computerized clinical decision support system (CDSS) based upon the recommendations from the 2007 ACEP Clinical Policy on Syncope. This was a pre-post intervention with a prospective cohort and retrospective controls. We conducted a medical chart review of consecutive adult patients with syncope. A computerized CDSS prompting physicians to explain their decision-making regarding imaging and admission in syncope patients based upon ACEP Clinical Policy recommendations was embedded into the emergency department information system (EDIS). The medical records of 410 consecutive adult patients presenting with syncope were reviewed prior to implementation, and 301 records were reviewed after implementation. Primary outcomes were physician practice behavior demonstrated by admission rate and rate of head computed tomography (CT) imaging before and after implementation. There was a significant difference in admission rate pre- and post-intervention (68.1% vs. 60.5% respectively, p = 0.036). There was no significant difference in the head CT imaging rate pre- and post-intervention (39.8% vs. 43.2%, p = 0.358). There were seven physicians who saw ten or more patients during the pre- and post-intervention. Subset analysis of these seven physicians' practice behavior revealed a slight significant difference in the admission rate pre- and post-intervention (74.3% vs. 63.9%, p = 0.0495) and no significant difference in the head CT scan rate pre- and post-intervention (42.9% vs. 45.4%, p = 0.660). The introduction of an evidence-based CDSS based upon ACEP Clinical Policy recommendations on syncope correlated with a change in physician practice behavior in an urban academic emergency department. This change suggests emergency medicine clinical practice guideline recommendations can be incorporated into the physician workflow of an EDIS to enhance the quality of practice.

  9. Evaluation of Learning Associated with Multiple Exposures to Computerized Dynamic Posturography

    NASA Technical Reports Server (NTRS)

    Dean, S. Lance; Paloski, William H.; Taylor, Laura C.; Vanya, Robert D.; Feiveson, Alan H.; Wood, Scott J.

    2009-01-01

    Computerized dynamic posturography has been used to quantitatively assess the time course of functional sensorimotor recovery after exposure to spaceflight or to groundbased analogs such as head-down bed rest. An assessment of balance recovery may be confounded as subjects develop new strategies through repeated exposures to test paradigms. The purpose of this control study was to characterize the learning effects of sensory organization and motor control tests across multiple sessions. METHODS: Twenty-eight healthy subjects were tested over four sessions. To examine the effects of between-session interval, subjects were assigned to one of four groups in which the interval between the 1 st and 2nd sessions was 7 (+/- 1) days, 14 (+/-1) days, 28 (+/-2) days, or 56 (+/-3) days. The interval between remaining sessions was 28 (+/-4) days. Peak-to-peak anterior-posterior sway was measured during standard Sensory Organization Tests (SOTs) using either fixed or unstable sway-referenced support with eyes open, eyes closed, or sway-referenced vision. Sway was also measured during modified SOTs using eyes-closed conditions with either static or dynamic head tilts. Postural recovery to unexpected support surface perturbations (translations or rotations) was measured during Motor Control Tests. The test order was block randomized across subjects. RESULTS: The learning effects varied with test condition. There were no measurable differences with a stable support surface. The more challenging conditions (unstable support surface with and without head tilts) led to greater differences and took more trials to stabilize. The effect of time interval between the first two sessions was negligible across conditions. Evidence suggested that learning carried across similar conditions (such as unstable support SOTs). DISCUSSION: Familiarization session and/or trials are recommended to minimize learning effects when characterizing functional recovery after exposure to altered sensory environments. The number of practice trials required depends on task difficulty and similarity across conditions. Learning statement: This presentation will review the learning effects of computerized d

  10. An Anatomical Study of Maxillary-Zygomatic Complex Using Three-Dimensional Computerized Tomography-Based Zygomatic Implantation

    PubMed Central

    Zhao, Shijie; Liu, Hui; Sun, Zhipeng; Wang, Jianwei

    2017-01-01

    Objective To obtain anatomical data of maxillary-zygomatic complex based on simulating the zygomatic implantation using cadaver heads and three-dimensional computerized tomography (3D-CT). Methods Simulating zygomatic implantation was performed using seven cadaver heads and 3D-CT images from forty-eight adults. After measuring the maxillary-zygomatic complex, we analyzed the position between the implantation path and the maxillary sinus cavity as well as the distance between the implantation path and the zygomatic nerve. Results The distance from the starting point to the endpoint of the implant was 56.85 ± 5.35 mm in cadaver heads and 58.15 ± 7.37 mm in 3D-CT images. For the most common implantation path (80.20%), the implant went through the maxillary sinus cavity completely. The projecting points of the implant axis (IA) on the surface of zygoma were mainly located in the region of frontal process of zygomatic bone close to the lateral orbital wall. The distances between IA and zygomatic nerve in 53 sides were shorter than 2 mm. Conclusion The simulating zygomatic implantation on cadaver skulls and 3D-CT imaging provided useful anatomical data of the maxillary-zygomatic complex. It is necessary to take care to avoid the zygomatic nerve injury during implantation, because it frequently appears on the route of implantation. PMID:29376077

  11. An anencephalic monocephalus diprosopus "headed twin": postmortem and CT findings with emphasis on the cranial bones.

    PubMed

    Ekinci, Gazanfer; Balci, Sevim; Erzen, Canan

    2005-01-01

    Monocephalus diprosopus is a form of conjoined twinning characterized by a single body, one unusual head and two faces or a spectrum of duplication of the craniofacial structures. Such cases have been mainly described according to postmortem pathologic examination. This presented case is a 26-week-stillborn female fetus, with unusual facial appearance with four eyes, two mouths, two noses, two ears and a defective cranial vault. To our knowledge, a detailed computerized tomography (CT) examination of the aberrant facial and cranial bones of such a case has not been reported to date. In this reported case, we present an anencephalic monocephalus diprosopus "headed twin", and describe the CT findings with emphasis on the cranial bones.

  12. Effects of spine flexion and erector spinae maximal force on vertical squat jump height: a computational simulation study.

    PubMed

    Blache, Yoann; Monteil, Karine

    2015-03-01

    The purpose of this study was to evaluate the single and combined effects of initial spine flexion and maximal isometric force of the erector spinae on maximal vertical jump height during maximal squat jumping. Seven initial flexions of the 'thorax-head-arm' segment (between 20.1° and 71.6°) and five maximal isometric forces of the erector spinae (between 5600 and 8600 N) were tested. Thus, 35 squat jumps were simulated using a 2D simulation model of the musculoskeletal system. Vertical jump height varied at most about 0.094 and 0.021 m when the initial flexion of the 'thorax-head-arm' segment and the maximal force of the erector spinae were, respectively, maximal. These results were explained for the most part by the variation of total muscle work. The latter was mainly influenced by the work produced by the erector spinae which increased at most about 57 and 110 J when the initial flexion of the 'thorax-head-arm' segment and the maximal force of the erector spinae were, respectively, maximal. It was concluded that the increase in the initial flexion of the 'thorax-head-arm' segment and in the maximal isometric force of the erector spinae enables an increase in maximal vertical jump height during maximal squat jumping.

  13. A Computerized English-Spanish Correlation Index to Five Biomedical Library Classification Schemes Based on MeSH*

    PubMed Central

    Muench, Eugene V.

    1971-01-01

    A computerized English/Spanish correlation index to five biomedical library classification schemes and a computerized English/Spanish, Spanish/English listings of MeSH are described. The index was accomplished by supplying appropriate classification numbers of five classification schemes (National Library of Medicine; Library of Congress; Dewey Decimal; Cunningham; Boston Medical) to MeSH and a Spanish translation of MeSH The data were keypunched, merged on magnetic tape, and sorted in a computer alphabetically by English and Spanish subject headings and sequentially by classification number. Some benefits and uses of the index are: a complete index to classification schemes based on MeSH terms; a tool for conversion of classification numbers when reclassifying collections; a Spanish index and a crude Spanish translation of five classification schemes; a data base for future applications, e.g., automatic classification. Other classification schemes, such as the UDC, and translations of MeSH into other languages can be added. PMID:5172471

  14. Automatic partitioning of head CTA for enabling segmentation

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Srikanth; Mullick, Rakesh; Mallya, Yogish; Kamath, Vidya; Nagaraj, Nithin

    2004-05-01

    Radiologists perform a CT Angiography procedure to examine vascular structures and associated pathologies such as aneurysms. Volume rendering is used to exploit volumetric capabilities of CT that provides complete interactive 3-D visualization. However, bone forms an occluding structure and must be segmented out. The anatomical complexity of the head creates a major challenge in the segmentation of bone and vessel. An analysis of the head volume reveals varying spatial relationships between vessel and bone that can be separated into three sub-volumes: "proximal", "middle", and "distal". The "proximal" and "distal" sub-volumes contain good spatial separation between bone and vessel (carotid referenced here). Bone and vessel appear contiguous in the "middle" partition that remains the most challenging region for segmentation. The partition algorithm is used to automatically identify these partition locations so that different segmentation methods can be developed for each sub-volume. The partition locations are computed using bone, image entropy, and sinus profiles along with a rule-based method. The algorithm is validated on 21 cases (varying volume sizes, resolution, clinical sites, pathologies) using ground truth identified visually. The algorithm is also computationally efficient, processing a 500+ slice volume in 6 seconds (an impressive 0.01 seconds / slice) that makes it an attractive algorithm for pre-processing large volumes. The partition algorithm is integrated into the segmentation workflow. Fast and simple algorithms are implemented for processing the "proximal" and "distal" partitions. Complex methods are restricted to only the "middle" partition. The partitionenabled segmentation has been successfully tested and results are shown from multiple cases.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J; Balter, P; Court, L

    Purpose: To evaluate the performance of commercially available automatic segmentation tools built into treatment planning systems (TPS) in terms of their segmentation accuracy and flexibility in customization. Methods: Twelve head-and-neck cancer patients and twelve thoracic cancer patients were retrospectively selected to benchmark the model-based segmentation (MBS) and atlas-based segmentation (ABS) in RayStation TPS and the Smart Probabilistic Image Contouring Engine (SPICE) in Pinnacle TPS. Multi-atlas contouring service (MACS) that was developed in-house as a plug-in of Pinnacle TPS was evaluated as well. Manual contours used in clinic were reviewed and modified for consistency and served as ground truth for themore » evaluation. Head-and-neck evaluation included six regions of interest (ROIs): left and right parotid glands, brainstem, spinal cord, mandible, and submandibular glands. Thoracic evaluation includes seven ROIs: left and right lungs, spinal cord, heart, esophagus, and left and right brachial plexus. Auto-segmented contours were compared with the manual contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: In head- and-neck evaluation, only mandible has a high accuracy in all segmentations (DSC>85%); SPICE achieved DSC>70% for parotid glands; MACS achieved this for both parotid glands and submandibular glands; and RayStation ABS achieved this for spinal cord. In thoracic evaluation, SPICE achieved the best in lung and heart segmentation, while MACS achieved the best for all other structures. The less distinguishable structures on CT images, such as brainstem, spinal cord, parotid glands, submandibular glands, esophagus, and brachial plexus, showed great variability in different segmentation tools (mostly DSC<70% and MSD>3mm). The template for RayStation ABS can be easily customized by users, while RayStation MBS and SPICE rely on the vendors to provide the templates/models. Conclusion: Great variability was observed in different segmentation tools applied to different structures. These commercially-available segmentation tools should be carefully evaluated before clinical use.« less

  16. Fulminant clostridium difficile colitis: comparing computed tomography with histopathology: are they concordant?

    PubMed

    Felder, Seth I; Larson, Brent; Balzer, Bonnie; Wachsman, Ashley; Haker, Katherine; Fleshner, Phillip; Annamalai, Alagappan; Margulies, Daniel R

    2014-10-01

    A Total abdominal colectomy (TAC) is recommended for fulminant Clostridium difficile colitis (FCDC) because intraoperative assessment of diseased segments is inaccurate. To determine whether computerized tomography (CT) provides an accurate assessment of disease, we examined the concordance between CT and histopathologic colitis distribution in patients undergoing TAC for FCDC. The ileocolon was divided into seven distinct segments. Of 20 patients meeting criteria, the median interval between preoperative CT and TAC was 1.5 days (range, 0 to 23 days), and mortality was 65 per cent. The CT distribution of colitis was pancolitis in 12 patients and segmental in eight. Nine of the 12 patients with CT pancolitis had histologic pancolitis (75% concordance). Four of the eight patients with CT-diagnosed segmental disease had histologic segmental disease (50% concordance). For patients with FCDC, the distribution of colitis on CT agrees with the histopathologic extent of disease in the majority of patients. However, discordance between CT and histologic extent of disease was present in 25 to 50 per cent of patients. Therefore, the recommendation for TAC rather than segmental resection for FCDC remains justified.

  17. Automated tumor volumetry using computer-aided image segmentation.

    PubMed

    Gaonkar, Bilwaj; Macyszyn, Luke; Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A; Ali, Zarina S; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M; Davatzikos, Christos

    2015-05-01

    Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0-5 rating scale where 5 indicated perfect segmentation. The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  18. Automated Tumor Volumetry Using Computer-Aided Image Segmentation

    PubMed Central

    Bilello, Michel; Sadaghiani, Mohammed Salehi; Akbari, Hamed; Atthiah, Mark A.; Ali, Zarina S.; Da, Xiao; Zhan, Yiqang; O'Rourke, Donald; Grady, Sean M.; Davatzikos, Christos

    2015-01-01

    Rationale and Objectives Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. Materials and Methods A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. Results Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0–5 rating scale where 5 indicated perfect segmentation. Conclusions The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation. PMID:25770633

  19. High School Concussions in the 2008–2009 Academic Year

    PubMed Central

    Meehan, William P.; d’Hemecourt, Pierre; Comstock, R. Dawn

    2011-01-01

    Background An estimated 136 000 concussions occur per academic year in high schools alone. The effects of repetitive concussions and the potential for catastrophic injury have made concussion an injury of significant concern for young athletes. Purpose The objective of this study was to describe the mechanism of injury, symptoms, and management of sport-related concussions using the High School Reporting Information Online (HS RIO) surveillance system. Study Design Descriptive epidemiology study. Methods All concussions recorded by HS RIO during the 2008–2009 academic year were included. Analyses were performed using SPSS software. Chi-square analysis was performed for all categorical variables. Statistical significance was considered for P < .05. Results A total of 544 concussions were recorded. The most common mechanism (76.2%) was contact with another player, usually a head-to-head collision (52.7%). Headache was experienced in 93.4%; 4.6% lost consciousness. Most (83.4%) had resolution of their symptoms within 1 week. Symptoms lasted longer than 1 month in 1.5%. Computerized neuropsychological testing was used in 25.7% of concussions. When neuropsychological testing was used, athletes were less likely to return to play within 1 week than those for whom it was not used (13.6% vs 32.9%; P < .01). Athletes who had neuropsychological testing appeared less likely to return to play on the same day (0.8% vs 4.2%; P = .056). A greater proportion of injured, nonfootball athletes had computerized neuropsychological testing than injured football players (23% vs 32%; P = .02) Conclusion When computerized neuropsychological testing is used, high school athletes are less likely to be returned to play within 1 week of their injury. Concussed football players are less likely to have computerized neuropsychological testing than those participating in other sports. Loss of consciousness is relatively uncommon among high school athletes who sustain a sport-related concussion. The most common mechanism is contact with another player. Some athletes (1.5%) report symptoms lasting longer than 1 month. PMID:20716683

  20. What Role Do Annelid Neoblasts Play? A Comparison of the Regeneration Patterns in a Neoblast-Bearing and a Neoblast-Lacking Enchytraeid Oligochaete

    PubMed Central

    Myohara, Maroko

    2012-01-01

    The term ‘neoblast’ was originally coined for a particular type of cell that had been observed during annelid regeneration, but is now used to describe the pluripotent/totipotent stem cells that are indispensable for planarian regeneration. Despite having the same name, however, planarian and annelid neoblasts are morphologically and functionally distinct, and many annelid species that lack neoblasts can nonetheless substantially regenerate. To further elucidate the functions of the annelid neoblasts, a comparison was made between the regeneration patterns of two enchytraeid oligochaetes, Enchytraeus japonensis and Enchytraeus buchholzi, which possess and lack neoblasts, respectively. In E. japonensis, which can reproduce asexually by fragmentation and subsequent regeneration, neoblasts are present in all segments except for the eight anterior-most segments including the seven head-specific segments, and all body fragments containing neoblasts can regenerate a complete head and a complete tail, irrespective of the region of the body from which they were originally derived. In E. japonensis, therefore, no antero-posterior gradient of regeneration ability exists in the trunk region. However, when amputation was carried out within the head region, where neoblasts are absent, the number of regenerated segments was found to be dependent on the level of amputation along the body axis. In E. buchholzi, which reproduces only sexually and lacks neoblasts in all segments, complete heads were never regenerated and incomplete (hypomeric) heads could be regenerated only from the anterior region of the body. Such an antero-posterior gradient of regeneration ability was observed for both the anterior and posterior regeneration in the whole body of E. buchholzi. These results indicate that the presence of neoblasts correlates with the absence of an antero-posterior gradient of regeneration ability along the body axis, and suggest that the annelid neoblasts are more essential for efficient asexual reproduction than for the regeneration of missing body parts. PMID:22615975

  1. Automated Segmentation of the Parotid Gland Based on Atlas Registration and Machine Learning: A Longitudinal MRI Study in Head-and-Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofeng; Wu, Ning; Cheng, Guanghui

    Purpose: To develop an automated magnetic resonance imaging (MRI) parotid segmentation method to monitor radiation-induced parotid gland changes in patients after head and neck radiation therapy (RT). Methods and Materials: The proposed method combines the atlas registration method, which captures the global variation of anatomy, with a machine learning technology, which captures the local statistical features, to automatically segment the parotid glands from the MRIs. The segmentation method consists of 3 major steps. First, an atlas (pre-RT MRI and manually contoured parotid gland mask) is built for each patient. A hybrid deformable image registration is used to map the pre-RTmore » MRI to the post-RT MRI, and the transformation is applied to the pre-RT parotid volume. Second, the kernel support vector machine (SVM) is trained with the subject-specific atlas pair consisting of multiple features (intensity, gradient, and others) from the aligned pre-RT MRI and the transformed parotid volume. Third, the well-trained kernel SVM is used to differentiate the parotid from surrounding tissues in the post-RT MRIs by statistically matching multiple texture features. A longitudinal study of 15 patients undergoing head and neck RT was conducted: baseline MRI was acquired prior to RT, and the post-RT MRIs were acquired at 3-, 6-, and 12-month follow-up examinations. The resulting segmentations were compared with the physicians' manual contours. Results: Successful parotid segmentation was achieved for all 15 patients (42 post-RT MRIs). The average percentage of volume differences between the automated segmentations and those of the physicians' manual contours were 7.98% for the left parotid and 8.12% for the right parotid. The average volume overlap was 91.1% ± 1.6% for the left parotid and 90.5% ± 2.4% for the right parotid. The parotid gland volume reduction at follow-up was 25% at 3 months, 27% at 6 months, and 16% at 12 months. Conclusions: We have validated our automated parotid segmentation algorithm in a longitudinal study. This segmentation method may be useful in future studies to address radiation-induced xerostomia in head and neck radiation therapy.« less

  2. Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma.

    PubMed

    Jafari, M Hossein; Nasr-Esfahani, Ebrahim; Karimi, Nader; Soroushmehr, S M Reza; Samavi, Shadrokh; Najarian, Kayvan

    2017-06-01

    Computerized prescreening of suspicious moles and lesions for malignancy is of great importance for assessing the need and the priority of the removal surgery. Detection can be done by images captured by standard cameras, which are more preferable due to low cost and availability. One important step in computerized evaluation is accurate detection of lesion's region, i.e., segmentation of an image into two regions as lesion and normal skin. In this paper, a new method based on deep neural networks is proposed for accurate extraction of a lesion region. The input image is preprocessed, and then, its patches are fed to a convolutional neural network. Local texture and global structure of the patches are processed in order to assign pixels to lesion or normal classes. A method for effective selection of training patches is proposed for more accurate detection of a lesion's border. Our results indicate that the proposed method could reach the accuracy of 98.7% and the sensitivity of 95.2% in segmentation of lesion regions over the dataset of clinical images. The experimental results of qualitative and quantitative evaluations demonstrate that our method can outperform other state-of-the-art algorithms exist in the literature.

  3. Automated Sperm Head Detection Using Intersecting Cortical Model Optimised by Particle Swarm Optimization.

    PubMed

    Tan, Weng Chun; Mat Isa, Nor Ashidi

    2016-01-01

    In human sperm motility analysis, sperm segmentation plays an important role to determine the location of multiple sperms. To ensure an improved segmentation result, the Laplacian of Gaussian filter is implemented as a kernel in a pre-processing step before applying the image segmentation process to automatically segment and detect human spermatozoa. This study proposes an intersecting cortical model (ICM), which was derived from several visual cortex models, to segment the sperm head region. However, the proposed method suffered from parameter selection; thus, the ICM network is optimised using particle swarm optimization where feature mutual information is introduced as the new fitness function. The final results showed that the proposed method is more accurate and robust than four state-of-the-art segmentation methods. The proposed method resulted in rates of 98.14%, 98.82%, 86.46% and 99.81% in accuracy, sensitivity, specificity and precision, respectively, after testing with 1200 sperms. The proposed algorithm is expected to be implemented in analysing sperm motility because of the robustness and capability of this algorithm.

  4. Putaminal volume and diffusion in early familial Creutzfeldt-Jakob disease.

    PubMed

    Seror, Ilana; Lee, Hedok; Cohen, Oren S; Hoffmann, Chen; Prohovnik, Isak

    2010-01-15

    The putamen is centrally implicated in the pathophysiology of Creutzfeldt-Jakob Disease (CJD). To our knowledge, its volume has never been measured in this disease. We investigated whether gross putaminal atrophy can be detected by MRI in early stages, when the diffusion is already reduced. Twelve familial CJD patients with the E200K mutation and 22 healthy controls underwent structural and diffusion MRI scans. The putamen was identified in anatomical scans by two methods: manual tracing by a blinded investigator, and automatic parcellation by a computerized segmentation procedure (FSL FIRST). For each method, volume and mean Apparent Diffusion Coefficient (ADC) were calculated. ADC was significantly lower in CJD patients (697+/-64 microm(2)/s vs. 750+/-31 microm(2)/s, p<0.005), as expected, but the volume was not reduced. The computerized FIRST delineation yielded comparable ADC values to the manual method, but computerized volumes were smaller than manual tracing values. We conclude that significant diffusion reduction in the putamen can be detected by delineating the structure manually or with a computerized algorithm. Our findings confirm and extend previous voxel-based and observational studies. Putaminal volume was not reduced in our early-stage patients, thus confirming that diffusion abnormalities precede detectible atrophy in this structure.

  5. Cortical Enhanced Tissue Segmentation of Neonatal Brain MR Images Acquired by a Dedicated Phased Array Coil

    PubMed Central

    Shi, Feng; Yap, Pew-Thian; Fan, Yong; Cheng, Jie-Zhi; Wald, Lawrence L.; Gerig, Guido; Lin, Weili; Shen, Dinggang

    2010-01-01

    The acquisition of high quality MR images of neonatal brains is largely hampered by their characteristically small head size and low tissue contrast. As a result, subsequent image processing and analysis, especially for brain tissue segmentation, are often hindered. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by effectively combing images obtained from 8 coil elements without lengthening data acquisition time. In addition, a subject-specific atlas based tissue segmentation algorithm is specifically developed for the delineation of fine structures in the acquired neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical gray matter (GM) structures in neonatal images with a Hessian filter for generation of cortical GM prior. Then, the prior is combined with our neonatal population atlas to form a cortical enhanced hybrid atlas, which we refer to as the subject-specific atlas. Various experiments are conducted to compare the proposed method with manual segmentation results, as well as with additional two population atlas based segmentation methods. Results show that the proposed method is capable of segmenting the neonatal brain with the highest accuracy, compared to other two methods. PMID:20862268

  6. Effects of Nerve Injury and Segmental Regeneration on the Cellular Correlates of Neural Morphallaxis

    PubMed Central

    Martinez, Veronica G.; Manson, Josiah M.B.; Zoran, Mark J.

    2009-01-01

    Functional recovery of neural networks after injury requires a series of signaling events similar to the embryonic processes that governed initial network construction. Neural morphallaxis, a form of nervous system regeneration, involves reorganization of adult neural connectivity patterns. Neural morphallaxis in the worm, Lumbriculus variegatus, occurs during asexual reproduction and segmental regeneration, as body fragments acquire new positional identities along the anterior–posterior axis. Ectopic head (EH) formation, induced by ventral nerve cord lesion, generated morphallactic plasticity including the reorganization of interneuronal sensory fields and the induction of a molecular marker of neural morphallaxis. Morphallactic changes occurred only in segments posterior to an EH. Neither EH formation, nor neural morphallaxis was observed after dorsal body lesions, indicating a role for nerve cord injury in morphallaxis induction. Furthermore, a hierarchical system of neurobehavioral control was observed, where anterior heads were dominant and an EH controlled body movements only in the absence of the anterior head. Both suppression of segmental regeneration and blockade of asexual fission, after treatment with boric acid, disrupted the maintenance of neural morphallaxis, but did not block its induction. Therefore, segmental regeneration (i.e., epimorphosis) may not be required for the induction of morphallactic remodeling of neural networks. However, on-going epimorphosis appears necessary for the long-term consolidation of cellular and molecular mechanisms underlying the morphallaxis of neural circuitry. PMID:18561185

  7. Three-dimensional analysis of cervical spine segmental motion in rotation.

    PubMed

    Zhao, Xiong; Wu, Zi-Xiang; Han, Bao-Jun; Yan, Ya-Bo; Zhang, Yang; Lei, Wei

    2013-06-20

    The movements of the cervical spine during head rotation are too complicated to measure using conventional radiography or computed tomography (CT) techniques. In this study, we measure three-dimensional segmental motion of cervical spine rotation in vivo using a non-invasive measurement technique. Sixteen healthy volunteers underwent three-dimensional CT of the cervical spine during head rotation. Occiput (Oc) - T1 reconstructions were created of volunteers in each of 3 positions: supine and maximum left and right rotations of the head with respect to the bosom. Segmental motions were calculated using Euler angles and volume merge methods in three major planes. Mean maximum axial rotation of the cervical spine to one side was 1.6° to 38.5° at each level. Coupled lateral bending opposite to lateral bending was observed in the upper cervical levels, while in the subaxial cervical levels, it was observed in the same direction as axial rotation. Coupled extension was observed in the cervical levels of C5-T1, while coupled flexion was observed in the cervical levels of Oc-C5. The three-dimensional cervical segmental motions in rotation were accurately measured with the non-invasive measure. These findings will be helpful as the basis for understanding cervical spine movement in rotation and abnormal conditions. The presented data also provide baseline segmental motions for the design of prostheses for the cervical spine.

  8. Computerized tomography assessment of cranial and mid-facial fractures in patients following road traffic accident in South-West Nigeria.

    PubMed

    Abiodun, Adeyinka; Atinuke, Agunloye; Yvonne, Osuagwu

    2012-01-01

    Globally, the most common cause of cranio-facial fractures is road traffic accident (RTA) with computerized tomography (CT) scan as the gold standard in the diagnosis of patients with cranial and facial fractures. The purpose of this study is to assess the pattern of cranial and facial fractures on CT in head injured patients following RTA. Using CT, detailed analyses of 236 patients with head injury following RTA were performed between 2006 and 2008, Data recorded included cause of injury, age and gender distribution, cranial and mid-facial fractures sustained, associated intracranial and soft tissue injury and the types of vehicular accident. The peak age of the patients was between 30 and 39 years. RTA was more common in males than females. Motor-vehicle was the most common cause of RTA in the present study (66.9%). More passengers were involved in the motor vehicle (87.3%) and motorcycle (52.0%) accidents than their corresponding drivers, and they were predominantly males. Majority of the patients involved in pedestrian road traffic accident (PRTA) were motor vehicle victims (93.3%). There were more patients with cranial (59.8%) than mid-facial fractures (40.2%). Majority of the patients had temporal bone cranial fracture (31.1%) and combined or mixed type of mid-facial fractures (41.3%). Intracranial bleeding (31.7%) was the most common associated intracranial finding. RTAs continue to be a menace and are the main cause of craniofacial injury in Nigeria. This pattern of etiologic factors is in accordance with data from most developing countries. Special attention should be paid to reinforcement of legislation and enactment of laws aimed at the reduction of head injury and provision for easy access to CT for the head injured patient.

  9. Assessment of parental tooth-brushing following instruction with single-headed and triple-headed toothbrushes.

    PubMed

    Telishevesky, Yoel S; Levin, Liran; Ashkenazi, Malka

    2012-01-01

    The purpose of this study was to evaluate the effect of toothbrush design on the ability of parents to effectively brush their children's teeth. Parents of children (mean age=5.1±0.75 years old) from 4 kindergarten schools were randomly assigned to receive instruction in brushing their children's teeth using a manual single-headed toothbrush (2 schools) or a triple-headed toothbrush (2 schools). The parents' ability to brush their children's teeth was evaluated according to a novel toothbrush performing skill index (Ashkenazi Index), based on 2 criteria: (1) placement of the toothbrush on each tooth segment to be brushed ("reach"); and (2) completion of enough strokes on each segment ("stay"). One month after instruction, tooth-brushing ability was re-evaluated and plaque index of the children's teeth was assessed. One month after instruction, parents using the triple-headed toothbrush received significantly higher scores on the tooth-brushing performance index (~86%), than did those in the single-headed group (~61%; P=.001). The plaque index was significantly higher in the single-headed group (0.97±0.38) vs the triple-headed group (0.72±0.29; P<.01). The tooth-brushing performance index correlated negatively with the plaque index (P<.01). A triple-headed toothbrush promotes more consistent tooth-brushing by parents than does a single-headed toothbrush.

  10. [Duodenum-preserving total pancreatic head resection and pancreatic head resection with segmental duodenostomy].

    PubMed

    Takada, Tadahiro; Yasuda, Hideki; Nagashima, Ikuo; Amano, Hodaka; Yoshiada, Masahiro; Toyota, Naoyuki

    2003-06-01

    A duodenum-preserving pancreatic head resection (DPPHR) was first reported by Beger et al. in 1980. However, its application has been limited to chronic pancreatitis because of it is a subtotal pancreatic head resection. In 1990, we reported duodenum-preserving total pancreatic head resection (DPTPHR) in 26 cases. This opened the way for total pancreatic head resection, expanding the application of this approach to tumorigenic morbidities such as intraductal papillary mucinous tumor (IMPT), other benign tumors, and small pancreatic cancers. On the other hand, Nakao et al. reported pancreatic head resection with segmental duodenectomy (PHRSD) as an alternative pylorus-preserving pancreatoduodenectomy technique in 24 cases. Hirata et al. also reported this technique as a new pylorus-preserving pancreatoduodenostomy with increased vessel preservation. When performing DPTPHR, the surgeon should ensure adequate duodenal blood supply. Avoidance of duodenal ischemia is very important in this operation, and thus it is necessary to maintain blood flow in the posterior pancreatoduodenal artery and to preserve the mesoduodenal vessels. Postoperative pancreatic functional tests reveal that DPTPHR is superior to PPPD, including PHSRD, because the entire duodenum and duodenal integrity is very important for postoperative pancreatic function.

  11. Intraindividual variability as an indicator of malingering in head injury.

    PubMed

    Strauss, Esther; Slick, Daniel J; Levy-Bencheton, Judi; Hunter, Michael; MacDonald, Stuart W S; Hultsch, David F

    2002-07-01

    The utility of various measures of malingering was evaluated using an analog design in which half the participants (composed of three groups: naive healthy people, professionals working with head-injured people, individuals who suffered a head injury but not currently in litigation) were asked to try their best and the remainder was asked to feign believable injury. Participants were assessed with the Reliable Digit Span (RDS) task, the Victoria Symptom Validity Test (VSVT), and the Computerized Dot Counting Test (CDCT) on three separate occasions in order to determine whether repeat administration of tests improves prediction. The results indicated that regardless of an individual's experience, consideration of both level of performance (particularly on forced-choice symptom validity tasks) and intraindividual variability holds considerable promise for the detection of malingering.

  12. Stabilization and mobility of the head and trunk in wild monkeys during terrestrial and flat-surface walks and gallops.

    PubMed

    Dunbar, Donald C; Badam, Gyani L; Hallgrímsson, Benedikt; Vieilledent, Stéphane

    2004-02-01

    This study investigated the patterns of rotational mobility (> or =20 degrees ) and stability (< or =20 degrees ) of the head and trunk in wild Indian monkeys during natural locomotion on the ground and on the flat-topped surfaces of walls. Adult hanuman langurs (Semnopithecus entellus) and bonnet macaques (Macaca radiata) of either gender were cine filmed in lateral view. Whole-body horizontal linear displacement, head and trunk pitch displacement relative to space (earth horizontal), and vertical head displacement were measured from the cine films. Head-to-trunk pitch angle was calculated from the head-to-space and trunk-to-space measurements. Locomotor velocities, cycle durations, angular segmental velocities, mean segmental positions and mean peak frequencies of vertical and angular head displacements were then calculated from the displacement data. Yaw rotations were observed qualitatively. During quadrupedal walks by both species, the head was free to rotate in the pitch and yaw planes on a stabilized trunk. By contrast, during quadrupedal gallops by both species, the trunk pitched on a stabilized head. During both gaits in both species, head and trunk pitch rotations were symmetrical about comparable mean positions in both gaits, with mean head position aligning the horizontal semicircular canals near earth horizontal. Head pitch direction countered head vertical displacement direction to varying degrees during walks and only intermittently during gallops, providing evidence that correctional head pitch rotations are not essential for gaze stabilization. Head-to-space pitch velocities were below 350 deg. s(-1), the threshold above which, at least among humans, the vestibulo-ocular reflex (VOR) becomes saturated. Mean peak frequencies of vertical translations and pitch rotations of the head ranged from 1 Hz to 2 Hz, a lower frequency range than that in which inertia is predicted to be the major stabilizer of the head in these species. Some variables, which were common to both walks and gallops in both species, are likely to reflect constraints in sensorimotor control. Other variables, which differed between the two gaits in both species, are likely to reflect kinematic differences, whereas variables that differed between the two species are attributed primarily to morphological and behavioural differences. It is concluded that either the head or the trunk can provide the nervous system with a reference frame for spatial orientation and that the segment providing that reference can change, depending upon the kinematic characteristics of the chosen gait.

  13. Nucleus detection using gradient orientation information and linear least squares regression

    NASA Astrophysics Data System (ADS)

    Kwak, Jin Tae; Hewitt, Stephen M.; Xu, Sheng; Pinto, Peter A.; Wood, Bradford J.

    2015-03-01

    Computerized histopathology image analysis enables an objective, efficient, and quantitative assessment of digitized histopathology images. Such analysis often requires an accurate and efficient detection and segmentation of histological structures such as glands, cells and nuclei. The segmentation is used to characterize tissue specimens and to determine the disease status or outcomes. The segmentation of nuclei, in particular, is challenging due to the overlapping or clumped nuclei. Here, we propose a nuclei seed detection method for the individual and overlapping nuclei that utilizes the gradient orientation or direction information. The initial nuclei segmentation is provided by a multiview boosting approach. The angle of the gradient orientation is computed and traced for the nuclear boundaries. Taking the first derivative of the angle of the gradient orientation, high concavity points (junctions) are discovered. False junctions are found and removed by adopting a greedy search scheme with the goodness-of-fit statistic in a linear least squares sense. Then, the junctions determine boundary segments. Partial boundary segments belonging to the same nucleus are identified and combined by examining the overlapping area between them. Using the final set of the boundary segments, we generate the list of seeds in tissue images. The method achieved an overall precision of 0.89 and a recall of 0.88 in comparison to the manual segmentation.

  14. Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships.

    PubMed

    Hatipoglu, Nuh; Bilgin, Gokhan

    2017-10-01

    In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.

  15. Multi-scale hippocampal parcellation improves atlas-based segmentation accuracy

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew J.; McHugo, Maureen; Heckers, Stephan; Landman, Bennett A.

    2017-02-01

    Known for its distinct role in memory, the hippocampus is one of the most studied regions of the brain. Recent advances in magnetic resonance imaging have allowed for high-contrast, reproducible imaging of the hippocampus. Typically, a trained rater takes 45 minutes to manually trace the hippocampus and delineate the anterior from the posterior segment at millimeter resolution. As a result, there has been a significant desire for automated and robust segmentation of the hippocampus. In this work we use a population of 195 atlases based on T1-weighted MR images with the left and right hippocampus delineated into the head and body. We initialize the multi-atlas segmentation to a region directly around each lateralized hippocampus to both speed up and improve the accuracy of registration. This initialization allows for incorporation of nearly 200 atlases, an accomplishment which would typically involve hundreds of hours of computation per target image. The proposed segmentation results in a Dice similiarity coefficient over 0.9 for the full hippocampus. This result outperforms a multi-atlas segmentation using the BrainCOLOR atlases (Dice 0.85) and FreeSurfer (Dice 0.75). Furthermore, the head and body delineation resulted in a Dice coefficient over 0.87 for both structures. The head and body volume measurements also show high reproducibility on the Kirby 21 reproducibility population (R2 greater than 0.95, p < 0.05 for all structures). This work signifies the first result in an ongoing work to develop a robust tool for measurement of the hippocampus and other temporal lobe structures.

  16. Segmentation, surface rendering, and surface simplification of 3-D skull images for the repair of a large skull defect

    NASA Astrophysics Data System (ADS)

    Wan, Weibing; Shi, Pengfei; Li, Shuguang

    2009-10-01

    Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.

  17. Computerized detection of unruptured aneurysms in MRA images: reduction of false positives using anatomical location features

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yoshikazu; Gao, Xin; Hara, Takeshi; Fujita, Hiroshi; Ando, Hiromichi; Yamakawa, Hiroyasu; Asano, Takahiko; Kato, Hiroki; Iwama, Toru; Kanematsu, Masayuki; Hoshi, Hiroaki

    2008-03-01

    The detection of unruptured aneurysms is a major subject in magnetic resonance angiography (MRA). However, their accurate detection is often difficult because of the overlapping between the aneurysm and the adjacent vessels on maximum intensity projection images. The purpose of this study is to develop a computerized method for the detection of unruptured aneurysms in order to assist radiologists in image interpretation. The vessel regions were first segmented using gray-level thresholding and a region growing technique. The gradient concentration (GC) filter was then employed for the enhancement of the aneurysms. The initial candidates were identified in the GC image using a gray-level threshold. For the elimination of false positives (FPs), we determined shape features and an anatomical location feature. Finally, rule-based schemes and quadratic discriminant analysis were employed along with these features for distinguishing between the aneurysms and the FPs. The sensitivity for the detection of unruptured aneurysms was 90.0% with 1.52 FPs per patient. Our computerized scheme can be useful in assisting the radiologists in the detection of unruptured aneurysms in MRA images.

  18. Arizona Head Start for Homeless Children and Families Project. 1995-96 Evaluation Report.

    ERIC Educational Resources Information Center

    Mulholland, Lori

    Homeless families with children constitute the fastest growing segment of the United States homeless population. This study evaluated Year 2 of the Arizona Head Start for Homeless Children and Families Project, designed to meet educational and social needs of homeless children and families, and to assist Head Start agencies in developing effective…

  19. Arizona Head Start for Homeless Children and Families Project. 1994-95 Evaluation Report.

    ERIC Educational Resources Information Center

    Mulholland, Lori; Greene, Andrea

    Homeless families with children comprise the fastest growing segment of the United States homeless population. This study evaluated Year 1 of the Arizona Head Start for Homeless Children and Families Project, designed to meet educational and social needs of homeless children and families, and to assist Head Start agencies in developing effective…

  20. FFDM image quality assessment using computerized image texture analysis

    NASA Astrophysics Data System (ADS)

    Berger, Rachelle; Carton, Ann-Katherine; Maidment, Andrew D. A.; Kontos, Despina

    2010-04-01

    Quantitative measures of image quality (IQ) are routinely obtained during the evaluation of imaging systems. These measures, however, do not necessarily correlate with the IQ of the actual clinical images, which can also be affected by factors such as patient positioning. No quantitative method currently exists to evaluate clinical IQ. Therefore, we investigated the potential of using computerized image texture analysis to quantitatively assess IQ. Our hypothesis is that image texture features can be used to assess IQ as a measure of the image signal-to-noise ratio (SNR). To test feasibility, the "Rachel" anthropomorphic breast phantom (Model 169, Gammex RMI) was imaged with a Senographe 2000D FFDM system (GE Healthcare) using 220 unique exposure settings (target/filter, kVs, and mAs combinations). The mAs were varied from 10%-300% of that required for an average glandular dose (AGD) of 1.8 mGy. A 2.5cm2 retroareolar region of interest (ROI) was segmented from each image. The SNR was computed from the ROIs segmented from images linear with dose (i.e., raw images) after flat-field and off-set correction. Image texture features of skewness, coarseness, contrast, energy, homogeneity, and fractal dimension were computed from the Premium ViewTM postprocessed image ROIs. Multiple linear regression demonstrated a strong association between the computed image texture features and SNR (R2=0.92, p<=0.001). When including kV, target and filter as additional predictor variables, a stronger association with SNR was observed (R2=0.95, p<=0.001). The strong associations indicate that computerized image texture analysis can be used to measure image SNR and potentially aid in automating IQ assessment as a component of the clinical workflow. Further work is underway to validate our findings in larger clinical datasets.

  1. Comparative study on the performance of textural image features for active contour segmentation.

    PubMed

    Moraru, Luminita; Moldovanu, Simona

    2012-07-01

    We present a computerized method for the semi-automatic detection of contours in ultrasound images. The novelty of our study is the introduction of a fast and efficient image function relating to parametric active contour models. This new function is a combination of the gray-level information and first-order statistical features, called standard deviation parameters. In a comprehensive study, the developed algorithm and the efficiency of segmentation were first tested for synthetic images. Tests were also performed on breast and liver ultrasound images. The proposed method was compared with the watershed approach to show its efficiency. The performance of the segmentation was estimated using the area error rate. Using the standard deviation textural feature and a 5×5 kernel, our curve evolution was able to produce results close to the minimal area error rate (namely 8.88% for breast images and 10.82% for liver images). The image resolution was evaluated using the contrast-to-gradient method. The experiments showed promising segmentation results.

  2. TH-CD-206-05: Machine-Learning Based Segmentation of Organs at Risks for Head and Neck Radiotherapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibragimov, B; Pernus, F; Strojan, P

    Purpose: Accurate and efficient delineation of tumor target and organs-at-risks is essential for the success of radiotherapy. In reality, despite of decades of intense research efforts, auto-segmentation has not yet become clinical practice. In this study, we present, for the first time, a deep learning-based classification algorithm for autonomous segmentation in head and neck (HaN) treatment planning. Methods: Fifteen HN datasets of CT, MR and PET images with manual annotation of organs-at-risk (OARs) including spinal cord, brainstem, optic nerves, chiasm, eyes, mandible, tongue, parotid glands were collected and saved in a library of plans. We also have ten super-resolution MRmore » images of the tongue area, where the genioglossus and inferior longitudinalis tongue muscles are defined as organs of interest. We applied the concepts of random forest- and deep learning-based object classification for automated image annotation with the aim of using machine learning to facilitate head and neck radiotherapy planning process. In this new paradigm of segmentation, random forests were used for landmark-assisted segmentation of super-resolution MR images. Alternatively to auto-segmentation with random forest-based landmark detection, deep convolutional neural networks were developed for voxel-wise segmentation of OARs in single and multi-modal images. The network consisted of three pairs of convolution and pooing layer, one RuLU layer and a softmax layer. Results: We present a comprehensive study on using machine learning concepts for auto-segmentation of OARs and tongue muscles for the HaN radiotherapy planning. An accuracy of 81.8% in terms of Dice coefficient was achieved for segmentation of genioglossus and inferior longitudinalis tongue muscles. Preliminary results of OARs regimentation also indicate that deep-learning afforded an unprecedented opportunities to improve the accuracy and robustness of radiotherapy planning. Conclusion: A novel machine learning framework has been developed for image annotation and structure segmentation. Our results indicate the great potential of deep learning in radiotherapy treatment planning.« less

  3. Computer Based Melanocytic and Nevus Image Enhancement and Segmentation.

    PubMed

    Jamil, Uzma; Akram, M Usman; Khalid, Shehzad; Abbas, Sarmad; Saleem, Kashif

    2016-01-01

    Digital dermoscopy aids dermatologists in monitoring potentially cancerous skin lesions. Melanoma is the 5th common form of skin cancer that is rare but the most dangerous. Melanoma is curable if it is detected at an early stage. Automated segmentation of cancerous lesion from normal skin is the most critical yet tricky part in computerized lesion detection and classification. The effectiveness and accuracy of lesion classification are critically dependent on the quality of lesion segmentation. In this paper, we have proposed a novel approach that can automatically preprocess the image and then segment the lesion. The system filters unwanted artifacts including hairs, gel, bubbles, and specular reflection. A novel approach is presented using the concept of wavelets for detection and inpainting the hairs present in the cancer images. The contrast of lesion with the skin is enhanced using adaptive sigmoidal function that takes care of the localized intensity distribution within a given lesion's images. We then present a segmentation approach to precisely segment the lesion from the background. The proposed approach is tested on the European database of dermoscopic images. Results are compared with the competitors to demonstrate the superiority of the suggested approach.

  4. Robust pulmonary lobe segmentation against incomplete fissures

    NASA Astrophysics Data System (ADS)

    Gu, Suicheng; Zheng, Qingfeng; Siegfried, Jill; Pu, Jiantao

    2012-03-01

    As important anatomical landmarks of the human lung, accurate lobe segmentation may be useful for characterizing specific lung diseases (e.g., inflammatory, granulomatous, and neoplastic diseases). A number of investigations showed that pulmonary fissures were often incomplete in image depiction, thereby leading to the computerized identification of individual lobes a challenging task. Our purpose is to develop a fully automated algorithm for accurate identification of individual lobes regardless of the integrity of pulmonary fissures. The underlying idea of the developed lobe segmentation scheme is to use piecewise planes to approximate the detected fissures. After a rotation and a global smoothing, a number of small planes were fitted using local fissures points. The local surfaces are finally combined for lobe segmentation using a quadratic B-spline weighting strategy to assure that the segmentation is smooth. The performance of the developed scheme was assessed by comparing with a manually created reference standard on a dataset of 30 lung CT examinations. These examinations covered a number of lung diseases and were selected from a large chronic obstructive pulmonary disease (COPD) dataset. The results indicate that our scheme of lobe segmentation is efficient and accurate against incomplete fissures.

  5. Postural Consequences of Cervical Sagittal Imbalance: A Novel Laboratory Model.

    PubMed

    Patwardhan, Avinash G; Havey, Robert M; Khayatzadeh, Saeed; Muriuki, Muturi G; Voronov, Leonard I; Carandang, Gerard; Nguyen, Ngoc-Lam; Ghanayem, Alexander J; Schuit, Dale; Patel, Alpesh A; Smith, Zachary A; Sears, William

    2015-06-01

    A biomechanical study using human spine specimens. To study postural compensations in lordosis angles that are necessary to maintain horizontal gaze in the presence of forward head posture and increasing T1 sagittal tilt. Forward head posture relative to the shoulders, assessed radiographically using the horizontal offset distance between the C2 and C7 vertebral bodies (C2-C7 [sagittal vertical alignment] SVA), is a measure of global cervical imbalance. This may result from kyphotic alignment of cervical segments, muscle imbalance, as well as malalignment of thoracolumbar spine. Ten cadaveric cervical spines (occiput-T1) were tested. The T1 vertebra was anchored to a tilting and translating base. The occiput was free to move vertically but its angular orientation was constrained to ensure horizontal gaze regardless of sagittal imbalance. A 5-kg mass was attached to the occiput to mimic head weight. Forward head posture magnitude and T1 tilt were varied and motions of individual vertebrae were measured to calculate C2-C7 SVA and lordosis across C0-C2 and C2-C7. Increasing C2-C7 SVA caused flexion of lower cervical (C2-C7) segments and hyperextension of suboccipital (C0-C1-C2) segments to maintain horizontal gaze. Increasing kyphotic T1 tilt primarily increased lordosis across the C2-C7 segments. Regression models were developed to predict the compensatory C0-C2 and C2-C7 angulation needed to maintain horizontal gaze given values of C2-C7 SVA and T1 tilt. This study established predictive relationships between radiographical measures of forward head posture, T1 tilt, and postural compensations in the cervical lordosis angles needed to maintain horizontal gaze. The laboratory model predicted that normalization of C2-C7 SVA will reduce suboccipital (C0-C2) hyperextension, whereas T1 tilt reduction will reduce the hyperextension in the C2-C7 segments. The predictive relationships may help in planning corrective strategy in patients experiencing neck pain, which may be attributed to sagittal malalignment. N/A.

  6. KSC-07pd1171

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- The locomotive and rail cars carrying solid rocket booster motor segments and two aft exit cone segments cross a road on Kennedy Space Center. These cars are headed for the SRB Assembly and Refurbishment Facility. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  7. KSC-07pd1170

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- The locomotive and rail cars carrying solid rocket booster motor segments and two aft exit cone segments cross a road on Kennedy Space Center. These cars are headed for the SRB Assembly and Refurbishment Facility. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  8. KSC-07pd1169

    NASA Image and Video Library

    2007-05-14

    KENNEDY SPACE CENTER, FLA. -- The locomotive and rail cars carrying solid rocket booster motor segments and two aft exit cone segments cross a road on Kennedy Space Center. These cars are headed for the SRB Assembly and Refurbishment Facility. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton

  9. Validation of simplified centre of mass models during gait in individuals with chronic stroke.

    PubMed

    Huntley, Andrew H; Schinkel-Ivy, Alison; Aqui, Anthony; Mansfield, Avril

    2017-10-01

    The feasibility of using a multiple segment (full-body) kinematic model in clinical gait assessment is difficult when considering obstacles such as time and cost constraints. While simplified gait models have been explored in healthy individuals, no such work to date has been conducted in a stroke population. The aim of this study was to quantify the errors of simplified kinematic models for chronic stroke gait assessment. Sixteen individuals with chronic stroke (>6months), outfitted with full body kinematic markers, performed a series of gait trials. Three centre of mass models were computed: (i) 13-segment whole-body model, (ii) 3 segment head-trunk-pelvis model, and (iii) 1 segment pelvis model. Root mean squared error differences were compared between models, along with correlations to measures of stroke severity. Error differences revealed that, while both models were similar in the mediolateral direction, the head-trunk-pelvis model had less error in the anteroposterior direction and the pelvis model had less error in the vertical direction. There was some evidence that the head-trunk-pelvis model error is influenced in the mediolateral direction for individuals with more severe strokes, as a few significant correlations were observed between the head-trunk-pelvis model and measures of stroke severity. These findings demonstrate the utility and robustness of the pelvis model for clinical gait assessment in individuals with chronic stroke. Low error in the mediolateral and vertical directions is especially important when considering potential stability analyses during gait for this population, as lateral stability has been previously linked to fall risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. NHRC (Naval Health Research Center) Report 1984.

    DTIC Science & Technology

    1984-01-01

    computerized medical information systems. In addition to the above more tangible operational support, Dr. Cheryl L. Spinweber provides consultations to...this Department: BEHAVIORAL PSYCHOPHARMACOLOGY study the effects of two dose levels on Deputy Head: Cheryl L. Spinweber, Ph.D. sleep, memory...November 84 T. D. Knott (with LT Hilton) - "How Context Dependent Roles of Evaluators can Affect Professional Activities and Attitudes" Federation of

  11. Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets

    PubMed Central

    Cha, Kenny H.; Hadjiiski, Lubomir; Samala, Ravi K.; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.

    2016-01-01

    Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer. Methods: A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours. Results: With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively. Conclusions: The authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder. PMID:27036584

  12. Automatic segmentation of the optic nerve head for deformation measurements in video rate optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hidalgo-Aguirre, Maribel; Gitelman, Julian; Lesk, Mark Richard; Costantino, Santiago

    2015-11-01

    Optical coherence tomography (OCT) imaging has become a standard diagnostic tool in ophthalmology, providing essential information associated with various eye diseases. In order to investigate the dynamics of the ocular fundus, we present a simple and accurate automated algorithm to segment the inner limiting membrane in video-rate optic nerve head spectral domain (SD) OCT images. The method is based on morphological operations including a two-step contrast enhancement technique, proving to be very robust when dealing with low signal-to-noise ratio images and pathological eyes. An analysis algorithm was also developed to measure neuroretinal tissue deformation from the segmented retinal profiles. The performance of the algorithm is demonstrated, and deformation results are presented for healthy and glaucomatous eyes.

  13. Experimental Investigation of Heat Pipe Startup Under Reflux Mode

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2018-01-01

    In the absence of body forces such as gravity, a heat pipe will start as soon as its evaporator temperature reaches the saturation temperature. If the heat pipe operates under a reflux mode in ground testing, the liquid puddle will fill the entire cross sectional area of the evaporator. Under this condition, the heat pipe may not start when the evaporator temperature reaches the saturation temperature. Instead, a superheat is required in order for the liquid to vaporize through nucleate boiling. The amount of superheat depends on several factors such as the roughness of the heat pipe internal surface and the gravity head. This paper describes an experimental investigation of the effect of gravity pressure head on the startup of a heat pipe under reflux mode. In this study, a heat pipe with internal axial grooves was placed in a vertical position with different tilt angles relative to the horizontal plane. Heat was applied to the evaporator at the bottom and cooling was provided to the condenser at the top. The liquid-flooded evaporator was divided into seven segments along the axial direction, and an electrical heater was attached to each evaporator segment. Heat was applied to individual heaters in various combinations and sequences. Other test variables included the condenser sink temperature and tilt angle. Test results show that as long as an individual evaporator segment was flooded with liquid initially, a superheat was required to vaporize the liquid in that segment. The amount of superheat required for liquid vaporization was a function of gravity pressure head imposed on that evaporator segment and the initial temperature of the heat pipe. The most efficient and effective way to start the heat pipe was to apply a heat load with a high heat flux to the lowest segment of the evaporator.

  14. A computerized recognition system for the home-based physiotherapy exercises using an RGBD camera.

    PubMed

    Ar, Ilktan; Akgul, Yusuf Sinan

    2014-11-01

    Computerized recognition of the home based physiotherapy exercises has many benefits and it has attracted considerable interest among the computer vision community. However, most methods in the literature view this task as a special case of motion recognition. In contrast, we propose to employ the three main components of a physiotherapy exercise (the motion patterns, the stance knowledge, and the exercise object) as different recognition tasks and embed them separately into the recognition system. The low level information about each component is gathered using machine learning methods. Then, we use a generative Bayesian network to recognize the exercise types by combining the information from these sources at an abstract level, which takes the advantage of domain knowledge for a more robust system. Finally, a novel postprocessing step is employed to estimate the exercise repetitions counts. The performance evaluation of the system is conducted with a new dataset which contains RGB (red, green, and blue) and depth videos of home-based exercise sessions for commonly applied shoulder and knee exercises. The proposed system works without any body-part segmentation, bodypart tracking, joint detection, and temporal segmentation methods. In the end, favorable exercise recognition rates and encouraging results on the estimation of repetition counts are obtained.

  15. Patient specific computerized phantoms to estimate dose in pediatric CT

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Sturgeon, G.; Li, X.; Cheng, L.; Ceritoglu, C.; Ratnanather, J. T.; Miller, M. I.; Tsui, B. M. W.; Frush, D.; Samei, E.

    2009-02-01

    We create a series of detailed computerized phantoms to estimate patient organ and effective dose in pediatric CT and investigate techniques for efficiently creating patient-specific phantoms based on imaging data. The initial anatomy of each phantom was previously developed based on manual segmentation of pediatric CT data. Each phantom was extended to include a more detailed anatomy based on morphing an existing adult phantom in our laboratory to match the framework (based on segmentation) defined for the target pediatric model. By morphing a template anatomy to match the patient data in the LDDMM framework, it was possible to create a patient specific phantom with many anatomical structures, some not visible in the CT data. The adult models contain thousands of defined structures that were transformed to define them in each pediatric anatomy. The accuracy of this method, under different conditions, was tested using a known voxelized phantom as the target. Errors were measured in terms of a distance map between the predicted organ surfaces and the known ones. We also compared calculated dose measurements to see the effect of different magnitudes of errors in morphing. Despite some variations in organ geometry, dose measurements from morphing predictions were found to agree with those calculated from the voxelized phantom thus demonstrating the feasibility of our methods.

  16. Changes in Head Stability Control in Response to a Lateral Perturbation while Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2008-01-01

    Falling is a main contributor of injury in older adults. The decline in sensory systems associated with aging limits information needed to successfully compensate for unexpected perturbations. Therefore, sensory changes result in older adults having problems maintaining balance stability when experiencing an unexpected lateral perturbation (e.g. slip) in the environment. The goal of this study was to determine head stability movement strategies used by older adults when experiencing an unexpected lateral perturbation during walking. A total of 16 healthy adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors were placed on the center of mass for the head and trunk segments to collect head and trunk movement in all three planes of motion. The predominant movement strategies for maintaining head stability were determined from the results of the cross-correlation analyses between the head and trunk segments. The Chi square test of independence was used to evaluate the movement pattern distributions of head-trunk coordination during perturbed and non-perturbed walking. When perturbed, head stabilization was significantly challenged in the yaw and roll planes of motion. Subjects demonstrated a movement pattern of the head leading the trunk in an effort to stabilize the head. The older adult subjects used this head stabilization movement pattern to compensate for sensory changes when experiencing the unexpected lateral perturbation.

  17. Tc-knirps plays different roles in the specification of antennal and mandibular parasegment boundaries and is regulated by a pair-rule gene in the beetle Tribolium castaneum

    PubMed Central

    2013-01-01

    Background The Drosophila larval head is evolutionarily derived at the genetic and morphological level. In the beetle Tribolium castaneum, development of the larval head more closely resembles the ancestral arthropod condition. Unlike in Drosophila, a knirps homologue (Tc-kni) is required for development of the antennae and mandibles. However, published Tc-kni data are restricted to cuticle phenotypes and Tc-even-skipped and Tc-wingless stainings in knockdown embryos. Hence, it has remained unclear whether the entire antennal and mandibular segments depend on Tc-kni function, and whether the intervening intercalary segment is formed completely. We address these questions with a detailed examination of Tc-kni function. Results By examining the expression of marker genes in RNAi embryos, we show that Tc-kni is required only for the formation of the posterior parts of the antennal and mandibular segments (i.e. the parasegmental boundaries). Moreover, we find that the role of Tc-kni is distinct in these segments: Tc-kni is required for the initiation of the antennal parasegment boundary, but only for the maintenance of the mandibular parasegmental boundary. Surprisingly, Tc-kni controls the timing of expression of the Hox gene Tc-labial in the intercalary segment, although this segment does form in the absence of Tc-kni function. Unexpectedly, we find that the pair-rule gene Tc-even-skipped helps set the posterior boundary of Tc-kni expression in the mandible. Using the mutant antennaless, a likely regulatory Null mutation at the Tc-kni locus, we provide evidence that our RNAi studies represent a Null situation. Conclusions Tc-kni is required for the initiation of the antennal and the maintenance of the mandibular parasegmental boundaries. Tc-kni is not required for specification of the anterior regions of these segments, nor the intervening intercalary segment, confirming that Tc-kni is not a canonical ‘gap-gene’. Our finding that a gap gene orthologue is regulated by a pair rule gene adds to the view that the segmentation gene hierarchies differ between Tribolium and Drosophila upstream of the pair rule gene level. In Tribolium, as in Drosophila, head and trunk segmentation gene networks cooperate to pattern the mandibular segment, albeit involving Tc-kni as novel component. PMID:23777260

  18. Robust nuclei segmentation in cyto-histopathological images using statistical level set approach with topology preserving constraint

    NASA Astrophysics Data System (ADS)

    Taheri, Shaghayegh; Fevens, Thomas; Bui, Tien D.

    2017-02-01

    Computerized assessments for diagnosis or malignancy grading of cyto-histopathological specimens have drawn increased attention in the field of digital pathology. Automatic segmentation of cell nuclei is a fundamental step in such automated systems. Despite considerable research, nuclei segmentation is still a challenging task due noise, nonuniform illumination, and most importantly, in 2D projection images, overlapping and touching nuclei. In most published approaches, nuclei refinement is a post-processing step after segmentation, which usually refers to the task of detaching the aggregated nuclei or merging the over-segmented nuclei. In this work, we present a novel segmentation technique which effectively addresses the problem of individually segmenting touching or overlapping cell nuclei during the segmentation process. The proposed framework is a region-based segmentation method, which consists of three major modules: i) the image is passed through a color deconvolution step to extract the desired stains; ii) then the generalized fast radial symmetry transform is applied to the image followed by non-maxima suppression to specify the initial seed points for nuclei, and their corresponding GFRS ellipses which are interpreted as the initial nuclei borders for segmentation; iii) finally, these nuclei border initial curves are evolved through the use of a statistical level-set approach along with topology preserving criteria for segmentation and separation of nuclei at the same time. The proposed method is evaluated using Hematoxylin and Eosin, and fluorescent stained images, performing qualitative and quantitative analysis, showing that the method outperforms thresholding and watershed segmentation approaches.

  19. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serwer, Philip, E-mail: serwer@uthscsa.edu; Wright, Elena T.; Liu, Zheng

    DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNAmore » missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.« less

  1. Rheoencephalographic (REG) Assessment of Head and Neck Cooling for use with Multiple Sclerosis Patients

    NASA Technical Reports Server (NTRS)

    Montogomery, Leslie D.; Ku, Yu-Tsuan E.; Webbon, Bruce W. (Technical Monitor)

    1995-01-01

    We have prepared a computer program (RHEOSYS:RHEOencephalographic impedance trace scanning SyStem) that can be used to automate the analysis of segmental impedance blood flow waveforms. This program was developed to assist in the post test analysis of recorded impedance traces from multiple segments of the body. It incorporates many of the blood flow, segmental volume, and vascular state indices reported in the world literature. As it is currently programmed, seven points are selected from each blood flow pulse and associated ECG waveforrn: 1. peak of the first ECG QRS complex, 2. start of systolic slope on the blood flow trace, 3. maximum amplitude of the impedance pulse, 4. position of the dicrotic notch, 5. maximum amplitude of the postdicrotic segment, 6. peak of the second ECG QRS complex, and 7. start of the next blood flow pulse. These points we used to calculate various geometric, area, and time-related values associated with the impedance pulse morphology. RHEOSYS then calculates a series of 34 impedance and cardiac cycle parameters which include pulse amplitudes; areas; pulse propagation times; cardiac cycle times; and various measures of arterial and various tone, contractility, and pulse volume. We used this program to calculate the scalp and intracranial blood flow responses to head and neck cooling as it may be applied to lower the body temperatures of multiple sclerosis patients. Twelve women and twelve men were tested using a commercially available head and neck cooling system operated at its maximum cooling capacity for a period of 30 minutes. Head and neck cooling produced a transient change in scalp blood flow and a significant, (P<0.05) decrease of approx. 30% in intracranial blood flow. Results of this experiment will illustrate how REG and RHEOSYS can be used in biomedical applications.

  2. Developmental anatomy of the liver from computerized three-dimensional reconstructions of four human embryos (from Carnegie stage 14 to 23).

    PubMed

    Lhuaire, Martin; Tonnelet, Romain; Renard, Yohann; Piardi, Tullio; Sommacale, Daniele; Duparc, Fabrice; Braun, Marc; Labrousse, Marc

    2015-07-01

    Some aspects of human embryogenesis and organogenesis remain unclear, especially concerning the development of the liver and its vasculature. The purpose of this study was to investigate, from a descriptive standpoint, the evolutionary morphogenesis of the human liver and its vasculature by computerized three-dimensional reconstructions of human embryos. Serial histological sections of four human embryos at successive stages of development belonging to three prestigious French historical collections were digitized and reconstructed in 3D using software commonly used in medical radiology. Manual segmentation of the hepatic anatomical regions of interest was performed section by section. In this study, human liver organogenesis was examined at Carnegie stages 14, 18, 21 and 23. Using a descriptive and an analytical method, we showed that these stages correspond to the implementation of the large hepatic vascular patterns (the portal system, the hepatic artery and the hepatic venous system) and the biliary system. To our knowledge, our work is the first descriptive morphological study using 3D computerized reconstructions from serial histological sections of the embryonic development of the human liver between Carnegie stages 14 and 23. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Airway extraction from 3D chest CT volumes based on iterative extension of VOI enhanced by cavity enhancement filter

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitasaka, Takayuki; Oda, Masahiro; Mori, Kensaku

    2017-03-01

    Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining an integrated 3-D airway tree structure from a CT volume is a quite challenging task. This paper presents a novel airway segmentation method based on intensity structure analysis and bronchi shape structure analysis in volume of interest (VOI). This method segments the bronchial regions by applying the cavity enhancement filter (CEF) to trace the bronchial tree structure from the trachea. It uses the CEF in each VOI to segment each branch and to predict the positions of VOIs which envelope the bronchial regions in next level. At the same time, a leakage detection is performed to avoid the leakage by analysing the pixel information and the shape information of airway candidate regions extracted in the VOI. Bronchial regions are finally obtained by unifying the extracted airway regions. The experiments results showed that the proposed method can extract most of the bronchial region in each VOI and led good results of the airway segmentation.

  4. Assessment of Severity of Ovine Smoke Inhalation Injury by Analysis of Computed Tomographic Scans

    DTIC Science & Technology

    2003-09-01

    Computerized analysis of three- dimensional reconstructed scans was also performed, based on Hounsfield unit ranges: hyperinflated, 1,000 to 900; normal...the interactive segmentation function of the software. The pulmonary parenchyma was separated into four regions based on the Hounsfield unit (HU...SII) severity. Methods: Twenty anesthetized sheep underwent graded SII: group I, no smoke; group II, 5 smoke units ; group III, 10 units ; and group IV

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang Duc, Albert K., E-mail: albert.hoangduc.ucl@gmail.com; McClelland, Jamie; Modat, Marc

    Purpose: The aim of this study was to assess whether clinically acceptable segmentations of organs at risk (OARs) in head and neck cancer can be obtained automatically and efficiently using the novel “similarity and truth estimation for propagated segmentations” (STEPS) compared to the traditional “simultaneous truth and performance level estimation” (STAPLE) algorithm. Methods: First, 6 OARs were contoured by 2 radiation oncologists in a dataset of 100 patients with head and neck cancer on planning computed tomography images. Each image in the dataset was then automatically segmented with STAPLE and STEPS using those manual contours. Dice similarity coefficient (DSC) wasmore » then used to compare the accuracy of these automatic methods. Second, in a blind experiment, three separate and distinct trained physicians graded manual and automatic segmentations into one of the following three grades: clinically acceptable as determined by universal delineation guidelines (grade A), reasonably acceptable for clinical practice upon manual editing (grade B), and not acceptable (grade C). Finally, STEPS segmentations graded B were selected and one of the physicians manually edited them to grade A. Editing time was recorded. Results: Significant improvements in DSC can be seen when using the STEPS algorithm on large structures such as the brainstem, spinal canal, and left/right parotid compared to the STAPLE algorithm (all p < 0.001). In addition, across all three trained physicians, manual and STEPS segmentation grades were not significantly different for the brainstem, spinal canal, parotid (right/left), and optic chiasm (all p > 0.100). In contrast, STEPS segmentation grades were lower for the eyes (p < 0.001). Across all OARs and all physicians, STEPS produced segmentations graded as well as manual contouring at a rate of 83%, giving a lower bound on this rate of 80% with 95% confidence. Reduction in manual interaction time was on average 61% and 93% when automatic segmentations did and did not, respectively, require manual editing. Conclusions: The STEPS algorithm showed better performance than the STAPLE algorithm in segmenting OARs for radiotherapy of the head and neck. It can automatically produce clinically acceptable segmentation of OARs, with results as relevant as manual contouring for the brainstem, spinal canal, the parotids (left/right), and optic chiasm. A substantial reduction in manual labor was achieved when using STEPS even when manual editing was necessary.« less

  6. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy.

    PubMed

    Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis

    2015-09-01

    To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.

  7. Desmoid type fibromatosis: A case report with an unusual etiology

    PubMed Central

    Jafri, Syed Faisal; Obaisi, Obada; Vergara, Gerardo G; Cates, Joe; Singh, Jaswinder; Feeback, Jennifer; Yandrapu, Harathi

    2017-01-01

    Desmoid type fibromatosis (DTF) is a rare, locally invasive, non-metastasizing soft tissue tumor. We report an interesting case of DTF involving the pancreatic head of a 54-year-old woman. She presented with intermittent dysphagia and significant weight loss within a 3-mo period. Laboratory findings showed mild elevation of transaminases, significant elevation of alkaline phosphatase and direct hyperbilirubinemia, indicating obstructive jaundice. Computerized tomography of the abdomen revealed a mass in the head of the pancreas, dilated common bile duct, and dilated pancreatic duct. Endoscopic retrograde cholangiopancreatography and endoscopic ultrasound showed a large hypoechoic mass in the head of the pancreas causing extrahepatic biliary obstruction and pancreatic ductal dilation. The patient underwent a successful partial pancreatico-duodenectomy and cholecystectomy. She received no additional therapy after surgery, and liver function tests were normalized within nine days after surgery. Currently, surgical resection is the recommended first line treatment. The patient will be followed for any recurrence. PMID:28979721

  8. Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using Deep Convolutional Neural Networks.

    PubMed

    López-Linares, Karen; Aranjuelo, Nerea; Kabongo, Luis; Maclair, Gregory; Lete, Nerea; Ceresa, Mario; García-Familiar, Ainhoa; Macía, Iván; González Ballester, Miguel A

    2018-05-01

    Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Segment scheduling method for reducing 360° video streaming latency

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; Asbun, Eduardo; He, Yong; Ye, Yan

    2017-09-01

    360° video is an emerging new format in the media industry enabled by the growing availability of virtual reality devices. It provides the viewer a new sense of presence and immersion. Compared to conventional rectilinear video (2D or 3D), 360° video poses a new and difficult set of engineering challenges on video processing and delivery. Enabling comfortable and immersive user experience requires very high video quality and very low latency, while the large video file size poses a challenge to delivering 360° video in a quality manner at scale. Conventionally, 360° video represented in equirectangular or other projection formats can be encoded as a single standards-compliant bitstream using existing video codecs such as H.264/AVC or H.265/HEVC. Such method usually needs very high bandwidth to provide an immersive user experience. While at the client side, much of such high bandwidth and the computational power used to decode the video are wasted because the user only watches a small portion (i.e., viewport) of the entire picture. Viewport dependent 360°video processing and delivery approaches spend more bandwidth on the viewport than on non-viewports and are therefore able to reduce the overall transmission bandwidth. This paper proposes a dual buffer segment scheduling algorithm for viewport adaptive streaming methods to reduce latency when switching between high quality viewports in 360° video streaming. The approach decouples the scheduling of viewport segments and non-viewport segments to ensure the viewport segment requested matches the latest user head orientation. A base layer buffer stores all lower quality segments, and a viewport buffer stores high quality viewport segments corresponding to the most recent viewer's head orientation. The scheduling scheme determines viewport requesting time based on the buffer status and the head orientation. This paper also discusses how to deploy the proposed scheduling design for various viewport adaptive video streaming methods. The proposed dual buffer segment scheduling method is implemented in an end-to-end tile based 360° viewports adaptive video streaming platform, where the entire 360° video is divided into a number of tiles, and each tile is independently encoded into multiple quality level representations. The client requests different quality level representations of each tile based on the viewer's head orientation and the available bandwidth, and then composes all tiles together for rendering. The simulation results verify that the proposed dual buffer segment scheduling algorithm reduces the viewport switch latency, and utilizes available bandwidth more efficiently. As a result, a more consistent immersive 360° video viewing experience can be presented to the user.

  10. Wavefront Compensation Segmented Mirror Sensing and Control

    NASA Technical Reports Server (NTRS)

    Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen

    2012-01-01

    The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAKOWKSY,G.; ASPENLEITER,J.; SOLOMON,L.

    The Visible-Infrared SASE Amplifier (VISA) undulator is an in-vacuum, 4-meter long, 1.8 cm period, pure-permanent magnet device, with a novel, strong focusing, permanent magnet FODO array included within the fixed, 6 mm undulator gap. The undulator magnet is constructed of 99-cm long segments, joined into a continuous structure. To attain maximum SASE gain requites establishing overlap of electron and photon beams to within 50 microns rms. This imposes challenging tolerances on mechanical fabrication and magnetic field quality, and necessitates use of laser straightness interferometry for calibration and alignment of the magnetic axes of the undulator segments. This paper describes themore » computerized magnet sorting, pulsed-wire magnetic measurements, trajectory shimming and magnetic axis calibration performed to meet this goal.« less

  12. SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristophanous, M; Yang, J; Beadle, B

    2014-06-01

    Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled accordingmore » to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of imaging information available in radiotherapy today. This project was supported by a grant by Varian Medical Systems.« less

  13. SU-E-J-238: Monitoring Lymph Node Volumes During Radiotherapy Using Semi-Automatic Segmentation of MRI Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veeraraghavan, H; Tyagi, N; Riaz, N

    2014-06-01

    Purpose: Identification and image-based monitoring of lymph nodes growing due to disease, could be an attractive alternative to prophylactic head and neck irradiation. We evaluated the accuracy of the user-interactive Grow Cut algorithm for volumetric segmentation of radiotherapy relevant lymph nodes from MRI taken weekly during radiotherapy. Method: The algorithm employs user drawn strokes in the image to volumetrically segment multiple structures of interest. We used a 3D T2-wturbo spin echo images with an isotropic resolution of 1 mm3 and FOV of 492×492×300 mm3 of head and neck cancer patients who underwent weekly MR imaging during the course of radiotherapy.more » Various lymph node (LN) levels (N2, N3, N4'5) were individually contoured on the weekly MR images by an expert physician and used as ground truth in our study. The segmentation results were compared with the physician drawn lymph nodes based on DICE similarity score. Results: Three head and neck patients with 6 weekly MR images were evaluated. Two patients had level 2 LN drawn and one patient had level N2, N3 and N4'5 drawn on each MR image. The algorithm took an average of a minute to segment the entire volume (512×512×300 mm3). The algorithm achieved an overall DICE similarity score of 0.78. The time taken for initializing and obtaining the volumetric mask was about 5 mins for cases with only N2 LN and about 15 mins for the case with N2,N3 and N4'5 level nodes. The longer initialization time for the latter case was due to the need for accurate user inputs to separate overlapping portions of the different LN. The standard deviation in segmentation accuracy at different time points was utmost 0.05. Conclusions: Our initial evaluation of the grow cut segmentation shows reasonably accurate and consistent volumetric segmentations of LN with minimal user effort and time.« less

  14. 49 CFR 572.181 - General description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... assembly Drawing number Head Assembly 175-1000 Neck Assembly Test/Cert 175-2000 Neck Bracket Including..., dated February 2008. (c) Weights of body segments (head, neck, upper and lower torso, arms and upper and... the convenience of the user, the added and revised text is set forth as follows: § 572.181 General...

  15. Strategies for the Segmentation of Subcutaneous Vascular Patterns in Thermographic Images

    NASA Astrophysics Data System (ADS)

    Chan, Eric K. Y.; Pearce, John A.

    1989-05-01

    Computer-assisted segmentation of vascular patterns in thermographic images provides the clinician with graphic outlines of thermally significant subcutaneous blood vessels. Segmentation strategies compared here consist of image smoothing protocols followed by thresholding and zero-crossing edge detectors. Median prefiltering followed by the Frei-Chen algorithm gave the most reproducible results, with an execution time of 143 seconds for 256 X 256 images. The Laplacian of Gaussian operator was not suitable due to streak artifacts in the thermographic imaging system. This computerized process may be adopted in a fast paced clinical environment to aid in the diagnosis and assessment of peripheral circulatory diseases, Raynaud's Disease3, phlebitis, varicose veins, as well as diseases of the autonomic nervous system. The same methodology may be applied to enhance the appearance of abnormal breast vascular patterns, and hence serve as an adjunct to mammography in the diagnosis of breast cancer. The automatically segmented vascular patterns, which have a hand drawn appearance, may also be used as a data reduction precursor to higher level pattern analysis and classification tasks.

  16. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  17. Patterns of Transfer of Adaptation Among Body Segments

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Bloomberg, J. J.; Stelmach, George E.

    2000-01-01

    Two experiments were conducted in order to determine the patterns of transfer of visuomotor adaptation between arm and head pointing. An altered gain of display of pointing movements was used to induce a conflict between visual and somatosensory representations. Two subject groups participated in Experiment One: group 1 adapted shoulder pointing movements, and group 2 adapted wrist pointing movements to a 0.5 gain of display. Following the adaptation regimen, subjects performed a transfer test in which the shoulder group performed wrist movements and the wrist group performed shoulder movements. The results demonstrated that both groups displayed typical adaptation curves, initially undershooting the target followed by a return to baseline performance. Transfer tests revealed that both groups had high transfer of the acquired adaptation to the other joint. Experiment Two followed a similar design except that group 1 adapted head pointing movements and group 2 adapted arm pointing movements. The arm adaptation had high transfer to head pointing while the head adaptation had very little transfer to arm pointing. These results imply that, while the arm segments may share a common target representation for goal-directed actions, individual but functionally dependent target representations may exist for the control of head and arm movements.

  18. Conservation, Innovation, and Bias: Embryonic Segment Boundaries Position Posterior, but Not Anterior, Head Horns in Adult Beetles.

    PubMed

    Busey, Hannah A; Zattara, Eduardo E; Moczek, Armin P

    2016-07-01

    The integration of form and function of novel traits is a fundamental process during the developmental evolution of complex organisms, yet how novel traits and trait functions integrate into preexisting contexts remains poorly understood. Here, we explore the mechanisms by which the adult insect head has been able to integrate novel traits and features during its ontogeny, focusing on the cephalic horns of Onthophagus beetles. Specifically, using a microablation approach we investigate how different regions of the dorsal head of adult horned beetles relate to their larval and embryonic counterparts and test whether deeply conserved regional boundaries that establish the embryonic head might also facilitate or bias the positioning of cephalic horns along the dorsal adult head. We find that paired posterior horns-the most widespread horn type within the genus-are positioned along a border homologous to the embryonic clypeolabral (CL)-ocular boundary, and that this placement constitutes the ancestral form of horn positioning. In contrast, we observed that the phylogenetically much rarer anterior horns are positioned by larval head regions contained firmly within the CL segment and away from any major preexisting larval head landmarks or boundaries. Lastly, we describe the unexpected finding that ablations at medial head regions can result in ectopic outgrowths bearing terminal structures resembling the more anterior clypeal ridge. We discuss our results in the light of the developmental genetic mechanisms of head formation in holometabolous insects and the role of co-option in innovation and bias in developmental evolution. © 2016 Wiley Periodicals, Inc.

  19. An Automated Method for High-Definition Transcranial Direct Current Stimulation Modeling*

    PubMed Central

    Huang, Yu; Su, Yuzhuo; Rorden, Christopher; Dmochowski, Jacek; Datta, Abhishek; Parra, Lucas C.

    2014-01-01

    Targeted transcranial stimulation with electric currents requires accurate models of the current flow from scalp electrodes to the human brain. Idiosyncratic anatomy of individual brains and heads leads to significant variability in such current flows across subjects, thus, necessitating accurate individualized head models. Here we report on an automated processing chain that computes current distributions in the head starting from a structural magnetic resonance image (MRI). The main purpose of automating this process is to reduce the substantial effort currently required for manual segmentation, electrode placement, and solving of finite element models. In doing so, several weeks of manual labor were reduced to no more than 4 hours of computation time and minimal user interaction, while current-flow results for the automated method deviated by less than 27.9% from the manual method. Key facilitating factors are the addition of three tissue types (skull, scalp and air) to a state-of-the-art automated segmentation process, morphological processing to correct small but important segmentation errors, and automated placement of small electrodes based on easily reproducible standard electrode configurations. We anticipate that such an automated processing will become an indispensable tool to individualize transcranial direct current stimulation (tDCS) therapy. PMID:23367144

  20. [Mobile CT at neurointensive sections--it is possible].

    PubMed

    Frost, Majbritt; Stenkær, Susanne; Kellenberger, Simone; Ehlers, Lars

    2011-01-24

    Intrahospital transportation can be complicated and hazardous. Mobile computerized tomography (CT) of the head performed at the neurointensive care unit is a new technique that minimizes the need for transportation of unstable patients. Even small changes in physiological parameters can be detrimental for these patients and cause secondary injury and thus affect their prognoses. The portable CT scanner in the neurointensive care unit holds great potential, but the high price level may limit its use.

  1. Survey Summary of AGATE Concepts Demonstration at Annual NATA Convention March 24-26, 1997. Volume 2; Original Survey Data

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An AGATE Concepts Demonstration was conducted at the Annual National Air Transportation Association (NATA) Convention in 1997. Following, a 5-minute introductory briefing, an interactive simulation of a single-pilot, single-engine aircraft was conducted. The participant was able to take off, fly a brief enroute segment, fly a Global Positioning System (GPS) approach and landing, and repeat the approach and landing segment. The participant was provided an advanced 'highway-in-the-sky' presentation on both a simulated head-up display and on a large LCD head-down display to follow throughout the flight. A single-lever power control and display concept was also provided for control of the engine throughout the flight. A second head-down, multifunction display in the instrument panel provided a moving map display for navigation purposes and monitoring of the status of the aircraft's systems.

  2. CT Urography: Segmentation of Urinary Bladder using CLASS with Local Contour Refinement

    PubMed Central

    Cha, Kenny; Hadjiiski, Lubomir; Chan, Heang-Ping; Caoili, Elaine M.; Cohan, Richard H.; Zhou, Chuan

    2016-01-01

    Purpose We are developing a computerized system for bladder segmentation on CT urography (CTU), as a critical component for computer-aided detection of bladder cancer. Methods The presence of regions filled with intravenous contrast and without contrast presents a challenge for bladder segmentation. Previously, we proposed a Conjoint Level set Analysis and Segmentation System (CLASS). In case the bladder is partially filled with contrast, CLASS segments the non-contrast (NC) region and the contrast-filled (C) region separately and automatically conjoins the NC and C region contours; however, inaccuracies in the NC and C region contours may cause the conjoint contour to exclude portions of the bladder. To alleviate this problem, we implemented a local contour refinement (LCR) method that exploits model-guided refinement (MGR) and energy-driven wavefront propagation (EDWP). MGR propagates the C region contours if the level set propagation in the C region stops prematurely due to substantial non-uniformity of the contrast. EDWP with regularized energies further propagates the conjoint contours to the correct bladder boundary. EDWP uses changes in energies, smoothness criteria of the contour, and previous slice contour to determine when to stop the propagation, following decision rules derived from training. A data set of 173 cases was collected for this study: 81 cases in the training set (42 lesions, 21 wall thickenings, 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, 13 normal bladders). For all cases, 3D hand segmented contours were obtained as reference standard and used for the evaluation of the computerized segmentation accuracy. Results For CLASS with LCR, the average volume intersection ratio, average volume error, absolute average volume error, average minimum distance and Jaccard index were 84.2±11.4%, 8.2±17.4%, 13.0±14.1%, 3.5±1.9 mm, 78.8±11.6%, respectively, for the training set and 78.0±14.7%, 16.4±16.9%, 18.2±15.0%, 3.8±2.3 mm, 73.8±13.4% respectively, for the test set. With CLASS only, the corresponding values were 75.1±13.2%, 18.7±19.5%, 22.5±14.9%, 4.3±2.2 mm, 71.0±12.6%, respectively, for the training set and 67.3±14.3%, 29.3±15.9%, 29.4±15.6%, 4.9±2.6 mm, 65.0±13.3%, respectively, for the test set. The differences between the two methods for all five measures were statistically significant (p<0.001) for both the training and test sets. Conclusions The results demonstrate the potential of CLASS with LCR for segmentation of the bladder. PMID:24801066

  3. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.

    PubMed

    Men, Kuo; Dai, Jianrong; Li, Yexiong

    2017-12-01

    Delineation of the clinical target volume (CTV) and organs at risk (OARs) is very important for radiotherapy but is time-consuming and prone to inter-observer variation. Here, we proposed a novel deep dilated convolutional neural network (DDCNN)-based method for fast and consistent auto-segmentation of these structures. Our DDCNN method was an end-to-end architecture enabling fast training and testing. Specifically, it employed a novel multiple-scale convolutional architecture to extract multiple-scale context features in the early layers, which contain the original information on fine texture and boundaries and which are very useful for accurate auto-segmentation. In addition, it enlarged the receptive fields of dilated convolutions at the end of networks to capture complementary context features. Then, it replaced the fully connected layers with fully convolutional layers to achieve pixel-wise segmentation. We used data from 278 patients with rectal cancer for evaluation. The CTV and OARs were delineated and validated by senior radiation oncologists in the planning computed tomography (CT) images. A total of 218 patients chosen randomly were used for training, and the remaining 60 for validation. The Dice similarity coefficient (DSC) was used to measure segmentation accuracy. Performance was evaluated on segmentation of the CTV and OARs. In addition, the performance of DDCNN was compared with that of U-Net. The proposed DDCNN method outperformed the U-Net for all segmentations, and the average DSC value of DDCNN was 3.8% higher than that of U-Net. Mean DSC values of DDCNN were 87.7% for the CTV, 93.4% for the bladder, 92.1% for the left femoral head, 92.3% for the right femoral head, 65.3% for the intestine, and 61.8% for the colon. The test time was 45 s per patient for segmentation of all the CTV, bladder, left and right femoral heads, colon, and intestine. We also assessed our approaches and results with those in the literature: our system showed superior performance and faster speed. These data suggest that DDCNN can be used to segment the CTV and OARs accurately and efficiently. It was invariant to the body size, body shape, and age of the patients. DDCNN could improve the consistency of contouring and streamline radiotherapy workflows. © 2017 American Association of Physicists in Medicine.

  4. Successful Transarterial Embolization of a Posttraumatic Fistula Between a Posterior Communicating Artery Aneurysm and the Cavernous Sinus: A Case Report.

    PubMed

    Jinbo, Yin; Jun, Liu; Kejie, Mou; Zheng, Zhou

    2015-01-01

    Posterior communicating artery (PCoA) aneurysm-cavernous sinus fistulae are an extremely rare complication of head injury . The treatment of PCoA aneurysm-cavernous sinus fistulae has not been well described. A 27-year-old man was admitted with a retroocular bruit and blurred vision of the left eye seven months after a severe head injury. We report the angiographic appearance of a posterior communicating artery (PCoA) aneurysm with a fistula to the cavernous sinus. This injury had been previously misinterpreted to be a PCoA aneurysm by computerized tomographic angiography (CTA). The patient was successfully treated with coils and Onyx of a fistula between the PCoA aneurysm and cavernous sinus.

  5. A spontaneous segmental deletion from chromosome arm 3DL enhances Fusarium head blight resistance in wheat

    USDA-ARS?s Scientific Manuscript database

    Much effort has been directed at identifying sources of resistance to Fusarium head blight (FHB) in wheat. We sought to identify molecular markers for what we hypothesized was a new major FHB resistance locus originating from the wheat cultivar 'Freedom' and introgressed into the susceptible wheat c...

  6. Use of computerized neuropsychological testing to help determine fitness to return to combat operations when taking medication that can influence cognitive function.

    PubMed

    McLay, Robert; Spira, James; Reeves, Dennis

    2010-12-01

    Nowhere is it more important to maintain peek mental functioning than in a combat zone. Conditions ranging from pain to head injury to post-traumatic stress disorder can cause impairments in neuropsychological function and place service members at risk. Medications can sometimes help alleviate these problems, but also have the risk of further slowing cognitive function or impairing reaction time. Standard methods of neuropsychological testing are often not available in a combat environment. New technologies are being advanced that can allow portable, computerized neuropsychological testing to be performed at almost any location. We present a case that demonstrates how the use of such handheld technology can assist a military physician in assessing the influence of medication on reaction time and in determining if and when a service member is ready to return to combat.

  7. The segmentation of the HMD market: optics for smart glasses, smart eyewear, AR and VR headsets

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Saeedi, Ehsan; Brac-de-la-Perriere, Vincent

    2014-09-01

    This paper reviews the various optical technologies that have been developed to implement HMDs (Head Mounted Displays), both as AR (Augmented Reality) devices, VR (Virtual Reality) devices and more recently as smart glasses, smart eyewear or connected glasses. We review the typical requirements and optical performances of such devices and categorize them into distinct groups, which are suited for different (and constantly evolving) market segments, and analyze such market segmentation.

  8. Tooth segmentation system with intelligent editing for cephalometric analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shoupu

    2015-03-01

    Cephalometric analysis is the study of the dental and skeletal relationship in the head, and it is used as an assessment and planning tool for improved orthodontic treatment of a patient. Conventional cephalometric analysis identifies bony and soft-tissue landmarks in 2D cephalometric radiographs, in order to diagnose facial features and abnormalities prior to treatment, or to evaluate the progress of treatment. Recent studies in orthodontics indicate that there are persistent inaccuracies and inconsistencies in the results provided using conventional 2D cephalometric analysis. Obviously, plane geometry is inappropriate for analyzing anatomical volumes and their growth; only a 3D analysis is able to analyze the three-dimensional, anatomical maxillofacial complex, which requires computing inertia systems for individual or groups of digitally segmented teeth from an image volume of a patient's head. For the study of 3D cephalometric analysis, the current paper proposes a system for semi-automatically segmenting teeth from a cone beam computed tomography (CBCT) volume with two distinct features, including an intelligent user-input interface for automatic background seed generation, and a graphics processing unit (GPU) acceleration mechanism for three-dimensional GrowCut volume segmentation. Results show a satisfying average DICE score of 0.92, with the use of the proposed tooth segmentation system, by 15 novice users who segmented a randomly sampled tooth set. The average GrowCut processing time is around one second per tooth, excluding user interaction time.

  9. A novel segmentation approach for implementation of MRAC in head PET/MRI employing Short-TE MRI and 2-point Dixon method in a fuzzy C-means framework

    NASA Astrophysics Data System (ADS)

    Khateri, Parisa; Rad, Hamidreza Saligheh; Jafari, Amir Homayoun; Ay, Mohammad Reza

    2014-01-01

    Quantitative PET image reconstruction requires an accurate map of attenuation coefficients of the tissue under investigation at 511 keV (μ-map), and in order to correct the emission data for attenuation. The use of MRI-based attenuation correction (MRAC) has recently received lots of attention in the scientific literature. One of the major difficulties facing MRAC has been observed in the areas where bone and air collide, e.g. ethmoidal sinuses in the head area. Bone is intrinsically not detectable by conventional MRI, making it difficult to distinguish air from bone. Therefore, development of more versatile MR sequences to label the bone structure, e.g. ultra-short echo-time (UTE) sequences, certainly plays a significant role in novel methodological developments. However, long acquisition time and complexity of UTE sequences limit its clinical applications. To overcome this problem, we developed a novel combination of Short-TE (ShTE) pulse sequence to detect bone signal with a 2-point Dixon technique for water-fat discrimination, along with a robust image segmentation method based on fuzzy clustering C-means (FCM) to segment the head area into four classes of air, bone, soft tissue and adipose tissue. The imaging protocol was set on a clinical 3 T Tim Trio and also 1.5 T Avanto (Siemens Medical Solution, Erlangen, Germany) employing a triple echo time pulse sequence in the head area. The acquisition parameters were as follows: TE1/TE2/TE3=0.98/4.925/6.155 ms, TR=8 ms, FA=25 on the 3 T system, and TE1/TE2/TE3=1.1/2.38/4.76 ms, TR=16 ms, FA=18 for the 1.5 T system. The second and third echo-times belonged to the Dixon decomposition to distinguish soft and adipose tissues. To quantify accuracy, sensitivity and specificity of the bone segmentation algorithm, resulting classes of MR-based segmented bone were compared with the manual segmented one by our expert neuro-radiologist. Results for both 3 T and 1.5 T systems show that bone segmentation applied in several slices yields average accuracy, sensitivity and specificity higher than 90%. Results indicate that FCM is an appropriate technique for tissue classification in the sinusoidal area where there is air-bone interface. Furthermore, using Dixon method, fat and brain tissues were successfully separated.

  10. Facial type and head posture of nasal and mouth-breathing children.

    PubMed

    Bolzan, Geovana de Paula; Souza, Juliana Alves; Boton, Luane de Moraes; Silva, Ana Maria Toniolo da; Corrêa, Eliane Castilhos Rodrigues

    2011-12-01

    To verify the facial type and the head posture of nasal and mouth-breathing children from habitual and obstructive etiologies, as well as to correlate the morphological facial index to the head angulation position in the sagittal plane. Participants were 59 children with ages between 8 years and 11 years and 10 months. All subjects were undergone to speech-language pathology screening, otorhinolaryngologic evaluation, and nasopharyngoscopy, allowing the constitution of three groups: nasal breathers--15 children; mouth breathers from obstructive etiology--22 children; and habitual mouth breathers--22 children. In order to determine facial type and morphological facial index, the height and the width of the face were measured using a digital caliper. The head posture was assessed through physical examination and computerized photogrammetry. It was verified the predominance of short face in nasal breathers, and long face in mouth breathers. There was an association among facial type and breathing mode/mouth breathing etiology: the brachyfacial type was more frequent among nasal breathers, and less frequent in subjects with obstructive nasal breathing. Head posture was similar in all three groups. No correlation was found between morphological facial index and head posture. The brachyfacial type favors the nasal-breathing mode and the head posture is not influenced by breathing mode and by the etiology of mouth breathing, as well as it is not related to facial type.

  11. Breast mass segmentation in mammography using plane fitting and dynamic programming.

    PubMed

    Song, Enmin; Jiang, Luan; Jin, Renchao; Zhang, Lin; Yuan, Yuan; Li, Qiang

    2009-07-01

    Segmentation is an important and challenging task in a computer-aided diagnosis (CAD) system. Accurate segmentation could improve the accuracy in lesion detection and characterization. The objective of this study is to develop and test a new segmentation method that aims at improving the performance level of breast mass segmentation in mammography, which could be used to provide accurate features for classification. This automated segmentation method consists of two main steps and combines the edge gradient, the pixel intensity, as well as the shape characteristics of the lesions to achieve good segmentation results. First, a plane fitting method was applied to a background-trend corrected region-of-interest (ROI) of a mass to obtain the edge candidate points. Second, dynamic programming technique was used to find the "optimal" contour of the mass from the edge candidate points. Area-based similarity measures based on the radiologist's manually marked annotation and the segmented region were employed as criteria to evaluate the performance level of the segmentation method. With the evaluation criteria, the new method was compared with 1) the dynamic programming method developed by Timp and Karssemeijer, and 2) the normalized cut segmentation method, based on 337 ROIs extracted from a publicly available image database. The experimental results indicate that our segmentation method can achieve a higher performance level than the other two methods, and the improvements in segmentation performance level were statistically significant. For instance, the mean overlap percentage for the new algorithm was 0.71, whereas those for Timp's dynamic programming method and the normalized cut segmentation method were 0.63 (P < .001) and 0.61 (P < .001), respectively. We developed a new segmentation method by use of plane fitting and dynamic programming, which achieved a relatively high performance level. The new segmentation method would be useful for improving the accuracy of computerized detection and classification of breast cancer in mammography.

  12. Multisensory control of a straight locomotor trajectory.

    PubMed

    Hanna, Maxim; Fung, Joyce; Lamontagne, Anouk

    2017-01-01

    Locomotor steering is contingent upon orienting oneself spatially in the environment. When the head is turned while walking, the optic flow projected onto the retina is a complex pattern comprising of a translational and a rotational component. We have created a unique paradigm to simulate different optic flows in a virtual environment. We hypothesized that non-visual (vestibular and somatosensory) cues are required for proper control of a straight trajectory while walking. This research study included 9 healthy young subjects walking in a large physical space (40×25m2) while the virtual environment is viewed in a helmet-mounted display. They were instructed to walk straight in the physical world while being exposed to three conditions: (1) self-initiated active head turns (AHT: 40° right, left, or none); (2) visually simulated head turns (SHT); and (3) visually simulated head turns with no target element (SHT_NT). Conditions 1 and 2 involved an eye-level target which subjects were instructed to fixate, whereas condition 3 was similar to condition 2 but with no target. Identical retinal flow patterns were present in the AHT and SHT conditions whereas non-visual cues differed in that a head rotation was sensed only in AHT but not in SHT. Body motions were captured by a 12-camera Vicon system. Horizontal orientations of the head and body segments, as well as the trajectory of the body's centre of mass were analyzed. SHT and SNT_NT yielded similar results. Heading and body segment orientations changed in the direction opposite to the head turns in SHT conditions. Heading remained unchanged across head turn directions in AHT. Results suggest that non-visual information is used in the control of heading while being exposed to changing rotational optic flows. The small magnitude of the changes in SHT conditions suggests that the CNS can re-weight relevant sources of information to minimize heading errors in the presence of sensory conflicts.

  13. Soccer Heading Is Associated with White Matter Microstructural and Cognitive Abnormalities

    PubMed Central

    Kim, Namhee; Zimmerman, Molly E.; Kim, Mimi; Stewart, Walter F.; Branch, Craig A.

    2013-01-01

    Purpose: To investigate the association of soccer heading with subclinical evidence of traumatic brain injury. Materials and Methods: With institutional review board approval and compliance with HIPAA guidelines, 37 amateur soccer players (mean age, 30.9 years; 78% [29] men, 22% [eight] women) gave written informed consent and completed a questionnaire to quantify heading in the prior 12 months and lifetime concussions. Diffusion-tensor magnetic resonance (MR) imaging at 3.0 T was performed (32 directions; b value, 800 sec/mm2; 2 × 2 × 2-mm voxels). Cognitive function was measured by using a computerized battery of tests. Voxelwise linear regression (heading vs fractional anisotropy [FA]) was applied to identify significant regional associations. FA at each location and cognition were tested for a nonlinear relationship to heading by using an inverse logit model that incorporated demographic covariates and history of concussion. Results: Participants had headed 32–5400 times (median, 432 times) over the previous year. Heading was associated with lower FA at three locations in temporo-occipital white matter with a threshold that varied according to location (885–1550 headings per year) (P < .00001). Lower levels of FA were also associated with poorer memory scores (P < .00001), with a threshold of 1800 headings per year. Lifetime concussion history and demographic features were not significantly associated with either FA or cognitive performance. Conclusion: Heading is associated with abnormal white matter microstructure and with poorer neurocognitive performance. This relationship is not explained by a history of concussion. © RSNA, 2013 PMID:23757503

  14. Dentalmaps: Automatic Dental Delineation for Radiotherapy Planning in Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thariat, Juliette, E-mail: jthariat@hotmail.com; Ramus, Liliane; INRIA

    Purpose: To propose an automatic atlas-based segmentation framework of the dental structures, called Dentalmaps, and to assess its accuracy and relevance to guide dental care in the context of intensity-modulated radiotherapy. Methods and Materials: A multi-atlas-based segmentation, less sensitive to artifacts than previously published head-and-neck segmentation methods, was used. The manual segmentations of a 21-patient database were first deformed onto the query using nonlinear registrations with the training images and then fused to estimate the consensus segmentation of the query. Results: The framework was evaluated with a leave-one-out protocol. The maximum doses estimated using manual contours were considered as groundmore » truth and compared with the maximum doses estimated using automatic contours. The dose estimation error was within 2-Gy accuracy in 75% of cases (with a median of 0.9 Gy), whereas it was within 2-Gy accuracy in 30% of cases only with the visual estimation method without any contour, which is the routine practice procedure. Conclusions: Dose estimates using this framework were more accurate than visual estimates without dental contour. Dentalmaps represents a useful documentation and communication tool between radiation oncologists and dentists in routine practice. Prospective multicenter assessment is underway on patients extrinsic to the database.« less

  15. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org; Beadle, Beth M.

    2015-09-15

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to themore » planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55–0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. Conclusions: The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.« less

  16. An Analysis of Potential Predictive Parameters of Motion Sickness Using a Computerized Biophysical Data Acquisition System.

    DTIC Science & Technology

    1985-12-01

    Despite the problems, drug therapy was seen as the easiest and most effective treatment. Some wartime research, primarily Canadian and Australian ...sickness was further supported by the Australians when they found that small head motions greatly contributed to the onset of motion sickness (46:20). It is...particularly noteworthy that one Australian , McIntyre, laid the groundwork for modern sensory conflict theory when he stated in 1941, "In most cases

  17. Determination of cup-to-disc ratio of optical nerve head for diagnosis of glaucoma on stereo retinal fundus image pairs

    NASA Astrophysics Data System (ADS)

    Muramatsu, Chisako; Nakagawa, Toshiaki; Sawada, Akira; Hatanaka, Yuji; Hara, Takeshi; Yamamoto, Tetsuya; Fujita, Hiroshi

    2009-02-01

    A large cup-to-disc (C/D) ratio, which is the ratio of the diameter of the depression (cup) to that of the optical nerve head (ONH, disc), can be one of the important signs for diagnosis of glaucoma. Eighty eyes, including 25 eyes with the signs of glaucoma, were imaged by a stereo retinal fundus camera. An ophthalmologist provided the outlines of cup and disc on a regular monitor and on the stereo display. The depth image of the ONH was created by determining the corresponding pixels in a pair of images based on the correlation coefficient in localized regions. The areas of the disc and cup were determined by use of the red component in one of the color images and by use of the depth image, respectively. The C/D ratio was determined based on the largest vertical lengths in the cup and disc areas, which was then compared with that by the ophthalmologist. The disc areas determined by the computerized method agreed relatively well with those determined by the ophthalmologist, whereas the agreement for the cup areas was somewhat lower. When C/D ratios were employed for distinction between the glaucomatous and non-glaucomatous eyes, the area under the receiver operating characteristic curve (AUC) was 0.83. The computerized analysis of ONH can be useful for diagnosis of glaucoma.

  18. Detection of pulmonary nodules in CT images based on fuzzy integrated active contour model and hybrid parametric mixture model.

    PubMed

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.

  19. An Analysis of Image Segmentation Time in Beam’s-Eye-View Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chun; Spelbring, D.R.; Chen, George T.Y.

    In this work we tabulate and histogram the image segmentation time for beam’s eye view (BEV) treatment planning in our center. The average time needed to generate contours on CT images delineating normal structures and treatment target volumes is calculated using a data base containing over 500 patients’ BEV plans. The average number of contours and total image segmentation time needed for BEV plans in three common treatment sites, namely, head/neck, lung/chest, and prostate, were estimated.

  20. Patterns of Emphysema Heterogeneity

    PubMed Central

    Valipour, Arschang; Shah, Pallav L.; Gesierich, Wolfgang; Eberhardt, Ralf; Snell, Greg; Strange, Charlie; Barry, Robert; Gupta, Avina; Henne, Erik; Bandyopadhyay, Sourish; Raffy, Philippe; Yin, Youbing; Tschirren, Juerg; Herth, Felix J.F.

    2016-01-01

    Background Although lobar patterns of emphysema heterogeneity are indicative of optimal target sites for lung volume reduction (LVR) strategies, the presence of segmental, or sublobar, heterogeneity is often underappreciated. Objective The aim of this study was to understand lobar and segmental patterns of emphysema heterogeneity, which may more precisely indicate optimal target sites for LVR procedures. Methods Patterns of emphysema heterogeneity were evaluated in a representative cohort of 150 severe (GOLD stage III/IV) chronic obstructive pulmonary disease (COPD) patients from the COPDGene study. High-resolution computerized tomography analysis software was used to measure tissue destruction throughout the lungs to compute heterogeneity (≥ 15% difference in tissue destruction) between (inter-) and within (intra-) lobes for each patient. Emphysema tissue destruction was characterized segmentally to define patterns of heterogeneity. Results Segmental tissue destruction revealed interlobar heterogeneity in the left lung (57%) and right lung (52%). Intralobar heterogeneity was observed in at least one lobe of all patients. No patient presented true homogeneity at a segmental level. There was true homogeneity across both lungs in 3% of the cohort when defining heterogeneity as ≥ 30% difference in tissue destruction. Conclusion Many LVR technologies for treatment of emphysema have focused on interlobar heterogeneity and target an entire lobe per procedure. Our observations suggest that a high proportion of patients with emphysema are affected by interlobar as well as intralobar heterogeneity. These findings prompt the need for a segmental approach to LVR in the majority of patients to treat only the most diseased segments and preserve healthier ones. PMID:26430783

  1. Real-time Awake Animal Motion Tracking System for SPECT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon

    Enhancements have been made in the development of a real-time optical pose measurement and tracking system that provides 3D position and orientation data for a single photon emission computed tomography (SPECT) imaging system for awake, unanesthetized, unrestrained small animals. Three optical cameras with infrared (IR) illumination view the head movements of an animal enclosed in a transparent burrow. Markers placed on the head provide landmark points for image segmentation. Strobed IR LED s are synchronized to the cameras and illuminate the markers to prevent motion blur for each set of images. The system using the three cameras automatically segments themore » markers, detects missing data, rejects false reflections, performs trinocular marker correspondence, and calculates the 3D pose of the animal s head. Improvements have been made in methods for segmentation, tracking, and 3D calculation to give higher speed and more accurate measurements during a scan. The optical hardware has been installed within a Siemens MicroCAT II small animal scanner at Johns Hopkins without requiring functional changes to the scanner operation. The system has undergone testing using both phantoms and live mice and has been characterized in terms of speed, accuracy, robustness, and reliability. Experimental data showing these motion tracking results are given.« less

  2. The control of upper body segment speed and velocity during the golf swing.

    PubMed

    Horan, Sean A; Kavanagh, Justin J

    2012-06-01

    Understanding the dynamics of upper body motion during the downswing is an important step in determining the control strategies required for a successful and repeatable golf swing. The purpose of this study was to examine the relationship between head, thorax, and pelvis motion, during the downswing of professional golfers. Three-dimensional data were collected for 14 male professional golfers (age 27 +/- 8 years, golf-playing experience 13.3 +/- 8 years) using an optical motion analysis system. The amplitude and timing of peak speed and peak velocities were calculated for the head, thorax, and pelvis during the downswing. Cross-correlation analysis was used to examine the strength of coupling and phasing between and within segments. The results indicated the thorax segment had the highest peak speeds and peak velocities for the upper body during the downswing. A strong coupling relationship was evident between the thorax and pelvis (average R2 = 0.92 across all directions), while the head and thorax showed a much more variable relationship (average R2 = 0.76 across all directions). The strong coupling between the thorax and pelvis is possibly a method for simplifying the motor control strategy used during the downswing, and a way of ensuring consistent motor patterns.

  3. The origin of crustaceans: new evidence from the Early Cambrian of China.

    PubMed Central

    Chen, J. Y.; Vannier, J.; Huang, D. Y.

    2001-01-01

    One of the smallest arthropods recently discovered in the Early Cambrian Maotianshan Shale Lagerstätte is described. Ercaia gen. nov. has an untagmatized trunk bearing serially repeated biramous appendages (long and segmented endopods and flap-like exopods), a head with an acron bearing stalked lateral eyes and a sclerite and two pairs of antennae. The position of this 520 million-year-old tiny arthropod within the Crustacea is supported by several anatomical features: (i) a head with five pairs of appendages including two pairs of antennae, (ii) highly specialized antennae (large setose fans with a possible function in feeding), and (iii) specialized last trunk appendages (segmented pediform structures fringed with setae). The segmentation pattern of Ercaia (5 head and 13 trunk) is close to that of Maxillopoda but lacks the trunk tagmosis of modern representatives of the group. Ercaia is interpreted as a possible derivative of the stem group Crustacea. Ercaia is likely to have occupied an ecological niche similar to those of some Recent meiobenthic organisms (e.g. copepods living in association with sediment). This new fossil evidence supports the remote ancestry of crustaceans well before the Late Cambrian and shows, along with other fossil data (mainly Early Cambrian in China), that a variety of body plans already coexisted among the primitive crustacean stock. PMID:11674864

  4. Characterizing outcome preferences in patients with psychotic disorders: a discrete choice conjoint experiment.

    PubMed

    Zipursky, Robert B; Cunningham, Charles E; Stewart, Bailey; Rimas, Heather; Cole, Emily; Vaz, Stephanie McDermid

    2017-07-01

    The majority of individuals with schizophrenia will achieve a remission of psychotic symptoms, but few will meet criteria for recovery. Little is known about what outcomes are important to patients. We carried out a discrete choice experiment to characterize the outcome preferences of patients with psychotic disorders. Participants (N=300) were recruited from two clinics specializing in psychotic disorders. Twelve outcomes were each defined at three levels and incorporated into a computerized survey with 15 choice tasks. Utility values and importance scores were calculated for each outcome level. Latent class analysis was carried out to determine whether participants were distributed into segments with different preferences. Multinomial logistic regression was used to identify predictors of segment membership. Latent class analysis revealed three segments of respondents. The first segment (48%), which we labeled "Achievement-focused," preferred to have a full-time job, to live independently, to be in a long-term relationship, and to have no psychotic symptoms. The second segment (29%), labeled "Stability-focused," preferred to not have a job, to live independently, and to have some ongoing psychotic symptoms. The third segment (23%), labeled "Health-focused," preferred to not have a job, to live in supervised housing, and to have no psychotic symptoms. Segment membership was predicted by education, socioeconomic status, psychotic symptom severity, and work status. This study has revealed that patients with psychotic disorders are distributed between segments with different outcome preferences. New approaches to improve outcomes for patients with psychotic disorders should be informed by a greater understanding of patient preferences and priorities. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. Conclusions: The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications. PMID:24320536

  6. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study.

    PubMed

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee

    2013-12-01

    Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.

  7. Spatiotemporal mapping of scalp potentials.

    PubMed

    Fender, D H; Santoro, T P

    1977-11-01

    Computerized analysis and display techniques are applied to the problem of identifying the origins of visually evoked scalped potentials (VESP's). A new stimulus for VESP work, white noise, is being incorporated in the solution of this problem. VESP's for white-noise stimulation exhibit time domain behavior similar to the classical response for flash stimuli but with certain significant differences. Contour mapping algorithms are used to display the time behavior of equipotential surfaces on the scalp during the VESP. The electrical and geometrical parameters of the head are modeled. Electrical fields closely matching those obtained experimentally are generated on the surface of the model head by optimally selecting the location and strength parameters of one or two dipole current sources contained within the model. Computer graphics are used to display as a movie the actual and model scalp potential field and the parameters of the dipole generators whithin the model head during the time course of the VESP. These techniques are currently used to study retinotopic mapping, fusion, and texture perception in the human.

  8. Isolated brain stem edema in a pediatric patient with head trauma: a case report.

    PubMed

    Basarslan, K; Basarslan, F; Karakus, A; Yilmaz, C

    2015-01-01

    Brain stem is the most vital part of our body and is a transitional region of the brain that connects the cerebrum with the spinal cord. Though, being small in size, it is full of indispensible functions such as the breathing, heart beat. Injury to the brain stem has similar effects as a brain injury, but it is more fatal. Use of the Glasgow Coma Score as a prognostic indicator of outcome in patients with head injuries is widely accepted in clinical practice. Traumatic brain stem edema in children is rare, but is associated with poor outcome. The question is that whether it is being aware of computerized tomography appearance of the posterior fossa when initial evaluating pediatric patients with head trauma at emergency clinics. Normal and edematous brain stem without an additional pathology are slightly different and not distinguished easily. On the other hand, brain stem edema should be promptly identified and appropriately treated in a short time.

  9. Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda.

    PubMed

    Smith, Frank W; Goldstein, Bob

    2017-05-01

    The origin and diversification of segmented metazoan body plans has fascinated biologists for over a century. The superphylum Panarthropoda includes three phyla of segmented animals-Euarthropoda, Onychophora, and Tardigrada. This superphylum includes representatives with relatively simple and representatives with relatively complex segmented body plans. At one extreme of this continuum, euarthropods exhibit an incredible diversity of serially homologous segments. Furthermore, distinct tagmosis patterns are exhibited by different classes of euarthropods. At the other extreme, all tardigrades share a simple segmented body plan that consists of a head and four leg-bearing segments. The modular body plans of panarthropods make them a tractable model for understanding diversification of animal body plans more generally. Here we review results of recent morphological and developmental studies of tardigrade segmentation. These results complement investigations of segmentation processes in other panarthropods and paleontological studies to illuminate the earliest steps in the evolution of panarthropod body plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Tagmatization in Stomatopoda - reconsidering functional units of modern-day mantis shrimps (Verunipeltata, Hoplocarida) and implications for the interpretation of fossils.

    PubMed

    Haug, Carolin; Sallam, Wafaa S; Maas, Andreas; Waloszek, Dieter; Kutschera, Verena; Haug, Joachim T

    2012-11-14

    We describe the tagmatization pattern of the anterior region of the extant stomatopod Erugosquilla massavensis. For documentation we used the autofluorescence capacities of the specimens, resulting in a significant contrast between sclerotized and membranous areas. The anterior body region of E. massavensis can be grouped into three tagmata. Tagma I, the sensorial unit, comprises the segments of the eyes, antennules and antennae. This unit is set-off anteriorly from the posterior head region. Ventrally this unit surrounds a large medial sclerite, interpreted as the anterior part of the hypostome. Dorsally the antennular and antennal segments each bear a well-developed tergite. The dorsal shield is part of tagma II, most of the ventral part of which is occupied in the midline by the large, partly sclerotized posterior part of a complex combining hypostome and labrum. Tagma II includes three more segments behind the labrum, the mandibular, maxillulary and maxillary segments. Tagma III includes the maxillipedal segments, bearing five pairs of sub-chelate appendages. The dorsal sclerite of the first of these tagma-III segments, the segment of the first maxillipeds, is not included in the shield, so this segment is not part of tagma II as generally thought. The second and third segments of tagma III form a unit dorsally and ventrally. The tergites of the segments of tagma III become progressively larger from the anterior to the posterior, possibly resulting from a paedomorphic effect during evolution, which caused this reversed enlargement. The described pattern of tagmosis differs from current textbook knowledge. Therefore, our re-description of the anterior body area of stomatopods is of considerable impact for understanding the head evolution of Stomatopoda. Likewise, it has a bearing upon any comparisons with fossil stomatopods, as mainly sclerotized areas are fossilized, and, on a wider scale, upon larger-scale comparisons with other malacostracans and eucrustaceans in general.

  11. Poster - 32: Atlas Selection for Automated Segmentation of Pelvic CT for Prostate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallawi, Abrar; Farrell, TomTom; Diamond, Kevin-Ro

    2016-08-15

    Atlas based-segmentation has recently been evaluated for use in prostate radiotherapy. In a typical approach, the essential step is the selection of an atlas from a database that the best matches of the target image. This work proposes an atlas selection strategy and evaluate it impacts on final segmentation accuracy. Several anatomical parameters were measured to indicate the overall prostate and body shape, all of these measurements obtained on CT images. A brute force procedure was first performed for a training dataset of 20 patients using image registration to pair subject with similar contours; each subject was served as amore » target image to which all reaming 19 images were affinity registered. The overlap between the prostate and femoral heads was quantified for each pair using the Dice Similarity Coefficient (DSC). Finally, an atlas selection procedure was designed; relying on the computation of a similarity score defined as a weighted sum of differences between the target and atlas subject anatomical measurement. The algorithm ability to predict the most similar atlas was excellent, achieving mean DSCs of 0.78 ± 0.07 and 0.90 ± 0.02 for the CTV and either femoral head. The proposed atlas selection yielded 0.72 ± 0.11 and 0.87 ± 0.03 for CTV and either femoral head. The DSC obtained with the proposed selection method were slightly lower than the maximum established using brute force, but this does not include potential improvements expected with deformable registration. The proposed atlas selection method provides reasonable segmentation accuracy.« less

  12. Validation of automatic landmark identification for atlas-based segmentation for radiation treatment planning of the head-and-neck region

    NASA Astrophysics Data System (ADS)

    Leavens, Claudia; Vik, Torbjørn; Schulz, Heinrich; Allaire, Stéphane; Kim, John; Dawson, Laura; O'Sullivan, Brian; Breen, Stephen; Jaffray, David; Pekar, Vladimir

    2008-03-01

    Manual contouring of target volumes and organs at risk in radiation therapy is extremely time-consuming, in particular for treating the head-and-neck area, where a single patient treatment plan can take several hours to contour. As radiation treatment delivery moves towards adaptive treatment, the need for more efficient segmentation techniques will increase. We are developing a method for automatic model-based segmentation of the head and neck. This process can be broken down into three main steps: i) automatic landmark identification in the image dataset of interest, ii) automatic landmark-based initialization of deformable surface models to the patient image dataset, and iii) adaptation of the deformable models to the patient-specific anatomical boundaries of interest. In this paper, we focus on the validation of the first step of this method, quantifying the results of our automatic landmark identification method. We use an image atlas formed by applying thin-plate spline (TPS) interpolation to ten atlas datasets, using 27 manually identified landmarks in each atlas/training dataset. The principal variation modes returned by principal component analysis (PCA) of the landmark positions were used by an automatic registration algorithm, which sought the corresponding landmarks in the clinical dataset of interest using a controlled random search algorithm. Applying a run time of 60 seconds to the random search, a root mean square (rms) distance to the ground-truth landmark position of 9.5 +/- 0.6 mm was calculated for the identified landmarks. Automatic segmentation of the brain, mandible and brain stem, using the detected landmarks, is demonstrated.

  13. Assignment of boundary conditions in embedded ground water flow models

    USGS Publications Warehouse

    Leake, S.A.

    1998-01-01

    Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger-scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger.scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.

  14. Duodenum-preserving total pancreatic head resection for benign cystic neoplastic lesions.

    PubMed

    Beger, Hans G; Schwarz, Michael; Poch, Bertram

    2012-11-01

    Cystic neoplasms of the pancreas are diagnosed frequently due to early use of abdominal imaging techniques. Intraductal papillary mucinous neoplasm, mucinous cystic neoplasm, and serous pseudopapillary neoplasia are considered pre-cancerous lesions because of frequent transformation to cancer. Complete surgical resection of the benign lesion is a pancreatic cancer preventive treatment. The application for a limited surgical resection for the benign lesions is increasingly used to reduce the surgical trauma with a short- and long-term benefit compared to major surgical procedures. Duodenum-preserving total pancreatic head resection introduced for inflammatory tumors in the pancreatic head transfers to the patient with a benign cystic lesion located in the pancreatic head, the advantages of a minimalized surgical treatment. Based on the experience of 17 patients treated for cystic neoplastic lesions with duodenum-preserving total pancreatic head resection, the surgical technique of total pancreatic head resection for adenoma, borderline tumors, and carcinoma in situ of cystic neoplasm is presented. A segmental resection of the peripapillary duodenum is recommended in case of suspected tissue ischemia of the peripapillary duodenum. In 305 patients, collected from the literature by PubMed search, in about 40% of the patients a segmental resection of the duodenum and 60% a duodenum and common bile duct-preserving total pancreatic head resection has been performed. Hospital mortality of the 17 patients was 0%. In 305 patients collected, the hospital mortality was 0.65%, 13.2% experienced a delay of gastric emptying and a pancreatic fistula in 18.2%. Recurrence of the disease was 1.5%. Thirty-two of 175 patients had carcinoma in situ. Duodenum-preserving total pancreatic head resection for benign cystic neoplastic lesions is a safe surgical procedure with low post-operative morbidity and mortality.

  15. Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey

    PubMed Central

    Almazroa, Ahmed; Burman, Ritambhar; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2015-01-01

    Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio) is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed. PMID:26688751

  16. Head pain referral during examination of the neck in migraine and tension-type headache.

    PubMed

    Watson, Dean H; Drummond, Peter D

    2012-09-01

    To investigate if and to what extent typical head pain can be reproduced in tension-type headache (TTH), migraine without aura sufferers, and controls when sustained pressure was applied to the lateral posterior arch of C1 and the articular pillar of C2, stressing the atlantooccipital and C2-3 segments respectively. Occipital and neck symptoms often accompany primary headache, suggesting involvement of cervical afferents in central pain processing mechanisms in these disorders. Referral of head pain from upper cervical structures is made possible by convergence of cervical and trigeminal nociceptive afferent information in the trigemino-cervical nucleus. Upper cervical segmental and C2-3 zygapophysial joint dysfunction is recognized as a potential source of noxious afferent information and is present in primary headache sufferers. Furthermore, referral of head pain has been demonstrated from symptomatic upper cervical segments and the C2-3 zygapophysial joints, suggesting that head pain referral may be a characteristic of cervical afferent involvement in headache. Thirty-four headache sufferers and 14 controls were examined interictally. Headache patients were diagnosed according the criteria of the International Headache Society and comprised 20 migraine without aura (females n = 18; males n = 2; average age 35.3 years) and 14 TTH sufferers (females n = 11; males n = 3; average age 30.7 years). Two techniques were used specifically to stress the atlantooccipital segments (Technique 1 - C1) and C2-3 zygapophysial joints (Technique 2 - C2). Two techniques were also applied to the arm--the common extensor origin and the mid belly of the biceps brachii. Participants reported reproduction of head pain with "yes" or "no" and rated the intensity of head pain and local pressure of application on a scale of 0 -10, where 0 = no pain and 10 = intolerable pain. None of the subjects reported head pain during application of techniques on the arm. Head pain referral during the cervical examination was reported by 8 of 14 (57%) control participants, all TTH patients and all but 1 migraineur (P < .002). In each case, participants reported that the referred head pain was similar to the pain they usually experienced during TTH or migraine. The frequency of head pain referral was identical for Techniques 1 and 2. The intensity of referral did not differ between Technique 1 and Technique 2 or between groups. Tenderness ratings to thumb pressure were comparable between the Techniques 1 and 2 when pressure was applied to C1 and C2 respectively and across groups. Similarly, there were no significant differences for tenderness ratings to thumb pressure between Technique 1 and Technique 2 on the arm or between groups. While tenderness ratings to thumb pressure for Technique 2 were similar for both referral (n = 41) and non-referral (n = 7) groups, tenderness ratings for Technique 1 in the referral group were significantly greater when compared with the non-referral group (P = .01). Our data support the continuum concept of headache, one in which noxious cervical afferent information may well be significantly underestimated. The high incidence of reproduction of headache supports the evaluation of musculoskeletal features in patients presenting with migrainous and TTH symptoms. This, in turn, may have important implications for understanding the pathophysiology of headache and developing alternative treatment options. © 2012 American Headache Society.

  17. Vestibular Balance Deficits Following Head Injury: Recommendations Concerning Evaluation and Rehabilitation in the Military Setting

    DTIC Science & Technology

    2012-02-27

    audiogram, magnetic resonance imaging ( MRI ) scan, and a battery of neuro-vestibular tests, etc. (see appendix B). Many of the findings are detailed...bills108/s1217.html 19 E.g., driven by a laptop, tablet PC, or PDA.   42 The authors also considered testing needs immediately after referral (by the... MRI scan   72 Neuro-vestibular testing o Dynamic Computerized Postu rography o Rotat ional chair t est ing of gain, phase, and symmet ry o Step

  18. Head or tail: the orientation of the small bowel capsule endoscope movement in the small bowel.

    PubMed

    Kopylov, Uri; Papageorgiou, Neofytos P; Nadler, Moshe; Eliakim, Rami; Ben-Horin, Shomron

    2012-03-01

    The diagnostic accuracy of capsule endoscopy has been suggested to be influenced by the direction of the passage in the intestine. It is currently unknown if a head-first or a tail-first orientation are equally common during the descent through the small bowel. The aim of the study was to identify the orientation of the capsule along the migration through the small bowel. Thirty capsule endoscopies were reviewed by an experienced observer. The direction of the passage through the pylorus and the ileoceccal valve was recorded for all the examinations. In addition, detailed review of the passage of the capsule in different segments of the small bowel was undertaken for all the capsules. The capsule was significantly more likely to pass the pylorus head-first compared to tail-first (25 and 5 out of 30, respectively, OR 5, 95% CI 65-94%, P < 0.001). In 28/30 studies, the capsule exited the ileoceccal valve head-first (OR-14, 95% CI 77-99%, P < 0.001). In an immersion experiment, uneven distribution of weight of the capsule body was demonstrated with the head part (camera tip) being lighter than the tail part. The capsule endoscope usually passes through the pylorus and subsequent segments of the small bowel head-first. This observation suggests that the intestinal peristaltic physiology drives symmetrical bodies with their light part first. The principle of intestinal orientation by weight distribution may bear implications for capsules' design in the future.

  19. Contour-Driven Atlas-Based Segmentation

    PubMed Central

    Wachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polina

    2016-01-01

    We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images. PMID:26068202

  20. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation.

    PubMed

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-04-01

    Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H&N) carcinoma. Hyperthermia treatment planning (HTP) guided H&N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Automatically generated 3D patient models can be introduced in the clinic for H&N HTP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Multi-atlas and label fusion approach for patient-specific MRI based skull estimation.

    PubMed

    Torrado-Carvajal, Angel; Herraiz, Joaquin L; Hernandez-Tamames, Juan A; San Jose-Estepar, Raul; Eryaman, Yigitcan; Rozenholc, Yves; Adalsteinsson, Elfar; Wald, Lawrence L; Malpica, Norberto

    2016-04-01

    MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR. © 2015 Wiley Periodicals, Inc.

  2. Thermal comfort: research and practice.

    PubMed

    van Hoof, Joost; Mazej, Mitja; Hensen, Jan L M

    2010-01-01

    Thermal comfort--the state of mind, which expresses satisfaction with the thermal environment--is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.

  3. Thermal comfort zone of the hands, feet and head in males and females.

    PubMed

    Ciuha, Urša; Mekjavic, Igor B

    2017-10-01

    The present study compared the thermal comfort zones (TCZ) of the hands, feet and head in eight male and eight female participants, assessed with water-perfused segments (WPS). On separate occasions, and separated by a minimum of one day, participants were requested to regulate the temperature of three distal skin regions (hands, feet and head) within their TCZ. On each occasion they donned a specific water-perfused segment (WPS), either gloves, socks or hood for assessing the TCZ of the hands, feet and head, respectively. In the absence of regulation, the temperature of the water perfusing the WPS changed in a saw-tooth manner from 10 to 50°C; by depressing a switch and reversing the direction of the temperature at the limits of the TCZ, each participant defined the TCZ for each skin region investigated. The range of regulated temperatures (upper and lower limits of the TCZ) did not differ between studied skin regions or between genders. Participants however maintained higher head (35.7±0.4°C; p˂0.001) skin temperature (Tsk) compared to hands (34.5±0.8°C) and feet (33.8±1.1°C). When exposed to normothermic conditions, distal skin regions do not differ in ranges of temperatures, perceived as thermally comfortable. Copyright © 2017. Published by Elsevier Inc.

  4. Novel measurements of the length of the subglottic airway in infants and young children.

    PubMed

    Sirisopana, Metee; Saint-Martin, Christine; Wang, Ning Nan; Manoukian, John; Nguyen, Lily H P; Brown, Karen A

    2013-08-01

    To date, the lengths of the subglottic and tracheal airway segments have been measured from autopsy specimens. Images of the head and neck obtained from computerized tomography (CT) provide an alternate method. Our objective in this study was to identify anatomic landmarks from CT scans in infants and young children to estimate the lengths of the subglottic and tracheal airway segments and to correlate these lengths with age. We performed a retrospective analysis of CT images of the neck for various diagnostic indications in children ≤3 years. We obtained planes of reconstruction at the level of the vocal cords (VCs), cricoid cartilage, and carina (C) which were parallel to each other and perpendicular to sagittal long axis of the trachea. The lengths of the subglottic airway (LengthSG) and total length of the laryngotracheal airway (LengthVC-C) were measured from the distance between, respectively, the VC versus cricoid cartilage and the VC versus C planes of reconstruction. Tracheal length was then calculated as the difference between LengthVC-C and LengthSG. Fifty-six children met the inclusion criteria. There were 29 boys. The median weight was 10.7 kg (range 3.1-19.0 kg). Regression analysis yielded mean LengthSG (mm) = 7.8 + 0.03·corrected age (months), r(2) = 0.07, P = 0.056; lower and upper 95% confidence interval for β = 0.03 were -0.001 and 0061. The mean LengthSG was 8.4 mm with an SD of 1.4 mm. The 95th percentile for LengthSG was 10.8 mm, and the 5% to 95% interquartile range was 4.9 mm. The estimate for the 95% confidence interval of the 95th percentile was between 10.2 and 11.3 mm. The LengthVC-C increased with age: mean LengthVC-C (cm) = 5.3 + 0.05·corrected age (months), r(2) = 0.7, P < 0.001. Tracheal length also increased with age: mean tracheal length (cm) = 4.5 + 0.05·corrected age (months), r(2) = 0.6, P < 0.001. We report a novel estimate method for the lengths of the airway segments between the VC and C in 56 infants and young children and suggest that the growth characteristics of the subglottic and tracheal airway may differ.

  5. Dynamic Parameter Identification of Subject-Specific Body Segment Parameters Using Robotics Formalism: Case Study Head Complex.

    PubMed

    Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente

    2016-05-01

    Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.

  6. A research on the postural stability of a person wearing the lower limb exoskeletal robot by the HAT model.

    PubMed

    Chang, Minsu; Kim, Yeongmin; Lee, Yoseph; Jeon, Doyoung

    2017-07-01

    This paper proposes a method of detecting the postural stability of a person wearing the lower limb exoskeletal robot with the HAT(Head-Arm-Trunk) model. Previous studies have shown that the human posture is stable when the CoM(Center of Mass) of the human body is placed on the BoS(Base of Support). In the case of the lower limb exoskeletal robot, the motion data, which are used for the CoM estimation, are acquired by sensors in the robot. The upper body, however, does not have sensors in each segment so that it may cause the error of the CoM estimation. In this paper, the HAT(Head-Arm-Trunk) model which combines head, arms, and torso into a single segment is considered because the motion of head and arms are unknown due to the lack of sensors. To verify the feasibility of HAT model, the reflecting markers are attached to each segment of the whole human body and the exact motion data are acquired by the VICON to compare the COM of the full body model and HAT model. The difference between the CoM with full body and that with HAT model is within 20mm for the various motions of head and arms. Based on the HAT model, the XCoM(Extrapolated Center of Mass) which includes the velocity of the CoM is used for prediction of the postural stability. The experiment of making unstable posture shows that the XCoM of the whole body based on the HAT model is feasible to detect the instance of postural instability earlier than the CoM by 20-250 msec. This result may be used for the lower limb exoskeletal robot to prepare for any action to prevent the falling down.

  7. Role of the tail in the regulated state of myosin 2

    PubMed Central

    Jung, HyunSuk; Billington, Neil; Thirumurugan, Kavitha; Salzameda, Bridget; Cremo, Christine R.; Chalovich, Joseph M.; Chantler, Peter D.; Knight, Peter J.

    2013-01-01

    Myosin 2 from vertebrate smooth muscle or non-muscle sources is in equilibrium between compact, inactive monomers and thick filaments under physiological conditions. In the inactive monomer, the two heads pack compactly together and the long tail is folded into three closely-packed segments that are associated chiefly with one of the heads. The molecular basis of the folding of the tail remains unexplained. Using electron microscopy, we show that compact monomers of smooth muscle myosin 2 have the same structure in both the native state and following specific, intramolecular photo-cross-linking between Cys109 of the regulatory light chain (RLC) and segment 3 of the tail. Non-specific cross-linking between lysine residues of the folded monomer by glutaraldehyde also does not perturb the compact conformation, and stabilises it against unfolding at high ionic strength. Sequence comparisons across phyla and myosin 2 isoforms suggest that folding of the tail is stabilised by ionic interactions between the positively-charged N-terminal sequence of the RLC and a negatively-charged region near the start of tail segment 3, and that phosphorylation of the RLC could perturb these interactions. Our results support the view that interactions between the heads and the distal tail perform a critical role in regulating activity of myosin 2 molecules through stabilising the compact monomer conformation. PMID:21419133

  8. MO-F-CAMPUS-J-01: Effect of Iodine Contrast Agent Concentration On Cerebrovascular Dose for Synchrotron Radiation Microangiography Based On a Simple Mouse Head Model and a Voxel Mouse Head Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H; Jing, J; Xie, C

    Purpose: To find effective setting methods to mitigate the irradiation injure in synchrotron radiation microangiography(SRA) by Monte Carlo simulation. Methods: A mouse 1-D head model and a segmented voxel mouse head phantom were simulated by EGSnrc/Dosxyznrc code to investigate the dose enhancement effect of the iodine contrast agent irradiated by a monochromatic synchrotron radiation(SR) source. The influence of, like iodine concentration (IC), vessel width and depth, with and without skull layer protection and the various incident X ray energies, were simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. Results:more » The dose enhancement ratio depends little on the irradiation depth, but strongly on the IC, which is linearly increases with IC. The skull layer protection cannot be ignored in SRA, the 700µm thick skull could decrease 10% of the dose. The incident X-ray energy can significantly affact the dose. E.g. compared to the dose of 33.2keV for 50mgI/ml, the 32.7keV dose decreases 38%, whereas the dose of 33.7 keV increases 69.2%, and the variation will strengthen more with enhanced IC. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depends little on the iodine voxel volume ratio, but strongly on IC. Conclusion: To decrease dose damage in SRA, the high-Z contrast agent should be used as little as possible, and try to avoid radiating locally the injected position immediately after the contrast agent injection. The fragile vessel containing iodine should avoid closely irradiating. Avoiding irradiating through the no or thin skull region, or appending thin equivalent material from outside to protect is also a better method. As long as SRA image quality is ensured, using incident X-ray energy as low as possible.« less

  9. Head Pose Estimation Using Multilinear Subspace Analysis for Robot Human Awareness

    NASA Technical Reports Server (NTRS)

    Ivanov, Tonislav; Matthies, Larry; Vasilescu, M. Alex O.

    2009-01-01

    Mobile robots, operating in unconstrained indoor and outdoor environments, would benefit in many ways from perception of the human awareness around them. Knowledge of people's head pose and gaze directions would enable the robot to deduce which people are aware of the its presence, and to predict future motions of the people for better path planning. To make such inferences, requires estimating head pose on facial images that are combination of multiple varying factors, such as identity, appearance, head pose, and illumination. By applying multilinear algebra, the algebra of higher-order tensors, we can separate these factors and estimate head pose regardless of subject's identity or image conditions. Furthermore, we can automatically handle uncertainty in the size of the face and its location. We demonstrate a pipeline of on-the-move detection of pedestrians with a robot stereo vision system, segmentation of the head, and head pose estimation in cluttered urban street scenes.

  10. Idiopathic dilated cardiomyopathy: computerized anatomic study of relashionship between septal and free left ventricle wall.

    PubMed

    Juliani, Paulo Sérgio; Costa, Eder França da; Correia, Aristides Tadeu; Monteiro, Rosangela; Jatene, Fabio Biscegli

    2014-01-01

    A feature of dilated cardiomyopathy is the deformation of ventricular cavity, which contributes to systolic dysfunction. Few studies have evaluated this deformation bearing in mind ventricular regions and segments of the ventricle, which could reveal important details of the remodeling process, supporting a better understanding of its role in functional impairment and the development of new therapeutic strategies. To evaluate if, in basal, equatorial and apical regions, increased internal transverse perimeter of left ventricle in idiopathic dilated cardiomyopathy occurs proportionally between the septal and non-septal segment. We performed an anatomical study with 28 adult hearts from human cadavers. One group consisted of 18 hearts with idiopathic dilated cardiomyopathy and another group with 10 normal hearts. After lamination and left ventricle digital image capture, in three different regions (base, equator and apex), the transversal internal perimeter of left ventricle was divided into two segments: septal and not septal. These segments were measured by proper software. It was established an index of proportionality between these segments, called septal and non-septal segment index. Then we determined whether this index was the same in both groups. Among patients with normal hearts and idiopathic dilated cardiomyopathy, the index of proportionality between the two segments (septal and non-septal) showed no significant difference in the three regions analyzed. The comparison results of the indices NSS/SS among normal and enlarged hearts were respectively: in base 1.99 versus 1.86 (P=0.46), in equator 2.22 versus 2.18 (P=0.79) and in apex 2.96 versus 3.56 (P=0.11). In the idiopathic dilated cardiomyopathy, the transversal dilatation of left ventricular internal perimeter occurs proportionally between the segments corresponding to the septum and free wall at the basal, equatorial and apical regions of this chamber.

  11. Investigation of the reproducibility and reliability of sagittal vertebral inclination measurements from MR images of the spine.

    PubMed

    Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2014-10-01

    In this study, sagittal vertebral inclination (SVI) was systematically evaluated for 28 vertebrae (segments between T4 and L5) in magnetic resonance (MR) images of one normal and one scoliotic subject to compare the performance of manual and computerized measurements, and identify the most reproducible and reliable measurements. Manual measurements were performed by three observers, who identified on two occasions the distinctive anatomical landmarks required to evaluate SVI by six measurement methods, i.e. the superior tangents, inferior tangents, anterior tangents, posterior tangents, mid-endplate lines and mid-wall lines. Computerized measurements were performed by automatically evaluating SVI from the symmetry of vertebral anatomical structures in two-dimensional (2D) sagittal cross-sections and in three-dimensional (3D) volumetric images. The mid-wall lines and posterior tangents proved to be the manual measurements with the lowest intra-observer (standard deviation, SD, of 1.4° and 1.7°, respectively) and inter-observer variability (SD of 1.9° and 2.4°, respectively). The strongest inter-method agreement was found between the mid-wall lines and posterior tangents (SD of 2.0°). Computerized measurements in 2D and in 3D resulted in intra-observer (SD of 2.8° and 3.1°, respectively) and inter-observer variability (SD of 3.8° and 5.2°, respectively) that were comparable to those of the superior tangents (SD of 2.6° and 3.7°) and inferior tangents (SD of 3.2° and 4.5°), which represent standard Cobb angle measurements. It can be concluded that computerized measurements of SVI should be based on the inclination of vertebral body walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Modeling Parenting Programs as an Interim Service for Families Waiting for Children's Mental Health Treatment.

    PubMed

    Cunningham, Charles E; Rimas, Heather; Chen, Yvonne; Deal, Ken; McGrath, Patrick; Lingley-Pottie, Patricia; Reid, Graham J; Lipman, Ellen; Corkum, Penny

    2015-01-01

    Using a discrete choice conjoint experiment, we explored the design of parenting programs as an interim strategy for families waiting for children's mental health treatment. Latent class analysis yielded 4 segments with different design preferences. Simulations predicted the Fast-Paced Personal Contact segment, 22.1% of the sample, would prefer weekly therapist-led parenting groups. The Moderate-Paced Personal Contact segment (24.7%) preferred twice-monthly therapist-led parenting groups with twice-monthly lessons. The Moderate-Paced E-Contact segment (36.3%), preferred weekly to twice-monthly contacts, e-mail networking, and a program combining therapist-led sessions with the support of a computerized telephone e-coach. The Slow-Paced E-Contact segment (16.9%) preferred an approach combining monthly therapist-led sessions, e-coaching, and e-mail networking with other parents. Simulations predicted 45.3% of parents would utilize an option combining 5 therapist coaching calls with 5 e-coaching calls, a model that could reduce costs and extend the availability of interim services. Although 41.0% preferred weekly pacing, 58% were predicted to choose an interim parenting service conducted at a twice-monthly to monthly pace. The results of this study suggest that developing interim services reflecting parental preferences requires a choice of formats that includes parenting groups, telephone-coached distance programs, and e-coaching options conducted at a flexible pace.

  13. Measurement of pelvic osteolytic lesions in follow-up studies after total hip arthroplasty

    NASA Astrophysics Data System (ADS)

    Castaneda, Benjamin; Tamez-Pena, Jose G.; Totterman, Saara; O'Keefe, Regis; Looney, R. John

    2006-03-01

    Previous studies have demonstrated the plausibility of using volumetric computerized tomography to provide an accurate representation and measurement of volume for pelvic osteolytic lesions following total hip joint replacement. These studies have been performed manually (or computed-assisted) by expert radiologists with the disadvantage of poor reproducibility of the experiment. The purpose of this work is to minimize the effect of user interaction in these experiments by introducing Laplacian level set methods in the volume segmentation process and using temporal articulated registration in order to follow the evolution of a lesion over time. Laplacian level set methods reduce the inter and intra-observer variability by attaching the segmented contour to edges defined in the image while keeping smoothness. The registration process allows the information of the lesion from the first visit to be used in the segmentation process of the current visit. This work compares the automated results on 7 volunteers versus the volume measured manually. Results have shown that the proposed technique is able to track osteolytic lesions and detect changes in volume over time. Intra-reader and inter-observer variabilities were reduced.

  14. Probabilistic atlas and geometric variability estimation to drive tissue segmentation.

    PubMed

    Xu, Hao; Thirion, Bertrand; Allassonnière, Stéphanie

    2014-09-10

    Computerized anatomical atlases play an important role in medical image analysis. While an atlas usually refers to a standard or mean image also called template, which presumably represents well a given population, it is not enough to characterize the observed population in detail. A template image should be learned jointly with the geometric variability of the shapes represented in the observations. These two quantities will in the sequel form the atlas of the corresponding population. The geometric variability is modeled as deformations of the template image so that it fits the observations. In this paper, we provide a detailed analysis of a new generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. Our atlas contains both an estimation of probability maps of each tissue (called class) and the deformation metric. We use a stochastic algorithm for the estimation of the probabilistic atlas given a dataset. This atlas is then used for atlas-based segmentation method to segment the new images. Experiments are shown on brain T1 MRI datasets. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    PubMed

    Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M

    2007-11-15

    Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.

  16. Validating a new methodology for optical probe design and image registration in fNIRS studies

    PubMed Central

    Wijeakumar, Sobanawartiny; Spencer, John P.; Bohache, Kevin; Boas, David A.; Magnotta, Vincent A.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an imaging technique that relies on the principle of shining near-infrared light through tissue to detect changes in hemodynamic activation. An important methodological issue encountered is the creation of optimized probe geometry for fNIRS recordings. Here, across three experiments, we describe and validate a processing pipeline designed to create an optimized, yet scalable probe geometry based on selected regions of interest (ROIs) from the functional magnetic resonance imaging (fMRI) literature. In experiment 1, we created a probe geometry optimized to record changes in activation from target ROIs important for visual working memory. Positions of the sources and detectors of the probe geometry on an adult head were digitized using a motion sensor and projected onto a generic adult atlas and a segmented head obtained from the subject's MRI scan. In experiment 2, the same probe geometry was scaled down to fit a child's head and later digitized and projected onto the generic adult atlas and a segmented volume obtained from the child's MRI scan. Using visualization tools and by quantifying the amount of intersection between target ROIs and channels, we show that out of 21 ROIs, 17 and 19 ROIs intersected with fNIRS channels from the adult and child probe geometries, respectively. Further, both the adult atlas and adult subject-specific MRI approaches yielded similar results and can be used interchangeably. However, results suggest that segmented heads obtained from MRI scans be used for registering children's data. Finally, in experiment 3, we further validated our processing pipeline by creating a different probe geometry designed to record from target ROIs involved in language and motor processing. PMID:25705757

  17. Tapeworm Infection

    MedlinePlus

    ... adult tapeworm consists of a head, neck and chain of segments called proglottids. When you have an ... blockage. If tapeworms grow large enough, they can block your appendix, leading to infection (appendicitis); your bile ...

  18. The gap gene giant of Rhodnius prolixus is maternally expressed and required for proper head and abdomen formation.

    PubMed

    Lavore, Andrés; Pagola, Lucía; Esponda-Behrens, Natalia; Rivera-Pomar, Rolando

    2012-01-01

    The segmentation process in insects depends on a hierarchical cascade of gene activity. The first effectors downstream of the maternal activation are the gap genes, which divide the embryo in broad fields. We discovered a sequence corresponding to the leucine-zipper domain of the orthologue of the gene giant (Rp-gt) in traces from the genome of Rhodnius prolixus, a hemipteran with intermediate germ-band development. We cloned the Rp-gt gene from a normalized cDNA library and characterized its expression and function. Bioinformatic analysis of 12.5 kbp of genomic sequence containing the Rp-gt transcriptional unit shows a cluster of bona fide regulatory binding sites, which is similar in location and structure to the predicted posterior expression domain of the Drosophila orthologue. Rp-gt is expressed in ovaries and maternally supplied in the early embryo. The maternal contribution forms a gradient of scattered patches of mRNA in the preblastoderm embryo. Zygotic Rp-gt is expressed in two domains that after germ band extension are restricted to the head and the posterior growth zone. Parental RNAi shows that Rp-gt is required for proper head and abdomen formation. The head lacks mandibulary and maxillary appendages and shows reduced clypeus-labrum, while the abdomen lacks anterior segments. We conclude that Rp-gt is a gap gene on the head and abdomen and, in addition, has a function in patterning the anterior head capsule suggesting that the function of gt in hemipterans is more similar to dipterans than expected. Copyright © 2011. Published by Elsevier Inc.

  19. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly.

    PubMed

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-12-02

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60-85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [(18)F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults.

  20. A combination of physical activity and computerized brain training improves verbal memory and increases cerebral glucose metabolism in the elderly

    PubMed Central

    Shah, T; Verdile, G; Sohrabi, H; Campbell, A; Putland, E; Cheetham, C; Dhaliwal, S; Weinborn, M; Maruff, P; Darby, D; Martins, R N

    2014-01-01

    Physical exercise interventions and cognitive training programs have individually been reported to improve cognition in the healthy elderly population; however, the clinical significance of using a combined approach is currently lacking. This study evaluated whether physical activity (PA), computerized cognitive training and/or a combination of both could improve cognition. In this nonrandomized study, 224 healthy community-dwelling older adults (60–85 years) were assigned to 16 weeks home-based PA (n=64), computerized cognitive stimulation (n=62), a combination of both (combined, n=51) or a control group (n=47). Cognition was assessed using the Rey Auditory Verbal Learning Test, Controlled Oral Word Association Test and the CogState computerized battery at baseline, 8 and 16 weeks post intervention. Physical fitness assessments were performed at all time points. A subset (total n=45) of participants underwent [18F] fluorodeoxyglucose positron emission tomography scans at 16 weeks (post-intervention). One hundred and ninety-one participants completed the study and the data of 172 participants were included in the final analysis. Compared with the control group, the combined group showed improved verbal episodic memory and significantly higher brain glucose metabolism in the left sensorimotor cortex after controlling for age, sex, premorbid IQ, apolipoprotein E (APOE) status and history of head injury. The higher cerebral glucose metabolism in this brain region was positively associated with improved verbal memory seen in the combined group only. Our study provides evidence that a specific combination of physical and mental exercises for 16 weeks can improve cognition and increase cerebral glucose metabolism in cognitively intact healthy older adults. PMID:25463973

  1. Applied Warfighter Ergonomics: A Research Method for Evaluating Military Individual Equipment

    DTIC Science & Technology

    2005-09-01

    innovations, as well. 6 Subsequent studies have established that the top official, head of household, or other nominal leader of the organization...alternative products have no meaningful differentiation between them (such as shampoo and instant coffee), consumers preferences can be significantly...example, with his weapon slung over his shoulder . Admin The conventional segment of the scenario was identical for each RPDA. The RPDA segment was

  2. Direct aperture optimization using an inverse form of back-projection.

    PubMed

    Zhu, Xiaofeng; Cullip, Timothy; Tracton, Gregg; Tang, Xiaoli; Lian, Jun; Dooley, John; Chang, Sha X

    2014-03-06

    Direct aperture optimization (DAO) has been used to produce high dosimetric quality intensity-modulated radiotherapy (IMRT) treatment plans with fast treatment delivery by directly modeling the multileaf collimator segment shapes and weights. To improve plan quality and reduce treatment time for our in-house treatment planning system, we implemented a new DAO approach without using a global objective function (GFO). An index concept is introduced as an inverse form of back-projection used in the CT multiplicative algebraic reconstruction technique (MART). The index, introduced for IMRT optimization in this work, is analogous to the multiplicand in MART. The index is defined as the ratio of the optima over the current. It is assigned to each voxel and beamlet to optimize the fluence map. The indices for beamlets and segments are used to optimize multileaf collimator (MLC) segment shapes and segment weights, respectively. Preliminary data show that without sacrificing dosimetric quality, the implementation of the DAO reduced average IMRT treatment time from 13 min to 8 min for the prostate, and from 15 min to 9 min for the head and neck using our in-house treatment planning system PlanUNC. The DAO approach has also shown promise in optimizing rotational IMRT with burst mode in a head and neck test case.

  3. Using a virtual reality temporal bone simulator to assess otolaryngology trainees.

    PubMed

    Zirkle, Molly; Roberson, David W; Leuwer, Rudolf; Dubrowski, Adam

    2007-02-01

    The objective of this study is to determine the feasibility of computerized evaluation of resident performance using hand motion analysis on a virtual reality temporal bone (VR TB) simulator. We hypothesized that both computerized analysis and expert ratings would discriminate the performance of novices from experienced trainees. We also hypothesized that performance on the virtual reality temporal bone simulator (VR TB) would differentiate based on previous drilling experience. The authors conducted a randomized, blind assessment study. Nineteen volunteers from the Otolaryngology-Head and Neck Surgery training program at the University of Toronto drilled both a cadaveric TB and a simulated VR TB. Expert reviewers were asked to assess operative readiness of the trainee based on a blind video review of their performance. Computerized hand motion analysis of each participant's performance was conducted. Expert raters were able to discriminate novices from experienced trainees (P < .05) on cadaveric temporal bones, and there was a trend toward discrimination on VR TB performance. Hand motion analysis showed that experienced trainees had better movement economy than novices (P < .05) on the VR TB. Performance, as measured by hand motion analysis on the VR TB simulator, reflects trainees' previous drilling experience. This study suggests that otolaryngology trainees could accomplish initial temporal bone training on a VR TB simulator, which can provide feedback to the trainee, and may reduce the need for constant faculty supervision and evaluation.

  4. Identifying and classifying hyperostosis frontalis interna via computerized tomography.

    PubMed

    May, Hila; Peled, Nathan; Dar, Gali; Hay, Ori; Abbas, Janan; Masharawi, Youssef; Hershkovitz, Israel

    2010-12-01

    The aim of this study was to recognize the radiological characteristics of hyperostosis frontalis interna (HFI) and to establish a valid and reliable method for its identification and classification. A reliability test was carried out on 27 individuals who had undergone a head computerized tomography (CT) scan. Intra-observer reliability was obtained by examining the images three times, by the same researcher, with a 2-week interval between each sample ranking. The inter-observer test was performed by three independent researchers. A validity test was carried out using two methods for identifying and classifying HFI: 46 cadaver skullcaps were ranked twice via computerized tomography scans and then by direct observation. Reliability and validity were calculated using Kappa test (SPSS 15.0). Reliability tests of ranking HFI via CT scans demonstrated good results (K > 0.7). As for validity, a very good consensus was obtained between the CT and direct observation, when moderate and advanced types of HFI were present (K = 0.82). The suggested classification method for HFI, using CT, demonstrated a sensitivity of 84%, specificity of 90.5%, and positive predictive value of 91.3%. In conclusion, volume rendering is a reliable and valid tool for identifying HFI. The suggested three-scale classification is most suitable for radiological diagnosis of the phenomena. Considering the increasing awareness of HFI as an early indicator of a developing malady, this study may assist radiologists in identifying and classifying the phenomena.

  5. Statistical signal processing technique for identification of different infected sites of the diseased lungs.

    PubMed

    Abbas, Ali

    2012-06-01

    Accurate Diagnosis of lung disease depends on understanding the sounds emanating from lung and its location. Lung sounds are of significance as they supply precise and important information on the health of the respiratory system. In addition, correct interpretation of breath sounds depends on a systematic approach to auscultation; it also requires the ability to describe the location of abnormal finding in relation to bony structures and anatomic landmark lines. Lungs consist of number of lobes; each lung lobe is further subdivided into smaller segments. These segments are attached to each other. Knowledge of the position of the lung segments is useful and important during the auscultation and diagnosis of the lung diseases. Usually the medical doctors give the location of the infection a segmental position reference. Breath sounds are auscultated over the anterior chest wall surface, the lateral chest wall surfaces, and posterior chest wall surface. Adventitious sounds from different location can be detected. It is common to seek confirmation of the sound detection and its location using invasive and potentially harmful imaging diagnosis techniques like x-rays. To overcome this limitation and for fast, reliable, accurate, and inexpensive diagnose a technique is developed in this research for identifying the location of infection through a computerized auscultation system.

  6. Polarization sensitive corneal and anterior segment swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lim, Yiheng; Yamanari, Masahiro; Yasuno, Yoshiaki

    2010-02-01

    We develop a compact polarization sensitive corneal and anterior segment swept-source optical coherence tomography (PS-CAS- OCT) for evaluating the usefulness of PS-OCT, and enabling large scale studies in the tissue properties of normal and diseased eyes using the benefits of the PS-OCT, which provides better tissue discrimination compared to the conventional OCT by visualizing the fibrous tissues in the anterior eye segment. Our polarization-sensitive interferometer is size reduced into a 19 inch box for the portability and the probe is integrated into a position adjustable scanning head for the usability of our system.

  7. Three-dimensional study of pectoralis major muscle and tendon architecture.

    PubMed

    Fung, Lillia; Wong, Brian; Ravichandiran, Kajeandra; Agur, Anne; Rindlisbacher, Tim; Elmaraghy, Amr

    2009-05-01

    A thorough understanding of the normal structural anatomy of the pectoralis major (PM) is of paramount importance in the planning of PM tendon transfers or repairs following traumatic PM tears. However, there is little consensus regarding the complex musculotendinous architecture of the PM in the anatomic or surgical literature. The purpose of this study is to model and quantify the three-dimensional architecture of the pectoralis muscle and tendon. Eleven formalin embalmed cadaveric specimens were examined: five (2M/3F) were serially dissected, digitized, and modeled in 3D using Autodesk Maya; six (4M/2F) were dissected and photographed. The PM tendon consisted of longer anterior and shorter posterior layers that were continuous inferiorly. The muscle belly consisted of an architecturally uniform clavicular head (CH) and a segmented sternal head (SH) with 6-7 segments. The most inferior SH segment in all specimens was found to fold anteriorly forming a trough that cradled the inferior aspect of the adjacent superior segment. No twisting of either the PM muscle or tendon was noted. Within the CH, the fiber bundle lengths (FBL) were found to increase from superior to inferior, whereas the mean FBLs of SH were greatest in segments 3-5 found centrally. The mean lateral pennation angle was greater in the CH (29.4 +/- 6.9 degrees ) than in the SH (20.6 +/- 2.7 degrees ). The application of these findings could form the basis of future studies to optimize surgical planning and functional recovery of repair/reconstruction procedures.

  8. Neuroimaging in pediatric traumatic head injury: diagnostic considerations and relationships to neurobehavioral outcome.

    PubMed

    Bigler, E D

    1999-08-01

    Contemporary neuorimaging techniques in child traumatic brain injury are reviewed, with an emphasis on computerized tomography (CT) and magnetic resonance (MR) imaging. A brief overview of MR spectroscopy (MRS), functional MR imaging (fMRI), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) is also provided because these techniques will likely constitute important neuroimaging techniques of the future. Numerous figures are provided to illustrate the multifaceted manner in which traumatic deficits can be imaged and the role of neuroimaging information as it relates to TBI outcome.

  9. Analysis of manual segmentation in paranasal CT images.

    PubMed

    Tingelhoff, Kathrin; Eichhorn, Klaus W G; Wagner, Ingo; Kunkel, Maria E; Moral, Analia I; Rilk, Markus E; Wahl, Friedrich M; Bootz, Friedrich

    2008-09-01

    Manual segmentation is often used for evaluation of automatic or semi-automatic segmentation. The purpose of this paper is to describe the inter and intraindividual variability, the dubiety of manual segmentation as a gold standard and to find reasons for the discrepancy. We realized two experiments. In the first one ten ENT surgeons, ten medical students and one engineer outlined the right maxillary sinus and ethmoid sinuses manually on a standard CT dataset of a human head. In the second experiment two participants outlined maxillary sinus and ethmoid sinuses five times consecutively. Manual segmentation was accomplished with custom software using a line segmentation tool. The first experiment shows the interindividual variability of manual segmentation which is higher for ethmoidal sinuses than for maxillary sinuses. The variability can be caused by the level of experience, different interpretation of the CT data or different levels of accuracy. The second experiment shows intraindividual variability which is lower than interindividual variability. Most variances in both experiments appear during segmentation of ethmoidal sinuses and outlining hiatus semilunaris. Concerning the inter and intraindividual variances the segmentation result of one manual segmenter could not directly be used as gold standard for the evaluation of automatic segmentation algorithms.

  10. Computerized neuropsychological test performance of youth football players at different positions: A comparison of high and low contact players.

    PubMed

    Tsushima, William T; Ahn, Hyeong Jun; Siu, Andrea M; Fukuyama, Tama; Murata, Nathan M

    2017-02-28

    The aim of this study was to examine the effects of head impact frequency on the neuropsychological test results of football players who participate in different positions on the team. Based on the biomechanical measures of head impact frequency reported in high school football, a High Contact group (n = 480) consisting of offensive and defensive linemen was compared with a Low Contact group (n = 640) comprised of receivers and defensive backs. The results revealed that the High Contact group obtained poorer performances on the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) on three Composite scores (Verbal Memory, Visual Motor Speed, Impulse Control) and the Total Symptom score compared to the Low Contact group. The present study is the first, to date, to report differences in the neuropsychological test performances of athletes who participate in high and low contact football positions. The findings raise tentative concerns that youth football players exposed to repetitive head trauma, including subconcussive impacts, may be at risk for lowered neuropsychological functioning and increased symptoms.

  11. Wear Analysis in THA Utilizing Oxidized Zirconium and Crosslinked Polyethylene

    PubMed Central

    Garvin, Kevin L.; Mangla, Jimmi; Murdoch, Nathan; Martell, John M.

    2008-01-01

    Oxidized zirconium, a material with a ceramic surface on a metal substrate, and highly cross-linked polyethylene are two materials developed to reduce wear. We measured in vivo femoral head penetration in patients with these advanced bearings. We hypothesized the linear wear rates would be lower than those published for cobalt-chrome and standard polyethylene. We retrospectively reviewed a select series of 56 THAs in a relatively young, active patient population utilizing oxidized zirconium femoral heads and highly cross-linked polyethylene acetabular liners. Femoral head penetration was determined using the Martell computerized edge-detection method. All patients were available for 2-year clinical and radiographic followup. True linear wear was 4 μm/year (95% confidence intervals, ± 59 μm/year). The early wear rates in this cohort of relatively young, active patients were low and we believe justify the continued study of these alternative bearing surfaces. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18946711

  12. Borehole geophysical, fluid, and hydraulic properties within and surrounding the freshwater/saline-water transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, 2010-11

    USGS Publications Warehouse

    Thomas, Jonathan V.; Stanton, Gregory P.; Lambert, Rebecca B.

    2012-01-01

    Although analyses of daily mean equivalent freshwater heads for the East Uvalde transect indicated that the gradient across the freshwater/saline-water interface varied between into and out of the freshwater zone, the data indicate that there was a slightly longer period during which the gradient was out of the freshwater zone. Analyses of all daily mean equivalent freshwater heads for the Tri-County transect indicated that the lateral-head gradients across the freshwater/saline-water interface were typically mixed (not indicative of flow into or out of freshwater zone). Assessment of the daily mean equivalent freshwater heads indicated that, although the lateral-head gradient at the Kyle transect varied between into and out of the freshwater zone, the lateral-head gradient was typically from the transition zone into the freshwater zone.

  13. Multiple sparse volumetric priors for distributed EEG source reconstruction.

    PubMed

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-10-15

    We revisit the multiple sparse priors (MSP) algorithm implemented in the statistical parametric mapping software (SPM) for distributed EEG source reconstruction (Friston et al., 2008). In the present implementation, multiple cortical patches are introduced as source priors based on a dipole source space restricted to a cortical surface mesh. In this note, we present a technique to construct volumetric cortical regions to introduce as source priors by restricting the dipole source space to a segmented gray matter layer and using a region growing approach. This extension allows to reconstruct brain structures besides the cortical surface and facilitates the use of more realistic volumetric head models including more layers, such as cerebrospinal fluid (CSF), compared to the standard 3-layered scalp-skull-brain head models. We illustrated the technique with ERP data and anatomical MR images in 12 subjects. Based on the segmented gray matter for each of the subjects, cortical regions were created and introduced as source priors for MSP-inversion assuming two types of head models. The standard 3-layered scalp-skull-brain head models and extended 4-layered head models including CSF. We compared these models with the current implementation by assessing the free energy corresponding with each of the reconstructions using Bayesian model selection for group studies. Strong evidence was found in favor of the volumetric MSP approach compared to the MSP approach based on cortical patches for both types of head models. Overall, the strongest evidence was found in favor of the volumetric MSP reconstructions based on the extended head models including CSF. These results were verified by comparing the reconstructed activity. The use of volumetric cortical regions as source priors is a useful complement to the present implementation as it allows to introduce more complex head models and volumetric source priors in future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Identifying Head-Trunk and Lower Limb Contributions to Gaze Stabilization During Locomotion

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2003-01-01

    The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as - compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the shank and the transmissibility of the shock wave at heel strike (measured by the peak acceleration ratio of the head/shank) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.

  15. Minimizing Head Acceleration in Soccer: A Review of the Literature.

    PubMed

    Caccese, Jaclyn B; Kaminski, Thomas W

    2016-11-01

    Physicians and healthcare professionals are often asked for recommendations on how to keep athletes safe during contact sports such as soccer. With an increase in concussion awareness and concern about repetitive subconcussion, many parents and athletes are interested in mitigating head acceleration in soccer, so we conducted a literature review on factors that affect head acceleration in soccer. We searched electronic databases and reference lists to find studies using the keywords 'soccer' OR 'football' AND 'head acceleration'. Because of a lack of current research in soccer heading biomechanics, this review was limited to 18 original research studies. Low head-neck segment mass predisposes athletes to high head acceleration, but head-neck-torso alignment during heading and follow-through after contact can be used to decrease head acceleration. Additionally, improvements in symmetric neck flexor and extensor strength and neuromuscular neck stiffness can decrease head acceleration. Head-to-head impacts and unanticipated ball contacts result in the highest head acceleration. Ball contacts at high velocity may also be dangerous. The risk of concussive impacts may be lessened through the use of headgear, but headgear may also cause athletes to play more recklessly because they feel a sense of increased security. Young, but physically capable, athletes should be taught proper heading technique in a controlled setting, using a carefully planned progression of the skill.

  16. A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-institutional Study.

    PubMed

    Kalpathy-Cramer, Jayashree; Zhao, Binsheng; Goldgof, Dmitry; Gu, Yuhua; Wang, Xingwei; Yang, Hao; Tan, Yongqiang; Gillies, Robert; Napel, Sandy

    2016-08-01

    Tumor volume estimation, as well as accurate and reproducible borders segmentation in medical images, are important in the diagnosis, staging, and assessment of response to cancer therapy. The goal of this study was to demonstrate the feasibility of a multi-institutional effort to assess the repeatability and reproducibility of nodule borders and volume estimate bias of computerized segmentation algorithms in CT images of lung cancer, and to provide results from such a study. The dataset used for this evaluation consisted of 52 tumors in 41 CT volumes (40 patient datasets and 1 dataset containing scans of 12 phantom nodules of known volume) from five collections available in The Cancer Imaging Archive. Three academic institutions developing lung nodule segmentation algorithms submitted results for three repeat runs for each of the nodules. We compared the performance of lung nodule segmentation algorithms by assessing several measurements of spatial overlap and volume measurement. Nodule sizes varied from 29 μl to 66 ml and demonstrated a diversity of shapes. Agreement in spatial overlap of segmentations was significantly higher for multiple runs of the same algorithm than between segmentations generated by different algorithms (p < 0.05) and was significantly higher on the phantom dataset compared to the other datasets (p < 0.05). Algorithms differed significantly in the bias of the measured volumes of the phantom nodules (p < 0.05) underscoring the need for assessing performance on clinical data in addition to phantoms. Algorithms that most accurately estimated nodule volumes were not the most repeatable, emphasizing the need to evaluate both their accuracy and precision. There were considerable differences between algorithms, especially in a subset of heterogeneous nodules, underscoring the recommendation that the same software be used at all time points in longitudinal studies.

  17. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure functionmore » which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.« less

  18. Delivery of Nano-Tethered Therapies to Brain Metastases of Primary Breast Cancer Using a Cellular Trojan Horse

    DTIC Science & Technology

    2015-10-01

    tomography images. The CT image densities in Hounsfield units (HU) of the brain were translated into corresponding optical properties (absorption...derived the Hounsfield units and optical properties of brain tissues such as white/gray matter. 13-15 The segmentation software generated an optical map...treatment protocol. Head CT image densities (in Hounsfield Units /HU) are segmented and translated into optical properties of the brain tissue

  19. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.

    PubMed

    Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku

    2017-02-01

    Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.

  20. Automatic Brain Portion Segmentation From Magnetic Resonance Images of Head Scans Using Gray Scale Transformation and Morphological Operations.

    PubMed

    Somasundaram, Karuppanagounder; Ezhilarasan, Kamalanathan

    2015-01-01

    To develop an automatic skull stripping method for magnetic resonance imaging (MRI) of human head scans. The proposed method is based on gray scale transformation and morphological operations. The proposed method has been tested with 20 volumes of normal T1-weighted images taken from Internet Brain Segmentation Repository. Experimental results show that the proposed method gives better results than the popular skull stripping methods Brain Extraction Tool and Brain Surface Extractor. The average value of Jaccard and Dice coefficients are 0.93 and 0.962 respectively. In this article, we have proposed a novel skull stripping method using intensity transformation and morphological operations. This is a low computational complexity method but gives competitive or better results than that of the popular skull stripping methods Brain Surface Extractor and Brain Extraction Tool.

  1. Comparison of Automated Atlas-Based Segmentation Software for Postoperative Prostate Cancer Radiotherapy

    PubMed Central

    Delpon, Grégory; Escande, Alexandre; Ruef, Timothée; Darréon, Julien; Fontaine, Jimmy; Noblet, Caroline; Supiot, Stéphane; Lacornerie, Thomas; Pasquier, David

    2016-01-01

    Automated atlas-based segmentation (ABS) algorithms present the potential to reduce the variability in volume delineation. Several vendors offer software that are mainly used for cranial, head and neck, and prostate cases. The present study will compare the contours produced by a radiation oncologist to the contours computed by different automated ABS algorithms for prostate bed cases, including femoral heads, bladder, and rectum. Contour comparison was evaluated by different metrics such as volume ratio, Dice coefficient, and Hausdorff distance. Results depended on the volume of interest showed some discrepancies between the different software. Automatic contours could be a good starting point for the delineation of organs since efficient editing tools are provided by different vendors. It should become an important help in the next few years for organ at risk delineation. PMID:27536556

  2. Sequence and onset of whole-body coordination when turning in response to a visual trigger: comparing people with Parkinson's disease and healthy adults.

    PubMed

    Ashburn, A; Kampshoff, C; Burnett, M; Stack, E; Pickering, R M; Verheyden, G

    2014-01-01

    Turning round is a routine everyday activity that can often lead to instability. The purpose of this study was to investigate abnormalities of turning among people with Parkinson's disease (PwPD) through the measurement of sequence of body segments and latency response. Participants were asked to turn 180° and whole-body movements were recorded using CODAmotion and Visio Fast eye tracking equipment. Thirty-one independently mobile PwPD and 15 age-matched healthy controls participated in the study. We found that contrary to common belief, the head preceded movement of all other body segments (eyes, shoulders, pelvis, first and second foot). We also found interaction between group and body segment (P=0.005), indicating that overall, PwPD took longer to move from head to second foot than age-matched healthy controls. For PwPD only, interactions were found between disease severity and body segment (P<0.0001), between age group and body segment (P<0.0001) and between gender and body segments (P<0.0001). For each interaction, longer time periods were noted between moving the first foot after the pelvis, and moving the second foot after the first, and this was noted for PwPD in Hoehn and Yahr stage III-IV (in comparison to Hoehn and Yahr stage I-II); for PwPD who were under 70 years (in comparison with 70 years or over); and for ladies (in comparison with men). Our results indicate that in PwPD and healthy elderly, turning-on-the-spot might not follow the top-to-bottom approach we know from previous research. Copyright © 2013. Published by Elsevier B.V.

  3. Optimal field-splitting algorithm in intensity-modulated radiotherapy: Evaluations using head-and-neck and female pelvic IMRT cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Xin; Kim, Yusung, E-mail: yusung-kim@uiowa.edu; Bayouth, John E.

    2013-04-01

    To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, andmore » dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.« less

  4. Molecular Age-Related Changes in the Anterior Segment of the Eye.

    PubMed

    Hernandez-Zimbron, Luis Fernando; Gulias-Cañizo, Rosario; Golzarri, María F; Martínez-Báez, Blanca Elizabeth; Quiroz-Mercado, Hugo; Gonzalez-Salinas, Roberto

    2017-01-01

    To examine the current knowledge about the age-related processes in the anterior segment of the eye at a biological, clinical, and molecular level. We reviewed the available published literature that addresses the aging process of the anterior segment of the eye and its associated molecular and physiological events. We performed a search on PubMed, CINAHL, and Embase using the MeSH terms "eye," "anterior segment," and "age." We generated searches to account for synonyms of these keywords and MESH headings as follows: (1) "Eye" AND "ageing process" OR "anterior segment ageing" and (2) "Anterior segment" AND "ageing process" OR "anterior segment" AND "molecular changes" AND "age." Results . Among the principal causes of age-dependent alterations in the anterior segment of the eye, we found the mutation of the TGF- β gene and loss of autophagy in addition to oxidative stress, which contributes to the pathogenesis of degenerative diseases. In this review, we summarize the current knowledge regarding some of the molecular mechanisms related to aging in the anterior segment of the eye. We also introduce and propose potential roles of autophagy, an important mechanism responsible for maintaining homeostasis and proteostasis under stress conditions in the anterior segment during aging.

  5. Maxillofacial injuries among trauma patients undergoing head computerized tomography; A Ugandan experience.

    PubMed

    Krishnan, Ullas Chandrika; Byanyima, Rosemary Kusaba; Faith, Ameda; Kamulegeya, Adriane

    2017-01-01

    The aim of this study was to investigate epidemiological features of maxillofacial fractures within trauma patients who had head and neck computed tomography (CT) scan at the Mulago National referral hospital. CT scan records of trauma patients who had head scans at the Department of Radiology over 1-year period were accessed. Data collected included sociodemographic factors, type and etiology of injury, and concomitant maxillofacial injuries. A total of 1330 trauma patients underwent head and neck CT scan in the 1-year study period. Out of these, 130 were excluded due to incomplete or unclear records and no evidence of injury. Of the remaining 1200, 32% (387) had maxillofacial fractures. The median age of the patients with maxillofacial fractures was 28 (range = 18-80) years and 18-27 age group was most common at 47.5%. Road traffic accidents constituted 49.1% of fractures. The single most affected isolated bone was the frontal bone (23%). The number of maxillofacial bones fractured was predicted by age group (df = 3 F = 5.358, P = 0.001), association with other fractures (df = 1 F = 5.317, P = 0.03). Good matched case-control prospective studies are needed to enable us tease out the finer difference in the circumstances and pattern of injury if we are to design appropriate preventive measures.

  6. Differential approach to strategies of segmental stabilisation in postural control.

    PubMed

    Isableu, Brice; Ohlmann, Théophile; Crémieux, Jacques; Amblard, Bernard

    2003-05-01

    The present paper attempts to clarify the between-subjects variability exhibited in both segmental stabilisation strategies and their subordinated or associated sensory contribution. Previous data have emphasised close relationships between the interindividual variability in both the visual control of posture and the spatial visual perception. In this study, we focused on the possible relationships that might link perceptual visual field dependence-independence and the visual contribution to segmental stabilisation strategies. Visual field dependent (FD) and field independent (FI) subjects were selected on the basis of their extreme score in a static rod and frame test where an estimation of the subjective vertical was required. In the postural test, the subjects stood in the sharpened Romberg position in darkness or under normal or stroboscopic illumination, in front of either a vertical or a tilted frame. Strategies of segmental stabilisation of the head, shoulders and hip in the roll plane were analysed by means of their anchoring index (AI). Our hypothesis was that FD subjects might use mainly visual cues for calibrating not only their spatial perception but also their strategies of segmental stabilisation. In the case of visual cue disturbances, a greater visual dependency to the strategies of segmental stabilisation in FD subjects should be validated by observing more systematic "en bloc" functioning (i.e. negative AI) between two adjacent segments. The main results are the following: 1. Strategies of segmental stabilisation differed between both groups and differences were amplified with the deprivation of either total vision and/or static visual cues. 2. In the absence of total vision and/or static visual cues, FD subjects have shown an increased efficiency of the hip stabilisation in space strategy and an "en bloc" operation of the shoulder-hip unit (whole trunk). The last "en bloc" operation was extended to the whole head-trunk unit in darkness, associated with a hip stabilisation in space. 3. The FI subjects have adopted neither a strategy of segmental stabilisation in space nor on the underlying segment, whatever the body segment considered and the visual condition. Thus, in this group, head, shoulder and hip moved independently from each other during stance control, roughly without taking into account the visual condition. The results, emphasising a differential weighting of sensory input involved in both perceptual and postural control, are discussed in terms of the differential choice and/or ability to select the adequate frame of reference common to both cognitive and motor spatial activities. We assumed that a motor-somesthetics "neglect" or a lack of mastering of these inputs/outputs rather than a mere visual dependence in FD subjects would generate these interindividual differences in both spatial perception and postural balance. This proprioceptive "neglect" is assumed to lead FD subjects to sensory reweighting, whereas proprioceptive dominance would lead FI subjects to a greater ability in selecting the adequate frame of reference in the case of intersensory disturbances. Finally, this study also provides evidence for a new interpretation of the visual field dependence-independence dimension in both spatial perception and postural control.

  7. Planning guidelines for computerized transaxial tomography (CT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-11-23

    Guidelines to assist local communities in review and decisionmaking related to computerized tomography (CT) 'head' and 'whole body' scanner needs and placement are presented. Although medical benefits for head scanning are well established, the proper role of whole body scanning in relation to other diagnostic procedures has not been determined. It is recommended that a 20 percent weighted consideration could be given to a potential CT scanner applicant's present capabilities in diagnostic 'body' work. The following guidelines for CT are recommended for use in assessing work qualifications of potential CT scanner applicants: (1) The facility must have an active neurosurgicalmore » service, with a geographically full-time board - certified neurosurgeon and at least 50 intracranial procedures performed annually. (2) The facility must have an active neurological service, with a geographically full-time board - certified neurologist. (3) The facility must have on staff a qualified neuroradiologist. It is recommended that the CT scanner utilization level be a minimum of 3,000 examinations per year per unit of new equipment. The applicant must submit financial data and must be committed to providing care to all patients, independent of ability to pay. The applicant must submit letters from area hospitals agreeing to utilize the scanner services. Additional criteria are given for body scanning work and for the number of scanners in a specific area. Detailed information is presented about scanner development and use in southeastern Pennsylvania and neighboring planning areas, and the cost of scanner operations is compared with revenues. The CT scanner committee membership is included.« less

  8. A systematic review of the angular values obtained by computerized photogrammetry in sagittal plane: a proposal for reference values.

    PubMed

    Krawczky, Bruna; Pacheco, Antonio G; Mainenti, Míriam R M

    2014-05-01

    Reference values for postural alignment in the coronal plane, as measured by computerized photogrammetry, have been established but not for the sagittal plane. The objective of this study is to propose reference values for angular measurements used for postural analysis in the sagittal plane for healthy adults. Electronic databases (PubMed, BVS, Cochrane, Scielo, and Science Direct) were searched using the following key words: evaluation, posture, photogrammetry, and software. Articles published between 2006 and 2012 that used the PAS/SAPO (postural assessment software) were selected. Another inclusion criterion was the presentation of, at least, one of the following measurements: head horizontal alignment, pelvic horizontal alignment, hip angle, vertical alignment of the body, thoracic kyphosis, and lumbar lordosis. Angle samples of the selected articles were grouped 2 by 2 in relation to an overall average, which made possible total average, variance, and SD calculations. Six articles were included, and the following average angular values were found: 51.42° ± 4.87° (head horizontal alignment), -12.26° ± 5.81° (pelvic horizontal alignment), -6.40° ± 3.86° (hip angle), and 1.73° ± 0.94° (vertical alignment of the body). None of the articles contained the measurements for thoracic kyphosis and lumbar lordosis. The reference values can be adopted as reference for postural assessment in future researches if the same anatomical points are considered. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  9. Rare Forms of Castleman Disease Mimicking Malignancy: Mesenteric and Pancreatic Involvement.

    PubMed

    Ozsoy, Mustafa; Ozsoy, Zehra; Sahin, Suleyman; Arıkan, Yuksel

    2018-03-12

    Castleman disease is a lymphoproliferative disorder with unknown etiology and pathogenesis. While the disease may involve all parts of the body, the mediastinum appears to be the most common part of involvement. In this study, we present two cases of Castleman disease with different localizations that mimicked malignancy. A 62-year-old female patient presented with jaundice. Laboratory analysis indicated aspartate aminotransferase: 250 U/L, total bilirubin: 4 mg/dl, and carbohydrate antigen (CA) 19-9: 900 U/ml. Computerized tomography (CT) of the abdomen showed a mass originating from the pancreas head which resulted in a biliary tract obstruction. A positron emission tomography-computed tomography (PET/CT) showed that the only site of involvement was the pancreas head. A decision was made to perform pancreaticoduodenectomy. During intra-abdominal exploration, lymphadenopathies were identified in the surroundings of the retropancreatic portal vein and the hepatic artery. Histopathological investigation of the dissected lymph nodes demonstrated findings consistent with granulomatous plasma-cell-rich Castleman disease. A 55-year-old female patient presented with abdominal pain, nausea, and vomiting. Computerized tomography of the abdomen showed an abdominal mass of 7 cm, originating from the mesenterium, with high-contrast uptake in the mesenterium in the lower abdominal quadrant. The mesenteric mass was resected along with segmentary small intestine resection. Histopathological investigation of the mass showed a giant granulomatous structure that consisted of plasma cells consistent with Castleman disease. Castleman disease should be kept in mind during differential diagnosis of locally advanced lymph nodes observed during preoperative investigations and intraoperative exploration.

  10. SU-C-BRA-04: Automated Segmentation of Head-And-Neck CT Images for Radiotherapy Treatment Planning Via Multi-Atlas Machine Learning (MAML)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X; Gao, H; Sharp, G

    Purpose: Accurate image segmentation is a crucial step during image guided radiation therapy. This work proposes multi-atlas machine learning (MAML) algorithm for automated segmentation of head-and-neck CT images. Methods: As the first step, the algorithm utilizes normalized mutual information as similarity metric, affine registration combined with multiresolution B-Spline registration, and then fuses together using the label fusion strategy via Plastimatch. As the second step, the following feature selection strategy is proposed to extract five feature components from reference or atlas images: intensity (I), distance map (D), box (B), center of gravity (C) and stable point (S). The box feature Bmore » is novel. It describes a relative position from each point to minimum inscribed rectangle of ROI. The center-of-gravity feature C is the 3D Euclidean distance from a sample point to the ROI center of gravity, and then S is the distance of the sample point to the landmarks. Then, we adopt random forest (RF) in Scikit-learn, a Python module integrating a wide range of state-of-the-art machine learning algorithms as classifier. Different feature and atlas strategies are used for different ROIs for improved performance, such as multi-atlas strategy with reference box for brainstem, and single-atlas strategy with reference landmark for optic chiasm. Results: The algorithm was validated on a set of 33 CT images with manual contours using a leave-one-out cross-validation strategy. Dice similarity coefficients between manual contours and automated contours were calculated: the proposed MAML method had an improvement from 0.79 to 0.83 for brainstem and 0.11 to 0.52 for optic chiasm with respect to multi-atlas segmentation method (MA). Conclusion: A MAML method has been proposed for automated segmentation of head-and-neck CT images with improved performance. It provides the comparable result in brainstem and the improved result in optic chiasm compared with MA. Xuhua Ren and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000), and the Shanghai Pujiang Talent Program (#14PJ1404500).« less

  11. Ultrasound-based coordinate measuring system for estimating cervical dysfunction during functional movement.

    PubMed

    Hemmati, Nima; Abolhassani, Mohammad Djavad; Forghani, Arash

    2008-01-01

    Cervical range of motion (ROM) is a part of the dynamic component of spine evaluation and can be used as an indication of dysfunction in anatomical structures as well as a diagnostic aid in patients with neck pain. Studies indicate that movement coordination of axial segments such as head in dynamic state, disrupted in pathologic conditions. In recent years, a number of non-invasive instruments with varying degrees of accuracy and repeatability have been utilized to measure active or passive range of motion in asymptomatic adults. The aim of this investigation is to design and implement a new method by evidence based approach for estimating the level of defect in segment stability and improvement after treatment by measuring quality or quantity of movement among cervical segment. Transmitter sensors which have been mounted on body send ultrasonic burst signal periodically and from the delay time it takes for this burst to reach three other sensors which arranged on a T-shape Mechanical base, three dimensional position of the transmitter can be calculated. After sending 3D coordination data to a PC via USB port, a complex and elaborative Visual Basic software calculate the angular dispersion and acceleration for each segment separately. This software also calculates the stabilization parameters such as anchoring index (AI) and cross-correlation function (CCF) between head and trunk.

  12. 3D surface voxel tracing corrector for accurate bone segmentation.

    PubMed

    Guo, Haoyan; Song, Sicong; Wang, Jinke; Guo, Maozu; Cheng, Yuanzhi; Wang, Yadong; Tamura, Shinichi

    2018-06-18

    For extremely close bones, their boundaries are weak and diffused due to strong interaction between adjacent surfaces. These factors prevent the accurate segmentation of bone structure. To alleviate these difficulties, we propose an automatic method for accurate bone segmentation. The method is based on a consideration of the 3D surface normal direction, which is used to detect the bone boundary in 3D CT images. Our segmentation method is divided into three main stages. Firstly, we consider a surface tracing corrector combined with Gaussian standard deviation [Formula: see text] to improve the estimation of normal direction. Secondly, we determine an optimal value of [Formula: see text] for each surface point during this normal direction correction. Thirdly, we construct the 1D signal and refining the rough boundary along the corrected normal direction. The value of [Formula: see text] is used in the first directional derivative of the Gaussian to refine the location of the edge point along accurate normal direction. Because the normal direction is corrected and the value of [Formula: see text] is optimized, our method is robust to noise images and narrow joint space caused by joint degeneration. We applied our method to 15 wrists and 50 hip joints for evaluation. In the wrist segmentation, Dice overlap coefficient (DOC) of [Formula: see text]% was obtained by our method. In the hip segmentation, fivefold cross-validations were performed for two state-of-the-art methods. Forty hip joints were used for training in two state-of-the-art methods, 10 hip joints were used for testing and performing comparisons. The DOCs of [Formula: see text], [Formula: see text]%, and [Formula: see text]% were achieved by our method for the pelvis, the left femoral head and the right femoral head, respectively. Our method was shown to improve segmentation accuracy for several specific challenging cases. The results demonstrate that our approach achieved a superior accuracy over two state-of-the-art methods.

  13. On the barn owl's visual pre-attack behavior: I. Structure of head movements and motion patterns.

    PubMed

    Ohayon, Shay; van der Willigen, Robert F; Wagner, Hermann; Katsman, Igor; Rivlin, Ehud

    2006-09-01

    Barn owls exhibit a rich repertoire of head movements before taking off for prey capture. These movements occur mainly at light levels that allow for the visual detection of prey. To investigate these movements and their functional relevance, we filmed the pre-attack behavior of barn owls. Off-line image analysis enabled reconstruction of all six degrees of freedom of head movements. Three categories of head movements were observed: fixations, head translations and head rotations. The observed rotations contained a translational component. Head rotations did not follow Listing's law, but could be well described by a second-order surface, which indicated that they are in close agreement with Donder's law. Head translations did not contain any significant rotational components. Translations were further segmented into straight-line and curved paths. Translations along an axis perpendicular to the line of sight were similar to peering movements observed in other animals. We suggest that these basic motion elements (fixations, head rotations, translations along a straight line, and translation along a curved trajectory) may be combined to form longer and more complex behavior. We speculate that these head movements mainly underlie estimation of distance during prey capture.

  14. Survey Summary of AGATE Concepts Demonstration at Annual NATA Convention, March 24-26, 1997. Volume 1; Basic Report

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An AGATE Concepts Demonstration was conducted at the annual National Air Transportation Association (NATA) Convention in 1997. Following a 5-minute introductory briefing, an interactive simulation of a single-pilot, single-engine aircraft was conducted. The participant was able to take off, fly a brief enroute segment, fly a Global Positioning System (GPS) approach and landing, and repeat the approach and landing segment. The participant was provided an advanced "highway-in-the-sky" presentation on both a simulated head-up display and on a large LCD head-down display to follow throughout the flight. A single-lever power control and display concept was also provided for control of the engine throughout the flight. A second head-down, multifunction display in the instrument panel provided a moving map display for navigation purposes and monitoring of the status of the aircraft's systems. An estimated 100 people observed or participated in the demonstration, and 68 surveys were collected. The pilot ratings of the participants ranged from student to Air Transport Rating with an average of 6089 hours total flight time. The overwhelming response was that technologies that simplify piloting tasks are enthusiastically welcomed by pilots of all experience levels. The increase in situation awareness and use of the head-up display were universally accepted and lauded as steps in the right direction.

  15. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2002-01-01

    The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2 m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, tibia and foot, accelerations along the vertical axis at the head and the tibia, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the tibia and the transmission of the shock wave at heel strike (measured by the peak acceleration ratio of the head/tibia and the time lag between the tibial and head peak accelerations) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.

  16. Massively Multithreaded Maxflow for Image Segmentation on the Cray XMT-2

    PubMed Central

    Bokhari, Shahid H.; Çatalyürek, Ümit V.; Gurcan, Metin N.

    2014-01-01

    SUMMARY Image segmentation is a very important step in the computerized analysis of digital images. The maxflow mincut approach has been successfully used to obtain minimum energy segmentations of images in many fields. Classical algorithms for maxflow in networks do not directly lend themselves to efficient parallel implementations on contemporary parallel processors. We present the results of an implementation of Goldberg-Tarjan preflow-push algorithm on the Cray XMT-2 massively multithreaded supercomputer. This machine has hardware support for 128 threads in each physical processor, a uniformly accessible shared memory of up to 4 TB and hardware synchronization for each 64 bit word. It is thus well-suited to the parallelization of graph theoretic algorithms, such as preflow-push. We describe the implementation of the preflow-push code on the XMT-2 and present the results of timing experiments on a series of synthetically generated as well as real images. Our results indicate very good performance on large images and pave the way for practical applications of this machine architecture for image analysis in a production setting. The largest images we have run are 320002 pixels in size, which are well beyond the largest previously reported in the literature. PMID:25598745

  17. Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI*

    NASA Astrophysics Data System (ADS)

    Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Filgueiras-Rama, David; Pizarro, Gonzalo; Ibañez, Borja; Berenfeld, Omer; Boyers, Pamela; Gold, Jeffrey

    2012-12-01

    This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning.

  18. [Definition of nodal volumes in breast cancer treatment and segmentation guidelines].

    PubMed

    Kirova, Y M; Castro Pena, P; Dendale, R; Campana, F; Bollet, M A; Fournier-Bidoz, N; Fourquet, A

    2009-06-01

    To assist in the determination of breast and nodal volumes in the setting of radiotherapy for breast cancer and establish segmentation guidelines. Materials and methods. Contrast metarial enhanced CT examinations were obtained in the treatment position in 25 patients to clearly define the target volumes. The clinical target volume (CTV) including the breast, internal mammary nodes, supraclavicular and subclavicular regions and axxilary region were segmented along with the brachial plexus and interpectoral nodes. The following critical organs were also segmented: heart, lungs, contralateral breast, thyroid, esophagus and humeral head. A correlation between clinical and imaging findings and meeting between radiation oncologists and breast specialists resulted in a better definition of irradiation volumes for breast and nodes with establishement of segmentation guidelines and creation of an anatomical atlas. A practical approach, based on anatomical criteria, is proposed to assist in the segmentation of breast and node volumes in the setting of breast cancer treatment along with a definition of irradiation volumes.

  19. Initialisation of 3D level set for hippocampus segmentation from volumetric brain MR images

    NASA Astrophysics Data System (ADS)

    Hajiesmaeili, Maryam; Dehmeshki, Jamshid; Bagheri Nakhjavanlo, Bashir; Ellis, Tim

    2014-04-01

    Shrinkage of the hippocampus is a primary biomarker for Alzheimer's disease and can be measured through accurate segmentation of brain MR images. The paper will describe the problem of initialisation of a 3D level set algorithm for hippocampus segmentation that must cope with the some challenging characteristics, such as small size, wide range of intensities, narrow width, and shape variation. In addition, MR images require bias correction, to account for additional inhomogeneity associated with the scanner technology. Due to these inhomogeneities, using a single initialisation seed region inside the hippocampus is prone to failure. Alternative initialisation strategies are explored, such as using multiple initialisations in different sections (such as the head, body and tail) of the hippocampus. The Dice metric is used to validate our segmentation results with respect to ground truth for a dataset of 25 MR images. Experimental results indicate significant improvement in segmentation performance using the multiple initialisations techniques, yielding more accurate segmentation results for the hippocampus.

  20. Effect of segmentation algorithms on the performance of computerized detection of lung nodules in CT

    PubMed Central

    Guo, Wei; Li, Qiang

    2014-01-01

    Purpose: The purpose of this study is to reveal how the performance of lung nodule segmentation algorithm impacts the performance of lung nodule detection, and to provide guidelines for choosing an appropriate segmentation algorithm with appropriate parameters in a computer-aided detection (CAD) scheme. Methods: The database consisted of 85 CT scans with 111 nodules of 3 mm or larger in diameter from the standard CT lung nodule database created by the Lung Image Database Consortium. The initial nodule candidates were identified as those with strong response to a selective nodule enhancement filter. A uniform viewpoint reformation technique was applied to a three-dimensional nodule candidate to generate 24 two-dimensional (2D) reformatted images, which would be used to effectively distinguish between true nodules and false positives. Six different algorithms were employed to segment the initial nodule candidates in the 2D reformatted images. Finally, 2D features from the segmented areas in the 24 reformatted images were determined, selected, and classified for removal of false positives. Therefore, there were six similar CAD schemes, in which only the segmentation algorithms were different. The six segmentation algorithms included the fixed thresholding (FT), Otsu thresholding (OTSU), fuzzy C-means (FCM), Gaussian mixture model (GMM), Chan and Vese model (CV), and local binary fitting (LBF). The mean Jaccard index and the mean absolute distance (Dmean) were employed to evaluate the performance of segmentation algorithms, and the number of false positives at a fixed sensitivity was employed to evaluate the performance of the CAD schemes. Results: For the segmentation algorithms of FT, OTSU, FCM, GMM, CV, and LBF, the highest mean Jaccard index between the segmented nodule and the ground truth were 0.601, 0.586, 0.588, 0.563, 0.543, and 0.553, respectively, and the corresponding Dmean were 1.74, 1.80, 2.32, 2.80, 3.48, and 3.18 pixels, respectively. With these segmentation results of the six segmentation algorithms, the six CAD schemes reported 4.4, 8.8, 3.4, 9.2, 13.6, and 10.4 false positives per CT scan at a sensitivity of 80%. Conclusions: When multiple algorithms are available for segmenting nodule candidates in a CAD scheme, the “optimal” segmentation algorithm did not necessarily lead to the “optimal” CAD detection performance. PMID:25186393

  1. Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda

    PubMed Central

    Ou, Qiang; Shu, Degan; Mayer, Georg

    2012-01-01

    Cambrian lobopodians are important for understanding the evolution of arthropods, but despite their soft-bodied preservation, the organization of the cephalic region remains obscure. Here we describe new material of the early Cambrian lobopodian Onychodictyon ferox from southern China, which reveals hitherto unknown head structures. These include a proboscis with a terminal mouth, an anterior arcuate sclerite, a pair of ocellus-like eyes and branched, antenniform appendages associated with this ocular segment. These findings, combined with a comparison with other lobopodians, suggest that the head of the last common ancestor of fossil lobopodians and extant panarthropods comprized a single ocular segment with a proboscis and terminal mouth. The lack of specialized mouthparts in O. ferox and the involvement of non-homologous mouthparts in onychophorans, tardigrades and arthropods argue against a common origin of definitive mouth openings among panarthropods, whereas the embryonic stomodaeum might well be homologous at least in Onychophora and Arthropoda. PMID:23232391

  2. Exploring the effects of roadway characteristics on the frequency and severity of head-on crashes: case studies from Malaysian federal roads.

    PubMed

    Hosseinpour, Mehdi; Yahaya, Ahmad Shukri; Sadullah, Ahmad Farhan

    2014-01-01

    Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. PubMed Central

    FOUNTOULAKIS, E.N.; PAPADAKI, E.; PANAGIOTAKI, I.; GIANNIKAKI, E.; LAGOUDIANAKIS, G.; BIZAKIS, J.

    2011-01-01

    SUMMARY Haemangiopericytoma is a rare soft tissue tumour, with great histological variability and unpredictable clinical and biological behaviour. The precise cell type origin is uncertain. One third of haemangiopericytomas occur in the head and neck area, but only a few cases have been reported regarding localization at the parapharyngeal space. Herewith, case is presented of a 54-year-old female, referred to our Department due to a parapharyngeal space tumour with non-specific imaging characteristics. The patient underwent radical excision of the tumour with a trans-cervical sub-mandibular approach. The histolopathologic examination revealed a neoplasm with the characteristic features of haemangiopericytoma. One year later, during the scheduled follow-up, the computerized tomography scan showed no evidence of recurrence or residual disease. The pre-operative evaluation of a haemangiopericytoma must include a thorough imaging evaluation with computerized tomography and magnetic resonance imaging, even if results may not be specific for haemangiopericytoma. Angiography and pre-operative embolization may be performed in cases of large tumours with significant vascularity. The treatment of choice is radical excision. The follow-up includes clinical evaluation every 6 months and annual magnetic resonance imaging for at least 3 years. PMID:22058597

  4. Are smooth pursuit eye movements altered in chronic whiplash-associated disorders? A cross-sectional study.

    PubMed

    Kongsted, A; Jørgensen, L V; Bendix, T; Korsholm, L; Leboeuf-Yde, C

    2007-11-01

    To evaluate whether smooth pursuit eye movements differed between patients with long-lasting whiplash-associated disorders and controls when using a purely computerized method for the eye movement analysis. Cross-sectional study comparing patients with whiplash-associated disorders and controls who had not been exposed to head or neck trauma and had no notable neck complaints. Smooth pursuit eye movements were registered while the subjects were seated with and without rotated cervical spine. Thirty-four patients with whiplash-associated disorders with symptoms more than six months after a car collision and 60 controls. Smooth pursuit eye movements were almost identical in patients with chronic whiplash-associated disorders and controls, both when the neck was rotated and in the neutral position. Disturbed smooth pursuit eye movements do not appear to be a distinct feature in patients with chronic whiplash-associated disorders. This is in contrast to results of previous studies and may be due to the fact that analyses were performed in a computerized and objective manner. Other possible reasons for the discrepancy to previous studies are discussed.

  5. Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach.

    PubMed

    Ridgel, Angela L; Ritzmann, Roy E

    2005-06-01

    Few studies in arthropods have documented to what extent local control centers in the thorax can support locomotion in absence of inputs from head ganglia. Posture, walking, and leg motor activity was examined in cockroaches with lesions of neck or circumoesophageal connectives. Early in recovery, cockroaches with neck lesions had hyper-extended postures and did not walk. After recovery, posture was less hyper-extended and animals initiated slow leg movements for multiple cycles. Neck lesioned individuals showed an increase in walking after injection of either octopamine or pilocarpine. The phase of leg movement between segments was reduced in neck lesioned cockroaches from that seen in intact animals, while phases in the same segment remained constant. Neither octopamine nor pilocarpine initiated changes in coordination between segments in neck lesioned individuals. Animals with lesions of the circumoesophageal connectives had postures similar to intact individuals but walked in a tripod gait for extended periods of time. Changes in activity of slow tibial extensor and coxal depressor motor neurons and concomitant changes in leg joint angles were present after the lesions. This suggests that thoracic circuits are sufficient to produce leg movements but coordinated walking with normal motor patterns requires descending input from head ganglia.

  6. Patient Safety and Quality Improvement in Otolaryngology Education: A Systematic Review.

    PubMed

    Gettelfinger, John D; Paulk, P Barrett; Schmalbach, Cecelia E

    2017-06-01

    Objective The breadth and depth of patient safety/quality improvement (PS/QI) research dedicated to otolaryngology-head and neck surgery (OHNS) education remains unknown. This systematic review aims to define this scope and to identify knowledge gaps as well as potential areas of future study to improved PS/QI education and training in OHNS. Data Sources A computerized Ovid/Medline database search was conducted (January 1, 1965, to May 15, 2015). Similar computerized searches were conducted using Cochrane Database, PubMed, and Google Scholar. Review Methods The study protocol was developed a priori using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles were classified by year, subspecialty, Institute of Medicine (IOM) Crossing the Chasm categories, and World Health Organization (WHO) subclass. Results Computerized searches yielded 8743 eligible articles, 267 (3.4%) of which met otolaryngology PS/QI inclusion criteria; 51 (19%) were dedicated to resident/fellow education and training. Simulation studies (39%) and performance/competency evaluation (23.5%) were the most common focus. Most projects involved general otolaryngology (47%), rhinology (18%), and otology (16%). Classification by the IOM included effective care (45%), safety/effective care (41%), and effective and efficient care (7.8%). Most research fell into the WHO category of "identifying solutions" (61%). Conclusion Nineteen percent of OHNS PS/QI articles are dedicated to education, the majority of which are simulation and focus on effective care. Knowledges gaps for future research include facial plastics PS/QI and the WHO category of "studies translating evidence into safer care."

  7. Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Black, F. L.; Kaufman, G. D.; Reschke, M. F.; Wood, S. J.

    2007-01-01

    Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation.

  8. Theory and application of a three-dimensional model of the human spine.

    PubMed

    Belytschko, T; Schwer, L; Privitzer, E

    1978-01-01

    A three-dimensional, discrete model of the human spine, torso, and head was developed for the purpose of evaluating mechanical response in pilot ejection. However, it was developed in sufficient generality to be applicable to other body response problems, such as occupant response in aircraft crash and arbitrary loads on the head-spine system. The anatomy is modelled by a collection of rigid bodies, which represent skeletal segments such as the vertebrae, pelvis, head, and ribs, interconnected by deformable elements, which represent ligaments, cargilagenous joints, viscera and connective tissues. Results are presented for several conditions: different rates of onset, ejection at angles, preejection alignment, and eccentric head loadings. It is shown that slow rates of onset and angling the seat reduce both the peak axial loads and bending moments. In the presence of eccentric head masses, such as helmet-mounted devices, the reflected flexural wave is shown to be the key injury mechanism.

  9. Idiopathic dilated cardiomyopathy: computerized anatomic study of relashionship between septal and free left ventricle wall

    PubMed Central

    Juliani, Paulo Sérgio; da Costa, Éder França; Correia, Aristides Tadeu; Monteiro, Rosangela; Jatene, Fabio Biscegli

    2014-01-01

    Introduction A feature of dilated cardiomyopathy is the deformation of ventricular cavity, which contributes to systolic dysfunction. Few studies have evaluated this deformation bearing in mind ventricular regions and segments of the ventricle, which could reveal important details of the remodeling process, supporting a better understanding of its role in functional impairment and the development of new therapeutic strategies. Objective To evaluate if, in basal, equatorial and apical regions, increased internal transverse perimeter of left ventricle in idiopathic dilated cardiomyopathy occurs proportionally between the septal and non-septal segment. Methods We performed an anatomical study with 28 adult hearts from human cadavers. One group consisted of 18 hearts with idiopathic dilated cardiomyopathy and another group with 10 normal hearts. After lamination and left ventricle digital image capture, in three different regions (base, equator and apex), the transversal internal perimeter of left ventricle was divided into two segments: septal and not septal. These segments were measured by proper software. It was established an index of proportionality between these segments, called septal and non-septal segment index. Then we determined whether this index was the same in both groups. Results Among patients with normal hearts and idiopathic dilated cardiomyopathy, the index of proportionality between the two segments (septal and non-septal) showed no significant difference in the three regions analyzed. The comparison results of the indices NSS/SS among normal and enlarged hearts were respectively: in base 1.99 versus 1.86 (P=0.46), in equator 2.22 versus 2.18 (P=0.79) and in apex 2.96 versus 3.56 (P=0.11). Conclusion In the idiopathic dilated cardiomyopathy, the transversal dilatation of left ventricular internal perimeter occurs proportionally between the segments corresponding to the septum and free wall at the basal, equatorial and apical regions of this chamber. PMID:25372906

  10. MR imaging assessment of the lateral head of the gastrocnemius muscle: prevalence of segmental anomalous origins in children and young adults.

    PubMed

    Kim, Hee Kyung; Laor, Tal; Racadio, Judy M

    2008-12-01

    Variations in the lower extremity musculature have been identified, including an anomalous origin of the medial head of the gastrocnemius muscle. Anomalies of the lateral head of the gastrocnemius muscle (LGN) have been less frequently described, especially in children. To describe the MR imaging appearance, frequency and clinical symptoms associated with anatomic variations of the LGN in children and young adults. A retrospective review of 465 knee MR imaging examinations was performed. The site of origin of the LGN was identified as either normal, lateral segmental anomalous origin (LSAO), or medial accessory anomalous origin (MAAO). The clinical indication for imaging was recorded. An anatomic variation of the LGN was identified in 16 patients (3.4%). Nine patients had LSAO, and five of these had symptoms referable to or abnormalities of the patella. Seven patients had MAAO, and three of these had chronic nontraumatic knee pain. Anatomic variations of the LGN are not rare in young patients, occurring with a frequency of 3.4% in our series. It is unknown whether these anomalies play a role in the etiology of patellofemoral pain or unexplained joint pain in children.

  11. Brain anatomy of the marine tardigrade Actinarctus doryphorus (Arthrotardigrada).

    PubMed

    Persson, Dennis K; Halberg, Kenneth A; Jørgensen, Aslak; Møbjerg, Nadja; Kristensen, Reinhardt M

    2014-02-01

    Knowledge of tardigrade brain structure is important for resolving the phylogenetic relationships of Tardigrada. Here, we present new insight into the morphology of the brain in a marine arthrotardigrade, Actinarctus doryphorus, based on transmission electron microscopy, supported by scanning electron microscopy, conventional light microscopy as well as confocal laser scanning microscopy. Arthrotardigrades contain a large number of plesiomorphic characters and likely represent ancestral tardigrades. They often have segmented body outlines and each trunk segment, with its paired set of legs, may have up to five sensory appendages. Noticeably, the head carries numerous cephalic appendages that are structurally equivalent to the sensory appendages of the trunk segments. Our data reveal that the brain of A. doryphorus is partitioned into three paired lobes, and that these lobes exhibit a more pronounced separation as compared to that of eutardigrades. The first brain lobe in A. doryphorus is located anteriodorsally, with the second lobe just below it in an anterioventral position. Both of these two paired lobes are located anterior to the buccal tube. The third pair of brain lobes are situated posterioventrally to the first two lobes, and flank the buccal tube. In addition, A. doryphorus possesses a subpharyngeal ganglion, which is connected with the first of the four ventral trunk ganglia. The first and second brain lobes in A. doryphorus innervate the clavae and cirri of the head. The innervations of these structures indicate a homology between, respectively, the clavae and cirri of A. doryphorus and the temporalia and papilla cephalica of eutardigrades. The third brain lobes innervate the buccal lamella and the stylets as described for eutardigrades. Collectively, these findings suggest that the head region of extant tardigrades is the result of cephalization of multiple segments. Our results on the brain anatomy of Actinarctus doryphorus support the monophyly of Panarthropoda. Copyright © 2013 Wiley Periodicals, Inc.

  12. Combining registration and active shape models for the automatic segmentation of the lymph node regions in head and neck CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Antong; Deeley, Matthew A.; Niermann, Kenneth J.

    2010-12-15

    Purpose: Intensity-modulated radiation therapy (IMRT) is the state of the art technique for head and neck cancer treatment. It requires precise delineation of the target to be treated and structures to be spared, which is currently done manually. The process is a time-consuming task of which the delineation of lymph node regions is often the longest step. Atlas-based delineation has been proposed as an alternative, but, in the authors' experience, this approach is not accurate enough for routine clinical use. Here, the authors improve atlas-based segmentation results obtained for level II-IV lymph node regions using an active shape model (ASM)more » approach. Methods: An average image volume was first created from a set of head and neck patient images with minimally enlarged nodes. The average image volume was then registered using affine, global, and local nonrigid transformations to the other volumes to establish a correspondence between surface points in the atlas and surface points in each of the other volumes. Once the correspondence was established, the ASMs were created for each node level. The models were then used to first constrain the results obtained with an atlas-based approach and then to iteratively refine the solution. Results: The method was evaluated through a leave-one-out experiment. The ASM- and atlas-based segmentations were compared to manual delineations via the Dice similarity coefficient (DSC) for volume overlap and the Euclidean distance between manual and automatic 3D surfaces. The mean DSC value obtained with the ASM-based approach is 10.7% higher than with the atlas-based approach; the mean and median surface errors were decreased by 13.6% and 12.0%, respectively. Conclusions: The ASM approach is effective in reducing segmentation errors in areas of low CT contrast where purely atlas-based methods are challenged. Statistical analysis shows that the improvements brought by this approach are significant.« less

  13. Transcultural nursing: a selective review of the literature, 1985-1991.

    PubMed

    Wilkins, H

    1993-04-01

    This paper reviews selected work, published in nursing journals between 1985 and 1991, on the subject of transcultural nursing. The papers were selected by the use of a computerized literature search at the Royal College of Nursing library, using the keywords transcultural, multicultural, crosscultural and cultural. The benefits and limitations of such an approach will be discussed along with an introduction to transcultural nursing. The journal papers were then reviewed under eight headings, theory and concepts, nurse education, health education and patient teaching, clinical, counselling, sexuality, care of the child and research. Common themes and problems are discussed.

  14. CMT for biomedical and other applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanne, P.

    This session includes two presentations describing applications for x-ray tomography using synchrotron radiation for biomedical uses and fluid flow modeling, and outlines advantages for using monoenergetic x-rays. Contrast mechanisms are briefly described and several graphs of absorbed doses and scattering of x-rays are included. Also presented are schematic diagrams of computerized tomographic instrumentation with camera head. A brief description of goals for a real time tomographic system and expected improvements to the system are described. Color photomicrographs of the Berea Sandstone and human bone are provided, as well as a 3-D microtomographic reconstruction of a human vertebra sample.

  15. Mechanics of undulatory swimming in a frictional fluid.

    PubMed

    Ding, Yang; Sharpe, Sarah S; Masse, Andrew; Goldman, Daniel I

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a "granular frictional fluid" and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.

  16. Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk.

    PubMed

    Thomson, David; Boylan, Chris; Liptrot, Tom; Aitkenhead, Adam; Lee, Lip; Yap, Beng; Sykes, Andrew; Rowbottom, Carl; Slevin, Nicholas

    2014-08-03

    The accurate definition of organs at risk (OARs) is required to fully exploit the benefits of intensity-modulated radiotherapy (IMRT) for head and neck cancer. However, manual delineation is time-consuming and there is considerable inter-observer variability. This is pertinent as function-sparing and adaptive IMRT have increased the number and frequency of delineation of OARs. We evaluated accuracy and potential time-saving of Smart Probabilistic Image Contouring Engine (SPICE) automatic segmentation to define OARs for salivary-, swallowing- and cochlea-sparing IMRT. Five clinicians recorded the time to delineate five organs at risk (parotid glands, submandibular glands, larynx, pharyngeal constrictor muscles and cochleae) for each of 10 CT scans. SPICE was then used to define these structures. The acceptability of SPICE contours was initially determined by visual inspection and the total time to modify them recorded per scan. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm created a reference standard from all clinician contours. Clinician, SPICE and modified contours were compared against STAPLE by the Dice similarity coefficient (DSC) and mean/maximum distance to agreement (DTA). For all investigated structures, SPICE contours were less accurate than manual contours. However, for parotid/submandibular glands they were acceptable (median DSC: 0.79/0.80; mean, maximum DTA: 1.5 mm, 14.8 mm/0.6 mm, 5.7 mm). Modified SPICE contours were also less accurate than manual contours. The utilisation of SPICE did not result in time-saving/improve efficiency. Improvements in accuracy of automatic segmentation for head and neck OARs would be worthwhile and are required before its routine clinical implementation.

  17. Mechanics of Undulatory Swimming in a Frictional Fluid

    PubMed Central

    Ding, Yang; Sharpe, Sarah S.; Masse, Andrew; Goldman, Daniel I.

    2012-01-01

    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a “granular frictional fluid” and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment. PMID:23300407

  18. Asymmetric simple exclusion process on chains with a shortcut.

    PubMed

    Bunzarova, Nadezhda; Pesheva, Nina; Brankov, Jordan

    2014-03-01

    We consider the asymmetric simple exclusion process (TASEP) on an open network consisting of three consecutively coupled macroscopic chain segments with a shortcut between the tail of the first segment and the head of the third one. The model was introduced by Y.-M. Yuan et al. [J. Phys. A 40, 12351 (2007)] to describe directed motion of molecular motors along twisted filaments. We report here unexpected results which revise the previous findings in the case of maximum current through the network. Our theoretical analysis, based on the effective rates' approximation, shows that the second (shunted) segment can exist in both low- and high-density phases, as well as in the coexistence (shock) phase. Numerical simulations demonstrate that the last option takes place in finite-size networks with head and tail chains of equal length, provided the injection and ejection rates at their external ends are equal and greater than one-half. Then the local density distribution and the nearest-neighbor correlations in the middle chain correspond to a shock phase with completely delocalized domain wall. Upon moving the shortcut to the head or tail of the network, the density profile takes a shape typical of a high- or low-density phase, respectively. Surprisingly, the main quantitative parameters of that shock phase are governed by a positive root of a cubic equation, the coefficients of which linearly depend on the probability of choosing the shortcut. Alternatively, they can be expressed in a universal way through the shortcut current. The unexpected conclusion is that a shortcut in the bulk of a single lane may create traffic jams.

  19. Morphology-based three-dimensional segmentation of coronary artery tree from CTA scans

    NASA Astrophysics Data System (ADS)

    Banh, Diem Phuc T.; Kyprianou, Iacovos S.; Paquerault, Sophie; Myers, Kyle J.

    2007-03-01

    We developed an algorithm based on a rule-based threshold framework to segment the coronary arteries from angiographic computed tomography (CTA) data. Computerized segmentation of the coronary arteries is a challenging procedure due to the presence of diverse anatomical structures surrounding the heart on cardiac CTA data. The proposed algorithm incorporates various levels of image processing and organ information including region, connectivity and morphology operations. It consists of three successive stages. The first stage involves the extraction of the three-dimensional scaffold of the heart envelope. This stage is semiautomatic requiring a reader to review the CTA scans and manually select points along the heart envelope in slices. These points are further processed using a surface spline-fitting technique to automatically generate the heart envelope. The second stage consists of segmenting the left heart chambers and coronary arteries using grayscale threshold, size and connectivity criteria. This is followed by applying morphology operations to further detach the left and right coronary arteries from the aorta. In the final stage, the 3D vessel tree is reconstructed and labeled using an Isolated Connected Threshold technique. The algorithm was developed and tested on a patient coronary artery CTA that was graciously shared by the Department of Radiology of the Massachusetts General Hospital. The test showed that our method constantly segmented the vessels above 79% of the maximum gray-level and automatically extracted 55 of the 58 coronary segments that can be seen on the CTA scan by a reader. These results are an encouraging step toward our objective of generating high resolution models of the male and female heart that will be subsequently used as phantoms for medical imaging system optimization studies.

  20. A computerized MRI biomarker quantification scheme for a canine model of Duchenne muscular dystrophy

    PubMed Central

    Wang, Jiahui; Fan, Zheng; Vandenborne, Krista; Walter, Glenn; Shiloh-Malawsky, Yael; An, Hongyu; Kornegay, Joe N.; Styner, Martin A.

    2015-01-01

    Purpose Golden retriever muscular dystrophy (GRMD) is a widely used canine model of Duchenne muscular dystrophy (DMD). Recent studies have shown that magnetic resonance imaging (MRI) can be used to non-invasively detect consistent changes in both DMD and GRMD. In this paper, we propose a semi-automated system to quantify MRI biomarkers of GRMD. Methods Our system was applied to a database of 45 MRI scans from 8 normal and 10 GRMD dogs in a longitudinal natural history study. We first segmented six proximal pelvic limb muscles using two competing schemes: 1) standard, limited muscle range segmentation and 2) semi-automatic full muscle segmentation. We then performed pre-processing, including: intensity inhomogeneity correction, spatial registration of different image sequences, intensity calibration of T2-weighted (T2w) and T2-weighted fat suppressed (T2fs) images, and calculation of MRI biomarker maps. Finally, for each of the segmented muscles, we automatically measured MRI biomarkers of muscle volume and intensity statistics over MRI biomarker maps, and statistical image texture features. Results The muscle volume and the mean intensities in T2 value, fat, and water maps showed group differences between normal and GRMD dogs. For the statistical texture biomarkers, both the histogram and run-length matrix features showed obvious group differences between normal and GRMD dogs. The full muscle segmentation shows significantly less error and variability in the proposed biomarkers when compared to the standard, limited muscle range segmentation. Conclusion The experimental results demonstrated that this quantification tool can reliably quantify MRI biomarkers in GRMD dogs, suggesting that it would also be useful for quantifying disease progression and measuring therapeutic effect in DMD patients. PMID:23299128

  1. The morphological substrate for Renal Denervation: Nerve distribution patterns and parasympathetic nerves. A post-mortem histological study.

    PubMed

    van Amsterdam, Wouter A C; Blankestijn, Peter J; Goldschmeding, Roel; Bleys, Ronald L A W

    2016-03-01

    Renal Denervation as a possible treatment for hypertension has been studied extensively, but knowledge on the distribution of nerves surrounding the renal artery is still incomplete. While sympathetic and sensory nerves have been demonstrated, there is no mention of the presence of parasympathetic nerve fibers. To provide a description of the distribution patterns of the renal nerves in man, and, in addition, provide a detailed representation of the relative contribution of the sympathetic, parasympathetic and afferent divisions of the autonomic nervous system. Renal arteries of human cadavers were each divided into four longitudinal segments and immunohistochemically stained with specific markers for afferent, parasympathetic and sympathetic nerves. Nerve fibers were semi-automatically quantified by computerized image analysis, and expressed as cross-sectional area relative to the distance to the lumen. A total of 3372 nerve segments were identified in 8 arteries of 7 cadavers. Sympathetic, parasympathetic and afferent nerves contributed for 73.5% (95% CI: 65.4-81.5%), 17.9% (10.7-25.1%) and 8.7% (5.0-12.3%) of the total cross-sectional nerve area, respectively. Nerves are closer to the lumen in more distal segments and larger bundles that presumably innervate the kidney lie at 1-3.5mm distance from the lumen. The tissue-penetration depth of the ablation required to destroy 50% of the nerve fibers is 2.37 mm in the proximal segment and 1.78 mm in the most distal segments. Sympathetic, parasympathetic and afferent nerves exist in the vicinity of the renal artery. The results warrant further investigation of the role of the parasympathetic nervous system on renal physiology, and may contribute to refinement of the procedure by focusing the ablation on the most distal segment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Automatic multiscale enhancement and segmentation of pulmonary vessels in CT pulmonary angiography images for CAD applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Chuan; Chan, H.-P.; Sahiner, Berkman

    2007-12-15

    The authors are developing a computerized pulmonary vessel segmentation method for a computer-aided pulmonary embolism (PE) detection system on computed tomographic pulmonary angiography (CTPA) images. Because PE only occurs inside pulmonary arteries, an automatic and accurate segmentation of the pulmonary vessels in 3D CTPA images is an essential step for the PE CAD system. To segment the pulmonary vessels within the lung, the lung regions are first extracted using expectation-maximization (EM) analysis and morphological operations. The authors developed a 3D multiscale filtering technique to enhance the pulmonary vascular structures based on the analysis of eigenvalues of the Hessian matrix atmore » multiple scales. A new response function of the filter was designed to enhance all vascular structures including the vessel bifurcations and suppress nonvessel structures such as the lymphoid tissues surrounding the vessels. An EM estimation is then used to segment the vascular structures by extracting the high response voxels at each scale. The vessel tree is finally reconstructed by integrating the segmented vessels at all scales based on a 'connected component' analysis. Two CTPA cases containing PEs were used to evaluate the performance of the system. One of these two cases also contained pleural effusion disease. Two experienced thoracic radiologists provided the gold standard of pulmonary vessels including both arteries and veins by manually tracking the arterial tree and marking the center of the vessels using a computer graphical user interface. The accuracy of vessel tree segmentation was evaluated by the percentage of the 'gold standard' vessel center points overlapping with the segmented vessels. The results show that 96.2% (2398/2494) and 96.3% (1910/1984) of the manually marked center points in the arteries overlapped with segmented vessels for the case without and with other lung diseases. For the manually marked center points in all vessels including arteries and veins, the segmentation accuracy are 97.0% (4546/4689) and 93.8% (4439/4732) for the cases without and with other lung diseases, respectively. Because of the lack of ground truth for the vessels, in addition to quantitative evaluation of the vessel segmentation performance, visual inspection was conducted to evaluate the segmentation. The results demonstrate that vessel segmentation using our method can extract the pulmonary vessels accurately and is not degraded by PE occlusion to the vessels in these test cases.« less

  3. Quantitative Contour Analysis as an Image-based Discriminator Between Benign and Malignant Renal Tumors.

    PubMed

    Yap, Felix Y; Hwang, Darryl H; Cen, Steven Y; Varghese, Bino A; Desai, Bhushan; Quinn, Brian D; Gupta, Megha Nayyar; Rajarubendra, Nieroshan; Desai, Mihir M; Aron, Manju; Liang, Gangning; Aron, Monish; Gill, Inderbir S; Duddalwar, Vinay A

    2018-04-01

    To investigate whether morphologic analysis can differentiate between benign and malignant renal tumors on clinically acquired imaging. Between 2009 and 2014, 3-dimensional tumor volumes were manually segmented from contrast-enhanced computerized tomography (CT) images from 150 patients with predominantly solid, nonmacroscopic fat-containing renal tumors: 100 renal cell carcinomas and 50 benign lesions (eg, oncocytoma and lipid-poor angiomyolipoma). Tessellated 3-dimensional tumor models were created from segmented voxels using MATLAB code. Eleven shape descriptors were calculated: sphericity, compactness, mean radial distance, standard deviation of the radial distance, radial distance area ratio, zero crossing, entropy, Feret ratio, convex hull area and convex hull perimeter ratios, and elliptic compactness. Morphometric parameters were compared using the Wilcoxon rank-sum test to investigate whether malignant renal masses demonstrate more morphologic irregularity than benign ones. Only CHP in sagittal orientation (median 0.96 vs 0.97) and EC in coronal orientation (median 0.92 vs 0.93) differed significantly between malignant and benign masses (P = .04). When comparing these 2 metrics between coronal and sagittal orientations, similar but nonsignificant trends emerged (P = .07). Other metrics tested were not significantly different in any imaging plane. Computerized image analysis is feasible using shape descriptors that otherwise cannot be visually assessed and used without quantification. Shape analysis via the transverse orientation may be reasonable, but encompassing all 3 planar dimensions to characterize tumor contour can achieve a more comprehensive evaluation. Two shape metrics (CHP and EC) may help distinguish benign from malignant renal tumors, an often challenging goal to achieve on imaging and biopsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Dual-shank attachment design for omega seals

    DOEpatents

    Sattinger, Stanley S.

    1978-01-01

    An improved apparatus and process for attaching welded omega seal segments to reactor heads, standpipes, mechanisms, and plugs comprises a first shank in combination with a second shank to attach an omega seal at a metal-to-metal interface.

  5. Three-dimensional thoracic aorta principal strain analysis from routine ECG-gated computerized tomography: feasibility in patients undergoing transcatheter aortic valve replacement.

    PubMed

    Satriano, Alessandro; Guenther, Zachary; White, James A; Merchant, Naeem; Di Martino, Elena S; Al-Qoofi, Faisal; Lydell, Carmen P; Fine, Nowell M

    2018-05-02

    Functional impairment of the aorta is a recognized complication of aortic and aortic valve disease. Aortic strain measurement provides effective quantification of mechanical aortic function, and 3-dimenional (3D) approaches may be desirable for serial evaluation. Computerized tomographic angiography (CTA) is routinely performed for various clinical indications, and offers the unique potential to study 3D aortic deformation. We sought to investigate the feasibility of performing 3D aortic strain analysis in a candidate population of patients undergoing transcatheter aortic valve replacement (TAVR). Twenty-one patients with severe aortic valve stenosis (AS) referred for TAVR underwent ECG-gated CTA and echocardiography. CTA images were analyzed using a 3D feature-tracking based technique to construct a dynamic aortic mesh model to perform peak principal strain amplitude (PPSA) analysis. Segmental strain values were correlated against clinical, hemodynamic and echocardiographic variables. Reproducibility analysis was performed. The mean patient age was 81±6 years. Mean left ventricular ejection fraction was 52±14%, aortic valve area (AVA) 0.6±0.3 cm 2 and mean AS pressure gradient (MG) 44±11 mmHg. CTA-based 3D PPSA analysis was feasible in all subjects. Mean PPSA values for the global thoracic aorta, ascending aorta, aortic arch and descending aorta segments were 6.5±3.0, 10.2±6.0, 6.1±2.9 and 3.3±1.7%, respectively. 3D PSSA values demonstrated significantly more impairment with measures of worsening AS severity, including AVA and MG for the global thoracic aorta and ascending segment (p<0.001 for all). 3D PSSA was independently associated with AVA by multivariable modelling. Coefficients of variation for intra- and inter-observer variability were 5.8 and 7.2%, respectively. Three-dimensional aortic PPSA analysis is clinically feasible from routine ECG-gated CTA. Appropriate reductions in PSSA were identified with increasing AS hemodynamic severity. Expanded study of 3D aortic PSSA for patients with various forms of aortic disease is warranted.

  6. View-Invariant Gait Recognition Through Genetic Template Segmentation

    NASA Astrophysics Data System (ADS)

    Isaac, Ebenezer R. H. P.; Elias, Susan; Rajagopalan, Srinivasan; Easwarakumar, K. S.

    2017-08-01

    Template-based model-free approach provides by far the most successful solution to the gait recognition problem in literature. Recent work discusses how isolating the head and leg portion of the template increase the performance of a gait recognition system making it robust against covariates like clothing and carrying conditions. However, most involve a manual definition of the boundaries. The method we propose, the genetic template segmentation (GTS), employs the genetic algorithm to automate the boundary selection process. This method was tested on the GEI, GEnI and AEI templates. GEI seems to exhibit the best result when segmented with our approach. Experimental results depict that our approach significantly outperforms the existing implementations of view-invariant gait recognition.

  7. Short-term and long-term outcome of athletic closed head injuries.

    PubMed

    Webbe, Frank M; Barth, Jeffrey T

    2003-07-01

    The continued development of the sport environment as a laboratory for clinical investigation of mild head injury has greatly advanced the use of neuropsychological assessment in evaluating brain-injured athletes, and tracking their symptoms and recovery in an objective manner. The use of neurocognitive baseline measures has become critical in determining whether a brain-injured athlete has recovered function sufficiently to return to play. The rapid growth of computerized and web-based neurocognitive assessment measures provides an efficient, valid technology to put such testing within the reach of most institutions and organizations that field sport teams. Moreover, the knowledge of the recovery curve following mild head injury in the sport environment can be generalized to the management of MTBI in general clinical environments where baseline measures are unlikely. What we know today is that sideline assessments of severity are not predictive of which athletes will show the most typical 5- to 10-day recovery period and which will report persistent PCS complaints and exhibit impaired neurocognitive performance for an extended time. The research on mechanisms of brain injury in MTBI suggests that unpredictable, diffuse white-matter damage may control much of the variability in functional impairments and recovery duration.

  8. Augmented-reality visualization of brain structures with stereo and kinetic depth cues: system description and initial evaluation with head phantom

    NASA Astrophysics Data System (ADS)

    Maurer, Calvin R., Jr.; Sauer, Frank; Hu, Bo; Bascle, Benedicte; Geiger, Bernhard; Wenzel, Fabian; Recchi, Filippo; Rohlfing, Torsten; Brown, Christopher R.; Bakos, Robert J.; Maciunas, Robert J.; Bani-Hashemi, Ali R.

    2001-05-01

    We are developing a video see-through head-mounted display (HMD) augmented reality (AR) system for image-guided neurosurgical planning and navigation. The surgeon wears a HMD that presents him with the augmented stereo view. The HMD is custom fitted with two miniature color video cameras that capture a stereo view of the real-world scene. We are concentrating specifically at this point on cranial neurosurgery, so the images will be of the patient's head. A third video camera, operating in the near infrared, is also attached to the HMD and is used for head tracking. The pose (i.e., position and orientation) of the HMD is used to determine where to overlay anatomic structures segmented from preoperative tomographic images (e.g., CT, MR) on the intraoperative video images. Two SGI 540 Visual Workstation computers process the three video streams and render the augmented stereo views for display on the HMD. The AR system operates in real time at 30 frames/sec with a temporal latency of about three frames (100 ms) and zero relative lag between the virtual objects and the real-world scene. For an initial evaluation of the system, we created AR images using a head phantom with actual internal anatomic structures (segmented from CT and MR scans of a patient) realistically positioned inside the phantom. When using shaded renderings, many users had difficulty appreciating overlaid brain structures as being inside the head. When using wire frames, and texture-mapped dot patterns, most users correctly visualized brain anatomy as being internal and could generally appreciate spatial relationships among various objects. The 3D perception of these structures is based on both stereoscopic depth cues and kinetic depth cues, with the user looking at the head phantom from varying positions. The perception of the augmented visualization is natural and convincing. The brain structures appear rigidly anchored in the head, manifesting little or no apparent swimming or jitter. The initial evaluation of the system is encouraging, and we believe that AR visualization might become an important tool for image-guided neurosurgical planning and navigation.

  9. Computerized tongue image segmentation via the double geo-vector flow

    PubMed Central

    2014-01-01

    Background Visual inspection for tongue analysis is a diagnostic method in traditional Chinese medicine (TCM). Owing to the variations in tongue features, such as color, texture, coating, and shape, it is difficult to precisely extract the tongue region in images. This study aims to quantitatively evaluate tongue diagnosis via automatic tongue segmentation. Methods Experiments were conducted using a clinical image dataset provided by the Laboratory of Traditional Medical Syndromes, Shanghai University of TCM. First, a clinical tongue image was refined by a saliency window. Second, we initialized the tongue area as the upper binary part and lower level set matrix. Third, a double geo-vector flow (DGF) was proposed to detect the tongue edge and segment the tongue region in the image, such that the geodesic flow was evaluated in the lower part, and the geo-gradient vector flow was evaluated in the upper part. Results The performance of the DGF was evaluated using 100 images. The DGF exhibited better results compared with other representative studies, with its true-positive volume fraction reaching 98.5%, its false-positive volume fraction being 1.51%, and its false-negative volume fraction being 1.42%. The errors between the proposed automatic segmentation results and manual contours were 0.29 and 1.43% in terms of the standard boundary error metrics of Hausdorff distance and mean distance, respectively. Conclusions By analyzing the time complexity of the DGF and evaluating its performance via standard boundary and area error metrics, we have shown both efficiency and effectiveness of the DGF for automatic tongue image segmentation. PMID:24507094

  10. Computerized tongue image segmentation via the double geo-vector flow.

    PubMed

    Shi, Miao-Jing; Li, Guo-Zheng; Li, Fu-Feng; Xu, Chao

    2014-02-08

    Visual inspection for tongue analysis is a diagnostic method in traditional Chinese medicine (TCM). Owing to the variations in tongue features, such as color, texture, coating, and shape, it is difficult to precisely extract the tongue region in images. This study aims to quantitatively evaluate tongue diagnosis via automatic tongue segmentation. Experiments were conducted using a clinical image dataset provided by the Laboratory of Traditional Medical Syndromes, Shanghai University of TCM. First, a clinical tongue image was refined by a saliency window. Second, we initialized the tongue area as the upper binary part and lower level set matrix. Third, a double geo-vector flow (DGF) was proposed to detect the tongue edge and segment the tongue region in the image, such that the geodesic flow was evaluated in the lower part, and the geo-gradient vector flow was evaluated in the upper part. The performance of the DGF was evaluated using 100 images. The DGF exhibited better results compared with other representative studies, with its true-positive volume fraction reaching 98.5%, its false-positive volume fraction being 1.51%, and its false-negative volume fraction being 1.42%. The errors between the proposed automatic segmentation results and manual contours were 0.29 and 1.43% in terms of the standard boundary error metrics of Hausdorff distance and mean distance, respectively. By analyzing the time complexity of the DGF and evaluating its performance via standard boundary and area error metrics, we have shown both efficiency and effectiveness of the DGF for automatic tongue image segmentation.

  11. A computerized MRI biomarker quantification scheme for a canine model of Duchenne muscular dystrophy.

    PubMed

    Wang, Jiahui; Fan, Zheng; Vandenborne, Krista; Walter, Glenn; Shiloh-Malawsky, Yael; An, Hongyu; Kornegay, Joe N; Styner, Martin A

    2013-09-01

    Golden retriever muscular dystrophy (GRMD) is a widely used canine model of Duchenne muscular dystrophy (DMD). Recent studies have shown that magnetic resonance imaging (MRI) can be used to non-invasively detect consistent changes in both DMD and GRMD. In this paper, we propose a semiautomated system to quantify MRI biomarkers of GRMD. Our system was applied to a database of 45 MRI scans from 8 normal and 10 GRMD dogs in a longitudinal natural history study. We first segmented six proximal pelvic limb muscles using a semiautomated full muscle segmentation method. We then performed preprocessing, including intensity inhomogeneity correction, spatial registration of different image sequences, intensity calibration of T2-weighted and T2-weighted fat-suppressed images, and calculation of MRI biomarker maps. Finally, for each of the segmented muscles, we automatically measured MRI biomarkers of muscle volume, intensity statistics over MRI biomarker maps, and statistical image texture features. The muscle volume and the mean intensities in T2 value, fat, and water maps showed group differences between normal and GRMD dogs. For the statistical texture biomarkers, both the histogram and run-length matrix features showed obvious group differences between normal and GRMD dogs. The full muscle segmentation showed significantly less error and variability in the proposed biomarkers when compared to the standard, limited muscle range segmentation. The experimental results demonstrated that this quantification tool could reliably quantify MRI biomarkers in GRMD dogs, suggesting that it would also be useful for quantifying disease progression and measuring therapeutic effect in DMD patients.

  12. MRI quantification of pancreas motion as a function of patient setup for particle therapy —a preliminary study

    PubMed Central

    Riboldi, Marco; Gianoli, Chiara; Chirvase, Cezarina I.; Villa, Gaetano; Paganelli, Chiara; Summers, Paul E.; Tagaste, Barbara; Pella, Andrea; Fossati, Piero; Ciocca, Mario; Baroni, Guido; Valvo, Francesca; Orecchia, Roberto

    2016-01-01

    Particle therapy (PT) has shown positive therapeutic results in local control of locally advanced pancreatic lesions. PT effectiveness is highly influenced by target localization accuracy both in space, since the pancreas is located in proximity to radiosensitive vital organs, and in time as it is subject to substantial breathing‐related motion. The purpose of this preliminary study was to quantify pancreas range of motion under typical PT treatment conditions. Three common immobilization devices (vacuum cushion, thermoplastic mask, and compressor belt) were evaluated on five male patients in prone and supine positions. Retrospective four‐dimensional magnetic resonance imaging data were reconstructed for each condition and the pancreas was manually segmented on each of six breathing phases. A k‐means algorithm was then applied on the manually segmented map in order to obtain clusters representative of the three pancreas segments: head, body, and tail. Centers of mass (COM) for the pancreas and its segments were computed, as well as their displacements with respect to a reference breathing phase (beginning exhalation). The median three‐dimensional COM displacements were in the range of 3 mm. Latero–lateral and superior–inferior directions had a higher range of motion than the anterior–posterior direction. Motion analysis of the pancreas segments showed slightly lower COM displacements for the head cluster compared to the tail cluster, especially in prone position. Statistically significant differences were found within patients among the investigated setups. Hence a patient‐specific approach, rather than a general strategy, is suggested to define the optimal treatment setup in the frame of a millimeter positioning accuracy. PACS number(s): 87.55.‐x, 87.57.nm, 87.61 PMID:27685119

  13. Vessel segmentation in 3D spectral OCT scans of the retina

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Garvin, Mona K.; van Ginneken, Bram; Sonka, Milan; Abràmoff, Michael D.

    2008-03-01

    The latest generation of spectral optical coherence tomography (OCT) scanners is able to image 3D cross-sectional volumes of the retina at a high resolution and high speed. These scans offer a detailed view of the structure of the retina. Automated segmentation of the vessels in these volumes may lead to more objective diagnosis of retinal vascular disease including hypertensive retinopathy, retinopathy of prematurity. Additionally, vessel segmentation can allow color fundus images to be registered to these 3D volumes, possibly leading to a better understanding of the structure and localization of retinal structures and lesions. In this paper we present a method for automatically segmenting the vessels in a 3D OCT volume. First, the retina is automatically segmented into multiple layers, using simultaneous segmentation of their boundary surfaces in 3D. Next, a 2D projection of the vessels is produced by only using information from certain segmented layers. Finally, a supervised, pixel classification based vessel segmentation approach is applied to the projection image. We compared the influence of two methods for the projection on the performance of the vessel segmentation on 10 optic nerve head centered 3D OCT scans. The method was trained on 5 independent scans. Using ROC analysis, our proposed vessel segmentation system obtains an area under the curve of 0.970 when compared with the segmentation of a human observer.

  14. Maxillofacial injuries among trauma patients undergoing head computerized tomography; A Ugandan experience

    PubMed Central

    Krishnan, Ullas Chandrika; Byanyima, Rosemary Kusaba; Faith, Ameda; Kamulegeya, Adriane

    2017-01-01

    Aim: The aim of this study was to investigate epidemiological features of maxillofacial fractures within trauma patients who had head and neck computed tomography (CT) scan at the Mulago National referral hospital. Methods: CT scan records of trauma patients who had head scans at the Department of Radiology over 1-year period were accessed. Data collected included sociodemographic factors, type and etiology of injury, and concomitant maxillofacial injuries. Results: A total of 1330 trauma patients underwent head and neck CT scan in the 1-year study period. Out of these, 130 were excluded due to incomplete or unclear records and no evidence of injury. Of the remaining 1200, 32% (387) had maxillofacial fractures. The median age of the patients with maxillofacial fractures was 28 (range = 18–80) years and 18–27 age group was most common at 47.5%. Road traffic accidents constituted 49.1% of fractures. The single most affected isolated bone was the frontal bone (23%). The number of maxillofacial bones fractured was predicted by age group (df = 3 F = 5.358, P = 0.001), association with other fractures (df = 1 F = 5.317, P = 0.03). Conclusions: Good matched case–control prospective studies are needed to enable us tease out the finer difference in the circumstances and pattern of injury if we are to design appropriate preventive measures. PMID:29291177

  15. Head Tilt Posturography to Enhance Balance Control Assessment for Astronauts: A Case Study

    NASA Technical Reports Server (NTRS)

    Hwang, E. Y.; Paloski, W. H.

    2006-01-01

    For many years, we have used a standard clinical computerized dynamic posturography (CDP) protocol to assess recovery of integrated sensory-motor function in astronauts returning from space flight. The most reliable indications of postflight crew performance capabilities have been obtained from the sensory organization tests (SOTs) within the CDP protocol, particularly SOTs 5 (eyes closed, surface support sway referenced) and 6 (eyes open, surface support and visual surround sway referenced), which are sensitive to changes in availability and/or utilization of vestibular cues. We have observed, however, that some astronauts exhibiting visible signs of incomplete sensory-motor recovery are able to score within clinical norms on standard SOTs 5 and 6 trials, perhaps as a result of cognitive strategies driven by their naturally competitive natures. To improve the sensitivity of the CDP protocol for assessing recovery of integrated sensory-motor function and fitness to return to duties and/or activities of daily living, we have introduced pitch plane head tilt SOT trials to our protocol. In a preliminary study of 5 short duration (11day missions) astronauts, we showed that they were unable to maintain balance on landing day when performing dynamic head tilt trials, despite scoring within the clinically normal range on the standard SOT trials. The present case report illustrates the advantages of including head tilt trials for assessing sensory-motor recovery in long duration crewmembers.

  16. Intracranial hemorrhage after blunt head trauma in children with bleeding disorders.

    PubMed

    Lee, Lois K; Dayan, Peter S; Gerardi, Michael J; Borgialli, Dominic A; Badawy, Mohamed K; Callahan, James M; Lillis, Kathleen A; Stanley, Rachel M; Gorelick, Marc H; Dong, Li; Zuspan, Sally Jo; Holmes, James F; Kuppermann, Nathan

    2011-06-01

    To determine computerized tomography (CT) use and prevalence of traumatic intracranial hemorrhage (ICH) in children with and without congenital and acquired bleeding disorders. We compared CT use and ICH prevalence in children with and without bleeding disorders in a multicenter cohort study of 43 904 children <18 years old with blunt head trauma evaluated in 25 emergency departments. A total of 230 children had bleeding disorders; all had Glasgow Coma Scale (GCS) scores of 14 to 15. These children had higher CT rates than children without bleeding disorders and GCS scores of 14 to 15 (risk ratio, 2.29; 95% CI, 2.15 to 2.44). Of the children who underwent imaging with CT, 2 of 186 children with bleeding disorders had ICH (1.1%; 95% CI, 0.1 to 3.8) , compared with 655 of 14 969 children without bleeding disorders (4.4%; 95% CI, 4.1-4.7; rate ratio, 0.25; 95% CI, 0.06 to 0.98). Both children with bleeding disorders and ICHs had symptoms; none of the children required neurosurgery. In children with head trauma, CTs are obtained twice as often in children with bleeding disorders, although ICHs occurred in only 1.1%, and these patients had symptoms. Routine CT imaging after head trauma may not be required in children without symptoms who have congenital and acquired bleeding disorders. Copyright © 2011 Mosby, Inc. All rights reserved.

  17. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks

    PubMed Central

    Ibragimov, Bulat; Xing, Lei

    2017-01-01

    Purpose Accurate segmentation of organs-at-risks (OARs) is the key step for efficient planning of radiation therapy for head and neck (HaN) cancer treatment. In the work, we proposed the first deep learning-based algorithm, for segmentation of OARs in HaN CT images, and compared its performance against state-of-the-art automated segmentation algorithms, commercial software and inter-observer variability. Methods Convolutional neural networks (CNNs) – a concept from the field of deep learning – were used to study consistent intensity patterns of OARs from training CT images and to segment the OAR in a previously unseen test CT image. For CNN training, we extracted a representative number of positive intensity patches around voxels that belong to the OAR of interest in training CT images, and negative intensity patches around voxels that belong to the surrounding structures. These patches then passed through a sequence of CNN layers that captured local image features such as corners, end-points and edges, and combined them into more complex high-order features that can efficiently describe the OAR. The trained network was applied to classify voxels in a region of interest in the test image where the corresponding OAR is expected to be located. We then smoothed the obtained classification results by using Markov random fields algorithm. We finally extracted the largest connected component of the smoothed voxels classified as the OAR by CNN, performed dilate-erode operations to remov cavities of the component, which resulted in segmentation of the OAR in the test image. Results The performance of CNNs was validated on segmentation of spinal cord, mandible, parotid glands, submandibular glands, larynx, pharynx, eye globes, optic nerves and optic chiasm using 50 CT images. The obtained segmentation results varied from 37.4% Dice coefficient (DSC) for chiasm to 89.5% DSC for mandible. We also analyzed the performance of state-of-the-art algorithms and commercial software reported in the literature, and observed that CNNs demonstrate similar or superior performance on segmentation of spinal cord, mandible, parotid glands, larynx, pharynx, eye globes and optic nerves, but inferior performance on segmentation of submandibular glands and optic chiasm. Conclusion We concluded that convolution neural networks can accurately segment most of OARs using a representative database of 50 HaN CT images. At the same time, inclusion of additional information, e.g. MR images, may be beneficial for some OARs with poorly-visible boundaries. PMID:28205307

  18. Automated segmentation and dose-volume analysis with DICOMautomaton

    NASA Astrophysics Data System (ADS)

    Clark, H.; Thomas, S.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Wu, J.

    2014-03-01

    Purpose: Exploration of historical data for regional organ dose sensitivity is limited by the effort needed to (sub-)segment large numbers of contours. A system has been developed which can rapidly perform autonomous contour sub-segmentation and generic dose-volume computations, substantially reducing the effort required for exploratory analyses. Methods: A contour-centric approach is taken which enables lossless, reversible segmentation and dramatically reduces computation time compared with voxel-centric approaches. Segmentation can be specified on a per-contour, per-organ, or per-patient basis, and can be performed along either an embedded plane or in terms of the contour's bounds (e.g., split organ into fractional-volume/dose pieces along any 3D unit vector). More complex segmentation techniques are available. Anonymized data from 60 head-and-neck cancer patients were used to compare dose-volume computations with Varian's EclipseTM (Varian Medical Systems, Inc.). Results: Mean doses and Dose-volume-histograms computed agree strongly with Varian's EclipseTM. Contours which have been segmented can be injected back into patient data permanently and in a Digital Imaging and Communication in Medicine (DICOM)-conforming manner. Lossless segmentation persists across such injection, and remains fully reversible. Conclusions: DICOMautomaton allows researchers to rapidly, accurately, and autonomously segment large amounts of data into intricate structures suitable for analyses of regional organ dose sensitivity.

  19. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm.

    PubMed

    Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-10-01

    The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.

  20. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm

    PubMed Central

    Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-01-01

    Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070

  1. Cervicocephalic kinesthetic sensibility and postural balance in patients with nontraumatic chronic neck pain--a pilot study.

    PubMed

    Palmgren, Per J; Andreasson, Daniel; Eriksson, Magnus; Hägglund, Andreas

    2009-06-30

    Although cervical pain is widespread, most victims are only mildly and occasionally affected. A minority, however, suffer chronic pain and/or functional impairments. Although there is abundant literature regarding nontraumatic neck pain, little focuses on diagnostic criteria. During the last decade, research on neck pain has been designed to evaluate underlying pathophysiological mechanisms, without noteworthy success. Independent researchers have investigated postural balance and cervicocephalic kinesthetic sensibility among patients with chronic neck pain, and have (in most cases) concluded the source of the problem is a reduced ability in the neck's proprioceptive system. Here, we investigated cervicocephalic kinesthetic sensibility and postural balance among patients with nontraumatic chronic neck pain. Ours was a two-group, observational pilot study of patients with complaints of continuous neck pain during the 3 months prior to recruitment. Thirteen patients with chronic neck pain of nontraumatic origin were recruited from an institutional outpatient clinic. Sixteen healthy persons were recruited as a control group. Cervicocephalic kinesthetic sensibility was assessed by exploring head repositioning accuracy and postural balance was measured with computerized static posturography. Parameters of cervicocephalic kinesthetic sensibility were not reduced. However, in one of six test movements (flexion), global repositioning errors were significantly larger in the experimental group than in the control group (p < .05). Measurements did not demonstrate any general impaired postural balance, and varied substantially among participants in both groups. In patients with nontraumatic chronic neck pain, we found statistically significant global repositioning errors in only one of six test movements. In this cohort, we found no evidence of impaired postural balance.Head repositioning accuracy and computerized static posturography are imperfect measures of functional proprioceptive impairments. Validity of (and procedures for using) these instruments demand further investigation. Current Controlled Trials ISRCTN96873990.

  2. Dosimetric consequences of the parotid glands using CT-to-CBCT deformable registration during IMRT for late stage head and neck cancers

    NASA Astrophysics Data System (ADS)

    Conill, Annette L.

    Patients receiving Intensity Modulated Radiation Therapy (IMRT) for late stage head and neck (HN) cancer often experience anatomical changes due to weight loss, tumor regression, and positional changes of normal anatomy (1). As a result, the actual dose delivered may vary from the original treatment plan. The purpose of this study was (a) to evaluate the dosimetric consequences of the parotid glands during the course of treatment, and (b) to determine if there would be an optimal timeframe for replanning. Nineteen locally advanced HN cancer patients underwent definitive IMRT. Each patient received an initial computerized tomography simulation (CT-SIM) scan and weekly cone beam computerized tomography (CBCT) scans. A Deformable Image Registration (DIR) was performed between the CT-SIM and CBCT of the parotid glands and Planning Target Volumes (PTVs) using the Eclipse treatment planning system (TPS) and the Velocity deformation software. A recalculation of the dose was performed on the weekly CBCTs using the original monitor units. The parameters for evaluation of our method were: the changes in volume of the PTVs and parotid glands, the dose coverage of the PTVs, the lateral displacement in the Center of Mass (COM), the mean dose, and Normal Tissue Complication Probability (NTCP) of the parotid glands. The studies showed a reduction of the volume in the PTVs and parotids, a medial displacement in COM, and alterations of the mean dose to the parotid glands as compared to the initial plans. Differences were observed for the dose volume coverage of the PTVs and NTCP of the parotid gland values between the initial plan and our proposed method utilizing deformable registration-based dose calculations.

  3. Prospective, Head-to-Head Study of Three Computerized Neurocognitive Assessment Tools (CNTs): Reliability and Validity for the Assessment of Sport-Related Concussion.

    PubMed

    Nelson, Lindsay D; LaRoche, Ashley A; Pfaller, Adam Y; Lerner, E Brooke; Hammeke, Thomas A; Randolph, Christopher; Barr, William B; Guskiewicz, Kevin; McCrea, Michael A

    2016-01-01

    Limited data exist comparing the performance of computerized neurocognitive tests (CNTs) for assessing sport-related concussion. We evaluated the reliability and validity of three CNTs-ANAM, Axon Sports/Cogstate Sport, and ImPACT-in a common sample. High school and collegiate athletes completed two CNTs each at baseline. Concussed (n=165) and matched non-injured control (n=166) subjects repeated testing within 24 hr and at 8, 15, and 45 days post-injury. Roughly a quarter of each CNT's indices had stability coefficients (M=198 day interval) over .70. Group differences in performance were mostly moderate to large at 24 hr and small by day 8. The sensitivity of reliable change indices (RCIs) was best at 24 hr (67.8%, 60.3%, and 47.6% with one or more significant RCIs for ImPACT, Axon, and ANAM, respectively) but diminished to near the false positive rates thereafter. Across time, the CNTs' sensitivities were highest in those athletes who became asymptomatic within 1 day before neurocognitive testing but was similar to the tests' false positive rates when including athletes who became asymptomatic several days earlier. Test-retest reliability was similar among these three CNTs and below optimal standards for clinical use on many subtests. Analyses of group effect sizes, discrimination, and sensitivity and specificity suggested that the CNTs may add incrementally (beyond symptom scores) to the identification of clinical impairment within 24 hr of injury or within a short time period after symptom resolution but do not add significant value over symptom assessment later. The rapid clinical recovery course from concussion and modest stability probably jointly contribute to limited signal detection capabilities of neurocognitive tests outside a brief post-injury window. (JINS, 2016, 22, 24-37).

  4. Prospective, Head-to-Head Study of Three Computerized Neurocognitive Assessment Tools (CNTs): Reliability and Validity for the Assessment of Sport-Related Concussion

    PubMed Central

    Nelson, Lindsay D.; LaRoche, Ashley A.; Pfaller, Adam Y.; Lerner, E. Brooke; Hammeke, Thomas A.; Randolph, Christopher; Barr, William B.; Guskiewicz, Kevin; McCrea, Michael A.

    2016-01-01

    Limited data exist comparing the performance of computerized neurocognitive tests (CNTs) for assessing sport-related concussion. We evaluated the reliability and validity of three CNTs—ANAM, Axon Sports/Cogstate Sport, and ImPACT—in a common sample. High school and collegiate athletes completed two CNTs each at baseline. Concussed (n = 165) and matched non-injured control (n = 166) subjects repeated testing within 24 hr and at 8, 15, and 45 days post-injury. Roughly a quarter of each CNT's indices had stability coefficients (M = 198 day interval) over .70. Group differences in performance were mostly moderate to large at 24 hr and small by day 8. The sensitivity of reliable change indices (RCIs) was best at 24 hr (67.8%, 60.3%, and 47.6% with one or more significant RCIs for ImPACT, Axon, and ANAM, respectively) but diminished to near the false positive rates thereafter. Across time, the CNTs' sensitivities were highest in those athletes who became asymptomatic within 1 day before neurocognitive testing but was similar to the tests' false positive rates when including athletes who became asymptomatic several days earlier. Test–retest reliability was similar among these three CNTs and below optimal standards for clinical use on many subtests. Analyses of group effect sizes, discrimination, and sensitivity and specificity suggested that the CNTs may add incrementally (beyond symptom scores) to the identification of clinical impairment within 24 hr of injury or within a short time period after symptom resolution but do not add significant value over symptom assessment later. The rapid clinical recovery course from concussion and modest stability probably jointly contribute to limited signal detection capabilities of neurocognitive tests outside a brief post-injury window. PMID:26714883

  5. Relationship between vertebral artery blood flow in different head positions and vertigo.

    PubMed

    Araz Server, Ela; Edizer, Deniz Tuna; Yiğit, Özgür; Yasak, Ahmet Görkem; Erdim, Çağrı

    2018-01-01

    To identify the vertebral artery blood flow in different head positions in patients with positional vertigo with no specific diagnosis. Patients with history of vestibular symptoms associated with changes in head position were enrolled into the study. Healthy volunteers were evaluated as control group. Doppler ultrasonography examination of the cervical segment of the vertebral arteries was performed under three different head positions: (i) supine position, (ii) head hyperextended and rotated to the right side and (iii) head hyperextended and rotated to the left side. In the study group, right and left vertebral artery blood flow was significantly lower in the ipsilateral hyperextended position compared to standard supine position (respectively p = .014; p = .001), but did not differ significantly when compared between the standard supine and contralateral hyperextended positions (respectively = .959; p = .669). In the control group, left and right vertebral artery blood flow did not differ significantly when the head was hyperextended to the right or left sides compared to standard supine position (p > .05). Our data demonstrated that the etiology of vestibular complaints in patients with undiagnosed positional vertigo might be related to impairment in vertebral artery blood flow according to head positions.

  6. Locomotor skills and balance strategies in adolescents idiopathic scoliosis.

    PubMed

    Mallau, Sophie; Bollini, Gérard; Jouve, Jean-Luc; Assaiante, Christine

    2007-01-01

    Locomotor balance control assessment was performed to study the effect of idiopathic scoliosis on head-trunk coordination in 17 patients with adolescent idiopathic scoliosis (AIS) and 16 control subjects. The aim of this study was to explore the functional effects of structural spinal deformations like idiopathic scoliosis on the balance strategies used during locomotion. Up to now, the repercussion of the idiopathic scoliosis on head-trunk coordination and balance strategies during locomotion is relatively unknown. Seventeen patients with AIS (mean age 14 years 3 months, 10 degrees < Cobb angle > 30 degrees) and 16 control subjects (mean age 14 years 1 month) were tested during various locomotor tasks: walking on the ground, walking on a line, and walking on a beam. Balance control was examined in terms of rotation about the vertical axis (yaw) and on a frontal plane (roll). Kinematics of foot, pelvis, trunk, shoulder, and head rotations were measured with an automatic optical TV image processor in order to calculate angular dispersions and segmental stabilizations. Decreasing the walking speed is the main adaptive strategy used in response to balance problems in control subjects as well as patients with AIS. However, patients with AIS performed walking tasks more slowly than normal subjects (around 15%). Moreover, the pelvic stabilization is preserved, despite the structural changes affecting the spine. Lastly, the biomechanical defect resulting from idiopathic scoliosis mainly affects the yaw head stabilization during locomotion. Patients with AIS show substantial similarities with control subjects in adaptive strategies relative to locomotor velocity as well as balance control based on segmental stabilization. In contrast, the loss of the yaw head stabilization strategies, mainly based on the use of vestibular information, probably reflects the presence of vestibular deficits in the patients with AIS.

  7. Evaluation of a Computerized Clinical Information System (Micromedex).

    PubMed Central

    Lundsgaarde, H. P.; Moreshead, G. E.

    1991-01-01

    This paper summarizes data collected as part of a project designed to identify and assess the technical and organizational problems associated with the implementation and evaluation of a Computerized Clinical Information System (CCIS), Micromedex, in three U.S. Department of Veterans Affairs Medical Centers (VAMCs). The study began in 1987 as a national effort to implement decision support technologies in the Veterans Administration Decentralized Hospital Computer Program (DHCP). The specific objectives of this project were to (1) examine one particular decision support technology, (2) identify the technical and organizational barriers to the implementation of a CCIS in the VA host environment, (3) assess the possible benefits of this system to VA clinicians in terms of therapeutic decision making, and (4) develop new methods for identifying the clinical utility of a computer program designed to provide clinicians with a new information tool. The project was conducted intermittently over a three-year period at three VA medical centers chosen as implementation and evaluation test sites for Micromedex. Findings from the Kansas City Medical Center in Missouri are presented to illustrate some of the technical problems associated with the implementation of a commercial database program in the DHCP host environment, the organizational factors influencing clinical use of the system, and the methods used to evaluate its use. Data from 4581 provider encounters with the CCIS are summarized. Usage statistics are presented to illustrate the methodological possibilities for assessing the "benefits and burdens" of a computerized information system by using an automated collection of user demographics and program audit trails that allow evaluators to monitor user interactions with different segments of the database. PMID:1807583

  8. Evaluation of a Computerized Clinical Information System (Micromedex).

    PubMed

    Lundsgaarde, H P; Moreshead, G E

    1991-01-01

    This paper summarizes data collected as part of a project designed to identify and assess the technical and organizational problems associated with the implementation and evaluation of a Computerized Clinical Information System (CCIS), Micromedex, in three U.S. Department of Veterans Affairs Medical Centers (VAMCs). The study began in 1987 as a national effort to implement decision support technologies in the Veterans Administration Decentralized Hospital Computer Program (DHCP). The specific objectives of this project were to (1) examine one particular decision support technology, (2) identify the technical and organizational barriers to the implementation of a CCIS in the VA host environment, (3) assess the possible benefits of this system to VA clinicians in terms of therapeutic decision making, and (4) develop new methods for identifying the clinical utility of a computer program designed to provide clinicians with a new information tool. The project was conducted intermittently over a three-year period at three VA medical centers chosen as implementation and evaluation test sites for Micromedex. Findings from the Kansas City Medical Center in Missouri are presented to illustrate some of the technical problems associated with the implementation of a commercial database program in the DHCP host environment, the organizational factors influencing clinical use of the system, and the methods used to evaluate its use. Data from 4581 provider encounters with the CCIS are summarized. Usage statistics are presented to illustrate the methodological possibilities for assessing the "benefits and burdens" of a computerized information system by using an automated collection of user demographics and program audit trails that allow evaluators to monitor user interactions with different segments of the database.

  9. Technical Note: PLASTIMATCH MABS, an open source tool for automatic image segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaffino, Paolo; Spadea, Maria Francesca

    Purpose: Multiatlas based segmentation is largely used in many clinical and research applications. Due to its good performances, it has recently been included in some commercial platforms for radiotherapy planning and surgery guidance. Anyway, to date, a software with no restrictions about the anatomical district and image modality is still missing. In this paper we introduce PLASTIMATCH MABS, an open source software that can be used with any image modality for automatic segmentation. Methods: PLASTIMATCH MABS workflow consists of two main parts: (1) an offline phase, where optimal registration and voting parameters are tuned and (2) an online phase, wheremore » a new patient is labeled from scratch by using the same parameters as identified in the former phase. Several registration strategies, as well as different voting criteria can be selected. A flexible atlas selection scheme is also available. To prove the effectiveness of the proposed software across anatomical districts and image modalities, it was tested on two very different scenarios: head and neck (H&N) CT segmentation for radiotherapy application, and magnetic resonance image brain labeling for neuroscience investigation. Results: For the neurological study, minimum dice was equal to 0.76 (investigated structures: left and right caudate, putamen, thalamus, and hippocampus). For head and neck case, minimum dice was 0.42 for the most challenging structures (optic nerves and submandibular glands) and 0.62 for the other ones (mandible, brainstem, and parotid glands). Time required to obtain the labels was compatible with a real clinical workflow (35 and 120 min). Conclusions: The proposed software fills a gap in the multiatlas based segmentation field, since all currently available tools (both for commercial and for research purposes) are restricted to a well specified application. Furthermore, it can be adopted as a platform for exploring MABS parameters and as a reference implementation for comparing against other segmentation algorithms.« less

  10. Relations of Blood Pressure and Head Injury to Regional Cerebral Blood Flow

    PubMed Central

    Allen, Allyssa J.; Katzel, Leslie I.; Wendell, Carrington R.; Siegel, Eliot L.; Lefkowitz, David; Waldstein, Shari R.

    2016-01-01

    Hypertension confers increased risk for cognitive decline, dementia, and cerebrovascular disease. These associations have been attributed, in part, to cerebral hypoperfusion. Here we posit that relations of higher blood pressure to lower levels of cerebral perfusion may be potentiated by a prior head injury. Participants were 87 community-dwelling older adults -69% men, 90% white, mean age= 66.9 years, 27.6% with a history of mild traumatic brain injury (mTBI) defined as a loss of consciousness

  11. Optimizing multimodality treatment for head and neck cancer in rural India.

    PubMed

    Trivedi, N P; Trivedi, P; Trivedi, H; Trivedi, S; Trivedi, N

    2012-01-01

    Multimodality treatment of head and neck cancer in rural India is not always feasible due to lack of infrastructure and logistics. To demonstrate the feasibility of multimodality treatment for head and neck cancer in a community setting in rural India. Community cancer center, retrospective review. This article focuses on practice environment in a cancer clinic in rural India. We evaluated patient profile, treatment protocols, infrastructure availability, factors impacting treatment decisions, cost estimations, completion of treatment, and major treatment-related complications for the patient population treated in our clinic for a 2-year period. A total of 230 head and neck cancer patients were treated with curative intent. Infrastructure support included basic operating room facility (cautery machine, suction, drill system, microscope, and anesthesia machine without ventilator support), blood bank, histopathology laboratory, and computerized tomography machine. Radiation therapy (RT) facility was available in a nearby city, about 75 km away. One hundred and fifty-four (67%) patients presented at an advanced stage, with 138 (60%) receiving multimodality treatment. One hundred and eighty-four (80%) patients underwent primary surgery and 167 (73%) received radiotherapy. Two hundred and twelve (92%) patients completed the treatment, 60 (26%) were lost to follow-up at 18-month median follow-up (range 12-26 months), with 112 patients (66%) being alive, disease free. Totally 142 were major head neck surgeries with 25 free flap reconstructions and 41 regional flaps. There were 15 (6%) major post-op complications and two perioperative mortalities. Average cost of treatment for single modality treatment was approximately 40,000 INR and for multimodality treatment was 80,000 INR. This study demonstrates that it is feasible to provide basic multimodality treatment to head and neck cancer patients in the community.

  12. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    PubMed

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency. Copyright © 2015. Published by Elsevier B.V.

  13. Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yading, E-mail: yading.yuan@mssm.edu; Chao, Ming; Sheu, Ren-Dih

    Purpose: This work aims to develop a robust and efficient method to track the fuzzy borders between liver and the abutted organs where automatic liver segmentation usually suffers, and to investigate its applications in automatic liver segmentation on noncontrast-enhanced planning computed tomography (CT) images. Methods: In order to track the fuzzy liver–chestwall and liver–heart borders where oversegmentation is often found, a starting point and an ending point were first identified on the coronal view images; the fuzzy border was then determined as a geodesic curve constructed by minimizing the gradient-weighted path length between these two points near the fuzzy border.more » The minimization of path length was numerically solved by fast-marching method. The resultant fuzzy borders were incorporated into the authors’ automatic segmentation scheme, in which the liver was initially estimated by a patient-specific adaptive thresholding and then refined by a geodesic active contour model. By using planning CT images of 15 liver patients treated with stereotactic body radiation therapy, the liver contours extracted by the proposed computerized scheme were compared with those manually delineated by a radiation oncologist. Results: The proposed automatic liver segmentation method yielded an average Dice similarity coefficient of 0.930 ± 0.015, whereas it was 0.912 ± 0.020 if the fuzzy border tracking was not used. The application of fuzzy border tracking was found to significantly improve the segmentation performance. The mean liver volume obtained by the proposed method was 1727 cm{sup 3}, whereas it was 1719 cm{sup 3} for manual-outlined volumes. The computer-generated liver volumes achieved excellent agreement with manual-outlined volumes with correlation coefficient of 0.98. Conclusions: The proposed method was shown to provide accurate segmentation for liver in the planning CT images where contrast agent is not applied. The authors’ results also clearly demonstrated that the application of tracking the fuzzy borders could significantly reduce contour leakage during active contour evolution.« less

  14. The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses.

    PubMed

    Keshner, E A; Kenyon, R V

    2000-01-01

    We examined the effect of a 3-dimensional stereoscopic scene on segmental stabilization. Eight subjects participated in static sway and locomotion experiments with a visual scene that moved sinusoidally or at constant velocity about the pitch or roll axes. Segmental displacements, Fast Fourier Transforms, and Root Mean Square values were calculated. In both pitch and roll, subjects exhibited greater magnitudes of motion in head and trunk than ankle. Smaller amplitudes and frequent phase reversals suggested control of the ankle by segmental proprioceptive inputs and ground reaction forces rather than by the visual-vestibular signals. Postural controllers may set limits of motion at each body segment rather than be governed solely by a perception of the visual vertical. Two locomotor strategies were also exhibited, implying that some subjects could override the effect of the roll axis optic flow field. Our results demonstrate task dependent differences that argue against using static postural responses to moving visual fields when assessing more dynamic tasks.

  15. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.

    PubMed

    Huang, Yu; Parra, Lucas C; Haufe, Stefan

    2016-10-15

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semi-automated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an 'arbitrary' individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebro-spinal fluid (CSF), and their field of view excludes portions of the head and neck-two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or "New York Head". It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5mm(3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the 'ground truth') is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an 'individualized' BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. Published by Elsevier Inc.

  16. Genetics, development and composition of the insect head--a beetle's view.

    PubMed

    Posnien, Nico; Schinko, Johannes B; Kittelmann, Sebastian; Bucher, Gregor

    2010-11-01

    Many questions regarding evolution and ontogeny of the insect head remain open. Likewise, the genetic basis of insect head development is poorly understood. Recently, the investigation of gene expression data and the analysis of patterning gene function have revived interest in insect head development. Here, we argue that the red flour beetle Tribolium castaneum is a well suited model organism to spearhead research with respect to the genetic control of insect head development. We review recent molecular data and discuss its bearing on early development and morphogenesis of the head. We present a novel hypothesis on the ontogenetic origin of insect head sutures and review recent insights into the question on the origin of the labrum. Further, we argue that the study of developmental genes may identify the elusive anterior non-segmental region and present some evidence in favor of its existence. With respect to the question of evolution of patterning we show that the head Anlagen of the fruit fly Drosophila melanogaster and Tribolium differ considerably and we review profound differences of their genetic regulation. Finally, we discuss which insect model species might help us to answer the open questions concerning the genetic regulation of head development and its evolution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. [Electronic data records in primary health care and aspects of their development in Bosnia and Herzegovina].

    PubMed

    Novo, Ahmed; Masić, Izet; Toromanović, Selim; Karić, Mediha; Zunić, Lejla

    2004-01-01

    In Medical Informatics medical documentation and evidention are most probably the key areas. Also, in primary health care it is very important and part of daily activity of medical staff. Bosnia and Herzegovina is trying to be close to developed countries and to modernize and computerize current systems of documentation and to cross over from manual and semi manual methods to computerized medical data analysis. The most of European countries have developed standards and classification systems in primary health care for collecting, examination, analysis and interpretation of medical data assessed. One of possibilities as well as dilemma, which data carrier should be used for storage and manipulation of patient data in primary health care, is use of electronic medical record. Most of the South East European countries use chip or smart card and some of countries in neighborhood (Italy) choose laser card as patient data carrier. Both technologies have the advantages and disadvantages what was comprehensively colaborated by the authors in this paper, with intention to help experts who make decisions in this segment to create and to correctly influence on improvement of quality, correctness and accuracy of medical documentation in primary health care.

  18. Application of computerized exercise ECG digitization. Interpretation in large clinical trials.

    PubMed

    Caralis, D G; Shaw, L; Bilgere, B; Younis, L; Stocke, K; Wiens, R D; Chaitman, B R

    1992-04-01

    The authors report on a semiautomated program that incorporates both visual identification of fiducial points and digital determination of the ST-segment at 60 ms and 80 ms from the J point, ST slope, changes in R wave, and baseline drift. The off-line program can enhance the accuracy of detecting electrocardiographic (ECG) changes, as well as reproducibility of the exercise and postexercise ECG, as a marker of myocardial ischemia. The analysis program is written in Microsoft QuickBASIC 2.0 for an IBM personal computer interfaced to a Summagraphics mm1201 microgrid II digitizer. The program consists of the following components: (1) alphanumeric data entry, (2) ECG wave form digitization, (2) calculation of test results, (4) physician overread, and (5) editor function for remeasurements. This computerized exercise ECG digitization-interpretation program is accurate and reproducible for the quantitative assessment of ST changes and requires minimal time allotment for physician overread. The program is suitable for analysis and interpretation of large volumes of exercise tests in multicenter clinical trials and is currently utilized in the TIMI II, TIMI III, and BARI studies sponsored by the National Institutes of Health.

  19. Bioimpedance Measurement of Segmental Fluid Volumes and Hemodynamics

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Wu, Yi-Chang; Ku, Yu-Tsuan E.; Gerth, Wayne A.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    Bioimpedance has become a useful tool to measure changes in body fluid compartment volumes. An Electrical Impedance Spectroscopic (EIS) system is described that extends the capabilities of conventional fixed frequency impedance plethysmographic (IPG) methods to allow examination of the redistribution of fluids between the intracellular and extracellular compartments of body segments. The combination of EIS and IPG techniques was evaluated in the human calf, thigh, and torso segments of eight healthy men during 90 minutes of six degree head-down tilt (HDT). After 90 minutes HDT the calf and thigh segments significantly (P < 0.05) lost conductive volume (eight and four percent, respectively) while the torso significantly (P < 0.05) gained volume (approximately three percent). Hemodynamic responses calculated from pulsatile IPG data also showed a segmental pattern consistent with vascular fluid loss from the lower extremities and vascular engorgement in the torso. Lumped-parameter equivalent circuit analyses of EIS data for the calf and thigh indicated that the overall volume decreases in these segments arose from reduced extracellular volume that was not completely balanced by increased intracellular volume. The combined use of IPG and EIS techniques enables noninvasive tracking of multi-segment volumetric and hemodynamic responses to environmental and physiological stresses.

  20. Asymmetric simple exclusion process on chains with a shortcut

    NASA Astrophysics Data System (ADS)

    Bunzarova, Nadezhda; Pesheva, Nina; Brankov, Jordan

    2014-03-01

    We consider the asymmetric simple exclusion process (TASEP) on an open network consisting of three consecutively coupled macroscopic chain segments with a shortcut between the tail of the first segment and the head of the third one. The model was introduced by Y.-M. Yuan et al. [J. Phys. A 40, 12351 (2007), 10.1088/1751-8113/40/41/006] to describe directed motion of molecular motors along twisted filaments. We report here unexpected results which revise the previous findings in the case of maximum current through the network. Our theoretical analysis, based on the effective rates' approximation, shows that the second (shunted) segment can exist in both low- and high-density phases, as well as in the coexistence (shock) phase. Numerical simulations demonstrate that the last option takes place in finite-size networks with head and tail chains of equal length, provided the injection and ejection rates at their external ends are equal and greater than one-half. Then the local density distribution and the nearest-neighbor correlations in the middle chain correspond to a shock phase with completely delocalized domain wall. Upon moving the shortcut to the head or tail of the network, the density profile takes a shape typical of a high- or low-density phase, respectively. Surprisingly, the main quantitative parameters of that shock phase are governed by a positive root of a cubic equation, the coefficients of which linearly depend on the probability of choosing the shortcut. Alternatively, they can be expressed in a universal way through the shortcut current. The unexpected conclusion is that a shortcut in the bulk of a single lane may create traffic jams.

  1. Ureter tracking and segmentation in CT urography (CTU) using COMPASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjiiski, Lubomir, E-mail: lhadjisk@umich.edu; Zick, David; Chan, Heang-Ping

    2014-12-15

    Purpose: The authors are developing a computerized system for automated segmentation of ureters in CTU, referred to as combined model-guided path-finding analysis and segmentation system (COMPASS). Ureter segmentation is a critical component for computer-aided diagnosis of ureter cancer. Methods: COMPASS consists of three stages: (1) rule-based adaptive thresholding and region growing, (2) path-finding and propagation, and (3) edge profile extraction and feature analysis. With institutional review board approval, 79 CTU scans performed with intravenous (IV) contrast material enhancement were collected retrospectively from 79 patient files. One hundred twenty-four ureters were selected from the 79 CTU volumes. On average, the uretersmore » spanned 283 computed tomography slices (range: 116–399, median: 301). More than half of the ureters contained malignant or benign lesions and some had ureter wall thickening due to malignancy. A starting point for each of the 124 ureters was identified manually to initialize the tracking by COMPASS. In addition, the centerline of each ureter was manually marked and used as reference standard for evaluation of tracking performance. The performance of COMPASS was quantitatively assessed by estimating the percentage of the length that was successfully tracked and segmented for each ureter and by estimating the average distance and the average maximum distance between the computer and the manually tracked centerlines. Results: Of the 124 ureters, 120 (97%) were segmented completely (100%), 121 (98%) were segmented through at least 70%, and 123 (99%) were segmented through at least 50% of its length. In comparison, using our previous method, 85 (69%) ureters were segmented completely (100%), 100 (81%) were segmented through at least 70%, and 107 (86%) were segmented at least 50% of its length. With COMPASS, the average distance between the computer and the manually generated centerlines is 0.54 mm, and the average maximum distance is 2.02 mm. With our previous method, the average distance between the centerlines was 0.80 mm, and the average maximum distance was 3.38 mm. The improvements in the ureteral tracking length and both distance measures were statistically significant (p < 0.0001). Conclusions: COMPASS improved significantly the ureter tracking, including regions across ureter lesions, wall thickening, and the narrowing of the lumen.« less

  2. Iterative framework for the joint segmentation and CT synthesis of MR images: application to MRI-only radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Burgos, Ninon; Guerreiro, Filipa; McClelland, Jamie; Presles, Benoît; Modat, Marc; Nill, Simeon; Dearnaley, David; deSouza, Nandita; Oelfke, Uwe; Knopf, Antje-Christin; Ourselin, Sébastien; Cardoso, M. Jorge

    2017-06-01

    To tackle the problem of magnetic resonance imaging (MRI)-only radiotherapy treatment planning (RTP), we propose a multi-atlas information propagation scheme that jointly segments organs and generates pseudo x-ray computed tomography (CT) data from structural MR images (T1-weighted and T2-weighted). As the performance of the method strongly depends on the quality of the atlas database composed of multiple sets of aligned MR, CT and segmented images, we also propose a robust way of registering atlas MR and CT images, which combines structure-guided registration, and CT and MR image synthesis. We first evaluated the proposed framework in terms of segmentation and CT synthesis accuracy on 15 subjects with prostate cancer. The segmentations obtained with the proposed method were compared using the Dice score coefficient (DSC) to the manual segmentations. Mean DSCs of 0.73, 0.90, 0.77 and 0.90 were obtained for the prostate, bladder, rectum and femur heads, respectively. The mean absolute error (MAE) and the mean error (ME) were computed between the reference CTs (non-rigidly aligned to the MRs) and the pseudo CTs generated with the proposed method. The MAE was on average 45.7+/- 4.6 HU and the ME -1.6+/- 7.7 HU. We then performed a dosimetric evaluation by re-calculating plans on the pseudo CTs and comparing them to the plans optimised on the reference CTs. We compared the cumulative dose volume histograms (DVH) obtained for the pseudo CTs to the DVH obtained for the reference CTs in the planning target volume (PTV) located in the prostate, and in the organs at risk at different DVH points. We obtained average differences of -0.14 % in the PTV for {{D}98 % } , and between -0.14 % and 0.05% in the PTV, bladder, rectum and femur heads for D mean and {{D}2 % } . Overall, we demonstrate that the proposed framework is able to automatically generate accurate pseudo CT images and segmentations in the pelvic region, potentially bypassing the need for CT scan for accurate RTP.

  3. Segmented slant hole collimator for stationary cardiac SPECT: Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yanfei, E-mail: ymao@ucair.med.utah.edu; Yu, Zhicong; Zeng, Gengsheng L.

    2015-09-15

    Purpose: This work is a preliminary study of a stationary cardiac SPECT system. The goal of this research is to propose a stationary cardiac SPECT system using segmented slant-hole collimators and to perform computer simulations to test the feasibility. Compared to the rotational SPECT, a stationary system has a benefit of acquiring temporally consistent projections. The most challenging issue in building a stationary system is to provide sufficient projection view-angles. Methods: A GATE (GEANT4 application for tomographic emission) Monte Carlo model was developed to simulate a two-detector stationary cardiac SPECT that uses segmented slant-hole collimators. Each detector contains seven segmentedmore » slant-hole sections that slant to a common volume at the rotation center. Consequently, 14 view-angles over 180° were acquired without any gantry rotation. The NCAT phantom was used for data generation and a tailored maximum-likelihood expectation-maximization algorithm was used for image reconstruction. Effects of limited number of view-angles and data truncation were carefully evaluated in the paper. Results: Simulation results indicated that the proposed segmented slant-hole stationary cardiac SPECT system is able to acquire sufficient data for cardiac imaging without a loss of image quality, even when the uptakes in the liver and kidneys are high. Seven views are acquired simultaneously at each detector, leading to 5-fold sensitivity gain over the conventional dual-head system at the same total acquisition time, which in turn increases the signal-to-noise ratio by 19%. The segmented slant-hole SPECT system also showed a good performance in lesion detection. In our prototype system, a short hole-length was used to reduce the dead zone between neighboring collimator segments. The measured sensitivity gain is about 17-fold over the conventional dual-head system. Conclusions: The GATE Monte Carlo simulations confirm the feasibility of the proposed stationary cardiac SPECT system with segmented slant-hole collimators. The proposed collimator consists of combined parallel and slant holes, and the image on the detector is not reduced in size.« less

  4. Comparison of Postural Recovery Following Short and Long Duration Spaceflights

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Fiedler, J.; Taylor, L. C.; Kozlovskaya, I.; Black, F. O.; Paloski, W. H.

    2010-01-01

    INTRODUCTION: Post-flight postural ataxia reflects adaptive changes to vestibulo-spinal reflexes and control strategies adopted for movement in weightlessness. Quantitative measures obtained during computerized dynamic posturography (CDP) from US and Russian programs provide insight into the effect of spaceflight duration in terms of both the initial decrements and recovery of postural stability. METHODS: CDP was obtained on 117 crewmembers following Shuttle flights lasting 4-17 days, and on 64 crewmembers following long-duration missions lasting 48-380 days. Although the number and timing of sessions varied, the goal was to characterize postural recovery pooling similar measures from different research and flight medicine programs. This report focuses on eyes closed, head erect conditions with either a fixed or sway-referenced base of support. A smaller subset of subjects repeated the sway-referenced condition while making pitch head movements (+/- 20deg at 0.33Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Fall probability was modeled using Bayesian statistical methods to estimate parameters of a logit function. RESULTS: The standard Romberg condition was the least sensitive. Longer duration flights led to larger decrements in stability with sway-reference support during the first 1-2 days, although the timecourse of recovery was similar across flight duration with head erect. Head movements led to increased incidence of falls during the first week, with a significantly longer recovery following long duration flights. CONCLUSIONS: The diagnostic assessment of postural instability, and differences in the timecourse of postural recovery between short and long flight durations, are more pronounced during unstable support conditions requiring active head movements.

  5. Step-by-Step Technique for Segmental Reconstruction of Reverse Hill-Sachs Lesions Using Homologous Osteochondral Allograft.

    PubMed

    Alkaduhimi, Hassanin; van den Bekerom, Michel P J; van Deurzen, Derek F P

    2017-06-01

    Posterior shoulder dislocations are accompanied by high forces and can result in an anteromedial humeral head impression fracture called a reverse Hill-Sachs lesion. This reverse Hill-Sachs lesion can result in serious complications including posttraumatic osteoarthritis, posterior dislocations, osteonecrosis, persistent joint stiffness, and loss of shoulder function. Treatment is challenging and depends on the amount of bone loss. Several techniques have been reported to describe the surgical treatment of lesions larger than 20%. However, there is still limited evidence with regard to the optimal procedure. Favorable results have been reported by performing segmental reconstruction of the reverse Hill-Sachs lesion with bone allograft. Although the procedure of segmental reconstruction has been used in several studies, its technique has not yet been well described in detail. In this report we propose a step-by-step description of the technique how to perform a segmental reconstruction of a reverse Hill-Sachs defect.

  6. Evolutionary Origin of Body Axis Segmentation in Annelids and Arthropods

    NASA Technical Reports Server (NTRS)

    Shankland, S. Martin

    2003-01-01

    During the period of this report, we have made a number of important discoveries. To date this work has led to 4 peer-reviewed publications in primary research journals plus 1 minireview and 1 chapter in the proceedings of a meeting. Publications resulting from this grant support are enumerated at the end of the report. Two additional, on-going studies also described. 1. Using laser cell ablation, we have obtained evidence that an annelid - the leech Helobdella robusta - patterns the anteroposterior (AP) polarity of its nascent segment primordia independent of cell interactions oriented along the AP axis. 2. We cloned a Helobdella homologue (hro-hh) of the Drosophila segment polarity gene hedgehog, and used in situ hybridization and northern blots to characterize its expression in the embryo. 3. We have used laser cell ablations to examine the possible role of cell interactions during the developmental patterning of the 4 rostralmost "head" segments of the leech Helobdella robusta.

  7. An ex post facto evaluation framework for place-based police interventions.

    PubMed

    Braga, Anthony A; Hureau, David M; Papachristos, Andrew V

    2011-12-01

    A small but growing body of research evidence suggests that place-based police interventions generate significant crime control gains. While place-based policing strategies have been adopted by a majority of U.S. police departments, very few agencies make a priori commitments to rigorous evaluations. Recent methodological developments were applied to conduct a rigorous ex post facto evaluation of the Boston Police Department's Safe Street Team (SST) hot spots policing program. A nonrandomized quasi-experimental design was used to evaluate the violent crime control benefits of the SST program at treated street segments and intersections relative to untreated street segments and intersections. Propensity score matching techniques were used to identify comparison places in Boston. Growth curve regression models were used to analyze violent crime trends at treatment places relative to control places. UNITS OF ANALYSIS: Using computerized mapping and database software, a micro-level place database of violent index crimes at all street segments and intersections in Boston was created. Yearly counts of violent index crimes between 2000 and 2009 at the treatment and comparison street segments and intersections served as the key outcome measure. The SST program was associated with a statistically significant reduction in violent index crimes at the treatment places relative to the comparison places without displacing crime into proximate areas. To overcome the challenges of evaluation in real-world settings, evaluators need to continuously develop innovative approaches that take advantage of new theoretical and methodological approaches.

  8. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  9. A Three-Dimensional Atlas of the Honeybee Neck

    PubMed Central

    Berry, Richard P.; Ibbotson, Michael R.

    2010-01-01

    Three-dimensional digital atlases are rapidly becoming indispensible in modern biology. We used serial sectioning combined with manual registration and segmentation of images to develop a comprehensive and detailed three-dimensional atlas of the honeybee head-neck system. This interactive atlas includes skeletal structures of the head and prothorax, the neck musculature, and the nervous system. The scope and resolution of the model exceeds atlases previously developed on similar sized animals, and the interactive nature of the model provides a far more accessible means of interpreting and comprehending insect anatomy and neuroanatomy. PMID:20520729

  10. Materials And Processes Technical Information System (MAPTIS) LDEF materials database

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Strickland, John W.

    1992-01-01

    The Materials and Processes Technical Information System (MAPTIS) is a collection of materials data which was computerized and is available to engineers in the aerospace community involved in the design and development of spacecraft and related hardware. Consisting of various database segments, MAPTIS provides the user with information such as material properties, test data derived from tests specifically conducted for qualification of materials for use in space, verification and control, project management, material information, and various administrative requirements. A recent addition to the project management segment consists of materials data derived from the LDEF flight. This tremendous quantity of data consists of both pre-flight and post-flight data in such diverse areas as optical/thermal, mechanical and electrical properties, atomic concentration surface analysis data, as well as general data such as sample placement on the satellite, A-O flux, equivalent sun hours, etc. Each data point is referenced to the primary investigator(s) and the published paper from which the data was taken. The MAPTIS system is envisioned to become the central location for all LDEF materials data. This paper consists of multiple parts, comprising a general overview of the MAPTIS System and the types of data contained within, and the specific LDEF data element and the data contained in that segment.

  11. Patient-specific reconstruction plates are the missing link in computer-assisted mandibular reconstruction: A showcase for technical description.

    PubMed

    Cornelius, Carl-Peter; Smolka, Wenko; Giessler, Goetz A; Wilde, Frank; Probst, Florian A

    2015-06-01

    Preoperative planning of mandibular reconstruction has moved from mechanical simulation by dental model casts or stereolithographic models into an almost completely virtual environment. CAD/CAM applications allow a high level of accuracy by providing a custom template-assisted contouring approach for bone flaps. However, the clinical accuracy of CAD reconstruction is limited by the use of prebent reconstruction plates, an analogue step in an otherwise digital workstream. In this paper the integration of computerized, numerically-controlled (CNC) milled, patient-specific mandibular plates (PSMP) within the virtual workflow of computer-assisted mandibular free fibula flap reconstruction is illustrated in a clinical case. Intraoperatively, the bone segments as well as the plate arms showed a very good fit. Postoperative CT imaging demonstrated close approximation of the PSMP and fibular segments, and good alignment of native mandible and fibular segments and intersegmentally. Over a follow-up period of 12 months, there was an uneventful course of healing with good bony consolidation. The virtual design and automated fabrication of patient-specific mandibular reconstruction plates provide the missing link in the virtual workflow of computer-assisted mandibular free fibula flap reconstruction. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  12. Population information resources.

    PubMed

    Pasquariella, S K

    1984-12-01

    This article describes print and computerized services that are dedicated to bibliographic coverage of 1 or more areas of population studies. Major printed bibliographic information resources for population material include: ADOPT, DOCPAL Resumenes sobre Poblacion en America Latina, PIDSA Abstracts, Population Index and Review of Population Reviews. ADOPT is an annotated computer-aided current-awareness bibliographic journal which has been published monthly since January 1975 by the Regional Population Information Center of the Economic and Social Commission for Asia and the Pacific (ESCAP). DOCPAL Resumenes is a computer-produced biannual collection of abstracts containing indexes and between 600 and 700 summaries of both published and unpublished population documents. PIDSA is intended to make available documentary information about population matters in sub-Saharan Africa. Population Index, 1 of the oldest and most definitive bibliographies in the demography field, is international in scope and is arranged as a classified and annotated bibliography of monographs, journal articles and 2ndary source material relevant to all aspects of demography. Review of Population Reviews, published 4 times a year, are annotated bibliographies containing summaries of articles that have been published in 83 periodicals in 37 countries. Cited articles are assigned subject-heading descriptors from the Population Multilingual Thesaurus. Major computerized information resources are: DOCPAL, DOCPOP, EBIS/POPFILE, MANPINS, POPLINE and POPULATION BIBLIOGRAPHY. DOCPAL was established to assist Latin Ameran countries in the collection, storage, processing and retrieval of population documents about Latin America. DOCPAL contains over 19,000 bibliographic citations. DOCPOP was established as the 1st Latin American national computerized population documentation system for Brazilian material. POPLINE is a computerized retrieval service cooperatively produced in the US which covers the worldwide literature on population and family planning. POPULATION BIBLIOGRAPHY consists of bibliographic records of the Carolina Population Center Library at the University of North Carolina. EBIS/PROFILE provides computerized literature search services using improved information processing techniques. The system enables interactive information retrieval using a combination of subject descriptors, free text, author names and words in other fields and can be utilized to generate various lists. MANPINS is a cooperative network of 28 population and other libraries in Peninsular Malaysia. Its data bank includes contributions from member libraries in the form of bibliographic information on monographs and journal articles.

  13. High precision localization of intracerebral hemorrhage based on 3D MPR on head CT images

    NASA Astrophysics Data System (ADS)

    Sun, Jianyong; Hou, Xiaoshuai; Sun, Shujie; Zhang, Jianguo

    2017-03-01

    The key step for minimally invasive intracerebral hemorrhage surgery is precisely positioning the hematoma location in the brain before and during the hematoma surgery, which can significantly improves the success rate of puncture hematoma. We designed a 3D computerized surgical plan (CSP) workstation precisely to locate brain hematoma based on Multi-Planar Reconstruction (MPR) visualization technique. We used ten patients' CT/MR studies to verify our designed CSP intracerebral hemorrhage localization method. With the doctor's assessment and comparing with the results of manual measurements, the output of CSP WS for hematoma surgery is more precise and reliable than manual procedure.

  14. Thermistor holder for skin-temperature measurements

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Williams, B. A.

    1974-01-01

    Sensing head of thermistor probe is supported in center area of plastic ring which has tabs so that it can be anchored in place by rubber bands or adhesive tapes. Device attaches probes to human subjects practically, reliably, and without affecting characteristics of skin segment being measured.

  15. 21 CFR 520.45b - Albendazole paste.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (Fasciola hepatica); heads and segments of tapeworms (Moniezia benedeni, M. expansa); adult and 4th stage larvae of stomach worms (brown stomach worms including 4th stage inhibited larvae (Ostertagia ostertagi); barberpole worm (Haemonchus contortus, H. placei); small stomach worm (Trichostrongylus axei)); adult and 4th...

  16. Complex permeability structure of a fault zone crosscutting a sequence of sandstones and shales and its influence on hydraulic head distribution

    NASA Astrophysics Data System (ADS)

    Cilona, A.; Aydin, A.; Hazelton, G.

    2013-12-01

    Characterization of the structural architecture of a 5 km-long, N40°E-striking fault zone provides new insights for the interpretation of hydraulic heads measured across and along the fault. Of interest is the contaminant transport across a portion of the Upper Cretaceous Chatsworth Formation, a 1400 m-thick turbidite sequence of sandstones and shales exposed in the Simi Hills, south California. Local bedding consistently dips about 20° to 30° to NW. Participating hydrogeologists monitor the local groundwater system by means of numerous boreholes used to define the 3D distribution of the groundwater table around the fault. Sixty hydraulic head measurements consistently show differences of 10s of meters, except for a small area. In this presentation, we propose a link between this distribution and the fault zone architecture. Despite an apparent linear morphological trend, the fault is made up of at least three distinct segments named here as northern, central and southern segments. Key aspects of the fault zone architecture have been delineated at two sites. The first is an outcrop of the central segment and the second is a borehole intersecting the northern segment at depth. The first site shows the fault zone juxtaposing sandstones against shales. Here the fault zone consists of a 13 meter-wide fault rock including a highly deformed sliver of sandstone on the northwestern side. In the sandstone, shear offset was resolved along N42°E striking and SE dipping fracture surfaces localized within a 40 cm thick strand. Here the central core of the fault zone is 8 m-wide and contains mostly shale characterized by highly diffuse deformation. It shows a complex texture overprinted by N30°E-striking carbonate veins. At the southeastern edge of the fault zone exposure, a shale unit dipping 50° NW towards the fault zone provides the key information that the shale unit was incorporated into the fault zone in a manner consistent with shale smearing. At the second site, a borehole more than 194 meter-long intersects the fault zone at its bottom. Based on an optical televiewer image supplemented by limited recovered rock cores, a juxtaposition plane (dipping 75° SE) between a fractured sandstone and a highly-deformed shale fault rock has been interpreted as the southeastern boundary of the fault zone. The shale fault rock estimated to be thicker than 4 meters is highly folded and brecciated with locally complex cataclastic texture. The observations and interpretations of the fault architecture presented above suggest that the drop of hydraulic head detected across the fault segments is due primarily to the low-permeability shaly fault rock incorporated into the fault zone by a shale smearing mechanism. Interestingly, at around the step between the northern and the central fault segments, where the fault offset is expected to diminish (no hard link and no significant shaly fault rock), the groundwater levels measured on either sides of the fault zone are more-or-less equal.

  17. The role of the notochord in amniote vertebral column segmentation.

    PubMed

    Ward, Lizzy; Pang, Angel S W; Evans, Susan E; Stern, Claudio D

    2018-07-01

    The vertebral column is segmented, comprising an alternating series of vertebrae and intervertebral discs along the head-tail axis. The vertebrae and outer portion (annulus fibrosus) of the disc are derived from the sclerotome part of the somites, whereas the inner nucleus pulposus of the disc is derived from the notochord. Here we investigate the role of the notochord in vertebral patterning through a series of microsurgical experiments in chick embryos. Ablation of the notochord causes loss of segmentation of vertebral bodies and discs. However, the notochord cannot segment in the absence of the surrounding sclerotome. To test whether the notochord dictates sclerotome segmentation, we grafted an ectopic notochord. We find that the intrinsic segmentation of the sclerotome is dominant over any segmental information the notochord may possess, and no evidence that the chick notochord is intrinsically segmented. We propose that the segmental pattern of vertebral bodies and discs in chick is dictated by the sclerotome, which first signals to the notochord to ensure that the nucleus pulposus develops in register with the somite-derived annulus fibrosus. Later, the notochord is required for maintenance of sclerotome segmentation as the mature vertebral bodies and intervertebral discs form. These results highlight differences in vertebral development between amniotes and teleosts including zebrafish, where the notochord dictates the segmental pattern. The relative importance of the sclerotome and notochord in vertebral patterning has changed significantly during evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. COIS, Favier works with experiment assisted by Helms during LMS-1 mission

    NASA Image and Video Library

    1996-07-09

    STS078-398-032 (20 June - 7 July 1996) --- Astronaut Susan J. Helms, payload commander, measures the distance between Jean-Jacques Favier’s head and the luminous torque, used for the Canal and Otolith Interaction Study (COIS) on the Life and Microgravity Spacelab (LMS-1) mission. Favier, representing the French Space Agency (CNES), is one of two international payload specialists on the almost-17-day flight. This view shows the Voluntary Head Movement (VHM) segment of the experiment. The VHM is meant to characterize how the coordination of head and eye movement changes as a result of spaceflight. Since most vestibular functions are influenced by gravity, the COIS experiment is meant to measure response differences in microgravity.

  19. Development of the software tool for generation and visualization of the finite element head model with bone conduction sounds

    NASA Astrophysics Data System (ADS)

    Nikolić, Dalibor; Milošević, Žarko; Saveljić, Igor; Filipović, Nenad

    2015-12-01

    Vibration of the skull causes a hearing sensation. We call it Bone Conduction (BC) sound. There are several investigations about transmission properties of bone conducted sound. The aim of this study was to develop a software tool for easy generation of the finite element (FE) model of the human head with different materials based on human head anatomy and to calculate sound conduction through the head. Developed software tool generates a model in a few steps. The first step is to do segmentation of CT medical images (DICOM) and to generate a surface mesh files (STL). Each STL file presents a different layer of human head with different material properties (brain, CSF, different layers of the skull bone, skin, etc.). The next steps are to make tetrahedral mesh from obtained STL files, to define FE model boundary conditions and to solve FE equations. This tool uses PAK solver, which is the open source software implemented in SIFEM FP7 project, for calculations of the head vibration. Purpose of this tool is to show impact of the bone conduction sound of the head on the hearing system and to estimate matching of obtained results with experimental measurements.

  20. S-values calculated from a tomographic head/brain model for brain imaging

    NASA Astrophysics Data System (ADS)

    Chao, Tsi-chian; Xu, X. George

    2004-11-01

    A tomographic head/brain model was developed from the Visible Human images and used to calculate S-values for brain imaging procedures. This model contains 15 segmented sub-regions including caudate nucleus, cerebellum, cerebral cortex, cerebral white matter, corpus callosum, eyes, lateral ventricles, lenses, lentiform nucleus, optic chiasma, optic nerve, pons and middle cerebellar peduncle, skull CSF, thalamus and thyroid. S-values for C-11, O-15, F-18, Tc-99m and I-123 have been calculated using this model and a Monte Carlo code, EGS4. Comparison of the calculated S-values with those calculated from the MIRD (1999) stylized head/brain model shows significant differences. In many cases, the stylized head/brain model resulted in smaller S-values (as much as 88%), suggesting that the doses to a specific patient similar to the Visible Man could have been underestimated using the existing clinical dosimetry.

  1. Computerized analysis of coronary artery disease: Performance evaluation of segmentation and tracking of coronary arteries in CT angiograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chuan, E-mail: chuan@umich.edu; Chan, Heang-Ping; Chughtai, Aamer

    2014-08-15

    Purpose: The authors are developing a computer-aided detection system to assist radiologists in analysis of coronary artery disease in coronary CT angiograms (cCTA). This study evaluated the accuracy of the authors’ coronary artery segmentation and tracking method which are the essential steps to define the search space for the detection of atherosclerotic plaques. Methods: The heart region in cCTA is segmented and the vascular structures are enhanced using the authors’ multiscale coronary artery response (MSCAR) method that performed 3D multiscale filtering and analysis of the eigenvalues of Hessian matrices. Starting from seed points at the origins of the left andmore » right coronary arteries, a 3D rolling balloon region growing (RBG) method that adapts to the local vessel size segmented and tracked each of the coronary arteries and identifies the branches along the tracked vessels. The branches are queued and subsequently tracked until the queue is exhausted. With Institutional Review Board approval, 62 cCTA were collected retrospectively from the authors’ patient files. Three experienced cardiothoracic radiologists manually tracked and marked center points of the coronary arteries as reference standard following the 17-segment model that includes clinically significant coronary arteries. Two radiologists visually examined the computer-segmented vessels and marked the mistakenly tracked veins and noisy structures as false positives (FPs). For the 62 cases, the radiologists marked a total of 10191 center points on 865 visible coronary artery segments. Results: The computer-segmented vessels overlapped with 83.6% (8520/10191) of the center points. Relative to the 865 radiologist-marked segments, the sensitivity reached 91.9% (795/865) if a true positive is defined as a computer-segmented vessel that overlapped with at least 10% of the reference center points marked on the segment. When the overlap threshold is increased to 50% and 100%, the sensitivities were 86.2% and 53.4%, respectively. For the 62 test cases, a total of 55 FPs were identified by radiologist in 23 of the cases. Conclusions: The authors’ MSCAR-RBG method achieved high sensitivity for coronary artery segmentation and tracking. Studies are underway to further improve the accuracy for the arterial segments affected by motion artifacts, severe calcified and noncalcified soft plaques, and to reduce the false tracking of the veins and other noisy structures. Methods are also being developed to detect coronary artery disease along the tracked vessels.« less

  2. Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.

    PubMed

    Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu

    2014-10-01

    Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.

  3. Image Segmentation Analysis for NASA Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2010-01-01

    NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.

  4. Fully automated chest wall line segmentation in breast MRI by using context information

    NASA Astrophysics Data System (ADS)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Localio, A. Russell; Schnall, Mitchell D.; Kontos, Despina

    2012-03-01

    Breast MRI has emerged as an effective modality for the clinical management of breast cancer. Evidence suggests that computer-aided applications can further improve the diagnostic accuracy of breast MRI. A critical and challenging first step for automated breast MRI analysis, is to separate the breast as an organ from the chest wall. Manual segmentation or user-assisted interactive tools are inefficient, tedious, and error-prone, which is prohibitively impractical for processing large amounts of data from clinical trials. To address this challenge, we developed a fully automated and robust computerized segmentation method that intensively utilizes context information of breast MR imaging and the breast tissue's morphological characteristics to accurately delineate the breast and chest wall boundary. A critical component is the joint application of anisotropic diffusion and bilateral image filtering to enhance the edge that corresponds to the chest wall line (CWL) and to reduce the effect of adjacent non-CWL tissues. A CWL voting algorithm is proposed based on CWL candidates yielded from multiple sequential MRI slices, in which a CWL representative is generated and used through a dynamic time warping (DTW) algorithm to filter out inferior candidates, leaving the optimal one. Our method is validated by a representative dataset of 20 3D unilateral breast MRI scans that span the full range of the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) fibroglandular density categorization. A promising performance (average overlay percentage of 89.33%) is observed when the automated segmentation is compared to manually segmented ground truth obtained by an experienced breast imaging radiologist. The automated method runs time-efficiently at ~3 minutes for each breast MR image set (28 slices).

  5. A resolution adaptive deep hierarchical (RADHicaL) learning scheme applied to nuclear segmentation of digital pathology images.

    PubMed

    Janowczyk, Andrew; Doyle, Scott; Gilmore, Hannah; Madabhushi, Anant

    2018-01-01

    Deep learning (DL) has recently been successfully applied to a number of image analysis problems. However, DL approaches tend to be inefficient for segmentation on large image data, such as high-resolution digital pathology slide images. For example, typical breast biopsy images scanned at 40× magnification contain billions of pixels, of which usually only a small percentage belong to the class of interest. For a typical naïve deep learning scheme, parsing through and interrogating all the image pixels would represent hundreds if not thousands of hours of compute time using high performance computing environments. In this paper, we present a resolution adaptive deep hierarchical (RADHicaL) learning scheme wherein DL networks at lower resolutions are leveraged to determine if higher levels of magnification, and thus computation, are necessary to provide precise results. We evaluate our approach on a nuclear segmentation task with a cohort of 141 ER+ breast cancer images and show we can reduce computation time on average by about 85%. Expert annotations of 12,000 nuclei across these 141 images were employed for quantitative evaluation of RADHicaL. A head-to-head comparison with a naïve DL approach, operating solely at the highest magnification, yielded the following performance metrics: .9407 vs .9854 Detection Rate, .8218 vs .8489 F -score, .8061 vs .8364 true positive rate and .8822 vs 0.8932 positive predictive value. Our performance indices compare favourably with state of the art nuclear segmentation approaches for digital pathology images.

  6. Correlation of X-ray computed tomography with quantitative nuclear magnetic resonance methods for pre-clinical measurement of adipose and lean tissues in living mice.

    PubMed

    Metzinger, Matthew N; Miramontes, Bernadette; Zhou, Peng; Liu, Yueying; Chapman, Sarah; Sun, Lucy; Sasser, Todd A; Duffield, Giles E; Stack, M Sharon; Leevy, W Matthew

    2014-10-08

    Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.

  7. Multiracial Families.

    ERIC Educational Resources Information Center

    Kenney, Kelley

    The multiracial population is one of the fastest growing segments of the U. S. population. In discussing the multiracial population it is first important to identify and define the groups that are under the heading of multiracial. The literature has included interracial couples, multiracial individuals, and families in which a cross-racial or…

  8. A patient-specific segmentation framework for longitudinal MR images of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.; Gerig, Guido

    2012-02-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Robust, reproducible segmentations of MR images with TBI are crucial for quantitative analysis of recovery and treatment efficacy. However, this is a significant challenge due to severe anatomy changes caused by edema (swelling), bleeding, tissue deformation, skull fracture, and other effects related to head injury. In this paper, we introduce a multi-modal image segmentation framework for longitudinal TBI images. The framework is initialized through manual input of primary lesion sites at each time point, which are then refined by a joint approach composed of Bayesian segmentation and construction of a personalized atlas. The personalized atlas construction estimates the average of the posteriors of the Bayesian segmentation at each time point and warps the average back to each time point to provide the updated priors for Bayesian segmentation. The difference between our approach and segmenting longitudinal images independently is that we use the information from all time points to improve the segmentations. Given a manual initialization, our framework automatically segments healthy structures (white matter, grey matter, cerebrospinal fluid) as well as different lesions such as hemorrhagic lesions and edema. Our framework can handle different sets of modalities at each time point, which provides flexibility in analyzing clinical scans. We show results on three subjects with acute baseline scans and chronic follow-up scans. The results demonstrate that joint analysis of all the points yields improved segmentation compared to independent analysis of the two time points.

  9. Traumatic intracranial injury in intoxicated patients with minor head trauma.

    PubMed

    Easter, Joshua S; Haukoos, Jason S; Claud, Jonathan; Wilbur, Lee; Hagstrom, Michelle Tartalgia; Cantrill, Stephen; Mestek, Michael; Symonds, David; Bakes, Katherine

    2013-08-01

    Studies focusing on minor head injury in intoxicated patients report disparate prevalences of intracranial injury. It is unclear if the typical factors associated with intracranial injury in published clinical decision rules for computerized tomography (CT) acquisition are helpful in differentiating patients with and without intracranial injuries, as intoxication may obscure particular features of intracranial injury such as headache and mimic other signs of head injury such as altered mental status. This study aimed to estimate the prevalence of intracranial injury following minor head injury (Glasgow Coma Scale [GCS] score ≥14) in intoxicated patients and to assess the performance of established clinical decision rules in this population. This was a prospective cohort study of consecutive intoxicated adults presenting to the emergency department (ED) following minor head injury. Historical and physical examination features included those from the Canadian CT Head Rule, National Emergency X-Radiography Utilization Study (NEXUS), and New Orleans Criteria. All patients underwent head CT. A total of 283 patients were enrolled, with a median age of 40 years (interquartile range [IQR] = 28 to 48 years) and median alcohol concentration of 195 mmol/L (IQR = 154 to 256 mmol/L). A total of 238 of 283 (84%) were male, and 225 (80%) had GCS scores of 15. Clinically important injuries (injuries requiring admission to the hospital or neurosurgical follow-up) were identified in 23 patients (8%; 95% confidence interval [CI] = 5% to 12%); one required neurosurgical intervention (0.4%, 95% CI = 0% to 2%). Loss of consciousness and headache were associated with clinically important intracranial injury on CT. The Canadian CT Head Rule had a sensitivity of 70% (95% CI = 47% to 87%) and NEXUS criteria had a sensitivity of 83% (95% CI = 61% to 95%) for clinically important injury in intoxicated patients. In this study, the prevalence of clinically important injury in intoxicated patients with minor head injury was significant. While the presence of the common features associated with intracranial injury in nonintoxicated patients should raise clinical suspicion for intracranial injury in intoxicated patients, the Canadian CT Head Rule and NEXUS criteria do not have adequate sensitivity to be applied in intoxicated patients with minor head injury. © 2013 by the Society for Academic Emergency Medicine.

  10. The CRAC cohort model: A computerized low cost registry of interventional cardiology with daily update and long-term follow-up.

    PubMed

    Rangé, G; Chassaing, S; Marcollet, P; Saint-Étienne, C; Dequenne, P; Goralski, M; Bardiére, P; Beverilli, F; Godillon, L; Sabine, B; Laure, C; Gautier, S; Hakim, R; Albert, F; Angoulvant, D; Grammatico-Guillon, L

    2018-05-01

    To assess the reliability and low cost of a computerized interventional cardiology (IC) registry to prospectively and systematically collect high-quality data for all consecutive coronary patients referred for coronary angiogram or/and coronary angioplasty. Rigorous clinical practice assessment is a key factor to improve prognosis in IC. A prospective and permanent registry could achieve this goal but, presumably, at high cost and low level of data quality. One multicentric IC registry (CRAC registry), fully integrated to usual coronary activity report software, started in the centre Val-de-Loire (CVL) French region in 2014. Quality assessment of CRAC registry was conducted on five IC CathLab of the CVL region, from January 1st to December 31st 2014. Quality of collected data was evaluated by measuring procedure exhaustivity (comparing with data from hospital information system), data completeness (quality controls) and data consistency (by checking complete medical charts as gold standard). Cost per procedure (global registry operating cost/number of collected procedures) was also estimated. CRAC model provided a high-quality level with 98.2% procedure completeness, 99.6% data completeness and 89% data consistency. The operating cost per procedure was €14.70 ($16.51) for data collection and quality control, including ST-segment elevation myocardial infarction (STEMI) preadmission information and one-year follow-up after angioplasty. This integrated computerized IC registry led to the construction of an exhaustive, reliable and costless database, including all coronary patients entering in participating IC centers in the CVL region. This solution will be developed in other French regions, setting up a national IC database for coronary patients in 2020: France PCI. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame: II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head.

    PubMed

    Adachi, Noritaka; Takechi, Masaki; Hirai, Tamami; Kuratani, Shigeru

    2012-01-01

    The vertebrate mesoderm differs distinctly between the head and trunk, and the evolutionary origin of the head mesoderm remains enigmatic. Although the presence of somite-like segmentation in the head mesoderm of model animals is generally denied at molecular developmental levels, the appearance of head cavities in elasmobranch embryos has not been explained, and the possibility that they may represent vestigial head somites once present in an amphioxus-like ancestor has not been ruled out entirely. To examine whether the head cavities in the shark embryo exhibit any molecular signatures reminiscent of trunk somites, we isolated several developmentally key genes, including Pax1, Pax3, Pax7, Pax9, Myf5, Sonic hedgehog, and Patched2, which are involved in myogenic and chondrogenic differentiation in somites, and Pitx2, Tbx1, and Engrailed2, which are related to the patterning of the head mesoderm, from an elasmobranch species, Scyliorhinus torazame. Observation of the expression patterns of these genes revealed that most were expressed in patterns that resembled those found in amniote embryos. In addition, the head cavities did not exhibit an overt similarity to somites; that is, the similarity was no greater than that of the unsegmented head mesoderm in other vertebrates. Moreover, the shark head mesoderm showed an amniote-like somatic/visceral distinction according to the expression of Pitx2, Tbx1, and Engrailed2. We conclude that the head cavities do not represent a manifestation of ancestral head somites; rather, they are more likely to represent a derived trait obtained in the lineage of gnathostomes. © 2012 Wiley Periodicals, Inc.

  12. Combined orthognathic distraction procedure: Le Fort I maxillary osteotomy and mandibular curvilinear distraction osteogenesis. A new technique for craniofacial management.

    PubMed

    Schendel, Stephen A; Hazan-Molina, Hagai; Aizenbud, Dror

    2014-04-01

    Dentofacial deformities are traditionally treated by maxillary and mandibular osteotomies conducted separately or simultaneously. Recently, distraction osteogenesis has become an irreplaceable part of the surgical armamentarium, for its ability to induce new bone formation between the surfaces of bone segments that are gradually separated by incremental traction, along with a simultaneous expansion of the surrounding soft-tissue envelope. The aim of this article is to describe a combined surgical technique consisting of simultaneous maxillary Le Fort I advancement and mandibular surgical repositioning by means of bilateral sagittal split osteotomy with a curvilinear distractor based on a preliminary computerized presurgical prediction.

  13. Large Area Crop Inventory Experiment (LACIE). Phase 3 direct wheat study of North Dakota

    NASA Technical Reports Server (NTRS)

    Kinsler, M. C.; Nichols, J. D.; Ona, A. L. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The green number and brightness scatter plots, channel plots of radiance values, and visual study of the imagery indicate separability between barley and spring wheat/oats during the wheat mid-heading to mid-ripe stages. In the LACIE Phase 3 North Dakota data set, the separation time is more specifically the wheat soft dough stage. At this time, the barley is ripening, and is therefore, less green and brighter than the wheat. Only 4 of the 18 segments studied indicate separation of barley/other spring small grain, even though 11 of the segments have acquisitions covering the wheat soft dough stage. The remaining seven segments had less than 5 percent barley based on ground truth data.

  14. 21 CFR 520.45a - Albendazole suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver...) body weight (10 mg/kilogram (kg)) as a single oral dose using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver flukes (Fasciola hepatica); heads and segments of...

  15. 21 CFR 520.38a - Albendazole suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver...) body weight (10 mg/kilogram (kg)) as a single oral dose using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver flukes (Fasciola hepatica); heads and segments of...

  16. 21 CFR 520.45a - Albendazole suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver...) body weight (10 mg/kilogram (kg)) as a single oral dose using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver flukes (Fasciola hepatica); heads and segments of...

  17. Anthropometric and Mass Distribution Characteristics of the Adult Female. Revised

    DTIC Science & Technology

    1983-09-01

    syst ms, and development of body prostheses. 17. Key Words 18. Distribution Statement Anthropometry , Anatomical Axis, Body Document is available to the...COLLECTION............ . . . ....................... 3 The Subjects ..................................... 3 Anthropometry ...OF TAB&ES Table No. Anthropometry and Mass Distribution Data for the Total Body and Its Segment4: 1 Head

  18. Talking Black.

    ERIC Educational Resources Information Center

    Abrahams, Roger D.

    This book contains essays which focus on the systems of communication that operate within and between various social segments of Afro-American communities in the United States. The essays are presented under the following headings: (1) "Getting Into It: Black Talk, Black Life and the Academic," (2) "'Talking My Talk': Black Talk Varieties and…

  19. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  20. Segments on Western Rim of Endeavour Crater, Mars

    NASA Image and Video Library

    2017-04-19

    This orbital image of the western rim of Mars' Endeavour Crater covers an area about 5 miles (8 kilometers) east-west by about 9 miles (14 kilometers) north-south and indicates the names of some of the raised segments of the rim. NASA's Mars Exploration Rover Opportunity arrived at Endeavour in 2011 after exploring smaller craters to the northwest during its first six years on Mars. It initially explored the "Cape York" segment, then headed south. It reached the northern end of "Cape Tribulation" in late 2014 and the southern tip of that segment in April 2017. A key destination in the "Cape Byron" segment is "Perseverance Valley," where the rover team plans to investigate whether the valley was carved by water, wind or a debris flow initiated by water. This image is from the Context Camera on NASA's Mars Reconnaissance Orbiter. Malin Space Science Systems, San Diego, California, built and operates that camera. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, built and operates Opportunity. https://photojournal.jpl.nasa.gov/catalog/PIA21490

  1. A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates.

    PubMed

    Parker, Hugo J; Bronner, Marianne E; Krumlauf, Robb

    2014-10-23

    A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.

  2. Age-specific MRI brain and head templates for healthy adults from 20 through 89 years of age

    PubMed Central

    Fillmore, Paul T.; Phillips-Meek, Michelle C.; Richards, John E.

    2015-01-01

    This study created and tested a database of adult, age-specific MRI brain and head templates. The participants included healthy adults from 20 through 89 years of age. The templates were done in five-year, 10-year, and multi-year intervals from 20 through 89 years, and consist of average T1W for the head and brain, and segmenting priors for gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). It was found that age-appropriate templates provided less biased tissue classification estimates than age-inappropriate reference data and reference data based on young adult templates. This database is available for use by other investigators and clinicians for their MRI studies, as well as other types of neuroimaging and electrophysiological research.1 PMID:25904864

  3. Fetal head detection and measurement in ultrasound images by an iterative randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2004-05-01

    This paper describes an automatic method for measuring the biparietal diameter (BPD) and head circumference (HC) in ultrasound fetal images. A total of 217 ultrasound images were segmented by using a K-Mean classifier, and the head skull was detected in 214 of the 217 cases by an iterative randomized Hough transform developed for detection of incomplete curves in images with strong noise without user intervention. The automatic measurements were compared with conventional manual measurements by sonographers and a trained panel. The inter-run variations and differences between the automatic and conventional measurements were small compared with published inter-observer variations. The results showed that the automated measurements were as reliable as the expert measurements and more consistent. This method has great potential in clinical applications.

  4. Metatarsal Osteotomies: Complications.

    PubMed

    Reddy, Veerabhadra Babu

    2018-03-01

    Metatarsal osteotomies can be divided into proximal and distal. The proximal osteotomies, such as the oblique, segmental, set cut, and Barouk-Rippstein-Toullec (BRT) osteotomy, all provide the ability to significantly change the position of the metatarsal head without violating the joint. These osteotomies, however, have a high rate of nonunion when done without internal fixation and can lead to transfer metatarsalgia when done without regard to the parabola of metatarsal head position. Distal osteotomies such as the Weil and Helal offer superior healing but have an increased incidence of recurrent metatarsalgia, joint stiffness, and floating toe. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Molecular Age-Related Changes in the Anterior Segment of the Eye

    PubMed Central

    Gulias-Cañizo, Rosario; Martínez-Báez, Blanca Elizabeth; Quiroz-Mercado, Hugo

    2017-01-01

    Purpose To examine the current knowledge about the age-related processes in the anterior segment of the eye at a biological, clinical, and molecular level. Methods We reviewed the available published literature that addresses the aging process of the anterior segment of the eye and its associated molecular and physiological events. We performed a search on PubMed, CINAHL, and Embase using the MeSH terms “eye,” “anterior segment,” and “age.” We generated searches to account for synonyms of these keywords and MESH headings as follows: (1) “Eye” AND “ageing process” OR “anterior segment ageing” and (2) “Anterior segment” AND “ageing process” OR “anterior segment” AND “molecular changes” AND “age.” Results. Among the principal causes of age-dependent alterations in the anterior segment of the eye, we found the mutation of the TGF-β gene and loss of autophagy in addition to oxidative stress, which contributes to the pathogenesis of degenerative diseases. Conclusions In this review, we summarize the current knowledge regarding some of the molecular mechanisms related to aging in the anterior segment of the eye. We also introduce and propose potential roles of autophagy, an important mechanism responsible for maintaining homeostasis and proteostasis under stress conditions in the anterior segment during aging. PMID:29147580

  6. Longitudinal Analysis of Mouse SDOCT Volumes

    PubMed Central

    Antony, Bhavna J.; Carass, Aaron; Lang, Andrew; Kim, Byung-Jin; Zack, Donald J.; Prince, Jerry L.

    2017-01-01

    Spectral-domain optical coherence tomography (SDOCT), in addition to its routine clinical use in the diagnosis of ocular diseases, has begun to find increasing use in animal studies. Animal models are frequently used to study disease mechanisms as well as to test drug efficacy. In particular, SDOCT provides the ability to study animals longitudinally and non-invasively over long periods of time. However, the lack of anatomical landmarks makes the longitudinal scan acquisition prone to inconsistencies in orientation. Here, we propose a method for the automated registration of mouse SDOCT volumes. The method begins by accurately segmenting the blood vessels and the optic nerve head region in the scans using a pixel classification approach. The segmented vessel maps from follow-up scans were registered using an iterative closest point (ICP) algorithm to the baseline scan to allow for the accurate longitudinal tracking of thickness changes. Eighteen SDOCT volumes from a light damage model study were used to train a random forest utilized in the pixel classification step. The area under the curve (AUC) in a leave-one-out study for the retinal blood vessels and the optic nerve head (ONH) was found to be 0.93 and 0.98, respectively. The complete proposed framework, the retinal vasculature segmentation and the ICP registration, was applied to a secondary set of scans obtained from a light damage model. A qualitative assessment of the registration showed no registration failures. PMID:29138527

  7. Rotational effect of buoyancy in frontcrawl: Does it really cause the legs to sink?

    PubMed

    Yanai, T

    2001-02-01

    The purposes of this study were to quantify the rotational effect of buoyant force (buoyant torque) during the performance of front crawl and to reexamine the mechanics of horizontal alignment of the swimmers. Three-dimensional videography was used to measure the position and orientation of the body segments of 11 competitive swimmers performing front crawl stroke at a sub-maximum sprinting speed. The dimensions of each body segment were defined mathematically to match the body segment parameters (mass, density, and centroid position) reported in the literature. The buoyant force and torque were computed for every video-field (60fields/s), assuming that the water surface followed a sine curve along the length of the swimmer. The average buoyant torque over the stroke cycle (mean=22Nm) was directed to raise the legs and lower the head, primarily because the recovery arm and a part of the head were lifted out of the water and the center of buoyancy shifted toward the feet. This finding contradicts the prevailing speculation that buoyancy only causes the legs to sink throughout the stroke cycle. On the basis of a theoretical analysis of the results, it is postulated that the buoyant torque, and perhaps the forces generated by kicks, function to counteract the torque generated by the hydrodynamic forces acting on the hands, so as to maintain the horizontal alignment of the body in front crawl.

  8. Longitudinal analysis of mouse SDOCT volumes

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Carass, Aaron; Lang, Andrew; Kim, Byung-Jin; Zack, Donald J.; Prince, Jerry L.

    2017-03-01

    Spectral-domain optical coherence tomography (SDOCT), in addition to its routine clinical use in the diagnosis of ocular diseases, has begun to fund increasing use in animal studies. Animal models are frequently used to study disease mechanisms as well as to test drug efficacy. In particular, SDOCT provides the ability to study animals longitudinally and non-invasively over long periods of time. However, the lack of anatomical landmarks makes the longitudinal scan acquisition prone to inconsistencies in orientation. Here, we propose a method for the automated registration of mouse SDOCT volumes. The method begins by accurately segmenting the blood vessels and the optic nerve head region in the scans using a pixel classification approach. The segmented vessel maps from follow-up scans were registered using an iterative closest point (ICP) algorithm to the baseline scan to allow for the accurate longitudinal tracking of thickness changes. Eighteen SDOCT volumes from a light damage model study were used to train a random forest utilized in the pixel classification step. The area under the curve (AUC) in a leave-one-out study for the retinal blood vessels and the optic nerve head (ONH) was found to be 0.93 and 0.98, respectively. The complete proposed framework, the retinal vasculature segmentation and the ICP registration, was applied to a secondary set of scans obtained from a light damage model. A qualitative assessment of the registration showed no registration failures.

  9. Finite element analysis of moment-rotation relationships for human cervical spine.

    PubMed

    Zhang, Qing Hang; Teo, Ee Chon; Ng, Hong Wan; Lee, Vee Sin

    2006-01-01

    A comprehensive, geometrically accurate, nonlinear C0-C7 FE model of head and cervical spine based on the actual geometry of a human cadaver specimen was developed. The motions of each cervical vertebral level under pure moment loading of 1.0 Nm applied incrementally on the skull to simulate the movements of the head and cervical spine under flexion, tension, axial rotation and lateral bending with the inferior surface of the C7 vertebral body fully constrained were analysed. The predicted range of motion (ROM) for each motion segment were computed and compared with published experimental data. The model predicted the nonlinear moment-rotation relationship of human cervical spine. Under the same loading magnitude, the model predicted the largest rotation in extension, followed by flexion and axial rotation, and least ROM in lateral bending. The upper cervical spines are more flexible than the lower cervical levels. The motions of the two uppermost motion segments account for half (or even higher) of the whole cervical spine motion under rotational loadings. The differences in the ROMs among the lower cervical spines (C3-C7) were relatively small. The FE predicted segmental motions effectively reflect the behavior of human cervical spine and were in agreement with the experimental data. The C0-C7 FE model offers potentials for biomedical and injury studies.

  10. Computer-assisted categorizing of head computed tomography reports for clinical decision rule research.

    PubMed

    Wall, Stephen P; Mayorga, Oliver; Banfield, Christine E; Wall, Mark E; Aisic, Ilan; Auerbach, Carl; Gennis, Paul

    2006-11-01

    To develop software that categorizes electronic head computed tomography (CT) reports into groups useful for clinical decision rule research. Data were obtained from the Second National Emergency X-Radiography Utilization Study, a cohort of head injury patients having received head CT. CT reports were reviewed manually for presence or absence of clinically important subdural or epidural hematoma, defined as greater than 1.0 cm in width or causing mass effect. Manual categorization was done by 2 independent researchers blinded to each other's results. A third researcher adjudicated discrepancies. A random sample of 300 reports with radiologic abnormalities was selected for software development. After excluding reports categorized manually or by software as indeterminate (neither positive nor negative), we calculated sensitivity and specificity by using manual categorization as the standard. System efficiency was defined as the percentage of reports categorized as positive or negative, regardless of accuracy. Software was refined until analysis of the training data yielded sensitivity and specificity approximating 95% and efficiency exceeding 75%. To test the system, we calculated sensitivity, specificity, and efficiency, using the remaining 1,911 reports. Of the 1,911 reports, 160 had clinically important subdural or epidural hematoma. The software exhibited good agreement with manual categorization of all reports, including indeterminate ones (weighted kappa 0.62; 95% confidence interval [CI] 0.58 to 0.65). Sensitivity, specificity, and efficiency of the computerized system for identifying manual positives and negatives were 96% (95% CI 91% to 98%), 98% (95% CI 98% to 99%), and 79% (95% CI 77% to 80%), respectively. Categorizing head CT reports by computer for clinical decision rule research is feasible.

  11. Kinematics and eye-head coordination of gaze shifts evoked from different sites in the superior colliculus of the cat.

    PubMed

    Guillaume, Alain; Pélisson, Denis

    2006-12-15

    Shifting gaze requires precise coordination of eye and head movements. It is clear that the superior colliculus (SC) is involved with saccadic gaze shifts. Here we investigate its role in controlling both eye and head movements during gaze shifts. Gaze shifts of the same amplitude can be evoked from different SC sites by controlled electrical microstimulation. To describe how the SC coordinates the eye and the head, we compare the characteristics of these amplitude-matched gaze shifts evoked from different SC sites. We show that matched amplitude gaze shifts elicited from progressively more caudal sites are progressively slower and associated with a greater head contribution. Stimulation at more caudal SC sites decreased the peak velocity of the eye but not of the head, suggesting that the lower peak gaze velocity for the caudal sites is due to the increased contribution of the slower-moving head. Eye-head coordination across the SC motor map is also indicated by the relative latencies of the eye and head movements. For some amplitudes of gaze shift, rostral stimulation evoked eye movement before head movement, whereas this reversed with caudal stimulation, which caused the head to move before the eyes. These results show that gaze shifts of similar amplitude evoked from different SC sites are produced with different kinematics and coordination of eye and head movements. In other words, gaze shifts evoked from different SC sites follow different amplitude-velocity curves, with different eye-head contributions. These findings shed light on mechanisms used by the central nervous system to translate a high-level motor representation (a desired gaze displacement on the SC map) into motor commands appropriate for the involved body segments (the eye and the head).

  12. Lip reading using neural networks

    NASA Astrophysics Data System (ADS)

    Kalbande, Dhananjay; Mishra, Akassh A.; Patil, Sanjivani; Nirgudkar, Sneha; Patel, Prashant

    2011-10-01

    Computerized lip reading, or speech reading, is concerned with the difficult task of converting a video signal of a speaking person to written text. It has several applications like teaching deaf and dumb to speak and communicate effectively with the other people, its crime fighting potential and invariance to acoustic environment. We convert the video of the subject speaking vowels into images and then images are further selected manually for processing. However, several factors like fast speech, bad pronunciation, and poor illumination, movement of face, moustaches and beards make lip reading difficult. Contour tracking methods and Template matching are used for the extraction of lips from the face. K Nearest Neighbor algorithm is then used to classify the 'speaking' images and the 'silent' images. The sequence of images is then transformed into segments of utterances. Feature vector is calculated on each frame for all the segments and is stored in the database with properly labeled class. Character recognition is performed using modified KNN algorithm which assigns more weight to nearer neighbors. This paper reports the recognition of vowels using KNN algorithms

  13. Further analysis of clinical feasibility of OCT-based glaucoma diagnosis with Pigment epithelium central limit- Inner limit of the retina Minimal Distance (PIMD)

    NASA Astrophysics Data System (ADS)

    Söderberg, Per G.; Malmberg, Filip; Sandberg-Melin, Camilla

    2017-02-01

    The present study aimed to elucidate if comparison of angular segments of Pigment epithelium central limit- Inner limit of the retina Minimal Distance, measured over 2π radians in the frontal plane (PIMD-2π) between visits of a patient, renders sufficient precision for detection of loss of nerve fibers in the optic nerve head. An optic nerve head raster scanned cube was captured with a TOPCON 3D OCT 2000 (Topcon, Japan) device in one early to moderate stage glaucoma eye of each of 13 patients. All eyes were recorded at two visits less than 1 month apart. At each visit, 3 volumes were captured. Each volume was extracted from the OCT device for analysis. Then, angular PIMD was segmented three times over 2π radians in the frontal plane, resolved with a semi-automatic algorithm in 500 equally separated steps, PIMD-2π. It was found that individual segmentations within volumes, within visits, within subjects can be phase adjusted to each other in the frontal plane using cross-correlation. Cross correlation was also used to phase adjust volumes within visits within subjects and visits to each other within subjects. Then, PIMD-2π for each subject was split into 250 bundles of 2 adjacent PIMDs. Finally, the sources of variation for estimates of segments of PIMD-2π were derived with analysis of variance assuming a mixed model. The variation among adjacent PIMDS was found very small in relation to the variation among segmentations. The variation among visits was found insignificant in relation to the variation among volumes and the variance for segmentations was found to be on the order of 20 % of that for volumes. The estimated variances imply that, if 3 segmentations are averaged within a volume and at least 10 volumes are averaged within a visit, it is possible to estimate around a 10 % reduction of a PIMD-2π segment from baseline to a subsequent visit as significant. Considering a loss rate for a PIMD-2π segment of 23 μm/yr., 4 visits per year, and averaging 3 segmentations per volume and 3 volumes per visit, a significant reduction from baseline can be detected with a power of 80 % in about 18 months. At higher loss rate for a PIMD-2π segment, a significant difference from baseline can be detected earlier. Averaging over more volumes per visit considerably decreases the time for detection of a significant reduction of a segment of PIMD-2π. Increasing the number of segmentations averaged per visit only slightly reduces the time for detection of a significant reduction. It is concluded that phase adjustment in the frontal plane with cross correlation allows high precision estimates of a segment of PIMD-2π that imply substantially shorter followup time for detection of a significant change than mean deviation (MD) in a visual field estimated with the Humphrey perimeter or neural rim area (NRA) estimated with the Heidelberg retinal tomograph.

  14. Constraining eye movement in individuals with Parkinson's disease during walking turns.

    PubMed

    Ambati, V N Pradeep; Saucedo, Fabricio; Murray, Nicholas G; Powell, Douglas W; Reed-Jones, Rebecca J

    2016-10-01

    Walking and turning is a movement that places individuals with Parkinson's disease (PD) at increased risk for fall-related injury. However, turning is an essential movement in activities of daily living, making up to 45 % of the total steps taken in a given day. Hypotheses regarding how turning is controlled suggest an essential role of anticipatory eye movements to provide feedforward information for body coordination. However, little research has investigated control of turning in individuals with PD with specific consideration for eye movements. The purpose of this study was to examine eye movement behavior and body segment coordination in individuals with PD during walking turns. Three experimental groups, a group of individuals with PD, a group of healthy young adults (YAC), and a group of healthy older adults (OAC), performed walking and turning tasks under two visual conditions: free gaze and fixed gaze. Whole-body motion capture and eye tracking characterized body segment coordination and eye movement behavior during walking trials. Statistical analysis revealed significant main effects of group (PD, YAC, and OAC) and visual condition (free and fixed gaze) on timing of segment rotation and horizontal eye movement. Within group comparisons, revealed timing of eye and head movement was significantly different between the free and fixed gaze conditions for YAC (p < 0.001) and OAC (p < 0.05), but not for the PD group (p > 0.05). In addition, while intersegment timings (reflecting segment coordination) were significantly different for YAC and OAC during free gaze (p < 0.05), they were not significantly different in PD. These results suggest individuals with PD do not make anticipatory eye and head movements ahead of turning and that this may result in altered segment coordination during turning. As such, eye movements may be an important addition to training programs for those with PD, possibly promoting better coordination during turning and potentially reducing the risk of falls.

  15. Atlas-Guided Segmentation of Vervet Monkey Brain MRI

    PubMed Central

    Fedorov, Andriy; Li, Xiaoxing; Pohl, Kilian M; Bouix, Sylvain; Styner, Martin; Addicott, Merideth; Wyatt, Chris; Daunais, James B; Wells, William M; Kikinis, Ron

    2011-01-01

    The vervet monkey is an important nonhuman primate model that allows the study of isolated environmental factors in a controlled environment. Analysis of monkey MRI often suffers from lower quality images compared with human MRI because clinical equipment is typically used to image the smaller monkey brain and higher spatial resolution is required. This, together with the anatomical differences of the monkey brains, complicates the use of neuroimage analysis pipelines tuned for human MRI analysis. In this paper we developed an open source image analysis framework based on the tools available within the 3D Slicer software to support a biological study that investigates the effect of chronic ethanol exposure on brain morphometry in a longitudinally followed population of male vervets. We first developed a computerized atlas of vervet monkey brain MRI, which was used to encode the typical appearance of the individual brain structures in MRI and their spatial distribution. The atlas was then used as a spatial prior during automatic segmentation to process two longitudinal scans per subject. Our evaluation confirms the consistency and reliability of the automatic segmentation. The comparison of atlas construction strategies reveals that the use of a population-specific atlas leads to improved accuracy of the segmentation for subcortical brain structures. The contribution of this work is twofold. First, we describe an image processing workflow specifically tuned towards the analysis of vervet MRI that consists solely of the open source software tools. Second, we develop a digital atlas of vervet monkey brain MRIs to enable similar studies that rely on the vervet model. PMID:22253661

  16. Interictal EEG spikes identify the region of electrographic seizure onset in some, but not all, pediatric epilepsy patients.

    PubMed

    Marsh, Eric D; Peltzer, Bradley; Brown, Merritt W; Wusthoff, Courtney; Storm, Phillip B; Litt, Brian; Porter, Brenda E

    2010-04-01

    The role of sharps and spikes, interictal epileptiform discharges (IEDs), in guiding epilepsy surgery in children remains controversial, particularly with intracranial electroencephalography (IEEG). Although ictal recording is the mainstay of localizing epileptic networks for surgical resection, current practice dictates removing regions generating frequent IEDs if they are near the ictal onset zone. Indeed, past studies suggest an inconsistent relationship between IED and seizure-onset location, although these studies were based upon relatively short EEG epochs. We employ a previously validated, computerized spike detector to measure and localize IED activity over prolonged, representative segments of IEEG recorded from 19 children with intractable, mostly extratemporal lobe epilepsy. Approximately 8 h of IEEG, randomly selected 30-min segments of continuous interictal IEEG per patient, were analyzed over all intracranial electrode contacts. When spike frequency was averaged over the 16-time segments, electrodes with the highest mean spike frequency were found to be within the seizure-onset region in 11 of 19 patients. There was significant variability between individual 30-min segments in these patients, indicating that large statistical samples of interictal activity were required for improved localization. Low-voltage fast EEG at seizure onset was the only clinical factor predicting IED localization to the seizure-onset region. Our data suggest that automated IED detection over multiple representative samples of IEEG may be of utility in planning epilepsy surgery for children with intractable epilepsy. Further research is required to better determine which patients may benefit from this technique a priori.

  17. Interictal EEG spikes identify the region of seizure onset in some, but not all pediatric epilepsy patients

    PubMed Central

    Marsh, Eric D.; Peltzer, Bradley; Brown, Merritt W.; Wusthoff, Courtney; Storm, Phillip B.; Litt, Brian; Porter, Brenda E.

    2010-01-01

    Purpose The role of sharps and spikes, interictal epileptiform discharges (IEDs), in guiding epilepsy surgery in children remains controversial, particularly with intracranial EEG (IEEG). While ictal recording is the mainstay of localizing epileptic networks for surgical resection, current practice dictates removing regions generating frequent IEDs if they are near the ictal onset zone. Indeed, past studies suggest an inconsistent relationship between IED and seizure onset location, though these studies were based upon relatively short EEG epochs. Methods We employ a previously validated, computerized spike detector, to measure and localize IED activity over prolonged, representative segments of IEEG recorded from 19 children with intractable, mostly extra temporal lobe epilepsy. Approximately 8 hours of IEEG, randomly selected thirty-minute segments of continuous interictal IEEG per patient were analyzed over all intracranial electrode contacts. Results When spike frequency was averaged over the 16-time segments, electrodes with the highest mean spike frequency were found to be within the seizure onset region in 11 of 19 patients. There was significant variability between individual 30-minute segments in these patients, indicating that large statistical samples of interictal activity were required for improved localization. Low voltage fast EEG at seizure onset was the only clinical factor predicting IED localization to the seizure onset region. Conclusions Our data suggest that automated IED detection over multiple representative samples of IEEG may be of utility in planning epilepsy surgery for children with intractable epilepsy. Further research is required to better determine which patients may benefit from this technique a priori. PMID:19780794

  18. Volumetric Assessment of Swallowing Muscles: A Comparison of CT and MRI Segmentation.

    PubMed

    Sporns, Kim Barbara; Hanning, Uta; Schmidt, Rene; Muhle, Paul; Wirth, Rainer; Zimmer, Sebastian; Dziewas, Rainer; Suntrup-Krueger, Sonja; Sporns, Peter Bernhard; Heindel, Walter; Schwindt, Wolfram

    2018-05-01

     Recent retrospective studies have proposed a high correlation between atrophy of swallowing muscles, age, severity of dysphagia and aspiration status based on computed tomography (CT). However, ionizing radiation poses an ethical barrier to research in prospective non-patient populations. Hence, there is a need to prove the efficacy of techniques that rely on noninvasive methods and produce high-resolution soft tissue images such as magnetic resonance imaging (MRI). The objective of this study was therefore to compare the segmentation results of swallowing muscles using CT and MRI.  Retrospective study of 21 patients (median age: 46.6; gender: 11 female) who underwent CT and MRI of the head and neck region within a time frame of less than 50 days because of suspected head and neck cancer using contrast agent. CT and MR images were segmented by two blinded readers using Medical Imaging Toolkit (MITK) and both modalities were tested (with the equivalence test) regarding the segmented muscle volumes. Adjustment for multiple testing was performed using the Bonferroni test and the potential time effect of the muscle volumes and the time interval between the modalities was assessed by a spearman correlation. The study was approved by the local ethics committee.  The median volumes for each muscle belly of the digastric muscle derived from CT were 3051 mm 3 (left) and 2969 mm 3 (right), and from MRI they were 3218 mm 3 (left) and 3027 mm 3 (right). The median volume of the geniohyoid muscle was 6580 mm 3 on CT and 6648 mm 3 on MRI. The interrater reliability was high for all segmented muscles. The mean time interval between the CT and MRI examinations was 34 days (IQR 25; 41). The muscle differences of each muscle between the two modalities did not reveal significant correlation to the time interval between the examinations (digastric left r = 0.003 and digastric right r = -0.008; geniohyoid muscle r = 0.075).  CT-based segmentation and MRI-based segmentation of the digastric and geniohyoid muscle are equally feasible. The potential advantage of MRI for prospective studies is the absence of ionizing radiation.   · CT-based segmentation and MRI-based segmentation of the swallowing muscles are equally feasible.. · The advantage of MRI is the absence of ionizing radiation.. · MRI should therefore be deployed for future prospective studies.. · Sporns KB, Hanning U, Schmidt R et al. Volumetric Assessment of Swallowing Muscles: A Comparison of CT and MRI Segmentation. Fortschr Röntgenstr 2018; 190: 441 - 446. © Georg Thieme Verlag KG Stuttgart · New York.

  19. [Evaluation of Wits appraisal with superimposition method].

    PubMed

    Xu, T; Ahn, J; Baumrind, S

    1999-07-01

    To compare the conventional Wits appraisal with superimposed Wits appraisal in evaluation of sagittal jaw relationship change between pre and post orthodontic treatment. The sample consists of 48-case pre and post treatment lateral head films. Computerized digitizing is used to get the cephalometric landmarks and measure conventional Wits value, superimposed Wits value and ANB angle. The correlation analysis among these three measures was done by SAS statistical package. The change of ANB angle has higher correlation with the change of superimposed Wits than that of the conventional Wits. The r-value is as high as 0.849 (P < 0.001). The superimposed Wits appraisal reflects the change of sagittal jaw relationship more objectively than the conventional one.

  20. Optic nerve dysfunction during gravity inversion. Visual field abnormalities.

    PubMed

    Sanborn, G E; Friberg, T R; Allen, R

    1987-06-01

    Inversion in a head-down position (gravity inversion) results in an intraocular pressure of 35 to 40 mm Hg in normal subjects. We used computerized static perimetry to measure the visual fields of normal subjects during gravity inversion. There were no visual field changes in the central 6 degrees of the visual field compared with the baseline (preinversion) values. However, when the central 30 degrees of the visual field was tested, reversible visual field defects were found in 11 of 19 eyes. We believe that the substantial elevation of intraocular pressure during gravity inversion may pose potential risks to the eyes, and we recommend that inversion for extended periods of time be avoided.

  1. A Review of ETM-03 (A Five Segment Shuttle RSRM Configuration) Ballistic Performance

    NASA Technical Reports Server (NTRS)

    McMillin, J. E.; Furfaro, J. A.

    2004-01-01

    Marshall Space Flight Center and ATK Thiokol Propulsion worked together on the engineering design of a five-segment Engineering Test Motor (ETM-03), the world's largest segmented solid rocket motor. The data from ETM-03's static test have helped to provide a better understanding of the Reusable Solid Rocket Motor's (RSRM's) margins and the techniques and models used to simulate solid rocket motor performance. The enhanced performance of ETM-03 was achieved primarily by the addition of a RSRM center segment. Added motor performance was also achieved with a nozzle throat diameter increase and the incorporation of an Extended Aft Exit Cone (EAEC). Performance parameters such as web time, action time, head-end pressure, web time average pressure, maximum thrust, mass flow rate, centerline Mach number, pressure and thrust integrals were all increased over RSRM. In some cases, the performance increases were substantial. Overall, the measured data were exceptionally close to the pretest predictions.

  2. Prospective comparison of speckle tracking longitudinal bidimensional strain between two vendors.

    PubMed

    Castel, Anne-Laure; Szymanski, Catherine; Delelis, François; Levy, Franck; Menet, Aymeric; Mailliet, Amandine; Marotte, Nathalie; Graux, Pierre; Tribouilloy, Christophe; Maréchaux, Sylvestre

    2014-02-01

    Speckle tracking is a relatively new, largely angle-independent technique used for the evaluation of myocardial longitudinal strain (LS). However, significant differences have been reported between LS values obtained by speckle tracking with the first generation of software products. To compare LS values obtained with the most recently released equipment from two manufacturers. Systematic scanning with head-to-head acquisition with no modification of the patient's position was performed in 64 patients with equipment from two different manufacturers, with subsequent off-line post-processing for speckle tracking LS assessment (Philips QLAB 9.0 and General Electric [GE] EchoPAC BT12). The interobserver variability of each software product was tested on a randomly selected set of 20 echocardiograms from the study population. GE and Philips interobserver coefficients of variation (CVs) for global LS (GLS) were 6.63% and 5.87%, respectively, indicating good reproducibility. Reproducibility was very variable for regional and segmental LS values, with CVs ranging from 7.58% to 49.21% with both software products. The concordance correlation coefficient (CCC) between GLS values was high at 0.95, indicating substantial agreement between the two methods. While good agreement was observed between midwall and apical regional strains with the two software products, basal regional strains were poorly correlated. The agreement between the two software products at a segmental level was very variable; the highest correlation was obtained for the apical cap (CCC 0.90) and the poorest for basal segments (CCC range 0.31-0.56). A high level of agreement and reproducibility for global but not for basal regional or segmental LS was found with two vendor-dependent software products. This finding may help to reinforce clinical acceptance of GLS in everyday clinical practice. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues.

    PubMed

    Bushnell, W R; Perkins-Veazie, P; Russo, V M; Collins, J; Seeland, T M

    2010-01-01

    To understand further the role of deoxynivalenol (DON) in development of Fusarium head blight (FHB), we investigated effects of the toxin on uninfected barley tissues. Leaf segments, 1 to 1.2 cm long, partially stripped of epidermis were floated with exposed mesophyll in contact with DON solutions. In initial experiments with the leaf segments incubated in light, DON at 30 to 90 ppm turned portions of stripped tissues white after 48 to 96 h. The bleaching effect was greatly enhanced by addition of 1 to 10 mM Ca(2+), so that DON at 10 to 30 ppm turned virtually all stripped tissues white within 48 h. Content of chlorophylls a and b and of total carotenoid pigment was reduced. Loss of electrolytes and uptake of Evans blue indicated that DON had a toxic effect, damaging plasmalemmas in treated tissues before chloroplasts began to lose pigment. When incubated in the dark, leaf segments also lost electrolytes, indicating DON was toxic although the tissues remained green. Thus, loss of chlorophyll in light was due to photobleaching and was a secondary effect of DON, not required for toxicity. In contrast to bleaching effects, some DON treatments that were not toxic kept tissues green without bleaching or other signs of injury, indicating senescence was delayed compared with slow yellowing of untreated leaf segments. Cycloheximide, which like DON, inhibits protein synthesis, also bleached some tissues and delayed senescence of others. Thus, the effects of DON probably relate to its ability to inhibit protein synthesis. With respect to FHB, the results suggest DON may have multiple roles in host cells of infected head tissues, including delayed senescence in early stages of infection and contributing to bleaching and death of cells in later stages.

  4. Optic disc segmentation for glaucoma screening system using fundus images.

    PubMed

    Almazroa, Ahmed; Sun, Weiwei; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-01-01

    Segmenting the optic disc (OD) is an important and essential step in creating a frame of reference for diagnosing optic nerve head pathologies such as glaucoma. Therefore, a reliable OD segmentation technique is necessary for automatic screening of optic nerve head abnormalities. The main contribution of this paper is in presenting a novel OD segmentation algorithm based on applying a level set method on a localized OD image. To prevent the blood vessels from interfering with the level set process, an inpainting technique was applied. As well an important contribution was to involve the variations in opinions among the ophthalmologists in detecting the disc boundaries and diagnosing the glaucoma. Most of the previous studies were trained and tested based on only one opinion, which can be assumed to be biased for the ophthalmologist. In addition, the accuracy was calculated based on the number of images that coincided with the ophthalmologists' agreed-upon images, and not only on the overlapping images as in previous studies. The ultimate goal of this project is to develop an automated image processing system for glaucoma screening. The disc algorithm is evaluated using a new retinal fundus image dataset called RIGA (retinal images for glaucoma analysis). In the case of low-quality images, a double level set was applied, in which the first level set was considered to be localization for the OD. Five hundred and fifty images are used to test the algorithm accuracy as well as the agreement among the manual markings of six ophthalmologists. The accuracy of the algorithm in marking the optic disc area and centroid was 83.9%, and the best agreement was observed between the results of the algorithm and manual markings in 379 images.

  5. Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration

    PubMed Central

    Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L.; Major, Paul W.

    2017-01-01

    Purpose To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. Methods MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. Results The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. Conclusion The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ’s soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time. PMID:28095486

  6. Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration.

    PubMed

    Al-Saleh, Mohammed A Q; Punithakumar, Kumaradevan; Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L; Major, Paul W

    2017-01-01

    To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ's soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time.

  7. Computerized detection of breast lesions in multi-centre and multi-instrument DCE-MR data using 3D principal component maps and template matching

    NASA Astrophysics Data System (ADS)

    Ertas, Gokhan; Doran, Simon; Leach, Martin O.

    2011-12-01

    In this study, we introduce a novel, robust and accurate computerized algorithm based on volumetric principal component maps and template matching that facilitates lesion detection on dynamic contrast-enhanced MR. The study dataset comprises 24 204 contrast-enhanced breast MR images corresponding to 4034 axial slices from 47 women in the UK multi-centre study of MRI screening for breast cancer and categorized as high risk. The scans analysed here were performed on six different models of scanner from three commercial vendors, sited in 13 clinics around the UK. 1952 slices from this dataset, containing 15 benign and 13 malignant lesions, were used for training. The remaining 2082 slices, with 14 benign and 12 malignant lesions, were used for test purposes. To prevent false positives being detected from other tissues and regions of the body, breast volumes are segmented from pre-contrast images using a fast semi-automated algorithm. Principal component analysis is applied to the centred intensity vectors formed from the dynamic contrast-enhanced T1-weighted images of the segmented breasts, followed by automatic thresholding to eliminate fatty tissues and slowly enhancing normal parenchyma and a convolution and filtering process to minimize artefacts from moderately enhanced normal parenchyma and blood vessels. Finally, suspicious lesions are identified through a volumetric sixfold neighbourhood connectivity search and calculation of two morphological features: volume and volumetric eccentricity, to exclude highly enhanced blood vessels, nipples and normal parenchyma and to localize lesions. This provides satisfactory lesion localization. For a detection sensitivity of 100%, the overall false-positive detection rate of the system is 1.02/lesion, 1.17/case and 0.08/slice, comparing favourably with previous studies. This approach may facilitate detection of lesions in multi-centre and multi-instrument dynamic contrast-enhanced breast MR data.

  8. A new breast cancer risk analysis approach using features extracted from multiple sub-regions on bilateral mammograms

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Tseng, Tzu-Liang B.; Zheng, Bin; Zhang, Jianying; Qian, Wei

    2015-03-01

    A novel breast cancer risk analysis approach is proposed for enhancing performance of computerized breast cancer risk analysis using bilateral mammograms. Based on the intensity of breast area, five different sub-regions were acquired from one mammogram, and bilateral features were extracted from every sub-region. Our dataset includes 180 bilateral mammograms from 180 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including sub-region segmentation, bilateral feature extraction, feature selection, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under the curve (AUC) is 0.763 ± 0.021 when applying the multiple sub-region features to our testing dataset. The positive predictive value and the negative predictive value were 0.60 and 0.73, respectively. The study demonstrates that (1) features extracted from multiple sub-regions can improve the performance of our scheme compared to using features from whole breast area only; (2) a classifier using asymmetry bilateral features can effectively predict breast cancer risk; (3) incorporating texture and morphological features with density features can boost the classification accuracy.

  9. Automatic assessment of dynamic contrast-enhanced MRI in an ischemic rat hindlimb model: an exploratory study of transplanted multipotent progenitor cells.

    PubMed

    Hsu, Li-Yueh; Wragg, Andrew; Anderson, Stasia A; Balaban, Robert S; Boehm, Manfred; Arai, Andrew E

    2008-02-01

    This study presents computerized automatic image analysis for quantitatively evaluating dynamic contrast-enhanced MRI in an ischemic rat hindlimb model. MRI at 7 T was performed on animals in a blinded placebo-controlled experiment comparing multipotent adult progenitor cell-derived progenitor cell (MDPC)-treated, phosphate buffered saline (PBS)-injected, and sham-operated rats. Ischemic and non-ischemic limb regions of interest were automatically segmented from time-series images for detecting changes in perfusion and late enhancement. In correlation analysis of the time-signal intensity histograms, the MDPC-treated limbs correlated well with their corresponding non-ischemic limbs. However, the correlation coefficient of the PBS control group was significantly lower than that of the MDPC-treated and sham-operated groups. In semi-quantitative parametric maps of contrast enhancement, there was no significant difference in hypo-enhanced area between the MDPC and PBS groups at early perfusion-dependent time frames. However, the late-enhancement area was significantly larger in the PBS than the MDPC group. The results of this exploratory study show that MDPC-treated rats could be objectively distinguished from PBS controls. The differences were primarily determined by late contrast enhancement of PBS-treated limbs. These computerized methods appear promising for assessing perfusion and late enhancement in dynamic contrast-enhanced MRI.

  10. Severe head lice infestation in an Andean mummy of Arica, Chile.

    PubMed

    Arriaza, Bernardo; Orellana, Nancy C; Barbosa, Helene S; Menna-Barreto, Rubem F S; Araújo, Adauto; Standen, Vivien

    2012-04-01

    Pediculus humanus capitis is an ancient human parasite, probably inherited from pre-hominid times. Infestation appears as a recurrent health problem throughout history, including in pre-Columbian populations. Here, we describe and discuss the occurrence of pre-Columbian pediculosis in the Andean region of the Atacama Desert. Using a light microscope and scanning electron microscopy, we studied a highly infested Maitas Chiribaya mummy from Arica in northern Chile dating to 670-990 calibrated years A.D. The scalp and hair of the mummy were almost completely covered by nits and adult head lice. Low- and high-vacuum scanning electron microscopy revealed a well-preserved morphology of the eggs. In addition, the excellent preservation of the nearly 1,000-yr-old adult head lice allowed us to observe and characterize the head, antennae, thorax, abdomen, and legs. Leg segmentation, abdominal spiracles, and sexual dimorphism also were clearly observed. The preservation of the ectoparasites allowed us to examine the micromorphology using scanning electron microscopy; the opercula, aeropyles, and spiracles were clearly visible. This case study provides strong evidence that head lice were a common nuisance for Andean farmers and herders. Head lice are transmitted by direct head-to-head contact; thus, this ancient farmer and herder was potentially infesting other people. The present study contributes to the body of research focusing on lice in ancient populations.

  11. Vestibular-somatosensory convergence in head movement control during locomotion after long-duration space flight.

    PubMed

    Mulavara, A P; Ruttley, T; Cohen, H S; Peters, B T; Miller, C; Brady, R; Merkle, L; Bloomberg, J J

    2012-01-01

    Space flight causes astronauts to be exposed to adaptation in both the vestibular and body load-sensing somatosensory systems. The goal of these studies was to examine the contributions of vestibular and body load-sensing somatosensory influences on vestibular mediated head movement control during locomotion after long-duration space flight. Subjects walked on a motor driven treadmill while performing a gaze stabilization task. Data were collected from three independent subject groups that included bilateral labyrinthine deficient (LD) patients, normal subjects before and after 30 minutes of 40% bodyweight unloaded treadmill walking, and astronauts before and after long-duration space flight. Motion data from the head and trunk segments were used to calculate the amplitude of angular head pitch and trunk vertical translation movement while subjects performed a gaze stabilization task, to estimate the contributions of vestibular reflexive mechanisms in head pitch movements. Exposure to unloaded locomotion caused a significant increase in head pitch movements in normal subjects, whereas the head pitch movements of LD patients were significantly decreased. This is the first evidence of adaptation of vestibular mediated head movement responses to unloaded treadmill walking. Astronaut subjects showed a heterogeneous response of both increases and decreases in the amplitude of head pitch movement. We infer that body load-sensing somatosensory input centrally modulates vestibular input and can adaptively modify vestibularly mediated head-movement control during locomotion. Thus, space flight may cause central adaptation of the converging vestibular and body load-sensing somatosensory systems leading to alterations in head movement control.

  12. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  13. Computerized Liver Volumetry on MRI by Using 3D Geodesic Active Contour Segmentation

    PubMed Central

    Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji

    2014-01-01

    OBJECTIVE Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. SUBJECTS AND METHODS Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. RESULTS The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). CONCLUSION The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time. PMID:24370139

  14. Computerized liver volumetry on MRI by using 3D geodesic active contour segmentation.

    PubMed

    Huynh, Hieu Trung; Karademir, Ibrahim; Oto, Aytekin; Suzuki, Kenji

    2014-01-01

    Our purpose was to develop an accurate automated 3D liver segmentation scheme for measuring liver volumes on MRI. Our scheme for MRI liver volumetry consisted of three main stages. First, the preprocessing stage was applied to T1-weighted MRI of the liver in the portal venous phase to reduce noise and produce the boundary-enhanced image. This boundary-enhanced image was used as a speed function for a 3D fast-marching algorithm to generate an initial surface that roughly approximated the shape of the liver. A 3D geodesic-active-contour segmentation algorithm refined the initial surface to precisely determine the liver boundaries. The liver volumes determined by our scheme were compared with those manually traced by a radiologist, used as the reference standard. The two volumetric methods reached excellent agreement (intraclass correlation coefficient, 0.98) without statistical significance (p = 0.42). The average (± SD) accuracy was 99.4% ± 0.14%, and the average Dice overlap coefficient was 93.6% ± 1.7%. The mean processing time for our automated scheme was 1.03 ± 0.13 minutes, whereas that for manual volumetry was 24.0 ± 4.4 minutes (p < 0.001). The MRI liver volumetry based on our automated scheme agreed excellently with reference-standard volumetry, and it required substantially less completion time.

  15. Ex vivo method to visualize and quantify vascular networks in native and tissue engineered skin.

    PubMed

    Egaña, José Tomás; Condurache, Alexandru; Lohmeyer, Jörn Andreas; Kremer, Mathias; Stöckelhuber, Beate M; Lavandero, Sergio; Machens, Hans-Günther

    2009-03-01

    Neovascularization plays a pivotal role in tissue engineering and tissue regeneration. However, reliable technologies to visualize and quantify blood vessel networks in target tissue areas are still pending. In this work, we introduce a new method which allows comparing vascularization levels in normal and tissue-engineered skin. Normal skin was isolated, and vascular dermal regeneration was analyzed based on tissue transillumination and computerized digital segmentation. For tissue-engineered skin, a bilateral full skin defect was created in a nude mouse model and then covered with a commercially available scaffold for dermal regeneration. After 3 weeks, the whole skin (including scaffold for dermal regeneration) was harvested, and vascularization levels were analyzed. The blood vessel network in the skin was better visualized by transillumination than by radio-angiographic studies, the gold standard for angiographies. After visualization, the whole vascular network was digitally segmented showing an excellent overlapping with the original pictures. Quantification over the digitally segmented picture was performed, and an index of vascularization area (VAI) and length (VLI) of the vessel network was obtained in target tissues. VAI/VLI ratio was calculated to obtain the vessel size index. We present a new technique which has several advantages compared to others, as animals do not require intravascular perfusions, total areas of interest can be quantitatively analyzed at once, and the same target tissue can be processed for further experimental analysis.

  16. Optical Coherence Tomography in Glaucoma

    NASA Astrophysics Data System (ADS)

    Berisha, Fatmire; Hoffmann, Esther M.; Pfeiffer, Norbert

    Retinal nerve fiber layer (RNFL) thinning and optic nerve head cupping are key diagnostic features of glaucomatous optic neuropathy. The higher resolution of the recently introduced SD-OCT offers enhanced visualization and improved segmentation of the retinal layers, providing a higher accuracy in identification of subtle changes of the optic disc and RNFL thinning associated with glaucoma.

  17. Evolution of the bilaterian body plan: what have we learned from annelids?

    NASA Technical Reports Server (NTRS)

    Shankland, M.; Seaver, E. C.

    2000-01-01

    Annelids, unlike their vertebrate or fruit fly cousins, are a bilaterian taxon often overlooked when addressing the question of body plan evolution. However, recent data suggest that annelids offer unique insights on the early evolution of spiral cleavage, anteroposterior axis formation, body axis segmentation, and head versus trunk distinction.

  18. Matched computed tomography segmentation and demographic data for oropharyngeal cancer radiomics challenges

    PubMed Central

    Elhalawani, Hesham; Mohamed, Abdallah S.R.; White, Aubrey L.; Zafereo, James; Wong, Andrew J.; Berends, Joel E.; AboHashem, Shady; Williams, Bowman; Aymard, Jeremy M.; Kanwar, Aasheesh; Perni, Subha; Rock, Crosby D.; Cooksey, Luke; Campbell, Shauna; Ding, Yao; Lai, Stephen Y.; Marai, Elisabeta G.; Vock, David; Canahuate, Guadalupe M.; Freymann, John; Farahani, Keyvan; Kalpathy-Cramer, Jayashree; Fuller, Clifton D.

    2017-01-01

    Cancers arising from the oropharynx have become increasingly more studied in the past few years, as they are now epidemic domestically. These tumors are treated with definitive (chemo)radiotherapy, and have local recurrence as a primary mode of clinical failure. Recent data suggest that ‘radiomics’, or extraction of image texture analysis to generate mineable quantitative data from medical images, can reflect phenotypes for various cancers. Several groups have shown that developed radiomic signatures, in head and neck cancers, can be correlated with survival outcomes. This data descriptor defines a repository for head and neck radiomic challenges, executed via a Kaggle in Class platform, in partnership with the MICCAI society 2016 annual meeting.These public challenges were designed to leverage radiomics and/or machine learning workflows to discriminate HPV phenotype in one challenge (HPV status challenge) and to identify patients who will develop a local recurrence in the primary tumor volume in the second one (Local recurrence prediction challenge) in a segmented, clinically curated anonymized oropharyngeal cancer (OPC) data set. PMID:28675381

  19. Utility of Readout-Segmented Echo-Planar Imaging-Based Diffusion Kurtosis Imaging for Differentiating Malignant from Benign Masses in Head and Neck Region.

    PubMed

    Ma, Gao; Xu, Xiao-Quan; Hu, Hao; Su, Guo-Yi; Shen, Jie; Shi, Hai-Bin; Wu, Fei-Yun

    2018-01-01

    To compare the diagnostic performance of readout-segmented echo-planar imaging (RS-EPI)-based diffusion kurtosis imaging (DKI) and that of diffusion-weighted imaging (DWI) for differentiating malignant from benign masses in head and neck region. Between December 2014 and April 2016, we retrospectively enrolled 72 consecutive patients with head and neck masses who had undergone RS-EPI-based DKI scan (b value of 0, 500, 1000, and 1500 s/mm 2 ) for pretreatment evaluation. Imaging data were post-processed by using monoexponential and diffusion kurtosis (DK) model for quantitation of apparent diffusion coefficient (ADC), apparent diffusion for Gaussian distribution (D app ), and apparent kurtosis coefficient (K app ). Unpaired t test and Mann-Whitney U test were used to compare differences of quantitative parameters between malignant and benign groups. Receiver operating characteristic curve analyses were performed to determine and compare the diagnostic ability of quantitative parameters in predicting malignancy. Malignant group demonstrated significantly lower ADC (0.754 ± 0.167 vs. 1.222 ± 0.420, p < 0.001) and D app (1.029 ± 0.226 vs. 1.640 ± 0.445, p < 0.001) while higher K app (1.344 ± 0.309 vs. 0.715 ± 0.249, p < 0.001) than benign group. Using a combination of D app and K app as diagnostic index, significantly better differentiating performance was achieved than using ADC alone (area under curve: 0.956 vs. 0.876, p = 0.042). Compared to DWI, DKI could provide additional data related to tumor heterogeneity with significantly better differentiating performance. Its derived quantitative metrics could serve as a promising imaging biomarker for differentiating malignant from benign masses in head and neck region.

  20. Hair analysis for long-term monitoring of buprenorphine intake in opiate withdrawal.

    PubMed

    Pirro, Valentina; Fusari, Ivana; Di Corcia, Daniele; Gerace, Enrico; De Vivo, Enrico; Salomone, Alberto; Vincenti, Marco

    2014-12-01

    Buprenorphine (BUP) is a psychoactive pharmaceutical drug largely used to treat opiate addiction. Short-term therapeutic monitoring is supported by toxicological analysis of blood and urine samples, whereas long-term monitoring by means of hair analysis is rarely used. Aim of this work was to develop and validate a highly sensitive ultrahigh-performance liquid chromatography tandem mass spectrometry method to detect BUP and norbuprenorphine (NBUP) in head hair. Interindividual correlation between oral dosage of BUP and head hair concentration was investigated. Furthermore, an intra-individual study by means of segmental analysis was performed on subjects with variable maintenance dosage. Hair samples from a population of 79 patients in treatment for opiate addiction were analyzed. The validated ultrahigh-performance liquid chromatography tandem mass spectrometry protocol allowed to obtain limits of detection and quantification at 0.6 and 2.2 pg/mg for BUP and 5.0 and 17 pg/mg for NBUP, respectively. Validation criteria were satisfied, assuring selective analyte identification, high detection capability, and precise and accurate quantification. Significant positive correlation was found between constant oral BUP dosage (1-32 mg/d) and the summed up head hair concentrations of BUP and NBUP. Nevertheless, substantial interindividual variability limits the chance to predict the oral dosage taken by each subject from the measured concentrations in head hair. In contrast, strong correlation was observed in the results of intra-individual segmental analysis, which proved reliable to detect oral dosage variations during therapy. Remarkably, all hair samples yielded BUP concentrations higher than 10 pg/mg, even when the lowest dosage was administered. Thus, these results support the selection of 10 pg/mg as a cutoff value.

  1. Acoustic property reconstruction of a neonate Yangtze finless porpoise's (Neophocaena asiaeorientalis) head based on CT imaging.

    PubMed

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W L; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise's head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise's head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier's beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise's melon.

  2. Risk Factors for Human Lice and Bartonellosis among the Homeless, San Francisco, California, USA

    PubMed Central

    Cole-Porse, Charsey; Kjemtrup, Anne; Osikowicz, Lynn; Kosoy, Michael

    2014-01-01

    Homeless persons in San Francisco, California, USA, have been shown to have head and body lice infestations and Bartonella quintana infections. We surveyed a self-selected population of homeless persons in San Francisco to assess infestations of head and body lice, risks of having body lice, and presence of B. quintana in lice. A total of 203 persons who reported itching were surveyed during 2008–2010 and 2012: 60 (30%) had body lice, 10 (4.9%) had head lice, and 6 (3.0%) had both. B. quintana was detected in 10 (15.9%) of 63 body lice pools and in 6 (37.5%) of 16 head lice pools. Variables significantly associated (p<0.05) with having body lice in this homeless population included male sex, African–American ethnicity, and sleeping outdoors. Our study findings suggest that specific segments of the homeless population would benefit from information on preventing body lice infestations and louseborne diseases. PMID:25280380

  3. Risk factors for human lice and bartonellosis among the homeless, San Francisco, California, USA.

    PubMed

    Bonilla, Denise L; Cole-Porse, Charsey; Kjemtrup, Anne; Osikowicz, Lynn; Kosoy, Michael

    2014-10-01

    Homeless persons in San Francisco, California, USA,have been shown to have head and body lice infestations and Bartonella quintana infections. We surveyed a self selected population of homeless persons in San Francisco to assess infestations of head and body lice, risks of having body lice, and presence of B. quintana in lice. A total of 203 persons who reported itching were surveyed during 2008-2010 and 2012: 60 (30%) had body lice, 10 (4.9%)had head lice, and 6 (3.0%) had both. B. quintana was detected in 10 (15.9%) of 63 body lice pools and in 6 (37.5%)of 16 head lice pools. Variables significantly associated(p<0.05) with having body lice in this homeless population included male sex, African-American ethnicity, and sleeping outdoors. Our study findings suggest that specific segments of the homeless population would benefit from information on preventing body lice infestations and louse borne diseases.

  4. The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting

    PubMed Central

    Huang, Yu; Parra, Lucas C.; Haufe, Stefan

    2018-01-01

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semiautomated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an ‘arbitrary’ individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebrospinal fluid (CSF), and their field of view excludes portions of the head and neck—two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or “New York Head”. It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5 mm 3 resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the ‘ground truth’) is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an ‘individualized’ BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms FEMs of mismatched individual anatomies as well as the BEM of the ICBM anatomy according to both criteria. We therefore propose the New York Head as a new standard head model to be used in future EEG and tES studies whenever an individual MRI is not available. We release all model data online at neuralengr.com/nyhead/ to facilitate broad adoption. PMID:26706450

  5. Compositions of Diverse Noachian Lithologies at Marathon Valley, Endeavour Crater Rim, Mars

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Gellert, Ralf; Yen, Albert S.; Ming, Douglas W.; Van Bommel, Scott; Farrand, William H.; Arvidson, Raymond E.; Rice, James W., Jr.

    2015-01-01

    Mars Exploration Rover Opportunity has been exploring Meridiani Planum for 11+ years, and is presently investigating the geology of rim segments of 22 km diameter, Noachian-aged Endeavour crater. The Alpha Particle X-ray Spectrometer has determined the compositions of a pre-impact lithology and impact breccias representing ejecta from the crater. Opportunity is now investigating the head (higher elevation, western end) of Marathon Valley. This valley cuts eastward through the central portion of the Cape Tribulation rim segment and provides a window into the lower stratigraphic record of the rim. At the head of Marathon Valley is a shallow (few 10s of cm), ovoid depression approximately 27×36 m in size, named Spirit of Saint Louis, that is surrounded by approximately 20-30 cm wide zone of more reddish rocks (red zone). Opportunity has just entered a region of Marathon Valley that shows evidence for Fe-Mg smectite in Compact Reconnaissance Imaging Spectrometer for Mars spectra indicating areally extensive and distinct lithologic units and/or styles of aqueous alteration. Rocks at the head of Marathon Valley and within Spirit of Saint Louis are breccias (valley-head rocks). In some areas, layering inside Spirit of Saint Louis appears continuous with the rocks outside. The valley-head rocks are of similar, generally basaltic composition. The continuity in composition, texture and layering suggest the valley-head rocks are coeval breccias, likely from the Endeavour impact. These local breccias are similar in non-volatile-element composition to breccias investigated elsewhere on the rim. Rocks within the red zone are like those on either side in texture, but have higher Al, Si and Ge, and lower S, Mn, Fe, Ni and Zn as compared to rocks on either side. The valley-head rocks have higher S than most Endeavour rim breccias, while red zone rocks are like those latter breccias in S. Patches within the rocks outside Spirit of Saint Louis have higher Al, Si and Ge indicating red-zone-style alteration extended beyond the narrow red zone. Rocks on either side of the red zone and patches within it have the multispectral signature (determined by Panoramic Camera) of red hematite indicating an oxidizing environment. The red zone appears to be a thin alteration zone marking the border of Spirit of Saint Louis, but the origin of this morphologic feature remains obscure.

  6. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  7. Three-dimensional choroidal segmentation in spectral OCT volumes using optic disc prior information

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Girkin, Christopher A.; Hariri, Amirhossein; Sadda, SriniVas R.

    2016-03-01

    Recently, much attention has been focused on determining the role of the peripapillary choroid - the layer between the outer retinal pigment epithelium (RPE)/Bruchs membrane (BM) and choroid-sclera (C-S) junction, whether primary or secondary in the pathogenesis of glaucoma. However, the automated choroidal segmentation in spectral-domain optical coherence tomography (SD-OCT) images of optic nerve head (ONH) has not been reported probably due to the fact that the presence of the BM opening (BMO, corresponding to the optic disc) can deflect the choroidal segmentation from its correct position. The purpose of this study is to develop a 3D graph-based approach to identify the 3D choroidal layer in ONH-centered SD-OCT images using the BMO prior information. More specifically, an initial 3D choroidal segmentation was first performed using the 3D graph search algorithm. Note that varying surface interaction constraints based on the choroidal morphological model were applied. To assist the choroidal segmentation, two other surfaces of internal limiting membrane and innerouter segment junction were also segmented. Based on the segmented layer between the RPE/BM and C-S junction, a 2D projection map was created. The BMO in the projection map was detected by a 2D graph search. The pre-defined BMO information was then incorporated into the surface interaction constraints of the 3D graph search to obtain more accurate choroidal segmentation. Twenty SD-OCT images from 20 healthy subjects were used. The mean differences of the choroidal borders between the algorithm and manual segmentation were at a sub-voxel level, indicating a high level segmentation accuracy.

  8. Segment-specific resistivity improves body fluid volume estimates from bioimpedance spectroscopy in hemodialysis patients.

    PubMed

    Zhu, F; Kuhlmann, M K; Kaysen, G A; Sarkar, S; Kaitwatcharachai, C; Khilnani, R; Stevens, L; Leonard, E F; Wang, J; Heymsfield, S; Levin, N W

    2006-02-01

    Discrepancies in body fluid estimates between segmental bioimpedance spectroscopy (SBIS) and gold-standard methods may be due to the use of a uniform value of tissue resistivity to compute extracellular fluid volume (ECV) and intracellular fluid volume (ICV). Discrepancies may also arise from the exclusion of fluid volumes of hands, feet, neck, and head from measurements due to electrode positions. The aim of this study was to define the specific resistivity of various body segments and to use those values for computation of ECV and ICV along with a correction for unmeasured fluid volumes. Twenty-nine maintenance hemodialysis patients (16 men) underwent body composition analysis including whole body MRI, whole body potassium (40K) content, deuterium, and sodium bromide dilution, and segmental and wrist-to-ankle bioimpedance spectroscopy, all performed on the same day before a hemodialysis. Segment-specific resistivity was determined from segmental fat-free mass (FFM; by MRI), hydration status of FFM (by deuterium and sodium bromide), tissue resistance (by SBIS), and segment length. Segmental FFM was higher and extracellular hydration of FFM was lower in men compared with women. Segment-specific resistivity values for arm, trunk, and leg all differed from the uniform resistivity used in traditional SBIS algorithms. Estimates for whole body ECV, ICV, and total body water from SBIS using segmental instead of uniform resistivity values and after adjustment for unmeasured fluid volumes of the body did not differ significantly from gold-standard measures. The uniform tissue resistivity values used in traditional SBIS algorithms result in underestimation of ECV, ICV, and total body water. Use of segmental resistivity values combined with adjustment for body volumes that are neglected by traditional SBIS technique significantly improves estimations of body fluid volume in hemodialysis patients.

  9. Computational investigations of organic materials for hybrid nanodevice and optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Crenshaw, Jasmine Davenport

    2011-12-01

    This dissertation examines two organic material systems, biotinylated microtubule filaments and thiophene. Biotinylated microtubule filaments partially coated with streptavidin and gliding on surface-adhered kinesin motor proteins converge to form linear "nanowire" and circular "nanospool" structures. We present a cellular automaton simulation tool that models the dynamics of microtubule gliding and interactions. In this method, each microtubule is composed of a head, body, and tail segments. The microtubule surface density, lengths, persistence length, and modes of interaction are dictated by the user. The microtubules are randomly arranged and move across a hexagonal lattice surface with the direction of motion of the head segment being determined probabilistically: the body and tail segments follow the path of the head. The analysis of the motion and interactions allow statistically meaningful data to be obtained regarding the number of generated spools, radial distribution in the distance between spools, and the average spool circumference lengths which can be compared to experimental results. This technique will aid in predictions of the formation process of nanowires and nanospools. Information regarding the kinetics and microstructure of any system can be extracted through this tool by the manipulation in the time and space dimensions. Chemical reactions of thiophene with organic molecules are of interest to chemically modify thermally deposited coatings or thin films of conductive polymers. Energy barriers are identified for reactive systems involving thiophene and small hydrocarbon radicals. The transition states for these reactive systems occurred through hydrogen abstraction. The results provide quantum mechanical level insights into the chemical processes that occur in the chemical modification processes described above, such as Surface Polymerization by Ion-Assisted Deposition (SPIAD), electropolymerization, and ion beam deposition. Enthalpies of formation are calculated for organic molecules using B3LYP, BMK, and B98 hybrid functionals. G3 and CBS-QB3 are used as standards in conjunction, due to their accurate thermochemistry parameters, with experimental values. The BMK functional proves to perform best with the selected organic molecules.

  10. SU-E-T-593: Clinical Evaluation of Direct Aperture Optimization in Head/Neck and Prostate IMRT Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosini, M; GALAL, M; Emam, I

    2014-06-01

    Purpose: To investigate the planning and dosimetric advantages of direct aperture optimization (DAO) over beam-let optimization in IMRT treatment of head and neck (H/N) and prostate cancers. Methods: Five Head and Neck as well as five prostate patients were planned using the beamlet optimizer in Elekta-Xio ver 4.6 IMRT treatment planning system. Based on our experience in beamlet IMRT optimization, PTVs in H/N plans were prescribed to 70 Gy delivered by 7 fields. While prostate PTVs were prescribed to 76 Gy with 9 fields. In all plans, fields were set to be equally spaced. All cases were re-planed using Directmore » Aperture optimizer in Prowess Panther ver 5.01 IMRT planning system at same configurations and dose constraints. Plans were evaluated according to ICRU criteria, number of segments, number of monitor units and planning time. Results: For H/N plans, the near maximum dose (D2) and the dose that covers 95% D95 of PTV has improved by 4% in DAO. For organs at risk (OAR), DAO reduced the volume covered by 30% (V30) in spinal cord, right parotid, and left parotid by 60%, 54%, and 53% respectively. This considerable dosimetric quality improvement achieved using 25% less planning time and lower number of segments and monitor units by 46% and 51% respectively. In DAO prostate plans, Both D2 and D95 for the PTV were improved by only 2%. The V30 of the right femur, left femur and bladder were improved by 35%, 15% and 3% respectively. On the contrary, the rectum V30 got even worse by 9%. However, number of monitor units, and number of segments decreased by 20% and 25% respectively. Moreover the planning time reduced significantly too. Conclusion: DAO introduces considerable advantages over the beamlet optimization in regards to organs at risk sparing. However, no significant improvement occurred in most studied PTVs.« less

  11. Using intranet-based order sets to standardize clinical care and prepare for computerized physician order entry.

    PubMed

    Heffner, John E; Brower, Kathleen; Ellis, Rosemary; Brown, Shirley

    2004-07-01

    The high cost of computerized physician order entry (CPOE) and physician resistance to standardized care have delayed implementation. An intranet-based order set system can provide some of CPOE's benefits and offer opportunities to acculturate physicians toward standardized care. INTRANET CLINICIAN ORDER FORMS (COF): The COF system at the Medical University of South Carolina (MUSC) allows caregivers to enter and print orders through the intranet at points of care and to access decision support resources. Work on COF began in March 2000 with transfer of 25 MUSC paper-based order set forms to an intranet site. Physician groups developed additional order sets, which number more than 200. Web traffic increased progressively during a 24-month period, peaking at more than 6,400 hits per month to COF. Decision support tools improved compliance with Centers for Medicare & Medicaid Services core indicators. Clinicians demonstrated a willingness to develop and use order sets and decision support tools posted on the COF site. COF provides a low-cost method for preparing caregivers and institutions to adopt CPOE and standardization of care. The educational resources, relevant links to external resources, and communication alerts will all link to CPOE, thereby providing a head start in CPOE implementation.

  12. Assessment of radiation exposure in dental cone-beam computerized tomography with the use of metal-oxide semiconductor field-effect transistor (MOSFET) dosimeters and Monte Carlo simulations.

    PubMed

    Koivisto, J; Kiljunen, T; Tapiovaara, M; Wolff, J; Kortesniemi, M

    2012-09-01

    The aims of this study were to assess the organ and effective dose (International Commission on Radiological Protection (ICRP) 103) resulting from dental cone-beam computerized tomography (CBCT) imaging using a novel metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter device, and to assess the reliability of the MOSFET measurements by comparing the results with Monte Carlo PCXMC simulations. Organ dose measurements were performed using 20 MOSFET dosimeters that were embedded in the 8 most radiosensitive organs in the maxillofacial and neck area. The dose-area product (DAP) values attained from CBCT scans were used for PCXMC simulations. The acquired MOSFET doses were then compared with the Monte Carlo simulations. The effective dose measurements using MOSFET dosimeters yielded, using 0.5-cm steps, a value of 153 μSv and the PCXMC simulations resulted in a value of 136 μSv. The MOSFET dosimeters placed in a head phantom gave results similar to Monte Carlo simulations. Minor vertical changes in the positioning of the phantom had a substantial affect on the overall effective dose. Therefore, the MOSFET dosimeters constitute a feasible method for dose assessment of CBCT units in the maxillofacial region. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Age-specific MRI templates for pediatric neuroimaging

    PubMed Central

    Sanchez, Carmen E.; Richards, John E.; Almli, C. Robert

    2012-01-01

    This study created a database of pediatric age-specific MRI brain templates for normalization and segmentation. Participants included children from 4.5 through 19.5 years, totaling 823 scans from 494 subjects. Open-source processing programs (FSL, SPM, ANTS) constructed head, brain and segmentation templates in 6 month intervals. The tissue classification (WM, GM, CSF) showed changes over age similar to previous reports. A volumetric analysis of age-related changes in WM and GM based on these templates showed expected increase/decrease pattern in GM and an increase in WM over the sampled ages. This database is available for use for neuroimaging studies (blindedforreview). PMID:22799759

  14. Cervicocephalic kinesthetic sensibility and postural balance in patients with nontraumatic chronic neck pain – a pilot study

    PubMed Central

    Palmgren, Per J; Andreasson, Daniel; Eriksson, Magnus; Hägglund, Andreas

    2009-01-01

    Background Although cervical pain is widespread, most victims are only mildly and occasionally affected. A minority, however, suffer chronic pain and/or functional impairments. Although there is abundant literature regarding nontraumatic neck pain, little focuses on diagnostic criteria. During the last decade, research on neck pain has been designed to evaluate underlying pathophysiological mechanisms, without noteworthy success. Independent researchers have investigated postural balance and cervicocephalic kinesthetic sensibility among patients with chronic neck pain, and have (in most cases) concluded the source of the problem is a reduced ability in the neck's proprioceptive system. Here, we investigated cervicocephalic kinesthetic sensibility and postural balance among patients with nontraumatic chronic neck pain. Methods Ours was a two-group, observational pilot study of patients with complaints of continuous neck pain during the 3 months prior to recruitment. Thirteen patients with chronic neck pain of nontraumatic origin were recruited from an institutional outpatient clinic. Sixteen healthy persons were recruited as a control group. Cervicocephalic kinesthetic sensibility was assessed by exploring head repositioning accuracy and postural balance was measured with computerized static posturography. Results Parameters of cervicocephalic kinesthetic sensibility were not reduced. However, in one of six test movements (flexion), global repositioning errors were significantly larger in the experimental group than in the control group (p < .05). Measurements did not demonstrate any general impaired postural balance, and varied substantially among participants in both groups. Conclusion In patients with nontraumatic chronic neck pain, we found statistically significant global repositioning errors in only one of six test movements. In this cohort, we found no evidence of impaired postural balance. Head repositioning accuracy and computerized static posturography are imperfect measures of functional proprioceptive impairments. Validity of (and procedures for using) these instruments demand further investigation. Trial registration Current Controlled Trials ISRCTN96873990 PMID:19566929

  15. Management and outcome of low velocity penetrating head injury caused by impacted foreign bodies.

    PubMed

    Moussa, Wael Mohamed Mohamed; Abbas, Mohamed

    2016-05-01

    Penetrating head injuries with impacted foreign bodies are rare, associated with a high incidence of morbidity and potentially life-threatening. In this study, we aimed at investigating the outcome of these cases as well as analyzing the factors affecting the prognosis. A retrospective study in which the records of 16 patients who had penetrating head injuries caused by low-velocity impacted foreign bodies were revised. All patients were males with a mean age of 28.9 years (range, 18 to 50 years). The follow-up period ranged from 4 to 13 months with a mean of 8.1 months. Causes of injury were construction accidents in 6 (37.5 %) patients, assault in 6 (37.5 %) and road traffic accidents in 4 (25 %). The impacted objects included a bar of iron, a piece of wood, a nail, a sickle and a piece of glass. Diagnostic computerized tomography (CT) of the brain was carried out on admission in all patients. Thirteen (81.3 %) patients were submitted to surgery, and all had the appropriate management in the form of antibiotics and dehydrating measures as required. The primary outcome measure was the Glasgow Outcome Scale (GOS) at the end of follow-up. At the end of follow-up, ten (62.5 %) patients had a GOS score of 5, two (12.5 %) patients had a score of 4, and four (25 %) patients had a score of 1. Low-velocity penetrating head injuries are most common in young adult males. With the appropriate management, a majority of even the most severe cases can have a favorable outcome.

  16. Space shuttle orbiter digital data processing system timing sensitivity analysis OFT ascent phase

    NASA Technical Reports Server (NTRS)

    Lagas, J. J.; Peterka, J. J.; Becker, D. A.

    1977-01-01

    Dynamic loads were investigated to provide simulation and analysis of the space shuttle orbiter digital data processing system (DDPS). Segments of the ascent test (OFT) configuration were modeled utilizing the information management system interpretive model (IMSIM) in a computerized simulation modeling of the OFT hardware and software workload. System requirements for simulation of the OFT configuration were defined, and sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and these sensitivity analyses, a test design was developed for adapting, parameterizing, and executing IMSIM, using varying load and stress conditions for model execution. Analyses of the computer simulation runs are documented, including results, conclusions, and recommendations for DDPS improvements.

  17. An integrated software suite for surface-based analyses of cerebral cortex.

    PubMed

    Van Essen, D C; Drury, H A; Dickson, J; Harwell, J; Hanlon, D; Anderson, C H

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.

  18. An integrated software suite for surface-based analyses of cerebral cortex

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Dickson, J.; Harwell, J.; Hanlon, D.; Anderson, C. H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database.

  19. Using Tri-Axial Accelerometers to Assess the Dynamic Control of Head Posture During Gait

    NASA Technical Reports Server (NTRS)

    Lawrence, John H., III

    2003-01-01

    Long duration spaceflight is known to cause a variety of biomedical stressors to the astronaut. One of the more functionally destabilizing effects of spaceflight involves microgravity-induced changes in vestibular or balance control. Balance control requires the integration of the vestibular, visual, and proprioceptive systems. In the microgravity environment, the normal gravity vector present on Earth no longer serves as a reference for the balance control system. Therefore, adaptive changes occur to the vestibular system to affect control of body orientation with altered, or non-present, gravity and/or proprioceptive inputs. Upon return to a gravity environment, the vestibular system must re-incorporate the gravity vector and gravity-induced proprioceptive inputs into the balance control regime. The result is often a period of postural instability, which may also be associated with space motion sickness (oscillopsia, nausea, and vertigo). Previous studies by the JSC Neuroscience group have found that returning astronauts often employ alterations in gait mechanics to maintain postural control during gait. It is believed that these gait alterations are meant to decrease the transfer of heel strike shock energy to the head, thus limiting the contradictory head and eye movements that lead to gait instability and motion sickness symptoms. We analyzed pre- and post-spaceflight tri-axial accelerometer data from the NASA/MIR long duration spaceflight missions to assess the heel to head transfer of heel strike shock energy during locomotion. Up to seven gait sessions (three preflight, four postflight) of head and shank (lower leg) accelerometer data was previously collected from six astronauts who engaged in space flights of four to six months duration. In our analysis, the heel to head transmission of shock energy was compared using peak vertical acceleration (a), peak jerk (j) ratio, and relative kinetic energy (a). A host of generalized movement variables was produced in an effort to isolate those that best highlighted vestibular adaptation due to spaceflight. Data suggest that astronauts used either head or body centered control to reduce the effects of heel strike shock on head position during normal walking at self-selected speeds. Moreover, the form of that control appears to fall under one of two categories: homeostatic or adaptive. Homeostatic control refers to tight constraint (small error) over the value of a given variable before and after spaceflight with little or no adaptive changes. Adaptive control refers to lesser constraint over a given movement variable with clear adaptation to earth gravity upon return from spaceflight. Heel strike shock absorption (ratio of heel to head peak acceleration) best-discriminated head and body centered control strategies. Further, peak jerk data was useful for illustrating pre- and postflight differences in segmental (shank versus head) movement energy. Results from kinetic energy analysis show high consistency between subjects and across test dates. Whether this result highlights a control strategy or is an artifact of approximating body segments using anthropometric tables is, at this point, unclear.

  20. Retinal layer segmentation of macular OCT images using boundary classification

    PubMed Central

    Lang, Andrew; Carass, Aaron; Hauser, Matthew; Sotirchos, Elias S.; Calabresi, Peter A.; Ying, Howard S.; Prince, Jerry L.

    2013-01-01

    Optical coherence tomography (OCT) has proven to be an essential imaging modality for ophthalmology and is proving to be very important in neurology. OCT enables high resolution imaging of the retina, both at the optic nerve head and the macula. Macular retinal layer thicknesses provide useful diagnostic information and have been shown to correlate well with measures of disease severity in several diseases. Since manual segmentation of these layers is time consuming and prone to bias, automatic segmentation methods are critical for full utilization of this technology. In this work, we build a random forest classifier to segment eight retinal layers in macular cube images acquired by OCT. The random forest classifier learns the boundary pixels between layers, producing an accurate probability map for each boundary, which is then processed to finalize the boundaries. Using this algorithm, we can accurately segment the entire retina contained in the macular cube to an accuracy of at least 4.3 microns for any of the nine boundaries. Experiments were carried out on both healthy and multiple sclerosis subjects, with no difference in the accuracy of our algorithm found between the groups. PMID:23847738

  1. A Scalable Framework For Segmenting Magnetic Resonance Images

    PubMed Central

    Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar

    2009-01-01

    A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893

  2. Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki in the genetic background of Koshihikari

    PubMed Central

    Okada, Satoshi; Onogi, Akio; Iijima, Ken; Hori, Kiyosumi; Iwata, Hiroyoshi; Yokoyama, Wakana; Suehiro, Miki; Yamasaki, Masanori

    2018-01-01

    Grain size is important for brewing-rice cultivars, but the genetic basis for this trait is still unclear. This paper aims to identify QTLs for grain size using novel chromosomal segment substitution lines (CSSLs) harboring chromosomal segments from Yamadanishiki, an excellent sake-brewing rice, in the genetic background of Koshihikari, a cooking cultivar. We developed a set of 49 CSSLs. Grain length (GL), grain width (GWh), grain thickness (GT), 100-grain weight (GWt) and days to heading (DTH) were evaluated, and a CSSL-QTL analysis was conducted. Eighteen QTLs for grain size and DTH were identified. Seven (qGL11, qGWh5, qGWh10, qGWt6-2, qGWt10-2, qDTH3, and qDTH6) that were detected in F2 and recombinant inbred lines (RILs) from Koshihikari/Yamadanishiki were validated, suggesting that they are important for large grain size and heading date in Yamadanishiki. Additionally, QTL reanalysis for GWt showed that qGWt10-2 was only detected in early-flowering RILs, while qGWt5 (in the same region as qGWh5) was only detected in late-flowering RILs, suggesting that these QTLs show different responses to the environment. Our study revealed that grain size in the Yamadanishiki cultivar is determined by a complex genetic mechanism. These findings could be useful for the breeding of both cooking and brewing rice. PMID:29875604

  3. Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer.

    PubMed

    Walker, Gary V; Awan, Musaddiq; Tao, Randa; Koay, Eugene J; Boehling, Nicholas S; Grant, Jonathan D; Sittig, Dean F; Gunn, Gary Brandon; Garden, Adam S; Phan, Jack; Morrison, William H; Rosenthal, David I; Mohamed, Abdallah Sherif Radwan; Fuller, Clifton David

    2014-09-01

    Target volumes and organs-at-risk (OARs) for radiotherapy (RT) planning are manually defined, which is a tedious and inaccurate process. We sought to assess the feasibility, time reduction, and acceptability of an atlas-based autosegmentation (AS) compared to manual segmentation (MS) of OARs. A commercial platform generated 16 OARs. Resident physicians were randomly assigned to modify AS OAR (AS+R) or to draw MS OAR followed by attending physician correction. Dice similarity coefficient (DSC) was used to measure overlap between groups compared with attending approved OARs (DSC=1 means perfect overlap). 40 cases were segmented. Mean ± SD segmentation time in the AS+R group was 19.7 ± 8.0 min, compared to 28.5 ± 8.0 min in the MS cohort, amounting to a 30.9% time reduction (Wilcoxon p<0.01). For each OAR, AS DSC was statistically different from both AS+R and MS ROIs (all Steel-Dwass p<0.01) except the spinal cord and the mandible, suggesting oversight of AS/MS processes is required; AS+R and MS DSCs were non-different. AS compared to attending approved OAR DSCs varied considerably, with a chiasm mean ± SD DSC of 0.37 ± 0.32 and brainstem of 0.97 ± 0.03. Autosegmentation provides a time savings in head and neck regions of interest generation. However, attending physician approval remains vital. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. "FruitZotic": A Sensory Approach to Introducing Preschoolers to Fresh Exotic Fruits at Head Start Locations in Western Massachusetts

    ERIC Educational Resources Information Center

    Kannan, Srimathi; Smith, Rebecca; Foley, Christine; Del Sole, Sarah; White, Alissa; Sheldon, Lisa A.; Mietlcki-Floyd, Shirley; Severin, Suzanne

    2011-01-01

    FruitZotic incorporated fruit stories (exotic-fruits-literacy), a "See, Smell, Hear, Touch and Taste" (sensory) segment and a question-prompted discussion. Three take-home components incorporating the exotic fruits were: Coloring Activity, Recipes, and Fact Sheets. Sensory based nutrition education can increase familiarity with exotic…

  5. Growth potential of the family camping market

    Treesearch

    W.F. LaPage; W.F. LaPage

    1973-01-01

    A study of the camping market's short-term growth potential, based upon interviews with the heads of 2,003 representative American households. The study estimates the size of the potential camping market and divides it into three segments: those families with a high, medium and low propensity to become campers. The developed camping market is also divided into an...

  6. Symposium on the evolution and development of the vertebrate head.

    PubMed

    Depew, Michael J; Olsson, Lennart

    2008-06-15

    Among the symposia held at the seminal meeting of the European Society for Evolutionary Developmental Biology was one centered on the development and evolution of the vertebrate head, an exquisitely complex anatomical system. The articles presented at this meeting have been gathered in a special issue of the Journal of Experimental Zoology, and are here reviewed by the organizers of the symposia. These articles cover a breadth of subjects, including interactions between cells derived from the different germ layers, such as those underlying neural crest cell migration and fate and cranial muscle specification, as well as placode development and the origin, development, and evolution of important evolutionary innovations such as jaws and the trabecula cranii. In this introduction, we provide a short historical overview of themes of research into the fundamental organization, structure, and development of the vertebrate head, including the search for head segmentation and the relevance of the New Head Hypothesis, and subsequently present the topics discussed in each of the articles. This overview of the past and the present of head evo-devo is then followed by a glimpse at its possible future and a brief examination of the utility of the notions of heterochrony, heterotopy, and heterofacience in describing evolutionarily important changes in developmental events. (c) 2008 Wiley-Liss, Inc.

  7. Hierarchical control of two-dimensional gaze saccades

    PubMed Central

    Optican, Lance M.; Blohm, Gunnar; Lefèvre, Philippe

    2014-01-01

    Coordinating the movements of different body parts is a challenging process for the central nervous system because of several problems. Four of these main difficulties are: first, moving one part can move others; second, the parts can have different dynamics; third, some parts can have different motor goals; and fourth, some parts may be perturbed by outside forces. Here, we propose a novel approach for the control of linked systems with feedback loops for each part. The proximal parts have separate goals, but critically the most distal part has only the common goal. We apply this new control policy to eye-head coordination in two-dimensions, specifically head-unrestrained gaze saccades. Paradoxically, the hierarchical structure has controllers for the gaze and the head, but not for the eye (the most distal part). Our simulations demonstrate that the proposed control structure reproduces much of the published empirical data about gaze movements, e.g., it compensates for perturbations, accurately reaches goals for gaze and head from arbitrary initial positions, simulates the nine relationships of the head-unrestrained main sequence, and reproduces observations from lesion and single-unit recording experiments. We conclude by showing how our model can be easily extended to control structures with more linked segments, such as the control of coordinated eye on head on trunk movements. PMID:24062206

  8. [Severe injuries from falls on the same level].

    PubMed

    Parreira, José Gustavo; Vianna, André Mazzini Ferreira; Cardoso, Gabriel Silva; Karakhanian, Walter Zavem; Calil, Daniela; Perlingeiro, Jaqueline A Giannini; Soldá, Silvia C; Assef, José Cesar

    2010-01-01

    Assess characteristics of trauma patients who sustained falls from their own height, more specifically focusing on presence of severe injuries, diagnosis and treatment. Retrospective study including all adult blunt trauma patients admitted in the emergency room in a period of 9 months. Lesions with AIS (Abbreviated Injury Scale)>3 were considered "severe". Variables were compared between victims of fall from their own height (group I) and other blunt trauma mechanisms (group II). Student's t, chi square and Fisher exact tests were used for statistical analysis, considering p<0.05 as significant. Of the 1993 trauma patients included, 305 (15%) were victims of falls from their own height. In group I, mean age was 52.2 ± 20.8 years and 64.8% were male. Injuries in the head segment were the most frequently observed (62.2%), followed by injuries in the extremities (22.3%), thorax (1.3%) and abdomen (0.7%). Severe injuries (AIS>3) were more frequent in the head (8.9%), followed by extremities (4.9%). In group I, craniotomies were needed in 2.3%. By comparing groups, we observed that victims of falls from their own height had significantly higher mean age, higher mean systolic blood pressure, and higher head AIS mean, as well as lower ISS mean, thorax AIS mean, abdomen AIS mean and extremities AIS mean. Importance of the trauma mechanism in victims of falls from own height should be emphasized due to a considerable possibility of occult severe injuries, mainly in the cephalic segment.

  9. Automated MRI segmentation for individualized modeling of current flow in the human head.

    PubMed

    Huang, Yu; Dmochowski, Jacek P; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C

    2013-12-01

    High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.

  10. Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction

    PubMed Central

    Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S.

    2015-01-01

    This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants’ specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants’ behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods. PMID:26557047

  11. Mortality patterns and trends among 127,266 U.S.-based men in a petroleum company: update 1979-2000.

    PubMed

    Huebner, Wendy W; Wojcik, Nancy C; Jorgensen, Gail; Marcella, Susan P; Nicolich, Mark J

    2009-11-01

    To assess patterns and trends in mortality among men employed in U.S. operating segments of a petroleum company. We defined a cohort of 127,266 men with at least 1 day of employment during the period of 1979 through 2000. Computerized human resources databases were the basis of the cohort definition as well as the source of demographic and most work history information. Standardized mortality ratios (SMR) and 95% confidence intervals (CI) were calculated for 94 causes of death, including analyses by operating segment and job type. Most SMR results are below unity. The main exception is mesothelioma (SMR = 1.49; 95% CI = 1.15 to 1.90), which has elevations three times greater than expectation among some groups of men working in manufacturing sites who were hired before 1960. SMRs for cancers of the blood and blood-forming organs are generally close to unity, whereas men in the chemicals segment have 17 deaths due to acute non-lymphocytic leukemia (SMR = 1.81; 95% CI = 1.06 to 2.90), with no temporal or job type patterns. Men in the downstream segment have an elevation of aplastic anemia (SMR = 2.19; 95% CI = 0.95 to 4.32), based on eight deaths. There are eight deaths from malignant melanoma among downstream drivers (SMR = 2.46; 95% CI = 1.06 to 4.84), and motor vehicle accident rates are slightly elevated among some groups of younger and shorter-term operators. This comprehensive study indicates an overall favorable mortality profile for this workforce. For a few elevations, the study helps guide decisions about future surveillance, focused studies, and other follow-up actions.

  12. Development of a computerized visual search test.

    PubMed

    Reid, Denise; Babani, Harsha; Jon, Eugenia

    2009-09-01

    Visual attention and visual search are the features of visual perception, essential for attending and scanning one's environment while engaging in daily occupations. This study describes the development of a novel web-based test of visual search. The development information including the format of the test will be described. The test was designed to provide an alternative to existing cancellation tests. Data from two pilot studies will be reported that examined some aspects of the test's validity. To date, our assessment of the test shows that it discriminates between healthy and head-injured persons. More research and development work is required to examine task performance changes in relation to task complexity. It is suggested that the conceptual design for the test is worthy of further investigation.

  13. [The use of computer-assisted stabilometry in the diagnosis of craniomandibular disorders].

    PubMed

    Palano, D; Molinari, G; Cappelletto, M; Guidetti, G; Vernole, B

    1994-01-01

    The aim of this study was to evaluate the influence of the cervical region and the stomatognathic system on the balance control. We examined 35 healthy subjects and 201 balance disorder patients; of the 201 patients 60 suffered also from craniomandibular disorders (CMD) and 40 from cervical rachis disease. All cases were tested by computerized stabilometry executed in Romberg position: with closed eyes, retroflexed head and two cotton roles between the dental arches. The results show that cervical rachis disease and stomatognathic dysfunction have a significative influence on the balance control; however, this influence is smaller than that of vestibular disease; moreover, the computer stabilometry allows to measure the degree of ascending or descending correlation between the posture and stomatognathic system.

  14. Modeling eye-head gaze shifts in multiple contexts without motor planning

    PubMed Central

    Haji-Abolhassani, Iman; Guitton, Daniel

    2016-01-01

    During gaze shifts, the eyes and head collaborate to rapidly capture a target (saccade) and fixate it. Accordingly, models of gaze shift control should embed both saccadic and fixation modes and a mechanism for switching between them. We demonstrate a model in which the eye and head platforms are driven by a shared gaze error signal. To limit the number of free parameters, we implement a model reduction approach in which steady-state cerebellar effects at each of their projection sites are lumped with the parameter of that site. The model topology is consistent with anatomy and neurophysiology, and can replicate eye-head responses observed in multiple experimental contexts: 1) observed gaze characteristics across species and subjects can emerge from this structure with minor parametric changes; 2) gaze can move to a goal while in the fixation mode; 3) ocular compensation for head perturbations during saccades could rely on vestibular-only cells in the vestibular nuclei with postulated projections to burst neurons; 4) two nonlinearities suffice, i.e., the experimentally-determined mapping of tectoreticular cells onto brain stem targets and the increased recruitment of the head for larger target eccentricities; 5) the effects of initial conditions on eye/head trajectories are due to neural circuit dynamics, not planning; and 6) “compensatory” ocular slow phases exist even after semicircular canal plugging, because of interconnections linking eye-head circuits. Our model structure also simulates classical vestibulo-ocular reflex and pursuit nystagmus, and provides novel neural circuit and behavioral predictions, notably that both eye-head coordination and segmental limb coordination are possible without trajectory planning. PMID:27440248

  15. Mechanical consequences of core drilling and bone-grafting on osteonecrosis of the femoral head.

    PubMed

    Brown, T D; Pedersen, D R; Baker, K J; Brand, R A

    1993-09-01

    We employed an anatomically realistic three-dimensional finite-element model to explore several biomechanical variables involved in coring or bone-grafting of a segmentally necrotic femoral head. The mechanical efficacy of several variants of these procedures was indexed in terms of their alteration of the stress:strength ratio in at-risk necrotic cancellous bone. For coring alone, the associated structural compromise was generally modest, provided that the tract did not extend near the subchondral plate. Cortical bone-grafting was potentially of great structural benefit for femoral heads in which the graft penetrated deeply into the superocentral or lateral aspect of the lesion, ideally with abutment against the subchondral plate. By contrast, central or lateral grafts that stopped well short of the subchondral plate were contraindicated biomechanically because they caused marked elevations in stress on the necrotic cancellous bone. Calculated levels of stress were relatively insensitive to variations in the diameter of the graft.

  16. Optic disc segmentation: level set methods and blood vessels inpainting

    NASA Astrophysics Data System (ADS)

    Almazroa, A.; Sun, Weiwei; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-03-01

    Segmenting the optic disc (OD) is an important and essential step in creating a frame of reference for diagnosing optic nerve head (ONH) pathology such as glaucoma. Therefore, a reliable OD segmentation technique is necessary for automatic screening of ONH abnormalities. The main contribution of this paper is in presenting a novel OD segmentation algorithm based on applying a level set method on a localized OD image. To prevent the blood vessels from interfering with the level set process, an inpainting technique is applied. The algorithm is evaluated using a new retinal fundus image dataset called RIGA (Retinal Images for Glaucoma Analysis). In the case of low quality images, a double level set is applied in which the first level set is considered to be a localization for the OD. Five hundred and fifty images are used to test the algorithm accuracy as well as its agreement with manual markings by six ophthalmologists. The accuracy of the algorithm in marking the optic disc area and centroid is 83.9%, and the best agreement is observed between the results of the algorithm and manual markings in 379 images.

  17. Anthropometric and biomechanical characteristics on body segments of Koreans.

    PubMed

    Park, S J; Kim, C B; Park, S C

    1999-05-01

    This paper documents the physical measurements of the Korean population in order to construct a data base for ergonomic design. The dimension, volume, density, mass, and center of mass of Koreans whose ages range from 7 to 49 were investigated. Sixty-five male subjects and sixty-nine female subjects participated. Eight body segments (head with neck, trunk, thigh, shank, foot, upper arm, forearm and hand) were directly measured with a Martin-type anthropometer, and the immersion method was adopted to measure the volume of body segments. After this, densities were computed by the density equations in Drillis and Contini (1966). The reaction board method was employed for the measurement of the center of mass. Obtained data were compared with the results in the literature. The results in this paper showed different features on body segment parameters comparing with the results in the literature. The constructed data base can be applied to statistical guideline for product design, workspace design, design of clothing and tools, furniture design and construction of biomechanical models for Korean. Also, they can be extended to the application areas for Mongolian.

  18. Dual mode of embryonic development is highlighted by expression and function of Nasonia pair-rule genes

    PubMed Central

    Rosenberg, Miriam I; Brent, Ava E; Payre, François; Desplan, Claude

    2014-01-01

    Embryonic anterior–posterior patterning is well understood in Drosophila, which uses ‘long germ’ embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use ‘short germ’ embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila at the anterior and ancestral Tribolium at the posterior. DOI: http://dx.doi.org/10.7554/eLife.01440.001 PMID:24599282

  19. Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes

    PubMed Central

    Bretzin, Abigail C.; Mansell, Jamie L.; Tierney, Ryan T.; McDevitt, Jane K.

    2016-01-01

    Background: Soccer players head the ball repetitively throughout their careers; this is also a potential mechanism for a concussion. Although not all soccer headers result in a concussion, these subconcussive impacts may impart acceleration, deceleration, and rotational forces on the brain, leaving structural and functional deficits. Stronger neck musculature may reduce head-neck segment kinematics. Hypothesis: The relationship between anthropometrics and soccer heading kinematics will not differ between sexes. The relationship between anthropometrics and soccer heading kinematics will not differ between ball speeds. Study Design: Pilot, cross-sectional design. Level of Evidence: Level 3. Methods: Division I soccer athletes (5 male, 8 female) were assessed for head-neck anthropometric and neck strength measurements in 6 directions (ie, flexion, extension, right and left lateral flexions and rotations). Participants headed the ball 10 times (25 or 40 mph) while wearing an accelerometer secured to their head. Kinematic measurements (ie, linear acceleration and rotational velocity) were recorded at 2 ball speeds. Results: Sex differences were observed in neck girth (t = 5.09, P < 0.001), flexor and left lateral flexor strength (t = 3.006, P = 0.012 and t = 4.182, P = 0.002, respectively), and rotational velocity at both speeds (t = −2.628, P = 0.024 and t = −2.227, P = 0.048). Neck girth had negative correlations with both linear acceleration (r = −0.599, P = 0.031) and rotational velocity at both speeds (r = −0.551, P = 0.012 and r = −0.652, P = 0.016). Also, stronger muscle groups had lower linear accelerations at both speeds (P < 0.05). Conclusion: There was a significant relationship between anthropometrics and soccer heading kinematics for sex and ball speeds. Clinical Relevance: Neck girth and neck strength are factors that may limit head impact kinematics. PMID:28225689

  20. Arrestant Effect of Human Scalp Components on Head Louse (Phthiraptera: Pediculidae) Behavior.

    PubMed

    Ortega-Insaurralde, Isabel; Ceferino Toloza, Ariel; Gonzalez-Audino, Paola; Inés Picollo, María

    2017-03-01

    Relevant evidence has shown that parasites process host-related information using chemical, visual, tactile, or auditory cues. However, the cues that are involved in the host-parasite interaction between Pediculus humanus capitis (De Geer 1767) and humans have not been identified yet. In this work, we studied the effect of human scalp components on the behavior of adult head lice. Filter paper segments were rubbed on volunteers' scalps and then placed in the experimental arena, where adult head lice were individually tested. The movement of the insects was recorded for each arena using the software EthoVision. Average movement parameters were calculated for the treatments in the bioassays such as total distance, velocity, number of times a head louse crossed between zones of the arena, and time in each zone of the arena. We found that scalp components induced head lice to decrease average locomotor activity and to remain arrested on the treated paper. The effect of the ageing of human scalp samples in the response of head lice was not statistically significant (i.e., human scalp samples of 4, 18, 40, and 60 h of ageing did not elicit a significant change in head louse behavior). When we analyzed the effect of the sex in the response of head lice to human scalp samples, males demonstrated significant differences. Our results showed for the first time the effect of host components conditioning head lice behavior. We discuss the role of these components in the dynamic of head lice infestation. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes.

    PubMed

    Bretzin, Abigail C; Mansell, Jamie L; Tierney, Ryan T; McDevitt, Jane K

    Soccer players head the ball repetitively throughout their careers; this is also a potential mechanism for a concussion. Although not all soccer headers result in a concussion, these subconcussive impacts may impart acceleration, deceleration, and rotational forces on the brain, leaving structural and functional deficits. Stronger neck musculature may reduce head-neck segment kinematics. The relationship between anthropometrics and soccer heading kinematics will not differ between sexes. The relationship between anthropometrics and soccer heading kinematics will not differ between ball speeds. Pilot, cross-sectional design. Level 3. Division I soccer athletes (5 male, 8 female) were assessed for head-neck anthropometric and neck strength measurements in 6 directions (ie, flexion, extension, right and left lateral flexions and rotations). Participants headed the ball 10 times (25 or 40 mph) while wearing an accelerometer secured to their head. Kinematic measurements (ie, linear acceleration and rotational velocity) were recorded at 2 ball speeds. Sex differences were observed in neck girth ( t = 5.09, P < 0.001), flexor and left lateral flexor strength ( t = 3.006, P = 0.012 and t = 4.182, P = 0.002, respectively), and rotational velocity at both speeds ( t = -2.628, P = 0.024 and t = -2.227, P = 0.048). Neck girth had negative correlations with both linear acceleration ( r = -0.599, P = 0.031) and rotational velocity at both speeds ( r = -0.551, P = 0.012 and r = -0.652, P = 0.016). Also, stronger muscle groups had lower linear accelerations at both speeds ( P < 0.05). There was a significant relationship between anthropometrics and soccer heading kinematics for sex and ball speeds. Neck girth and neck strength are factors that may limit head impact kinematics.

  2. Postembryonic development of Antygomonas incomitata (Kinorhyncha: Cyclorhagida).

    PubMed

    Sørensen, Martin V; Accogli, Gianluca; Hansen, Jesper G

    2010-07-01

    Postembryonic development in the kinorhynch species Antygomonas incomitata was examined using scanning electron microscopy. The morphology of the six juvenile stages, J-1 to J-6, varies at numerous details, but they can also be distinguished by a few key characters. Juvenile stage 1 by its composition of only nine trunk segments; J-2 by the combination of possessing 10 trunk segments, but no cuspidate spines on segment 9; J-3 by the presence of cuspidate spines on segment 9, but only one pair of cuspidate spines on segment 8; J-4 by the combination of 10 trunk segments only, but having two pairs of cuspidate spines on segment 8; J-5 by possessing 11 trunk segments and same spine compositions as adults but is still maintaining postmarginal spiculae; J-6 specimens closely resemble adults and are most easily identified by their reduced trunk lengths. New segments are formed in a growth zone in the anterior part of the terminal segment. The complete number of segments is reached in J-5. Development of cuticular head and trunk structures are described through all postembryonic stages and following developmental patterns could be outlined: the mouth cone possesses outer oral styles from J-1, but in J-1 to J-3, the styles alternate in size. Scalids of the introvert are added after each molt, and scalids appear earliest in the anterior rings, whereas scalids in more posterior rings are added in older postembryonic stages. The early J-1 stage is poor in spines and sensory spots and both structures increase in number after each molt. The complete spine composition is reached in J-4, whereas new sensory spots appear after all molts, inclusive the final one from J-6 to adult. Sensory spots in the paraventral positions often appear as Type 3 sensory spots but are through development transformed to Type 2. This transformation happens earliest on the anterior segments.

  3. A two-stage rule-constrained seedless region growing approach for mandibular body segmentation in MRI.

    PubMed

    Ji, Dong Xu; Foong, Kelvin Weng Chiong; Ong, Sim Heng

    2013-09-01

    Extraction of the mandible from 3D volumetric images is frequently required for surgical planning and evaluation. Image segmentation from MRI is more complex than CT due to lower bony signal-to-noise. An automated method to extract the human mandible body shape from magnetic resonance (MR) images of the head was developed and tested. Anonymous MR images data sets of the head from 12 subjects were subjected to a two-stage rule-constrained region growing approach to derive the shape of the body of the human mandible. An initial thresholding technique was applied followed by a 3D seedless region growing algorithm to detect a large portion of the trabecular bone (TB) regions of the mandible. This stage is followed with a rule-constrained 2D segmentation of each MR axial slice to merge the remaining portions of the TB regions with lower intensity levels. The two-stage approach was replicated to detect the cortical bone (CB) regions of the mandibular body. The TB and CB regions detected from the preceding steps were merged and subjected to a series of morphological processes for completion of the mandibular body region definition. Comparisons of the accuracy of segmentation between the two-stage approach, conventional region growing method, 3D level set method, and manual segmentation were made with Jaccard index, Dice index, and mean surface distance (MSD). The mean accuracy of the proposed method is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The mean accuracy of CRG is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The mean accuracy of the 3D level set method is [Formula: see text] for Jaccard index, [Formula: see text] for Dice index, and [Formula: see text] mm for MSD. The proposed method shows improvement in accuracy over CRG and 3D level set. Accurate segmentation of the body of the human mandible from MR images is achieved with the proposed two-stage rule-constrained seedless region growing approach. The accuracy achieved with the two-stage approach is higher than CRG and 3D level set.

  4. Left ventricular endocardial surface detection based on real-time 3D echocardiographic data

    NASA Technical Reports Server (NTRS)

    Corsi, C.; Borsari, M.; Consegnati, F.; Sarti, A.; Lamberti, C.; Travaglini, A.; Shiota, T.; Thomas, J. D.

    2001-01-01

    OBJECTIVE: A new computerized semi-automatic method for left ventricular (LV) chamber segmentation is presented. METHODS: The LV is imaged by real-time three-dimensional echocardiography (RT3DE). The surface detection model, based on level set techniques, is applied to RT3DE data for image analysis. The modified level set partial differential equation we use is solved by applying numerical methods for conservation laws. The initial conditions are manually established on some slices of the entire volume. The solution obtained for each slice is a contour line corresponding with the boundary between LV cavity and LV endocardium. RESULTS: The mathematical model has been applied to sequences of frames of human hearts (volume range: 34-109 ml) imaged by 2D and reconstructed off-line and RT3DE data. Volume estimation obtained by this new semi-automatic method shows an excellent correlation with those obtained by manual tracing (r = 0.992). Dynamic change of LV volume during the cardiac cycle is also obtained. CONCLUSION: The volume estimation method is accurate; edge based segmentation, image completion and volume reconstruction can be accomplished. The visualization technique also allows to navigate into the reconstructed volume and to display any section of the volume.

  5. Surgiplanner: a new method for one step oral rehabilitation of severe atrophic maxilla

    PubMed Central

    BUSATO, A.; VISMARA, V.; GRECCHI, F.; GRECCHI, E.; LAURITANO, D.

    2017-01-01

    SUMMARY The implant-prosthetic rehabilitation of edentulous upper jaws has always been complex for surgeons and dentists. The lack of bone in both vertical and horizontal dimension does not allow the correct insertion of dental implants. In addition, patients with edentulous upper and lower arch have a loss of vertical dimension of the face and an aged expression. Many surgical techniques have been proposed to increase the bone volume, height and thickness, such as the Le Fort I osteotomy, the bone grafts and the placement of dental implants. Planning these surgical procedures is difficult, because it is not possible to reproduce the movements of osteotomized bone segments in three planes of space. This article describes the treatment of severe atrophy maxilla with a new approach using a new instrument named “Surgiplanner”. Surgiplanner is a method that, only using a computerized axial tomography (CAT), allows to obtain a totally predetermined therapeutic result from both an aesthetic and functional point of view, with surgery of severe resorbed jaws. Surgiplanner allows repositioning of segment of the skeleton of the patient’s face in a predetermined and controlled way for the best implant-supported oral rehabilitation. PMID:29285336

  6. Surgiplanner: a new method for one step oral rehabilitation of severe atrophic maxilla.

    PubMed

    Busato, A; Vismara, V; Grecchi, F; Grecchi, E; Lauritano, D

    2017-01-01

    The implant-prosthetic rehabilitation of edentulous upper jaws has always been complex for surgeons and dentists. The lack of bone in both vertical and horizontal dimension does not allow the correct insertion of dental implants. In addition, patients with edentulous upper and lower arch have a loss of vertical dimension of the face and an aged expression. Many surgical techniques have been proposed to increase the bone volume, height and thickness, such as the Le Fort I osteotomy, the bone grafts and the placement of dental implants. Planning these surgical procedures is difficult, because it is not possible to reproduce the movements of osteotomized bone segments in three planes of space. This article describes the treatment of severe atrophy maxilla with a new approach using a new instrument named "Surgiplanner". Surgiplanner is a method that, only using a computerized axial tomography (CAT), allows to obtain a totally predetermined therapeutic result from both an aesthetic and functional point of view, with surgery of severe resorbed jaws. Surgiplanner allows repositioning of segment of the skeleton of the patient's face in a predetermined and controlled way for the best implant-supported oral rehabilitation.

  7. Hierarchical decomposition of burn body diagram based on cutaneous functional units and its utility.

    PubMed

    Richard, Reg; Jones, John A; Parshley, Philip

    2015-01-01

    A burn body diagram (BBD) is a common feature used in the delivery of burn care for estimating the TBSA burn as well as calculating fluid resuscitation and nutritional requirements, wound healing, and rehabilitation intervention. However, little change has occurred for over seven decades in the configuration of the BBD. The purpose of this project was to develop a computerized model using hierarchical decomposition (HD) to more precisely determine the percentage burn within a BBD based on cutaneous functional units (CFUs). HD is a process by which a system is degraded into smaller parts that are more precise in their use. CFUs were previously identified fields of the skin involved in the range of motion. A standard Lund/Browder (LB) BBD template was used as the starting point to apply the CFU segments. LB body divisions were parceled down into smaller body area divisions through a HD process based on the CFU concept. A numerical pattern schema was used to label the various segments in a cephalo/caudal, anterior/posterior, medial/lateral manner. Hand/fingers were divided based on anatomical landmarks and known cutaneokinematic function. The face was considered using aesthetic units. Computer code was written to apply the numeric hierarchical schema to CFUs and applied within the context of the surface area graphic evaluation BBD program. Each segmented CFU was coded to express 100% of itself. The CFU/HD method refined the standard LB diagram from 13 body segments and 33 subdivisions into 182 isolated CFUs. Associated CFUs were reconstituted into 219 various surface area combinations totaling 401 possible surface segments. The CFU/HD schema of the body surface mapping is applicable to measuring and calculating percent wound healing in a more precise manner. It eliminates subjective assessment of the percentage wound healing and the need for additional devices such as planimetry. The development of CFU/HD body mapping schema has rendered a technologically advanced system to depict body burns. The process has led to a more precise estimation of the segmented body areas while preserving the overall TBSA information. Clinical application to date has demonstrated its worthwhile utility.

  8. Segmentation precision of abdominal anatomy for MRI-based radiotherapy

    PubMed Central

    Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.; Yanle, Hu; Parikh, Parag J.

    2014-01-01

    The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observers on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DCintraobserver = 0.89 ± 0.12, HDintraobserver = 3.6 mm ± 1.5, DCinterobserver = 0.89 ± 0.15, and HDinterobserver = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy. PMID:24726701

  9. Segmentation precision of abdominal anatomy for MRI-based radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noel, Camille E.; Zhu, Fan; Lee, Andrew Y.

    2014-10-01

    The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observersmore » on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DC{sub intraobserver} = 0.89 ± 0.12, HD{sub intraobserver} = 3.6 mm ± 1.5, DC{sub interobserver} = 0.89 ± 0.15, and HD{sub interobserver} = 3.2 mm ± 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MRI-based radiotherapy.« less

  10. A statistical shape model of the human second cervical vertebra.

    PubMed

    Clogenson, Marine; Duff, John M; Luethi, Marcel; Levivier, Marc; Meuli, Reto; Baur, Charles; Henein, Simon

    2015-07-01

    Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.

  11. Accurate determination of high-risk coronary lesion type by multidetector cardiac computed tomography.

    PubMed

    Alasnag, Mirvat; Umakanthan, Branavan; Foster, Gary P

    2008-07-01

    Coronary arteriography (CA) is the standard method to image coronary lesions. Multidetector cardiac computerized tomography (MDCT) provides high-resolution images of coronary arteries, allowing a noninvasive alternative to determine lesion type. To date, no studies have assessed the ability of MDCT to categorize coronary lesion types. The objective of this study was to determine the accuracy of lesion type categorization by MDCT using CA as a reference standard. Patients who underwent both MDCT and CA within 2 months of each other were enrolled. MDCT and CA images were reviewed in a blinded fashion. Lesions were categorized according to the SCAI classification system (Types I-IV). The origin, proximal and middle segments of the major arteries were analyzed. Each segment comprised a data point for comparison. Analysis was performed using the Spearman Correlation Test. Four hundred eleven segments were studied, of which 110 had lesions. The lesion distribution was as follows: 35 left anterior descending (LAD), 29 circumflex (Cx), 31 right coronary artery (RCA), 2 ramus intermedius, 8 diagonal, 4 obtuse marginal and 2 left internal mammary arteries. Correlations between MDCT and CA were significant in all major vessels (LAD, Cx, RCA) (p < 0.001). The overall correlation coefficient was 0.67. Concordance was strong for lesion Types II-IV (97%) and poor for Type I (30%). High-risk coronary lesion types can be accurately categorized by MDCT. This ability may allow MDCT to play an important noninvasive role in the planning of coronary interventions.

  12. Computerized image analysis: estimation of breast density on mammograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Petrick, Nicholas; Sahiner, Berkman; Helvie, Mark A.; Roubidoux, Marilyn A.; Hadjiiski, Lubomir M.; Goodsitt, Mitchell M.

    2000-06-01

    An automated image analysis tool is being developed for estimation of mammographic breast density, which may be useful for risk estimation or for monitoring breast density change in a prevention or intervention program. A mammogram is digitized using a laser scanner and the resolution is reduced to a pixel size of 0.8 mm X 0.8 mm. Breast density analysis is performed in three stages. First, the breast region is segmented from the surrounding background by an automated breast boundary-tracking algorithm. Second, an adaptive dynamic range compression technique is applied to the breast image to reduce the range of the gray level distribution in the low frequency background and to enhance the differences in the characteristic features of the gray level histogram for breasts of different densities. Third, rule-based classification is used to classify the breast images into several classes according to the characteristic features of their gray level histogram. For each image, a gray level threshold is automatically determined to segment the dense tissue from the breast region. The area of segmented dense tissue as a percentage of the breast area is then estimated. In this preliminary study, we analyzed the interobserver variation of breast density estimation by two experienced radiologists using BI-RADS lexicon. The radiologists' visually estimated percent breast densities were compared with the computer's calculation. The results demonstrate the feasibility of estimating mammographic breast density using computer vision techniques and its potential to improve the accuracy and reproducibility in comparison with the subjective visual assessment by radiologists.

  13. SU-E-J-220: Evaluation of Atlas-Based Auto-Segmentation (ABAS) in Head-And-Neck Adaptive Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Q; Yan, D

    2014-06-01

    Purpose: Evaluate the accuracy of atlas-based auto segmentation of organs at risk (OARs) on both helical CT (HCT) and cone beam CT (CBCT) images in head and neck (HN) cancer adaptive radiotherapy (ART). Methods: Six HN patients treated in the ART process were included in this study. For each patient, three images were selected: pretreatment planning CT (PreTx-HCT), in treatment CT for replanning (InTx-HCT) and a CBCT acquired in the same day of the InTx-HCT. Three clinical procedures of auto segmentation and deformable registration performed in the ART process were evaluated: a) auto segmentation on PreTx-HCT using multi-subject atlases, b)more » intra-patient propagation of OARs from PreTx-HCT to InTx-HCT using deformable HCT-to-HCT image registration, and c) intra-patient propagation of OARs from PreTx-HCT to CBCT using deformable CBCT-to-HCT image registration. Seven OARs (brainstem, cord, L/R parotid, L/R submandibular gland and mandible) were manually contoured on PreTx-HCT and InTx-HCT for comparison. In addition, manual contours on InTx-CT were copied on the same day CBCT, and a local region rigid body registration was performed accordingly for each individual OAR. For procedures a) and b), auto contours were compared to manual contours, and for c) auto contours were compared to those rigidly transferred contours on CBCT. Dice similarity coefficients (DSC) and mean surface distances of agreement (MSDA) were calculated for evaluation. Results: For procedure a), the mean DSC/MSDA of most OARs are >80%/±2mm. For intra-patient HCT-to-HCT propagation, the Resultimproved to >85%/±1.5mm. Compared to HCT-to-HCT, the mean DSC for HCT-to-CBCT propagation drops ∼2–3% and MSDA increases ∼0.2mm. This Resultindicates that the inferior imaging quality of CBCT seems only degrade auto propagation performance slightly. Conclusion: Auto segmentation and deformable propagation can generate OAR structures on HCT and CBCT images with clinically acceptable accuracy. Therefore, they can be reliably implemented in the clinical HN ART process.« less

  14. Hydropower assessment of Bolivia—A multisource satellite data and hydrologic modeling approach

    USGS Publications Warehouse

    Velpuri, Naga Manohar; Pervez, Shahriar; Cushing, W. Matthew

    2016-11-28

    This study produced a geospatial database for use in a decision support system by the Bolivian authorities to investigate further development and investment potentials in sustainable hydropower in Bolivia. The study assessed theoretical hydropower of all 1-kilometer (km) stream segments in the country using multisource satellite data and a hydrologic modeling approach. With the assessment covering the 2 million square kilometer (km2) region influencing Bolivia’s drainage network, the potential hydropower figures are based on theoretical yield assuming that the systems generating the power are 100 percent efficient. There are several factors to consider when determining the real-world or technical power potential of a hydropower system, and these factors can vary depending on local conditions. Since this assessment covers a large area, it was necessary to reduce these variables to the two that can be modeled consistently throughout the region, streamflow or discharge, and elevation drop or head. First, the Shuttle Radar Topography Mission high-resolution 30-meter (m) digital elevation model was used to identify stream segments with greater than 10 km2 of upstream drainage. We applied several preconditioning processes to the 30-m digital elevation model to reduce errors and improve the accuracy of stream delineation and head height estimation. A total of 316,500 1-km stream segments were identified and used in this study to assess the total theoretical hydropower potential of Bolivia. Precipitation observations from a total of 463 stations obtained from the Bolivian Servicio Nacional de Meteorología e Hidrología (Bolivian National Meteorology and Hydrology Service) and the Brazilian Agência Nacional de Águas (Brazilian National Water Agency) were used to validate six different gridded precipitation estimates for Bolivia obtained from various sources. Validation results indicated that gridded precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) reanalysis product (3B43) had the highest accuracies. The coarse-resolution (25-km) TRMM data were disaggregated to 5-km pixels using climatology information obtained from the Climate Hazards Group Infrared Precipitation with Stations dataset. About a 17-percent bias was observed in the disaggregated TRMM estimates, which was corrected using the station observations. The bias-corrected, disaggregated TRMM precipitation estimate was used to compute stream discharge using a regionalization approach. In regionalization approach, required homogeneous regions for Bolivia were derived from precipitation patterns and topographic characteristics using a k-means clustering approach. Using the discharge and head height estimates for each 1-km stream segment, we computed hydropower potential for 316,490 stream segments within Bolivia and that share borders with Bolivia. The total theoretical hydropower potential (TTHP) of these stream segments was found to be 212 gigawatts (GW). Out of this total, 77.4 GW was within protected areas where hydropower projects cannot be developed; hence, the remaining total theoretical hydropower in Bolivia (outside the protected areas) was estimated as 135 GW. Nearly 1,000 1-km stream segments, however, were within the boundaries of existing hydropower projects. The TTHP of these stream segments was nearly 1.4 GW, so the residual TTHP of the streams in Bolivia was estimated as 133 GW. Care should be exercised to understand and interpret the TTHP identified in this study because all the stream segments identified and assessed in this study cannot be harnessed to their full capacity; furthermore, factors such as required environmental flows, efficiency, economics, and feasibility need to be considered to better identify a more real-world hydropower potential. If environmental flow requirements of 20–40 percent are considered, the total theoretical power available reduces by 60–80 percent. In addition, a 0.72 efficiency factor further reduces the estimation by another 28 percent. This study provides the base theoretical hydropower potential for Bolivia, the next step is to identify optimal hydropower plant locations and factor in the principles to appraise a real-world power potential in Bolivia.

  15. Plant Guide: Limestone hawksbeard: Crepis intermedia

    Treesearch

    L. St. John; D. Tilley

    2012-01-01

    Sunflower family (Asteraceae). Limestone hawksbeard is a native perennial forb with one or two stems arising from a taproot. Plants are 30-70cm tall and basal leaves are 10-40 cm long, pinnatifid, with a fairly broad, undivided midstrip and entire or dentate segments. Plants are densely or sparsely gray-tomentulose. There are 10-60 heads per plant that are 7-12...

  16. Multiatlas segmentation of thoracic and abdominal anatomy with level set-based local search.

    PubMed

    Schreibmann, Eduard; Marcus, David M; Fox, Tim

    2014-07-08

    Segmentation of organs at risk (OARs) remains one of the most time-consuming tasks in radiotherapy treatment planning. Atlas-based segmentation methods using single templates have emerged as a practical approach to automate the process for brain or head and neck anatomy, but pose significant challenges in regions where large interpatient variations are present. We show that significant changes are needed to autosegment thoracic and abdominal datasets by combining multi-atlas deformable registration with a level set-based local search. Segmentation is hierarchical, with a first stage detecting bulk organ location, and a second step adapting the segmentation to fine details present in the patient scan. The first stage is based on warping multiple presegmented templates to the new patient anatomy using a multimodality deformable registration algorithm able to cope with changes in scanning conditions and artifacts. These segmentations are compacted in a probabilistic map of organ shape using the STAPLE algorithm. Final segmentation is obtained by adjusting the probability map for each organ type, using customized combinations of delineation filters exploiting prior knowledge of organ characteristics. Validation is performed by comparing automated and manual segmentation using the Dice coefficient, measured at an average of 0.971 for the aorta, 0.869 for the trachea, 0.958 for the lungs, 0.788 for the heart, 0.912 for the liver, 0.884 for the kidneys, 0.888 for the vertebrae, 0.863 for the spleen, and 0.740 for the spinal cord. Accurate atlas segmentation for abdominal and thoracic regions can be achieved with the usage of a multi-atlas and perstructure refinement strategy. To improve clinical workflow and efficiency, the algorithm was embedded in a software service, applying the algorithm automatically on acquired scans without any user interaction.

  17. Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum.

    PubMed

    Königsmann, Tatiana; Turetzek, Natascha; Pechmann, Matthias; Prpic, Nikola-Michael

    2017-11-01

    Zinc finger transcription factors of the Sp6-9 group are evolutionarily conserved in all metazoans and have important functions in, e.g., limb formation and heart development. The function of Sp6-9-related genes has been studied in a number of vertebrates and invertebrates, but data from chelicerates (spiders and allies) was lacking so far. We have isolated the ortholog of Sp6-9 from the common house spider Parasteatoda tepidariorum and the cellar spider Pholcus phalangioides. We show that the Sp6-9 gene in these spider species is expressed in the developing appendages thus suggesting a conserved role in limb formation. Indeed, RNAi with Sp6-9 in P. tepidariorum leads not only to strong limb defects, but also to the loss of body segments and head defects in more strongly affected animals. Together with a new expression domain in the early embryo, these data suggest that Sp6-9 has a dual role P. tepidariorum. The early role in head and body segment formation is not known from other arthropods, but the role in limb formation is evolutionarily highly conserved.

  18. Differences in axial segment reorientation during standing turns predict multiple falls in older adults.

    PubMed

    Wright, Rachel L; Peters, Derek M; Robinson, Paul D; Sitch, Alice J; Watt, Thomas N; Hollands, Mark A

    2012-07-01

    The assessment of standing turning performance is proposed to predict fall risk in older adults. This study investigated differences in segmental coordination during a 360° standing turn task between older community-dwelling fallers and non-fallers. Thirty-five older adults age mean (SD) of 71 (5.4) years performed 360° standing turns. Head, trunk and pelvis position relative to the laboratory and each other were recorded using a Vicon motion analysis system. Fall incidence was monitored by monthly questionnaire over the following 12 months and used to identify non-faller, single faller and multiple faller groups. Multiple fallers were found to have significantly different values, when compared to non-fallers, for pelvis onset (p=0.002); mean angular separation in the transverse plane between the head and trunk (p=0.018); peak angular separation in the transverse plane between the trunk and pelvis (p=0.013); and mean angular separation between the trunk and pelvis (p<0.001). Older adults who subsequently experience multiple falls show a simplified turning pattern to assist in balance control. This may be a predictor for those at increased risk of falling. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A new phase encoding approach for a compact head-up display

    NASA Astrophysics Data System (ADS)

    Suszek, Jaroslaw; Makowski, Michal; Sypek, Maciej; Siemion, Andrzej; Kolodziejczyk, Andrzej; Bartosz, Andrzej

    2008-12-01

    The possibility of encoding multiple asymmetric symbols into a single thin binary Fourier hologram would have a practical application in the design of simple translucent holographic head-up displays. A Fourier hologram displays the encoded images at the infinity so this enables an observation without a time-consuming eye accommodation. Presenting a set of the most crucial signs for a driver in this way is desired, especially by older people with various eyesight disabilities. In this paper a method of holographic design is presented that assumes a combination of a spatial segmentation and carrier frequencies. It allows to achieve multiple reconstructed images selectable by the angle of the incident laser beam. In order to encode several binary symbols into a single Fourier hologram, the chessboard shaped segmentation function is used. An optimized sequence of phase encoding steps and a final direct phase binarization enables recording of asymmetric symbols into a binary hologram. The theoretical analysis is presented, verified numerically and confirmed in the optical experiment. We suggest and describe a practical and highly useful application of such holograms in an inexpensive HUD device for the use of the automotive industry. We present two alternative propositions of car viewing setups.

  20. Optimal Co-segmentation of Tumor in PET-CT Images with Context Information

    PubMed Central

    Song, Qi; Bai, Junjie; Han, Dongfeng; Bhatia, Sudershan; Sun, Wenqing; Rockey, William; Bayouth, John E.; Buatti, John M.

    2014-01-01

    PET-CT images have been widely used in clinical practice for radiotherapy treatment planning of the radiotherapy. Many existing segmentation approaches only work for a single imaging modality, which suffer from the low spatial resolution in PET or low contrast in CT. In this work we propose a novel method for the co-segmentation of the tumor in both PET and CT images, which makes use of advantages from each modality: the functionality information from PET and the anatomical structure information from CT. The approach formulates the segmentation problem as a minimization problem of a Markov Random Field (MRF) model, which encodes the information from both modalities. The optimization is solved using a graph-cut based method. Two sub-graphs are constructed for the segmentation of the PET and the CT images, respectively. To achieve consistent results in two modalities, an adaptive context cost is enforced by adding context arcs between the two subgraphs. An optimal solution can be obtained by solving a single maximum flow problem, which leads to simultaneous segmentation of the tumor volumes in both modalities. The proposed algorithm was validated in robust delineation of lung tumors on 23 PET-CT datasets and two head-and-neck cancer subjects. Both qualitative and quantitative results show significant improvement compared to the graph cut methods solely using PET or CT. PMID:23693127

  1. Automatic, accurate, and reproducible segmentation of the brain and cerebro-spinal fluid in T1-weighted volume MRI scans and its application to serial cerebral and intracranial volumetry

    NASA Astrophysics Data System (ADS)

    Lemieux, Louis

    2001-07-01

    A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.

  2. A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods

    PubMed Central

    2010-01-01

    Background The composition of the arthropod head is one of the most contentious issues in animal evolution. In particular, controversy surrounds the homology and innervation of segmental cephalic appendages by the brain. Onychophora (velvet worms) play a crucial role in understanding the evolution of the arthropod brain, because they are close relatives of arthropods and have apparently changed little since the Early Cambrian. However, the segmental origins of their brain neuropils and the number of cephalic appendages innervated by the brain - key issues in clarifying brain composition in the last common ancestor of Onychophora and Arthropoda - remain unclear. Results Using immunolabelling and neuronal tracing techniques in the developing and adult onychophoran brain, we found that the major brain neuropils arise from only the anterior-most body segment, and that two pairs of segmental appendages are innervated by the brain. The region of the central nervous system corresponding to the arthropod tritocerebrum is not differentiated as part of the onychophoran brain but instead belongs to the ventral nerve cords. Conclusions Our results contradict the assumptions of a tripartite (three-segmented) brain in Onychophora and instead confirm the hypothesis of bipartite (two-segmented) brain composition. They suggest that the last common ancestor of Onychophora and Arthropoda possessed a brain consisting of protocerebrum and deutocerebrum whereas the tritocerebrum evolved in arthropods. PMID:20727203

  3. Development of a computerized intervertebral motion analysis of the cervical spine for clinical application.

    PubMed

    Piché, Mathieu; Benoît, Pierre; Lambert, Julie; Barrette, Virginie; Grondin, Emmanuelle; Martel, Julie; Paré, Amélie; Cardin, André

    2007-01-01

    The objective of this study was to develop a measurement method that could be implemented in chiropractic for the evaluation of angular and translational intervertebral motion of the cervical spine. Flexion-extension radiographs were digitized with a scanner at a ratio of 1:1 and imported into a software, allowing segmental motion measurements. The measurements were obtained by selecting the most anteroinferior point and the most posteroinferior point of a vertebral body (anterior and posterior arch, respectively, for C1), with the origin of the reference frame set at the most posteroinferior point of the vertebral body below. The same procedure was performed for both the flexion and extension radiographs, and the coordinates of the 2 points were used to calculate the angular movement and the translation between the 2 vertebrae. This method provides a measure of intervertebral angular and translational movement. It uses a different reference frame for each joint instead of the same reference frame for all joints and thus provides a measure of motion in the plane of each articulation. The calculated values obtained are comparable to other studies on intervertebral motion and support further development to validate the method. The present study proposes a computerized procedure to evaluate intervertebral motion of the cervical spine. This procedure needs to be validated with a reliability study but could provide a valuable tool for doctors of chiropractic and further spinal research.

  4. Computerized microfluidic cell culture using elastomeric channels and Braille displays.

    PubMed

    Gu, Wei; Zhu, Xiaoyue; Futai, Nobuyuki; Cho, Brenda S; Takayama, Shuichi

    2004-11-09

    Computer-controlled microfluidics would advance many types of cellular assays and microscale tissue engineering studies wherever spatiotemporal changes in fluidics need to be defined. However, this goal has been elusive because of the limited availability of integrated, programmable pumps and valves. This paper demonstrates how a refreshable Braille display, with its grid of 320 vertically moving pins, can power integrated pumps and valves through localized deformations of channel networks within elastic silicone rubber. The resulting computerized fluidic control is able to switch among: (i) rapid and efficient mixing between streams, (ii) multiple laminar flows with minimal mixing between streams, and (iii) segmented plug-flow of immiscible fluids within the same channel architecture. The same control method is used to precisely seed cells, compartmentalize them into distinct subpopulations through channel reconfiguration, and culture each cell subpopulation for up to 3 weeks under perfusion. These reliable microscale cell cultures showed gradients of cellular behavior from C2C12 myoblasts along channel lengths, as well as differences in cell density of undifferentiated myoblasts and differentiation patterns, both programmable through different flow rates of serum-containing media. This technology will allow future microscale tissue or cell studies to be more accessible, especially for high-throughput, complex, and long-term experiments. The microfluidic actuation method described is versatile and computer programmable, yet simple, well packaged, and portable enough for personal use.

  5. Computerized microfluidic cell culture using elastomeric channels and Braille displays

    PubMed Central

    Gu, Wei; Zhu, Xiaoyue; Futai, Nobuyuki; Cho, Brenda S.; Takayama, Shuichi

    2004-01-01

    Computer-controlled microfluidics would advance many types of cellular assays and microscale tissue engineering studies wherever spatiotemporal changes in fluidics need to be defined. However, this goal has been elusive because of the limited availability of integrated, programmable pumps and valves. This paper demonstrates how a refreshable Braille display, with its grid of 320 vertically moving pins, can power integrated pumps and valves through localized deformations of channel networks within elastic silicone rubber. The resulting computerized fluidic control is able to switch among: (i) rapid and efficient mixing between streams, (ii) multiple laminar flows with minimal mixing between streams, and (iii) segmented plug-flow of immiscible fluids within the same channel architecture. The same control method is used to precisely seed cells, compartmentalize them into distinct subpopulations through channel reconfiguration, and culture each cell subpopulation for up to 3 weeks under perfusion. These reliable microscale cell cultures showed gradients of cellular behavior from C2C12 myoblasts along channel lengths, as well as differences in cell density of undifferentiated myoblasts and differentiation patterns, both programmable through different flow rates of serum-containing media. This technology will allow future microscale tissue or cell studies to be more accessible, especially for high-throughput, complex, and long-term experiments. The microfluidic actuation method described is versatile and computer programmable, yet simple, well packaged, and portable enough for personal use. PMID:15514025

  6. Computerized image analysis of cell-cell interactions in human renal tissue by using multi-channel immunoflourescent confocal microscopy

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Jiang, Yulei; Liarski, Vladimir M.; Kaverina, Natalya; Clark, Marcus R.; Giger, Maryellen L.

    2012-03-01

    Analysis of interactions between B and T cells in tubulointerstitial inflammation is important for understanding human lupus nephritis. We developed a computer technique to perform this analysis, and compared it with manual analysis. Multi-channel immunoflourescent-microscopy images were acquired from 207 regions of interest in 40 renal tissue sections of 19 patients diagnosed with lupus nephritis. Fresh-frozen renal tissue sections were stained with combinations of immunoflourescent antibodies to membrane proteins and counter-stained with a cell nuclear marker. Manual delineation of the antibodies was considered as the reference standard. We first segmented cell nuclei and cell membrane markers, and then determined corresponding cell types based on the distances between cell nuclei and specific cell-membrane marker combinations. Subsequently, the distribution of the shortest distance from T cell nuclei to B cell nuclei was obtained and used as a surrogate indicator of cell-cell interactions. The computer and manual analyses results were concordant. The average absolute difference was 1.1+/-1.2% between the computer and manual analysis results in the number of cell-cell distances of 3 μm or less as a percentage of the total number of cell-cell distances. Our computerized analysis of cell-cell distances could be used as a surrogate for quantifying cell-cell interactions as either an automated and quantitative analysis or for independent confirmation of manual analysis.

  7. Mobile gaze tracking system for outdoor walking behavioral studies

    PubMed Central

    Tomasi, Matteo; Pundlik, Shrinivas; Bowers, Alex R.; Peli, Eli; Luo, Gang

    2016-01-01

    Most gaze tracking techniques estimate gaze points on screens, on scene images, or in confined spaces. Tracking of gaze in open-world coordinates, especially in walking situations, has rarely been addressed. We use a head-mounted eye tracker combined with two inertial measurement units (IMU) to track gaze orientation relative to the heading direction in outdoor walking. Head movements relative to the body are measured by the difference in output between the IMUs on the head and body trunk. The use of the IMU pair reduces the impact of environmental interference on each sensor. The system was tested in busy urban areas and allowed drift compensation for long (up to 18 min) gaze recording. Comparison with ground truth revealed an average error of 3.3° while walking straight segments. The range of gaze scanning in walking is frequently larger than the estimation error by about one order of magnitude. Our proposed method was also tested with real cases of natural walking and it was found to be suitable for the evaluation of gaze behaviors in outdoor environments. PMID:26894511

  8. Two msh/msx-related genes, Djmsh1 and Djmsh2, contribute to the early blastema growth during planarian head regeneration.

    PubMed

    Mannini, Linda; Deri, Paolo; Gremigni, Vittorio; Rossi, Leonardo; Salvetti, Alessandra; Batistoni, Renata

    2008-01-01

    Regeneration in planarians is an intriguing phenomenon, based on the presence of pluripotent stem cells, known as neoblasts. Following amputation, these cells activate mitotic divisions, migrate distally and undergo differentiation, giving rise to the regeneration blastema. We have identified two msh/msx-related genes, Djmsh1 and Djmsh2, which are expressed in distinct cell populations of the planarian Dugesia japonica and activated, with different patterns, during head regeneration. We demonstrate that RNA interference of Djmsh1 or Djmsh2 generates a delay in the growth of cephalic blastema, interfering with the dynamics of mitoses during its initial formation. Our data also reveal that the activity of the two planarian msh genes is required to regulate Djbmp expression during head regeneration. This study identifies, for the first time, a functional association between muscle segment homeobox (MSH) homeoproteins and BMP signaling during stem cell-based regeneration of the planarian head and provides a functional analysis of how msh genes may regulate in vivo the regenerative response of planarian stem cells.

  9. The evolutionary origin of the vertebrate body plan: the problem of head segmentation.

    PubMed

    Onai, Takayuki; Irie, Naoki; Kuratani, Shigeru

    2014-01-01

    The basic body plan of vertebrates, as typified by the complex head structure, evolved from the last common ancestor approximately 530 Mya. In this review, we present a brief overview of historical discussions to disentangle the various concepts and arguments regarding the evolutionary development of the vertebrate body plan. We then explain the historical transition of the arguments about the vertebrate body plan from merely epistemological comparative morphology to comparative embryology as a scientific treatment on this topic. Finally, we review the current progress of molecular evidence regarding the basic vertebrate body plan, focusing on the link between the basic vertebrate body plan and the evolutionarily conserved developmental stages (phylotypic stages).

  10. [The clinical impact of artery-first approach combined with vascular resection and reconstruction in the treatment of pancreatic head carcinoma].

    PubMed

    Huang, J L; Li, W G; Chen, F Z; Su, Z J; Li, F M; Liu, B

    2017-03-23

    Objective: To evaluate the application of artery first, combined vascular resection and reconstruction in the treatment of pancreatic head carcinoma. Methods: The clinical data of 13 patients with pancreatic head cancer were retrospectively analyzed from February 2014 to March 2016 in the Affiliated Hospital of Xiamen University. Preoperative computed tomography of high resolution layer or magnetic resonance imaging examination demonstrated pancreatic head carcinoma, as well as close adhesion, stenosis, compression or displacement of superior mesenteric vein or portal vein wall. In the operation, the artery first approach was used and the whole arterial blood supply in the head of the pancreas was fully exposed and interdicted. Finally, en block resection and vascular resection and reconstruction was adopted. Results: 12 of 13 patients had pancreatoduodenectomy synchronously with vascular resection and reconstruction; the other patient had these two surgery sequentially. Four patients received blood vessel wedge resection, five had segmental resection combined with end to end suture, and four had segmental resection combined with artificial vascular graft reconstruction. Operation time was (327.2±65.5) minutes, and the amount of blood loss was (472.6±226.4) millilitres. One patient suffered from delayed gastric emptying, and two patients had pancreatic fistula. All patients recovered from postoperative complications by conservative treatment. No patients developed biliary fistula, gastrointestinal fistula, abdominal infection, pulmonary infection, diarrhea, hypoglycemia or other complications, and none died in perioperative period. Postoperative pathological findings confirmed the diagnosis of pancreatic ductal adenocarcinoma. Mean tumor diameter was (4.2±1.5)cm, and (3.8±1.5) metastasis were found in (13.6±2.5) resected lymph nodes. In 11 cases, the tumor cells were found in the outer membrane of blood vessels, 2 cases were found to have tumor invasion in the inner membrane, and all the resection margins were negative. All patients were followed up, and 2 patients died of liver metastasis 11 months and 18 months after operation, respectively. One patient survived with local recurrence of tumor 13 months after surgery. Other patients had no tumor recurrence and metastasis. Conclusions: The artery first approch combined vascular resection and reconstruction is safe effective and feasible in the treatment of pancreatic head carcinoma. It can improve the ablation rate of pancreatoduodenectomy.

  11. Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Paul T.; Ravens, Thomas M.; Cunningham, Keith W.

    2012-12-14

    The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. Themore » assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate the technically recoverable resource. The resulting technically recoverable resource estimate for the continental United States is 120 TWh/yr.« less

  12. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region.

    PubMed

    Kieselmann, Jennifer Petra; Kamerling, Cornelis Philippus; Burgos, Ninon; Menten, Martin J; Fuller, Clifton David; Nill, Simeon; Cardoso, M Jorge; Oelfke, Uwe

    2018-06-08

    Owing to its excellent soft-tissue contrast, magnetic resonance (MR) imaging has found an increased application in radiation therapy (RT). Harnessing these properties for treatment planning, automated segmentation methods can alleviate the manual workload burden to the clinical workflow. We investigated atlas-based segmentation methods of organs at risk (OARs) in the head and neck (H&N) region: one approach selecting the most similar atlas from a library of segmented images and two multi-atlas approaches. The latter were based on weighted majority voting and an iterative atlas-fusion approach called STEPS. We built the atlas library from pre-treatment T1-weighted MR images of 12 patients with manual contours of the parotids, spinal cord and mandible, delineated by a clinician. Following a leave-one-out cross-validation strategy, we measured geometric accuracy calculating Dice similarity coefficients (DSC), standard and 95% Hausdorff distances (HD and HD95), as well as the mean surface distance (MSD), whereby the manual contours served as the gold standard. To benchmark the algorithm, we determined the inter-expert variability (IEV) between three experts. To investigate the dosimetric effect of segmentation inaccuracies, we implemented an auto-planning strategy within the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). For each set of auto-segmented volumes of interest (VOIs), we generated a plan for a 9-beam step and shoot intensity modulated RT treatment, designed according to our institution's clinical H\\&N protocol. Superimposing the dose distributions on the gold standard VOIs, we calculated dose differences to OARs caused by contouring differences between auto-segmented and gold standard VOIs. We investigated the correlation between geometric and dosimetric differences. The mean DSC was larger than 0.8 and the mean MSD smaller than 2mm for the multi-atlas approaches, resulting in a geometric accuracy comparable to previously published results and within the range of the IEV. While dosimetric differences could be as large as 23% of the clinical goal, treatment plans fulfilled all imposed clinical goals for the gold standard OARs. Correlations between geometric and dosimetric measures were low with R<sup>2</sup><0.5. The geometric accuracy and ability to achieve clinically acceptable treatment plans indicate the suitability of using atlas-based contours for RT treatment planning purposes. The low correlations between geometric and dosimetric measures indicate that geometric measures alone are not sufficient to predict the dosimetric impact of segmentation inaccuracies on treatment planning for the data utilised in this study. Creative Commons Attribution license.

  13. Monte Carlo-based QA for IMRT of head and neck cancers

    NASA Astrophysics Data System (ADS)

    Tang, F.; Sham, J.; Ma, C.-M.; Li, J.-S.

    2007-06-01

    It is well-known that the presence of large air cavity in a dense medium (or patient) introduces significant electronic disequilibrium when irradiated with megavoltage X-ray field. This condition may worsen by the possible use of tiny beamlets in intensity-modulated radiation therapy (IMRT). Commercial treatment planning systems (TPSs), in particular those based on the pencil-beam method, do not provide accurate dose computation for the lungs and other cavity-laden body sites such as the head and neck. In this paper we present the use of Monte Carlo (MC) technique for dose re-calculation of IMRT of head and neck cancers. In our clinic, a turn-key software system is set up for MC calculation and comparison with TPS-calculated treatment plans as part of the quality assurance (QA) programme for IMRT delivery. A set of 10 off-the-self PCs is employed as the MC calculation engine with treatment plan parameters imported from the TPS via a graphical user interface (GUI) which also provides a platform for launching remote MC simulation and subsequent dose comparison with the TPS. The TPS-segmented intensity maps are used as input for the simulation hence skipping the time-consuming simulation of the multi-leaf collimator (MLC). The primary objective of this approach is to assess the accuracy of the TPS calculations in the presence of air cavities in the head and neck whereas the accuracy of leaf segmentation is verified by fluence measurement using a fluoroscopic camera-based imaging device. This measurement can also validate the correct transfer of intensity maps to the record and verify system. Comparisons between TPS and MC calculations of 6 MV IMRT for typical head and neck treatments review regional consistency in dose distribution except at and around the sinuses where our pencil-beam-based TPS sometimes over-predicts the dose by up to 10%, depending on the size of the cavities. In addition, dose re-buildup of up to 4% is observed at the posterior nasopharyngeal mucosa for some treatments with heavily-weighted anterior fields.

  14. An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex

    PubMed Central

    Van Essen, David C.; Drury, Heather A.; Dickson, James; Harwell, John; Hanlon, Donna; Anderson, Charles H.

    2001-01-01

    The authors describe and illustrate an integrated trio of software programs for carrying out surface-based analyses of cerebral cortex. The first component of this trio, SureFit (Surface Reconstruction by Filtering and Intensity Transformations), is used primarily for cortical segmentation, volume visualization, surface generation, and the mapping of functional neuroimaging data onto surfaces. The second component, Caret (Computerized Anatomical Reconstruction and Editing Tool Kit), provides a wide range of surface visualization and analysis options as well as capabilities for surface flattening, surface-based deformation, and other surface manipulations. The third component, SuMS (Surface Management System), is a database and associated user interface for surface-related data. It provides for efficient insertion, searching, and extraction of surface and volume data from the database. PMID:11522765

  15. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device.

    PubMed

    Zarghami, Niloufar; Jensen, Michael D; Talluri, Srikanth; Foster, Paula J; Chambers, Ann F; Dick, Frederick A; Wong, Eugene

    2015-11-01

    Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. A mouse head holder was designed for a microCT couch using cad software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14±0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2°±1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.

  16. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarghami, Niloufar, E-mail: nzargham@uwo.ca; Jensen, Michael D.; Talluri, Srikanth

    Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate themore » precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.« less

  17. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fränzle, Andrea, E-mail: a.fraenzle@dkfz.de; Giske, Kristina; Bretschi, Maren

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approachmore » is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way. The mean ratiov{sub r}/v{sub m} of the reconstructed bone volume v{sub r} and the healthy model bone volume v{sub m} is 1.07, which indicates a good reconstruction of the modified bone. Conclusions: The qualitative and quantitative comparison of manual and semi-automated segmentation results have shown that comparing a modified bone structure with a healthy model can be used to identify and measure missing bone mass in a reproducible way.« less

  18. Human Body 3D Posture Estimation Using Significant Points and Two Cameras

    PubMed Central

    Juang, Chia-Feng; Chen, Teng-Chang; Du, Wei-Chin

    2014-01-01

    This paper proposes a three-dimensional (3D) human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM-) based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB) color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM) method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures. PMID:24883422

  19. Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction

    PubMed Central

    Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-01-01

    We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu’s segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images. PMID:28515636

  20. Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction.

    PubMed

    Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2017-01-01

    We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu's segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images.

Top