Njeh, Christopher F; Salmon, Howard W; Schiller, Claire
2017-01-01
Intensity-modulated radiation therapy (IMRT) delivery using "step-and-shoot" technique on Varian C-Series linear accelerator (linac) is influenced by the communication frequency between the multileaf collimator and linac controllers. Hence, the dose delivery accuracy is affected by the dose rate. Our aim was to quantify the impact of using two dose rates on plan quality assurance (QA). Twenty IMRT patients were selected for this study. The plan QA was measured at two different dose rates. A gamma analysis was performed, and the degree of plan modulation on the QA pass rate was also evaluated in terms of average monitor unit per segment (MU/segment) and the total number of segments. The mean percentage gamma pass rate of 94.9% and 93.5% for 300 MU/min and 600 MU/min dose rate, respectively, was observed. There was a significant ( P = 0.001) decrease in percentage gamma pass rate when the dose rate was increased from 300 MU/min to 600 MU/min. There was a weak, but significant association between the percentage pass rate at both dose rate and total number of segments. The total number of MU was significantly correlated to the total number of segments ( r = 0.59). We found a positive correlation between the percentage pass rate and mean MU/segment, r = 0.52 and r = 0.57 for 300 MU/min and 600 MU/min, respectively. IMRT delivery using step-and-shoot technique on Varian 2300CD is impacted by the dose rate and the total amount of segments.
Quantifying the interplay effect in prostate IMRT delivery using a convolution-based method.
Li, Haisen S; Chetty, Indrin J; Solberg, Timothy D
2008-05-01
The authors present a segment-based convolution method to account for the interplay effect between intrafraction organ motion and the multileaf collimator position for each particular segment in intensity modulated radiation therapy (IMRT) delivered in a step-and-shoot manner. In this method, the static dose distribution attributed to each segment is convolved with the probability density function (PDF) of motion during delivery of the segment, whereas in the conventional convolution method ("average-based convolution"), the static dose distribution is convolved with the PDF averaged over an entire fraction, an entire treatment course, or even an entire patient population. In the case of IMRT delivered in a step-and-shoot manner, the average-based convolution method assumes that in each segment the target volume experiences the same motion pattern (PDF) as that of population. In the segment-based convolution method, the dose during each segment is calculated by convolving the static dose with the motion PDF specific to that segment, allowing both intrafraction motion and the interplay effect to be accounted for in the dose calculation. Intrafraction prostate motion data from a population of 35 patients tracked using the Calypso system (Calypso Medical Technologies, Inc., Seattle, WA) was used to generate motion PDFs. These were then convolved with dose distributions from clinical prostate IMRT plans. For a single segment with a small number of monitor units, the interplay effect introduced errors of up to 25.9% in the mean CTV dose compared against the planned dose evaluated by using the PDF of the entire fraction. In contrast, the interplay effect reduced the minimum CTV dose by 4.4%, and the CTV generalized equivalent uniform dose by 1.3%, in single fraction plans. For entire treatment courses delivered in either a hypofractionated (five fractions) or conventional (> 30 fractions) regimen, the discrepancy in total dose due to interplay effect was negligible.
Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing
NASA Astrophysics Data System (ADS)
Tang, Grace; Earl, Matthew A.; Yu, Cedric X.
2009-11-01
Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered with a different dose rate, extra mode-up time (xMOT) was needed between the transitions of the successive sectors during delivery. On average, the delivery times of the CDR plans were approximately less than 1 min longer than the treatment times of the VDR plans, with an average of about 0.33 min of xMOT per sector transition. The results have shown that VDR may not be necessary for single-arc IMAT. Using variable angular spacing, VDR RapidArc plans can be implemented into the clinics that are not equipped with the new VDR-enabled machines without compromising the plan quality or treatment efficiency. With a prospective optimization approach using variable angular spacing, CDR delivery times can be further minimized while maintaining the high delivery efficiency of single-arc IMAT treatment.
SU-E-T-613: Dosimetric Consequences of Systematic MLC Leaf Positioning Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathuria, K; Siebers, J
2014-06-01
Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and aremore » as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated (albeit not additive in the final error) and one can easily incorporate error resulting from machine delivery in an error model based purely on tumor motion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi
2012-09-15
Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase weremore » extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or slower than the planning day. In contrast, DRRT method showed less than 1% reduction in target dose and no noticeable change in OAR dose under the same breathing period irregularities. When {+-}20% variation of target motion amplitude was present as breathing irregularity, the two delivery methods show compatible plan quality if the dose distribution of CDRT delivery is renormalized. Conclusions: Delivery of 4D-IMRT treatment plans, stemmed from 3D step-and-shoot IMRT and preprogrammed using SAM algorithm, is simulated for two dynamic MLC-based real-time tumor tracking strategies: with and without dose-rate regulation. Comparison of cumulative dose distribution indicates that the preprogrammed 4D plan is more accurately and efficiently conformed using the DRRT strategy, as it compensates the interplay between patient breathing irregularity and tracking delivery without compromising the segment-weight modulation.« less
NASA Astrophysics Data System (ADS)
Fu, Weihua; Dai, Jianrong; Hu, Yimin; Han, Dongsheng; Song, Yixin
2004-04-01
The treatment delivery time of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) is generally longer than that of conventional radiotherapy. In theory, removing the flattening filter from the treatment head may reduce the beam-on time by enhancing the output dose rate, and then reduce the treatment delivery time. And in practice, there is a possibility of delivering the required fluence distribution by modulating the unflattened non-uniform fluence distribution. However, the reduction of beam-on time may be discounted by the increase of leaf-travel time and (or) verification-and-recording (V&R) time. Here we investigate the overall effect of flattening filter on the treatment delivery time of IMRT with MLCs implemented in the step and shoot method, as well as with compensators on six hybrid machines. We compared the treatment delivery time with/without flattening filter for ten nasopharynx cases and ten prostate cases by observing the variations of the ratio of the beam-on time, segment number, leaf-travel time and the treatment delivery time with dose rate, leaf speed and V&R time. The results show that, without the flattening filter, the beam-on time reduces for both static MLC and compensator-based techniques; the number of segments and the leaf-travel time increase slightly for the static MLC technique; the relative IMRT treatment delivery time decreases more with lower dose rate, higher leaf speed and shorter V&R overhead time. The absolute treatment delivery time reduction depends on the fraction dose. It is not clinically significant at a fraction dose of 2 Gy for the technique of removing the flattening filter, but becomes significant when the fraction dose is as high as that for radiosurgery.
Novel Strategies for Anterior Segment Ocular Drug Delivery
Cholkar, Kishore; Patel, Sulabh P.; Vadlapudi, Aswani Dutt
2013-01-01
Abstract Research advancements in pharmaceutical sciences have led to the development of new strategies in drug delivery to anterior segment. Designing a new delivery system that can efficiently target the diseased anterior ocular tissue, generate high drug levels, and maintain prolonged and effective concentrations with no or minimal side effects is the major focus of current research. Drug delivery by traditional method of administration via topical dosing is impeded by ocular static and dynamic barriers. Various products have been introduced into the market that prolong drug retention in the precorneal pocket and to improve bioavailability. However, there is a need of a delivery system that can provide controlled release to treat chronic ocular diseases with a reduced dosing frequency without causing any visual disturbances. This review provides an overview of anterior ocular barriers along with strategies to overcome these ocular barriers and deliver therapeutic agents to the affected anterior ocular tissue with a special emphasis on nanotechnology-based drug delivery approaches. PMID:23215539
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dan; Ruan, Dan; O’Connor, Daniel
Purpose: To deliver high quality intensity modulated radiotherapy (IMRT) using a novel generalized sparse orthogonal collimators (SOCs), the authors introduce a novel direct aperture optimization (DAO) approach based on discrete rectangular representation. Methods: A total of seven patients—two glioblastoma multiforme, three head & neck (including one with three prescription doses), and two lung—were included. 20 noncoplanar beams were selected using a column generation and pricing optimization method. The SOC is a generalized conventional orthogonal collimators with N leaves in each collimator bank, where N = 1, 2, or 4. SOC degenerates to conventional jaws when N = 1. For SOC-basedmore » IMRT, rectangular aperture optimization (RAO) was performed to optimize the fluence maps using rectangular representation, producing fluence maps that can be directly converted into a set of deliverable rectangular apertures. In order to optimize the dose distribution and minimize the number of apertures used, the overall objective was formulated to incorporate an L2 penalty reflecting the difference between the prescription and the projected doses, and an L1 sparsity regularization term to encourage a low number of nonzero rectangular basis coefficients. The optimization problem was solved using the Chambolle–Pock algorithm, a first-order primal–dual algorithm. Performance of RAO was compared to conventional two-step IMRT optimization including fluence map optimization and direct stratification for multileaf collimator (MLC) segmentation (DMS) using the same number of segments. For the RAO plans, segment travel time for SOC delivery was evaluated for the N = 1, N = 2, and N = 4 SOC designs to characterize the improvement in delivery efficiency as a function of N. Results: Comparable PTV dose homogeneity and coverage were observed between the RAO and the DMS plans. The RAO plans were slightly superior to the DMS plans in sparing critical structures. On average, the maximum and mean critical organ doses were reduced by 1.94% and 1.44% of the prescription dose. The average number of delivery segments was 12.68 segments per beam for both the RAO and DMS plans. The N = 2 and N = 4 SOC designs were, on average, 1.56 and 1.80 times more efficient than the N = 1 SOC design to deliver. The mean aperture size produced by the RAO plans was 3.9 times larger than that of the DMS plans. Conclusions: The DAO and dose domain optimization approach enabled high quality IMRT plans using a low-complexity collimator setup. The dosimetric quality is comparable or slightly superior to conventional MLC-based IMRT plans using the same number of delivery segments. The SOC IMRT delivery efficiency can be significantly improved by increasing the leaf numbers, but the number is still significantly lower than the number of leaves in a typical MLC.« less
Nguyen, Dan; Ruan, Dan; O'Connor, Daniel; Woods, Kaley; Low, Daniel A; Boucher, Salime; Sheng, Ke
2016-02-01
To deliver high quality intensity modulated radiotherapy (IMRT) using a novel generalized sparse orthogonal collimators (SOCs), the authors introduce a novel direct aperture optimization (DAO) approach based on discrete rectangular representation. A total of seven patients-two glioblastoma multiforme, three head & neck (including one with three prescription doses), and two lung-were included. 20 noncoplanar beams were selected using a column generation and pricing optimization method. The SOC is a generalized conventional orthogonal collimators with N leaves in each collimator bank, where N = 1, 2, or 4. SOC degenerates to conventional jaws when N = 1. For SOC-based IMRT, rectangular aperture optimization (RAO) was performed to optimize the fluence maps using rectangular representation, producing fluence maps that can be directly converted into a set of deliverable rectangular apertures. In order to optimize the dose distribution and minimize the number of apertures used, the overall objective was formulated to incorporate an L2 penalty reflecting the difference between the prescription and the projected doses, and an L1 sparsity regularization term to encourage a low number of nonzero rectangular basis coefficients. The optimization problem was solved using the Chambolle-Pock algorithm, a first-order primal-dual algorithm. Performance of RAO was compared to conventional two-step IMRT optimization including fluence map optimization and direct stratification for multileaf collimator (MLC) segmentation (DMS) using the same number of segments. For the RAO plans, segment travel time for SOC delivery was evaluated for the N = 1, N = 2, and N = 4 SOC designs to characterize the improvement in delivery efficiency as a function of N. Comparable PTV dose homogeneity and coverage were observed between the RAO and the DMS plans. The RAO plans were slightly superior to the DMS plans in sparing critical structures. On average, the maximum and mean critical organ doses were reduced by 1.94% and 1.44% of the prescription dose. The average number of delivery segments was 12.68 segments per beam for both the RAO and DMS plans. The N = 2 and N = 4 SOC designs were, on average, 1.56 and 1.80 times more efficient than the N = 1 SOC design to deliver. The mean aperture size produced by the RAO plans was 3.9 times larger than that of the DMS plans. The DAO and dose domain optimization approach enabled high quality IMRT plans using a low-complexity collimator setup. The dosimetric quality is comparable or slightly superior to conventional MLC-based IMRT plans using the same number of delivery segments. The SOC IMRT delivery efficiency can be significantly improved by increasing the leaf numbers, but the number is still significantly lower than the number of leaves in a typical MLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, D; Ruan, D; Low, D
2015-06-15
Purpose: Existing efforts to replace complex multileaf collimator (MLC) by simple jaws for intensity modulated radiation therapy (IMRT) resulted in unacceptable compromise in plan quality and delivery efficiency. We introduce a novel fluence map segmentation method based on compressed sensing for plan delivery using a simplified sparse orthogonal collimator (SOC) on the 4π non-coplanar radiotherapy platform. Methods: 4π plans with varying prescription doses were first created by automatically selecting and optimizing 20 non-coplanar beams for 2 GBM, 2 head & neck, and 2 lung patients. To create deliverable 4π plans using SOC, which are two pairs of orthogonal collimators withmore » 1 to 4 leaves in each collimator bank, a Haar Fluence Optimization (HFO) method was used to regulate the number of Haar wavelet coefficients while maximizing the dose fidelity to the ideal prescription. The plans were directly stratified utilizing the optimized Haar wavelet rectangular basis. A matching number of deliverable segments were stratified for the MLC-based plans. Results: Compared to the MLC-based 4π plans, the SOC-based 4π plans increased the average PTV dose homogeneity from 0.811 to 0.913. PTV D98 and D99 were improved by 3.53% and 5.60% of the corresponding prescription doses. The average mean and maximal OAR doses slightly increased by 0.57% and 2.57% of the prescription doses. The average number of segments ranged between 5 and 30 per beam. The collimator travel time to create the segments decreased with increasing leaf numbers in the SOC. The two and four leaf designs were 1.71 and 1.93 times more efficient, on average, than the single leaf design. Conclusion: The innovative dose domain optimization based on compressed sensing enables uncompromised 4π non-coplanar IMRT dose delivery using simple rectangular segments that are deliverable using a sparse orthogonal collimator, which only requires 8 to 16 leaves yet is unlimited in modulation resolution. This work is supported in part by Varian Medical Systems, Inc. and NIH R43 CA18339.« less
Leaf position optimization for step-and-shoot IMRT.
De Gersem, W; Claus, F; De Wagter, C; Van Duyse, B; De Neve, W
2001-12-01
To describe the theoretical basis, the algorithm, and implementation of a tool that optimizes segment shapes and weights for step-and-shoot intensity-modulated radiation therapy delivered by multileaf collimators. The tool, called SOWAT (Segment Outline and Weight Adapting Tool) is applied to a set of segments, segment weights, and corresponding dose distribution, computed by an external dose computation engine. SOWAT evaluates the effects of changing the position of each collimating leaf of each segment on an objective function, as follows. Changing a leaf position causes a change in the segment-specific dose matrix, which is calculated by a fast dose computation algorithm. A weighted sum of all segment-specific dose matrices provides the dose distribution and allows computation of the value of the objective function. Only leaf position changes that comply with the multileaf collimator constraints are evaluated. Leaf position changes that tend to decrease the value of the objective function are retained. After several possible positions have been evaluated for all collimating leaves of all segments, an external dose engine recomputes the dose distribution, based on the adapted leaf positions and weights. The plan is evaluated. If the plan is accepted, a segment sequencer is used to make the prescription files for the treatment machine. Otherwise, the user can restart SOWAT using the new set of segments, segment weights, and corresponding dose distribution. The implementation was illustrated using two example cases. The first example is a T1N0M0 supraglottic cancer case that was distributed as a multicenter planning exercise by investigators from Rotterdam, The Netherlands. The exercise involved a two-phase plan. Phase 1 involved the delivery of 46 Gy to a concave-shaped planning target volume (PTV) consisting of the primary tumor volume and the elective lymph nodal regions II-IV on both sides of the neck. Phase 2 involved a boost of 24 Gy to the primary tumor region only. SOWAT was applied to the Phase 1 plan. Parotid sparing was a planning goal. The second implementation example is an ethmoid sinus cancer case, planned with the intent of bilateral visus sparing. The median PTV prescription dose was 70 Gy with a maximum dose constraint to the optic pathway structures of 60 Gy. The initial set of segments, segment weights, and corresponding dose distribution were obtained, respectively, by an anatomy-based segmentation tool, a segment weight optimization tool, and a differential scatter-air ratio dose computation algorithm as external dose engine. For the supraglottic case, this resulted in a plan that proved to be comparable to the plans obtained at the other institutes by forward or inverse planning techniques. After using SOWAT, the minimum PTV dose and PTV dose homogeneity increased; the maximum dose to the spinal cord decreased from 38 Gy to 32 Gy. The left parotid mean dose decreased from 22 Gy to 19 Gy and the right parotid mean dose from 20 to 18 Gy. For the ethmoid sinus case, the target homogeneity increased by leaf position optimization, together with a better sparing of the optical tracts. By using SOWAT, the plans improved with respect to all plan evaluation end points. Compliance with the multileaf collimator constraints is guaranteed. The treatment delivery time remains almost unchanged, because no additional segments are created.
Adaptive intensity modulated radiotherapy for advanced prostate cancer
NASA Astrophysics Data System (ADS)
Ludlum, Erica Marie
The purpose of this research is to develop and evaluate improvements in intensity modulated radiotherapy (IMRT) for concurrent treatment of prostate and pelvic lymph nodes. The first objective is to decrease delivery time while maintaining treatment quality, and evaluate the effectiveness and efficiency of novel one-step optimization compared to conventional two-step optimization. Both planning methods are examined at multiple levels of complexity by comparing the number of beam apertures, or segments, the amount of radiation delivered as measured by monitor units (MUs), and delivery time. One-step optimization is demonstrated to simplify IMRT planning and reduce segments (from 160 to 40), MUs (from 911 to 746), and delivery time (from 22 to 7 min) with comparable plan quality. The second objective is to examine the capability of three commercial dose calculation engines employing different levels of accuracy and efficiency to handle high--Z materials, such as metallic hip prostheses, included in the treatment field. Pencil beam, convolution superposition, and Monte Carlo dose calculation engines are compared by examining the dose differences for patient plans with unilateral and bilateral hip prostheses, and for phantom plans with a metal insert for comparison with film measurements. Convolution superposition and Monte Carlo methods calculate doses that are 1.3% and 34.5% less than the pencil beam method, respectively. Film results demonstrate that Monte Carlo most closely represents actual radiation delivery, but none of the three engines accurately predict the dose distribution when high-Z heterogeneities exist in the treatment fields. The final objective is to improve the accuracy of IMRT delivery by accounting for independent organ motion during concurrent treatment of the prostate and pelvic lymph nodes. A leaf-shifting algorithm is developed to track daily prostate position without requiring online dose calculation. Compared to conventional methods of adjusting patient position, adjusting the multileaf collimator (MLC) leaves associated with the prostate in each segment significantly improves lymph node dose coverage (maintains 45 Gy compared to 42.7, 38.3, and 34.0 Gy for iso-shifts of 0.5, 1 and 1.5 cm). Altering the MLC portal shape is demonstrated as a new and effective solution to independent prostate movement during concurrent treatment.
Comparison between DCA - SSO - VDR and VMAT dose delivery techniques for 15 SRS/SRT patients
NASA Astrophysics Data System (ADS)
Tas, B.; Durmus, I. F.
2018-02-01
To evaluate dose delivery between Dynamic Conformal Arc (DCA) - Segment Shape Optimization (SSO) - Variation Dose Rate (VDR) and Volumetric Modulated Arc Therapy (VMAT) techniques for fifteen SRS patients using Versa HD® lineer accelerator. Fifteen SRS / SRT patient's optimum treatment planning were performed using Monaco5.11® treatment planning system (TPS) with 1 coplanar and 3 non-coplanar fields for VMAT technique, then the plans were reoptimized with the same optimization parameters for DCA - SSO - VDR technique. The advantage of DCA - SSO - VDR technique were determined less MUs and beam on time, also larger segments decrease dosimetric uncertainities of small fields quality assurance. The advantage of VMAT technique were determined a little better GI, CI, PCI, brain V12Gy and brain mean dose. The results show that the clinical objectives and plans for both techniques satisfied all organs at risks (OARs) dose constraints. Depends on the shape and localization of target, we could choose one of these techniques for linear accelerator based SRS / SRT treatment.
Yi, B; Yang, X; Niu, Y; Yu, C
2012-06-01
Conformal SBRT plans for Lung cancer with static gantry angles are ideal candidates for applying motion tracking because of: (1) better dosimetric conformity with reduced target margin and (2) easier and more faithful target tracking without intensity modulation. This work is to demonstrate that by delivering the target tracking during gantry rotation, we can significantly improve delivery efficiency without negatively affecting plan quality. A lung SBRT plan with static beams was created using CT images of the reference breathing phase. It is converted to an arc plan with variable dose rate followed by the conversion to a 4D plan with the segment aperture morphing (SAM) method (Gui 2010) with considerations of both target location and shape changes as depicted by the 4D CT. Gantry angle ranges were determined from the clinical monitor units, with the 22.2 MU/degree, which is chosen to maximize the dose rate. All segments of the dynamic 4D plan were merged into a single arc with variable dose rate. Each segment occupying 1/10 of the breathing period delivers 6.6 MUs at a dose rate of 1000 MU/min. Delivery time was measured and compared to the planned. The dose distributions of the single phase 3D plan and the arc 4D plan showed little difference. The delivered time for the 4D arc plan agreed with the calculated time, and is almost the same as delivering the 3D plan without target tracking. A 12 Gy treatment takes less than 2.5 min. The feasibility of a novel 4D delivery method where a 3D SBRT plan is converted into 4D arc delivery has been demonstrated. In addition to realizing the conventional target tracking benefits, our method further improves delivery efficiency, which is important for maintaining the geometric relationship between the target motion and the breathing surrogate during treatment. This study is supported by NIH_Grant_1R01CA133539-01 A2. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Lu, B; Yan, G
Purpose: To identify the weakness of dose calculation algorithm in a treatment planning system for volumetric modulated arc therapy (VMAT) and sliding window (SW) techniques using a two-dimensional diode array. Methods: The VMAT quality assurance(QA) was implemented with a diode array using multiple partial arcs that divided from a VMAT plan; each partial arc has the same segments and the original monitor units. Arc angles were less than ± 30°. Multiple arcs delivered through consecutive and repetitive gantry operating clockwise and counterclockwise. The source-toaxis distance setup with the effective depths of 10 and 20 cm were used for a diodemore » array. To figure out dose errors caused in delivery of VMAT fields, the numerous fields having the same segments with the VMAT field irradiated using different delivery techniques of static and step-and-shoot. The dose distributions of the SW technique were evaluated by creating split fields having fine moving steps of multi-leaf collimator leaves. Calculated doses using the adaptive convolution algorithm were analyzed with measured ones with distance-to-agreement and dose difference of 3 mm and 3%.. Results: While the beam delivery through static and step-and-shoot techniques showed the passing rate of 97 ± 2%, partial arc delivery of the VMAT fields brought out passing rate of 85%. However, when leaf motion was restricted less than 4.6 mm/°, passing rate was improved up to 95 ± 2%. Similar passing rate were obtained for both 10 and 20 cm effective depth setup. The calculated doses using the SW technique showed the dose difference over 7% at the final arrival point of moving leaves. Conclusion: Error components in dynamic delivery of modulated beams were distinguished by using the suggested QA method. This partial arc method can be used for routine VMAT QA. Improved SW calculation algorithm is required to provide accurate estimated doses.« less
Textural feature calculated from segmental fluences as a modulation index for VMAT.
Park, So-Yeon; Park, Jong Min; Kim, Jung-In; Kim, Hyoungnyoun; Kim, Il Han; Ye, Sung-Joon
2015-12-01
Textural features calculated from various segmental fluences of volumetric modulated arc therapy (VMAT) plans were optimized to enhance its performance to predict plan delivery accuracy. Twenty prostate and twenty head and neck VMAT plans were selected retrospectively. Fluences were generated for each VMAT plan by summations of segments at sequential groups of control points. The numbers of summed segments were 5, 10, 20, 45, 90, 178 and 356. For each fluence, we investigated 6 textural features: angular second moment, inverse difference moment, contrast, variance, correlation and entropy (particular displacement distances, d = 1, 5 and 10). Spearman's rank correlation coefficients (rs) were calculated between each textural feature and several different measures of VMAT delivery accuracy. The values of rs of contrast (d = 10) with 10 segments to both global and local gamma passing rates with 2%/2 mm were 0.666 (p <0.001) and 0.573 (p <0.001), respectively. It showed rs values of -0.895 (p <0.001) and 0.727 (p <0.001) to multi-leaf collimator positional errors and gantry angle errors during delivery, respectively. The number of statistically significant rs values (p <0.05) to the changes in dose-volumetric parameters during delivery was 14 among a total of 35 tested parameters. Contrast (d = 10) with 10 segments showed higher correlations to the VMAT delivery accuracy than did the conventional modulation indices. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Huang, Xuetao; Liu, Shaogang; Yang, Yezhen; Duan, Yiqin; Lin, Ding
2017-11-01
Corticosteroids have been used for treatment of posterior segment eye diseases, but the delivery of drug to the posterior segments is still a problem to resolve. In our study, we explore the feasibility of Sub-tenon's Controllable Continuous Drug Delivery to ocular posterior segment. Controllable continuous sub-tenon drug delivery (CCSDD) system, intravenous injections (IV) and sub-conjunctival injections (SC) were used to deliver dexamethasone disodium phosphate (DEXP) in rabbits, the dexamethasone concentration was measured in the ocular posterior segment tissue by Shimadzu LC-MS 2010 system at different time points in 24 h after first dose injection. Levels of dexamethasone were significantly higher at 12, 24 h in CCSDD than two other approaches, and at 3, 6 h in CCSDD than IV in vitreous body (p < 0.01); at 6, 12, 24 h in CCSDD than two other approaches, and at 1, 3 h in CCSDD than IV in retinal/choroidal compound (p < 0.01); at 3, 6, 12, 24 h in CCSDD than two other approaches, and at 1 h in CCSDD than IV in sclera (p < 0.05). The AUC 0-24 in CCSDD group is higher than two other groups in all ocular posterior segment tissue. Our results demonstrated that dexamethasone concentration could be sustained moderately higher in the posterior segment by CCSDD than SC and IV, indicating that CCSDD might be a therapeutic alternative to treat a variety of intractable posterior segment diseases.
Lu, Chao; Chelikani, Sudhakar; Papademetris, Xenophon; Knisely, Jonathan P.; Milosevic, Michael F.; Chen, Zhe; Jaffray, David A.; Staib, Lawrence H.; Duncan, James S.
2011-01-01
External beam radiotherapy (EBRT) has become the preferred options for non-surgical treatment of prostate cancer and cervix cancer. In order to deliver higher doses to cancerous regions within these pelvic structures (i.e. prostate or cervix) while maintaining or lowering the doses to surrounding non-cancerous regions, it is critical to account for setup variation, organ motion, anatomical changes due to treatment and intra-fraction motion. In previous work, manual segmentation of the soft tissues is performed and then images are registered based on the manual segmentation. In this paper, we present an integrated automatic approach to multiple organ segmentation and nonrigid constrained registration, which can achieve these two aims simultaneously. The segmentation and registration steps are both formulated using a Bayesian framework, and they constrain each other using an iterative conditional model strategy. We also propose a new strategy to assess cumulative actual dose for this novel integrated algorithm, in order to both determine whether the intended treatment is being delivered and, potentially, whether or not a plan should be adjusted for future treatment fractions. Quantitative results show that the automatic segmentation produced results that have an accuracy comparable to manual segmentation, while the registration part significantly outperforms both rigid and non-rigid registration. Clinical application and evaluation of dose delivery show the superiority of proposed method to the procedure currently used in clinical practice, i.e. manual segmentation followed by rigid registration. PMID:21646038
Surface buildup dose dependence on photon field delivery technique for IMRT
Yokoyama, Shigeru; Roberson, Peter L.; Litzenberg, Dale W.; Moran, Jean M.; Fraass, Benedick A.
2004-01-01
The more complex delivery techniques required for implementation of intensity‐modulated radiotherapy (IMRT) based on inverse planning optimization have changed the relationship between dose at depth and dose at buildup regions near the surface. Surface buildup dose is dependent on electron contamination primarily from the unblocked view of the flattening filter and secondarily from air and collimation systems. To evaluate the impact of beam segmentation on buildup dose, measurements were performed with 10×10 cm2 fields, which were delivered with 3 static 3.5×10 cm2 or 3×10 cm2 strips, 5 static 2×10 cm2 strips, 10 static 1×10 cm2 strips, and 1.1×10 cm2 dynamic delivery, compared with a 10×10 cm2 open field. Measurements were performed in water and Solid Water using parallel plate chambers, a stereotactic diode, and thermoluminescent dosimeters (TLDs) for a 6 MV X‐ray beam. Depth doses at 2 mm depth (relative to dose at 10 cm depth) were lower by 6%, 7%, 11%, and 10% for the above field delivery techniques, respectively, compared to the open field. These differences are most influenced by differences in multileaf collimator (MLC) transmission contributing to the useful beam. An example IMRT field was also studied to assess variations due to delivery technique (static vs. dynamic) and intensity level. Buildup dose is weakly dependent on the multileaf delivery technique for efficient IMRT fields. PACS numbers: 87.53.‐j, 87.53.Dq PMID:15738914
SU-E-T-100: Designing a QA Tool for Enhance Dynamic Wedges Based On Dynalog Files
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousuf, A; Hussain, A
2014-06-01
Purpose: A robust quality assurance (QA) program for computer controlled enhanced dynamic wedge (EDW) has been designed and tested. Calculations to perform such QA test is based upon the EDW dynamic log files generated during dose delivery. Methods: Varian record and verify system generates dynamic log (dynalog) files during dynamic dose delivery. The system generated dynalog files contain information such as date and time of treatment, energy, monitor units, wedge orientation, and type of treatment. It also contains the expected calculated segmented treatment tables (STT) and the actual delivered STT for the treatment delivery as a verification record. These filesmore » can be used to assess the integrity and precision of the treatment plan delivery. The plans were delivered with a 6 MV beam from a Varian linear accelerator. For available EDW angles (10°, 15°, 20°, 25°, 30°, 45°, and 60°) Varian STT values were used to manually calculate monitor units for each segment. It can also be used to calculate the EDW factors. Independent verification of fractional MUs per segment was performed against those generated from dynalog files. The EDW factors used to calculate MUs in TPS were dosimetrically verified in solid water phantom with semiflex chamber on central axis. Results: EDW factors were generated from the STT provided by Varian and verified against practical measurements. The measurements were in agreement of the order of 1 % to the calculated EDW data. Variation between the MUs per segment obtained from dynalog files and those manually calculated was found to be less than 2%. Conclusion: An efficient and easy tool to perform routine QA procedure of EDW is suggested. The method can be easily implemented in any institution without a need for expensive QA equipment. An error of the order of ≥2% can be easily detected.« less
TU-AB-303-12: Towards Inter and Intra Fraction Plan Adaptation for the MR-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontaxis, C; Bol, G; Lagendijk, J
Purpose: To develop a new sequencer for IMRT that during treatment can account for anatomy changes provided by online and real-time MRI. This sequencer employs a novel inter and intra fraction scheme that converges to the prescribed dose without a final segment weight optimization (SWO) and enables immediate optimization and delivery of radiation adapted to the deformed anatomy. Methods: The sequencer is initially supplied with a voxel-based dose prescription and during the optimization iteratively generates segments that provide this prescribed dose. Every iteration selects the best segment for the current anatomy state, calculates the dose it will deliver, warps itmore » back to the reference prescription grid and subtracts it from the remaining prescribed dose. This process continues until a certain percentage of dose or a number of segments has been delivered. The anatomy changes that occur during treatment require that convergence is achieved without a final SWO. This is resolved by adding the difference between the prescribed and delivered dose up to this fraction to the prescription of the subsequent fraction. This process is repeated for all fractions of the treatment. Results: Two breast cases were selected to stress test the pipeline by producing artificial inter and intra fraction anatomy deformations using a combination of incrementally applied rigid transformations. The dose convergence of the adaptive scheme over the entire treatment, relative to the prescribed dose, was on average 8.6% higher than the static plans delivered to the respective deformed anatomies and only 1.6% less than the static segment weighted plans on the static anatomy. Conclusion: This new adaptive sequencing strategy enables dose convergence without the need of SWO while adapting the plan to intermediate anatomies, which is a prerequisite for online plan adaptation. We are now testing our pipeline on prostate cases using clinical anatomy deformation data from our department. This work is financially supported by Elekta AB, Stockholm, Sweden.« less
Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT
NASA Astrophysics Data System (ADS)
Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David
2010-11-01
Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.
Inverse planning in the age of digital LINACs: station parameter optimized radiation therapy (SPORT)
NASA Astrophysics Data System (ADS)
Xing, Lei; Li, Ruijiang
2014-03-01
The last few years have seen a number of technical and clinical advances which give rise to a need for innovations in dose optimization and delivery strategies. Technically, a new generation of digital linac has become available which offers features such as programmable motion between station parameters and high dose-rate Flattening Filter Free (FFF) beams. Current inverse planning methods are designed for traditional machines and cannot accommodate these features of new generation linacs without compromising either dose conformality and/or delivery efficiency. Furthermore, SBRT is becoming increasingly important, which elevates the need for more efficient delivery, improved dose distribution. Here we will give an overview of our recent work in SPORT designed to harness the digital linacs and highlight the essential components of SPORT. We will summarize the pros and cons of traditional beamlet-based optimization (BBO) and direct aperture optimization (DAO) and introduce a new type of algorithm, compressed sensing (CS)-based inverse planning, that is capable of automatically removing the redundant segments during optimization and providing a plan with high deliverability in the presence of a large number of station control points (potentially non-coplanar, non-isocentric, and even multi-isocenters). We show that CS-approach takes the interplay between planning and delivery into account and allows us to balance the dose optimality and delivery efficiency in a controlled way and, providing a viable framework to address various unmet demands of the new generation linacs. A few specific implementation strategies of SPORT in the forms of fixed-gantry and rotational arc delivery are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L; Sarkar, V; Spiessens, S
2014-06-01
Purpose: The latest clinical implementation of the Siemens Artiste linac allows for delivery of modulated arcs (mARC) using full-field flattening filter free (FFF) photon beams. The maximum doserate of 2000 MU/min is well suited for high dose treatments such as SBRT. We tested and report on the performance of a prototype Eclipse TPS module supporting mARC capability on the Artiste platform. Method: our spine SBRT patients originally treated with 12/13 field static-gantry IMRT (SGIMRT) were chosen for this study. These plans were designed to satisfy RTOG0631 guidelines with a prescription of 16Gy in a single fraction. The cases were re-plannedmore » as mARC plans in the prototype Eclipse module using the 7MV FFF beam and required to satisfy RTOG0631 requirements. All plans were transferred from Eclipse, delivered on a Siemens Artiste linac and dose-validated using the Delta4 system. Results: All treatment plans were straightforwardly developed, in timely fashion, without challenge or inefficiency using the prototype module. Due to the limited number of segments in a single arc, mARC plans required 2-3 full arcs to yield plan quality comparable to SGIMRT plans containing over 250 total segments. The average (3%/3mm) gamma pass-rate for all arcs was 98.5±1.1%, thus demonstrating both excellent dose prediction by the AAA dose algorithm and excellent delivery fidelity. Mean delivery times for the mARC plans(10.5±1.7min) were 50-70% lower than the SGIMRT plans(26±2min), with both delivered at 2000 MU/min. Conclusion: A prototype Eclipse module capable of planning for Burst Mode modulated arc delivery on the Artiste platform has been tested and found to perform efficiently and accurately for treatment plan development and delivered-dose prediction. Further investigation of more treatment sites is being carried out and data will be presented.« less
Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F
2006-01-01
We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbiere, J; Beninati, G; Ndlovu, A
2015-06-15
Purpose: It has been argued that a 3D-conformal technique (3DCRT) is suitable for SBRT due to its simplicity for non-coplanar planning and delivery. It has also been hypothesized that a high dose delivered in a short time can enhance indirect cell death due to vascular damage as well as limiting intrafraction motion. Flattening Filter Free (FFF) photon beams are ideal for high dose rate treatment but their conical profiles are not ideal for 3DCRT. The purpose of our work is to present a method to efficiently segment an FFF beam for standard 3DCRT planning. Methods: A 10×10 cm Varian Truemore » Beam 6X FFF beam profile was analyzed using segmentation theory to determine the optimum segmentation intensity required to create an 8 cm uniform dose profile. Two segments were automatically created in sequence with a Varian Eclipse treatment planning system by converting isodoses corresponding to the calculated segmentation intensity to contours and applying the “fit and shield” tool. All segments were then added to the FFF beam to create a single merged field. Field blocking can be incorporated but was not used for clarity. Results: Calculation of the segmentation intensity using an algorithm originally proposed by Xia and Verhey indicated that each segment should extend to the 92% isodose. The original FFF beam with 100% at the isocenter at a depth of 10 cm was reduced to 80% at 4cm from the isocenter; the segmented beam had +/−2.5 % uniformity up to 4.4cm from the isocenter. An additional benefit of our method is a 50% decrease in the 80%-20% penumbra of 0.6cm compared to 1.2cm in the original FFF beam. Conclusion: Creation of two optimum segments can flatten a FFF beam and also reduce its penumbra for clinical 3DCRT SBRT treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y; Li, R; Chi, Z
2014-06-01
Purpose: Different treatment planning systems (TPS) use different treatment optimization and leaf sequencing algorithms. This work compares cervical carcinoma IMRT plans optimized with four commercial TPSs to investigate the plan quality in terms of target conformity and delivery efficiency. Methods: Five cervical carcinoma cases were planned with the Corvus, Monaco, Pinnacle and Xio TPSs by experienced planners using appropriate optimization parameters and dose constraints to meet the clinical acceptance criteria. Plans were normalized for at least 95% of PTV to receive the prescription dose (Dp). Dose-volume histograms and isodose distributions were compared. Other quantities such as Dmin(the minimum dose receivedmore » by 99% of GTV/PTV), Dmax(the maximum dose received by 1% of GTV/PTV), D100, D95, D90, V110%, V105%, V100% (the volume of GTV/PTV receiving 110%, 105%, 100% of Dp), conformity index(CI), homogeneity index (HI), the volume of receiving 40Gy and 50 Gy to rectum (V40,V50) ; the volume of receiving 30Gy and 50 Gy to bladder (V30,V50) were evaluated. Total segments and MUs were also compared. Results: While all plans meet target dose specifications and normal tissue constraints, the maximum GTVCI of Pinnacle plans was up to 0.74 and the minimum of Corvus plans was only 0.21, these four TPSs PTVCI had significant difference. The GTVHI and PTVHI of Pinnacle plans are all very low and show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans require significantly less segments and MUs to deliver than the other plans. Conclusion: To deliver on a Varian linear-accelerator, the Pinnacle plans show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans have faster beam delivery.« less
SU-E-T-250: New IMRT Sequencing Strategy: Towards Intra-Fraction Plan Adaptation for the MR-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontaxis, C; Bol, G; Lagendijk, J
2014-06-01
Purpose: To develop a new sequencer for IMRT planning that during treatment makes the inclusion of external factors possible and by doing so accounts for intra-fraction anatomy changes. Given a real-time imaging modality that will provide the updated patient anatomy during delivery, this sequencer is able to take these changes into account during the calculation of subsequent segments. Methods: Pencil beams are generated for each beam angle of the treatment and a fluence optimization is performed. The pencil beams, together with the patient anatomy and the above optimal fluence form the input of our algorithm. During each iteration the followingmore » steps are performed: A fluence optimization is done and each beam's fluence is then split to discrete intensity levels. Deliverable segments are calculated for each one of these. Each segment's area multiplied by its intensity describes its efficiency. The most efficient segment among all beams is then chosen to deliver a part of the calculated fluence and the dose that will be delivered by this segment is calculated. This delivered dose is then subtracted from the remaining dose. This loop is repeated until 90% of the dose has been delivered and a final segment weight optimization is performed to reach full convergence. Results: This algorithm was tested in several prostate cases yielding results that meet all clinical constraints. Quality assurance was performed on Delta4 and film phantoms for one of these prostate cases and received clinical acceptance after passing both gamma analyses with the 3%/3mm criteria. Conclusion: A new sequencing algorithm was developed to facilitate the needs of intensity modulated treatment. The first results on static anatomy confirm that it can calculate clinical plans equivalent to those of the commercially available planning systems. We are now working towards 100% dose convergence which will allow us to handle anatomy deformations. This work is financially supported by Elekta AB, Stockholm, Sweden.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J; Lindsay, P; University of Toronto, Toronto
Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mmmore » circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations. Funding Support: this work is supported by funding the National Sciences and Engineering Research Council of Canada, and a Mitacs-accelerate fellowship. Conflict of Interest: Dr. Lindsay and Dr. Jaffray are listed as inventors of the small animal microirradiator described herein. This system has been licensed for commercial development.« less
Ko, Young Eun; Cho, Byungchul; Kim, Su Ssan; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Yi, Byongyong
2016-01-01
Purpose To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). Methods and Materials For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients’ respiratory signal; results were compared using film dosimetry with gamma analysis. Results The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. Conclusion We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty. PMID:27333199
Zwan, Benjamin J; Barnes, Michael P; Hindmarsh, Jonathan; Lim, Seng B; Lovelock, Dale M; Fuangrod, Todsaporn; O'Connor, Daryl J; Keall, Paul J; Greer, Peter B
2017-08-01
An ideal commissioning and quality assurance (QA) program for Volumetric Modulated Arc Therapy (VMAT) delivery systems should assess the performance of each individual dynamic component as a function of gantry angle. Procedures within such a program should also be time-efficient, independent of the delivery system and be sensitive to all types of errors. The purpose of this work is to develop a system for automated time-resolved commissioning and QA of VMAT control systems which meets these criteria. The procedures developed within this work rely solely on images obtained, using an electronic portal imaging device (EPID) without the presence of a phantom. During the delivery of specially designed VMAT test plans, EPID frames were acquired at 9.5 Hz, using a frame grabber. The set of test plans was developed to individually assess the performance of the dose delivery and multileaf collimator (MLC) control systems under varying levels of delivery complexities. An in-house software tool was developed to automatically extract features from the EPID images and evaluate the following characteristics as a function of gantry angle: dose delivery accuracy, dose rate constancy, beam profile constancy, gantry speed constancy, dynamic MLC positioning accuracy, MLC speed and acceleration constancy, and synchronization between gantry angle, MLC positioning and dose rate. Machine log files were also acquired during each delivery and subsequently compared to information extracted from EPID image frames. The largest difference between measured and planned dose at any gantry angle was 0.8% which correlated with rapid changes in dose rate and gantry speed. For all other test plans, the dose delivered was within 0.25% of the planned dose for all gantry angles. Profile constancy was not found to vary with gantry angle for tests where gantry speed and dose rate were constant, however, for tests with varying dose rate and gantry speed, segments with lower dose rate and higher gantry speed exhibited less profile stability. MLC positional accuracy was not observed to be dependent on the degree of interdigitation. MLC speed was measured for each individual leaf and slower leaf speeds were shown to be compensated for by lower dose rates. The test procedures were found to be sensitive to 1 mm systematic MLC errors, 1 mm random MLC errors, 0.4 mm MLC gap errors and synchronization errors between the MLC, dose rate and gantry angle controls systems of 1°. In general, parameters measured by both EPID and log files agreed with the plan, however, a greater average departure from the plan was evidenced by the EPID measurements. QA test plans and analysis methods have been developed to assess the performance of each dynamic component of VMAT deliveries individually and as a function of gantry angle. This methodology relies solely on time-resolved EPID imaging without the presence of a phantom and has been shown to be sensitive to a range of delivery errors. The procedures developed in this work are both comprehensive and time-efficient and can be used for streamlined commissioning and QA of VMAT delivery systems. © 2017 American Association of Physicists in Medicine.
Oral drug delivery in personalized medicine: unmet needs and novel approaches.
Wening, Klaus; Breitkreutz, Jörg
2011-02-14
Increasing knowledge into personalized medicine has demonstrated the need for individual dosing. Drug dosage forms are urgently needed enabling an individual therapy, especially for oral drug delivery. This review is focusing on approaches for solid and liquid oral dosage forms for individual dosing. The proposed dosage forms and devices may be distinguished into assembling and partition concepts and have been categorized regarding their applicability, costs, dose flexibility and potential benefits. Opportunities, challenges and further unmet needs are elaborated and critically discussed. Liquid dosage forms can be accurately dosed by novel dropping tubes or oral syringes, but less precisely by dosing spoons and cups. Breaking scored tablets into fragments show major risks such as inaccurate dosing, formation of potent dust and stability issues of the residual segments. Novel approaches are proposed for solid dosage forms enabling a flexible and appropriate therapy such as various dispensers for multiparticulate drug formulations. However, most of the proposals still have to prove their applicability in practice. Promising concepts are the solid dosage pen and drug-loaded oral films which can be cut in individual sections enabling freely selectable doses. Further research and development are required for novel dosage forms and medical devices appropriate for individualized therapy. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, M.S., E-mail: meena.moran@yale.ed; Yale New Haven Hospital, New Haven, Connecticut and William W. Backus Hospital, Norwich, Connecticut; Castrucci, W.A.
2010-03-15
Purpose: Low-lying pelvic malignancies often require simultaneous radiation to pelvis and inguinal nodes. We previously reported improved homogeneity with the modified segmental boost technique (MSBT) compared to that with traditional methods, using phantom models. Here we report our institutional clinical experience with MSBT. Methods and Materials: MSBT patients from May 2001 to March 2007 were evaluated. Parameters analyzed included isocenter/multileaf collimation shifts, time per fraction (four fields), monitor units (MU)/fraction, femoral doses, maximal dose relative to body mass index, and inguinal node depth. In addition, a dosimetric comparison of the MSBT versus intensity modulated radiation therapy (IMRT) was conducted. Results:more » Of the 37 MSBT patients identified, 32 were evaluable. Port film adjustments were required in 6% of films. Median values for each analyzed parameter were as follows: MU/fraction, 298 (range, 226-348); delivery time, 4 minutes; inguinal depth, 4.5 cm; volume receiving 45 Gy (V45), 7%; V27.5, 87%; body mass index, 25 (range, 16.0-33.8). Inguinal dose was 100% in all cases; in-field inhomogeneity ranged from 111% to 118%. IMRT resulted in significantly decreased dose to normal tissue but required more time for treatment planning and a higher number of MUs (1,184 vs. 313 MU). Conclusions: In our clinical experience, the mono-isocentric MSBT provides a high degree of accuracy, improved homogeneity compared with traditional techniques, ease of simulation, treatment planning, treatment delivery, and acceptable femoral doses for pelvic/inguinal radiation fields requiring 45 to 50.4 Gy. In addition, the MSBT delivers a relatively uniform dose distribution throughout the treatment volume, despite varying body habitus. Clinical scenarios for the use of MSBT vs. intensity-modulated radiation therapy are discussed. To our knowledge, this is the first study reporting the utility of MSBT in the clinical setting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, D; Li, X; Li, H
2014-06-15
Purpose: Two aims of this work were to develop a method to automatically verify treatment delivery accuracy immediately after patient treatment and to develop a comprehensive daily treatment report to provide all required information for daily MR-IGRT review. Methods: After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a novel MR-IGRT treatment machine, we designed a method to use 1) treatment plan files, 2) delivery log files, and 3) dosimetric calibration information to verify the accuracy and completeness of daily treatment deliveries. The method verifies the correctness of delivered treatment plans and beams, beammore » segments, and for each segment, the beam-on time and MLC leaf positions. Composite primary fluence maps are calculated from the MLC leaf positions and the beam-on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. We also designed the daily treatment delivery report by including all required information for MR-IGRT and physics weekly review - the plan and treatment fraction information, dose verification information, daily patient setup screen captures, and the treatment delivery verification results. Results: The parameters in the log files (e.g. MLC positions) were independently verified and deemed accurate and trustable. A computer program was developed to implement the automatic delivery verification and daily report generation. The program was tested and clinically commissioned with sufficient IMRT and 3D treatment delivery data. The final version has been integrated into a commercial MR-IGRT treatment delivery system. Conclusion: A method was developed to automatically verify MR-IGRT treatment deliveries and generate daily treatment reports. Already in clinical use since December 2013, the system is able to facilitate delivery error detection, and expedite physician daily IGRT review and physicist weekly chart review.« less
Patel, Sulabh P.; Vaishya, Ravi; Patel, Ashaben; Agrahari, Vibhuti; Pal, Dhananjay; Mitra, Ashim K.
2016-01-01
This manuscript is focused on the development of pentablock (PB) copolymer based sustained release formulation for the treatment of posterior segment ocular diseases. We have successfully synthesized biodegradable and biocompatible PB copolymers for the preparation of nanoparticles (NPs) and thermosensitive gel. Achieving high drug loading with hydrophilic biotherapeutics (peptides /proteins) is a challenging task. Moreover, small intravitreal injection volume (≤100 μL) requires high loading to develop a long term (6 months) sustained release formulation. We have successfully investigated various formulation parameters to achieve maximum peptide/protein (octreotide, insulin, lysozyme, IgG-Fab, IgG, and catalase) loading in PB NPs. Improvement in drug loading can facilitate delivery of larger doses of therapeutic proteins via limited injection volume. A composite formulation comprised of NPs in gel system exhibited sustained release (without burst effect) of peptides and proteins, may serve as a platform technology for the treatment of posterior segment ocular diseases. PMID:26964498
Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetrating Peptides.
de Cogan, Felicity; Hill, Lisa J; Lynch, Aisling; Morgan-Warren, Peter J; Lechner, Judith; Berwick, Matthew R; Peacock, Anna F A; Chen, Mei; Scott, Robert A H; Xu, Heping; Logan, Ann
2017-05-01
To evaluate the efficacy of anti-VEGF agents for treating choroidal neovascularization (CNV) when delivered topically using novel cell-penetrating peptides (CPPs) compared with delivery by intravitreal (ivit) injection. CPP toxicity was investigated in cell cultures. Ivit concentrations of ranibizumab and bevacizumab after topical administration were measured using ELISA. The biological efficacy of topical anti-VEGF + CPP complexes was compared with ivit anti-VEGF injections using an established model of CNV. CPPs were nontoxic in vitro. In vivo, after topical eye drop delivery, CPPs were present in the rat anterior chamber within 6 minutes. A single application of CPP + bevacizumab eye drop delivered clinically relevant concentrations of bevacizumab to the posterior chamber of the rat eye in vivo. Similarly, clinically relevant levels of CPP + ranibizumab and CPP + bevacizumab were detected in the porcine vitreous and retina ex vivo. In an established model of CNV, mice treated with either a single ivit injection of anti-VEGF, twice daily CPP + anti-VEGF eye drops or daily dexamethasone gavage for 10 days all had significantly reduced areas of CNV when compared with lasered eyes without treatment. CPPs are nontoxic to ocular cells and can be used to deliver therapeutically relevant doses of ranibizumab and bevacizumab by eye drop to the posterior segment of mouse, rat, and pig eyes. The CPP + anti-VEGF drug complexes were cleared from the retina within 24 hours, suggesting a daily eye drop dosing regimen. Daily, topically delivered anti-VEGF with CPP was as efficacious as a single ivit injection of anti-VEGF in reducing areas of CNV in vivo.
Anterior eye segment drug delivery systems: current treatments and future challenges.
Molokhia, Sarah A; Thomas, Samuel C; Garff, Kevin J; Mandell, Kenneth J; Wirostko, Barbara M
2013-03-01
New technologies for delivery of drugs, such as small molecules and biologics, are of growing interest among clinical and pharmaceutical researchers for use in treating anterior segment eye disease. The challenge is to deliver effective drugs at therapeutic concentrations to the targeted ocular tissue with minimal side effects. To achieve this, a better understanding of the unmet needs, what is required of the various methods of delivery to achieve successful delivery, and the potential challenges of anterior segment drug delivery is necessary and the primarily aim of this review. This review covers the various physiological and anatomical barriers that exist for effective delivery to the targeted tissue of the eye, the pathological conditions of the anterior segment, and the unmet needs for treatment of these ocular diseases. Second, it reviews the novel delivery technologies that have the potential to maintain and/or improve the drug's therapeutic index and improving both patient adherence for chronic therapy and potential patient outcomes. This review bridges the pharmaceutical and clinical research/challenges and provides a detailed overview of anterior segment drug delivery accomplishments thus far, for researchers and clinicians.
Compensators: An alternative IMRT delivery technique
Chang, Sha X.; Cullip, Timothy J.; Deschesne, Katharin M.; Miller, Elizabeth P.; Rosenman, Julian G.
2004-01-01
Seven years of experience in compensator intensity‐modulated radiotherapy (IMRT) clinical implementation are presented. An inverse planning dose optimization algorithm was used to generate intensity modulation maps, which were delivered via either the compensator or segmental multileaf collimator (MLC) IMRT techniques. The in‐house developed compensator‐IMRT technique is presented with the focus on several design issues. The dosimetry of the delivery techniques was analyzed for several clinical cases. The treatment time for both delivery techniques on Siemens accelerators was retrospectively analyzed based on the electronic treatment record in LANTIS for 95 patients. We found that the compensator technique consistently took noticeably less time for treatment of equal numbers of fields compared to the segmental technique. The typical time needed to fabricate a compensator was 13 min, 3 min of which was manual processing. More than 80% of the approximately 700 compensators evaluated had a maximum deviation of less than 5% from the calculation in intensity profile. Seventy‐two percent of the patient treatment dosimetry measurements for 340 patients have an error of no more than 5%. The pros and cons of different IMRT compensator materials are also discussed. Our experience shows that the compensator‐IMRT technique offers robustness, excellent intensity modulation resolution, high treatment delivery efficiency, simple fabrication and quality assurance (QA) procedures, and the flexibility to be used in any teletherapy unit. PACS numbers: 87.53Mr, 87.53Tf PMID:15753937
Gilger, Brian C; Abarca, Eva M; Salmon, Jacklyn H; Patel, Samirkumar
2013-04-03
To evaluate the effect of triamcinolone acetonide (TA) administered into the suprachoroidal space (SCS) using a microneedle and compare it with intravitreal (IVT) TA injections in a porcine model of acute posterior segment inflammation. An IVT injection of balanced salt solution (BSS) or lipopolysaccharide (LPS) was followed 24 hours later with an injection of 0.2 mg or 2.0 mg of TA into the SCS or IVT. The SCS was accessed using microneedles in a minimally invasive procedure. Ocular inflammatory scores and IOP measurements were collected daily, whereas electroretinography, optical coherence tomography, and wide-field ocular fundus photography was performed on -1, 0, and 3 days after treatment. Aqueous and vitreous humor cell counts and protein levels and histopathology were also compared. Delivery of TA to the SCS using microneedles was simple, effective, and not associated with adverse effects or toxicity. SCS injection of low (0.2 mg) and high doses (2.0 mg) of TA was as effective in reducing acute inflammation in the ocular posterior segment as high-dose IVT injection. Low-dose SCS TA was also effective in reducing inflammation; however, low-dose IVT TA was not. Results from this study suggest that 0.2 mg and 2.0 mg of SCS TA was as effective in reducing inflammation as 2.0 mg IVT TA injection in a model of acute posterior segment inflammation. There were no adverse effects, increased IOP, or evidence of procedural or drug toxicity following injection of TA into the SCS in porcine eyes.
Improving IMRT delivery efficiency with reweighted L1-minimization for inverse planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hojin; Becker, Stephen; Lee, Rena
2013-07-15
Purpose: This study presents an improved technique to further simplify the fluence-map in intensity modulated radiation therapy (IMRT) inverse planning, thereby reducing plan complexity and improving delivery efficiency, while maintaining the plan quality.Methods: First-order total-variation (TV) minimization (min.) based on L1-norm has been proposed to reduce the complexity of fluence-map in IMRT by generating sparse fluence-map variations. However, with stronger dose sparing to the critical structures, the inevitable increase in the fluence-map complexity can lead to inefficient dose delivery. Theoretically, L0-min. is the ideal solution for the sparse signal recovery problem, yet practically intractable due to its nonconvexity of themore » objective function. As an alternative, the authors use the iteratively reweighted L1-min. technique to incorporate the benefits of the L0-norm into the tractability of L1-min. The weight multiplied to each element is inversely related to the magnitude of the corresponding element, which is iteratively updated by the reweighting process. The proposed penalizing process combined with TV min. further improves sparsity in the fluence-map variations, hence ultimately enhancing the delivery efficiency. To validate the proposed method, this work compares three treatment plans obtained from quadratic min. (generally used in clinic IMRT), conventional TV min., and our proposed reweighted TV min. techniques, implemented by a large-scale L1-solver (template for first-order conic solver), for five patient clinical data. Criteria such as conformation number (CN), modulation index (MI), and estimated treatment time are employed to assess the relationship between the plan quality and delivery efficiency.Results: The proposed method yields simpler fluence-maps than the quadratic and conventional TV based techniques. To attain a given CN and dose sparing to the critical organs for 5 clinical cases, the proposed method reduces the number of segments by 10-15 and 30-35, relative to TV min. and quadratic min. based plans, while MIs decreases by about 20%-30% and 40%-60% over the plans by two existing techniques, respectively. With such conditions, the total treatment time of the plans obtained from our proposed method can be reduced by 12-30 s and 30-80 s mainly due to greatly shorter multileaf collimator (MLC) traveling time in IMRT step-and-shoot delivery.Conclusions: The reweighted L1-minimization technique provides a promising solution to simplify the fluence-map variations in IMRT inverse planning. It improves the delivery efficiency by reducing the entire segments and treatment time, while maintaining the plan quality in terms of target conformity and critical structure sparing.« less
Nanoparticles in the ocular drug delivery
Zhou, Hong-Yan; Hao, Ji-Long; Wang, Shuang; Zheng, Yu; Zhang, Wen-Song
2013-01-01
Ocular drug transport barriers pose a challenge for drug delivery comprising the ocular surface epithelium, the tear film and internal barriers of the blood-aqueous and blood-retina barriers. Ocular drug delivery efficiency depends on the barriers and the clearance from the choroidal, conjunctival vessels and lymphatic. Traditional drug administration reduces the clinical efficacy especially for poor water soluble molecules and for the posterior segment of the eye. Nanoparticles (NPs) have been designed to overcome the barriers, increase the drug penetration at the target site and prolong the drug levels by few internals of drug administrations in lower doses without any toxicity compared to the conventional eye drops. With the aid of high specificity and multifunctionality, DNA NPs can be resulted in higher transfection efficiency for gene therapy. NPs could target at cornea, retina and choroid by surficial applications and intravitreal injection. This review is concerned with recent findings and applications of NPs drug delivery systems for the treatment of different eye diseases. PMID:23826539
NASA Astrophysics Data System (ADS)
Wahi-Anwar, M. Wasil; Emaminejad, Nastaran; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.
2018-02-01
Quantitative imaging in lung cancer CT seeks to characterize nodules through quantitative features, usually from a region of interest delineating the nodule. The segmentation, however, can vary depending on segmentation approach and image quality, which can affect the extracted feature values. In this study, we utilize a fully-automated nodule segmentation method - to avoid reader-influenced inconsistencies - to explore the effects of varied dose levels and reconstruction parameters on segmentation. Raw projection CT images from a low-dose screening patient cohort (N=59) were reconstructed at multiple dose levels (100%, 50%, 25%, 10%), two slice thicknesses (1.0mm, 0.6mm), and a medium kernel. Fully-automated nodule detection and segmentation was then applied, from which 12 nodules were selected. Dice similarity coefficient (DSC) was used to assess the similarity of the segmentation ROIs of the same nodule across different reconstruction and dose conditions. Nodules at 1.0mm slice thickness and dose levels of 25% and 50% resulted in DSC values greater than 0.85 when compared to 100% dose, with lower dose leading to a lower average and wider spread of DSC values. At 0.6mm, the increased bias and wider spread of DSC values from lowering dose were more pronounced. The effects of dose reduction on DSC for CAD-segmented nodules were similar in magnitude to reducing the slice thickness from 1.0mm to 0.6mm. In conclusion, variation of dose and slice thickness can result in very different segmentations because of noise and image quality. However, there exists some stability in segmentation overlap, as even at 1mm, an image with 25% of the lowdose scan still results in segmentations similar to that seen in a full-dose scan.
Irradiation of the prostate and pelvic lymph nodes with an adaptive algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, A. B.; Chen, J.; Nguyen, T. B.
2012-02-15
Purpose: The simultaneous treatment of pelvic lymph nodes and the prostate in radiotherapy for prostate cancer is complicated by the independent motion of these two target volumes. In this work, the authors study a method to adapt intensity modulated radiation therapy (IMRT) treatment plans so as to compensate for this motion by adaptively morphing the multileaf collimator apertures and adjusting the segment weights. Methods: The study used CT images, tumor volumes, and normal tissue contours from patients treated in our institution. An IMRT treatment plan was then created using direct aperture optimization to deliver 45 Gy to the pelvic lymphmore » nodes and 50 Gy to the prostate and seminal vesicles. The prostate target volume was then shifted in either the anterior-posterior direction or in the superior-inferior direction. The treatment plan was adapted by adjusting the aperture shapes with or without re-optimizing the segment weighting. The dose to the target volumes was then determined for the adapted plan. Results: Without compensation for prostate motion, 1 cm shifts of the prostate resulted in an average decrease of 14% in D-95%. If the isocenter is simply shifted to match the prostate motion, the prostate receives the correct dose but the pelvic lymph nodes are underdosed by 14% {+-} 6%. The use of adaptive morphing (with or without segment weight optimization) reduces the average change in D-95% to less than 5% for both the pelvic lymph nodes and the prostate. Conclusions: Adaptive morphing with and without segment weight optimization can be used to compensate for the independent motion of the prostate and lymph nodes when combined with daily imaging or other methods to track the prostate motion. This method allows the delivery of the correct dose to both the prostate and lymph nodes with only small changes to the dose delivered to the target volumes.« less
Lorget, Florence; Parenteau, Audrey; Carrier, Michel; Lambert, Daniel; Gueorguieva, Ana; Schuetz, Chris; Bantseev, Vlad; Thackaberry, Evan
2016-09-06
Many long-acting delivery strategies for ocular indications rely on pH- and/or temperature-driven release of the therapeutic agent and degradation of the drug carrier. Yet, these physiological parameters are poorly characterized in ocular animal models. These strategies aim at reducing the frequency of dosing, which is of particular interest for the treatment of chronic disorders affecting the posterior segment of the eye, such as macular degeneration that warrants monthly or every other month intravitreal injections. We used anesthetized white New Zealand rabbits, Yucatan mini pigs, and cynomolgus monkeys to characterize pH and temperature in several vitreous locations and the central aqueous location. We also established post mortem pH changes in the vitreous. Our data showed regional and species differences, which need to be factored into strategies for developing biodegradable long-acting delivery systems.
Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-10-01
The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.
Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-01-01
Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kainz, K; Prah, D; Ahunbay, E
2014-06-01
Purpose: A novel modulated arc therapy technique, mARC, enables superposition of step-and-shoot IMRT segments upon a subset of the optimization points (OPs) of a continuous-arc delivery. We compare two approaches to mARC planning: one with the number of OPs fixed throughout optimization, and another where the planning system determines the number of OPs in the final plan, subject to an upper limit defined at the outset. Methods: Fixed-OP mARC planning was performed for representative cases using Panther v. 5.01 (Prowess, Inc.), while variable-OP mARC planning used Monaco v. 5.00 (Elekta, Inc.). All Monaco planning used an upper limit of 91more » OPs; those OPs with minimal MU were removed during optimization. Plans were delivered, and delivery times recorded, on a Siemens Artiste accelerator using a flat 6MV beam with 300 MU/min rate. Dose distributions measured using ArcCheck (Sun Nuclear Corporation, Inc.) were compared with the plan calculation; the two were deemed consistent if they agreed to within 3.5% in absolute dose and 3.5 mm in distance-to-agreement among > 95% of the diodes within the direct beam. Results: Example cases included a prostate and a head-and-neck planned with a single arc and fraction doses of 1.8 and 2.0 Gy, respectively. Aside from slightly more uniform target dose for the variable-OP plans, the DVHs for the two techniques were similar. For the fixed-OP technique, the number of OPs was 38 and 39, and the delivery time was 228 and 259 seconds, respectively, for the prostate and head-and-neck cases. For the final variable-OP plans, there were 91 and 85 OPs, and the delivery time was 296 and 440 seconds, correspondingly longer than for fixed-OP. Conclusion: For mARC, both the fixed-OP and variable-OP approaches produced comparable-quality plans whose delivery was successfully verified. To keep delivery time per fraction short, a fixed-OP planning approach is preferred.« less
SU-F-T-345: Quasi-Dead Beams: Clinical Relevance and Implications for Automatic Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, R; Veltchev, I; Lin, T
Purpose: Beam direction selection for fixed-beam IMRT planning is typically a manual process. Severe dose-volume limits on critical structures in the thorax often result in atypical selection of beam directions as compared to other body sites. This work demonstrates the potential consequences as well as clinical relevance. Methods: 21 thoracic cases treated with 5–7 beam directions, 6 cases including non-coplanar arrangements, with fractional doses of 150–411cGy were analyzed. Endpoints included per-beam modulation scaling factor (MSF), variation from equal weighting, and delivery QA passing rate. Results: During analysis of patient-specific delivery QA a sub-standard passing rate was found for a singlemore » 5-field plan (90.48% of pixels evaluated passing 3% dose, 3mm DTA). During investigation it was found that a single beam demonstrated a MSF of 34.7 and contributed only 2.7% to the mean dose of the target. In addition, the variation from equal weighting for this beam was 17.3% absolute resulting in another beam with a MSF of 4.6 contributing 41.9% to the mean dose to the target; a variation of 21.9% from equal weighting. The average MSF for the remaining 20 cases was 4.0 (SD 1.8) with an average absolute deviation of 2.8% from equal weighting (SD 3.1%). Conclusion: Optimization in commercial treatment planning systems typically results in relatively equally weighted beams. Extreme variation from this can result in excessively high MSFs (very small segments) and potential decreases in agreement between planned and delivered dose distributions. In addition, the resultant beam may contribute minimal dose to the target (quasi-dead beam); a byproduct being increased treatment time and associated localization uncertainties. Potential ramifications exist for automatic planning algorithms should they allow for user-defined beam directions. Additionally, these quasi-dead beams may be embedded in the libraries for model-based systems potentially resulting in inefficient and less accurate deliveries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Price, R; Wang, L
Purpose: The CyberKnife (CK) M6 Series introduced a mulitleaf collimator (MLC) beam for extending its capability to the conventional radiotherapy. This work is to investigate delivery efficiency of this system as compared to a standard Varian linac when treating hepatic lesions. Methods: Nine previously treated patients were divided into three groups with three patients in each. Group one: fractionated radiotherapy; Group two: SBRT-like treatments and Group three: fractionated radiotherapy targeting two PTVs. The clinically used plans were generated with the Eclipse treatment planning system (TPS). We re-planned these cases using a Mulitplan (MP) TPS for the CK M6 and normalizedmore » to the same PTV dose coverage. CK factors (CF) (defined as modulation scaling factor in this work), number of nodes (NN), number of MLC segments (NS) and beam delivery time (BT) with an estimated image interval of 60 seconds, were used for evaluation of delivery efficiency. Results: Generated plans from the MP and Eclipse TPS demonstrated the similar quality in terms of PTV confomality index, minimum and maximum PTV doses, and doses received by critical structures. Group one: CF ranged from 8.1 to 8.7, NN from 30 to 40, NS from 120 to 155 and BT from 20 to 23 minutes; group two: CF from 4.7 to 8.5, NN from 15 to 19, NS from 82 to 141 and BT from 18 to 24 minutes; and group three: CF from 7.9 to 10, NN from 47 to 49, NS from 110 to 113 and BT from 20 to 22 minutes. Conclusions: Delivery time is longer for the CK M6 than for the Varian linac (7.8 to 13.7 minutes). Further investigation will be necessary to determine if a PTV reduction from the tracking feature will shorten the delivery time without decreasing plan quality.« less
NASA Astrophysics Data System (ADS)
Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-03-01
The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.
Roe, Matthew T; Green, Cynthia L; Giugliano, Robert P; Gibson, C Michael; Baran, Kenneth; Greenberg, Mark; Palmeri, Sebastian T; Crater, Suzanne; Trollinger, Kathleen; Hannan, Karen; Harrington, Robert A; Krucoff, Mitchell W
2004-02-18
This sub-study of the Integrilin and Tenecteplase in Acute Myocardial Infarction (INTEGRITI) trial evaluated of the impact of combination reperfusion therapy with reduced-dose tenecteplase plus eptifibatide on continuous ST-segment recovery and angiographic results. Combination therapy with reduced-dose fibrinolytics and glycoprotein IIb/IIIa inhibitors for ST-segment elevation myocardial infarction improves biomarkers of reperfusion success but has not reduced mortality when compared with full-dose fibrinolytics. We evaluated 140 patients enrolled in the INTEGRITI trial with 24-h continuous 12-lead ST-segment monitoring and angiography at 60 min. The dose-combination regimen of 50% of standard-dose tenecteplase (0.27 microg/kg) plus high-dose eptifibatide (2 boluses of 180 microg/kg separated by 10 min, 2.0 microg/kg/min infusion) was compared with full-dose tenecteplase (0.53 microg/kg). The dose-confirmation regimen of reduced-dose tenecteplase plus high-dose eptifibatide was associated with a faster median time to stable ST-segment recovery (55 vs. 98 min, p = 0.06), improved stable ST-segment recovery by 2 h (89.6% vs. 67.7%, p = 0.02), and less recurrent ischemia (34.0% vs. 57.1%, p = 0.05) when compared with full-dose tenecteplase. Continuously updated ST-segment recovery analyses demonstrated a modest trend toward greater ST-segment recovery at 30 min (57.7% vs. 40.6%, p = 0.13) and 60 min (82.7% vs. 65.6%, p = 0.08) with this regimen. These findings correlated with improved angiographic results at 60 min. Combination therapy with reduced-dose tenecteplase and eptifibatide leads to faster, more stable ST-segment recovery and improved angiographic flow patterns, compared with full-dose tenecteplase. These findings question the relationship between biomarkers of reperfusion success and clinical outcomes.
The suprachoroidal pathway: a new drug delivery route to the back of the eye.
Rai, Uma Do J P; Young, Simon A; Thrimawithana, Thilini R; Abdelkader, Hamdy; Alani, Adam W G; Pierscionek, Barbara; Alany, Raid G
2015-04-01
The development of safe and convenient drug delivery strategies for treatment of posterior segment eye diseases is challenging. Although intravitreal injection has wide acceptance amongst clinicians, its use is associated with serious side-effects. Recently, the suprachoroidal space (SCS) has attracted the attention of ophthalmologists and pharmaceutical formulators as a potential site for drug administration and delivery to the posterior segment of the eye. This review highlights the major constraints of drug delivery to the posterior eye segment, key anatomical and physiological features of the SCS and drug delivery applications of this route with emphasis on microneedles along with future perspectives. Copyright © 2014 Elsevier Ltd. All rights reserved.
Automated segmentation and dose-volume analysis with DICOMautomaton
NASA Astrophysics Data System (ADS)
Clark, H.; Thomas, S.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Wu, J.
2014-03-01
Purpose: Exploration of historical data for regional organ dose sensitivity is limited by the effort needed to (sub-)segment large numbers of contours. A system has been developed which can rapidly perform autonomous contour sub-segmentation and generic dose-volume computations, substantially reducing the effort required for exploratory analyses. Methods: A contour-centric approach is taken which enables lossless, reversible segmentation and dramatically reduces computation time compared with voxel-centric approaches. Segmentation can be specified on a per-contour, per-organ, or per-patient basis, and can be performed along either an embedded plane or in terms of the contour's bounds (e.g., split organ into fractional-volume/dose pieces along any 3D unit vector). More complex segmentation techniques are available. Anonymized data from 60 head-and-neck cancer patients were used to compare dose-volume computations with Varian's EclipseTM (Varian Medical Systems, Inc.). Results: Mean doses and Dose-volume-histograms computed agree strongly with Varian's EclipseTM. Contours which have been segmented can be injected back into patient data permanently and in a Digital Imaging and Communication in Medicine (DICOM)-conforming manner. Lossless segmentation persists across such injection, and remains fully reversible. Conclusions: DICOMautomaton allows researchers to rapidly, accurately, and autonomously segment large amounts of data into intricate structures suitable for analyses of regional organ dose sensitivity.
TH-AB-202-03: A Novel Tool for Computing Deliverable Doses in Dynamic MLC Tracking Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, M; Kamerling, C; Menten, M
2016-06-15
Purpose: In tracked dynamic multi-leaf collimator (MLC) treatments, segments are continuously adapted to the target centroid motion in beams-eye-view. On-the-fly segment adaptation, however, potentially induces dosimetric errors due to the finite MLC leaf width and non-rigid target motion. In this study, we outline a novel tool for computing the 4d dose of lung SBRT plans delivered with MLC tracking. Methods: The following automated workflow was developed: A) centroid tracking, where the initial segments are morphed to each 4dCT phase based on the beams-eye-view GTV shift (followed by a dose calculation on each phase); B) re-optimized tracking, in which all morphedmore » initial plans from (A) are further optimised (“warm-started”) in each 4dCT phase using the initial optimisation parameters but phase-specific volume definitions. Finally, both dose sets are accumulated to the reference phase using deformable image registration. Initial plans were generated according to the RTOG-1021 guideline (54Gy, 3-Fx, equidistant 9-beam IMRT) on the peak-exhale (reference) phase of a phase-binned 4dCT. Treatment planning and delivery simulations were performed in RayStation (research v4.6) using our in-house segment-morphing algorithm, which directly links to RayStation through a native C++ interface. Results: Computing the tracking plans and 4d dose distributions via the in-house interface takes 5 and 8 minutes respectively for centroid and re-optimized tracking. For a sample lung SBRT patient with 14mm peak-to-peak motion in sup-inf direction, mainly perpendicular leaf motion (0-collimator) resulted in small dose changes for PTV-D95 (−13cGy) and GTV-D98 (+18cGy) for the centroid tracking case compared to the initial plan. Modest reductions of OAR doses (e.g. spinal cord D2: −11cGy) were achieved in the idealized tracking case. Conclusion: This study presents an automated “1-click” workflow for computing deliverable MLC tracking doses in RayStation. Adding a non-deliverable re-optimized tracking scenario is expected to help quantify plan robustness for more challenging patients with anatomy deformations. We acknowledge support of the MLC tracking research from Elekta AB. MFF is supported by Cancer Research UK under Programme C33589/A19908. Research at ICR is also supported by Cancer Research UK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR.« less
Ionization chamber-based reference dosimetry of intensity modulated radiation beams.
Bouchard, Hugo; Seuntjens, Jan
2004-09-01
The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.
Halter, F; Niesel, H C; Gladrow, W; Kaiser, H
1998-09-01
Incomplete anaesthesia is a major clinical problem both in single spinal and in single epidural anaesthesia. The clinical efficacy of epidural anaesthesia with augmentation (aEA) and combined epidural and spinal anesthesia (CSE) for cesarean section was investigated in a prospective randomized study on 45 patients. Anaesthesia extending up to Th5 was aimed for. Depending on the patient's height, epidural anaesthesia was administered with a dose of 18-22 ml 0.5% bupivacaine and spinal anaesthesia with a dose of 11-15 mg 0.5% bupivacaine. Augmentation was carried out in all cases in epidural anaesthesia, initially with 7.5 ml 1% Lidocaine with epinephrine 1:400,000, raised by 1.5 ml per missing segment. The epidural reinjection in CSE was carried out as necessary with 9.5-15 ml 1% lidocaine with epinephrine, depending on the height and difference from the segment Th5. The extension of anaesthesia achieved in epidural anaesthesia after an initial dose of 101.8 mg bupivacaine and augmenting dose of 99 mg lidocaine reached the segment Th5. The primary spinal anaesthesia dose up to 15 mg corresponding to height led to a segmental extension to a maximum of Th3 under CSE. Augmentation was necessary in 13 patients; in 5 cases because of inadequate extent of anaesthesia and 8 cases because of pain resulting from premature reversion. The augmenting dose required was 13.9 ml. Readiness for operation was attained after 19.8 min (aEA) and after 10.5 min (CSE). No patient required analgesics before delivery. The additional analgesic requirement during operation was 63.6% (aEA) and 39.1% (CSE). Taking into account pain in the area of surgery, the requirement of analgesics was 50% (aEA) vs. 17.4% (CSE). Antiemetics were required in 18.2 (aEA) and in 65.2% (CSE). The systolic blood pressure fell by 17.7% (aEA) and in 30.3% (CSE). The minimum systolic pressure was observed after 13.4 min in aEA, and after 9.5 min in CSE. The APGAR score and the umbilical pH did not show any differences. General anaesthesia was not required in any case.
Basnet, Sanjay; Kamble, Shripat T
2018-05-01
Bed bugs are one the most troublesome household pests that feed primarily on human blood. RNA interference (RNAi) is currently being pursued as a potential tool for insect population management and has shown efficacy against some phytophagous insects. We evaluated the different techniques to deliver dsRNA specific to bed bug muscle actin (dsactin) into bed bugs. Initially, stability of dsRNA in human blood was studied to evaluate the feasibility of feeding method. Adult bed bugs were injected with dsRNA between last thoracic segment and first abdominal segment on the ventral side, with a dose of 0.2 µg dsactin per insect. In addition to injection, dsactin was mixed in acetone and treated topically in the abdomens of fifth stage nymphs. We found the quick degradation of dsRNA in blood. Injection of dsactin caused significant depletion of actin transcripts and substantial reduction in oviposition and lethality in female adults. Topically treated dsRNA in fifth stage nymphs had no effect on actin mRNA expression and survival. Our results demonstrated that injection is a reliable method of dsRNA delivery into bed bugs while topical treatment was not successful. This research provides an understanding on effective delivery methods of dsRNA into bed bugs for functional genomics research and feasibility of the RNAi based molecules for pest management purposes.
Bachu, Rinda Devi; Chowdhury, Pallabitha; Al-Saedi, Zahraa H F; Karla, Pradeep K; Boddu, Sai H S
2018-02-27
Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed.
Bachu, Rinda Devi; Chowdhury, Pallabitha; Al-Saedi, Zahraa H. F.; Karla, Pradeep K.; Boddu, Sai H. S.
2018-01-01
Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed. PMID:29495528
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leicher, Brian, E-mail: bleicher@wpahs.org; Day, Ellen; Colonias, Athanasios
2014-10-01
To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outsidemore » of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.« less
Shau, David N; Parker, Scott L; Mendenhall, Stephen K; Zuckerman, Scott L; Godil, Saniya S; Devin, Clinton J; McGirt, Matthew J
2015-05-01
Transforaminal lumbar interbody fusion (TLIF) is a frequently performed method of lumbar arthrodesis in patients failing medical management of back and leg pain. Accurate placement of the interbody graft and restoration of lordosis has been shown to be crucial when performing lumbar fusion procedures. We performed a single-surgeon, prospective, randomized study to determine whether a novel articulating versus traditional straight graft delivery arm system allows for superior graft placement and increased lordosis for single-level TLIF. Thirty consecutive patients undergoing single-level TLIF were included and prospectively randomized to one of the 2 groups (articulated vs. straight delivery arm system). Three radiographic characteristics were evaluated at 6-week follow-up: (1) degree of segmental lumbar lordosis at the fused level; (2) the percent anterior location of the interbody graft in disk space; and (3) the distance (mm) off midline of the interbody graft placement. Randomization yielded 16 patients in the articulated delivery arm cohort and 14 in the straight delivery arm cohort. The articulating delivery arm system yielded an average of 14.7-degree segmental lordosis at fused level, 35% anterior location, and 3.6 mm off midline. The straight delivery arm system yielded an average of 10.7-degree segmental lordosis at fused level, 46% anterior location, and 7.0 mm off midline. All 3 comparisons were statistically significant (P<0.05). The study suggests that an articulating delivery arm system facilitates superior anterior and midline TLIF graft placement allowing for increased segmental lordosis compared with a traditional straight delivery arm system.
Dynamically accumulated dose and 4D accumulated dose for moving tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Heng; Li Yupeng; Zhang Xiaodong
2012-12-15
Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove themore » principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference between the dynamic dose and 4D dose as a function of number of deliveries and/or total deliver time was also established.« less
NASA Astrophysics Data System (ADS)
Jiang, Xinglu; Wang, Guobao; Liu, Ru; Wang, Yaling; Wang, Yongkui; Qiu, Xiaozhong; Gao, Xueyun
2013-07-01
To date, RNase degradation and endosome/lysosome trapping are still serious problems for siRNA-based molecular therapy, although different kinds of delivery formulations have been tried. In this report, a cell penetrating peptide (CPP, including a positively charged segment, a linear segment, and a hydrophobic segment) and a single wall carbon nanotube (SWCNT) are applied together by a simple method to act as a siRNA delivery system. The siRNAs first form a complex with the positively charged segment of CPP via electrostatic forces, and the siRNA-CPP further coats the surface of the SWCNT via hydrophobic interactions. This siRNA delivery system is non-sensitive to RNase and can avoid endosome/lysosome trapping in vitro. When this siRNA delivery system is studied in Hela cells, siRNA uptake was observed in 98% Hela cells, and over 70% mRNA of mammalian target of rapamycin (mTOR) is knocked down, triggering cell apoptosis on a significant scale. Our siRNA delivery system is easy to handle and benign to cultured cells, providing a very efficient approach for the delivery of siRNA into the cell cytosol and cleaving the target mRNA therein.
Fast approximate delivery of fluence maps for IMRT and VMAT
NASA Astrophysics Data System (ADS)
Balvert, Marleen; Craft, David
2017-02-01
In this article we provide a method to generate the trade-off between delivery time and fluence map matching quality for dynamically delivered fluence maps. At the heart of our method lies a mathematical programming model that, for a given duration of delivery, optimizes leaf trajectories and dose rates such that the desired fluence map is reproduced as well as possible. We begin with the single fluence map case and then generalize the model and the solution technique to the delivery of sequential fluence maps. The resulting large-scale, non-convex optimization problem was solved using a heuristic approach. We test our method using a prostate case and a head and neck case, and present the resulting trade-off curves. Analysis of the leaf trajectories reveals that short time plans have larger leaf openings in general than longer delivery time plans. Our method allows one to explore the continuum of possibilities between coarse, large segment plans characteristic of direct aperture approaches and narrow field plans produced by sliding window approaches. Exposing this trade-off will allow for an informed choice between plan quality and solution time. Further research is required to speed up the optimization process to make this method clinically implementable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Erika; Otto, Karl; Hoppe, Richard
Purpose: To develop and test the feasibility of a table-top implementation for total body irradiation (TBI) via robotic couch motion and coordinated monitor unit modulation on a standard C-arm linac geometry. Methods: To allow for collision free delivery and to maximize the effective field size, the couch was rotated to 270° IEC and dropped to 150 cm from the vertical radiation source. The robotic delivery was programmed using the TrueBeam STx Developer Mode using custom XML scripting. To assess the dosimetry of a sliding 30×20 cm{sup 2} field, irradiation on a solid water phantom of varying thickness was analyzed usingmore » EDR2 radiographic film and OSLDs. Beam modulation was achieved by dividing the couch path into multiple segments of varying dose rates and couch speeds in order to deliver 120 cGy to the midline. Results: The programmed irradiation in conjunction with coordinated couch motion was successfully delivered on a TrueBeam linac. When no beam modulation was employed, the dose difference between two different phantom sections was 17.0%. With simple beam modulation via changing dose rates and couch speeds, the desired prescription dose can be achieved at the centre of each phantom section within 1.9%. However, dose deviation at the junction was 9.2% due to the nonphysical change in the phantom thickness. Conclusions: The feasibility of robotic table-top TBI on a C-arm linac geometry was experimentally demonstrated. To achieve a more uniform dose distribution, inverse-planning allowing for a combination of dose rate modulation, jaw tracking and MLC motion is under investigation.« less
Drug delivery to the posterior segment of the eye through hydrogel contact lenses.
Schultz, Clyde; Breaux, Jason; Schentag, Jerome; Morck, Douglas
2011-03-01
Despite pharmacological advances, delivery of drugs to the posterior segment of the eye remains problematic. We investigated the ability of hydrogel contact lenses to deliver small-molecule steroids, as well as larger biological molecules to the posterior segment. Release characteristics of steroid-instilled lenses were studied in vitro. Drug delivery to the posterior segment of the eye was evaluated in a rabbit model, in which hydrogel contact lenses treated with diluted steroids (prednisolone or beclomethasone) were placed on rabbit corneas for four hours on days 1, 2, 5, 8 and 10. The amount of drug in plasma, posterior segment tissue and vitreous humour was measured with high-performance liquid chromatography-tandem mass spectrometry. In a further preliminary investigation, two rabbits were treated with ranibizumab. The lenses released prednisolone and beclomethasone in saline over a six-hour period at a declining rate. Prednisolone was found in posterior segment tissue from six of six rabbits at concentrations ranging from 26.8 to 166 ng/g and in vitreous humour from two of six rabbits. Beclomethasone was detected in posterior segment tissue from three rabbits but was not found in the vitreous humour. Ranibizumab was detected in posterior segment tissue in a range from 0.19 ng/mL to 0.5183 ng/mL. Hydrogel contact lenses are a non-invasive, periocular drug delivery device capable of achieving measurable drug levels in posterior segment tissue. © 2010 The Authors. Clinical and Experimental Optometry © 2010 Optometrists Association Australia.
Cohn, Wendy F; Lyman, Jason; Broshek, Donna K; Guterbock, Thomas M; Hartman, David; Kinzie, Mable; Mick, David; Pannone, Aaron; Sturz, Vanessa; Schubart, Jane; Garson, Arthur T
2018-01-01
To develop a model, based on market segmentation, to improve the quality and efficiency of health promotion materials and programs. Market segmentation to create segments (groups) based on a cross-sectional questionnaire measuring individual characteristics and preferences for health information. Educational and delivery recommendations developed for each group. General population of adults in Virginia. Random sample of 1201 Virginia residents. Respondents are representative of the general population with the exception of older age. Multiple factors known to impact health promotion including health status, health system utilization, health literacy, Internet use, learning styles, and preferences. Cluster analysis and discriminate analysis to create and validate segments. Common sized means to compare factors across segments. Developed educational and delivery recommendations matched to the 8 distinct segments. For example, the "health challenged and hard to reach" are older, lower literacy, and not likely to seek out health information. Their educational and delivery recommendations include a sixth-grade reading level, delivery through a provider, and using a "push" strategy. This model addresses a need to improve the efficiency and quality of health promotion efforts in an era of personalized medicine. It demonstrates that there are distinct groups with clearly defined educational and delivery recommendations. Health promotion professionals can consider Tailored Educational Approaches for Consumer Health to develop and deliver tailored materials to encourage behavior change.
Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes
2017-09-01
The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min -1 . Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean : R 2 = 0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.
NASA Astrophysics Data System (ADS)
Pasler, Marlies; Michel, Kilian; Marrazzo, Livia; Obenland, Michael; Pallotta, Stefania; Björnsgard, Mari; Lutterbach, Johannes
2017-09-01
The purpose of this study was to characterize a new single large-area ionization chamber, the integral quality monitor system (iRT, Germany), for online and real-time beam monitoring. Signal stability, monitor unit (MU) linearity and dose rate dependence were investigated for static and arc deliveries and compared to independent ionization chamber measurements. The dose verification capability of the transmission detector system was evaluated by comparing calculated and measured detector signals for 15 volumetric modulated arc therapy plans. The error detection sensitivity was tested by introducing MLC position and linac output errors. Deviations in dose distributions between the original and error-induced plans were compared in terms of detector signal deviation, dose-volume histogram (DVH) metrics and 2D γ-evaluation (2%/2 mm and 3%/3 mm). The detector signal is linearly dependent on linac output and shows negligible (<0.4%) dose rate dependence up to 460 MU min-1. Signal stability is within 1% for cumulative detector output; substantial variations were observed for the segment-by-segment signal. Calculated versus measured cumulative signal deviations ranged from -0.16%-2.25%. DVH, mean 2D γ-value and detector signal evaluations showed increasing deviations with regard to the respective reference with growing MLC and dose output errors; good correlation between DVH metrics and detector signal deviation was found (e.g. PTV D mean: R 2 = 0.97). Positional MLC errors of 1 mm and errors in linac output of 2% were identified with the transmission detector system. The extensive tests performed in this investigation show that the new transmission detector provides a stable and sensitive cumulative signal output and is suitable for beam monitoring during patient treatment.
Patwardhan, Manasi; Hernandez-Andrade, Edgar; Ahn, Hyunyoung; Korzeniewski, Steven J; Schwartz, Alyse; Hassan, Sonia S; Romero, Roberto
2015-01-01
To investigate dynamic changes in myometrial thickness during the third stage of labor. Myometrial thickness was measured using ultrasound at one-minute time intervals during the third stage of labor in the mid-region of the upper and lower uterine segments in 151 patients including: women with a long third stage of labor (n = 30), postpartum hemorrhage (n = 4), preterm delivery (n = 7) and clinical chorioamnionitis (n = 4). Differences between myometrial thickness of the uterine segments and as a function of time were evaluated. There was a significant linear increase in the mean myometrial thickness of the upper uterine segments, as well as a significant linear decrease in the mean myometrial thickness of the lower uterine segments until the expulsion of the placenta (p < 0.001). The ratio of the measurements of the upper to the lower uterine segments increased significantly as a function of time (p < 0.0001). In women with postpartum hemorrhage, preterm delivery, and clinical chorioamnionitis, an uncoordinated pattern among the uterine segments was observed. A well-coordinated activity between the upper and lower uterine segments is demonstrated in normal placental delivery. In some clinical conditions this pattern is not observed, increasing the time for placental delivery and the risk of postpartum hemorrhage. © 2015 S. Karger AG, Basel.
Patwardhan, Manasi; Hernandez-Andrade, Edgar; Ahn, Hyunyoung; Korzeniewski, Steven J; Schwartz, Alyse; Hassan, Sonia S; Romero, Roberto
2015-01-01
Objective To investigate dynamic changes in myometrial thickness during the third stage of labor. Methods Myometrial thickness was measured using ultrasound at one-minute time intervals during the third stage of labor in the mid-region of the upper and lower uterine segments in 151 patients including: women with a long third stage of labor (n=30), post-partum hemorrhage (n=4), preterm delivery (n=7) or clinical chorioamnionitis (n=4). Differences between uterine segments and as a function of time were evaluated. Results There was a significant linear increase in the mean myometrial thickness of the upper uterine segments, as well as a significant linear decrease in the mean myometrial thickness of the lower uterine segments until the expulsion of the placenta (p<0.001). The ratio of the measurements of the upper to the lower uterine segments increased significantly as a function of time (p<0.0001). In women with postpartum hemorrhage, preterm delivery and clinical chorioamnionitis, an uncoordinated pattern between the uterine segments was observed. Conclusion A well-coordinated activity between the upper and lower uterine segments is demonstrated in normal placental delivery. In some clinical conditions this pattern is not observed, increasing the time for placental delivery and the risk for post-partum hemorrhage. PMID:25634647
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, B; Chung, H; Mutaf, Y
Purpose: To test a novel total body irradiation (TBI) system using conformal partial arc with patient lying on the stationary couch which is biologically equivalent to a moving couch TBI. This improves the scanning field TBI, which is previously presented. Methods: The Uniform MU Modulated arc Segments TBI or UMMS-TBI scans the treatment plane with a constant machine dose rate and a constant gantry rotation speed. A dynamic MLC pattern which moves while gantry rotates has been designed so that the treatment field moves same distance at the treatment plane per each gantry angle, while maintaining same treatment field sizemore » (34cm) at the plane. Dose across the plane varies due to the geometric differences including the distance from the source to a point of interest and the different attenuation from the slanted depth which changes the effective depth. Beam intensity is modulated to correct the dose variation across the plane by assigning the number of gantry angles inversely proportional to the uncorrected dose. Results: Measured dose and calculated dose matched within 1 % for central axis and 3% for off axis for various patient scenarios. Dose from different distance does not follow the inverse square relation as it is predicted from calculation. Dose uniformity better than 5% across 180 cm at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 200 MU/min. Conclusion: This novel technique, yet accurate but easy to implement enables TBI treatment in a small treatment room with less program development preparation than other techniques. The VMAT function of treatment delivery is not required to modulate beams. One delivery pattern can be used for different patients by changing the monitor units.« less
A Microparticle/Hydrogel Combination Drug-Delivery System for Sustained Release of Retinoids
Gao, Song-Qi; Maeda, Tadao; Okano, Kiichiro; Palczewski, Krzysztof
2012-01-01
Purpose. To design and develop a drug-delivery system containing a combination of poly(d,l-lactide-co-glycolide) (PLGA) microparticles and alginate hydrogel for sustained release of retinoids to treat retinal blinding diseases that result from an inadequate supply of retinol and generation of 11-cis-retinal. Methods. To study drug release in vivo, either the drug-loaded microparticle–hydrogel combination was injected subcutaneously or drug-loaded microparticles were injected intravitreally into Lrat−/− mice. Orally administered 9-cis-retinoids were used for comparison and drug concentrations in plasma were determined by HPLC. Electroretinography (ERG) and both chemical and histologic analyses were used to evaluate drug effects on visual function and morphology. Results. Lrat−/− mice demonstrated sustained drug release from the microparticle/hydrogel combination that lasted 4 weeks after subcutaneous injection. Drug concentrations in plasma of the control group treated with the same oral dose rose to higher levels for 6−7 hours but then dropped markedly by 24 hours. Significantly increased ERG responses and a markedly improved retinal pigmented epithelium (RPE)–rod outer segment (ROS) interface were observed after subcutaneous injection of the drug-loaded delivery combination. Intravitreal injection of just 2% of the systemic dose of drug-loaded microparticles provided comparable therapeutic efficacy. Conclusions. Sustained release of therapeutic levels of 9-cis-retinoids was achieved in Lrat−/− mice by subcutaneous injection in a microparticle/hydrogel drug-delivery system. Both subcutaneous and intravitreal injections of drug-loaded microparticles into Lrat−/− mice improved visual function and retinal structure. PMID:22918645
A New Direction in Ophthalmic Development: Nanoparticle Drug Delivery Systems.
Andonova, Velichka Yordanova
2016-01-01
The purpose of each dosage form is to provide an optimal therapeutic effect with a minimum dose and with minimal side effects. This is particularly relevant for drugs that require systemic administration, higher dosing and/or show lower bioavailability. Тhe eye as an anatomical structure is an extremely protected organ. In this regard, providing an optimal bioavailability in the eye tissues, resulting in the desired therapeutic effect represents a major challenge. This is especially true for the treatment of diseases, affecting the posterior segment after topically administered drug formulations. The use of nano- and microcarriers of drug substances may be an appropriate technological approach, to provide a high bioavailability of the drug substance for a certain interval of time at the right place. The purpose of this review is to indicate how nano- and microcarriers of drug substances can solve the problems with the drug delivery in the ocular tissues, to indicate the possible hazards and side effects, depending on the polymer nature and route of administration, and to visualize the future potential of these carriers in the pharmaceutical practice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
TH-AB-201-12: Using Machine Log-Files for Treatment Planning and Delivery QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanhope, C; Liang, J; Drake, D
2016-06-15
Purpose: To determine the segment reduction and dose resolution necessary for machine log-files to effectively replace current phantom-based patient-specific quality assurance, while minimizing computational cost. Methods: Elekta’s Log File Convertor R3.2 records linac delivery parameters (dose rate, gantry angle, leaf position) every 40ms. Five VMAT plans [4 H&N, 1 Pulsed Brain] comprised of 2 arcs each were delivered on the ArcCHECK phantom. Log-files were reconstructed in Pinnacle on the phantom geometry using 1/2/3/4° control point spacing and 2/3/4mm dose grid resolution. Reconstruction effectiveness was quantified by comparing 2%/2mm gamma passing rates of the original and log-file plans. Modulation complexity scoresmore » (MCS) were calculated for each beam to correlate reconstruction accuracy and beam modulation. Percent error in absolute dose for each plan-pair combination (log-file vs. ArcCHECK, original vs. ArcCHECK, log-file vs. original) was calculated for each arc and every diode greater than 10% of the maximum measured dose (per beam). Comparing standard deviations of the three plan-pair distributions, relative noise of the ArcCHECK and log-file systems was elucidated. Results: The original plans exhibit a mean passing rate of 95.1±1.3%. The eight more modulated H&N arcs [MCS=0.088±0.014] and two less modulated brain arcs [MCS=0.291±0.004] yielded log-file pass rates most similar to the original plan when using 1°/2mm [0.05%±1.3% lower] and 2°/3mm [0.35±0.64% higher] log-file reconstructions respectively. Log-file and original plans displayed percent diode dose errors 4.29±6.27% and 3.61±6.57% higher than measurement. Excluding the phantom eliminates diode miscalibration and setup errors; log-file dose errors were 0.72±3.06% higher than the original plans – significantly less noisy. Conclusion: For log-file reconstructed VMAT arcs, 1° control point spacing and 2mm dose resolution is recommended, however, less modulated arcs may allow less stringent reconstructions. Following the aforementioned reconstruction recommendations, the log-file technique is capable of detecting delivery errors with equivalent accuracy and less noise than ArcCHECK QA. I am funded by an Elekta Research Grant.« less
A method for photon beam Monte Carlo multileaf collimator particle transport
NASA Astrophysics Data System (ADS)
Siebers, Jeffrey V.; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe
2002-09-01
Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/-1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/-1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV. The dose through a static leaf tip is also predicted generally within +/-1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry.
A new tissue segmentation method to calculate 3D dose in small animal radiation therapy.
Noblet, C; Delpon, G; Supiot, S; Potiron, V; Paris, F; Chiavassa, S
2018-02-26
In pre-clinical animal experiments, radiation delivery is usually delivered with kV photon beams, in contrast to the MV beams used in clinical irradiation, because of the small size of the animals. At this medium energy range, however, the contribution of the photoelectric effect to absorbed dose is significant. Accurate dose calculation therefore requires a more detailed tissue definition because both density (ρ) and elemental composition (Z eff ) affect the dose distribution. Moreover, when applied to cone beam CT (CBCT) acquisitions, the stoichiometric calibration of HU becomes inefficient as it is designed for highly collimated fan beam CT acquisitions. In this study, we propose an automatic tissue segmentation method of CBCT imaging that assigns both density (ρ) and elemental composition (Z eff ) in small animal dose calculation. The method is based on the relationship found between CBCT number and ρ*Z eff product computed from known materials. Monte Carlo calculations were performed to evaluate the impact of ρZ eff variation on the absorbed dose in tissues. These results led to the creation of a tissue database composed of artificial tissues interpolated from tissue values published by the ICRU. The ρZ eff method was validated by measuring transmitted doses through tissue substitute cylinders and a mouse with EBT3 film. Measurements were compared to the results of the Monte Carlo calculations. The study of the impact of ρZ eff variation over the range of materials, from ρZ eff = 2 g.cm - 3 (lung) to 27 g.cm - 3 (cortical bone) led to the creation of 125 artificial tissues. For tissue substitute cylinders, the use of ρZ eff method led to maximal and average relative differences between the Monte Carlo results and the EBT3 measurements of 3.6% and 1.6%. Equivalent comparison for the mouse gave maximal and average relative differences of 4.4% and 1.2%, inside the 80% isodose area. Gamma analysis led to a 94.9% success rate in the 10% isodose area with 4% and 0.3 mm criteria in dose and distance. Our new tissue segmentation method was developed for 40kVp CBCT images. Both density and elemental composition are assigned to each voxel by using a relationship between HU and the product ρZ eff . The method, validated by comparing measurements and calculations, enables more accurate small animal dose distribution calculated on low energy CBCT images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jun; Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, Henan, 453100; Ma, Lin
2016-07-01
To investigate the dosimetric characteristics of 4 SBRT-capable dose delivery systems, CyberKnife (CK), Helical TomoTherapy (HT), Volumetric Modulated Arc Therapy (VMAT) by Varian RapidArc (RA), and segmental step-and-shoot intensity-modulated radiation therapy (IMRT) by Elekta, on isolated thoracic spinal lesions. CK, HT, RA, and IMRT planning were performed simultaneously for 10 randomly selected patients with 6 body types and 6 body + pedicle types with isolated thoracic lesions. The prescription was set with curative intent and dose of either 33 Gy in 3 fractions (3F) or 40 Gy in 5F to cover at least 90% of the planning target volume (PTV),more » correspondingly. Different dosimetric indices, beam-on time, and monitor units (MUs) were evaluated to compare the advantages/disadvantages of each delivery modality. In ensuring the dose-volume constraints for cord and esophagus of the premise, CK, HT, and RA all achieved a sharp conformity index (CI) and a small penumbra volume compared to IMRT. RA achieved a CI comparable to those from CK, HT, and IMRT. CK had a heterogeneous dose distribution in the target as its radiosurgical nature with less dose uniformity inside the target. CK had the longest beam-on time and the largest MUs, followed by HT and RA. IMRT presented the shortest beam-on time and the least MUs delivery. For the body-type lesions, CK, HT, and RA satisfied the target coverage criterion in 6 cases, but the criterion was satisfied in only 3 (50%) cases with the IMRT technique. For the body + pedicle-type lesions, HT satisfied the criterion of the target coverage of ≥90% in 4 of the 6 cases, and reached a target coverage of 89.0% in another case. However, the criterion of the target coverage of ≥90% was reached in 2 cases by CK and RA, and only in 1 case by IMRT. For curative-intent SBRT of isolated thoracic spinal lesions, RA is the first choice for the body-type lesions owing to its delivery efficiency (time); the second choice is CK or HT; HT is the preferential choice for the body + pedicle-type lesions. This study suggests further clinical investigations with longer follow-up for these studied cases.« less
Propagation of registration uncertainty during multi-fraction cervical cancer brachytherapy
NASA Astrophysics Data System (ADS)
Amir-Khalili, A.; Hamarneh, G.; Zakariaee, R.; Spadinger, I.; Abugharbieh, R.
2017-10-01
Multi-fraction cervical cancer brachytherapy is a form of image-guided radiotherapy that heavily relies on 3D imaging during treatment planning, delivery, and quality control. In this context, deformable image registration can increase the accuracy of dosimetric evaluations, provided that one can account for the uncertainties associated with the registration process. To enable such capability, we propose a mathematical framework that first estimates the registration uncertainty and subsequently propagates the effects of the computed uncertainties from the registration stage through to the visualizations, organ segmentations, and dosimetric evaluations. To ensure the practicality of our proposed framework in real world image-guided radiotherapy contexts, we implemented our technique via a computationally efficient and generalizable algorithm that is compatible with existing deformable image registration software. In our clinical context of fractionated cervical cancer brachytherapy, we perform a retrospective analysis on 37 patients and present evidence that our proposed methodology for computing and propagating registration uncertainties may be beneficial during therapy planning and quality control. Specifically, we quantify and visualize the influence of registration uncertainty on dosimetric analysis during the computation of the total accumulated radiation dose on the bladder wall. We further show how registration uncertainty may be leveraged into enhanced visualizations that depict the quality of the registration and highlight potential deviations from the treatment plan prior to the delivery of radiation treatment. Finally, we show that we can improve the transfer of delineated volumetric organ segmentation labels from one fraction to the next by encoding the computed registration uncertainties into the segmentation labels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haering, P; Lang, C; Splinter, M
2016-06-15
Purpose The conventional way of dealing with uncertainties resulting from dose calculation or beam delivery in IMRT, is to do verification measurements for the plan in question. Here we present an alternative based on recommendations given in the AAPM 142 report and treatment specific parameters that model the uncertainties for the plan delivery. Methods Basis of the model is the assignment of uncertainty parameters to all segment fields or control point sequences of a plan. The given field shape is analyzed for complexity, dose rate, number of MU, field size related output as well as factors for in/out field positionmore » and penumbra regions. Together with depth related uncertainties, a 3D matrix is generated by a projection algorithm. Patient anatomy is included as uncertainty CT data set as well. Therefore, object density is classified in 4 categories close to water, lung, bone and gradient regions with additional uncertainties. The result is then exported as a DICOM dose file by the software tool (written in IDL, Exelis), having the given resolution and target point. Results Uncertainty matrixes for several patient cases have been calculated and compared side by side in the planning system. The result is not quite always intuitive but it clearly indicates high and low uncertainties related to OARs and target volumes as well as to measured gamma distributions.ConclusionThe imported uncertainty datasets may help the treatment planner to understand the complexity of the treatment plan. He then might decide to change the plan to produce a more suited uncertainty distribution, e.g. by changing the beam angles the high uncertainty spots can be influenced or try to use another treatment setup, resulting in a plan with lower uncertainties. A next step could be to include such a model into the optimization algorithm to add a new dose uncertainty constraint.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Heng, E-mail: hengli@mdanderson.org; Zhu, X. Ronald; Zhang, Xiaodong
Purpose: To develop and validate a novel delivery strategy for reducing the respiratory motion–induced dose uncertainty of spot-scanning proton therapy. Methods and Materials: The spot delivery sequence was optimized to reduce dose uncertainty. The effectiveness of the delivery sequence optimization was evaluated using measurements and patient simulation. One hundred ninety-one 2-dimensional measurements using different delivery sequences of a single-layer uniform pattern were obtained with a detector array on a 1-dimensional moving platform. Intensity modulated proton therapy plans were generated for 10 lung cancer patients, and dose uncertainties for different delivery sequences were evaluated by simulation. Results: Without delivery sequence optimization,more » the maximum absolute dose error can be up to 97.2% in a single measurement, whereas the optimized delivery sequence results in a maximum absolute dose error of ≤11.8%. In patient simulation, the optimized delivery sequence reduces the mean of fractional maximum absolute dose error compared with the regular delivery sequence by 3.3% to 10.6% (32.5-68.0% relative reduction) for different patients. Conclusions: Optimizing the delivery sequence can reduce dose uncertainty due to respiratory motion in spot-scanning proton therapy, assuming the 4-dimensional CT is a true representation of the patients' breathing patterns.« less
NASA Astrophysics Data System (ADS)
Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.
2010-07-01
Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.
SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawad, M Abdel; Elgohary, M; Hassaan, M
Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less
TH-CD-202-12: Online Inter-Beam Replanning Based On Real-Time Dose Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamerling, CP; Fast, MF; Ziegenhein, P
Purpose: This work provides a proof-of-concept study for online replanning during treatment delivery for step-and-shoot prostate SBRT, based on real-time dose reconstruction. Online replanning is expected to improve the trade-off between target coverage and organ-at-risk dose in the presence of intra-fractional motion. Methods: We have implemented an online replanning workflow on top of our previously reported real-time dose reconstruction software which connects to an Elekta research linac. The treatment planning system DynaPlan was extended to (1) re-optimize and sequence treatment plans (in clockwise beam order) before each beam, based on actual delivered dose, in a timeframe limited by the gantrymore » rotation between subsequent beams, and (2) send the respective segments to the delivery control software DynaTrack which starts/continues treatment immediately.To investigate the impact of a reduced safety margin, we have created and delivered (on a linac emulator) a conventional CTV+5/3mm (I) and a reduced CTV+1mm margin (II) treatment plan for a prostate patient. We have assessed CTV coverage with and without inter-beam replanning, all exposed to a gradual target shift of 0–5mm in posterior and inferior direction from start until the end of delivery. Results: For the reconstructed conventional plan (I), D98 for CTV was 100% of D98 of the planned dose. For the reconstructed margin-reduced plan (II), D98 for CTV was 95% of the planned D98 without replanning, but could be recovered to 99% by replanning for each beam. Plan (II) with replanning resulted in a decrease for bladder V90% by 88% and an increase to rectum V90% by 9% compared to the conventional plan (I). Dose calculation/accumulation was performed in <15ms per MLC aperture, replanning in <15s per beam. Conclusion: We have shown that online inter-beam replanning is technically feasible and potentially allows for a margin reduction. Future investigation considering motion-robust replanning optimization parameters is in progress. We acknowledge support of the MLC research from Elekta AB. This work is supported by Cancer Research UK under Programme C33589/A19908. Research at ICR is also supported by Cancer Research UK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR.« less
Ocular delivery systems for topical application of anti-infective agents.
Duxfield, Linda; Sultana, Rubab; Wang, Ruokai; Englebretsen, Vanessa; Deo, Samantha; Rupenthal, Ilva D; Al-Kassas, Raida
2016-01-01
For the treatment of anterior eye segment infections using anti-infective agents, topical ocular application is the most convenient route of administration. However, topical delivery of anti-infective agents is associated with a number of problems and challenges owing to the unique structure of the eye and the physicochemical properties of these compounds. Topical ocular drug delivery systems can be classified into two forms: conventional and non-conventional. The efficacy of conventional ocular formulations is limited by poor corneal retention and permeation resulting in low ocular bioavailability. Recently, attention has been focused on improving topical ocular delivery of anti-infective agents using advanced drug delivery systems. This review will focus on the challenges of efficient topical ocular delivery of anti-infective agents and will discuss the various types of delivery systems used to improve the treatment anterior segment infections.
Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin.
Sadekar, S; Thiagarajan, G; Bartlett, K; Hubbard, D; Ray, A; McGill, L D; Ghandehari, H
2013-11-01
Oral delivery of camptothecin has a treatment advantage but is limited by low bioavailability and gastrointestinal toxicity. Poly(amido amine) or PAMAM dendrimers have shown promise as intestinal penetration enhancers, drug solubilizers and drug carriers for oral delivery in vitro and in situ. There have been very limited studies in vivo to evaluate PAMAM dendrimers for oral drug delivery. In this study, camptothecin (5 mg/kg) was formulated and co-delivered with cationic, amine-terminated PAMAM dendrimer generation 4.0 (G4.0) (100 and 300 mg/kg) and anionic, carboxylate-terminated PAMAM generation 3.5 (G3.5) (300 and 1000 mg/kg) in CD-1 mice. Camptothecin associated to a higher extent with G4.0 than G3.5 in the formulation, attributed to an electrostatic interaction on the surface of G4.0. Both PAMAM G4.0 and G3.5 increased camptothecin solubilization in simulated gastric fluid and caused a 2-3 fold increase in oral absorption of camptothecin when delivered at 2 h. PAMAM G4.0 and G3.5 did not increase mannitol transport suggesting that the oral absorption of camptothecin was not due to tight junction modulation. Histologic observations of the epithelial layer of small intestinal segments of the gastrointestinal tract (GIT) at 4 h post dosing supported no evidence of toxicity at the evaluated doses of PAMAM dendrimers. This study demonstrates that both cationic (G.4) and anionic (G3.5) PAMAM dendrimers were effective in enhancing the oral absorption of camptothecin. Results suggest that drug inclusion in PAMAM interior controlled solubilization in simulated gastric and intestinal fluids, and increased oral bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.
Sawant, Amit; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Wang, Yi; Li, Yixin; Du, Hong; Perna, Louis
2006-04-01
Modern-day radiotherapy relies on highly sophisticated forms of image guidance in order to implement increasingly conformal treatment plans and achieve precise dose delivery. One of the most important goals of such image guidance is to delineate the clinical target volume from surrounding normal tissue during patient setup and dose delivery, thereby avoiding dependence on surrogates such as bony landmarks. In order to achieve this goal, it is necessary to integrate highly efficient imaging technology, capable of resolving soft-tissue contrast at very low doses, within the treatment setup. In this paper we report on the development of one such modality, which comprises a nonoptimized, prototype electronic portal imaging device (EPID) based on a 40 mm thick, segmented crystalline CsI(Tl) detector incorporated into an indirect-detection active matrix flat panel imager (AMFPI). The segmented detector consists of a matrix of 160 x 160 optically isolated, crystalline CsI(Tl) elements spaced at 1016 microm pitch. The detector was coupled to an indirect detection-based active matrix array having a pixel pitch of 508 microm, with each detector element registered to 2 x 2 array pixels. The performance of the prototype imager was evaluated under very low-dose radiotherapy conditions and compared to that of a conventional megavoltage AMFPI based on a Lanex Fast-B phosphor screen. Detailed quantitative measurements were performed in order to determine the x-ray sensitivity, modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE). In addition, images of a contrast-detail phantom and an anthropomorphic head phantom were also acquired. The prototype imager exhibited approximately 22 times higher zero-frequency DQE (approximately 22%) compared to that of the conventional AMFPI (approximately 1%). The measured zero-frequency DQE was found to be lower than theoretical upper limits (approximately 27%) calculated from Monte Carlo simulations, which were based solely on the x-ray energy absorbed in the detector-indicating the presence of optical Swank noise. Moreover, due to the nonoptimized nature of this prototype, the spatial resolution was observed to be significantly lower than theoretical expectations. Nevertheless, due to its high quantum efficiency (approximately 55%), the prototype imager exhibited significantly higher DQE than that of the conventional AMFPI across all spatial frequencies. In addition, the frequency-dependent DQE was observed to be relatively invariant with respect to the amount of incident radiation, indicating x-ray quantum limited behavior. Images of the contrast-detail phantom and the head phantom obtained using the prototype system exhibit good visualization of relatively large, low-contrast features, and appear significantly less noisy compared to similar images from a conventional AMFPI. Finally, Monte Carlo-based theoretical calculations indicate that, with proper optimization, further, significant improvements in the DQE performance of such imagers could be achieved. It is strongly anticipated that the realization of optimized versions of such very high-DQE EPIDs would enable megavoltage projection imaging at very low doses, and tomographic imaging from a "beam's eye view" at clinically acceptable doses.
Real-time auto-adaptive margin generation for MLC-tracked radiotherapy
NASA Astrophysics Data System (ADS)
Glitzner, M.; Fast, M. F.; de Senneville, B. Denis; Nill, S.; Oelfke, U.; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.
2017-01-01
In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing {{V}90 %} in the underdosed area about 47 % and 41 % , respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Robert A.; Hannoun-Levi, Jean-Michel; Horwitz, Eric
2006-10-01
Purpose: The aim of this study was to evaluate the feasibility of treating the pelvic lymphatic regions during prostate intensity-modulated radiotherapy (IMRT) with respect to our routine acceptance criteria. Methods and Materials: A series of 10 previously treated prostate patients were randomly selected and the pelvic lymphatic regions delineated on the fused magnetic resonance/computed tomography data sets. A targeting progression was formed from the prostate and proximal seminal vesicles only to the inclusion of all pelvic lymphatic regions and presacral region resulting in 5 planning scenarios of increasing geometric difficulty. IMRT plans were generated for each stage for two acceleratormore » manufacturers. Dose volume histogram data were analyzed with respect to dose to the planning target volumes, rectum, bladder, bowel, and normal tissue. Analysis was performed for the number of segments required, monitor units, 'hot spots,' and treatment time. Results: Both rectal endpoints were met for all targets. Bladder endpoints were not met and the bowel endpoint was met in 40% of cases with the inclusion of the extended and presacral lymphatics. A significant difference was found in the number of segments and monitor units with targeting progression and between accelerators, with the smaller beamlets yielding poorer results. Treatment times between the 2 linacs did not exhibit a clinically significant difference when compared. Conclusions: Many issues should be considered with pelvic lymphatic irradiation during IMRT delivery for prostate cancer including dose per fraction, normal structure dose/volume limits, planning target volumes generation, localization, treatment time, and increased radiation leakage. We would suggest that, at a minimum, the endpoints used in this work be evaluated before beginning IMRT pelvic nodal irradiation.« less
Hydrogel Ring for Topical Drug Delivery to the Ocular Posterior Segment.
Shikamura, Yuko; Yamazaki, Yoshiko; Matsunaga, Toru; Sato, Takao; Ohtori, Akira; Tojo, Kakuji
2016-05-01
To investigate the efficacy of a topical hydrogel ring for drug delivery to the posterior segment of the rabbit eye. Novel hydrogel corneal lenses (CL), scleral/corneal lenses (S/CL), and rings were prepared using poly(hydroxyethyl methacrylate). The devices were immersed in 0.3% ofloxacin ophthalmic solution (OOS) to homogeneously distribute the drug throughout the hydrogel. The medicated CL, S/CL, Ring 1 (standard ring), or Ring 2 (shape-optimized ring) was applied to the surface of the cornea, cornea/bulbar conjunctiva, or bulbar conjunctiva of albino rabbits, respectively. Medicated rings did not touch the corneal surface. In another group, one OOS drop was administered to the eye. After 0.25-8 hours, the hydrogel devices were removed and ocular tissues were harvested. High-performance liquid chromatography (HPLC) was used to measure the ofloxacin concentration in the devices and tissues. The drug concentrations in the posterior segment tissues were compared among ofloxacin delivery methods. One hour after placement, eyes treated with Ring 1 or S/CL had markedly higher ofloxacin levels in the posterior segment tissues (conjunctiva, sclera, and retina/choroid) than eyes treated with topical OOS or a CL. Lower levels of ofloxacin were found in anterior segment tissues (cornea and aqueous humor) in eyes treated with Ring 1 compared to those treated with S/CL. Ring 2 most effectively delivered ofloxacin to the retina/choroid. The tissue ofloxacin concentration in the fellow eye was markedly lower than the eye treated with Ring 2. Our results suggest that hydrogel rings are effective in delivering topical ophthalmic drugs to the posterior segment. The drugs are most likely delivered via the transconjunctival/scleral route by lateral diffusion across the bulbar conjunctiva and through the sclera. Systemic drug delivery to the posterior segment is minimal.
Ocular drug delivery systems: An overview
Patel, Ashaben; Cholkar, Kishore; Agrahari, Vibhuti; Mitra, Ashim K
2014-01-01
The major challenge faced by today’s pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreoretinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments. Also, recent developments with other ocular drug delivery strategies employing in situ gels, implants, contact lens and microneedles have been discussed. PMID:25590022
Ocular drug delivery systems: An overview.
Patel, Ashaben; Cholkar, Kishore; Agrahari, Vibhuti; Mitra, Ashim K
The major challenge faced by today's pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreoretinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments. Also, recent developments with other ocular drug delivery strategies employing in situ gels, implants, contact lens and microneedles have been discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Held, M; Cheung, J; Morin, O
Purpose: To commission and evaluate an in vivo EPID-based transit dosimetry software (EPIgray, DOSIsoft, Cachan, France) using simple fields and TG119-based IMRT treatment plans. Methods: EPIgray was commissioned on a Truebeam based on finite tissue-maximum ratio (fTMR) measurements with solid water blocks of thicknesses between 0 and 37 cm. Field sizes varied from 2×2 to 20×20 cm{sup 2}. Subsequently, treatment plans of single and opposed beams with field sizes between 4×4 and 15×15 cm{sup 2} as well as IMRT plans were measured to evaluate the dose reconstruction accuracy. Single field dose predictions were made for anterior-posterior and lateral beams. IMRTmore » plans were created based on TG119 recommendations. The reconstructed dose was compared to the planned dose for selected points at isocenter and away from isocenter. Results: For single square fields, the dose in EPIgray was reconstructed within 3% accuracy at isocenter relative to the planned dose. Similarly, the relative deviation of the total dose was accurately reconstructed within 3% for all IMRT plans with points placed inside a high dose region near the isocenter. Predictions became less accurate than 5% when the evaluation point was outside the majority of IMRT beam segments. Additionally, points 5 cm or more away from the isocenter or within an avoidance structure were predicted less reliably. Conclusion: EPIgray formalism accuracy is adequate for an efficient error detection system. It provides immediate intra-fractional feedback on the delivery of treatment plans without affecting the treatment beam. Besides the EPID, no additional hardware is required, which makes it accessible to all clinics. The software evaluates point dose measurements to verify treatment plan delivery and patient positioning within 5% accuracy, depending on the placement of evaluation points. EPIgray is not intended to replace patient-specific quality assurance but should be utilized as an additional layer of safety for continuous patient treatment verification. This research is supported by DOSIsoft.« less
Microspheres and Nanotechnology for Drug Delivery.
Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn
2016-01-01
Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. © 2016 S. Karger AG, Basel.
[The clinical study on labor pain relief using two kinds of segmental block anesthesia].
Zhang, Z; Zhang, Y; Bi, L
1998-07-01
To study the pain relief effectiveness of combined subarachnoid peridural segmental block and simple peridural anesthesia, and their influences on the mothers and the infants. 100 pregnants women were administered combined subarachnoid and peridural segmental block during labor and delivery (study group). 40 pregnant women received simple peridural anesthesia (control group). The degree of labour pain, side effects, labor course, the mode of delivery and the incidences of postpartum hemorrhage, fetal distress and neonatal asphyxia were observed in two groups respectively. The pain relief effect in the study group was much better than that of the control group (P < 0.01). There were no significant differences of the mean time of labor course and the mode of delivery between the two groups (P > 0.05). The incidences of postpartum hemorrhage, fetal distress and neonatal asphyxia were similar (P > 0.05). The analgesic delivery of combined subarachnoid and peridural segmental block is safe and effective, which has no influences on the labour course and the mothers and infants. Its pain relief effectiveness is more positive and satisfactory than that of simple peridural anesthesia. We suggest that it should be performed in the medical units under optimal conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D; Dyer, B; Kumaran Nair, C
Purpose: The Integral Quality Monitor (IQM), developed by iRT Systems GmbH (Koblenz, Germany) is a large-area, linac-mounted ion chamber used to monitor photon fluence during patient treatment. Our previous work evaluated the change of the ion chamber’s response to deviations from static 1×1 cm2 and 10×10 cm2 photon beams and other characteristics integral to use in external beam detection. The aim of this work is to simulate two external beam radiation delivery errors, quantify the detection of simulated errors and evaluate the reduction in patient harm resulting from detection. Methods: Two well documented radiation oncology delivery errors were selected formore » simulation. The first error was recreated by modifying a wedged whole breast treatment, removing the physical wedge and calculating the planned dose with Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI). The second error was recreated by modifying a static-gantry IMRT pharyngeal tonsil plan to be delivered in 3 unmodulated fractions. A radiation oncologist evaluated the dose for simulated errors and predicted morbidity and mortality commiserate with the original reported toxicity, indicating that reported errors were approximately simulated. The ion chamber signal of unmodified treatments was compared to the simulated error signal and evaluated in Pinnacle TPS again with radiation oncologist prediction of simulated patient harm. Results: Previous work established that transmission detector system measurements are stable within 0.5% standard deviation (SD). Errors causing signal change greater than 20 SD (10%) were considered detected. The whole breast and pharyngeal tonsil IMRT simulated error increased signal by 215% and 969%, respectively, indicating error detection after the first fraction and IMRT segment, respectively. Conclusion: The transmission detector system demonstrated utility in detecting clinically significant errors and reducing patient toxicity/harm in simulated external beam delivery. Future work will evaluate detection of other smaller magnitude delivery errors.« less
An evaluation of distal hair cortisol concentrations collected at delivery.
Orta, Olivia R; Tworoger, Shelley S; Terry, Kathryn L; Coull, Brent A; Gelaye, Bizu; Kirschbaum, Clemens; Sanchez, Sixto E; Williams, Michelle A
2018-04-04
Distal hair segments collected at delivery may allow for the assessment of maternal cortisol secretion in early pregnancy, an important time window for fetal development. Therefore, an investigation of the validity of distal hair cortisol concentrations is warranted. We examined the concordance between proximal and distal hair cortisol concentrations (HCC), both representing the first trimester of pregnancy. The study population was comprised of a random sample of 97 women participating in the Pregnancy Outcomes Maternal and Infant Study, a prospective cohort study of pregnant women attending prenatal clinics in Lima, Peru. Each participant provided two hair samples: once at enrollment [mean gestational age (GA) = 13.1 weeks] and again at full-term delivery (mean GA = 39.0 weeks). Hair segments reflecting the first trimester were: 3 cm hair segments closest to the scalp on the first hair sample (proximal) and 6-9 cm from the scalp on the second hair sample (distal). HCC was determined using Luminescence Immunoassay. A subset (N = 28) had both hair segments additionally analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). HCC values were log-transformed (logHCC), and proximal-distal differences tested using paired sample t-tests. Concordance was evaluated within and across assay types. LogHCC, measured using immunoassay, in distal hair segments was lower compared to proximal hair segments (1.35 versus 1.64 respectively; p = .02). No difference was observed using LC-MS/MS (1.99 versus 1.83, respectively; p=.33). Proximal-distal concordance was low within assay (immunoassay: Pearson = 0.27 and κ = 0.10; LC-MS/MS: Pearson = 0.37 and κ = 0.07). High correlation was observed across assays for both distal (Pearson = 0.78, p < .001; κ = 0.64) and proximal segments (Pearson = 0.96, p < .001; κ = 0.75). In conclusion, distal first-trimester hair segments collected at delivery have lower absolute HCC compared to HCC in proximal first trimester hair segments collected in early pregnancy, and are poorly concordant with HCC in proximal segments. Findings may inform the design of future studies.
Contralateral Breast Dose After Whole-Breast Irradiation: An Analysis by Treatment Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Terence M.; Moran, Jean M., E-mail: jmmoran@med.umich.edu; Hsu, Shu-Hui
2012-04-01
Purpose: To investigate the contralateral breast dose (CBD) across a continuum of breast-conservation therapy techniques. Methods and Materials: An anthropomorphic phantom was CT-simulated, and six treatment plans were generated: open tangents, tangents with an external wedge on the lateral beam, tangents with lateral and medial external wedges, a simple segment plan (three segments per tangent), a complex segmental intensity-modulated radiotherapy (IMRT) plan (five segments per tangent), and a beamlet IMRT plan (>100 segments). For all techniques, the breast on the phantom was irradiated to 5000 cGy. Contralateral breast dose was measured at a uniform depth at the center and eachmore » quadrant using thermoluminescent detectors. Results: Contralateral breast dose varied with position and was 50 {+-} 7.3 cGy in the inner half, 24 {+-} 4.1 cGy at the center, and 16 {+-} 2.2 cGy in the outer half for the open tangential plan. Compared with an average dose of 31 cGy across all points for the open field, the average doses were simple segment 32 cGy (range, 99-105% compared with open technique), complex segment 34 cGy (range, 103-117% compared with open technique), beamlet IMRT 34 cGy (range, 103-124% compared with open technique), lateral wedge only 46 cGy (range, 133-175% compared with open technique), and medial and lateral wedge 96 cGy (range, 282-370% compared with open technique). Conclusions: Single or dual wedge techniques resulted in the highest CBD increases compared with open tangents. To obtain the desired homogeneity to the treated breast while minimizing CBD, segmental and IMRT techniques should be encouraged over external physical compensators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, J
Purpose: The aim of this work is to study the dosimetric impact of leaf interdigitation in prostate cancer dynamic IMRT treatment planning. Methods: Fifteen previously treated prostate cancer patients were replanned for dynamic IMRT (dMLC) with and without leaf interdigitation using Monaco 3.3 TPS on the Elekta Synergy linear accelerator. The prescription dose of PTV was 70Gy/35 fractions. Various dosimetric variables, such as PTV coverage, OAR sparing, delivery efficiency and optimization time, were evaluated for each plan. Results: Interdigitation did not improve the coverage, HI and CI for PTV. Regarding OARs, sparing was equivalent with and without interdigitation. Interdigitation shownmore » an increase in MUs and segments. It was worth noting that leaf interdigitation saved the optimization time. Conclusion: This study shows that leaf interdigitation does not improve plan quality when performing dMLC treatment plan for prostate cancer. However, it influences delivery efficiency and optimization time. Interdigitation may gain efficiency for dosimetrist when designing the prostate cancer dMLC plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, W; Hollebeek, R; Teo, B
2014-06-15
Purpose: Quality Assurance (QA) measurements of proton therapy fields must accurately measure steep longitudinal dose gradients as well as characterize the dose distribution laterally. Currently, available devices for two-dimensional field measurements perturb the dose distribution such that routine QA measurements performed at multiple depths require multiple field deliveries and are time consuming. Methods: A design procedure for a two-dimensional detector array is introduced whereby the proton energy loss and scatter are adjusted so that the downstream dose distribution is maintained to be equivalent to that which would occur in uniform water. Starting with the design for an existing, functional two-dimensionalmore » segmented ion chamber prototype, a compensating material is introduced downstream of the detector to simultaneously equate the energy loss and lateral scatter in the detector assembly to the values in water. An analytic formalism and procedure is demonstrated to calculate the properties of the compensating material in the general case of multiple layers of arbitrary material. The resulting design is validated with Monte Carlo simulations. Results: With respect to the specific prototype design considered, the results indicate that a graphite compensating layer of the proper dimensions can yield proton beam range perturbation less than 0.1mm and beam sigma perturbation less than 2% across the energy range of therapeutic proton beams. Conclusion: We have shown that, for a 2D gas-filled detector array, a graphite-compensating layer can balance the energy loss and multiple Coulomb scattering relative to uniform water. We have demonstrated an analytic formalism and procedure to determine a compensating material in the general case of multiple layers of arbitrary material. This work was supported by the US Army Medical Research and Materiel Command under Contract Agreement No. DAMD17-W81XWH-04-2-0022. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.« less
Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release.
Kondo, Ichiro; Marvizon, Juan Carlos G; Song, Bingbing; Salgado, Frances; Codeluppi, Simone; Hua, Xiao-Ying; Yaksh, Tony L
2005-04-06
Opioid mu- and delta-receptors are present on the central terminals of primary afferents, where they are thought to inhibit neurotransmitter release. This mechanism may mediate analgesia produced by spinal opiates; however, when they used neurokinin 1 receptor (NK1R) internalization as an indicator of substance P release, Trafton et al. (1999) noted that this evoked internalization was altered only modestly by morphine delivered intrathecally at spinal cord segment S1-S2. We reexamined this issue by studying the effect of opiates on NK1R internalization in spinal cord slices and in vivo. In slices, NK1R internalization evoked by dorsal root stimulation at C-fiber intensity was abolished by the mu agonist [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO) (1 microM) and decreased by the delta agonist [D-Phe2,5]-enkephalin (DPDPE) (1 microM). In vivo, hindpaw compression induced NK1R internalization in ipsilateral laminas I-II. This evoked internalization was significantly reduced by morphine (60 nmol), DAMGO (1 nmol), and DPDPE (100 nmol), but not by the kappa agonist trans-(1S,2S)-3,4-dichloro-N-mathyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide hydrochloride (200 nmol), delivered at spinal cord segment L2 using intrathecal catheters. These doses of the mu and delta agonists were equi-analgesic as measured by a thermal escape test. Lower doses neither produced analgesia nor inhibited NK1R internalization. In contrast, morphine delivered by percutaneous injections at S1-S2 had only a modest effect on thermal escape, even at higher doses. Morphine decreased NK1R internalization after systemic delivery, but at a dose greater than that necessary to produce equivalent analgesia. All effects were reversed by naloxone. These results indicate that lumbar opiates inhibit noxious stimuli-induced neurotransmitter release from primary afferents at doses that are confirmed behaviorally as analgesic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawant, A; Modiri, A; Bland, R
Purpose: Post-treatment radiation injury to central and peripheral airways is a potentially important, yet under-investigated determinant of toxicity in lung stereotactic ablative radiotherapy (SAbR). We integrate virtual bronchoscopy technology into the radiotherapy planning process to spatially map and quantify the radiosensitivity of bronchial segments, and propose novel IMRT planning that limits airway dose through non-isotropic intermediate- and low-dose spillage. Methods: Pre- and ∼8.5 months post-SAbR diagnostic-quality CT scans were retrospectively collected from six NSCLC patients (50–60Gy in 3–5 fractions). From each scan, ∼5 branching levels of the bronchial tree were segmented using LungPoint, a virtual bronchoscopic navigation system. The pre-SAbRmore » CT and the segmented bronchial tree were imported into the Eclipse treatment planning system and deformably registered to the planning CT. The five-fraction equivalent dose from the clinically-delivered plan was calculated for each segment using the Universal Survival Curve model. The pre- and post-SAbR CTs were used to evaluate radiation-induced segmental collapse. Two of six patients exhibited significant segmental collapse with associated atelectasis and fibrosis, and were re-planned using IMRT. Results: Multivariate stepwise logistic regression over six patients (81 segments) showed that D0.01cc (minimum point dose within the 0.01cc receiving highest dose) was a significant independent factor associated with collapse (odds-ratio=1.17, p=0.010). The D0.01cc threshold for collapse was 57Gy, above which, collapse rate was 45%. In the two patients exhibiting segmental collapse, 22 out of 32 segments showed D0.01cc >57Gy. IMRT re-planning reduced D0.01cc below 57Gy in 15 of the 22 segments (68%) while simultaneously achieving the original clinical plan objectives for PTV coverage and OAR-sparing. Conclusion: Our results indicate that the administration of lung SAbR can Result in significant injury to bronchial segments, potentially impairing post-SAbR lung function. To our knowledge, this is the first investigation of functional avoidance based on mapping and minimizing dose to individual bronchial segments. The presenting author receives research funding from Varian Medical Systems, Elekta, and VisionRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabibian, A; Kim, A; Rose, J
Purpose: A novel optimization technique was developed for field-in-field (FIF) chestwall radiotherapy using bolus every other day. The dosimetry was compared to currently used optimization. Methods: The prior five patients treated at our clinic to the chestwall and supraclavicular nodes with a mono-isocentric four-field arrangement were selected for this study. The prescription was 5040 cGy in 28 fractions, 5 mm bolus every other day on the tangent fields, 6 and/or 10 MV x-rays, and multileaf collimation.Novelly, tangents FIF segments were forward planned optimized based on the composite bolus and non-bolus dose distribution simultaneously. The prescription was spilt into 14 fractionsmore » for both bolus and non-bolus tangents. The same segments and monitor units were used for the bolus and non-bolus treatment. The plan was optimized until the desired coverage was achieved, minimized 105% hotspots, and a maximum dose of less than 108%. Each tangential field had less than 5 segments.Comparison plans were generated using FIF optimization with the same dosimetric goals, but using only the non-bolus calculation for FIF optimization. The non-bolus fields were then copied and bolus was applied. The same segments and monitor units were used for the bolus and non-bolus segments. Results: The prescription coverage of the chestwall, as defined by RTOG guidelines, was on average 51.8% for the plans that optimized bolus and non-bolus treatments simultaneous (SB) and 43.8% for the plans optimized to the non-bolus treatments (NB). Chestwall coverage of 90% prescription averaged to 80.4% for SB and 79.6% for NB plans. The volume receiving 105% of the prescription was 1.9% for SB and 0.8% for NB plans on average. Conclusion: Simultaneously optimizing for bolus and non-bolus treatments noticeably improves prescription coverage of the chestwall while maintaining similar hotspots and 90% prescription coverage in comparison to optimizing only to non-bolus treatments.« less
Zhang, Pengpeng; Happersett, Laura; Ravindranath, Bosky; Zelefsky, Michael; Mageras, Gig; Hunt, Margie
2016-01-01
Purpose: Robust detection of implanted fiducials is essential for monitoring intrafractional motion during hypofractionated treatment. The authors developed a plan optimization strategy to ensure clear visibility of implanted fiducials and facilitate 3D localization during volumetric modulated arc therapy (VMAT). Methods: Periodic kilovoltage (kV) images were acquired at 20° gantry intervals and paired with simultaneously acquired 4.4° short arc megavoltage digital tomosynthesis (MV-DTS) to localize three fiducials during VMAT delivery for hypofractionated prostate cancer treatment. Beginning with the original optimized plan, control point segments where fiducials were consistently blocked by multileaf collimator (MLC) within each 4.4° MV-DTS interval were first identified. For each segment, MLC apertures were edited to expose the fiducial that led to the least increase in the cost function. Subsequently, MLC apertures of all control points not involved with fiducial visualization were reoptimized to compensate for plan quality losses and match the original dose–volume histogram. MV dose for each MV-DTS was also kept above 0.4 MU to ensure acceptable image quality. Different imaging (gantry) intervals and visibility margins around fiducials were also evaluated. Results: Fiducials were consistently blocked by the MLC for, on average, 36% of the imaging control points for five hypofractionated prostate VMAT plans but properly exposed after reoptimization. Reoptimization resulted in negligible dosimetric differences compared with original plans and outperformed simple aperture editing: on average, PTV D98 recovered from 87% to 94% of prescription, and PTV dose homogeneity improved from 9% to 7%. Without violating plan objectives and compromising delivery efficiency, the highest imaging frequency and largest margin that can be achieved are a 10° gantry interval, and 15 mm, respectively. Conclusions: VMAT plans can be made to accommodate MV-kV imaging of fiducials. Fiducial visualization rate and workflow efficiency are significantly improved with an automatic modification and reoptimization approach. PMID:27147314
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jermoumi, M; Cao, D; Housley, D
Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for bothmore » free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.« less
Planning 4D intensity-modulated arc therapy for tumor tracking with a multileaf collimator
NASA Astrophysics Data System (ADS)
Niu, Ying; Betzel, Gregory T.; Yang, Xiaocheng; Gui, Minzhi; Parke, William C.; Yi, Byongyong; Yu, Cedric X.
2017-02-01
This study introduces a practical four-dimensional (4D) planning scheme of IMAT using 4D computed tomography (4D CT) for planning tumor tracking with dynamic multileaf beam collimation. We assume that patients can breathe regularly, i.e. the same way as during 4D CT with an unchanged period and amplitude, and that the start of 4D-IMAT delivery can be synchronized with a designated respiratory phase. Each control point of the IMAT-delivery process can be associated with an image set of 4D CT at a specified respiratory phase. Target is contoured at each respiratory phase without a motion-induced margin. A 3D-IMAT plan is first optimized on a reference-phase image set of 4D CT. Then, based on the projections of the planning target volume in the beam’s eye view at different respiratory phases, a 4D-IMAT plan is generated by transforming the segments of the optimized 3D plan by using a direct aperture deformation method. Compensation for both translational and deformable tumor motion is accomplished, and the smooth delivery of the transformed plan is ensured by forcing connectivity between adjacent angles (control points). It is envisioned that the resultant plans can be delivered accurately using the dose rate regulated tracking method which handles breathing irregularities (Yi et al 2008 Med. Phys. 35 3955-62).This planning process is straightforward and only adds a small step to current clinical 3D planning practice. Our 4D planning scheme was tested on three cases to evaluate dosimetric benefits. The created 4D-IMAT plans showed similar dose distributions as compared with the 3D-IMAT plans on a single static phase, indicating that our method is capable of eliminating the dosimetric effects of breathing induced target motion. Compared to the 3D-IMAT plans with large treatment margins encompassing respiratory motion, our 4D-IMAT plans reduced radiation doses to surrounding normal organs and tissues.
Wooten, H. Omar; Green, Olga; Li, Harold H.; Liu, Shi; Li, Xiaoling; Rodriguez, Vivian; Mutic, Sasa; Kashani, Rojano
2016-01-01
The aims of this study were to develop a method for automatic and immediate verification of treatment delivery after each treatment fraction in order to detect and correct errors, and to develop a comprehensive daily report which includes delivery verification results, daily image‐guided radiation therapy (IGRT) review, and information for weekly physics reviews. After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a commercial MRI‐guided radiotherapy treatment machine, we designed a procedure to use 1) treatment plan files, 2) delivery log files, and 3) beam output information to verify the accuracy and completeness of each daily treatment delivery. The procedure verifies the correctness of delivered treatment plan parameters including beams, beam segments and, for each segment, the beam‐on time and MLC leaf positions. For each beam, composite primary fluence maps are calculated from the MLC leaf positions and segment beam‐on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. A daily treatment delivery report is designed to include all required information for IGRT and weekly physics reviews including the plan and treatment fraction information, daily beam output information, and the treatment delivery verification results. A computer program was developed to implement the proposed procedure of the automatic delivery verification and daily report generation for an MRI guided radiation therapy system. The program was clinically commissioned. Sensitivity was measured with simulated errors. The final version has been integrated into the commercial version of the treatment delivery system. The method automatically verifies the EBRT treatment deliveries and generates the daily treatment reports. Already in clinical use for over one year, it is useful to facilitate delivery error detection, and to expedite physician daily IGRT review and physicist weekly chart review. PACS number(s): 87.55.km PMID:27167269
Segmented-field radiography in scoliosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W.W.; Barnes, G.T.; Nasca, R.J.
1985-02-01
A method of scoliosis imaging using segmented fields is presented. The method is advantageous for patients requiring serial radiographic monitoring, as it results in markedly reduced radiation doses to critical organs, particularly the breast. Absorbed dose to the breast was measured to be 8.8 mrad (88 ..mu..Gy) for a full-field examination and 0.051 mrad (5.1 ..mu..Gy) for the segmented-field study. The segmented-field technique also results in improved image quality. Experience with 53 studies in 23 patients is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobler, Matt; Watson, Gordon; Leavitt, Dennis
Radiotherapy plays a key role in the definitive or adjuvant management of patients with mesothelioma of the pleural surface. Many patients are referred for radiation with intact lung following biopsy or subtotal pleurectomy. Delivery of efficacious doses of radiation to the pleural lining while avoiding lung parenchyma toxicity has been a difficult technical challenge. Using opposed photon fields produce doses in lung that result in moderate-to-severe pulmonary toxicity in 100% of patients treated. Combined photon-electron beam treatment, at total doses of 4250 cGy to the pleural surface, results in two-thirds of the lung volume receiving over 2100 cGy. We havemore » developed a technique using intensity-modulated photon arc therapy (IMRT) that significantly improves the dose distribution to the pleural surface with concomitant decrease in dose to lung parenchyma compared to traditional techniques. IMRT treatment of the pleural lining consists of segments of photon arcs that can be intensity modulated with varying beam weights and multileaf positions to produce a more uniform distribution to the pleural surface, while at the same time reducing the overall dose to the lung itself. Computed tomography (CT) simulation is critical for precise identification of target volumes as well as critical normal structures (lung and heart). Rotational arc trajectories and individual leaf positions and weightings are then defined for each CT plane within the patient. This paper will describe the proposed rotational IMRT technique and, using simulated isodose distributions, show the improved potential for sparing of dose to the critical structures of the lung, heart, and spinal cord.« less
Kadam, Rajendra S.; Williams, Jason; Tyagi, Puneet; Edelhauser, Henry F.
2013-01-01
Purpose First, to determine the influence of drug lipophilicity (using eight beta-blockers) and molecular weight (using 4 kDa and 40 kDa fluoroscein isothiocyanate [FITC]-dextrans) on suprachoroidal delivery to the posterior segment of the eye by using a rabbit ex vivo eye model. Second, to determine whether drug distribution differs between the dosed and undosed side of the eye following suprachoroidal delivery. Third, to compare the suprachoroidal delivery of sodium fluorescein (NaF) with the intracameral and intravitreal routes by using noninvasive fluorophotometry. Methods Using a small hypodermic 26G needle (3/8”) with a short bevel (250 µm), location of the suprachoroidal injection in an ex vivo New Zealand white rabbit eye model was confirmed with India ink. Ocular tissue distribution of NaF (25 µl of 1.5 µg/ml) at 37 °C was monitored noninvasively using the Fluorotron MasterTM at 0, 1, and 3 h following suprachoroidal, intravitreal, or intracameral injections in ex vivo rabbit eyes. For assessing the influence of lipophilicity and molecular size, 25 µl of a mixture of eight beta-blockers (250 µg/ml each) or FITC-dextran (4 kDa and 40 kDa, 30 mg/ml) was injected into the suprachoroidal space of excised rabbit eyes and incubated at 37 °C. Eyes were incubated for 1 and 3 h, and frozen at the end of incubation. Ocular tissues were isolated in frozen condition. Beta-blocker and FITC-dextran levels in excised ocular tissue were measured by liquid chromatography–tandem mass spectrometry and spectrofluorometry, respectively. Results Histological sections of India ink-injected albino rabbit eye showed the localization of dye as a black line in the suprachoroidal space. Suprachoroidal injection of NaF showed signal localization to the choroid and retina at 1 and 3 h post injection when compared with intravitreal and intracameral injections. Drug delivery to the vitreous after suprachoroidal injection decreased with an increase in solute lipophilicity and molecular weight. With an increase in drug lipophilicity, drug levels in the choroid–retinal pigment epithelium (RPE) and retina generally increased with some exceptions. Beta-blockers and FITC-dextrans were localized more to the dosed side when compared to the opposite side of the sclera, choroid–RPE, retina, and vitreous. These differences were greater for FITC-dextrans as compared to the beta-blockers. Conclusions The suprachoroidal route of injection allows localized delivery to the choroid–RPE and retina for small as well as large molecules. Suprachoroidal drug delivery to the vitreous declines with an increase in drug lipophilicity and molecular weight. Drug delivery differs between the dosed and opposite sides following suprachoroidal injection, at least up to 3 h. PMID:23734089
Automated coronary artery calcification detection on low-dose chest CT images
NASA Astrophysics Data System (ADS)
Xie, Yiting; Cham, Matthew D.; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.
2014-03-01
Coronary artery calcification (CAC) measurement from low-dose CT images can be used to assess the risk of coronary artery disease. A fully automatic algorithm to detect and measure CAC from low-dose non-contrast, non-ECG-gated chest CT scans is presented. Based on the automatically detected CAC, the Agatston score (AS), mass score and volume score were computed. These were compared with scores obtained manually from standard-dose ECG-gated scans and low-dose un-gated scans of the same patient. The automatic algorithm segments the heart region based on other pre-segmented organs to provide a coronary region mask. The mitral valve and aortic valve calcification is identified and excluded. All remaining voxels greater than 180HU within the mask region are considered as CAC candidates. The heart segmentation algorithm was evaluated on 400 non-contrast cases with both low-dose and regular dose CT scans. By visual inspection, 371 (92.8%) of the segmentations were acceptable. The automated CAC detection algorithm was evaluated on 41 low-dose non-contrast CT scans. Manual markings were performed on both low-dose and standard-dose scans for these cases. Using linear regression, the correlation of the automatic AS with the standard-dose manual scores was 0.86; with the low-dose manual scores the correlation was 0.91. Standard risk categories were also computed. The automated method risk category agreed with manual markings of gated scans for 24 cases while 15 cases were 1 category off. For low-dose scans, the automatic method agreed with 33 cases while 7 cases were 1 category off.
Variable beam dose rate and DMLC IMRT to moving body anatomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papiez, Lech; Abolfath, Ramin M.
2008-11-15
Derivation of formulas relating leaf speeds and beam dose rates for delivering planned intensity profiles to static and moving targets in dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is presented. The analysis of equations determining algorithms for DMLC IMRT delivery under a variable beam dose rate reveals a multitude of possible delivery strategies for a given intensity map and for any given target motion patterns. From among all equivalent delivery strategies for DMLC IMRT treatments specific subclasses of strategies can be selected to provide deliveries that are particularly suitable for clinical applications providing existing delivery devices are used.more » Special attention is devoted to the subclass of beam dose rate variable DMLC delivery strategies to moving body anatomy that generalize existing techniques of such deliveries in Varian DMLC irradiation methodology to static body anatomy. Few examples of deliveries from this subclass of DMLC IMRT irradiations are investigated to illustrate the principle and show practical benefits of proposed techniques.« less
The Impact of Manual Segmentation of CT Images on Monte Carlo Based Skeletal Dosimetry
NASA Astrophysics Data System (ADS)
Frederick, Steve; Jokisch, Derek; Bolch, Wesley; Shah, Amish; Brindle, Jim; Patton, Phillip; Wyler, J. S.
2004-11-01
Radiation doses to the skeleton from internal emitters are of importance in both protection of radiation workers and patients undergoing radionuclide therapies. Improved dose estimates involve obtaining two sets of medical images. The first image provides the macroscopic boundaries (spongiosa volume and cortical shell) of the individual skeletal sites. A second, higher resolution image of the spongiosa microstructure is also obtained. These image sets then provide the geometry for a Monte Carlo radiation transport code. Manual segmentation of the first image is required in order to provide the macrostructural data. For this study, multiple segmentations of the same CT image were performed by multiple individuals. The segmentations were then used in the transport code and the results compared in order to determine the impact of differing segmentations on the skeletal doses. This work has provided guidance on the extent of training required of the manual segmenters. (This work was supported by a grant from the National Institute of Health.)
Protective Immunity and Safety of a Genetically Modified Influenza Virus Vaccine
Garcia, Cristiana Couto; Filho, Bruno Galvão; Gonçalves, Ana Paula de Faria; Lima, Braulio Henrique Freire; Lopes, Gabriel Augusto Oliveira; Rachid, Milene Alvarenga; Peixoto, Andiara Cristina Cardoso; de Oliveira, Danilo Bretas; Ataíde, Marco Antônio; Zirke, Carla Aparecida; Cotrim, Tatiane Marques; Costa, Érica Azevedo; Almeida, Gabriel Magno de Freitas; Russo, Remo Castro; Gazzinelli, Ricardo Tostes; Machado, Alexandre de Magalhães Vieira
2014-01-01
Recombinant influenza viruses are promising viral platforms to be used as antigen delivery vectors. To this aim, one of the most promising approaches consists of generating recombinant viruses harboring partially truncated neuraminidase (NA) segments. To date, all studies have pointed to safety and usefulness of this viral platform. However, some aspects of the inflammatory and immune responses triggered by those recombinant viruses and their safety to immunocompromised hosts remained to be elucidated. In the present study, we generated a recombinant influenza virus harboring a truncated NA segment (vNA-Δ) and evaluated the innate and inflammatory responses and the safety of this recombinant virus in wild type or knock-out (KO) mice with impaired innate (Myd88 -/-) or acquired (RAG -/-) immune responses. Infection using truncated neuraminidase influenza virus was harmless regarding lung and systemic inflammatory response in wild type mice and was highly attenuated in KO mice. We also demonstrated that vNA-Δ infection does not induce unbalanced cytokine production that strongly contributes to lung damage in infected mice. In addition, the recombinant influenza virus was able to trigger both local and systemic virus-specific humoral and CD8+ T cellular immune responses which protected immunized mice against the challenge with a lethal dose of homologous A/PR8/34 influenza virus. Taken together, our findings suggest and reinforce the safety of using NA deleted influenza viruses as antigen delivery vectors against human or veterinary pathogens. PMID:24927156
Intradermal Inactivated Poliovirus Vaccine: A Preclinical Dose-Finding Study
Kouiavskaia, Diana; Mirochnitchenko, Olga; Dragunsky, Eugenia; Kochba, Efrat; Levin, Yotam; Troy, Stephanie; Chumakov, Konstantin
2015-01-01
Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial vaccine doses induced antibodies at titers comparable to those after immunization with full human dose delivered intramuscularly. The results suggest that intradermal delivery of IPV may lead to dose-sparing effect and reduction of the vaccination cost. PMID:25391313
Monte Carlo-based QA for IMRT of head and neck cancers
NASA Astrophysics Data System (ADS)
Tang, F.; Sham, J.; Ma, C.-M.; Li, J.-S.
2007-06-01
It is well-known that the presence of large air cavity in a dense medium (or patient) introduces significant electronic disequilibrium when irradiated with megavoltage X-ray field. This condition may worsen by the possible use of tiny beamlets in intensity-modulated radiation therapy (IMRT). Commercial treatment planning systems (TPSs), in particular those based on the pencil-beam method, do not provide accurate dose computation for the lungs and other cavity-laden body sites such as the head and neck. In this paper we present the use of Monte Carlo (MC) technique for dose re-calculation of IMRT of head and neck cancers. In our clinic, a turn-key software system is set up for MC calculation and comparison with TPS-calculated treatment plans as part of the quality assurance (QA) programme for IMRT delivery. A set of 10 off-the-self PCs is employed as the MC calculation engine with treatment plan parameters imported from the TPS via a graphical user interface (GUI) which also provides a platform for launching remote MC simulation and subsequent dose comparison with the TPS. The TPS-segmented intensity maps are used as input for the simulation hence skipping the time-consuming simulation of the multi-leaf collimator (MLC). The primary objective of this approach is to assess the accuracy of the TPS calculations in the presence of air cavities in the head and neck whereas the accuracy of leaf segmentation is verified by fluence measurement using a fluoroscopic camera-based imaging device. This measurement can also validate the correct transfer of intensity maps to the record and verify system. Comparisons between TPS and MC calculations of 6 MV IMRT for typical head and neck treatments review regional consistency in dose distribution except at and around the sinuses where our pencil-beam-based TPS sometimes over-predicts the dose by up to 10%, depending on the size of the cavities. In addition, dose re-buildup of up to 4% is observed at the posterior nasopharyngeal mucosa for some treatments with heavily-weighted anterior fields.
Optimization of the scan protocols for CT-based material extraction in small animal PET/CT studies
NASA Astrophysics Data System (ADS)
Yang, Ching-Ching; Yu, Jhih-An; Yang, Bang-Hung; Wu, Tung-Hsin
2013-12-01
We investigated the effects of scan protocols on CT-based material extraction to minimize radiation dose while maintaining sufficient image information in small animal studies. The phantom simulation experiments were performed with the high dose (HD), medium dose (MD) and low dose (LD) protocols at 50, 70 and 80 kVp with varying mA s. The reconstructed CT images were segmented based on Hounsfield unit (HU)-physical density (ρ) calibration curves and the dual-energy CT-based (DECT) method. Compared to the (HU;ρ) method performed on CT images acquired with the 80 kVp HD protocol, a 2-fold improvement in segmentation accuracy and a 7.5-fold reduction in radiation dose were observed when the DECT method was performed on CT images acquired with the 50/80 kVp LD protocol, showing the possibility to reduce radiation dose while achieving high segmentation accuracy.
Microchips and controlled-release drug reservoirs.
Staples, Mark
2010-01-01
This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.
Seco, J; Clark, C H; Evans, P M; Webb, S
2006-05-01
This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In the case of the oesophagus, the critical organ, spinal cord, received a greater dose than initially planned, due to the delivery effects. The increase in the spinal cord dose is of the order of 2-3 Gy. In the case of the prostate and pelvic nodes, the IMRT delivery effects led to an increase of approximately 2 Gy in the dose delivered to the secondary PTV, the pelvic nodes. In addition to this, the small bowel, rectum and bladder received an increased dose of the order of 2-3 Gy to 50% of their total volume. IMRT delivery techniques strongly influence the delivered dose distributions for the oesophagus and prostate/pelvic nodes tumour sites and these effects are not yet accounted for in the Pinnacle and the CadPlan/Helios planning systems. Currently, they must be taken into account during the optimization stage by altering the dose limits accepted during optimization so that the final (sequenced) dose is within the constraints.
Jarrahian, Courtney; Rein-Weston, Annie; Saxon, Gene; Creelman, Ben; Kachmarik, Greg; Anand, Abhijeet; Zehrung, Darin
2017-03-27
Intradermal delivery of a fractional dose of inactivated poliovirus vaccine (IPV) offers potential benefits compared to intramuscular (IM) delivery, including possible cost reductions and easing of IPV supply shortages. Objectives of this study were to assess intradermal delivery devices for dead space, wastage generated by the filling process, dose accuracy, and total number of doses that can be delivered per vial. Devices tested included syringes with staked (fixed) needles (autodisable syringes and syringes used with intradermal adapters), a luer-slip needle and syringe, a mini-needle syringe, a hollow microneedle device, and disposable-syringe jet injectors with their associated filling adapters. Each device was used to withdraw 0.1-mL fractional doses from single-dose IM glass vials which were then ejected into a beaker. Both vial and device were weighed before and after filling and again after expulsion of liquid to record change in volume at each stage of the process. Data were used to calculate the number of doses that could potentially be obtained from multidose vials. Results show wide variability in dead space, dose accuracy, overall wastage, and total number of doses that can be obtained per vial among intradermal delivery devices. Syringes with staked needles had relatively low dead space and low overall wastage, and could achieve a greater number of doses per vial compared to syringes with a detachable luer-slip needle. Of the disposable-syringe jet injectors tested, one was comparable to syringes with staked needles. If intradermal delivery of IPV is introduced, selection of an intradermal delivery device can have a substantial impact on vaccine wasted during administration, and thus on the required quantity of vaccine that needs to be purchased. An ideal intradermal delivery device should be not only safe, reliable, accurate, and acceptable to users and vaccine recipients, but should also have low dead space, high dose accuracy, and low overall wastage to maximize the potential number of doses that can be withdrawn and delivered. Copyright © 2017 PATH. Published by Elsevier Ltd.. All rights reserved.
Leung, Daniel T.; Henning, Paul A.; Wagner, Emily C.; Blasig, Audrey; Wald, Anna; Sacks, Stephen L.; Corey, Lawrence; Money, Deborah M.
2009-01-01
Objective: Acyclovir therapy in late pregnancy among women with recurrent genital herpes is effective in decreasing genital lesion frequency and subclinical viral shedding rates at delivery, thereby decreasing the need for caesarean delivery. Despite good adherence and increased dosing schedules, breakthrough lesions and viral shedding are still observed in some women at or near delivery. Anecdotal data suggests that low levels of HSV replication at delivery may result in transmission to the neonate. Therefore, defining optimal acyclovir dosing during labor and delivery is warranted. Our objectives were to determine actual acyclovir levels at delivery, and explore associations between acyclovir levels, duration of labour and time since last acyclovir dose. Methods: Twenty-seven patients were prescribed oral acyclovir 400 mg three times daily from 36 weeks gestation. Cord blood (venous and arterial) and maternal venous blood samples were collected at delivery, and acyclovir levels measured using capillary electrophoresis. Correlations between duration of labour and time since last acyclovir dose with acyclovir blood levels were calculated. Results: Acyclovir levels were below the published mean steady-state trough value (180 ng/ml) in 52% of venous cord, 55% of arterial cord, and 36% of maternal samples. There was a significant inverse correlation between time since last dose and venous cord (rs19=−0.57, p<0.015), arterial cord (rs16=−0.63, p<0.01), and maternal acyclovir levels (r10=−0.69, p<0.03). Conclusions: Oral dosing of acyclovir in late pregnancy may result in insufficient levels at delivery to prevent viral shedding. Alternative approaches should evaluate dosing through labor, perhaps intravenously, and its effect on viral shedding. PMID:20085679
Marketing ambulatory care to women: a segmentation approach.
Harrell, G D; Fors, M F
1985-01-01
Although significant changes are occurring in health care delivery, in many instances the new offerings are not based on a clear understanding of market segments being served. This exploratory study suggests that important differences may exist among women with regard to health care selection. Five major women's segments are identified for consideration by health care executives in developing marketing strategies. Additional research is suggested to confirm this segmentation hypothesis, validate segmental differences and quantify the findings.
Kim, Sungwoo; Bedigrew, Katherine; Guda, Teja; Maloney, William J.; Park, Sangwon; Wenke, Joseph C.; Yang, Yunzhi Peter
2014-01-01
The purpose of this study was to develop and characterize a novel photo-cross-linkable chitosan-lactide-fibrinogen (CLF) hydrogel and evaluate the efficacy of bone morphogenetic protein-2 (BMP-2) containing CLF hydrogel for osteogenesis in vitro and in vivo. We synthesized the CLF hydrogels and characterized their chemical structure, degradation rate, compressive modulus, and in vitro BMP-2 release kinetics. We evaluated bioactivities of the BMP-2 containing CLF hydrogels (0, 50, 100, and 500 ng/ml) in vitro using W-20-17 preosteoblast mouse bone marrow stromal cells and C2C12 mouse myoblast cells. The effect of BMP-2 containing CLF gels (0, 0.5, 1, 2, and 5μg) on bone formation was evaluated using rat critical size segmental bone defects for 4 weeks. FTIR spectra and SEM images showed chemical and structural changes by addition of fibrinogen into chitosan-lactide copolymer. Incorporation of fibrinogen molecules significantly increased compressive modulus of the hydrogels. In vitro BMP-2 release study showed initial burst releases from the CLF hydrogels followed by sustained releases, regardless of the concentration of the BMP-2 over 4 weeks. Cells in all groups were viable in the presence of the hydrogels regardless of BMP-2 doses, indicating non-cytotoxicity of hydrogels. Alkaline phosphate activity and mineralization of cells exhibited dose dependence on BMP-2 containing CLF hydrogels. Radiographs, microcomputed tomography, and histology confirmed that the BMP-2 containing CLF hydrogels prompted neo-osteogenesis and accelerated healing of the defects in a dose-dependent manner. Thus the CLF hydrogel is a promising delivery system of growth factors for bone regeneration. PMID:25174669
Pulsed Dose Delivery of Oxygen in Mechanically Ventilated Pigs with Acute Lung Injury
2013-03-01
collapse or arrhythmia were encountered after administration of oleic acid, chest compressions, electrical defibrillation , and epinephrine (0.1-1 mg/kg...endotracheal tube to continuously measure the oxygen content of the gas in the circuit. We designed the study as a crossover trial, so each animal served as... designed to prove that a pulsed dose delivery system would be a better method of oxygen delivery, it is interesting to note that pulsed dose delivery did
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, T; Dooley, J; Zhu, T
2016-06-15
Purpose: Clinical implementations of adaptive radiotherapy (ART) are limited mainly by the requirement of delivery QA (DQA) prior to the treatment. Small segment size and small segment MU are two dominant factors causing failures of DQA. The aim of this project is to explore the feasibility of ART treatment without DQA by using a partial optimization approach. Methods: A retrospective simulation study was performed on two prostate cancer patients treated with SMLC-IMRT. The prescription was 180cGx25 fractions with daily CT-on-rail imaging for target alignment. For each patient, seven daily CTs were selected randomly across treatment course. The contours were deformablelymore » transferred from the simulation CT onto the daily CTs and modified appropriately. For each selected treatment, dose distributions from original beams were calculated on the daily treatment CTs (DCT plan). An ART plan was also created by optimizing the segmental MU only, while the segment shapes were preserved and the minimum MU constraint was respected. The overlaps, between PTV and the rectum, between PTV and the bladder, were normalized by the PTV volume. This ratio was used to characterize the difficulty of organs-at-risk (OAR) sparing. Results: Comparing to the original plan, PTV coverage was compromised significantly in DCT plans (82% ± 7%) while all ART plans preserved PTV coverage. ART plans showed similar OAR sparing as the original plan, such as V40Gy=11.2cc (ART) vs 11.4cc (original) for the rectum and D10cc=4580cGy vs 4605cGy for the bladder. The sparing of the rectum/bladder depends on overlap ratios. The sparing in ART was either similar or improved when overlap ratios in treatment CTs were smaller than those in original plan. Conclusion: A partial optimization method is developed that may make the real-time ART feasible on selected patients. Future research is warranted to quantify the applicability of the proposed method.« less
Sukumar, Prabakar; Padmanaban, Sriram; Jeevanandam, Prakash; Syam Kumar, S.A.; Nagarajan, Vivekanandan
2011-01-01
Aim In this study, the dosimetric properties of the electronic portal imaging device were examined and the quality assurance testing of Volumetric Modulated Arc Therapy was performed. Background RapidArc involves the variable dose rate, leaf speed and the gantry rotation. The imager was studied for the effects like dose, dose rate, field size, leaf speed and sag during gantry rotation. Materials and methods A Varian RapidArc machine equipped with 120 multileaf collimator and amorphous silicon detector was used for the study. The characteristics that are variable in RapidArc treatment were studied for the portal imager. The accuracy of a dynamic multileaf collimator position at different gantry angles and during gantry rotation was examined using the picket fence test. The control of the dose rate and gantry speed was verified using a test field irradiating seven strips of the same dose with different dose rate and gantry speeds. The control over leaf speed during arc was verified by irradiating four strips of different leaf speeds with the same dose in each strip. To verify the results, the RapidArc test procedure was compared with the X-Omat film and verified for a period of 6 weeks using EPID. Results The effect of gantry rotation on leaf accuracy was minimal. The dose in segments showed good agreement with mean deviation of 0.8% for dose rate control and 1.09% for leaf speed control over different gantry speeds. Conclusion The results provided a precise control of gantry speed, dose rate and leaf speeds during RapidArc delivery and were consistent over 6 weeks. PMID:24376989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, T; Rella, J; Yang, J
Purpose: Recent development of an MLC for robotic external beam radiotherapy has the potential of new clinical application in conventionally fractionated radiation therapy. This study offers a dosimetric comparison of IMRT plans using Cyberknife with MLC versus conventional linac plans. Methods: Ten prostate cancer patients treated on a traditional linac with IMRT to 7920cGy at 180cGy/fraction were randomly selected. GTVs were defined as prostate plus proximal seminal vesicles. PTVs were defined as GTV+8mm in all directions except 5mm posteriorly. Conventional IMRT planning was performed on Philips Pinnacle and delivered on a standard linac with CBCT and 10mm collimator leaf width.more » For each case a Cyberknife plan was created using Accuray Multiplan with same CT data set, contours, and dose constraints. All dosimetric data was transferred to third party software for independent computation of contour volumes and DVH. Delivery efficiency was evaluated using total MU, treatment time, number of beams, and number of segments. Results: Evaluation criteria including percent target coverage, homogeneity index, and conformity index were found to be comparable. All dose constraints from QUANTEC were found to be statistically similar except rectum V50Gy and bladder V65Gy. Average rectum V50Gy was lower for robotic IMRT (30.07%±6.57) versus traditional (34.73%±3.62, p=0.0130). Average bladder V65Gy was lower for robotic (17.87%±12.74) versus traditional (21.03%±11.93, p=0.0405). Linac plans utilized 9 coplanar beams, 48.9±3.8 segments, and 19381±2399MU. Robotic plans utilized 38.4±9.0 non-coplanar beams, 85.5±21.0 segments and 42554.71±16381.54 MU. The average treatment was 15.02±0.60 minutes for traditional versus 20.90±2.51 for robotic. Conclusion: The robotic IMRT plans were comparable to the traditional IMRT plans in meeting the target volume dose objectives. Critical structure dose constraints were largely comparable although statistically significant differences were found in favor of the robotic platform in terms of rectum V50Gy and bladder V65Gy at a cost of 25% longer treatment time.« less
Spatial frequency performance limitations of radiation dose optimization and beam positioning
NASA Astrophysics Data System (ADS)
Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.
2018-06-01
The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.
Manigandan, Durai; Karrthick, Karukkupalayam Palaniappan; Sambasivaselli, Raju; Senniandavar, Vellaingiri; Ramu, Mahendran; Rajesh, Thiyagarajan; Lutz, Muller; Muthukumaran, Manavalan; Karthikeyan, Nithyanantham; Tejinder, Kataria
2014-01-01
The purpose of this study was to evaluate quantitatively the patient‐specific 3D dosimetry tool COMPASS with 2D array MatriXX detector for stereotactic volumetric‐modulated arc delivery. Twenty‐five patients CT images and RT structures from different sites (brain, head & neck, thorax, abdomen, and spine) were taken from CyberKnife Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in CyberKnife. For each patient, linac based volumetric‐modulated arc therapy (VMAT) stereotactic plans were generated in Monaco TPS v3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5–20 Gy per fraction. Target prescription and critical organ constraints were tried to match the delivered treatment plans. Each plan quality was analyzed using conformity index (CI), conformity number (CN), gradient Index (GI), target coverage (TC), and dose to 95% of volume (D95). Monaco Monte Carlo (MC)‐calculated treatment plan delivery accuracy was quantitatively evaluated with COMPASS‐calculated (CCA) dose and COMPASS indirectly measured (CME) dose based on dose‐volume histogram metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using MultiCube phantom. Routine quality assurance of absolute point dose verification was performed to check the overall delivery accuracy. Quantitative analyses of dose delivery verification were compared with pass and fail criteria of 3 mm and 3% distance to agreement and dose differences. Gamma passing rate was compared with 2D fluence verification from MatriXX with MultiCube. Comparison of COMPASS reconstructed dose from measured fluence and COMPASS computed dose has shown a very good agreement with TPS calculated dose. Each plan was evaluated based on dose volume parameters for target volumes such as dose at 95% of volume (D95) and average dose. For critical organs dose at 20% of volume (D20), dose at 50% of volume (D50), and maximum point doses were evaluated. Comparison was carried out using gamma analysis with passing criteria of 3 mm and 3%. Mean deviation of 1.9%±1% was observed for dose at 95% of volume (D95) of target volumes, whereas much less difference was noticed for critical organs. However, significant dose difference was noticed in two cases due to the smaller tumor size. Evaluation of this study revealed that the COMPASS 3D dosimetry is efficient and easy to use for patient‐specific QA of VMAT stereotactic delivery. 3D dosimetric QA with COMPASS provides additional degrees of freedom to check the high‐dose modulated stereotactic delivery with very high precision on patient CT images. PACS numbers: 87.55.Qr, 87.56.Fc PMID:25679152
PARTIAL-BODY RADIATIONS OF QUEEN HONEY BEES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.R.
1964-10-31
By shielding abdominal segments III through V queen honey bees survived otherwise lethal doses of x radiation. In contrast, irradiating only segments III through V with 10,000 r killed all queens within three weeks, as did wholebody irradiations. Lead shields that protect segments III through V and permit irradiating either the spermatozoa in the spermatheca or the oogonia of the ovary with higher doses than could otherwise be adminlstered are described. (auth)
Nanotherapy for posterior eye diseases.
Kaur, Indu Pal; Kakkar, Shilpa
2014-11-10
It is assumed that more than 50% of the most enfeebling ocular diseases have their origin in the posterior segment. Furthermore, most of these diseases lead to partial or complete blindness, if left untreated. After cancer, blindness is the second most dreaded disease world over. However, treatment of posterior eye diseases is more challenging than the anterior segment ailments due to a series of anatomical barriers and physiological constraints confronted for delivery to this segment. In this regard, nanostructured drug delivery systems are proposed to defy ocular barriers, target retina, and act as permeation enhancers in addition to providing a controlled release. Since an important step towards developing effective treatment strategies is to understand the course or a route a drug molecule needs to follow to reach the target site, the first part of the present review discusses various pathways available for effective delivery to and clearance from the posterior eye. Promise held by nanocarrier systems, viz. liposomes, nanoparticles, and nanoemulsion, for effective delivery and selective targeting is also discussed with illustrative examples, tables, and flowcharts. However, the applicability of these nanocarrier systems as self-administration ocular drops is still an unrealized dream which is in itself a huge technological challenge. Copyright © 2014 Elsevier B.V. All rights reserved.
Polin, C M; Hale, B; Mauritz, A A; Habib, A S; Jones, C A; Strouch, Z Y; Dominguez, J E
2015-08-01
Parturients with super-morbid obesity, defined as body mass index greater than 50kg/m(2), represent a growing segment of patients who require anesthetic care for labor and delivery. Severe obesity and its comorbid conditions place the parturient and fetus at greater risk for pregnancy complications and cesarean delivery, as well as surgical and anesthetic complications. The surgical approach for cesarean delivery in these patients may require a supra-umbilical vertical midline incision due to a large pannus. The dense T4-level of spinal anesthesia can cause difficulties with ventilation for the obese patient during the procedure, which can be prolonged. Patients also may have respiratory complications in the postoperative period due to pain from the incision. We describe the anesthetic management of three parturients with body mass index ranging from 73 to 95kg/m(2) who had a cesarean delivery via a supra-umbilical vertical midline incision. Continuous lumbar spinal and low thoracic epidural catheters were placed in each patient for intraoperative anesthesia and postoperative analgesia, respectively. Continuous spinal catheters were dosed with incremental bupivacaine boluses to achieve surgical anesthesia. In one case, the patient required respiratory support with non-invasive positive pressure ventilation. Two cases were complicated by intraoperative hemorrhage. All patients had satisfactory postoperative analgesia with a thoracic epidural infusion. None suffered postoperative respiratory complications or postdural puncture headache. The use of a continuous lumbar spinal catheter and a low thoracic epidural provides several advantages in the anesthetic management of super-morbidly obese parturients for cesarean delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Detection of IMRT delivery errors based on a simple constancy check of transit dose by using an EPID
NASA Astrophysics Data System (ADS)
Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun
2015-11-01
Beam delivery errors during intensity modulated radiotherapy (IMRT) were detected based on a simple constancy check of the transit dose by using an electronic portal imaging device (EPID). Twenty-one IMRT plans were selected from various treatment sites, and the transit doses during treatment were measured by using an EPID. Transit doses were measured 11 times for each course of treatment, and the constancy check was based on gamma index (3%/3 mm) comparisons between a reference dose map (the first measured transit dose) and test dose maps (the following ten measured dose maps). In a simulation using an anthropomorphic phantom, the average passing rate of the tested transit dose was 100% for three representative treatment sites (head & neck, chest, and pelvis), indicating that IMRT was highly constant for normal beam delivery. The average passing rate of the transit dose for 1224 IMRT fields from 21 actual patients was 97.6% ± 2.5%, with the lower rate possibly being due to inaccuracies of patient positioning or anatomic changes. An EPIDbased simple constancy check may provide information about IMRT beam delivery errors during treatment.
Poster — Thur Eve — 14: Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Salvio, A.; Bedwani, S.; Carrier, J-F.
2014-08-15
Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization frommore » single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.« less
Low, D A; Sohn, J W; Klein, E E; Markman, J; Mutic, S; Dempsey, J F
2001-05-01
The characteristics of a commercial multileaf collimator (MLC) to deliver static and dynamic multileaf collimation (SMLC and DMLC, respectively) were investigated to determine their influence on intensity modulated radiation therapy (IMRT) treatment planning and quality assurance. The influence of MLC leaf positioning accuracy on sequentially abutted SMLC fields was measured by creating abutting fields with selected gaps and overlaps. These data were also used to measure static leaf positioning precision. The characteristics of high leaf-velocity DMLC delivery were measured with constant velocity leaf sequences starting with an open field and closing a single leaf bank. A range of 1-72 monitor units (MU) was used providing a range of leaf velocities. The field abutment measurements yielded dose errors (as a percentage of the open field max dose) of 16.7+/-0.7% mm(-1) and 12.8+/-0.7% mm(-1) for 6 MV and 18 MV photon beams, respectively. The MLC leaf positioning precision was 0.080+/-0.018 mm (single standard deviation) highlighting the excellent delivery hardware tolerances for the tested beam delivery geometry. The high leaf-velocity DMLC measurements showed delivery artifacts when the leaf sequence and selected monitor units caused the linear accelerator to move the leaves at their maximum velocity while modulating the accelerator dose rate to deliver the desired leaf and MU sequence (termed leaf-velocity limited delivery). According to the vendor, a unique feature to their linear accelerator and MLC is that the dose rate is reduced to provide the correct cm MU(-1) leaf velocity when the delivery is leaf-velocity limited. However, it was found that the system delivered roughly 1 MU per pulse when the delivery was leaf-velocity limited causing dose profiles to exhibit discrete steps rather than a smooth dose gradient. The root mean square difference between the steps and desired linear gradient was less than 3% when more than 4 MU were used. The average dose per MU was greater and less than desired for closing and opening leaf patterns, respectively, when the delivery was leaf-velocity limited. The results indicated that the dose delivery artifacts should be minor for most clinical cases, but limit the assumption of dose linearity when significantly reducing the delivered dose for dosimeter characterization studies or QA measurements.
Ying, Lin; Tahara, Kohei; Takeuchi, Hirofumi
2013-09-10
This work explored submicron-sized lipid emulsion as potential carriers for intraocular drug delivery to the posterior segment via eye drops. The effects of physicochemical properties of lipid emulsion on drug delivery were evaluated in vivo using mice. Different formulations of submicron-sized lipid emulsions were prepared using a high pressure homogenization system. Using coumairn-6 as a model drug and fluorescent marker, fluorescence could be observed in the retina after administration of the lipid emulsion. The fluorescence intensity observed after administration of medium chain triglycerides containing the same amount of coumarin-6 was much lower than that observed after administration of lipid emulsions. The inner oil property and phospholipid emulsifier did not affect the drug delivery efficiency to the retina. However, compared with unmodified emulsions, the fluorescence intensity in the retina increased by surface modification using a positive charge inducer and the functional polymers chitosan (CS) and poloxamer 407 (P407). CS-modified lipid emulsions could be electrostatically interacted with the eye surface. By its adhesive property, poloxamer 407, a surface modifier, possibly increased the lipid emulsion retention time on the eye surface. In conclusion, we suggested that surface-modified lipid emulsions could be promising vehicles of hydrophobic drug delivery to the ocular posterior segment. Copyright © 2013. Published by Elsevier B.V.
CEO summit. The new delivery & financing realities. Part III of III.
Becker, B F; Cramer, H; Easley, D; Nathanson, P; Neeson, R; Raney, J; Samuelson, C; Ummel, S
1994-08-20
In cooperation with McManis Associates Inc., Washington, Hospitals & Health Networks recently convened a summit on the integration of financing and delivery in health care. This installment is the third of a three-part series on lessons learned by those on the front lines of integration activity. The session was designed and facilitated by senior associates at McManis. Among the issues summit participants discussed in the second segment: What level of understanding do purchasers have of the factors that differentiate quality in health care services? Can provider-driven integrated delivery systems compete with insurer-driven ones? And what happens when a large integrated delivery system merges with a dominant insurer, as happened in the Philadelphia market? Can that model be successfully replicated in other markets? In this final segment, participants talk about whether providers' deep connections to their communities will add value in a reformed delivery system; how incentives might be aligned among all the players in integrated networks and organizations; how the concept of community focus might be redefined under systems integration; and the process involved in preparing for constant, accelerated change. The second segment concluded with comments about the assets providers and insurers bring to integrated health systems, and whether the merger experience of Graduate Health System and QCC/Independence Blue Cross could be replicated in other markets or not.
TU-C-17A-05: Dose Domain Optimization of MLC Leaf Patterns for Highly Complicated 4Ï€ IMRT Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, D; Yu, V; Ruan, D
Purpose: Highly conformal non-coplanar 4π radiotherapy plans typically require more than 20 intensity-modulated fields to deliver. A novel method to calculate multileaf collimator (MLC) leaf patterns is introduced to maximize delivery efficiency, accuracy and plan quality. Methods: 4 GBM patients, with a prescription dose of 59.4 Gy or 60 Gy, were evaluated using the 4π algorithm using 20 beams. The MLC calculation utilized a least square minimization of the dose distribution, with an anisotropic total variation regularization term to encourage piecewise continuity in the fluence maps. Transforming the fluence to the dose domain required multiplying the fluence with a sparsemore » matrix. Exploiting this property made it feasible to solve the problem using CVX, a MATLAB-based convex modeling framework. The fluence was stratified into even step sizes, and the MLC segments, limited to 300, were calculated. The patients studied were replanned using Eclipse with the same beam angles. Results: Compared to the original 4π plan, the stratified 4π plan increased the maximum/mean dose for, in Gy, by 1.0/0.0 (brainstem), 0.5/0.2 (chiasm), 0.0/0.0 (spinal cord), 1.9/0.3 (L eye), 0.7/0.2 (R eye), 0.4/0.4 (L lens), 0.3/0.3 (R lens), 1.0/0.8 (L Optical Nerve), 0.5/0.3 (R Optical Nerve), 0.3/0.2 (L Cochlea), 0.1/0.1 (R Cochlea), 4.6/0.2 (brain), 2.4/0.1 (brain-PTV), 5.1/0.9 (PTV). Compared to Eclipse, which generated an average of 607 segments, the stratified plan reduced (−) or increased (+) the maximum/mean dose, in Gy, by −10.2/−4.1 (brainstem), −10.5/−8.9 (chiasm), +0.0/−0.1 (spinal cord), −4.9/−3.4 (L eye), −4.1/−2.5 (R eye), −2.8/−2.7 (L lens), −2.1/−1.9 (R lens), −7.6/−6.5 (L Optical Nerve), −8.9/−6.1 (R Optical Nerve), −1.3/−1.9 (L Cochlea), −1.8/−1.8 (R Cochlea), +1.7/−2.1 (brain), +3.2/−2.6 (brain-PTV), +1.8/+0.3 Gy (PTV. The stratified plan was also more homogeneous in the PTV. Conclusion: This novel solver can transform complicated fluence maps into significantly fewer deliverable MLC segments than the commercial system while achieving superior dosimetry. Funding support partially contributed by Varian.« less
Li, Xinning; Xu, Jianwen; Filion, Tera M; Ayers, David C; Song, Jie
2013-08-01
Bone grafts are widely used in orthopaedic procedures. Autografts are limited by donor site morbidity while allografts are known for considerable infection and failure rates. A synthetic composite bone graft substitute poly(2-hydroxyethyl methacrylate)-nanocrystalline hydroxyapatite (pHEMA-nHA) was previously developed to stably press-fit in and functionally repair critical-sized rat femoral segmental defects when it was preabsorbed with a single low dose of 300 ng recombinant human bone morphogenetic protein-2/7 (rhBMP-2/7). To facilitate clinical translation of pHEMA-nHA as a synthetic structural bone graft substitute, we examined its ability to encapsulate and release rhBMP-2 and the antibiotic vancomycin. We analyzed the compressive behavior and microstructure of pHEMA-nHA as a function of vancomycin incorporation doses using a dynamic mechanical analyzer and a scanning electron microscope. In vitro release of vancomycin was monitored by ultraviolet-visible spectroscopy. Release of rhBMP-2 from pHEMA-nHA-vancomycin was determined by ELISA. Bioactivity of the released vancomycin and rhBMP-2 was examined by bacterial inhibition and osteogenic transdifferentiation capabilities in cell culture, respectively. Up to 4.8 wt% of vancomycin was incorporated into pHEMA-nHA without compromising its structural integrity and compressive modulus. Encapsulated vancomycin was released in a dose-dependent and sustained manner in phosphate-buffered saline over 2 weeks, and the released vancomycin inhibited Escherichia coli culture. The pHEMA-nHA-vancomycin composite released preabsorbed rhBMP-2 in a sustained manner over 8 days and locally induced osteogenic transdifferentiation of C2C12 cells in culture. pHEMA-nHA can encapsulate and deliver vancomycin and rhBMP-2 in a sustained and localized manner with reduced loading doses. The elasticity, osteoconductivity, and rhBMP-2/vancomycin delivery characteristics of pHEMA-nHA may benefit orthopaedic reconstructions or fusions with enhanced safety and efficiency and reduced infection risk.
Vanetti, Eugenio; Nicolini, Giorgia; Nord, Janne; Peltola, Jarkko; Clivio, Alessandro; Fogliata, Antonella; Cozzi, Luca
2011-11-01
The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO). This is the optimization algorithm used to determine the combination of field shapes, segment weights (with dose rate and gantry speed variations), which best approximate the desired dose distribution in the inverse planning problem. A study was performed to assess the behavior of two versions of PRO. These two versions mostly differ in the way continuous variables describing the modulated arc are sampled into discrete control points, in the planning efficiency and in the presence of some new features. The analysis aimed to assess (i) plan quality, (ii) technical delivery aspects, (iii) agreement between delivery and calculations, and (iv) planning efficiency of the two versions. RapidArc plans were generated for four groups of patients (five patients each): anal canal, advanced lung, head and neck, and multiple brain metastases and were designed to test different levels of planning complexity and anatomical features. Plans from optimization with PRO2 (first generation of RapidArc optimizer) were compared against PRO3 (second generation of the algorithm). Additional plans were optimized with PRO3 using new features: the jaw tracking, the intermediate dose and the air cavity correction options. Results showed that (i) plan quality was generally improved with PRO3 and, although not for all parameters, some of the scored indices showed a macroscopic improvement with PRO3. (ii) PRO3 optimization leads to simpler patterns of the dynamic parameters particularly for dose rate. (iii) No differences were observed between the two algorithms in terms of pretreatment quality assurance measurements and (iv) PRO3 optimization was generally faster, with a time reduction of a factor approximately 3.5 with respect to PRO2. These results indicate that PRO3 is either clinically beneficial or neutral in terms of dosimetric quality while it showed significant advantages in speed and technical aspects.
NASA Astrophysics Data System (ADS)
Remy, Charlotte; Lalonde, Arthur; Béliveau-Nadeau, Dominic; Carrier, Jean-François; Bouchard, Hugo
2018-01-01
The purpose of this study is to evaluate the impact of a novel tissue characterization method using dual-energy over single-energy computed tomography (DECT and SECT) on Monte Carlo (MC) dose calculations for low-dose rate (LDR) prostate brachytherapy performed in a patient like geometry. A virtual patient geometry is created using contours from a real patient pelvis CT scan, where known elemental compositions and varying densities are overwritten in each voxel. A second phantom is made with additional calcifications. Both phantoms are the ground truth with which all results are compared. Simulated CT images are generated from them using attenuation coefficients taken from the XCOM database with a 100 kVp spectrum for SECT and 80 and 140Sn kVp for DECT. Tissue segmentation for Monte Carlo dose calculation is made using a stoichiometric calibration method for the simulated SECT images. For the DECT images, Bayesian eigentissue decomposition is used. A LDR prostate brachytherapy plan is defined with 125I sources and then calculated using the EGSnrc user-code Brachydose for each case. Dose distributions and dose-volume histograms (DVH) are compared to ground truth to assess the accuracy of tissue segmentation. For noiseless images, DECT-based tissue segmentation outperforms the SECT procedure with a root mean square error (RMS) on relative errors on dose distributions respectively of 2.39% versus 7.77%, and provides DVHs closest to the reference DVHs for all tissues. For a medium level of CT noise, Bayesian eigentissue decomposition still performs better on the overall dose calculation as the RMS error is found to be of 7.83% compared to 9.15% for SECT. Both methods give a similar DVH for the prostate while the DECT segmentation remains more accurate for organs at risk and in presence of calcifications, with less than 5% of RMS errors within the calcifications versus up to 154% for SECT. In a patient-like geometry, DECT-based tissue segmentation provides dose distributions with the highest accuracy and the least bias compared to SECT. When imaging noise is considered, benefits of DECT are noticeable if important calcifications are found within the prostate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z; Shi, F; Gu, X
2016-06-15
Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashionmore » in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion in real-time and quantitatively and dosimetrically monitoring the treatment delivery.« less
Kang-Mieler, Jennifer J; Dosmar, Emily; Liu, Wenqiang; Mieler, William F
2017-05-01
The development of new therapies for treating various eye conditions has led to a demand for extended release delivery systems, which would lessen the need for frequent application while still achieving therapeutic drug levels in the target tissues. Areas covered: Following an overview of the different ocular drug delivery modalities, this article surveys the biomaterials used to develop sustained release drug delivery systems. Microspheres, nanospheres, liposomes, hydrogels, and composite systems are discussed in terms of their primary materials. The advantages and disadvantages of each drug delivery system are discussed for various applications. Recommendations for modifications and strategies for improvements to these basic systems are also discussed. Expert opinion: An ideal sustained release drug delivery system should be able to encapsulate and deliver the necessary drug to the target tissues at a therapeutic level without any detriment to the drug. Drug encapsulation should be as high as possible to minimize loss and unless it is specifically desired, the initial burst of drug release should be kept to a minimum. By modifying various biomaterials, it is possible to achieve sustained drug delivery to both the anterior and posterior segments of the eye.
Johnson, Todd J; Gupta, Kavita M; Fabian, Judit; Albright, Theodore H; Kiser, Patrick F
2010-02-19
Dual segment polyurethane intravaginal rings (IVRs) were fabricated to enable sustained release of antiretroviral agents dapivirine and tenofovir to prevent the male to female sexual transmission of the human immunodeficiency virus. Due to the contrasting hydrophilicity of the two drugs, dapivirine and tenofovir were separately formulated into polymers with matching hydrophilicity via solvent casting and hot melt extrusion. The resultant drug loaded rods were then joined together to form dual segment IVRs. Compression testing of the IVRs revealed that they are mechanically comparable to the widely accepted NuvaRing IVR. Physical characterization of the individual IVR segments using wide angle X-ray scattering and differential scanning calorimetry determined that dapivirine and tenofovir are amorphous and crystalline within their polymeric segments, respectively. In vitro release of tenofovir from the dual segment IVR was sustained over 30 days while dapivirine exhibited linear release over the time period. A 90 day accelerated stability study confirmed that dapivirine and tenofovir are stable in the IVR formulation. Altogether, these results suggest that multisegment polyurethane IVRs are an attractive formulation for the sustained vaginal delivery of drugs with contrasting hydrophilicity such as dapivirine and tenofovir. 2009 Elsevier B.V. All rights reserved.
Sex differences in the gastrointestinal tract of rats and the implications for oral drug delivery.
Afonso-Pereira, Francisco; Dou, Liu; Trenfield, Sarah J; Madla, Christine M; Murdan, Sudaxshina; Sousa, Jõao; Veiga, Francisco; Basit, Abdul W
2018-03-30
Pre-clinical research often uses rodents as animal models to guide the selection of appropriate oral drug and dose selection in humans. However, traditionally, such research fails to consider the gastrointestinal differences between the sexes of rats and the impact on oral drug delivery. This study aimed to identify and characterise the potential sex-related differences in the gastrointestinal environment of sacrificed male and female Wistar rats. Their gastrointestinal tracts were excised and segmented into the stomach, duodenum, jejunum, ileum, caecum and colon. The respective contents and tissue sections were collected and analysed for pH, buffer capacity, surface tension, osmolality and relative P-glycoprotein (P-gp) expression. The pH in the stomach of females was found to be lower than in males. Female rats also exhibited a higher buffer capacity in the caecum and colon when compared with their male counterparts. Males were found to have a higher osmolality than females in the duodenum, ileum and colon. Significant sex differences (p < 0.05) in surface tension were observed in the ileum, where females exhibited a higher surface tension. Interestingly, female rats displayed significantly higher relative P-gp expression levels (p < 0.05) when compared with male rats in the duodenum (1.24 ± 0.85 vs. 0.36 ± 0.26), jejunum (1.45 ± 0.88 vs. 0.38 ± 0.26) and ileum (0.92 ± 0.43 vs. 0.40 ± 0.18) but not in the colon (0.5 ± 0.32 vs. 0.33 ± 0.16) segments. The work reported has demonstrated the stark physiological differences between male and female rats at a physiological level, indicating how the 'sex of the gut' could influence oral drug delivery. These findings, therefore, are of critical importance in pre-clinical research and drug development. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.
2009-02-01
A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended to model thermal ablation, including the addition of temperature dependent attenuation, perfusion, and tissue damage. Pilot point control at the target boundaries was implemented to control power delivery to each transducer section, simulating an approach feasible for MR guided procedures. The computer model of thermal ablation was evaluated on representative patient anatomies to demonstrate the feasibility of using catheter-based ultrasound thermal ablation for treatment of benign prostate hyperplasia (BPH) and prostate cancer, and to assist in designing applicators and treatment delivery strategies.
Ma, Lijun; Lee, Letitia; Barani, Igor; Hwang, Andrew; Fogh, Shannon; Nakamura, Jean; McDermott, Michael; Sneed, Penny; Larson, David A; Sahgal, Arjun
2011-11-21
Rapid delivery of multiple shots or isocenters is one of the hallmarks of Gamma Knife radiosurgery. In this study, we investigated whether the temporal order of shots delivered with Gamma Knife Perfexion would significantly influence the biological equivalent dose for complex multi-isocenter treatments. Twenty single-target cases were selected for analysis. For each case, 3D dose matrices of individual shots were extracted and single-fraction equivalent uniform dose (sEUD) values were determined for all possible shot delivery sequences, corresponding to different patterns of temporal dose delivery within the target. We found significant variations in the sEUD values among these sequences exceeding 15% for certain cases. However, the sequences for the actual treatment delivery were found to agree (<3%) and to correlate (R² = 0.98) excellently with the sequences yielding the maximum sEUD values for all studied cases. This result is applicable for both fast and slow growing tumors with α/β values of 2 to 20 according to the linear-quadratic model. In conclusion, despite large potential variations in different shot sequences for multi-isocenter Gamma Knife treatments, current clinical delivery sequences exhibited consistent biological target dosing that approached that maximally achievable for all studied cases.
In vitro biotransformation rates in fish liver S9: effect of dosing techniques.
Lee, Yung-Shan; Lee, Danny H Y; Delafoulhouze, Maximilien; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C
2014-08-01
In vitro biotransformation assays are currently being explored to improve estimates of bioconcentration factors of potentially bioaccumulative organic chemicals in fish. The present study compares thin-film and solvent-delivery dosing techniques as well as single versus multiple chemical dosing for measuring biotransformation rates of selected polycyclic aromatic hydrocarbons in rainbow trout (Oncorhynchus mykiss) liver S9. The findings show that biotransformation rates of very hydrophobic substances can be accurately measured in thin-film sorbent-dosing assays from concentration-time profiles in the incubation medium but not from those in the sorbent phase because of low chemical film-to-incubation-medium mass-transfer rates at the incubation temperature of 13.5 °C required for trout liver assays. Biotransformation rates determined by thin-film dosing were greater than those determined by solvent-delivery dosing for chrysene (octanol-water partition coefficient [KOW ] =10(5.60) ) and benzo[a]pyrene (KOW =10(6.04) ), whereas there were no statistical differences in pyrene (KOW =10(5.18) ) biotransformation rates between the 2 methods. In sorbent delivery-based assays, simultaneous multiple-chemical dosing produced biotransformation rates that were not statistically different from those measured in single-chemical dosing experiments for pyrene and benzo[a]pyrene but not for chrysene. In solvent-delivery experiments, multiple-chemical dosing produced biotransformation rates that were much smaller than those in single-chemical dosing experiments for all test chemicals. While thin-film sorbent-phase and solvent delivery-based dosing methods are both suitable methods for measuring biotransformation rates of substances of intermediate hydrophobicity, thin-film sorbent-phase dosing may be more suitable for superhydrophobic chemicals. © 2014 SETAC.
Dentalmaps: Automatic Dental Delineation for Radiotherapy Planning in Head-and-Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thariat, Juliette, E-mail: jthariat@hotmail.com; Ramus, Liliane; INRIA
Purpose: To propose an automatic atlas-based segmentation framework of the dental structures, called Dentalmaps, and to assess its accuracy and relevance to guide dental care in the context of intensity-modulated radiotherapy. Methods and Materials: A multi-atlas-based segmentation, less sensitive to artifacts than previously published head-and-neck segmentation methods, was used. The manual segmentations of a 21-patient database were first deformed onto the query using nonlinear registrations with the training images and then fused to estimate the consensus segmentation of the query. Results: The framework was evaluated with a leave-one-out protocol. The maximum doses estimated using manual contours were considered as groundmore » truth and compared with the maximum doses estimated using automatic contours. The dose estimation error was within 2-Gy accuracy in 75% of cases (with a median of 0.9 Gy), whereas it was within 2-Gy accuracy in 30% of cases only with the visual estimation method without any contour, which is the routine practice procedure. Conclusions: Dose estimates using this framework were more accurate than visual estimates without dental contour. Dentalmaps represents a useful documentation and communication tool between radiation oncologists and dentists in routine practice. Prospective multicenter assessment is underway on patients extrinsic to the database.« less
Kim, Hyoung Jun; Kim, Tae Oh; Shin, Bong Chul; Woo, Jae Gon; Seo, Eun Hee; Joo, Hee Rin; Heo, Nae-Yun; Park, Jongha; Park, Seung Ha; Yang, Sung Yeon; Moon, Young Soo; Shin, Jin-Yong; Lee, Nae Young
2012-01-01
Currently, a split-dose of polyethylene glycol (PEG) is the mainstay of bowel preparation due to its tolerability, bowel-cleansing action, and safety. However, bowel preparation with PEG is suboptimal because residual fluid reduces the polyp detection rate and requires a more thorough colon inspection. The aim of our study was to demonstrate the efficacy of a sufficient dose of prokinetics on bowel cleansing together with split-dose PEG. A prospective endoscopist-blinded study was conducted. Patients were randomly allocated to two groups: prokinetic with split-dose PEG or split-dose PEG alone. A prokinetic [100 mg itopride (Itomed)], was administered twice simultaneously with each split-dose of PEG. Bowel-cleansing efficacy was measured by endoscopists using the Ottawa scale and the segmental fluidity scale score. Each participant completed a bowel preparation survey. Mean scores from the Ottawa scale, segmental fluid scale, and rate of poor preparation were compared between both groups. Patients in the prokinetics with split-dose PEG group showed significantly lower total Ottawa and segmental fluid scores compared with patients in the split-dose of PEG alone group. A sufficient dose of prokinetics with a split-dose of PEG showed efficacy in bowel cleansing for morning colonoscopy, largely due to the reduction in colonic fluid. Copyright © 2012 S. Karger AG, Basel.
Low-dose adenosine stress echocardiography: detection of myocardial viability.
Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav
2003-06-03
The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of >or= 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 +/- 2 months) were available in 24 revascularized patients. Wall motion score index improved from rest 1.55 +/- 0.30 to 1.33 +/- 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 +/- 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability.
Intradermal inactivated poliovirus vaccine: a preclinical dose-finding study.
Kouiavskaia, Diana; Mirochnitchenko, Olga; Dragunsky, Eugenia; Kochba, Efrat; Levin, Yotam; Troy, Stephanie; Chumakov, Konstantin
2015-05-01
Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial vaccine doses induced antibodies at titers comparable to those after immunization with full human dose delivered intramuscularly. The results suggest that intradermal delivery of IPV may lead to dose-sparing effect and reduction of the vaccination cost. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Pouget, J-P; Laurent, C; Delbos, M; Benderitter, M; Clairand, I; Trompier, F; Stéphanazzi, J; Carsin, H; Lambert, F; Voisin, P; Gourmelon, P
2004-10-01
We propose a new method of biodosimetry that could be applied in cases of localized irradiation. The approach is based on excess chromosome segments determination by the PCC-FISH technique in fibroblasts isolated from skin biopsy. Typically, 0 to 10 Gy ex vivo gamma-irradiated human skin biopsies were dissociated and fibroblasts were isolated and grown for several days. Cells next underwent PCC-FISH painting of whole chromosome 4, and the number of excess chromosome segments per metaphase was determined. An ex vivo reference curve correlating the number of excess chromosome segments per metaphase to the radiation dose was established and used to assess the dose delivered to the skin of one of the victims of the radiological accident that occurred at Lia in Georgia in December 2001. Specifically, the victim suffering from moist desquamation underwent skin excision in Hospital Percy (France). Measurement of excess chromosome segments per metaphase was done in fibroblasts isolated and grown from removed wounded skin and subsequent conversion to radiation doses was performed. The radiation dose map obtained was shown to be in accordance with clinical data and physical dosimetry as well as with conventional biodosimetry. These results demonstrated that PCC-FISH painting applied to skin fibroblasts may be a suitable technique for dose estimation. To assess its worth, this approach needs to be extended to future accidents involving localized radiation exposure.
Quality correction factors of composite IMRT beam deliveries: theoretical considerations.
Bouchard, Hugo
2012-11-01
In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k(Q) factors. The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k(Q) factor identical to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k(Q) factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V(cyl) which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V(cyl): (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V(cyl), no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. The use of the symmetry of the problem in the present paper leads to a valuable theorem showing that k(Q) factors of composite IMRT beam deliveries are close to unity under specific conditions. The theoretical limit k(Q(pcsr),Q(msr) ) (f(pcsr),f(msr) )=1 is determined based on the property of PCSR deliveries to provide a uniform dose in the target volume. The present approach explains recent experimental observations and proposes ideal conditions for IMRT reference dosimetry. The result of this study could potentially serve as a theoretical basis for reference dosimetry of composite IMRT beam deliveries or for routine IMRT quality assurance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Andujar, A; Cheung, J; Chuang, C
Purpose: To investigate the effect of dynamic and static jaw tracking on patient peripheral doses. Materials and Methods: A patient plan with a large sacral metastasis (volume 800cm3, prescription 600cGyx5) was selected for this study. The plan was created using 2-field RapidArc with jaw tracking enabled (Eclipse, V11.0.31). These fields were then exported and edited in MATLAB with static jaw positions using the control point with the largest field size for each respective arc, but preserving the optimized leaf sequences for delivery. These fields were imported back into Eclipse for dose calculation and comparison and copied to a Rando phantommore » for delivery analysis. Points were chosen in the phantom at depth and on the phantom surface at locations outside the primary radiation field, at distances of 12cm, 20cm, and 30cm from the isocenter. Measurements were acquired with OSLDs placed at these positions in the phantom with both the dynamic and static jaw deliveries for comparison. Surface measurements included an additional 1cm bolus over the OSLDs to ensure electron equilibrium. Results: The static jaw deliveries resulted in cumulative jaw-defined field sizes of 17.3% and 17.4% greater area than the dynamic jaw deliveries for each arc. The static jaw plan resulted in very small differences in calculated dose in the treatment planning system ranging from 0–16cGy. The measured dose differences were larger than calculated, but the differences in absolute dose were small. The measured dose differences at depth (surface) between the two deliveries showed an increase for the static jaw delivery of 2.2%(11.4%), 15.6%(20.0%), and 12.7%(12.7%) for distances of 12cm, 20cm, and 30cm, respectively. Eclipse calculates a difference of 0–3.1% for all of these points. The largest absolute dose difference between all points was 6.2cGy. Conclusion: While we demonstrated larger than expected differences in peripheral dose, the absolute dose differences were small.« less
NASA Astrophysics Data System (ADS)
Zhao, Qingya
2011-12-01
Proton radiotherapy has advantages to deliver accurate high conformal radiation dose to the tumor while sparing the surrounding healthy tissue and critical structures. However, the treatment effectiveness is degraded greatly due to patient free breathing during treatment delivery. Motion compensation for proton radiotherapy is especially challenging as proton beam is more sensitive to the density change along the beam path. Tumor respiratory motion during treatment delivery will affect the proton dose distribution and the selection of optimized parameters for treatment planning, which has not been fully addressed yet in the existing approaches for proton dose calculation. The purpose of this dissertation is to develop an approach for more accurate dose delivery to a moving tumor in proton radiotherapy, i.e., 4D proton dose calculation and delivery, for the uniform scanning proton beam. A three-step approach has been carried out to achieve this goal. First, a solution for the proton output factor calculation which will convert the prescribed dose to machine deliverable monitor unit for proton dose delivery has been proposed and implemented. The novel sector integration method is accurate and time saving, which considers the various beam scanning patterns and treatment field parameters, such as aperture shape, aperture size, measuring position, beam range, and beam modulation. Second, tumor respiratory motion behavior has been statistically characterized and the results have been applied to advanced image guided radiation treatment. Different statistical analysis and correlation discovery approaches have been investigated. The internal / external motion correlation patterns have been simulated, analyzed, and applied in a new hybrid gated treatment to improve the target coverage. Third, a dose calculation method has been developed for 4D proton treatment planning which integrates the interplay effects of tumor respiratory motion patterns and proton beam delivery mechanism. These three steps provide an innovative integrated framework for accurate 4D proton dose calculation and treatment planning for a moving tumor, which extends the functionalities of existing 3D planning systems. In short, this dissertation work addresses a few important problems for effective proton radiotherapy to a moving target. The outcomes of the dissertation are very useful for motion compensation with advanced image guided proton treatment.
Zelefsky, Michael J; Cohen, Gilad N; Taggar, Amandeep S; Kollmeier, Marisa; McBride, Sean; Mageras, Gig; Zaider, Marco
Our purpose was to describe the process and outcome of performing postimplantation dosimetric assessment and intraoperative dose correction during prostate brachytherapy using a novel image fusion-based treatment-planning program. Twenty-six consecutive patients underwent intraoperative real-time corrections of their dose distributions at the end of their permanent seed interstitial procedures. After intraoperatively planned seeds were implanted and while the patient remained in the lithotomy position, a cone beam computed tomography scan was obtained to assess adequacy of the prescription dose coverage. The implanted seed positions were automatically segmented from the cone-beam images, fused onto a new set of acquired ultrasound images, reimported into the planning system, and recontoured. Dose distributions were recalculated based upon actual implanted seed coordinates and recontoured ultrasound images and were reviewed. If any dose deficiencies within the prostate target were identified, additional needles and seeds were added. Once an implant was deemed acceptable, the procedure was completed, and anesthesia was reversed. When the intraoperative ultrasound-based quality assurance assessment was performed after seed placement, the median volume receiving 100% of the dose (V100) was 93% (range, 74% to 98%). Before seed correction, 23% (6/26) of cases were noted to have V100 <90%. Based on this intraoperative assessment and replanning, additional seeds were placed into dose-deficient regions within the target to improve target dose distributions. Postcorrection, the median V100 was 97% (range, 93% to 99%). Following intraoperative dose corrections, all implants achieved V100 >90%. In these patients, postimplantation evaluation during the actual prostate seed implant procedure was successfully applied to determine the need for additional seeds to correct dose deficiencies before anesthesia reversal. When applied, this approach should significantly reduce intraoperative errors and chances for suboptimal dose delivery during prostate brachytherapy. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
A comprehensive analysis of the IMRT dose delivery process using statistical process control (SPC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerard, Karine; Grandhaye, Jean-Pierre; Marchesi, Vincent
The aim of this study is to introduce tools to improve the security of each IMRT patient treatment by determining action levels for the dose delivery process. To achieve this, the patient-specific quality control results performed with an ionization chamber--and which characterize the dose delivery process--have been retrospectively analyzed using a method borrowed from industry: Statistical process control (SPC). The latter consisted in fulfilling four principal well-structured steps. The authors first quantified the short term variability of ionization chamber measurements regarding the clinical tolerances used in the cancer center ({+-}4% of deviation between the calculated and measured doses) by calculatingmore » a control process capability (C{sub pc}) index. The C{sub pc} index was found superior to 4, which implies that the observed variability of the dose delivery process is not biased by the short term variability of the measurement. Then, the authors demonstrated using a normality test that the quality control results could be approximated by a normal distribution with two parameters (mean and standard deviation). Finally, the authors used two complementary tools--control charts and performance indices--to thoroughly analyze the IMRT dose delivery process. Control charts aim at monitoring the process over time using statistical control limits to distinguish random (natural) variations from significant changes in the process, whereas performance indices aim at quantifying the ability of the process to produce data that are within the clinical tolerances, at a precise moment. The authors retrospectively showed that the analysis of three selected control charts (individual value, moving-range, and EWMA control charts) allowed efficient drift detection of the dose delivery process for prostate and head-and-neck treatments before the quality controls were outside the clinical tolerances. Therefore, when analyzed in real time, during quality controls, they should improve the security of treatments. They also showed that the dose delivery processes in the cancer center were in control for prostate and head-and-neck treatments. In parallel, long term process performance indices (P{sub p}, P{sub pk}, and P{sub pm}) have been analyzed. Their analysis helped defining which actions should be undertaken in order to improve the performance of the process. The prostate dose delivery process has been shown statistically capable (0.08% of the results is expected to be outside the clinical tolerances) contrary to the head-and-neck dose delivery process (5.76% of the results are expected to be outside the clinical tolerances).« less
A comprehensive analysis of the IMRT dose delivery process using statistical process control (SPC).
Gérard, Karine; Grandhaye, Jean-Pierre; Marchesi, Vincent; Kafrouni, Hanna; Husson, François; Aletti, Pierre
2009-04-01
The aim of this study is to introduce tools to improve the security of each IMRT patient treatment by determining action levels for the dose delivery process. To achieve this, the patient-specific quality control results performed with an ionization chamber--and which characterize the dose delivery process--have been retrospectively analyzed using a method borrowed from industry: Statistical process control (SPC). The latter consisted in fulfilling four principal well-structured steps. The authors first quantified the short-term variability of ionization chamber measurements regarding the clinical tolerances used in the cancer center (+/- 4% of deviation between the calculated and measured doses) by calculating a control process capability (C(pc)) index. The C(pc) index was found superior to 4, which implies that the observed variability of the dose delivery process is not biased by the short-term variability of the measurement. Then, the authors demonstrated using a normality test that the quality control results could be approximated by a normal distribution with two parameters (mean and standard deviation). Finally, the authors used two complementary tools--control charts and performance indices--to thoroughly analyze the IMRT dose delivery process. Control charts aim at monitoring the process over time using statistical control limits to distinguish random (natural) variations from significant changes in the process, whereas performance indices aim at quantifying the ability of the process to produce data that are within the clinical tolerances, at a precise moment. The authors retrospectively showed that the analysis of three selected control charts (individual value, moving-range, and EWMA control charts) allowed efficient drift detection of the dose delivery process for prostate and head-and-neck treatments before the quality controls were outside the clinical tolerances. Therefore, when analyzed in real time, during quality controls, they should improve the security of treatments. They also showed that the dose delivery processes in the cancer center were in control for prostate and head-and-neck treatments. In parallel, long-term process performance indices (P(p), P(pk), and P(pm)) have been analyzed. Their analysis helped defining which actions should be undertaken in order to improve the performance of the process. The prostate dose delivery process has been shown statistically capable (0.08% of the results is expected to be outside the clinical tolerances) contrary to the head-and-neck dose delivery process (5.76% of the results are expected to be outside the clinical tolerances).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Yi, E-mail: yi.rong@osumc.edu; Chen, Yu; Lu, Weiguo
Purpose: Despite superior target dose uniformity, helical tomotherapy{sup ®} (HT) may involve a trade-off between longitudinal dose conformity and beam-on time (BOT), due to the limitation of only three available jaw sizes with the conventional HT (1.0, 2.5, and 5.0 cm). The recently introduced dynamic running-start-stop (RSS) delivery allows smaller jaw opening at the superior and inferior ends of the target when a sharp penumbra is needed. This study compared the dosimetric performance of RSS delivery with the fixed jaw HT delivery. Methods: Twenty patient cases were selected and deidentified prior to treatment planning, including 16 common clinical cases (brain,more » head and neck (HN), lung, and prostate) and four special cases of whole brain with hippocampus avoidance (WBHA) that require a high degree of dose modulation. HT plans were generated for common clinical cases using the fixed 2.5 cm jaw width (HT2.5) and WBHA cases using 1.0 cm (HT1.0). The jaw widths for RSS were preset with a larger size (RSS5.0 vs HT2.5 and RSS2.5 vs HT1.0). Both delivery techniques were planned based on identical contours, prescriptions, and planning objectives. Dose indices for targets and critical organs were compared using dose-volume histograms, BOT, and monitor units. Results: The average BOT was reduced from 4.8 min with HT2.5 to 2.5 min with RSS5.0. Target dose homogeneity with RSS5.0 was shown comparable to HT2.5 for common clinical sites. Superior normal tissue sparing was observed in RSS5.0 for optic nerves and optic chiasm in brain and HN cases. RSS5.0 demonstrated improved dose sparing for cord and esophagus in lung cases, as well as penile bulb in prostate cases. The mean body dose was comparable for both techniques. For the WBHA cases, the target homogeneity was significantly degraded in RSS2.5 without distinct dose sparing for hippocampus, compared to HT1.0. Conclusions: Compared to the fixed jaw HT delivery, RSS combined with a larger jaw width provides faster treatment delivery and improved cranial-caudal target dose conformity. The target coverage achieved by RSS with a large jaw width is comparable to the fixed jaw HT delivery for common cancer sites, but may deteriorate for cases where complex geometry is present in the middle part of the target.« less
Oxytocin for labour and caesarean delivery: implications for the anaesthesiologist.
Dyer, Robert A; Butwick, Alexander J; Carvalho, Brendan
2011-06-01
The implications of the obstetric use of oxytocin for obstetric anaesthesia practice are summarised. The review focuses on recent research on the uterotonic effects of oxytocin for prophylaxis and management of uterine atony during caesarean delivery. Oxytocin remains the first-line agent in the prevention and management of uterine atony. In-vitro and in-vivo studies show that prior exposure to oxytocin induces uterine muscle oxytocin receptor desensitization. This may influence oxytocin dosing for adequate uterine tone following delivery. Oxytocin has important cardiovascular side-effects (hypotension, tachycardia and myocardial ischaemia). Recent studies suggest that the effective dose of oxytocin for prophylaxis against uterine atony during caesarean delivery is significantly lower than the 5-10 IU historically used by anaesthesiologists. Slow administration of small bolus doses of oxytocin minimises maternal haemodynamic disturbance. Continuous oxytocin infusions are recommended for maintaining uterine tone after bolus administration, although ideal infusion rates are still to be established. The efficacy of the long-acting oxytocin analogue carbetocin requires further investigation. Recommendations are presented for oxytocin dosing during caesarean delivery. Oxytocin remains the first-line uterotonic after vaginal and caesarean delivery. Recent research elucidates the therapeutic range of oxytocin during caesarean delivery, as well as receptor desensitization. Evidenced-based protocols for the prevention and treatment of uterine atony during caesarean delivery are recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kairn, Tanya, E-mail: t.kairn@gmail.com; School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane; Papworth, Daniel
2016-10-01
Cancer often metastasizes to the vertebra, and such metastases can be treated successfully using simple, static posterior or opposed-pair radiation fields. However, in some cases, including when re-irradiation is required, spinal cord avoidance becomes necessary and more complex treatment plans must be used. This study evaluated 16 sample intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans designed to treat 6 typical vertebral and paraspinal volumes using a standard prescription, with the aim of investigating the advantages and limitations of these treatment techniques and providing recommendations for their optimal use in vertebral treatments. Treatment plan quality and beammore » complexity metrics were evaluated using the Treatment And Dose Assessor (TADA) code. A portal-imaging–based quality assurance (QA) system was used to evaluate treatment delivery accuracy, and radiochromic film measurements were used to provide high-resolution verification of treatment plan dose accuracy, especially in the steep dose gradient regions between each vertebral target and spinal cord. All treatment modalities delivered approximately the same doses and the same levels of dose heterogeneity to each planning target volume (PTV), although the minimum PTV doses in the vertebral plans were substantially lower than the prescription, because of the requirement that the plans meet a strict constraint on the dose to the spinal cord and cord planning risk volume (PRV). All plans met required dose constraints on all organs at risk, and all measured PTV-cord dose gradients were steeper than planned. Beam complexity analysis suggested that the IMRT treatment plans were more deliverable (less complex, leading to greater QA success) than the VMAT treatment plans, although the IMRT plans also took more time to deliver. The accuracy and deliverability of VMAT treatment plans were found to be substantially increased by limiting the number of monitor units (MU) per beam at the optimization stage, and thereby limiting beam modulation complexity. The VMAT arcs that were optimized with MU limitation had higher QA pass rates as well as higher modulation complexity scores (less complexity), lower modulation indices (less modulation), lower MU per beam, larger beam segments, and fewer small apertures than the VMAT arcs that were optimized without MU limitation. It is recommended that VMAT treatments for vertebral volumes, where the PTV abuts or surrounds the spinal cord, should be optimized with MU limitation. IMRT treatments may be preferable to the VMAT treatments, for dosimetry and deliverability reasons, but may be inappropriate for some patients because of their increased treatment delivery time.« less
Potential for off-peak freight deliveries to commercial areas : implementation plan
DOT National Transportation Integrated Search
2007-12-21
This document discusses three groups of policies to foster off-peak deliveries. The first group, Industry wide policies, considers policies that target specific industry segments, e.g., tax incentives to restaurants in exchange for their commitment t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, S; Zhu, X; Zhang, M
Purpose: Randomness in patient internal organ motion phase at the beginning of non-gated radiotherapy delivery may introduce uncertainty to dose received by the patient. Concerns of this dose deviation from the planned one has motivated many researchers to study this phenomenon although unified theoretical framework for computing it is still missing. This study was conducted to develop such framework for analyzing the effect. Methods: Two reasonable assumptions were made: a) patient internal organ motion is stationary and periodic; b) no special arrangement is made to start a non -gated radiotherapy delivery at any specific phase of patient internal organ motion.more » A statistical ensemble was formed consisting of patient’s non-gated radiotherapy deliveries at all equally possible initial organ motion phases. To characterize the patient received dose, statistical ensemble average method is employed to derive formulae for two variables: expected value and variance of dose received by a patient internal point from a non-gated radiotherapy delivery. Fourier Series was utilized to facilitate our analysis. Results: According to our formulae, the two variables can be computed from non-gated radiotherapy generated dose rate time sequences at the point’s corresponding locations on fixed phase 3D CT images sampled evenly in time over one patient internal organ motion period. The expected value of point dose is simply the average of the doses to the point’s corresponding locations on the fixed phase CT images. The variance can be determined by time integration in terms of Fourier Series coefficients of the dose rate time sequences on the same fixed phase 3D CT images. Conclusion: Given a non-gated radiotherapy delivery plan and patient’s 4D CT study, our novel approach can predict the expected value and variance of patient radiation dose. We expect it to play a significant role in determining both quality and robustness of patient non-gated radiotherapy plan.« less
Automated segmentation of cardiac visceral fat in low-dose non-contrast chest CT images
NASA Astrophysics Data System (ADS)
Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.
2015-03-01
Cardiac visceral fat was segmented from low-dose non-contrast chest CT images using a fully automated method. Cardiac visceral fat is defined as the fatty tissues surrounding the heart region, enclosed by the lungs and posterior to the sternum. It is measured by constraining the heart region with an Anatomy Label Map that contains robust segmentations of the lungs and other major organs and estimating the fatty tissue within this region. The algorithm was evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets. Based on visual inspection, 343 cases had good cardiac visceral fat segmentation. For quantitative evaluation, manual markings of cardiac visceral fat regions were made in 3 image slices for 45 low-dose scans and the Dice similarity coefficient (DSC) was computed. The automated algorithm achieved an average DSC of 0.93. Cardiac visceral fat volume (CVFV), heart region volume (HRV) and their ratio were computed for each case. The correlation between cardiac visceral fat measurement and coronary artery and aortic calcification was also evaluated. Results indicated the automated algorithm for measuring cardiac visceral fat volume may be an alternative method to the traditional manual assessment of thoracic region fat content in the assessment of cardiovascular disease risk.
Stachelek, S J; Song, C; Alferiev, I; Defelice, S; Cui, X; Connolly, J M; Bianco, R W; Levy, R J
2004-01-01
The present study investigated a novel approach for gene therapy of heart valve disease and vascular disorders. We formulated and characterized implantable polyurethane films that could also function as gene delivery systems through the surface attachment of replication defective adenoviruses using an anti-adenovirus antibody tethering mechanism. Our hypothesis was that we could achieve site-specific gene delivery to cells interacting with these polyurethane implants, and thereby demonstrate the potential for intravascular devices that could also function as gene delivery platforms for therapeutic vectors. Previous research by our group has demonstrated that polyurethane elastomers can be derivatized post-polymerization through a series of chemical reactions activating the hard segment amide groups with alkyl bromine residues, which can enable a wide variety of subsequent chemical modifications. Furthermore, prior research by our group investigating gene delivery intravascular stents has shown that collagen-coated balloon expandable stents can be configured with anti-adenovirus antibodies via thiol-based chemistry, and can then tether adenoviral vectors at doses that lead to high levels of localized arterial neointima expression, but with virtually no distal spread of vector. Thus, we sought to create two-device configurations for our investigations building on this previous research. (1) Polyurethane films coated with Type I collagen were thiol activated to permit covalent attachment of anti-adenovirus antibodies to enable gene delivery via vector tethering. (2) We also formulated polyurethane films with direct covalent attachment of anti-adenovirus antibodies to polyurethane hard segments derivatized with alkyl-thiol groups, thereby also enabling tethering of replication-defective adenoviruses. Both formulations demonstrated highly localized and efficient transduction in cell culture studies with rat arterial smooth muscle cells. In vivo experiments with collagen-coated polyurethane films investigated an abdominal aorta implant model in pigs using a button configuration that simulated the blood contacting environment of a vascular graft. One week explants of the collagen-coated polyurethane films demonstrated 14.3+/-2.5% of neointimal cells on the surface of the implant transduced with green fluorescent protein - adenovirus (AdGFP) vector loadings of 1 x 10(8) PFU. PCR studies demonstrated no detectable vector DNA in blood or distal organs. Similarly, polyurethane films with direct attachment of antivector antibodies to the surface were used in sheep pulmonary valve leaflet replacement studies, simulating the blood contacting environment of a prosthetic heart valve cusp. Polyurethane films with antibody tethered AdGFP vector (10(8) PFU) demonstrated 25.1+/-5.7% of attached cells transduced in these 1 week studies, with no detectable vector DNA in blood or distal organs. In vivo GFP expression was confirmed with immunohistochemistry. It is concluded that site-specific intravascular delivery of adenoviral vectors for gene therapy can be achieved with polyurethane implants utilizing the antivector antibody tethering mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirkovic, D; Peeler, C; Grosshans, D
Purpose: To develop a model of the relative biological effectiveness (RBE) of protons as a function of dose and linear energy transfer (LET) for induction of brain necrosis using clinical data. Methods: In this study, treatment planning information was exported from a clinical treatment planning system (TPS) and used to construct a detailed Monte Carlo model of the patient and the beam delivery system. The physical proton dose and LET were computed in each voxel of the patient volume using Monte Carlo particle transport. A follow-up magnetic resonance imaging (MRI) study registered to the treatment planning CT was used tomore » determine the region of the necrosis in the brain volume. Both, the whole brain and the necrosis volumes were segmented from the computed tomography (CT) dataset using the contours drawn by a physician and the corresponding voxels were binned with respect to dose and LET. The brain necrosis probability was computed as a function of dose and LET by dividing the total volume of all necrosis voxels with a given dose and LET with the corresponding total brain volume resulting in a set of NTCP-like curves (probability as a function of dose parameterized by LET). Results: The resulting model shows dependence on both dose and LET indicating the weakness of the constant RBE model for describing the brain toxicity. To the best of our knowledge the constant RBE model is currently used in all clinical applications which may Result in increased rate of brain toxicities in patients treated with protons. Conclusion: Further studies are needed to develop more accurate brain toxicity models for patients treated with protons and other heavy ions.« less
Method of making a scintillator waveguide
Bliss, Mary; Craig, Richard A.; Reeder, Paul L.
2000-01-01
The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.
Scintillator Waveguide For Sensing Radiation
Bliss, Mary; Craig, Richard A.; Reeder; Paul L.
2003-04-22
The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D; O’Connell, D; Lamb, J
Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment weremore » generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y; Liao, Z; Jiang, W
Purpose: To evaluate the feasibility of using an automatic segmentation tool to delineate cardiac substructures from computed tomography (CT) images for cardiac toxicity analysis for non-small cell lung cancer (NSCLC) patients after radiotherapy. Methods: A multi-atlas segmentation tool developed in-house was used to delineate eleven cardiac substructures including the whole heart, four heart chambers, and six greater vessels automatically from the averaged 4DCT planning images for 49 NSCLC patients. The automatic segmented contours were edited appropriately by two experienced radiation oncologists. The modified contours were compared with the auto-segmented contours using Dice similarity coefficient (DSC) and mean surface distance (MSD)more » to evaluate how much modification was needed. In addition, the dose volume histogram (DVH) of the modified contours were compared with that of the auto-segmented contours to evaluate the dosimetric difference between modified and auto-segmented contours. Results: Of the eleven structures, the averaged DSC values ranged from 0.73 ± 0.08 to 0.95 ± 0.04 and the averaged MSD values ranged from 1.3 ± 0.6 mm to 2.9 ± 5.1mm for the 49 patients. Overall, the modification is small. The pulmonary vein (PV) and the inferior vena cava required the most modifications. The V30 (volume receiving 30 Gy or above) for the whole heart and the mean dose to the whole heart and four heart chambers did not show statistically significant difference between modified and auto-segmented contours. The maximum dose to the greater vessels did not show statistically significant difference except for the PV. Conclusion: The automatic segmentation of the cardiac substructures did not require substantial modification. The dosimetric evaluation showed no statistically significant difference between auto-segmented and modified contours except for the PV, which suggests that auto-segmented contours for the cardiac dose response study are feasible in the clinical practice with a minor modification to the PV vessel.« less
NASA Astrophysics Data System (ADS)
Ma, Lijun; Lee, Letitia; Barani, Igor; Hwang, Andrew; Fogh, Shannon; Nakamura, Jean; McDermott, Michael; Sneed, Penny; Larson, David A.; Sahgal, Arjun
2011-11-01
Rapid delivery of multiple shots or isocenters is one of the hallmarks of Gamma Knife radiosurgery. In this study, we investigated whether the temporal order of shots delivered with Gamma Knife Perfexion would significantly influence the biological equivalent dose for complex multi-isocenter treatments. Twenty single-target cases were selected for analysis. For each case, 3D dose matrices of individual shots were extracted and single-fraction equivalent uniform dose (sEUD) values were determined for all possible shot delivery sequences, corresponding to different patterns of temporal dose delivery within the target. We found significant variations in the sEUD values among these sequences exceeding 15% for certain cases. However, the sequences for the actual treatment delivery were found to agree (<3%) and to correlate (R2 = 0.98) excellently with the sequences yielding the maximum sEUD values for all studied cases. This result is applicable for both fast and slow growing tumors with α/β values of 2 to 20 according to the linear-quadratic model. In conclusion, despite large potential variations in different shot sequences for multi-isocenter Gamma Knife treatments, current clinical delivery sequences exhibited consistent biological target dosing that approached that maximally achievable for all studied cases.
Drug delivery across length scales.
Delcassian, Derfogail; Patel, Asha K; Cortinas, Abel B; Langer, Robert
2018-02-20
Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.
Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy
2012-02-01
the chemotherapeutics on the normal tissue. Anti-ErbB2 antibody- conjugated polymeric nanoparticles with a capacity to load multiple drugs at high...copolymers containing anionic and nonionic hydrophilic polymeric segments (block ionomers) were used for the synthesis of nanogels. Polymethacrylic...where x and y represent the degree of polymerization of the PEO segment and PMA or PGA segment, respectively. Nanogels were synthesized using the
Zhang, Rong; Saito, Ryuta; Mano, Yui; Kanamori, Masayuki; Sonoda, Yukihiko; Kumabe, Toshihiro; Tominaga, Teiji
2014-01-30
Convection-enhanced delivery (CED) has been developed as a potentially effective drug-delivery strategy into the central nervous system. In contrast to systemic intravenous administration, local delivery achieves high concentration and prolonged retention in the local tissue, with increased chance of local toxicity, especially with toxic agents such as chemotherapeutic agents. Therefore, the factors that affect local toxicity should be extensively studied. With the assumption that concentration-oriented evaluation of toxicity is important for local CED, we evaluated the appearance of local toxicity among different agents after delivery with CED and studied if it is dose dependent or concentration dependent. Local toxicity profile of chemotherapeutic agents delivered via CED indicates BCNU was dose-dependent, whereas that of ACNU was concentration-dependent. On the other hand, local toxicity for doxorubicin, which is not distributed effectively by CED, was dose-dependent. Local toxicity for PLD, which is extensively distributed by CED, was concentration-dependent. Traditional evaluation of drug induced toxicity was dose-oriented. This is true for systemic intravascular delivery. However, with local CED, toxicity of several drugs exacerbated in concentration-dependent manner. From our study, local toxicity of drugs that are likely to distribute effectively tended to be concentration-dependent. Concentration rather than dose may be more important for the toxicity of agents that are effectively distributed by CED. Concentration-oriented evaluation of toxicity is more important for CED. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Zhye, E-mail: yin@ge.com; De Man, Bruno; Yao, Yangyang
Purpose: Traditionally, 2D radiographic preparatory scan images (scout scans) are used to plan diagnostic CT scans. However, a 3D CT volume with a full 3D organ segmentation map could provide superior information for customized scan planning and other purposes. A practical challenge is to design the volumetric scout acquisition and processing steps to provide good image quality (at least good enough to enable 3D organ segmentation) while delivering a radiation dose similar to that of the conventional 2D scout. Methods: The authors explored various acquisition methods, scan parameters, postprocessing methods, and reconstruction methods through simulation and cadaver data studies tomore » achieve an ultralow dose 3D scout while simultaneously reducing the noise and maintaining the edge strength around the target organ. Results: In a simulation study, the 3D scout with the proposed acquisition, preprocessing, and reconstruction strategy provided a similar level of organ segmentation capability as a traditional 240 mAs diagnostic scan, based on noise and normalized edge strength metrics. At the same time, the proposed approach delivers only 1.25% of the dose of a traditional scan. In a cadaver study, the authors’ pictorial-structures based organ localization algorithm successfully located the major abdominal-thoracic organs from the ultralow dose 3D scout obtained with the proposed strategy. Conclusions: The authors demonstrated that images with a similar degree of segmentation capability (interpretability) as conventional dose CT scans can be achieved with an ultralow dose 3D scout acquisition and suitable postprocessing. Furthermore, the authors applied these techniques to real cadaver CT scans with a CTDI dose level of less than 0.1 mGy and successfully generated a 3D organ localization map.« less
Low-dose adenosine stress echocardiography: Detection of myocardial viability
Djordjevic-Dikic, Ana; Ostojic, Miodrag; Beleslin, Branko; Nedeljkovic, Ivana; Stepanovic, Jelena; Stojkovic, Sinisa; Petrasinovic, Zorica; Nedeljkovic, Milan; Saponjski, Jovica; Giga, Vojislav
2003-01-01
Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals) echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months) were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p < 0.001). Of the 257 segments with baseline dyssynergy, adenosine echocardiography identified 122 segments as positive for viability, and 135 as necrotic since no improvement of systolic thickening was observed. Follow-up wall motion score index was 1.31 ± 0.30 (p < 0.001 vs. rest). The sensitivity of adenosine echo test for identification of viable segments was 87%, while specificity was 95%, and diagnostic accuracy 90%. Positive and negative predictive values were 97% and 80%, respectively. Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability. PMID:12812523
Murray, T G; Jaffe, G J; McKay, B S; Han, D P; Burke, J M; Abrams, G W
1992-01-01
Postoperative fibrin formation remains a major complication associated with intraocular surgery, especially after vitreoretinal surgery for proliferative vitreoretinopathy, proliferative diabetic retinopathy, trauma, or endophthalmitis. Tissue plasminogen activator (tPA) has been shown, both in experimental studies and clinical trials, to specifically dissolve formed intraocular fibrin after intracameral or intravitreal injection. We studied collagen shield delivery of tPA to the anterior segment and vitreous of rabbit eyes to evaluate a noninvasive delivery modality. Anterior segment fibrin clots were formed in rabbit eyes by injecting citrated rabbit plasma. The tPA hydrated collagen shields, or control shields, were then placed on the rabbit corneas and the extent of fibrin clot was followed. In other rabbit eyes, tPA hydrated collagen shields were placed on the rabbit corneas and an enzyme-linked immunosorbent assay (ELISA) was utilized to determine aqueous, vitreous, and blood levels of tPA over time. Collagen shield tPA delivery shortened the time to fibrin clot lysis by 50% (mean clearance time = 49 +/- 23 hours; P less than .05). ELISA for tPA levels noted measurable vitreous levels by 2 hours after tPA hydrated collagen shield application with a peak at 24 hours. Aqueous tPA levels were not measurable until 18 hours after tPA collagen shield application and peaked at 36 hours. Vitreous tPA levels were greater than aqueous tPA levels at all time points (P less than .05). No evidence of corneal edema or opacification, hemorrhage, or cataract was seen. These results document the efficacy and safety of tPA delivery to the aqueous and vitreous via a hydrated collagen shield in this animal model.
Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy
NASA Astrophysics Data System (ADS)
Zhou, Sumin; Zhu, Xiaofeng; Zhang, Mutian; Zheng, Dandan; Lei, Yu; Li, Sicong; Bennion, Nathan; Verma, Vivek; Zhen, Weining; Enke, Charles
2016-12-01
In the delivery of non-gated radiotherapy (RT), owing to intra-fraction organ motion, a certain degree of RT dose uncertainty is present. Herein, we propose a novel mathematical algorithm to estimate the mean and variance of RT dose that is delivered without gating. These parameters are specific to individual internal organ motion, dependent on individual treatment plans, and relevant to the RT delivery process. This algorithm uses images from a patient’s 4D simulation study to model the actual patient internal organ motion during RT delivery. All necessary dose rate calculations are performed in fixed patient internal organ motion states. The analytical and deterministic formulae of mean and variance in dose from non-gated RT were derived directly via statistical averaging of the calculated dose rate over possible random internal organ motion initial phases, and did not require constructing relevant histograms. All results are expressed in dose rate Fourier transform coefficients for computational efficiency. Exact solutions are provided to simplified, yet still clinically relevant, cases. Results from a volumetric-modulated arc therapy (VMAT) patient case are also presented. The results obtained from our mathematical algorithm can aid clinical decisions by providing information regarding both mean and variance of radiation dose to non-gated patients prior to RT delivery.
Key Features of the Deployed NPP/NPOESS Ground System
NASA Astrophysics Data System (ADS)
Heckmann, G.; Grant, K. D.; Mulligan, J. E.
2010-12-01
The National Oceanic & Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics & Space Administration (NASA) are jointly acquiring the next-generation weather/environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current NOAA Polar-orbiting Operational Environmental Satellites (POES) and DoD Defense Meteorological Satellite Program (DMSP). NPOESS satellites carry sensors to collect meteorological, oceanographic, climatological, and solar-geophysical data of the earth, atmosphere, and space. The ground data processing segment is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence & Information Systems (IIS). The IDPS processes NPOESS Preparatory Project (NPP)/NPOESS satellite data to provide environmental data products/records (EDRs) to NOAA and DoD processing centers operated by the US government. The IDPS will process EDRs beginning with NPP and continuing through the lifetime of the NPOESS system. The command & telemetry segment is the Command, Control & Communications Segment (C3S), also developed by Raytheon IIS. C3S is responsible for managing the overall NPP/NPOESS missions from control & status of the space and ground assets to ensuring delivery of timely, high quality data from the Space Segment to IDPS for processing. In addition, the C3S provides the globally-distributed ground assets needed to collect and transport mission, telemetry, and command data between the satellites and processing locations. The C3S provides all functions required for day-to-day satellite commanding & state-of-health monitoring, and delivery of Stored Mission Data to each Central IDP for data products development and transfer to system subscribers. The C3S also monitors and reports system-wide health & status and data communications with external systems and between the segments. The C3S & IDPS segments were delivered & transitioned to operations for NPP. C3S transitioned to operations at the NOAA Satellite Operations Facility (NSOF) in Suitland Maryland in August 2007 and IDPS transitioned in July 2009. Both segments were involved with several compatibility tests with the NPP Satellite at the Ball Aerospace Technology Corporation (BATC) factory. The compatibility tests involved the spacecraft bus, the four sensors (VIIRS, ATMS, CrIS and OMPS), and both ground segments flowing data between the NSOF and BATC factory and flowing data from the polar ground station (Svalbard) over high-speed links back to the NSOF and the two IDP locations (NESDIS & AFWA). This presentation will describe the NPP/NPOESS ground architecture features & enhancements for the NPOESS era. These will include C3S-provided space-to-ground connectivity, reliable and secure data delivery and insight & oversight of the total operation. For NPOESS the ground architecture is extended to provide additional ground receptor sites to reduce data product delivery times to users and delivery of additional sensor data products from sensors similar to NPP and more NPOESS sensors. This architecture is also extended from two Centrals (NESDIS & AFWA) to two additional Centrals (FNMOC & NAVO). IDPS acts as a buffer minimizing changes in how users request and receive data products.
Quality correction factors of composite IMRT beam deliveries: Theoretical considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchard, Hugo
2012-11-15
Purpose: In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k{sub Q} factors. Methods: The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k{sub Q} factor identicalmore » to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k{sub Q} factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. Results: The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V{sub cyl} which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V{sub cyl}: (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V{sub cyl}, no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. Conclusions: The use of the symmetry of the problem in the present paper leads to a valuable theorem showing that k{sub Q} factors of composite IMRT beam deliveries are close to unity under specific conditions. The theoretical limit k{sub Q{sub p{sub c{sub s{sub r,Q{sub m{sub s{sub r}{sup f{sub p}{sub c}{sub s}{sub r},f{sub m}{sub s}{sub r}}}}}}}}}=1 is determined based on the property of PCSR deliveries to provide a uniform dose in the target volume. The present approach explains recent experimental observations and proposes ideal conditions for IMRT reference dosimetry. The result of this study could potentially serve as a theoretical basis for reference dosimetry of composite IMRT beam deliveries or for routine IMRT quality assurance.« less
Direct aperture optimization: a turnkey solution for step-and-shoot IMRT.
Shepard, D M; Earl, M A; Li, X A; Naqvi, S; Yu, C
2002-06-01
IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach "direct aperture optimization." This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT.
SU-G-IeP4-06: Feasibility of External Beam Treatment Field Verification Using Cherenkov Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, P; Na, Y; Wuu, C
2016-06-15
Purpose: Cherenkov light emission has been shown to correlate with ionizing radiation (IR) dose delivery in solid tissue. In order to properly correlate Cherenkov light images with real time dose delivery in a patient, we must account for geometric and intensity distortions arising from observation angle, as well as the effect of monitor units (MU) and field size on Cherenkov light emission. To test the feasibility of treatment field verification, we first focused on Cherenkov light emission efficiency based on MU and known field size (FS). Methods: Cherenkov light emission was captured using a PI-MAX4 intensified charge coupled device(ICCD) systemmore » (Princeton Instruments), positioned at a fixed angle of 40° relative to the beam central axis. A Varian TrueBeam linear accelerator (linac) was operated at 6MV and 600MU/min to deliver an Anterior-Posterior beam to a 5cm thick block phantom positioned at 100cm Source-to-Surface-Distance(SSD). FS of 10×10, 5×5, and 2×2cm{sup 2} were used. Before beam delivery projected light field images were acquired, ensuring that geometric distortions were consistent when measuring Cherenkov field discrepancies. Cherenkov image acquisition was triggered by linac target current. 500 frames were acquired for each FS. Composite images were created through summation of frames and background subtraction. MU per image was calculated based on linac pulse delay of 2.8ms. Cherenkov and projected light FS were evaluated using ImageJ software. Results: Mean Cherenkov FS discrepancies compared to light field were <0.5cm for 5.6, 2.8, and 8.6 MU for 10×10, 5×5, and 2×2cm{sup 2} FS, respectably. Discrepancies were reduced with increasing field size and MU. We predict a minimum of 100 frames is needed for reliable confirmation of delivered FS. Conclusion: Current discrepancies in Cherenkov field sizes are within a usable range to confirm treatment delivery in standard and respiratory gated clinical scenarios at MU levels appropriate to standard MLC position segments.« less
Wong, Cynthia A
2010-01-01
The pain of childbirth is arguably the most severe pain most women will endure in their lifetimes. The pain of the early first stage of labor arises from dilation of the lower uterine segment and cervix. Pain from the late first stage and second stage of labor arises from descent of the fetus in the birth canal, resulting in distension and tearing of tissues in the vagina and perineum. An array of regional nerve blocks, systemic analgesic, and nonpharmacologic techniques are currently used for labor analgesia. Nonpharmacologic methods are commonly used, but the effectiveness of these techniques generally lacks rigorous scientific study. Continuous labor support has been shown to decrease the use of pharmacologic analgesia and shorten labor. Intradermal water injections decrease back labor pain. Neuraxial labor analgesia (most commonly epidural or combined spinal-epidural) is the most effective method of pain relief during childbirth, and the only method that provides complete analgesia without maternal or fetal sedation. Current techniques commonly combine a low dose of local anesthetic (bupivacaine or ropivacaine) with a lipid soluble opioid (fentanyl or sufentanil). Neuraxial analgesia does not increase the rate of cesarean delivery compared to systemic opioid analgesia; however, dense neuraxial analgesia may increase the risk of instrumental vaginal delivery. PMID:21072284
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalonde, Michel; Alexander, Kevin; Olding, Tim
Purpose: Radiochromic film dosimetry is a standard technique used in clinics to verify modern conformal radiation therapy delivery, and sometimes in research to validate other dosimeters. We are using film as a standard for comparison as we improve high-resolution three-dimensional gel systems for small field dosimetry; however, precise film dosimetry can be technically challenging. We report here measurements for fractionated stereotactic radiation therapy (FSRT) delivered using volumetric modulated arc therapy (VMAT) to investigate the accuracy and reproducibility of film measurements with a novel in-house readout system. We show that radiochromic film can accurately and reproducibly validate FSRT deliveries and alsomore » benchmark our gel dosimetry work. Methods: VMAT FSRT plans for metastases alone (PTV{sub MET}) and whole brain plus metastases (WB+PTV{sub MET}) were delivered onto a multi-configurational phantom with a sheet of EBT3 Gafchromic film inserted mid-plane. A dose of 400 cGy was prescribed to 4 small PTV{sub MET} structures in the phantom, while a WB structure was prescribed a dose of 200 cGy in the WB+PTV{sub MET} iterations. Doses generated from film readout with our in-house system were compared to treatment planned doses. Each delivery was repeated multiple times to assess reproducibility. Results and Conclusions: The reproducibility of film optical density readout was excellent throughout all experiments. Doses measured from the film agreed well with plans for the WB+PTV{sub MET} delivery. But, film doses for PTV{sub MET} only deliveries were significantly below planned doses. This discrepancy is due to stray/scattered light perturbations in our system during readout. Corrections schemes will be presented.« less
Owa, Takao; Mimura, Kazuya; Kakigano, Aiko; Matsuzaki, Shinya; Kumasawa, Keiichi; Endo, Masayuki; Tomimatsu, Takuji; Kimura, Tadashi
2017-07-01
The aim of this study was to report the pregnancy outcomes of women who received different doses of corticosteroid supplementation during labor and delivery. We conducted a retrospective review of 102 pregnant women who received oral corticosteroid therapy, delivered at Osaka University Hospital, and were administered intravenous corticosteroid supplementation during labor and delivery. From January 2008 to May 2012, 47 women were administered a high dose of corticosteroids (HD group). From June 2012 to December 2016, 55 women were given a low dose of corticosteroids (LD group). There were no significant differences in the patient characteristics between the two groups. The most frequent disease was systemic lupus erythematosus (30/102; 29.4%). Most women used prednisolone for more than 1 year (91/102; 89.2%) and at a dose of more than 5 mg/day (88/102; 86.3%). The total intravenous dose of hydrocortisone during labor and delivery ± standard deviation was 233.5 ± 129.4 mg (HD group) and 143.4 ± 38.1 mg (LD group), exhibiting a significantly larger dose in the HD group. No patients suffered an adrenal deficiency and there were no significant differences in the hemodynamics. There were three cases of puerperal endometritis, two patients with hyperglycemia, and one wound infection in the HD group, whereas one case of puerperal endometritis in the LD group. There were no significant differences in the neonatal outcomes. Pregnancy outcomes did not differ between the high and low doses of corticosteroid supplementation during labor and delivery. © 2017 Japan Society of Obstetrics and Gynecology.
Chalifoux, Laurie A; Bauchat, Jeanette R; Higgins, Nicole; Toledo, Paloma; Peralta, Feyce M; Farrer, Jason; Gerber, Susan E; McCarthy, Robert J; Sullivan, John T
2017-10-01
Breech presentation is a leading cause of cesarean delivery. The use of neuraxial anesthesia increases the success rate of external cephalic version procedures for breech presentation and reduces cesarean delivery rates for fetal malpresentation. Meta-analysis suggests that higher-dose neuraxial techniques increase external cephalic version success to a greater extent than lower-dose techniques, but no randomized study has evaluated the dose-response effect. We hypothesized that increasing the intrathecal bupivacaine dose would be associated with increased external cephalic version success. We conducted a randomized, double-blind trial to assess the effect of four intrathecal bupivacaine doses (2.5, 5.0, 7.5, 10.0 mg) combined with fentanyl 15 μg on the success rate of external cephalic version for breech presentation. Secondary outcomes included mode of delivery, indication for cesarean delivery, and length of stay. A total of 240 subjects were enrolled, and 239 received the intervention. External cephalic version was successful in 123 (51.5%) of 239 patients. Compared with bupivacaine 2.5 mg, the odds (99% CI) for a successful version were 1.0 (0.4 to 2.6), 1.0 (0.4 to 2.7), and 0.9 (0.4 to 2.4) for bupivacaine 5.0, 7.5, and 10.0 mg, respectively (P = 0.99). There were no differences in the cesarean delivery rate (P = 0.76) or indication for cesarean delivery (P = 0.82). Time to discharge was increased 60 min (16 to 116 min) with bupivacaine 7.5 mg or higher as compared with 2.5 mg (P = 0.004). A dose of intrathecal bupivacaine greater than 2.5 mg does not lead to an additional increase in external cephalic procedural success or a reduction in cesarean delivery.
The dose delivery effect of the different Beam ON interval in FFF SBRT: TrueBEAM
NASA Astrophysics Data System (ADS)
Tawonwong, T.; Suriyapee, S.; Oonsiri, S.; Sanghangthum, T.; Oonsiri, P.
2016-03-01
The purpose of this study is to determine the dose delivery effect of the different Beam ON interval in Flattening Filter Free Stereotactic Body Radiation Therapy (FFF-SBRT). The three 10MV-FFF SBRT plans (2 half rotating Rapid Arc, 9 to10 Gray/Fraction) were selected and irradiated in three different intervals (100%, 50% and 25%) using the RPM gating system. The plan verification was performed by the ArcCHECK for gamma analysis and the ionization chamber for point dose measurement. The dose delivery time of each interval were observed. For gamma analysis (2%&2mm criteria), the average percent pass of all plans for 100%, 50% and 25% intervals were 86.1±3.3%, 86.0±3.0% and 86.1±3.3%, respectively. For point dose measurement, the average ratios of each interval to the treatment planning were 1.012±0.015, 1.011±0.014 and 1.011±0.013 for 100%, 50% and 25% interval, respectively. The average dose delivery time was increasing from 74.3±5.0 second for 100% interval to 154.3±12.6 and 347.9±20.3 second for 50% and 25% interval, respectively. The same quality of the dose delivery from different Beam ON intervals in FFF-SBRT by TrueBEAM was illustrated. While the 100% interval represents the breath-hold treatment technique, the differences for the free-breathing using RPM gating system can be treated confidently.
Yuceler, Zeyneb; Kantarci, Mecit; Yuce, Ihsan; Kizrak, Yesim; Bayraktutan, Ummugulsum; Ogul, Hayri; Kiris, Adem; Celik, Omer; Pirimoglu, Berhan; Genc, Berhan; Gundogdu, Fuat
2014-01-01
Our aim was to evaluate the diagnostic accuracy of 256-slice, high-pitch mode multidetector computed tomography (MDCT) for coronary artery bypass graft (CABG) patency. Eighty-eight patients underwent 256-slice MDCT angiography to evaluate their graft patency after CABG surgery using a prospectively synchronized electrocardiogram in the high-pitch spiral acquisition mode. Effective radiation doses were calculated. We investigated the diagnostic accuracy of high-pitch, low-dose, prospective, electrocardiogram-triggering, dual-source MDCT for CABG patency compared with catheter coronary angiography imaging findings. A total of 215 grafts and 645 vessel segments were analyzed. All graft segments had diagnostic image quality. The proximal and middle graft segments had significantly (P < 0.05) better mean image quality scores (1.18 ± 0.4) than the distal segments (1.31 ± 0.5). Using catheter coronary angiography as the reference standard, high-pitch MDCT had the following sensitivity, specificity, positive predictive value, and negative predictive value of per-segment analysis for detecting graft patency: 97.1%, 99.6%, 94.4%, and 99.8%, respectively. In conclusion, MDCT can be used noninvasively with a lower radiation dose for the assessment of restenosis in CABG patients.
SU-E-T-478: Sliding Window Multi-Criteria IMRT Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, D; Papp, D; Unkelbach, J
2014-06-01
Purpose: To demonstrate a method for what-you-see-is-what-you-get multi-criteria Pareto surface navigation for step and shoot IMRT treatment planning. Methods: We show mathematically how multiple sliding window treatment plans can be averaged to yield a single plan whose dose distribution is the dosimetric average of the averaged plans. This is incorporated into the Pareto surface navigation based approach to treatment planning in such a way that as the user navigates the surface, the plans he/she is viewing are ready to be delivered (i.e. there is no extra ‘segment the plans’ step that often leads to unacceptable plan degradation in step andmore » shoot Pareto surface navigation). We also describe how the technique can be applied to VMAT. Briefly, sliding window VMAT plans are created such that MLC leaves paint out fluence maps every 15 degrees or so. These fluence map leaf trajectories are averaged in the same way the static beam IMRT ones are. Results: We show mathematically that fluence maps are exactly averaged using our leaf sweep averaging algorithm. Leaf transmission and output factor corrections effects, which are ignored in this work, can lead to small errors in terms of the dose distributions not being exactly averaged even though the fluence maps are. However, our demonstrations show that the dose distributions are almost exactly averaged as well. We demonstrate the technique both for IMRT and VMAT. Conclusions: By turning to sliding window delivery, we show that the problem of losing plan fidelity during the conversion of an idealized fluence map plan into a deliverable plan is remedied. This will allow for multicriteria optimization that avoids the pitfall that the planning has to be redone after the conversion into MLC segments due to plan quality decline. David Craft partially funded by RaySearch Laboratories.« less
Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials.
Cooke, Shelley L; Whittington, Abby R
2016-03-01
Biomedical polymers are exposed in vivo to ionizing radiation as implants, coatings and bystander materials. High levels of ionizing radiation (e.g. X-ray and gamma) have been reported to cause degradation and/or cross-linking in many polymers. This pilot study sought to determine causes of failure, by investigating how therapeutic radiation affects two different porous polymeric scaffolds: polycaprolactone (PCL) and polyurethane (PU). PCL is a bioresorbable material used in biomedical devices (e.g., dentistry, internal fixation devices and targeted drug delivery capsules). PU is commonly used in medical applications (e.g., coatings for pacemakers, tissue expanders, catheter tubing and wound dressings). PU was specifically fabricated to be a non-degradable polymer in this study. Porous scaffolds, fabricated using solvent casting and/or salt leeching techniques, were placed in phosphate buffered saline (PBS, pH=7.4) and exposed to typical cancer radiotherapy. A total dose of 50 Gy was broken into 25 doses over an eleven-week period. Collected PBS was tested for polymer leachants and degradation products using Gas Chromatography Mass Spectroscopy (GC-MS), results revealed no analyzable leachants from either polymer. Scaffolds were characterized using Environmental Scanning Electron Microscopy, Size-exclusion chromatography (SEC), Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR). No gross visual changes were observed in either polymer, however PU exhibited microstructure changes after irradiation. Increased number average molecular weight and weight average molecular weight in PCL and PU were observed after irradiation, indicating crosslinking. PU displayed an increase in intrinsic viscosity that further confirms increased crosslinking. PCL and PU showed decreases in crystallinity after irradiation, and PU crystallinity shifted from long-range-order hard segments to short-range-order hard segments after irradiation. Results from both PCL and PU suggest changes in polymer backbones. This preliminary study suggests that therapeutic radiation doses cause both degradation and crosslinking in PCL and PU. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, H; BC Cancer Agency, Surrey, B.C.; BC Cancer Agency, Vancouver, B.C.
Purpose: The Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC 2010) survey of radiation dose-volume effects on salivary gland function has called for improved understanding of intragland dose sensitivity and the effectiveness of partial sparing in salivary glands. Regional dose susceptibility of sagittally- and coronally-sub-segmented parotid gland has been studied. Specifically, we examine whether individual consideration of sub-segments leads to improved prediction of xerostomia compared with whole parotid mean dose. Methods: Data from 102 patients treated for head-and-neck cancers at the BC Cancer Agency were used in this study. Whole mouth stimulated saliva was collected before (baseline), threemore » months, and one year after cessation of radiotherapy. Organ volumes were contoured using treatment planning CT images and sub-segmented into regional portions. Both non-parametric (local regression) and parametric (mean dose exponential fitting) methods were employed. A bootstrap technique was used for reliability estimation and cross-comparison. Results: Salivary loss is described well using non-parametric and mean dose models. Parametric fits suggest a significant distinction in dose response between medial-lateral and anterior-posterior aspects of the parotid (p<0.01). Least-squares and least-median squares estimates differ significantly (p<0.00001), indicating fits may be skewed by noise or outliers. Salivary recovery exhibits a weakly arched dose response: the highest recovery is seen at intermediate doses. Conclusions: Salivary function loss is strongly dose dependent. In contrast no useful dose dependence was observed for function recovery. Regional dose dependence was observed, but may have resulted from a bias in dose distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q; Read, P
Purpose: Multiple error pathways can lead to delivery errors during the treatment course that cannot be caught with pre-treatment QA. While in vivo solutions are being developed for linacs, no such solution exists for tomotherapy. The purpose of this study is to develop a near real-time system for tomotherapy that can monitor the delivery and dose accumulation process during the treatment-delivery, which enable the user to assess the impact of delivery variations and/or errors and to interrupt the treatment if necessary. Methods: A program running on a tomotherapy planning station fetches the raw DAS data during treatment. Exit detector datamore » is extracted as well as output, gantry angle, and other machine parameters. For each sample, the MLC open-close state is determined. The delivered plan is compared with the original plan via a Monte Carlo dose engine which transports fluence deviations from a pre-treatment Monte Carlo run. A report containing the difference in fluence, dose and DVH statistics is created in html format. This process is repeated until the treatment is completed. Results: Since we only need to compute the dose for the difference in fluence for a few projections each time, dose with 2% statistical uncertainty can be computed in less than 1 second on a 4-core cpu. However, the current bottleneck in this near real-time system is the repeated fetching and processing the growing DAS data file throughout the delivery. The frame rate drops from 10Hz at the beginning of treatment to 5Hz after 3 minutes and to 2Hz after 10 minutes. Conclusion: A during-treatment delivery monitor system has been built to monitor tomotherapy treatments. The system improves patient safety by allowing operators to assess the delivery variations and errors during treatment delivery and adopt appropriate actions.« less
Munang'andu, Hetron M; Fredriksen, Børge N; Mutoloki, Stephen; Brudeseth, Bjørn; Kuo, Tsun-Yung; Marjara, Inderjit S; Dalmo, Roy A; Evensen, Øystein
2012-06-08
Two strains of IPNV made by reverse genetics on the Norwegian Sp strain NVI-015 (GenBank AY379740) backbone encoding the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs were used to prepare inactivated whole virus (IWV), nanoparticle vaccines with whole virus, Escherichia coli subunit encoding truncated VP2-TA and VP2-PT, VP2-TA and VP2-PT fusion antigens with putative translocating domains of Pseudomonas aeruginosa exotoxin, and plasmid DNA encoding segment A of the TA strain. Post challenge survival percentages (PCSP) showed that IWV vaccines conferred highest protection (PCSP=42-53) while nanoparticle, sub-unit recombinant and DNA vaccines fell short of the IWV vaccines in Atlantic salmon (Salmo salar L.) postsmolts challenged with the highly virulent Sp strain NVI-015 (TA strain) of IPNV after 560 degree days post vaccination. Antibody levels induced by these vaccines did not show antigenic differences between the virulent and avirulent motifs for vaccines made with the same antigen dose and delivery system after 8 weeks post vaccination. Our findings show that fish vaccinated with less potent vaccines comprising of nanoparticle, DNA and recombinant vaccines got infected much earlier and yielded to higher infection rates than fish vaccinated with IWV vaccines that were highly potent. Ability of the virulent (T(217)A(221)) and avirulent (P(217)T(221)) motifs to limit establishment of infection showed equal protection for vaccines made of the same antigen dose and delivery systems. Prevention of tissue damage linked to viral infection was eminent in the more potent vaccines than the less protective ones. Hence, there still remains the challenge of developing highly efficacious vaccines with the ability to eliminate the post challenge carrier state in IPNV vaccinology. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J; Hu, W; Xing, Y
Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, positionmore » and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.« less
A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.
Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle
2016-03-08
On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual con-tours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (< 1 ms) with a satisfying accuracy (Dice = 0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR-IGRT system.
Vaccine vial stopper performance for fractional dose delivery of vaccines.
Jarrahian, Courtney; Myers, Daniel; Creelman, Ben; Saxon, Eugene; Zehrung, Darin
2017-07-03
Shortages of vaccines such as inactivated poliovirus and yellow fever vaccines have been addressed by administering reduced-or fractional-doses, as recommended by the World Health Organization Strategic Advisory Group of Experts on Immunization, to expand population coverage in countries at risk. We evaluated 3 kinds of vaccine vial stoppers to assess their performance after increased piercing from repeated withdrawal of doses needed when using fractional doses (0.1 mL) from presentations intended for full-dose (0.5 mL) delivery. Self-sealing capacity and fragmentation of the stopper were assessed via modified versions of international standard protocols. All stoppers maintained self-sealing capacity after 100 punctures. The damage to stoppers measured as the fragmentation rate was within the target of ≤ 10% of punctures resulting in a fragment after as many as 50 punctures. We concluded that stopper failure is not likely to be a concern if existing vaccine vials containing up to 10 regular doses are used up to 50 times for fractional dose delivery.
NASA Astrophysics Data System (ADS)
Gallivanone, F.; Interlenghi, M.; Canervari, C.; Castiglioni, I.
2016-01-01
18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) is a standard functional diagnostic technique to in vivo image cancer. Different quantitative paramters can be extracted from PET images and used as in vivo cancer biomarkers. Between PET biomarkers Metabolic Tumor Volume (MTV) has gained an important role in particular considering the development of patient-personalized radiotherapy treatment for non-homogeneous dose delivery. Different imaging processing methods have been developed to define MTV. The different proposed PET segmentation strategies were validated in ideal condition (e.g. in spherical objects with uniform radioactivity concentration), while the majority of cancer lesions doesn't fulfill these requirements. In this context, this work has a twofold objective: 1) to implement and optimize a fully automatic, threshold-based segmentation method for the estimation of MTV, feasible in clinical practice 2) to develop a strategy to obtain anthropomorphic phantoms, including non-spherical and non-uniform objects, miming realistic oncological patient conditions. The developed PET segmentation algorithm combines an automatic threshold-based algorithm for the definition of MTV and a k-means clustering algorithm for the estimation of the background. The method is based on parameters always available in clinical studies and was calibrated using NEMA IQ Phantom. Validation of the method was performed both in ideal (e.g. in spherical objects with uniform radioactivity concentration) and non-ideal (e.g. in non-spherical objects with a non-uniform radioactivity concentration) conditions. The strategy to obtain a phantom with synthetic realistic lesions (e.g. with irregular shape and a non-homogeneous uptake) consisted into the combined use of standard anthropomorphic phantoms commercially and irregular molds generated using 3D printer technology and filled with a radioactive chromatic alginate. The proposed segmentation algorithm was feasible in a clinical context and showed a good accuracy both in ideal and in realistic conditions.
Monte Carlo evaluation of magnetically focused proton beams for radiosurgery
NASA Astrophysics Data System (ADS)
McAuley, Grant A.; Heczko, Sarah L.; Nguyen, Theodore T.; Slater, James M.; Slater, Jerry D.; Wroe, Andrew J.
2018-03-01
The purpose of this project is to investigate the advantages in dose distribution and delivery of proton beams focused by a triplet of quadrupole magnets in the context of potential radiosurgery treatments. Monte Carlo simulations were performed using various configurations of three quadrupole magnets located immediately upstream of a water phantom. Magnet parameters were selected to match what can be commercially manufactured as assemblies of rare-earth permanent magnetic materials. Focused unmodulated proton beams with a range of ~10 cm in water were target matched with passive collimated beams (the current beam delivery method for proton radiosurgery) and properties of transverse dose, depth dose and volumetric dose distributions were compared. Magnetically focused beams delivered beam spots of low eccentricity to Bragg peak depth with full widths at the 90% reference dose contour from ~2.5 to 5 mm. When focused initial beam diameters were larger than matching unfocused beams (10 of 11 cases) the focused beams showed 16%–83% larger peak-to-entrance dose ratios and 1.3 to 3.4-fold increases in dose delivery efficiency. Peak-to-entrance and efficiency benefits tended to increase with larger magnet gradients and larger initial diameter focused beams. Finally, it was observed that focusing tended to shift dose in the water phantom volume from the 80%–20% dose range to below 20% of reference dose, compared to unfocused beams. We conclude that focusing proton beams immediately upstream from tissue entry using permanent magnet assemblies can produce beams with larger peak-to-entrance dose ratios and increased dose delivery efficiencies. Such beams could potentially be used in the clinic to irradiate small-field radiosurgical targets with fewer beams, lower entrance dose and shorter treatment times.
Controlled-release systemic delivery - a new concept in cancer chemoprevention
2012-01-01
Many chemopreventive agents have encountered bioavailability issues in pre-clinical/clinical studies despite high oral doses. We report here a new concept utilizing polycaprolactone implants embedded with test compounds to obtain controlled systemic delivery, circumventing oral bioavailability issues and reducing the total administered dose. Compounds were released from the implants in vitro dose dependently and for long durations (months), which correlated with in vivo release. Polymeric implants of curcumin significantly inhibited tissue DNA adducts following the treatment of rats with benzo[a]pyrene, with the total administered dose being substantially lower than typical oral doses. A comparison of bioavailability of curcumin given by implants showed significantly higher levels of curcumin in the plasma, liver and brain 30 days after treatment compared with the dietary route. Withaferin A implants resulted in a nearly 60% inhibition of lung cancer A549 cell xenografts, but no inhibition occurred when the same total dose was administered intraperitoneally. More than 15 phytochemicals have been tested successfully by this formulation. Together, our data indicate that this novel implant-delivery system circumvents oral bioavailability issues, provides continuous delivery for long durations and lowers the total administered dose, eliciting both chemopreventive/chemotherapeutic activities. This would also allow the assessment of activity of minor constituents and synthetic metabolites, which otherwise remain uninvestigated in vivo. PMID:22696595
Application of the Low-dose One-stop-shop Cardiac CT Protocol with Third-generation Dual-source CT.
Lin, Lu; Wang, Yining; Yi, Yan; Cao, Jian; Kong, Lingyan; Qian, Hao; Zhang, Hongzhi; Wu, Wei; Wang, Yun; Jin, Zhengyu
2017-02-20
Objective To evaluate the feasibility of a low-dose one-stop-shop cardiac CT imaging protocol with third-generation dual-source CT (DSCT). Methods Totally 23 coronary artery disease (CAD) patients were prospectively enrolled between March to September in 2016. All patients underwent an ATP stress dynamic myocardial perfusion imaging (MPI) (data acquired prospectively ECG-triggered during end systole by table shuttle mode in 32 seconds) at 70 kV combined with prospectively ECG-triggered high-pitch coronary artery angiography (CCTA) on a third-generation DSCT system. Myocardial blood flow (MBF) was quantified and compared between perfusion normal and abnormal myocardial segments based on AHA-17-segment model. CCTA images were evaluated qualitatively based on SCCT-18-segment model and the effective dose(ED) was calculated. In patients with subsequent catheter coronary angiography (CCA) as reference,the diagnosis performance of MPI (for per-vessel ≥50% and ≥70% stenosis) and CCTA (for≥50% stenosis) were assessed. Results Of 23 patients who had completed the examination of ATP stress MPI plus CCTA,12 patients received follow-up CCA. At ATP stress MPI,77 segments (19.7%) in 13 patients (56.5%) had perfusion abnormalities. The MBF values of hypo-perfused myocardial segments decreased significantly compared with normal segments [(93±22)ml/(100 ml·min) vs. (147±27)ml/(100 ml·min);t=15.978,P=0.000]. At CCTA,93.9% (308/328) of the coronary segments had diagnostic image quality. With CCA as the reference standard,the per-vessel and per-segment sensitivity,specificity,and accuracy of CCTA for stenosis≥50% were 94.1%,93.5%,and 93.7% and 90.9%,97.8%,and 96.8%,and the per-vessel sensitivity,specificity and accuracy of ATP stress MPI for stenosis≥50% and ≥70% were 68.7%,100%,and 89.5% and 91.7%,100%,and 97.9%. The total ED of MPI and CCTA was (3.9±1.3) mSv [MPI:(3.5±1.2) mSv,CCTA:(0.3±0.1) mSv]. Conclusion The third-generation DSCT stress dynamic MPI at 70 kV combined with prospectively ECG-triggered high-pitch CCTA is a feasible and reliable tool for clinical diagnosis,with remarkably reduced radiation dose.
3D Dose reconstruction: Banding artefacts in cine mode EPID images during VMAT delivery
NASA Astrophysics Data System (ADS)
Woodruff, H. C.; Greer, P. B.
2013-06-01
Cine (continuous) mode images obtained during VMAT delivery are heavily degraded by banding artefacts. We have developed a method to reconstruct the pulse sequence (and hence dose deposited) from open field images. For clinical VMAT fields we have devised a frame averaging strategy that greatly improves image quality and dosimetric information for three-dimensional dose reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Q; Cao, R; Pei, X
2015-06-15
Purpose: Three-dimensional dose verification can detect errors introduced by the treatment planning system (TPS) or differences between planned and delivered dose distribution during the treatment. The aim of the study is to extend a previous in-house developed three-dimensional dose reconstructed model in homogeneous phantom to situtions in which tissue inhomogeneities are present. Methods: The method was based on the portal grey images from an electronic portal imaging device (EPID) and the relationship between beamlets and grey-scoring voxels at the position of the EPID. The relationship was expressed in the form of grey response matrix that was quantified using thickness-dependence scattermore » kernels determined by series of experiments. From the portal grey-value distribution information measured by the EPID the two-dimensional incident fluence distribution was reconstructed based on the grey response matrix using a fast iterative algorithm. The accuracy of this approach was verified using a four-field intensity-modulated radiotherapy (IMRT) plan for the treatment of lung cancer in anthopomorphic phantom. Each field had between twenty and twenty-eight segments and was evaluated by comparing the reconstructed dose distribution with the measured dose. Results: The gamma-evaluation method was used with various evaluation criteria of dose difference and distance-to-agreement: 3%/3mm and 2%/2 mm. The dose comparison for all irradiated fields showed a pass rate of 100% with the criterion of 3%/3mm, and a pass rate of higher than 92% with the criterion of 2%/2mm. Conclusion: Our experimental results demonstrate that our method is capable of accurately reconstructing three-dimensional dose distribution in the presence of inhomogeneities. Using the method, the combined planning and treatment delivery process is verified, offing an easy-to-use tool for the verification of complex treatments.« less
3D conformal planning using low segment multi-criteria IMRT optimization
Khan, Fazal; Craft, David
2014-01-01
Purpose To evaluate automated multicriteria optimization (MCO) – designed for intensity modulated radiation therapy (IMRT), but invoked with limited segmentation – to efficiently produce high quality 3D conformal radiation therapy (3D-CRT) plans. Methods Ten patients previously planned with 3D-CRT to various disease sites (brain, breast, lung, abdomen, pelvis), were replanned with a low-segment inverse multicriteria optimized technique. The MCO-3D plans used the same beam geometry of the original 3D plans, but were limited to an energy of 6 MV. The MCO-3D plans were optimized using fluence-based MCO IMRT and then, after MCO navigation, segmented with a low number of segments. The 3D and MCO-3D plans were compared by evaluating mean dose for all structures, D95 (dose that 95% of the structure receives) and homogeneity indexes for targets, D1 and clinically appropriate dose volume objectives for individual organs at risk (OARs), monitor units (MUs), and physician preference. Results The MCO-3D plans reduced the OAR mean doses (41 out of a total of 45 OARs had a mean dose reduction, p<<0.01) and monitor units (seven out of ten plans have reduced MUs; the average reduction is 17%, p=0.08) while maintaining clinical standards on coverage and homogeneity of target volumes. All MCO-3D plans were preferred by physicians over their corresponding 3D plans. Conclusion High quality 3D plans can be produced using MCO-IMRT optimization, resulting in automated field-in-field type plans with good monitor unit efficiency. Adopting this technology in a clinic could improve plan quality, and streamline treatment plan production by utilizing a single system applicable to both IMRT and 3D planning. PMID:25413405
Granada, Juan F; Tellez, Armando; Baumbach, William R; Bingham, Brendan; Keng, Yen-Fang; Wessler, Jeffrey; Conditt, Gerard; McGregor, Jennifer; Stone, Gregg; Kaluza, Greg L; Leon, Martin B
2016-08-20
Among antirestenotic compounds, sirolimus displays a superior safety profile compared to paclitaxel, but its pharmacokinetic properties make it a challenging therapeutic candidate for single-time delivery. Herein we evaluate the feasibility of delivery, long-term retention and vascular effects of sirolimus nanoparticles delivered through a novel porous angioplasty balloon in normal porcine arteries and in a swine model of in-stent restenosis (ISR). Sirolimus nanoparticle formulation was delivered via porous balloon angioplasty to 753 coronary artery segments for pharmacokinetic studies and 26 segments for biological effect of sirolimus delivery in different clinical scenarios (de novo [n=8], ISR [n=6] and following stent implantation [n=12]). Sirolimus coronary artery concentrations were above the target therapeutic level of 1 ng/mg after 26 days, and were >100-fold higher in coronary artery treatment sites than in distal myocardium and remote tissues at all time points. At 28 days, reduction in percent stenosis in formulation-treated sites compared to balloon angioplasty treatment was noted in all three clinical scenarios, with the largest effect seen in the de novo study. Local coronary delivery of sirolimus nanoparticles in the porcine model using a novel porous balloon delivery system achieved therapeutic long-term intra-arterial drug levels without significant systemic residual exposure.
Automated aortic calcification detection in low-dose chest CT images
NASA Astrophysics Data System (ADS)
Xie, Yiting; Htwe, Yu Maw; Padgett, Jennifer; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.
2014-03-01
The extent of aortic calcification has been shown to be a risk indicator for vascular events including cardiac events. We have developed a fully automated computer algorithm to segment and measure aortic calcification in low-dose noncontrast, non-ECG gated, chest CT scans. The algorithm first segments the aorta using a pre-computed Anatomy Label Map (ALM). Then based on the segmented aorta, aortic calcification is detected and measured in terms of the Agatston score, mass score, and volume score. The automated scores are compared with reference scores obtained from manual markings. For aorta segmentation, the aorta is modeled as a series of discrete overlapping cylinders and the aortic centerline is determined using a cylinder-tracking algorithm. Then the aortic surface location is detected using the centerline and a triangular mesh model. The segmented aorta is used as a mask for the detection of aortic calcification. For calcification detection, the image is first filtered, then an elevated threshold of 160 Hounsfield units (HU) is used within the aorta mask region to reduce the effect of noise in low-dose scans, and finally non-aortic calcification voxels (bony structures, calcification in other organs) are eliminated. The remaining candidates are considered as true aortic calcification. The computer algorithm was evaluated on 45 low-dose non-contrast CT scans. Using linear regression, the automated Agatston score is 98.42% correlated with the reference Agatston score. The automated mass and volume score is respectively 98.46% and 98.28% correlated with the reference mass and volume score.
Ma, Ming; Li, Feng; Liu, Xiu-hong; Yuan, Zhe-fan; Chen, Fu-jie; Zhuo, Ren-xi
2010-10-01
Amphiphilic triblock copolymers monomethoxyl poly(ethylene glycol) (mPEG)-b-poly(ε-caprolactone) (PCL)-b-poly(aminoethyl methacrylate)s (PAMAs) (mPECAs) were synthesized as gene delivery vectors. They exhibited lower cytotoxicity and higher transfection efficiency in COS-7 cells in presence of serum compared to 25 kDa bPEI. The influence of mPEG and PCL segments in mPECAs was evaluated by comparing with corresponding diblock copolymers. The studies showed the incorporation of the hydrophobic PCL segment in triblock copolymers affected the binding capability to pDNA and surface charges of complexes due to the formation of micelles increasing the local charges. The presence of mPEG segment in gene vector decreased the surface charges of the complexes and increased the stability of the complexes in serum because of the steric hindrance effect. It was also found that the combination of PEG and PCL segments into one macromolecule might lead to synergistic effect for better transfection efficiency in serum.
Kamerling, Cornelis Ph; Fast, Martin F; Ziegenhein, Peter; Menten, Martin J; Nill, Simeon; Oelfke, Uwe
2017-11-01
Firstly, this study provides a real-time implementation of online dose reconstruction for tracked volumetric arc therapy (VMAT). Secondly, this study describes a novel offline quality assurance tool, based on commercial dose calculation algorithms. Online dose reconstruction for VMAT is a computationally challenging task in terms of computer memory usage and calculation speed. To potentially reduce the amount of memory used, we analyzed the impact of beam angle sampling for dose calculation on the accuracy of the dose distribution. To establish the performance of the method, we planned two single-arc VMAT prostate stereotactic body radiation therapy cases for delivery with dynamic MLC tracking. For quality assurance of our online dose reconstruction method we have also developed a stand-alone offline dose reconstruction tool, which utilizes the RayStation treatment planning system to calculate dose. For the online reconstructed dose distributions of the tracked deliveries, we could establish strong resemblance for 72 and 36 beam co-planar equidistant beam samples with less than 1.2% deviation for the assessed dose-volume indicators (clinical target volume D98 and D2, and rectum D2). We could achieve average runtimes of 28-31 ms per reported MLC aperture for both dose computation and accumulation, meeting our real-time requirement. To cross-validate the offline tool, we have compared the planned dose to the offline reconstructed dose for static deliveries and found excellent agreement (3%/3 mm global gamma passing rates of 99.8%-100%). Being able to reconstruct dose during delivery enables online quality assurance and online replanning strategies for VMAT. The offline quality assurance tool provides the means to validate novel online dose reconstruction applications using a commercial dose calculation engine. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-01
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-07
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connell, T; Papaconstadopoulos, P; Alexander, A
2014-08-15
Modulated electron radiation therapy (MERT) offers the potential to improve healthy tissue sparing through increased dose conformity. Challenges remain, however, in accurate beamlet dose calculation, plan optimization, collimation method and delivery accuracy. In this work, we investigate the accuracy and efficiency of an end-to-end MERT plan and automated-delivery workflow for the electron boost portion of a previously treated whole breast irradiation case. Dose calculations were performed using Monte Carlo methods and beam weights were determined using a research-based treatment planning system capable of inverse optimization. The plan was delivered to radiochromic film placed in a water equivalent phantom for verification,more » using an automated motorized tertiary collimator. The automated delivery, which covered 4 electron energies, 196 subfields and 6183 total MU was completed in 25.8 minutes, including 6.2 minutes of beam-on time with the remainder of the delivery time spent on collimator leaf motion and the automated interfacing with the accelerator in service mode. The delivery time could be reduced by 5.3 minutes with minor electron collimator modifications and the beam-on time could be reduced by and estimated factor of 2–3 through redesign of the scattering foils. Comparison of the planned and delivered film dose gave 3%/3 mm gamma pass rates of 62.1, 99.8, 97.8, 98.3, and 98.7 percent for the 9, 12, 16, 20 MeV, and combined energy deliveries respectively. Good results were also seen in the delivery verification performed with a MapCHECK 2 device. The results showed that accurate and efficient MERT delivery is possible with current technologies.« less
[Investigation of Elekta linac characteristics for VMAT].
Luo, Guangwen; Zhang, Kunyi
2012-01-01
The aim of this study is to investigate the characteristics of Elekta delivery system for volumetric modulated arc therapy (VMAT). Five VMAT plans were delivered in service mode and dose rates, and speed of gantry and MLC leaves were analyzed by log files. Results showed that dose rates varied between 6 dose rates. Gantry and MLC leaf speed dynamically varied during delivery. The technique of VMAT requires linac to dynamically control more parameters, and these key dynamic variables during VMAT delivery can be checked by log files. Quality assurance procedure should be carried out for VMAT related parameter.
21 CFR 520.45a - Albendazole suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver...) body weight (10 mg/kilogram (kg)) as a single oral dose using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver flukes (Fasciola hepatica); heads and segments of...
21 CFR 520.38a - Albendazole suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver...) body weight (10 mg/kilogram (kg)) as a single oral dose using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver flukes (Fasciola hepatica); heads and segments of...
21 CFR 520.45a - Albendazole suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver...) body weight (10 mg/kilogram (kg)) as a single oral dose using dosing gun or dosing syringe. (ii) Indications for use. For removal and control of adult liver flukes (Fasciola hepatica); heads and segments of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, X; Chen, H; Zhou, L
2014-06-15
Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the randommore » walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no 81301940)« less
Recent Perspectives in Ocular Drug Delivery
Gaudana, Ripal; Jwala, J.; Boddu, Sai H. S.; Mitra, Ashim K.
2015-01-01
Anatomy and physiology of the eye makes it a highly protected organ. Designing an effective therapy for ocular diseases, especially for the posterior segment, has been considered as a formidable task. Limitations of topical and intravitreal route of administration have challenged scientists to find alternative mode of administration like periocular routes. Transporter targeted drug delivery has generated a great deal of interest in the field because of its potential to overcome many barriers associated with current therapy. Application of nanotechnology has been very promising in the treatment of a gamut of diseases. In this review, we have briefly discussed several ocular drug delivery systems such as microemulsions, nanosuspensions, nanoparticles, liposomes, niosomes, dendrimers, implants, and hydrogels. Potential for ocular gene therapy has also been described in this article. In near future, a great deal of attention will be paid to develop non-invasive sustained drug release for both anterior and posterior segment eye disorders. A better understanding of nature of ocular diseases, barriers and factors affecting in vivo performance, would greatly drive the development of new delivery systems. Current momentum in the invention of new drug delivery systems hold a promise towards much improved therapies for the treatment of vision threatening disorders. PMID:18758924
Individual bone structure segmentation and labeling from low-dose chest CT
NASA Astrophysics Data System (ADS)
Liu, Shuang; Xie, Yiting; Reeves, Anthony P.
2017-03-01
The segmentation and labeling of the individual bones serve as the first step to the fully automated measurement of skeletal characteristics and the detection of abnormalities such as skeletal deformities, osteoporosis, and vertebral fractures. Moreover, the identified landmarks on the segmented bone structures can potentially provide relatively reliable location reference to other non-rigid human organs, such as breast, heart and lung, thereby facilitating the corresponding image analysis and registration. A fully automated anatomy-directed framework for the segmentation and labeling of the individual bone structures from low-dose chest CT is presented in this paper. The proposed system consists of four main stages: First, both clavicles are segmented and labeled by fitting a piecewise cylindrical envelope. Second, the sternum is segmented under the spatial constraints provided by the segmented clavicles. Third, all ribs are segmented and labeled based on 3D region growing within the volume of interest defined with reference to the spinal canal centerline and lungs. Fourth, the individual thoracic vertebrae are segmented and labeled by image intensity based analysis in the spatial region constrained by the previously segmented bone structures. The system performance was validated with 1270 lowdose chest CT scans through visual evaluation. Satisfactory performance was obtained respectively in 97.1% cases for the clavicle segmentation and labeling, in 97.3% cases for the sternum segmentation, in 97.2% cases for the rib segmentation, in 94.2% cases for the rib labeling, in 92.4% cases for vertebra segmentation and in 89.9% cases for the vertebra labeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J; Gu, X; Lu, W
Purpose: A novel distance-dose weighting method for label fusion was developed to increase segmentation accuracy in dosimetrically important regions for prostate radiation therapy. Methods: Label fusion as implemented in the original SIMPLE (OS) for multi-atlas segmentation relies iteratively on the majority vote to generate an estimated ground truth and DICE similarity measure to screen candidates. The proposed distance-dose weighting puts more values on dosimetrically important regions when calculating similarity measure. Specifically, we introduced distance-to-dose error (DDE), which converts distance to dosimetric importance, in performance evaluation. The DDE calculates an estimated DE error derived from surface distance differences between the candidatemore » and estimated ground truth label by multiplying a regression coefficient. To determine the coefficient at each simulation point on the rectum, we fitted DE error with respect to simulated voxel shift. The DEs were calculated by the multi-OAR geometry-dosimetry training model previously developed in our research group. Results: For both the OS and the distance-dose weighted SIMPLE (WS) results, the evaluation metrics for twenty patients were calculated using the ground truth segmentation. The mean difference of DICE, Hausdorff distance, and mean absolute distance (MAD) between OS and WS have shown 0, 0.10, and 0.11, respectively. In partial MAD of WS which calculates MAD within a certain PTV expansion voxel distance, the lower MADs were observed at the closer distances from 1 to 8 than those of OS. The DE results showed that the segmentation from WS produced more accurate results than OS. The mean DE error of V75, V70, V65, and V60 were decreased by 1.16%, 1.17%, 1.14%, and 1.12%, respectively. Conclusion: We have demonstrated that the method can increase the segmentation accuracy in rectum regions adjacent to PTV. As a result, segmentation using WS have shown improved dosimetric accuracy than OS. The WS will provide dosimetrically important label selection strategy in multi-atlas segmentation. CPRIT grant RP150485.« less
Deformable Dose Reconstruction to Optimize the Planning and Delivery of Liver Cancer Radiotherapy
NASA Astrophysics Data System (ADS)
Velec, Michael
The precise delivery of radiation to liver cancer patients results in improved control with higher tumor doses and minimized normal tissues doses. A margin of normal tissue around the tumor requires irradiation however to account for treatment delivery uncertainties. Daily image-guidance allows targeting of the liver, a surrogate for the tumor, to reduce geometric errors. However poor direct tumor visualization, anatomical deformation and breathing motion introduce uncertainties between the planned dose, calculated on a single pre-treatment computed tomography image, and the dose that is delivered. A novel deformable image registration algorithm based on tissue biomechanics was applied to previous liver cancer patients to track targets and surrounding organs during radiotherapy. Modeling these daily anatomic variations permitted dose accumulation, thereby improving calculations of the delivered doses. The accuracy of the algorithm to track dose was validated using imaging from a deformable, 3-dimensional dosimeter able to optically track absorbed dose. Reconstructing the delivered dose revealed that 70% of patients had substantial deviations from the initial planned dose. An alternative image-guidance technique using respiratory-correlated imaging was simulated, which reduced both the residual tumor targeting errors and the magnitude of the delivered dose deviations. A planning and delivery strategy for liver radiotherapy was then developed that minimizes the impact of breathing motion, and applied a margin to account for the impact of liver deformation during treatment. This margin is 38% smaller on average than the margin used clinically, and permitted an average dose-escalation to liver tumors of 9% for the same risk of toxicity. Simulating the delivered dose with deformable dose reconstruction demonstrated the plans with smaller margins were robust as 90% of patients' tumors received the intended dose. This strategy can be readily implemented with widely available technologies and thus can potentially improve local control for liver cancer patients receiving radiotherapy.
Xiao, Fei; Xu, Wen-Ping; Zhang, Yin-Fa; Liu, Lin; Liu, Xia; Wang, Li-Zhong
2015-01-01
Background: Spinal anesthesia is considered as a reasonable anesthetic option in lower abdominal and lower limb surgery. This study was to determine the dose-response of intrathecal ropivacaine in patients with scarred uterus undergoing cesarean delivery under combined spinal-epidural anesthesia. Methods: Seventy-five patients with scarred uterus undergoing elective cesarean delivery under combined spinal-epidural anesthesia were enrolled in this randomized, double-blinded, dose-ranging study. Patients received 6, 8, 10, 12, or 14 mg intrathecal hyperbaric ropivacaine with 5 μg sufentanil. Successful spinal anesthesia was defined as a T4 sensory level achieved with no need for epidural supplementation. The 50% effective dose (ED50) and 95% effective dose (ED95) were calculated with a logistic regression model. Results: ED50 and ED95 of intrathecal hyperbaric ropivacaine for patients with scarred uterus undergoing cesarean delivery under combined spinal-epidural anesthesia (CSEA) were 8.28 mg (95% confidence interval [CI]: 2.28–9.83 mg) and 12.24 mg (95% CI: 10.53–21.88 mg), respectively. Conclusion: When a CSEA technique is to use in patients with scarred uterus for an elective cesarean delivery, the ED50 and ED95 of intrathecal hyperbaric ropivacaine along with 5 μg sufentanil were 8.28 mg and 12.24 mg, respectively. In addition, this local anesthetic is unsuitable for emergent cesarean delivery, but it has advantages for ambulatory patients. PMID:26415793
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaede, S; Jordan, K; Western University, London, ON
Purpose: To present a customized programmable moving insert for the ArcCHECK™ phantom that can, in a single delivery, check both entrance dosimetry, while simultaneously verifying the delivery of respiratory-gated VMAT. Methods: The cylindrical motion phantom uses a computer-controlled stepping motor to move an insert inside a stationery sleeve. Insert motion is programmable and can include rotational motion in addition to linear motion along the axis of the cylinder. The sleeve fits securely in the bore of the ArcCHECK™. Interchangeable inserts, including an A1SL chamber, optically-stimulated luminescence dosimeters, radiochromic film, or 3D gels, allow this combination to be used for commissioning,more » routine quality assurance, and patient-specific dosimetric verification of respiratory-gated VMAT. Before clinical implementation, the effect of a moving insert on the ArcCHECK™ measurements was considered. First, the measured dose to the ArcCHECK™ containing multiple inserts in the static position was compared to the calculated dose during multiple VMAT treatment deliveries. Then, dose was measured under both sinusoidal and real-patient motion conditions to determine any effect of the moving inserts on the ArcCHECK™ measurements. Finally, dose was measured during gated VMAT delivery to the same inserts under the same motion conditions to examine any effect of various beam “on-and-off” and dose rate ramp “up-and-down”. Multiple comparisons between measured and calculated dose to different inserts were also considered. Results: The pass rate for the static delivery exceeded 98% for all measurements (3%/3mm), suggesting a valid setup for entrance dosimetry. The pass rate was not altered for any measurement delivered under motion conditions. A similar Result was observed under gated VMAT conditions, including agreement of measured and calculated dose to the various inserts. Conclusion: Incorporating a programmable moving insert within the ArcCHECK™ phantom provides an efficient verification of respiratory-gated VMAT delivery that is useful during commissioning, routine quality assurance, and patient-specific dose verification. Prototype phantom development and testing was performed in collaboration with Modus Medical Devices Inc. (London, ON). No financial support was granted.« less
DoPET: an in-treatment monitoring system for proton therapy at 62 MeV
NASA Astrophysics Data System (ADS)
Rosso, V.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cirrone, G. A. P.; Collini, F.; Cuttone, G.; Del Guerra, A.; Milluzzo, G.; Morrocchi, M.; Raffaele, L.; Romano, F.; Sportelli, G.; Zaccaro, E.
2016-12-01
Proton beam radiotherapy is highly effective in treating cancer thanks to its conformal dose deposition. This superior capability in dose deposition has led to a massive growth of the treated patients around the world, raising the need of treatment monitoring systems. An in-treatment PET system, DoPET, was constructed and tested at CATANA beam-line, LNS-INFN in Catania, where 62 MeV protons are used to treat ocular melanoma. The PET technique profits from the beta+ emitters generated by the proton beam in the irradiated body, mainly 15-O and 11-C. The current DoPET prototype consists of two planar 15 cm × 15 cm LYSO-based detector heads. With respect to the previous versions, the system was enlarged and the DAQ up-graded during the years so now also anthropomorphic phantoms, can be fitted within the field of view of the system. To demonstrate the capability of DoPET to detect changes in the delivered treatment plan with respect to the planned one, various treatment plans were used delivering a standard 15 Gy fraction to an anthropomorphic phantom. Data were acquired during and after the treatment delivery up to 10 minutes. When the in-treatment phase was long enough (more than 1 minute), the corresponding activated volume was visible just after the treatment delivery, even if in presence of a noisy background. The after-treatment data, acquired for about 9 minutes, were segmented finding that few minutes are enough to be able to detect changes. These experiments will be presented together with the studies performed with PMMA phantoms where the DoPET response was characterized in terms of different dose rates and in presence of range shifters: the system response is linear up to 16.9 Gy/min and has the ability to see a 1 millimeter range shifter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kainz, K; Lawton, C; Li, X
2015-06-15
Purpose: To compare the dosimetry and delivery of burst-mode modulated arc radiotherapy using flattening-filter-free (FFF) and flattening-filtered (FF) beams. Methods: Burst-mode modulated arc therapy (mARC, Siemens) plans were generated for six prostate cases with FFF and FF beam models, using the Elekta Monaco v. 5.00 planning system. One 360-degree arc was used for five cases, and for one case two 360-degree coplanar arcs were used. The maximum number of optimization points (OPs) per arc was set to 91, and OPs with less than 4 MU were disregarded. All plans were delivered on the Siemens Artiste linear accelerator with 6MV FFmore » (300 MU/min) and comparable-energy FFF (2000 MU/min, labeled as 7UF) beams. Results: For all cases studied, the plans with FFF beams exhibited DVHs for the PTV, rectum, and bladder that were nearly identical to those for the plans with FF beams. The FFF plan yielded reduced dose to the right femoral head for 5 cases, and lower mean dose to the left femoral head for 4 cases. For all but the two-arc case, the FFF and FF plans resulted in an identical number of segments. The total number of MUs was slightly lower for the FF plans for five cases. The total delivery time per fraction was substantially lower for the FFF plans, ranging from 25 to 50 percent among all cases, as compared to the FF plans. Conclusion: For mARC plans, FFF and FF beams provided comparable PTV coverage and rectum and bladder sparing. For the femoral heads, the mean dose was slightly lower in most cases when using the FFF beam. Although the flat beam plans typically required slightly fewer MUs, FFF beams required substantially less time to deliver a plan of similar quality. This work was supported by Siemens Medical Solutions and the MCW Cancer Center Fotsch Foundation.« less
Sharma, Hari S; Patnaik, Ranjana; Muresanu, Dafin F; Lafuente, José V; Ozkizilcik, Asya; Tian, Z Ryan; Nozari, Ala; Sharma, Aruna
2017-01-01
The possibility that histamine influences the spinal cord pathophysiology following trauma through specific receptor-mediated upregulation of neuronal nitric oxide synthase (nNOS) was examined in a rat model. A focal spinal cord injury (SCI) was inflicted by a longitudinal incision into the right dorsal horn of the T10-11 segments. The animals were allowed to survive 5h. The SCI significantly induced breakdown of the blood-spinal cord barrier to protein tracers, reduced the spinal cord blood flow at 5h, and increased the edema formation and massive upregulation of nNOS expression. Pretreatment with histamine H1 receptor antagonist mepyramine (1mg, 5mg, and 10mg/kg, i.p., 30min before injury) failed to attenuate nNOS expression and spinal cord pathology following SCI. On the other hand, blockade of histamine H2 receptors with cimetidine or ranitidine (1mg, 5mg, or 10mg/kg) significantly reduced these early pathophysiological events and attenuated nNOS expression in a dose-dependent manner. Interestingly, TiO 2 -naowire delivery of cimetidine or ranitidine (5mg doses) exerted superior neuroprotective effects on SCI-induced nNOS expression and cord pathology. It appears that effects of ranitidine were far superior than cimetidine at identical doses in SCI. On the other hand, pretreatment with histamine H3 receptor agonist α-methylhistamine (1mg, 2mg, or 5mg/kg, i.p.) that inhibits histamine synthesis and release in the central nervous system thwarted the spinal cord pathophysiology and nNOS expression when used in lower doses. Interestingly, histamine H3 receptor antagonist thioperamide (1mg, 2mg, or 5mg/kg, i.p.) exacerbated nNOS expression and cord pathology after SCI. These novel observations suggest that blockade of histamine H2 receptors or stimulation of histamine H3 receptors attenuates nNOS expression and induces neuroprotection in SCI. Taken together, our results are the first to demonstrate that histamine-induced pathophysiology of SCI is mediated via nNOS expression involving specific histamine receptors. © 2017 Elsevier Inc. All rights reserved.
Targeted Delivery of Antiglaucoma Drugs to the Supraciliary Space Using Microneedles
Kim, Yoo C.; Edelhauser, Henry F.; Prausnitz, Mark R.
2014-01-01
Purpose. In this work, we tested the hypothesis that highly targeted delivery of antiglaucoma drugs to the supraciliary space by using a hollow microneedle allows dramatic dose sparing of the drug compared to topical eye drops. The supraciliary space is the most anterior portion of the suprachoroidal space, located below the sclera and above the choroid and ciliary body. Methods. A single, hollow 33-gauge microneedle, 700 to 800 μm in length, was inserted into the sclera and used to infuse antiglaucoma drugs into the supraciliary space of New Zealand white rabbits (N = 3–6 per group). Sulprostone, a prostaglandin analog, and brimonidine, an α2-adrenergic agonist, were delivered via supraciliary and topical administration at various doses. The drugs were delivered unilaterally, and intraocular pressure (IOP) of both eyes was measured by rebound tonometry for 9 hours after injection to assess the pharmacodynamic responses. To assess safety of the supraciliary injection, IOP change immediately after intravitreal and supraciliary injection were compared. Results. Supraciliary delivery of both sulprostone and brimonidine reduced IOP by as much as 3 mm Hg bilaterally in a dose-related response; comparison with topical administration at the conventional human dose showed approximately 100-fold dose sparing by supraciliary injection for both drugs. A safety study showed that the kinetics of IOP elevation immediately after supraciliary and intravitreal injection of placebo formulations were similar. Conclusions. This study introduced the use of targeted drug delivery to the supraciliary space by using a microneedle and demonstrated dramatic dose sparing of antiglaucoma therapeutic agents compared to topical eye drops. Targeted delivery in this way can increase safety by reducing side effects and could allow a single injection to contain enough drug for long-term sustained delivery. PMID:25212782
Gutierrez, Shandra; Descamps, Benedicte; Vanhove, Christian
2015-01-01
Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT's cumulative radiation dose might contribute to the total dose.
Gutierrez, Shandra; Descamps, Benedicte; Vanhove, Christian
2015-01-01
Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT’s cumulative radiation dose might contribute to the total dose. PMID:26633302
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsitt, Mitchell M., E-mail: goodsitt@umich.edu; Shenoy, Apeksha; Howard, David
2014-05-15
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correctionmore » factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa.« less
Goodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K.
2014-01-01
Purpose: To evaluate a three-equation three-unknown dual-energy quantitative CT (DEQCT) technique for determining region specific variations in bone spongiosa composition for improved red marrow dose estimation in radionuclide therapy. Methods: The DEQCT method was applied to 80/140 kVp images of patient-simulating lumbar sectional body phantoms of three sizes (small, medium, and large). External calibration rods of bone, red marrow, and fat-simulating materials were placed beneath the body phantoms. Similar internal calibration inserts were placed at vertebral locations within the body phantoms. Six test inserts of known volume fractions of bone, fat, and red marrow were also scanned. External-to-internal calibration correction factors were derived. The effects of body phantom size, radiation dose, spongiosa region segmentation granularity [single (∼17 × 17 mm) region of interest (ROI), 2 × 2, and 3 × 3 segmentation of that single ROI], and calibration method on the accuracy of the calculated volume fractions of red marrow (cellularity) and trabecular bone were evaluated. Results: For standard low dose DEQCT x-ray technique factors and the internal calibration method, the RMS errors of the estimated volume fractions of red marrow of the test inserts were 1.2–1.3 times greater in the medium body than in the small body phantom and 1.3–1.5 times greater in the large body than in the small body phantom. RMS errors of the calculated volume fractions of red marrow within 2 × 2 segmented subregions of the ROIs were 1.6–1.9 times greater than for no segmentation, and RMS errors for 3 × 3 segmented subregions were 2.3–2.7 times greater than those for no segmentation. Increasing the dose by a factor of 2 reduced the RMS errors of all constituent volume fractions by an average factor of 1.40 ± 0.29 for all segmentation schemes and body phantom sizes; increasing the dose by a factor of 4 reduced those RMS errors by an average factor of 1.71 ± 0.25. Results for external calibrations exhibited much larger RMS errors than size matched internal calibration. Use of an average body size external-to-internal calibration correction factor reduced the errors to closer to those for internal calibration. RMS errors of less than 30% or about 0.01 for the bone and 0.1 for the red marrow volume fractions would likely be satisfactory for human studies. Such accuracies were achieved for 3 × 3 segmentation of 5 mm slice images for: (a) internal calibration with 4 times dose for all size body phantoms, (b) internal calibration with 2 times dose for the small and medium size body phantoms, and (c) corrected external calibration with 4 times dose and all size body phantoms. Conclusions: Phantom studies are promising and demonstrate the potential to use dual energy quantitative CT to estimate the spatial distributions of red marrow and bone within the vertebral spongiosa. PMID:24784380
Helical prospective ECG-gating in cardiac computed tomography: radiation dose and image quality.
DeFrance, Tony; Dubois, Eric; Gebow, Dan; Ramirez, Alex; Wolf, Florian; Feuchtner, Gudrun M
2010-01-01
Helical prospective ECG-gating (pECG) may reduce radiation dose while maintaining the advantages of helical image acquisition for coronary computed tomography angiography (CCTA). Aim of this study was to evaluate helical pECG-gating in CCTA in regards to radiation dose and image quality. 86 patients undergoing 64-multislice CCTA were enrolled. pECG-gating was performed in patients with regular heart rates (HR) < 65 bpm; with the gating window set at 70-85% of the cardiac cycle. All patients received oral and some received additional IV beta-blockers to achieve HR < 65 bpm. In patients with higher or irregular HR, or for functional evaluation, retrospective ECG-gating (rECG) was performed. The average X-ray dose was estimated from the dose length product. Each arterial segment (modified AHA/ACC 17-segment-model) was evaluated on a 4-point image quality scale (4 = excellent; 3 = good, mild artefact; 2 = acceptable, some artefact, 1 = uninterpretable). pECG-gating was applied in 57 patients, rECG-gating in 29 patients. There was no difference in age, gender, body mass index, scan length or tube output settings between both groups. HR in the pECG-group was 54.7 bpm (range, 43-64). The effective radiation dose was significantly lower for patients scanned with pECG-gating with mean 6.9 mSv +/- 1.9 (range, 2.9-10.7) compared to rECG with 16.9 mSv +/- 4.1 (P < 0.001), resulting in a mean dose reduction of 59.2%. For pECG-gating, out of 969 coronary segments, 99.3% were interpretable. Image quality was excellent in 90.2%, good in 7.8%, acceptable in 1.3% and non-interpretable in 0.7% (n = 7 segments). For patients with steady heart rates <65 bpm, helical prospective ECG-gating can significantly lower the radiation dose while maintaining high image quality.
Moreira, Maria E; Hernandez, Caleb; Stevens, Allen D; Jones, Seth; Sande, Margaret; Blumen, Jason R; Hopkins, Emily; Bakes, Katherine; Haukoos, Jason S
2015-08-01
The Institute of Medicine has called on the US health care system to identify and reduce medical errors. Unfortunately, medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients when dosing requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national health care priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared with conventional medication administration, in simulated pediatric emergency department (ED) resuscitation scenarios. We performed a prospective, block-randomized, crossover study in which 10 emergency physician and nurse teams managed 2 simulated pediatric arrest scenarios in situ, using either prefilled, color-coded syringes (intervention) or conventional drug administration methods (control). The ED resuscitation room and the intravenous medication port were video recorded during the simulations. Data were extracted from video review by blinded, independent reviewers. Median time to delivery of all doses for the conventional and color-coded delivery groups was 47 seconds (95% confidence interval [CI] 40 to 53 seconds) and 19 seconds (95% CI 18 to 20 seconds), respectively (difference=27 seconds; 95% CI 21 to 33 seconds). With the conventional method, 118 doses were administered, with 20 critical dosing errors (17%); with the color-coded method, 123 doses were administered, with 0 critical dosing errors (difference=17%; 95% CI 4% to 30%). A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by emergency physician and nurse teams during simulated pediatric ED resuscitations. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Maged, Ahmed M; Helal, Omneya M; Elsherbini, Moutaz M; Eid, Marwa M; Elkomy, Rasha O; Dahab, Sherif; Elsissy, Maha H
2015-12-01
To study the efficacy and safety of preoperative intravenous tranexamic acid to reduce blood loss during and after elective lower-segment cesarean delivery. A single-blind, randomized placebo-controlled study was undertaken of women undergoing elective lower-segment cesarean delivery of a full-term singleton pregnancy at a center in Cairo, Egypt, between November 2013 and November 2014. Patients were randomly assigned (1:1) using computer-generated random numbers to receive either 1g tranexamic acid or 5% glucose 15 minutes before surgery. Preoperative and postoperative complete blood count, hematocrit values, and maternal weight were used to calculate the estimated blood loss (EBL) during cesarean, which was the primary outcome. Analyses included women who received their assigned treatment, whose surgery was 90 minutes or less, and who completed follow-up. Analyses included 100 women in each group. Mean EBL was significantly higher in the placebo group (700.3 ± 143.9 mL) than in the tranexamic acid group (459.4 ±7 5.4 mL; P<0.001). Only six women, all in the placebo group, experienced an EBL of more than 1000 mL. There were no reports of thromboembolic events up to 4 weeks postoperatively. Preoperative administration of tranexamic acid safely reduces blood loss during elective lower-segment cesarean delivery. Australian New Zealand Clinical Trials Registry:ACTRN12615000312549. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Radiation dose delivery verification in the treatment of carcinoma-cervix
NASA Astrophysics Data System (ADS)
Shrotriya, D.; Kumar, S.; Srivastava, R. N. L.
2015-06-01
The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for direct measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.
Cao, Xia; Zhang, Meng; Huang, Jinrong; Jiang, Tao; Zou, Jingdian; Wang, Ning; Wang, Zhong Lin
2018-02-01
Wireless power delivery has been a dream technology for applications in medical science, security, radio frequency identification (RFID), and the internet of things, and is usually based on induction coils and/or antenna. Here, a new approach is demonstrated for wireless power delivery by using the Maxwell's displacement current generated by an electrodeless triboelectric nanogenerator (TENG) that directly harvests ambient mechanical energy. A rotary electrodeless TENG is fabricated using the contact and sliding mode with a segmented structure. Due to the leakage of electric field between the segments during relative rotation, the generated Maxwell's displacement current in free space is collected by metal collectors. At a gap distance of 3 cm, the output wireless current density and voltage can reach 7 µA cm -2 and 65 V, respectively. A larger rotary electrodeless TENG and flexible wearable electrodeless TENG are demonstrated to power light-emitting diodes (LEDs) through wireless energy delivery. This innovative discovery opens a new avenue for noncontact, wireless energy transmission for applications in portable and wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
WE-AB-204-03: A Novel 3D Printed Phantom for 4D PET/CT Imaging and SIB Radiotherapy Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soultan, D; Murphy, J; Moiseenko, V
Purpose: To construct and test a 3D printed phantom designed to mimic variable PET tracer uptake seen in lung tumor volumes. To assess segmentation accuracy of sub-volumes of the phantom following 4D PET/CT scanning with ideal and patient-specific respiratory motion. To plan, deliver and verify delivery of PET-driven, gated, simultaneous integrated boost (SIB) radiotherapy plans. Methods: A set of phantoms and inserts were designed and manufactured for a realistic representation of lung cancer gated radiotherapy steps from 4D PET/CT scanning to dose delivery. A cylindrical phantom (40x 120 mm) holds inserts for PET/CT scanning. The novel 3D printed insert dedicatedmore » to 4D PET/CT mimics high PET tracer uptake in the core and lower uptake in the periphery. This insert is a variable density porous cylinder (22.12×70 mm), ABS-P430 thermoplastic, 3D printed by uPrint SE Plus with inner void volume (5.5×42 mm). The square pores (1.8×1.8 mm2 each) fill 50% of outer volume, resulting in a 2:1 SUV ratio of PET-tracer in the void volume with respect to porous volume. A matching in size cylindrical phantom is dedicated to validate gated radiotherapy. It contains eight peripheral holes matching the location of the porous part of the 3D printed insert, and one central hole. These holes accommodate adaptors for Farmer-type ion chamber and cells vials. Results: End-to-end test were performed from 4D PET/CT scanning to transferring data to the planning system and target volume delineation. 4D PET/CT scans were acquired of the phantom with different respiratory motion patterns and gating windows. A measured 2:1 18F-FDG SUV ratio between inner void and outer volume matched the 3D printed design. Conclusion: The novel 3D printed phantom mimics variable PET tracer uptake typical of tumors. Obtained 4D PET/CT scans are suitable for segmentation, treatment planning and delivery in SIB gated treatments of NSCLC.« less
Three-Dimensions Segmentation of Pulmonary Vascular Trees for Low Dose CT Scans
NASA Astrophysics Data System (ADS)
Lai, Jun; Huang, Ying; Wang, Ying; Wang, Jun
2016-12-01
Due to the low contrast and the partial volume effects, providing an accurate and in vivo analysis for pulmonary vascular trees from low dose CT scans is a challenging task. This paper proposes an automatic integration segmentation approach for the vascular trees in low dose CT scans. It consists of the following steps: firstly, lung volumes are acquired by the knowledge based method from the CT scans, and then the data are smoothed by the 3D Gaussian filter; secondly, two or three seeds are gotten by the adaptive 2D segmentation and the maximum area selecting from different position scans; thirdly, each seed as the start voxel is inputted for a quick multi-seeds 3D region growing to get vascular trees; finally, the trees are refined by the smooth filter. Through skeleton analyzing for the vascular trees, the results show that the proposed method can provide much better and lower level vascular branches.
Vaccine vial stopper performance for fractional dose delivery of vaccines
Jarrahian, Courtney; Myers, Daniel; Creelman, Ben; Saxon, Eugene; Zehrung, Darin
2017-01-01
ABSTRACT Shortages of vaccines such as inactivated poliovirus and yellow fever vaccines have been addressed by administering reduced—or fractional—doses, as recommended by the World Health Organization Strategic Advisory Group of Experts on Immunization, to expand population coverage in countries at risk. We evaluated 3 kinds of vaccine vial stoppers to assess their performance after increased piercing from repeated withdrawal of doses needed when using fractional doses (0.1 mL) from presentations intended for full-dose (0.5 mL) delivery. Self-sealing capacity and fragmentation of the stopper were assessed via modified versions of international standard protocols. All stoppers maintained self-sealing capacity after 100 punctures. The damage to stoppers measured as the fragmentation rate was within the target of ≤ 10% of punctures resulting in a fragment after as many as 50 punctures. We concluded that stopper failure is not likely to be a concern if existing vaccine vials containing up to 10 regular doses are used up to 50 times for fractional dose delivery. PMID:28463054
Improving IMRT delivery efficiency using intensity limits during inverse planning.
Coselmon, Martha M; Moran, Jean M; Radawski, Jeffrey D; Fraass, Benedick A
2005-05-01
Inverse planned intensity modulated radiotherapy (IMRT) fields can be highly modulated due to the large number of degrees of freedom involved in the inverse planning process. Additional modulation typically results in a more optimal plan, although the clinical rewards may be small or offset by additional delivery complexity and/or increased dose from transmission and leakage. Increasing modulation decreases delivery efficiency, and may lead to plans that are more sensitive to geometrical uncertainties. The purpose of this work is to assess the use of maximum intensity limits in inverse IMRT planning as a simple way to increase delivery efficiency without significantly affecting plan quality. Nine clinical cases (three each for brain, prostate, and head/neck) were used to evaluate advantages and disadvantages of limiting maximum intensity to increase delivery efficiency. IMRT plans were generated using in-house protocol-based constraints and objectives for the brain and head/neck, and RTOG 9406 dose volume objectives in the prostate. Each case was optimized at a series of maximum intensity ratios (the product of the maximum intensity and the number of beams divided by the prescribed dose to the target volume), and evaluated in terms of clinical metrics, dose-volume histograms, monitor units (MU) required per fraction (SMLC and DMLC delivery), and intensity map variation (a measure of the beam modulation). In each site tested, it was possible to reduce total monitor units by constraining the maximum allowed intensity without compromising the clinical acceptability of the plan. Monitor unit reductions up to 38% were observed for SMLC delivery, while reductions up to 29% were achieved for DMLC delivery. In general, complicated geometries saw a smaller reduction in monitor units for both delivery types, although DMLC delivery required significantly more monitor units in all cases. Constraining the maximum intensity in an inverse IMRT plan is a simple way to improve delivery efficiency without compromising plan objectives.
Flight attendant radiation dose from solar particle events.
Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T
2014-08-01
Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.
Quasi-VMAT in high-grade glioma radiation therapy.
Fadda, G; Massazza, G; Zucca, S; Durzu, S; Meleddu, G; Possanzini, M; Farace, P
2013-05-01
To compare a quasi-volumetric modulated arc therapy (qVMAT) with three-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) for the treatment of high-grade gliomas. The qVMAT technique is a fast method of radiation therapy in which multiple equispaced beams analogous to those in rotation therapy are radiated in succession. This study included 12 patients with a planning target volume (PTV) that overlapped at least one organ at risk (OAR). 3D-CRT was planned using 2-3 non-coplanar beams, whereby the field-in-field technique (FIF) was used to divide each field into 1-3 subfields to shield the OAR. The qVMAT strategy was planned with 15 equispaced beams and IMRT was planned using 9 beams with a total of 80 segments. Inverse planning for qVMAT and IMRT was performed by direct machine parameter optimization (DMPO) to deliver a homogenous dose distribution of 60 Gy within the PTV and simultaneously limit the dose received by the OARs to the recommended values. Finally, the effect of introducing a maximum dose objective (max. dose < 54 Gy) for a virtual OAR in the form of a 0.5 cm ring around the PTV was investigated. The qVMAT method gave rise to significantly improved PTV95% and conformity index (CI) values in comparison to 3D-CRT (PTV95% = 90.7 % vs. 82.0 %; CI = 0.79 vs. 0.74, respectively). A further improvement was achieved by IMRT (PTV95% = 94.4 %, CI = 0.78). In qVMAT and IMRT, the addition of a 0.5 cm ring around the PTV produced a significant increase in CI (0.87 and 0.88, respectively), but dosage homogeneity within the PTV was considerably reduced (PTV95% = 88.5 % and 92.3 %, respectively). The time required for qVMAT dose delivery was similar to that required using 3D-CRT. These findings suggest that qVMAT should be preferred to 3D-CRT for the treatment of high-grade gliomas. The qVMAT method could be applied in hospitals, for example, which have limited departmental resources and are not equipped with systems capable of VMAT delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L; Qian, J; Gonzales, R
Purpose: To investigate the accuracy, sensitivity and constancy of integral quality monitor (IQM), a new system for in vivo dosimetry of conventional intensity modulated radiation therapy (IMRT) or rotational volumetric modulated arc therapy (VMAT) Methods: A beta-version IQM system was commissioned on an Elekta Infinity LINAC equipped with 160-MLCs Agility head. The stationary and rotational dosimetric constancy of IQM was evaluated, using five-field IMRT and single-or double-arc VMAT plans for prostate and head-and-neck (H&N) patients. The plans were delivered three times over three days to assess the constancy of IQM response. Picket fence (PF) fields were used to evaluate themore » sensitivity of detecting MLC leaf errors. A single leaf offset was intentionally introduced during delivery of various PF fields with segment apertures of 3×1, 5×1, 10×1, and 24×1cm2. Both 2mm and 5mm decrease in the field width were used. Results: Repeated IQM measurements of prostate and H&N IMRT deliveries showed 0.4 and 0.5% average standard deviation (SD) for segment-by-segment comparison and 0.1 and 0.2% for cumulative comparison. The corresponding SDs for VMAT deliveries were 6.5, 9.4% and 0.7, 1.3%, respectively. Statistical analysis indicates that the dosimetric differences detected by IQM were significant (p < 0.05) in all PF test deliveries. The largest average IQM signal response of a 2 mm leaf error was found to be 2.1% and 5.1% by a 5mm leaf error for 3×1 cm2 field size. The same error in 24×1 cm2 generates a 0.7% and 1.4% difference in the signal. Conclusion: IQM provides an effective means for real-time dosimetric verification of IMRT/ VMAT treatment delivery. For VMAT delivery, the cumulative dosimetry of IQM needs to be used in clinical practice.« less
Gaudio, Carlo; Petriello, Gennaro; Pelliccia, Francesco; Tanzilli, Alessandra; Bandiera, Alberto; Tanzilli, Gaetano; Barillà, Francesco; Paravati, Vincenzo; Pellegrini, Massimo; Mangieri, Enrico; Barillari, Paolo
2018-05-08
Cardiac computed tomography (CT) is often performed in patients who are at high risk for lung cancer in whom screening is currently recommended. We tested diagnostic ability and radiation exposure of a novel ultra-low-dose CT protocol that allows concomitant coronary artery evaluation and lung screening. We studied 30 current or former heavy smoker subjects with suspected or known coronary artery disease who underwent CT assessment of both coronary arteries and thoracic area (Revolution CT, General Electric). A new ultrafast-low-dose single protocol was used for ECG-gated helical acquisition of the heart and the whole chest. A single IV iodine bolus (70-90 ml) was used. All patients with CT evidence of coronary stenosis underwent also invasive coronary angiography. All the coronary segments were assessable in 28/30 (93%) patients. Only 8 coronary segments were not assessable in 2 patients due to motion artefacts (assessability: 98%; 477/485 segments). In the assessable segments, 20/21 significant stenoses (> 70% reduction of vessel diameter) were correctly diagnosed. Pulmonary nodules were detected in 5 patients, thus requiring to schedule follow-up surveillance CT thorax. Effective dose was 1.3 ± 0.9 mSv (range: 0.8-3.2 mSv). Noteworthy, no contrast or radiation dose increment was required with the new protocol as compared to conventional coronary CT protocol. The novel ultrafast-low-dose CT protocol allows lung cancer screening at time of coronary artery evaluation. The new approach might enhance the cost-effectiveness of coronary CT in heavy smokers with suspected or known coronary artery disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, S; Thwaites, D; Hansen, C
2015-06-15
Purpose: This study evaluated the plan quality and dose delivery accuracy of stereotactic body radiotherapy (SBRT) helical Tomotherapy (HT) treatments for lung cancer. Results were compared with those previously reported by our group for flattening filter (FF) and flattening filter free (FFF) VMAT treatments. This work forms part of an ongoing multicentre and multisystem planning and dosimetry audit on FFF beams for lung SBRT. Methods: CT datasets and DICOM RT structures delineating the target volume and organs at risk for 6 lung cancer patients were selected. Treatment plans were generated using the HT treatment planning system. Tumour locations were classifiedmore » as near rib, near bronchial tree or in free lung with prescribed doses of 48Gy/4fr, 50Gy/5fr and 54Gy/3fr respectively. Dose constraints were specified by a modified RTOG0915 protocol used for an Australian SBRT phase II trial. Plan quality was evaluated using mean PTV dose, PTV volume receiving 100% of the prescribed dose (V100%), target conformity (CI=VD100%/VPTV) and low dose spillage (LDS=VD50%/VPTV). Planned dose distributions were compared to those measured using an ArcCheck phantom. Delivery accuracy was evaluated using a gamma-index pass rate of 95% with 3% (of max dose) and 3mm criteria. Results: Treatment plans for all patients were clinically acceptable in terms of quality and accuracy of dose delivery. The following DVH metrics are reported as averages (SD) of all plans investigated: mean PTV dose was 115.3(2.4)% of prescription, V100% was 98.8(0.9)%, CI was 1.14(0.03) and LDS was 5.02(0.37). The plans had an average gamma-index passing rate of 99.3(1.3)%. Conclusion: The results reported in this study for HT agree within 1 SD to those previously published by our group for VMAT FF and FFF lung SBRT treatments. This suggests that HT delivers lung SBRT treatments of comparable quality and delivery accuracy as VMAT using both FF and FFF beams.« less
Hong, Soon Jun; Hou, Dongming; Brinton, Todd J.; Johnstone, Brian; Feng, Dongni; Rogers, Pamela; Fearon, William F.; Yock, Paul; March, Keith L.
2012-01-01
Objectives To examine the comparative fate of adipose-derived stem cells (ASCs) as well as their impact on coronary microcirculation following either retrograde coronary venous or arterial delivery. Background Local delivery of ASCs to the heart has been proposed as a practical approach to limiting the extent of myocardial infarction. Mouse models of mesenchymal stem cell effects on the heart have also demonstrated significant benefits from systemic (intravenous) delivery, prompting a question about the advantage of local delivery. There has been no study addressing the extent of myocardial vs. systemic disposition of ASCs in large animal models following local delivery to the myocardium. Methods In an initial experiment, dose-dependent effects of ASC delivery on coronary circulation in normal swine were evaluated to establish a tolerable ASC dosing range for intracoronary delivery. In a set of subsequent experiments, an anterior acute myocardial infarction (AMI) was created by balloon occlusion of the proximal left anterior descending (LAD) artery, followed by either intracoronary (IC) or retrograde coronary venous (RCV) infusion of 107 111Indium-labeled autologous ASCs 6 days following AMI. Indices of microcirculatory resistance (IMR) and coronary flow reserve (CFR) were measured before sacrifices to collect tissues for analysis at 1 or 24 hours after cell delivery. Results IC delivery of porcine ASCs to normal myocardium was well-tolerated up to a cumulative dose of 14×106 cells (approximately 0.5×106 cells/kg). There was evidence suggesting microcirculatory trapping of ASC: at unit doses of 50×106 ASCs, IMR and CFR were found to be persistently altered in the target LAD distribution at 7 days following delivery, while at 10×106 ASCs, only CFR was altered. In the context of recent MI, a significantly higher percentage of ASCs was retained at 1 hour with IC delivery compared to RCV delivery (57.2 ± 12.7% vs. 17.9 ± 1.6%, p=0.037) but this initial difference was not apparent at 24 hours (22.6 ± 5.5% vs. 18.7 ± 8.6%; p= 0.722). In both approaches, most ASC redistributed to the pulmonary circulation by 24 hours post-delivery. There were no significant differences in CFR or IMR following ASC delivery to infarcted tissue by either route. Conclusions Selective intravascular delivery of ASC by coronary arterial and venous routes leads to similarly limited myocardial cell retention with predominant redistribution of cells to the lungs. Intracoronary arterial delivery of ASC leads to only transiently greater myocardial retention, which is accompanied by obstruction of normal regions of coronary microcirculation at higher doses. The predominant intrapulmonary localization of cells following local delivery via both methods prompts the notion that systemic delivery of ASC might provide similarly beneficial outcomes while avoiding risks of inadvertent microcirculatory compromise. PMID:22972685
Radiation absorbed dose to bladder walls from positron emitters in the bladder content.
Powell, G F; Chen, C T
1987-01-01
A method to calculate absorbed doses at depths in the walls of a static spherical bladder from a positron emitter in the bladder content has been developed. The beta ray dose component is calculated for a spherical model by employing the solutions to the integration of Loevinger and Bochkarev point source functions over line segments and a line segment source array technique. The gamma ray dose is determined using the specific gamma ray constant. As an example, absorbed radiation doses to the bladder walls from F-18 in the bladder content are presented for static spherical bladder models having radii of 2.0 and 3.5 cm, respectively. Experiments with ultra-thin thermoluminescent dosimeters (TLD's) were performed to verify the results of the calculations. Good agreement between TLD measurements and calculations was obtained.
Abbas, Ahmar S; Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles
2013-05-06
Recently, volumetric-modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity-modulated fixed-field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs-at-risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed-field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient-specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single-arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2-T3 N0-N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281-601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four-field (n = 4) or five-field (n = 9) step-and-shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose-volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose, lung V20 and V5, liver V30, and Dmax to the spinal canal prv3mm. Also examined were the total plan monitor units (MUs) and the beam delivery time. Equivalent target coverage was observed with both VMAT single and two-arc plans. The comparison of VMATI with fixed-field IMRT demonstrated equivalent target coverage; statistically no significant difference were found in PTV D99 (p = 0.47), PTV mean (p = 0.12), PTV D95 and PTV V9547.5Gy (95%) (p = 0.38). However, Dmax in VMATI plans was significantly lower compared to IMRT (p = 0.02). The Van't Riet dose conformation number (CN) was also statistically in favor of VMATI plans (p = 0.04). VMATI achieved lower lung V20 (p = 0.05), whereas lung V5 (p = 0.35) and mean lung dose (p = 0.62) were not significantly different. The other OARs, including spinal canal, liver, heart, and kidneys showed no statistically significant differences between the two techniques. Treatment time delivery for VMATI plans was reduced by up to 55% (p = 5.8E-10) and MUs reduced by up to 16% (p = 0.001). Integral dose was not statistically different between the two planning techniques (p = 0.99). There were no statistically significant differences found in dose distribution of the two VMAT techniques (VMATI vs. VMATII) Dose statistics for both VMAT techniques were: PTV D99 (p = 0.76), PTV D95 (p = 0.95), mean PTV dose (p = 0.78), conformation number (CN) (p = 0.26), and MUs (p = 0.1). However, the treatment delivery time for VMATII increased significantly by two-fold (p = 3.0E-11) compared to VMATI. VMAT-based treatment planning is safe and deliverable for patients with thoracic esophageal cancer with similar planning goals, when compared to standard IMRT. The key benefit for VMATI was the reduction in treatment delivery time and MUs, and improvement in dose conformality. In our study, we found no significant difference in VMATII over single-arc VMATI for PTV coverage or OARs doses. However, we observed significant increase in delivery time for VMATII compared to VMATI.
Levin, Carol E; Van Minh, Hoang; Odaga, John; Rout, Swampa Sarit; Ngoc, Diep Nguyen Thi; Menezes, Lysander; Araujo, Maria Ana Mendoza; LaMontagne, D Scott
2013-08-01
To estimate the incremental delivery cost of human papillomavirus (HPV) vaccination of young adolescent girls in Peru, Uganda and Viet Nam. Data were collected from a sample of facilities that participated in five demonstration projects for hpv vaccine delivery: school-based delivery was used in Peru, Uganda and Viet Nam; health-centre-based delivery was also used in Viet Nam; and integrated delivery, which involved existing health services, was also used in Uganda. Microcosting methods were used to guide data collection on the use of resources (i.e. staff, supplies and equipment) and data were obtained from government, demonstration project and health centre administrative records. Delivery costs were expressed in 2009 United States dollars (US$). Exclusively project-related expenses and the cost of the vaccine were excluded. The economic delivery cost per vaccine dose ranged from US$ 1.44 for integrated outreach in Uganda to US$ 3.88 for school-based delivery in Peru. In Viet Nam, the lowest cost per dose was US$ 1.92 for health-centre-based delivery. Cost profiles revealed that, in general, the largest contributing factors were project start-up costs and recurrent personnel costs. The delivery cost of HPV vaccine was higher than published costs for traditional vaccines recommended by the Expanded Programme on Immunization (EPI). The cost of delivering HPV vaccine to young adolescent girls in Peru, Uganda and Viet Nam was higher than that for vaccines currently in the EPI schedule. The cost per vaccine dose was lower when delivery was integrated into existing health services.
Islam, Nazrul; Richard, Derek
2018-05-24
Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Besemer, Abigail E; Titz, Benjamin; Grudzinski, Joseph J; Weichert, Jamey P; Kuo, John S; Robins, H Ian; Hall, Lance T; Bednarz, Bryan P
2017-07-06
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124 I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131 I-CLR1404 voxel-level dose distribution was calculated from the 124 I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131 I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq -1 (0.07-0.37 Gy GBq -1 ). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
NASA Astrophysics Data System (ADS)
Besemer, Abigail E.; Titz, Benjamin; Grudzinski, Joseph J.; Weichert, Jamey P.; Kuo, John S.; Robins, H. Ian; Hall, Lance T.; Bednarz, Bryan P.
2017-08-01
Variations in tumor volume segmentation methods in targeted radionuclide therapy (TRT) may lead to dosimetric uncertainties. This work investigates the impact of PET and MRI threshold-based tumor segmentation on TRT dosimetry in patients with primary and metastatic brain tumors. In this study, PET/CT images of five brain cancer patients were acquired at 6, 24, and 48 h post-injection of 124I-CLR1404. The tumor volume was segmented using two standardized uptake value (SUV) threshold levels, two tumor-to-background ratio (TBR) threshold levels, and a T1 Gadolinium-enhanced MRI threshold. The dice similarity coefficient (DSC), jaccard similarity coefficient (JSC), and overlap volume (OV) metrics were calculated to compare differences in the MRI and PET contours. The therapeutic 131I-CLR1404 voxel-level dose distribution was calculated from the 124I-CLR1404 activity distribution using RAPID, a Geant4 Monte Carlo internal dosimetry platform. The TBR, SUV, and MRI tumor volumes ranged from 2.3-63.9 cc, 0.1-34.7 cc, and 0.4-11.8 cc, respectively. The average ± standard deviation (range) was 0.19 ± 0.13 (0.01-0.51), 0.30 ± 0.17 (0.03-0.67), and 0.75 ± 0.29 (0.05-1.00) for the JSC, DSC, and OV, respectively. The DSC and JSC values were small and the OV values were large for both the MRI-SUV and MRI-TBR combinations because the regions of PET uptake were generally larger than the MRI enhancement. Notable differences in the tumor dose volume histograms were observed for each patient. The mean (standard deviation) 131I-CLR1404 tumor doses ranged from 0.28-1.75 Gy GBq-1 (0.07-0.37 Gy GBq-1). The ratio of maximum-to-minimum mean doses for each patient ranged from 1.4-2.0. The tumor volume and the interpretation of the tumor dose is highly sensitive to the imaging modality, PET enhancement metric, and threshold level used for tumor volume segmentation. The large variations in tumor doses clearly demonstrate the need for standard protocols for multimodality tumor segmentation in TRT dosimetry.
Malaria treatment using novel nano-based drug delivery systems.
Baruah, Uday Krishna; Gowthamarajan, Kuppusamy; Vanka, Ravisankar; Karri, Veera Venkata Satyanarayana Reddy; Selvaraj, Kousalya; Jojo, Gifty M
2017-08-01
We reside in an era of technological innovation and advancement despite which infectious diseases like malaria remain to be one of the greatest threats to the humans. Mortality rate caused by malaria disease is a huge concern in the twenty-first century. Multiple drug resistance and nonspecific drug targeting of the most widely used drugs are the main reasons/drawbacks behind the failure in malarial therapy. Dose-related toxicity because of high doses is also a major concern. Therefore, to overcome these problems nano-based drug delivery systems are being developed to facilitate site-specific or target-based drug delivery and hence minimizing the development of resistance progress and dose-dependent toxicity issues. In this review, we discuss about the shortcomings in treating malaria and how nano-based drug delivery systems can help in curtailing the infectious disease malaria.
Housholder-Hughes, Susan D; Martin, Melanie M; McFarland, Marilyn R; Creech, Constance J; Shea, Michael J
Atherosclerotic cardiovascular disease is the foremost cause of death for U.S. adults. The 2013 ACC/AHA Adult Cholesterol Guidelines recommend high-intensity dose statins for individuals with coronary artery disease (CAD). To determine healthcare provider compliance with the Cholesterol Guideline recommendation specific to high-intensity dose statins for patients with CAD. A retrospective chart review was conducted to determine compliance rate. A questionnaire was developed to evaluate healthcare provider beliefs, attitudes, and self-confidence toward this recommendation. Of the 473 patients with CAD, 67% were prescribed a high-intensity dose statin. Patients with non-ST segment myocardial infarction and ST segment myocardial infarction were more likely to be prescribed a high-intensity dose statin versus a moderate or low-intensity dose. Healthcare providers strongly agreed with this guideline recommendation. There exists a dichotomy between intention to prescribe and actual prescribing behaviors of high-intensity dose statin for patients with CAD. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoker, J; Summers, P; Li, X
2014-06-01
Purpose: This study seeks to evaluate the dosimetric effects of intra-fraction motion during spot scanning proton beam therapy as a function of beam-scan orientation and target motion amplitude. Method: Multiple 4DCT scans were collected of a dynamic anthropomorphic phantom mimicking respiration amplitudes of 0 (static), 0.5, 1.0, and 1.5 cm. A spot-scanning treatment plan was developed on the maximum intensity projection image set, using an inverse-planning approach. Dynamic phantom motion was continuous throughout treatment plan delivery.The target nodule was designed to accommodate film and thermoluminescent dosimeters (TLD). Film and TLDs were uniquely labeled by location within the target. The phantommore » was localized on the treatment table using the clinically available orthogonal kV on-board imaging device. Film inserts provided data for dose uniformity; TLDs provided a 3% precision estimate of absolute dose. An inhouse script was developed to modify the delivery order of the beam spots, to orient the scanning direction parallel or perpendicular to target motion.TLD detector characterization and analysis was performed by the Imaging and Radiation Oncology Core group (IROC)-Houston. Film inserts, exhibiting a spatial resolution of 1mm, were analyzed to determine dose homogeneity within the radiation target. Results: Parallel scanning and target motions exhibited reduced target dose heterogeneity, relative to perpendicular scanning orientation. The average percent deviation in absolute dose for the motion deliveries relative to the static delivery was 4.9±1.1% for parallel scanning, and 11.7±3.5% (p<<0.05) for perpendicularly oriented scanning. Individual delivery dose deviations were not necessarily correlated to amplitude of motion for either scan orientation. Conclusions: Results demonstrate a quantifiable difference in dose heterogeneity as a function of scan orientation, more so than target amplitude. Comparison to the analyzed planar dose of a single field hint that multiple-field delivery alters intra-fraction beam-target motion synchronization and may mitigate heterogeneity, though further study is warranted.« less
Dose verification for respiratory-gated volumetric modulated arc therapy (VMAT)
Qian, Jianguo; Xing, Lei; Liu, Wu; Luxton, Gary
2011-01-01
A novel commercial medical linac system (TrueBeam™, Varian Medical Systems, Palo Alto, CA) allows respiratory-gated volumetric modulated arc therapy (VMAT), a new modality for treating moving tumors with high precision and improved accuracy by allowing for regular motion associated with a patient's breathing during VMAT delivery. The purpose of this work is to adapt a previously-developed dose reconstruction technique to evaluate the fidelity of VMAT treatment during gated delivery under clinic-relevant periodic motion related to patient breathing. A Varian TrueBeam system was used in this study. VMAT plans were created for three patients with lung or pancreas tumors. Conventional 6 MV and 15 MV beams with flattening filter and high dose-rate 10 MV beams with no flattening filter were used in these plans. Each patient plan was delivered to a phantom first without gating and then with gating for three simulated respiratory periods (3, 4.5 and 6 seconds). Using the adapted log file-based dose reconstruction procedure supplemented with ion chamber array (Seven29™, PTW, Freiburg, Germany) measurements, the delivered dose was used to evaluate the fidelity of gated VMAT delivery. Comparison of Seven29 measurements with and without gating showed good agreement with gamma-index passing rates above 99% for 1%/1mm dose accuracy/distance-to-agreement criteria. With original plans as reference, gamma-index passing rates were 100% for the reconstituted plans (1%/1 mm criteria) and 93.5–100% for gated Seven29 measurements (3%/3 mm criteria). In the presence of leaf error deliberately introduced into the gated delivery of a pancreas patient plan, both dose reconstruction and Seven29 measurement consistently indicated substantial dosimetric differences from the original plan. In summary, a dose reconstruction procedure was demonstrated for evaluating the accuracy of respiratory-gated VMAT delivery. This technique showed that under clinical operation, the TrueBeam system faithfully realized treatment plans with gated delivery. This methodology affords a useful tool for machine and patient-specific quality assurance of the newly available respiratory-gated VMAT. PMID:21753232
Multiscale benchmarking of drug delivery vectors.
Summers, Huw D; Ware, Matthew J; Majithia, Ravish; Meissner, Kenith E; Godin, Biana; Rees, Paul
2016-10-01
Cross-system comparisons of drug delivery vectors are essential to ensure optimal design. An in-vitro experimental protocol is presented that separates the role of the delivery vector from that of its cargo in determining the cell response, thus allowing quantitative comparison of different systems. The technique is validated through benchmarking of the dose-response of human fibroblast cells exposed to the cationic molecule, polyethylene imine (PEI); delivered as a free molecule and as a cargo on the surface of CdSe nanoparticles and Silica microparticles. The exposure metrics are converted to a delivered dose with the transport properties of the different scale systems characterized by a delivery time, τ. The benchmarking highlights an agglomeration of the free PEI molecules into micron sized clusters and identifies the metric determining cell death as the total number of PEI molecules presented to cells, determined by the delivery vector dose and the surface density of the cargo. Copyright © 2016 Elsevier Inc. All rights reserved.
SU-G-BRA-14: Dose in a Rigidly Moving Phantom with Jaw and MLC Compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, E; Lucas, D
Purpose: To validate dose calculation for a rigidly moving object with jaw motion and MLC shifts to compensate for the motion in a TomoTherapy™ treatment delivery. Methods: An off-line version of the TomoTherapy dose calculator was extended to perform dose calculations for rigidly moving objects. A variety of motion traces were added to treatment delivery plans, along with corresponding jaw compensation and MLC shift compensation profiles. Jaw compensation profiles were calculated by shifting the jaws such that the center of the treatment beam moved by an amount equal to the motion in the longitudinal direction. Similarly, MLC compensation profiles weremore » calculated by shifting the MLC leaves by an amount that most closely matched the motion in the transverse direction. The same jaw and MLC compensation profiles were used during simulated treatment deliveries on a TomoTherapy system, and film measurements were obtained in a rigidly moving phantom. Results: The off-line TomoTherapy dose calculator accurately predicted dose profiles for a rigidly moving phantom along with jaw motion and MLC shifts to compensate for the motion. Calculations matched film measurements to within 2%/1 mm. Jaw and MLC compensation substantially reduced the discrepancy between the delivered dose distribution and the calculated dose with no motion. For axial motion, the compensated dose matched the no-motion dose within 2%/1mm. For transverse motion, the dose matched within 2%/3mm (approximately half the width of an MLC leaf). Conclusion: The off-line TomoTherapy dose calculator accurately computes dose delivered to a rigidly moving object, and accurately models the impact of moving the jaws and shifting the MLC leaf patterns to compensate for the motion. Jaw tracking and MLC leaf shifting can effectively compensate for the dosimetric impact of motion during a TomoTherapy treatment delivery.« less
Placenta previa and it's relation with maternal age, gravidity and cesarean section.
Hossain, G A; Islam, S M; Mahmood, S; Chakraborty, R K; Akhter, N; Sultana, S
2004-07-01
The placenta provides the essential connection between the mother and the developing fetus. Placental position were routinely mentioned in an ultrasound report starting from early second trimester to the end of third trimester when asked for pregnancy evaluation. The aim of this study was to see the prevalence of lower segment placenta (placenta previa) and its relations with previous cesarean section delivery, parity and maternal age. The study conducted in Centre for Nuclear Medicine and Ultrasound (CNMU) Mymensingh in a period from January 2001 to December 2002. About 2536 pregnant women (those included in this study) underwent ultrasound examination during pregnancy at third trimester. The prevalence of lower segment placenta was 1.34%. The highest prevalence of placenta previa (2.58%) was seen in 3rd and higher gravida group. Also the highest prevalence were seen 30 yr. and above age group in compare to below 30 yr. age group. No increased prevalence of placenta previa were seen in previous cesarean section (C / S) delivery group (0.65%) in compare to normal delivery group (1.97%). From our study it was seen that development of lower segment placenta has relation with increased number of gravidity and maternal age but no increased prevalence were seen in subjects with previously done cesarean section
Dose determinants in continuous renal replacement therapy.
Clark, William R; Turk, Joseph E; Kraus, Michael A; Gao, Dayong
2003-09-01
Increasing attention is being paid to quantifying the dose of dialysis prescribed and delivered to critically ill patients with acute renal failure (ARF). Recent trials in both the intermittent hemodialysis (IHD) and continuous renal replacement therapy (CRRT) realms have suggested that a direct relationship between dose and survival exists for both of these therapies. The purpose of this review, first, is to analyze critically the above-mentioned dose/outcome studies in acute dialysis. Subsequently, the factors influencing dose prescription and delivery are discussed, with the focus on continuous venovenous hemofiltration (CVVH). Specifically, differences between postdilution and predilution CVVH will be highlighted, and the importance of blood flow rate in dose delivery for these therapies will be discussed.
A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.
Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle
2016-03-01
On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR-IGRT system. PACS number(s): 87.57.nm, 87.57.N-, 87.61.Tg. © 2016 The Authors.
A comparative study of automatic image segmentation algorithms for target tracking in MR‐IGRT
Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J.; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa
2016-01-01
On‐board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real‐time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image‐guided radiotherapy (MR‐IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k‐means (FKM), k‐harmonic means (KHM), and reaction‐diffusion level set evolution (RD‐LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR‐TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR‐TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD‐LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP‐TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high‐contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR‐TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on‐board MR‐IGRT system. PACS number(s): 87.57.nm, 87.57.N‐, 87.61.Tg
Optimization and Dose Estimation of Aerosol Delivery to Non-Human Primates.
MacLoughlin, Ronan J; van Amerongen, Geert; Fink, James B; Janssens, Hettie M; Duprex, W Paul; de Swart, Rik L
2016-06-01
In pre-clinical animal studies, the uniformity of dosing across subjects and routes of administration is a crucial requirement. In preparation for a study in which aerosolized live-attenuated measles virus vaccine was administered to cynomolgus monkeys (Macaca fascicularis) by inhalation, we assessed the percentage of a nebulized dose inhaled under varying conditions. Drug delivery varies with breathing parameters. Therefore we determined macaque breathing patterns (tidal volume, breathing frequency, and inspiratory to expiratory (I:E) ratio) across a range of 3.3-6.5 kg body weight, using a pediatric pneumotachometer interfaced either with an endotracheal tube or a facemask. Subsequently, these breathing patterns were reproduced using a breathing simulator attached to a filter to collect the inhaled dose. Albuterol was nebulized using a vibrating mesh nebulizer and the percentage inhaled dose was determined by extraction of drug from the filter and subsequent quantification. Tidal volumes ranged from 24 to 46 mL, breathing frequencies from 19 to 31 breaths per minute and I:E ratios from 0.7 to 1.6. A small pediatric resuscitation mask was identified as the best fitting interface between animal and pneumotachometer. The average efficiency of inhaled dose delivery was 32.1% (standard deviation 7.5, range 24%-48%), with variation in tidal volumes as the most important determinant. Studies in non-human primates aimed at comparing aerosol delivery with other routes of administration should take both the inter-subject variation and relatively low efficiency of delivery to these low body weight mammals into account.
Sellers, Shari; Horodnik, Walter; House, Aileen; Wylie, Jennifer; Mauser, Peter; Donovan, Brent
2015-01-01
This research describes a novel "minitower" dry powder delivery system for nose-only delivery of dry powder aerosols to spontaneously breathing rats. The minitower system forces pressurized air through pre-filled capsules to deliver aerosolized drug to four nose ports; three of which house spontaneously breathing rats, with the fourth used as a control. Within each port are vent filters which capture drug that was not inhaled for further quantitation. These vent filters along with a novel control system referred to as the "artificial rat lung", allow for the theoretical amount of drug delivered and subsequently inhaled by each rat to be calculated. In vitro and in vivo studies have demonstrated this system's ability to deliver aerosolized drug to rats. The in vitro study showed that ∼30% of the starting dose reached the 4 ports and was available for inhalation. During in-vivo studies, rats inhaled ∼34% of the delivered dose. Of the estimated inhaled dose, 12-18% was detectable in the various tissue samples, with over 30% of the recovered dose found in the rat's lungs. Results show that this system is capable of reproducibly delivering drug to the lungs of spontaneously breathing rats. Advantages over current delivery methods include being amenable to the administration of multiple doses and using less (milligram) amount of starting material. In addition, this technique avoids anesthesia which is typically required for instillation or insufflation, and thus has the potential as an efficient and noninvasive aerosol delivery method for preclinical drug development.
Hong, Soon Jun; Hou, Dongming; Brinton, Todd J; Johnstone, Brian; Feng, Dongni; Rogers, Pamela; Fearon, William F; Yock, Paul; March, Keith L
2014-01-01
To examine the comparative fate of adipose-derived stem cells (ASCs) as well as their impact on coronary microcirculation following either retrograde coronary venous (RCV) or arterial delivery. Local delivery of ASCs to the heart has been proposed as a practical approach to limiting the extent of myocardial infarction. Mouse models of mesenchymal stem cell effects on the heart have also demonstrated significant benefits from systemic (intravenous) delivery, prompting a question about the advantage of local delivery. There has been no study addressing the extent of myocardial vs. systemic disposition of ASCs in large animal models following local delivery to the myocardium. In an initial experiment, dose-dependent effects of ASC delivery on coronary circulation in normal swine were evaluated to establish a tolerable ASC dosing range for intracoronary (IC) delivery. In a set of subsequent experiments, an anterior acute myocardial infarction (AMI) was created by balloon occlusion of the proximal left anterior descending (LAD) artery, followed by either IC or RCV infusion of 10(7) (111)Indium-labeled autologous ASCs 6 days following AMI. Indices of microcirculatory resistance (IMR) and coronary flow reserve (CFR) were measured before sacrifices to collect tissues for analysis at 1 or 24 hr after cell delivery. IC delivery of porcine ASCs to normal myocardium was well tolerated up to a cumulative dose of 14 × 10(6) cells (approximately 0.5 × 10(6) cells/kg). There was evidence suggesting microcirculatory trapping of ASC: at unit doses of 50 × 10(6) ASCs, IMR and CFR were found to be persistently altered in the target LAD distribution at 7 days following delivery, whereas at 10 × 10(6) ASCs, only CFR was altered. In the context of recent MI, a significantly higher percentage of ASCs was retained at 1 hr with IC delivery compared with RCV delivery (57.2 ± 12.7% vs. 17.9 ± 1.6%, P = 0.037) but this initial difference was not apparent at 24 hr (22.6 ± 5.5% vs. 18.7 ± 8.6%; P = 0.722). In both approaches, most ASC redistributed to the pulmonary circulation by 24 hr postdelivery. There were no significant differences in CFR or IMR following ASC delivery to infarcted tissue by either route. Selective intravascular delivery of ASC by coronary arterial and venous routes leads to similarly limited myocardial cell retention with predominant redistribution of cells to the lungs. IC arterial delivery of ASC leads to only transiently greater myocardial retention, which is accompanied by obstruction of normal regions of coronary microcirculation at higher doses. The predominant intrapulmonary localization of cells following local delivery via both methods prompts the notion that systemic delivery of ASC might provide similarly beneficial outcomes while avoiding risks of inadvertent microcirculatory compromise. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, P; Labby, Z; Bayliss, R A
Purpose: To develop a plan comparison tool that will ensure robustness and deliverability through analysis of baseline and online-adaptive radiotherapy plans using similarity metrics. Methods: The ViewRay MRIdian treatment planning system allows export of a plan file that contains plan and delivery information. A software tool was developed to read and compare two plans, providing information and metrics to assess their similarity. In addition to performing direct comparisons (e.g. demographics, ROI volumes, number of segments, total beam-on time), the tool computes and presents histograms of derived metrics (e.g. step-and-shoot segment field sizes, segment average leaf gaps). Such metrics were investigatedmore » for their ability to predict that an online-adapted plan reasonably similar to a baseline plan where deliverability has already been established. Results: In the realm of online-adaptive planning, comparing ROI volumes offers a sanity check to verify observations found during contouring. Beyond ROI analysis, it has been found that simply editing contours and re-optimizing to adapt treatment can produce a delivery that is substantially different than the baseline plan (e.g. number of segments increased by 31%), with no changes in optimization parameters and only minor changes in anatomy. Currently the tool can quickly identify large omissions or deviations from baseline expectations. As our online-adaptive patient population increases, we will continue to develop and refine quantitative acceptance criteria for adapted plans and relate them historical delivery QA measurements. Conclusion: The plan comparison tool is in clinical use and reports a wide range of comparison metrics, illustrating key differences between two plans. This independent check is accomplished in seconds and can be performed in parallel to other tasks in the online-adaptive workflow. Current use prevents large planning or delivery errors from occurring, and ongoing refinements will lead to increased assurance of plan quality.« less
A new methodology for inter- and intrafraction plan adaptation for the MR-linac
NASA Astrophysics Data System (ADS)
Kontaxis, C.; Bol, G. H.; Lagendijk, J. J. W.; Raaymakers, B. W.
2015-10-01
The new era of hybrid MRI and linear accelerator machines, including the MR-linac currently being installed in the University Medical Center Utrecht (Utrecht, The Netherlands), will be able to provide the actual anatomy and real-time anatomy changes of the patient’s target(s) and organ(s) at risk (OARs) during radiation delivery. In order to be able to take advantage of this input, a new generation of treatment planning systems is needed, that will allow plan adaptation to the latest anatomy state in an online regime. In this paper, we present a treatment planning algorithm for intensity-modulated radiotherapy (IMRT), which is able to compensate for patient anatomy changes. The system consists of an iterative sequencing loop open to anatomy updates and an inter- and intrafraction adaptation scheme that enables convergence to the ideal dose distribution without the need of a final segment weight optimization (SWO). The ability of the system to take into account organ motion and adapt the plan to the latest anatomy state is illustrated using artificial baseline shifts created for three different kidney cases. Firstly, for two kidney cases of different target volumes, we show that the system can account for intrafraction motion, delivering the intended dose to the target with minimal dose deposition to the surroundings compared to conventional plans. Secondly, for a third kidney case we show that our algorithm combined with the interfraction scheme can be used to deliver the prescribed dose while adapting to the changing anatomy during multi-fraction treatments without performing a final SWO.
MO-F-CAMPUS-T-03: Continuous Dose Delivery with Gamma Knife Perfexion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghobadi,; Li, W; Chung, C
2015-06-15
Purpose: We propose continuous dose delivery techniques for stereotactic treatments delivered by Gamma Knife Perfexion using inverse treatment planning system that can be applied to various tumour sites in the brain. We test the accuracy of the plans on Perfexion’s planning system (GammaPlan) to ensure the obtained plans are viable. This approach introduces continuous dose delivery for Perefxion, as opposed to the currently employed step-and-shoot approaches, for different tumour sites. Additionally, this is the first realization of automated inverse planning on GammaPlan. Methods: The inverse planning approach is divided into two steps of identifying a quality path inside the target,more » and finding the best collimator composition for the path. To find a path, we select strategic regions inside the target volume and find a path that visits each region exactly once. This path is then passed to a mathematical model which finds the best combination of collimators and their durations. The mathematical model minimizes the dose spillage to the surrounding tissues while ensuring the prescribed dose is delivered to the target(s). Organs-at-risk and their corresponding allowable doses can also be added to the model to protect adjacent organs. Results: We test this approach on various tumour sizes and sites. The quality of the obtained treatment plans are comparable or better than forward plans and inverse plans that use step- and-shoot technique. The conformity indices in the obtained continuous dose delivery plans are similar to those of forward plans while the beam-on time is improved on average (see Table 1 in supporting document). Conclusion: We employ inverse planning for continuous dose delivery in Perfexion for brain tumours. The quality of the obtained plans is similar to forward and inverse plans that use conventional step-and-shoot technique. We tested the inverse plans on GammaPlan to verify clinical relevance. This research was partially supported by Elekta, Sweden (vendor of Gamma Knife Perfexion)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemente, F; Perez-Vara, C; Clavo, M
2016-06-15
Purpose: Dose protraction factor should be considered in order to model the TCP calculations. Nevertheless, this study describes a brief discussion showing that the lack of its inclusion should not invalidate these calculations for prostate VMAT treatments. Methods: Dose protraction factor (G) modifies the quadratic term of the linear-quadratic expression in order to take into account the sublethal damage repair of protracting the dose delivery. If the delivery takes a short time (instantaneous), G = 1. For any other dose delivery pattern, G < 1. The Lea-Catcheside dose protraction factor for external beam radiotherapy contains terms depending of on themore » tissue specific repair parameter (λ) and the irradiation time (T). Expanding the exponential term using a Taylor’s series and neglecting terms of order (λT){sup 3}, the approximation leads to G = 1. The described situation occurs for 3DCRT techniques, where treatment times are about few minutes. For IMRT techniques, fraction times are prolonged compared to 3DCRT times. Wang et al. (2003) and Fowler et al. (2004) investigated the protraction effect with respect to IMRT treatments, reporting clinically significant loss in biological effect associated with IMRT delivery times. Results: Treatment times are noticeably reduced for prostate treatments using VMAT techniques. These times are comparable to 3DCRT times, leading to consider the previous approximation. Conclusion: Dose protraction factor can be approximated by G = 1 in TCP calculations for prostate treatments using VMAT techniques.« less
Use of liposomes as injectable-drug delivery systems.
Ostro, M J; Cullis, P R
1989-08-01
The formation of liposomes and their application as delivery systems for injectable drugs are described. Liposomes are microscopic vesicles composed of one or more lipid membranes surrounding discrete aqueous compartments. These vesicles can encapsulate water-soluble drugs in their aqueous spaces and lipid-soluble drugs within the membrane itself. Liposomes release their contents by interacting with cells in one of four ways: adsorption, endocytosis, lipid exchange, or fusion. Liposome-entrapped drugs are distributed within the body much differently than free drugs; when administered intravenously to healthy animals and humans, most of the injected vesicles accumulate in the liver, spleen, lungs, bone marrow, and lymph nodes. Liposomes also accumulate preferentially at the sites of inflammation and infection and in some solid tumors; however, the reason for this accumulation is not clear. Four major factors influence liposomes' in vivo behavior and biodistribution: (1) liposomes tend to leak if cholesterol is not included in the vesicle membrane, (2) small liposomes are cleared more slowly than large liposomes, (3) the half-life of a liposome increases as the lipid dose increases, and (4) charged liposomal systems are cleared more rapidly than uncharged systems. The most advanced application of liposome-based therapy is in the treatment of systemic fungal infections, especially with amphotericin B. Liposomes are also under investigation for treatment of neoplastic disorders. Liposomes' uses in cancer therapy include encapsulation of known antineoplastic agents such as doxorubicin and methotrexate, delivery of immune modulators such as N-acetylmuramyl-L-alanine-D-isoglutamine, and encapsulation of new chemical entities that are synthesized with lipophilic segments tailored for insertion into lipid bilayers. Liposomal formulations of injectable antimicrobial agents and antineoplastic agents already are undergoing clinical testing, and most probably will receive approval for marketing in the early 1990s. Liposomal encapsulation of drugs represents a new drug delivery system that appears to offer important therapeutic advantages over existing methods of drug delivery.
Automatic segmentation of thoracic aorta segments in low-dose chest CT
NASA Astrophysics Data System (ADS)
Noothout, Julia M. H.; de Vos, Bob D.; Wolterink, Jelmer M.; Išgum, Ivana
2018-03-01
Morphological analysis and identification of pathologies in the aorta are important for cardiovascular diagnosis and risk assessment in patients. Manual annotation is time-consuming and cumbersome in CT scans acquired without contrast enhancement and with low radiation dose. Hence, we propose an automatic method to segment the ascending aorta, the aortic arch and the thoracic descending aorta in low-dose chest CT without contrast enhancement. Segmentation was performed using a dilated convolutional neural network (CNN), with a receptive field of 131 × 131 voxels, that classified voxels in axial, coronal and sagittal image slices. To obtain a final segmentation, the obtained probabilities of the three planes were averaged per class, and voxels were subsequently assigned to the class with the highest class probability. Two-fold cross-validation experiments were performed where ten scans were used to train the network and another ten to evaluate the performance. Dice coefficients of 0.83 +/- 0.07, 0.86 +/- 0.06 and 0.88 +/- 0.05, and Average Symmetrical Surface Distances (ASSDs) of 2.44 +/- 1.28, 1.56 +/- 0.68 and 1.87 +/- 1.30 mm were obtained for the ascending aorta, the aortic arch and the descending aorta, respectively. The results indicate that the proposed method could be used in large-scale studies analyzing the anatomical location of pathology and morphology of the thoracic aorta.
VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests
Rowshanfarzad, Pejman; Greer, Peter B.
2016-01-01
In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry‐mounted IBA MatriXX with attached inclinometer was used in movie mode to measure the instantaneous relative dose versus gantry angle during the plan every 0.54 s. The results were compared to the expected relative dose at each gantry angle calculated from the plan. The same dataset was also used to compare the instantaneous gantry speeds throughout the delivery compared to the expected gantry speeds from the plan. Measurements performed across four linacs generally show agreement between measurement and plan to within 1.5% in the constant dose rate regions and dose rate modulation within 0.1 s of the plan. Instantaneous gantry speed was measured to be within 0.11∘/s of the plan (1 SD). An error in one linac was detected in that the nominal gantry speed was incorrectly calibrated. This test provides a practical method to quality‐assure critical aspects of VMAT delivery including dose versus gantry angle and gantry speed control. The method can be performed with any detector that can acquire time‐resolved dosimetric information that can be synchronized with a measurement of gantry angle. The test fulfils several of the aims of the recent Netherlands Commission on Radiation Dosimetry (NCS) Report 24, which provides recommendations for comprehensive VMAT quality assurance. PACS number(s): 87.55.Qr PMID:27167282
Gilger, Brian C; Mandal, Abhirup; Shah, Sujay; Mitra, Ashim K
2014-01-01
Subconjunctival/episcleral, intrascleral, and suprachoroidal routes of drug delivery for treatment of posterior segment eye diseases have become more feasible and popular in the past few years. These routes have the advantage of bypassing the main barriers to topical drug penetration, the ocular surface epithelium, the conjunctivallymphatics, and in the case of deep intrascleral and suprachoroidial delivery, the sclera barrier. Many ocular drug delivery application devices, drug delivery methods, and therapeutics that have been developed for intravitreal use can also be used subconjunctivally, intrasclerally, and in the suprachoroidal space. Alternatively, site-specific devices, such microneedles, and therapeutics, such as hydrogel matrices, have been developed to enhance ocular drug delivery. This manuscript will review the recent research advances and patents on episcleral, intrascleral, and suprachoroidal routes of ocular drug delivery.
NASA Astrophysics Data System (ADS)
Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Sugiura, Toshihiko; Tanabe, Nobuhiro; Kusumoto, Masahiko; Eguchi, Kenji; Kaneko, Masahiro
2018-02-01
Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by obstruction of the pulmonary vasculature by residual organized thrombi. A morphological abnormality inside mediastinum of CTEPH patient is enlargement of pulmonary artery. This paper presents an automated assessment of aortic and main pulmonary arterial diameters for predicting CTEPH in low-dose CT lung screening. The distinctive feature of our method is to segment aorta and main pulmonary artery using both of prior probability and vascular direction which were estimated from mediastinal vascular region using principal curvatures of four-dimensional hyper surface. The method was applied to two datasets, 64 lowdose CT scans of lung cancer screening and 19 normal-dose CT scans of CTEPH patients through the training phase with 121 low-dose CT scans. This paper demonstrates effectiveness of our method for predicting CTEPH in low-dose CT screening.
Van Minh, Hoang; Odaga, John; Rout, Swampa Sarit; Ngoc, Diep Nguyen Thi; Menezes, Lysander; Araujo, Maria Ana Mendoza; LaMontagne, D Scott
2013-01-01
Abstract Objective To estimate the incremental delivery cost of human papillomavirus (HPV) vaccination of young adolescent girls in Peru, Uganda and Viet Nam. Methods Data were collected from a sample of facilities that participated in five demonstration projects for HPV vaccine delivery: school-based delivery was used in Peru, Uganda and Viet Nam; health-centre-based delivery was also used in Viet Nam; and integrated delivery, which involved existing health services, was also used in Uganda. Microcosting methods were used to guide data collection on the use of resources (i.e. staff, supplies and equipment) and data were obtained from government, demonstration project and health centre administrative records. Delivery costs were expressed in 2009 United States dollars (US$). Exclusively project-related expenses and the cost of the vaccine were excluded. Findings The economic delivery cost per vaccine dose ranged from US$ 1.44 for integrated outreach in Uganda to US$ 3.88 for school-based delivery in Peru. In Viet Nam, the lowest cost per dose was US$ 1.92 for health-centre-based delivery. Cost profiles revealed that, in general, the largest contributing factors were project start-up costs and recurrent personnel costs. The delivery cost of HPV vaccine was higher than published costs for traditional vaccines recommended by the Expanded Programme on Immunization (EPI). Conclusion The cost of delivering HPV vaccine to young adolescent girls in Peru, Uganda and Viet Nam was higher than that for vaccines currently in the EPI schedule. The cost per vaccine dose was lower when delivery was integrated into existing health services. PMID:23940406
Yeo, Inhwan Jason; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh
2013-01-01
Purpose: When an intensity-modulated radiation beam is delivered to a moving target, the interplay effect between dynamic beam delivery and the target motion due to miss-synchronization can cause unpredictable dose delivery. The portal dose image in electronic portal imaging device (EPID) represents radiation attenuated and scattered through target media. Thus, it may possess information about delivered radiation to the target. Using a continuous scan (cine) mode of EPID, which provides temporal dose images related to target and beam movements, the authors’ goal is to perform four-dimensional (4D) dose reconstruction. Methods: To evaluate this hypothesis, first, the authors have derived and subsequently validated a fast method of dose reconstruction based on virtual beamlet calculations of dose responses using a test intensity-modulated beam. This method was necessary for processing a large number of EPID images pertinent for four-dimensional reconstruction. Second, cine mode acquisition after summation over all images was validated through comparison with integration mode acquisition on EPID (IAS3 and aS1000) for the test beam. This was to confirm the agreement of the cine mode with the integrated mode, specifically for the test beam, which is an accepted mode of image acquisition for dosimetry with EPID. Third, in-phantom film and exit EPID dosimetry was performed on a moving platform using the same beam. Heterogeneous as well as homogeneous phantoms were used. The cine images were temporally sorted at 10% interval. The authors have performed dose reconstruction to the in-phantom plane from the sorted cine images using the above validated method of dose reconstruction. The reconstructed dose from each cine image was summed to compose a total reconstructed dose from the test beam delivery, and was compared with film measurements. Results: The new method of dose reconstruction was validated showing greater than 95.3% pass rates of the gamma test with the criteria of dose difference of 3% and distance to agreement of 3 mm. The dose comparison of the reconstructed dose with the measured dose for the two phantoms showed pass rates higher than 96.4% given the same criteria. Conclusions: Feasibility of 4D dose reconstruction was successfully demonstrated in this study. The 4D dose reconstruction demonstrated in this study can be a promising dose validation method for radiation delivery on moving organs. PMID:23635250
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, H; Cho, S; Jeong, C
2016-06-15
Purpose: Actual delivered dose of moving tumors treated with gated volumetric arc therapy (VMAT) may significantly differ from the planned dose assuming static target. In this study, we developed a method which reconstructs actual delivered dose distribution of moving target by taking into account both tumor motion and dynamic beam delivery of gated VMAT, and applied to abdominal tumors. Methods: Fifteen dual-arc VMAT plans (Eclipse, Varian Medical Systems) for 5 lung, 5 pancreatic, and 5 liver cancer patients treated with gated VMAT stereotactic body radiotherapy (SBRT) were studied. For reconstruction of the delivered dose distribution, we divided each original arcmore » beam into control-point-wise sub-beams, and applied beam isocenter shifting to each sub-beam to reflect the tumor motion. The tumor positions as a function of beam delivery were estimated by synchronizing the beam delivery with the respiratory signal which acquired during treatment. For this purpose, an in-house program (MATLAB, Mathworks) was developed to convert the original DICOM plan data into motion-involved treatment plan. The motion-involved DICOM plan was imported into Eclipse for dose calculation. The reconstructed delivered dose was compared to the plan dose using the dose coverage of gross tumor volume (GTV) and dose distribution of organs at risk (OAR). Results: The mean GTV dose coverage difference between the reconstructed delivered dose and the plan dose was 0.2 % in lung and pancreas cases, and no difference in liver cases. Mean D1000cc of ipsilateral lungs was reduced (0.8 ± 1.4cGy). Conclusion: We successfully developed a method of delivered dose reconstruction taking into account both respiratory tumor motion and dynamic beam delivery, and applied it to abdominal tumors treated with gated VAMT. No significant deterioration of delivered dose distribution indicates that interplay effect would be minimal even in the case of gated SBRT. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015038710)« less
NASA Astrophysics Data System (ADS)
Lin, Mu-Han; Price, Robert A., Jr.; Li, Jinsheng; Kang, Shengwei; Li, Jie; Ma, C.-M.
2013-11-01
Many tumor cells demonstrate hyperradiosensitivity at doses below ˜50 cGy. Together with the increased normal tissue repair under low dose rate, the pulsed low dose rate radiotherapy (PLDR), which separates a daily fractional dose of 200 cGy into 10 pulses with 3 min interval between pulses (˜20 cGy/pulse and effective dose rate 6.7 cGy min-1), potentially reduces late normal tissue toxicity while still providing significant tumor control for re-irradiation treatments. This work investigates the dosimetric and technical feasibilities of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based PLDR treatments using Varian Linacs. Twenty one cases (12 real re-irradiation cases) including treatment sites of pancreas, prostate, pelvis, lung, head-and-neck, and breast were recruited for this study. The lowest machine operation dose rate (100 MU min-1) was employed in the plan delivery. Ten-field step-and-shoot IMRT and dual-arc VMAT plans were generated using the Eclipse TPS with routine planning strategies. The dual-arc plans were delivered five times to achieve a 200 cGy daily dose (˜20 cGy arc-1). The resulting plan quality was evaluated according to the heterogeneity and conformity indexes (HI and CI) of the planning target volume (PTV). The dosimetric feasibility of retaining the hyperradiosensitivity for PLDR was assessed based on the minimum and maximum dose in the target volume from each pulse. The delivery accuracy of VMAT and IMRT at the 100 MU min-1 machine operation dose rate was verified using a 2D diode array and ion chamber measurements. The delivery reproducibility was further investigated by analyzing the Dynalog files of repeated deliveries. A comparable plan quality was achieved by the IMRT (CI 1.10-1.38 HI 1.04-1.10) and the VMAT (CI 1.08-1.26 HI 1.05-1.10) techniques. The minimum/maximum PTV dose per pulse is 7.9 ± 5.1 cGy/33.7 ± 6.9 cGy for the IMRT and 12.3 ± 4.1 cGy/29.2 ± 4.7 cGy for the VMAT. Six out of the 186 IMRT pulses (fields) were found to exceed 50 cGy maximum PTV dose per pulse while the maximum PTV dose per pulse was within 40 cGy for all the VMAT pulses (arcs). However, for VMAT plans, the dosimetric quality of the entire treatment plan was less superior for the breast cases and large irregular targets. The gamma passing rates for both techniques at the 100 MU min-1 dose rate were at least 94.1% (3%/3 mm) and the point dose measurements agreed with the planned values to within 2.2%. The average root mean square error of the leaf position was 0.93 ± 0.83 mm for IMRT and 0.53 ± 0.48 mm for VMAT based on the Dynalog file analysis. The RMS error of the leaf position was nearly identical for the repeated deliveries of the same plans. In general, both techniques are feasible for PLDR treatments. VMAT was more advantageous for PLDR with more uniform target dose per pulse, especially for centrally located tumors. However, for large, irregular and/or peripheral tumors, IMRT could produce more favorable PLDR plans. By taking the biological benefit of PLDR delivery and the dosimetric benefit of IMRT and VMAT, the proposed methods have a great potential for those previously-irradiated recurrent patients.
Nano drug delivery systems and gamma radiation sterilization.
Sakar, F; Özer, A Y; Erdogan, S; Ekizoglu, M; Kart, D; Özalp, M; Colak, S; Zencir, Y
2017-09-01
In recent years, drug delivery systems such as liposomes and microparticles have been used in clinic for the treatment of different diseases and from a regulatory point of view, a parenterally applied drug and drug delivery systems must be sterile and pyrogen free. Radiation sterilization is a method recognized by pharmacopoeias to achieve sterility criteria of parenterals. It has the ability to kill microorganisms in therapeutic products. The ability of, however, irradiation might also affect the performance of drug delivery systems. One of the most critical points is irradiation dose, because certain undesirable chemical and physical changes may accompany with the irradiation, especially with the traditionally applied dose of 25 kGy. Its ionizing property may cause fragmentation of covalent bond. The care must be paid to the applied dose. In this research, the effects of gamma irradiation on different drug delivery systems such as chitosan microparticles, liposomes, niosomes and sphingosomes were investigated. According to the experimental data, it can be concluded that gamma irradiation can be a suitable sterilization technique for liposome, niosome and sphingosome dispersions. When all irradiated drug carrier systems were taken into consideration, chitosan glutamate microparticles were found as the most radioresistant drug delivery system among the others.
Xu, Yingjie; Yan, Hui; Hu, Zhihui; Ma, Pan; Men, Kuo; Huang, Peng; Ren, Wenting; Dai, Jianrong; Li, Yexiong
2017-01-01
Given the design of the Helical TomoTherapy device, the patient's central axis is routinely aligned with the machine's rotational axis to prevent the patient's body from colliding with the machine walls. However, for treatment of tumors located away from the patient's central axis, this position may not be optimal as the adequate radiation dose may not reach the affected site. Our study aimed to investigate the influence of tumor location on dose quality and delivery efficiency of tomotherapy plans. A phantom and 15 patients were selected for this study. Two plans, A and B, were implemented for each case. In plan A, the patient's central axis was aligned with the machine's rotational axis, whereas in plan B, the center of the planning target volume (PTV) was aligned with the machine's rotational axis. Both plans were optimized with the same planning parameters, and the dose quality of the plans was evaluated using dosimetrics. The delivery efficiency was determined from delivery time and monitor units (MUs). A paired t-test or nonparametric Wilcoxon signed-rank test was performed for statistical comparison. In the phantom study, the median delivery times were 358 and 336 seconds for plans A and B, respectively, and this difference was significant (p = 0.005). In the patient study, the median delivery times were 348 and 317 seconds for plans A and B, respectively, and this difference was also significant (p = 0.001). The dose qualities of both plans for each patient were nearly identical. No significant differences were found in the conformal index, heterogeneity index, and mean dose delivered to normal tissue between the plans. Both phantom and patient studies showed that for normal-sized patients, the delivery time reduced as the distance between the PTV and the patient's central axis increased when the PTV center was aligned with the machine axis. In conclusion, aligning the PTV center with the machine's rotational axis by shifting the patient during tomotherapy reduces the delivery time without compromising the dose quality of intensity-modulated radiation therapy. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Real time sensor for therapeutic radiation delivery
Bliss, M.; Craig, R.A.; Reeder, P.L.
1998-01-06
The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body. 14 figs.
Real time sensor for therapeutic radiation delivery
Bliss, Mary; Craig, Richard A.; Reeder, Paul L.
1998-01-01
The invention is a real time sensor for therapeutic radiation. A probe is placed in or near the patient that senses in real time the dose at the location of the probe. The strength of the dose is determined by either an insertion or an exit probe. The location is determined by a series of vertical and horizontal sensing elements that gives the operator a real time read out dose location relative to placement of the patient. The increased accuracy prevents serious tissue damage to the patient by preventing overdose or delivery of a dose to a wrong location within the body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Z; Wang, J; Peng, J
Purpose: Electronic portal imaging device (EPID) can be used to acquire a two-dimensional exit dose distribution during treatment delivery, thus allowing the in-vivo verification of the dose delivery through a comparison of measured portal images to predicted portal dose images (PDI). The aim of this study was to present a novel method to easily and accurately predict PDI, and to establish an EPID-based in-vivo dose verification method during IMRT treatments. Methods: We developed a model to determine the predicted portal dose at the same plane of the EPID detector location. The Varian EPID (aS1000) positions at 150cm source-to-detector-distance (SDD), andmore » can be used to acquire in-vivo exit dose using Portal Dosimetry (PD) function. Our model was generated to make an equivalent water thickness represent the buildup plate of EPID. The exit dose at extend SDD plane with patient CT data in the beam can be calculated as the predicted PDI in the treatment planning system (TPS). After that, the PDI was converted to the fluence at SDD of 150cm using the inverse square law coded in MATLAB. Five head-and-neck and prostate IMRT patient plans contain 32 fields were investigated to evaluate the feasibility of this new method. The measured EPID image was compared with PDI using the gamma analysis. Results: The average results for cumulative dose comparison were 81.9% and 91.6% for 3%, 3mm and 4%, 4mm gamma criteria, respectively. Results indicate that the patient transit dosimetry predicted algorithm compares well with EPID measured PD doses for test situations. Conclusion: Our new method can be used as an easy and feasible tool for online EPID-based in-vivo dose delivery verification for IMRT treatments. It can be implemented for fast detecting those obvious treatment delivery errors for individual field and patient quality assurance.« less
Simulation of Surface Erosion on a Logging Road in the Jackson Demonstration State Forest
Teresa Ish; David Tomberlin
2007-01-01
In constructing management models for the control of sediment delivery to streams, we have used a simulation model of road surface erosion known as the Watershed Erosion Prediction Project (WEPP) model, developed by the USDA Forest Service. This model predicts discharge, erosion, and sediment delivery at the road segment level, based on a stochastic climate simulator...
Cubosomes and other potential ocular drug delivery vehicles for macromolecular therapeutics.
Hartnett, Terence E; O'Connor, Andrea J; Ladewig, Katharina
2015-01-01
Many macromolecular therapeutics designed to treat posterior segment eye diseases (PSEDs) are administered through frequent ocular injection, which can further deteriorate eye health. Due to the high frequency of injection and the high cost of the therapeutics, there is a need to develop new ways in which to deliver these therapeutics: ways which are both safer and more cost effective. Using the most common PSED, age-related macular degeneration, as an example of a debilitating ocular disease, this review examines the key barriers limiting the delivery of macromolecular therapeutics to the posterior segment of the eye and defines the key requirements placed on particulate drug delivery vehicles (DDVs) to be suitable for this application. Recent developments in macromolecular drug delivery to treat this disease as well as the remaining shortcomings in its treatment are surveyed. Lastly, an emerging class of DDVs potentially suited to this application, called cubosomes, is introduced. Based on their excellent colloidal stability and high internal surface area, cubosomes hold great potential for the sustained release of therapeutics. Novel production methods and a better understanding of the mechanisms through which drug release from these particles can be controlled are two major recent developments toward successful application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esquivel, C; Patton, L; Walker, S
Purpose: Use Sun Nuclear Quality Reports™ with PlanIQ™ to evaluate different treatment delivery techniques for various treatment sites. Methods: Fifteen random patients with different treatment sites were evaluated. These include the Head/Neck, prostate, pelvis, lung, esophagus, axilla, bladder and abdomen. Initially, these sites were planned on the Pinnacle {sup 3} V9.6 treatment planning system and utilized nine 6MV step-n-shoot IMRT fields. The RT plan, dose and structure sets were sent to Quality Reports™ where a DVH was recreated and the plans were compared to a unique Plan Algorithm for each treatment site. Each algorithm has its own plan quality metricsmore » and objectives, which include the PTV coverage, PTV maximum dose, the prescription dose outside the target, doses to the critical structures, and the global maximum dose and its location. Each plan was scored base on meeting each objective. Plans may have been reoptimized and reevaluated with Quality Reports™ based on the initial score. PlanIQ™ was used to evaluate if any objective not met was achievable or difficult to obtain. A second plan using VMAT delivery was created for each patient and scored with Quality Reports™. Results: There were a wide range of scores for the different treatment sites with some scoring better for IMRT plans and some better for the VMAT deliveries. The variation in the scores could be attributed to the treatment site, location, and shape of the target. Most deliveries were chosen for the VMAT due to the short treatment times and quick patient throughput with acceptable plan scores. Conclusion: The tools are provided for both physician and dosimetrist to objectively evaluate the use of VMAT delivery versus the step-n-shoot IMRT delivery for various sites. PlanIQ validates if objectives can be met. For the physicist, a concise pass/fail report is created for plan evaluation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandewouw, Marlee M., E-mail: marleev@mie.utoronto
Purpose: Continuous dose delivery in radiation therapy treatments has been shown to decrease total treatment time while improving the dose conformity and distribution homogeneity over the conventional step-and-shoot approach. The authors develop an inverse treatment planning method for Gamma Knife® Perfexion™ that continuously delivers dose along a path in the target. Methods: The authors’ method is comprised of two steps: find a path within the target, then solve a mixed integer optimization model to find the optimal collimator configurations and durations along the selected path. Robotic path-finding techniques, specifically, simultaneous localization and mapping (SLAM) using an extended Kalman filter, aremore » used to obtain a path that travels sufficiently close to selected isocentre locations. SLAM is novelly extended to explore a 3D, discrete environment, which is the target discretized into voxels. Further novel extensions are incorporated into the steering mechanism to account for target geometry. Results: The SLAM method was tested on seven clinical cases and compared to clinical, Hamiltonian path continuous delivery, and inverse step-and-shoot treatment plans. The SLAM approach improved dose metrics compared to the clinical plans and Hamiltonian path continuous delivery plans. Beam-on times improved over clinical plans, and had mixed performance compared to Hamiltonian path continuous plans. The SLAM method is also shown to be robust to path selection inaccuracies, isocentre selection, and dose distribution. Conclusions: The SLAM method for continuous delivery provides decreased total treatment time and increased treatment quality compared to both clinical and inverse step-and-shoot plans, and outperforms existing path methods in treatment quality. It also accounts for uncertainty in treatment planning by accommodating inaccuracies.« less
Günther, Kamilla Nyborg; Johansen, Sys Stybe; Nielsen, Marie Katrine Klose; Wicktor, Petra; Banner, Jytte; Linnet, Kristian
2018-04-01
Drug analysis in hair is useful when seeking to establish drug intake over a period of months to years. Segmental hair analysis can also document whether psychiatric patients are receiving a stable intake of antipsychotics. This study describes segmental analysis of the antipsychotic drug quetiapine in post-mortem hair samples from long-term quetiapine users by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The aim was to obtain more knowledge on quetiapine concentrations in hair and to relate the concentration in hair to the administered dose and the post-mortem concentration in femoral blood. We analyzed hair samples from 22 deceased quetiapine-treated individuals, who were divided into two groups: natural hair colour and dyed/bleached hair. Two to six 1cm long segments were analyzed per individual, depending on the length of the hair, with 6cm corresponding to the last six months before death. The average daily quetiapine dose and average concentration in hair for the last six months prior to death were examined for potential correlation. Estimated doses ranged from 45 to 1040mg quetiapine daily over the period, and the average concentration in hair ranged from 0.18 to 13ng/mg. A significant positive correlation was observed between estimated daily dosage of quetiapine and average concentration in hair for individuals with natural hair colour (p=0.00005), but statistical significance was not reached for individuals with dyed/bleached hair (p=0.31). The individual coefficient of variation (CV) of the quetiapine concentrations between segments ranged from 3 to 34% for individuals with natural hair colour and 22-62% for individuals with dyed/bleached hair. Dose-adjusted concentrations in hair were significantly lower in females with dyed/bleached hair than in individuals with natural hair colour. The quetiapine concentrations in post-mortem femoral blood and in the proximal hair segment, segment 1 (S1), representing the last month before death were also investigated for correlation. A significant positive correlation was observed between quetiapine concentrations in blood at the time of death and concentrations in S1 for individuals with natural hair colour (p=0.003) but not for individuals with dyed/bleached hair (p=0.31). The blood concentrations of quetiapine ranged from 0.006 to 1.9mg/kg, and the quetiapine concentrations in S1 ranged from 0.22 to 24ng/mg. The results of this study suggest a positive correlation of quetiapine between both concentrations in hair and doses, and between proximal hair (S1) and blood concentrations, when conditions such as hair treatments are taken into consideration. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofeng, E-mail: xyang43@emory.edu; Rossi, Peter; Ogunleye, Tomi
2014-11-01
Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approachmore » that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0.86%, and the prostate volume Dice overlap coefficient was 91.89% ± 1.19%. Conclusions: The authors have developed a novel approach to improve prostate contour utilizing intraoperative TRUS-based prostate volume in the CT-based prostate HDR treatment planning, demonstrated its clinical feasibility, and validated its accuracy with MRIs. The proposed segmentation method would improve prostate delineations, enable accurate dose planning and treatment delivery, and potentially enhance the treatment outcome of prostate HDR brachytherapy.« less
Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian
2014-01-01
Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0.86%, and the prostate volume Dice overlap coefficient was 91.89% ± 1.19%. Conclusions: The authors have developed a novel approach to improve prostate contour utilizing intraoperative TRUS-based prostate volume in the CT-based prostate HDR treatment planning, demonstrated its clinical feasibility, and validated its accuracy with MRIs. The proposed segmentation method would improve prostate delineations, enable accurate dose planning and treatment delivery, and potentially enhance the treatment outcome of prostate HDR brachytherapy. PMID:25370648
TU-AB-303-08: GPU-Based Software Platform for Efficient Image-Guided Adaptive Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Robinson, A; McNutt, T
2015-06-15
Purpose: In this study, we develop an integrated software platform for adaptive radiation therapy (ART) that combines fast and accurate image registration, segmentation, and dose computation/accumulation methods. Methods: The proposed system consists of three key components; 1) deformable image registration (DIR), 2) automatic segmentation, and 3) dose computation/accumulation. The computationally intensive modules including DIR and dose computation have been implemented on a graphics processing unit (GPU). All required patient-specific data including the planning CT (pCT) with contours, daily cone-beam CTs, and treatment plan are automatically queried and retrieved from their own databases. To improve the accuracy of DIR between pCTmore » and CBCTs, we use the double force demons DIR algorithm in combination with iterative CBCT intensity correction by local intensity histogram matching. Segmentation of daily CBCT is then obtained by propagating contours from the pCT. Daily dose delivered to the patient is computed on the registered pCT by a GPU-accelerated superposition/convolution algorithm. Finally, computed daily doses are accumulated to show the total delivered dose to date. Results: Since the accuracy of DIR critically affects the quality of the other processes, we first evaluated our DIR method on eight head-and-neck cancer cases and compared its performance. Normalized mutual-information (NMI) and normalized cross-correlation (NCC) computed as similarity measures, and our method produced overall NMI of 0.663 and NCC of 0.987, outperforming conventional methods by 3.8% and 1.9%, respectively. Experimental results show that our registration method is more consistent and roust than existing algorithms, and also computationally efficient. Computation time at each fraction took around one minute (30–50 seconds for registration and 15–25 seconds for dose computation). Conclusion: We developed an integrated GPU-accelerated software platform that enables accurate and efficient DIR, auto-segmentation, and dose computation, thus supporting an efficient ART workflow. This work was supported by NIH/NCI under grant R42CA137886.« less
McMaster, K; Sanchez-Ramos, L; Kaunitz, A M
2015-03-01
The optimal dose of misoprostol for the induction of labour remains uncertain. To compare the efficacy and safety of 25 versus 50 micrograms of intravaginal misoprostol tablets for the induction of labour and cervical ripening. We performed electronic and manual searches to identify relevant randomised trials. The efficacy outcomes assessed were rates of vaginal delivery within 24 hours, delivery within one dose, and oxytocin augmentation, and interval to delivery. The safety outcomes assessed were incidences of tachysystole, hyperstimulation, caesarean delivery, cesarean delivery for non-reassuring fetal heart rate (FHR), operative vaginal delivery, abnormal 5-minute Apgar score, abnormal cord gas values, admission to a neonatal intensive care unit (NICU), and meconium passage. Thirteen studies (1945 women) were included. Relative risk (RR) and 95% confidence intervals (CI) were calculated using fixed-effects and random-effects models. We found that 25 micrograms was less efficacious, with lower rates of delivery after one dose (RR 0.59; 95% CI 0.39-0.88) and vaginal delivery within 24 hours (RR 0.88; 95% CI 0.79-0.96), and with increased rates of oxytocin augmentation (RR 1.54, 95% CI 1.36-1.75). We noted an improved safety profile with 25 micrograms, however, with decreased rates of tachysystole (RR 0.46; 95% CI 0.35-0.61), hyperstimulation (RR 0.5; 95% CI 0.31-0.78), caesarean deliveries for non-reassuring FHR (RR 0.67; 95% CI 0.52-0.87), NICU admissions (RR 0.63; 95% CI 0.4-0.98), and meconium passage (RR 0.65; 95% CI 0.45-0.96). Although 50 micrograms of intravaginal misoprostol may be more efficacious, safety concerns make the 25-microgram dose preferable. © 2014 Royal College of Obstetricians and Gynaecologists.
Anterior segment sparing to reduce charged particle radiotherapy complications in uveal melanoma
NASA Technical Reports Server (NTRS)
Daftari, I. K.; Char, D. H.; Verhey, L. J.; Castro, J. R.; Petti, P. L.; Meecham, W. J.; Kroll, S.; Blakely, E. A.; Chatterjee, A. (Principal Investigator)
1997-01-01
PURPOSE: The purpose of this investigation is to delineate the risk factors in the development of neovascular glaucoma (NVG) after helium-ion irradiation of uveal melanoma patients and to propose treatment technique that may reduce this risk. METHODS AND MATERIALS: 347 uveal melanoma patients were treated with helium-ions using a single-port treatment technique. Using univariate and multivariate statistics, the NVG complication rate was analyzed according to the percent of anterior chamber in the radiation field, tumor size, tumor location, sex, age, dose, and other risk factors. Several University of California San Francisco-Lawrence Berkeley National Laboratory (LBNL) patients in each size category (medium, large, and extralarge) were retrospectively replanned using two ports instead of a single port. By using appropriate polar and azimuthal gaze angles or by treating patients with two ports, the maximum dose to the anterior segment of the eye can often be reduced. Although a larger volume of anterior chamber may receive a lower dose by using two ports than a single port treatment. We hypothesize that this could reduce the level of complications that result from the irradiation of the anterior chamber of the eye. Dose-volume histograms were calculated for the lens, and compared for the single and two-port techniques. RESULTS: NVG developed in 121 (35%) patients. The risk of NVG peaked between 1 and 2.5 years posttreatment. By univariate and multivariate analysis, the percent of lens in the field was strongly correlated with the development of NVG. Other contributing factors were tumor height, history of diabetes, and vitreous hemorrhage. Dose-volume histogram analysis of single-port vs. two-port techniques demonstrate that for some patients in the medium and large category tumor groups, a significant decrease in dose to the structures in the anterior segment of the eye could have been achieved with the use of two ports. CONCLUSION: The development of NVG after helium-ion irradiation is correlated to the amount of lens, anterior chamber in the treatment field, tumor height, proximity to the fovea, history of diabetes, and the development of vitreous hemorrhage. Although the influence of the higher LET deposition of helium-ions is unclear, this study suggests that by reducing the dose to the anterior segment of the eye may reduce the NVG complications. Based on this retrospective analysis of LBNL patients, we have implemented techniques to reduce the amount of the anterior segment receiving a high dose in our new series of patients treated with protons using the cyclotron at the UC Davis Crocker Nuclear Laboratory (CNL).
Patient dose analysis in total body irradiation through in vivo dosimetry.
Ganapathy, K; Kurup, P G G; Murali, V; Muthukumaran, M; Bhuvaneshwari, N; Velmurugan, J
2012-10-01
Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol.
Patient dose analysis in total body irradiation through in vivo dosimetry
Ganapathy, K.; Kurup, P. G. G.; Murali, V.; Muthukumaran, M.; Bhuvaneshwari, N.; Velmurugan, J.
2012-01-01
Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol. PMID:23293453
Commissioning of intensity modulated neutron radiotherapy (IMNRT).
Burmeister, Jay; Spink, Robyn; Liang, Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan; Snyder, Michael
2013-02-01
Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center∕Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate∕five head and neck) agreed to within -0.8 ± 1.4% and 5.0 ± 6.0% within and outside the target, respectively. Nearly all (22∕24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)∕prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max = 7.0%) and 1.4% (max = 4.1%) in water and virtual water, respectively. The mean gamma pass rate for all cases was 92.8% (min = 88.6%). These pass rates are lower than typically achieved with photon IMRT, warranting development of a planar dosimetry system designed specifically for IMNRT and∕or the improvement of neutron beam modeling in the penumbral region. The fractional photon dose component did not change significantly in a typical IMNRT plan versus a conventional fast neutron therapy plan, and IMNRT delivery is not expected to significantly alter the RBE. All other commissioning results were considered satisfactory for clinical implementation of IMNRT, including the external neutron dose validation, which agreed with the predicted neutron dose to within 1%. IMNRT has been successfully commissioned for clinical use. While current plan quality is inferior to photon IMRT, it is superior to conventional fast neutron therapy. Ion chamber validation results for IMNRT commissioning are also comparable to those typically achieved with photon IMRT. Gamma pass rates for planar dose distributions are lower than typically observed for photon IMRT but may be improved with improved planar dosimetry equipment and beam modeling techniques. In the meantime, patient-specific quality assurance measurements should rely more heavily on point dose measurements with tissue equivalent ionization chambers. No significant technical impediments are anticipated in the clinical implementation of IMNRT as described here.
ERIC Educational Resources Information Center
Cox, Daniel J.; Merkel, R. Lawrence; Penberthy, Jennifer Kim; Kovatchev, Boris; Hankin, Cheryl S.
2004-01-01
Objective: Adolescents with attention-deficit/hyperactivity disorder (ADHD) are at high risk for driving accidents. One dose of methylphenidate (MPH) improves simulator driving performances of ADHD-diagnosed adolescents at 1.5 hours post-dose. However, little is known about the effects of different MPH delivery profiles on driving performance…
Thomas, Hannah Mary; Kinahan, Paul E; Samuel, James Jebaseelan E; Bowen, Stephen R
2018-02-01
To quantitatively estimate the impact of different methods for both boost volume delineation and respiratory motion compensation of [18F] FDG PET/CT images on the fidelity of planned non-uniform 'dose painting' plans to the prescribed boost dose distribution. Six locally advanced non-small cell lung cancer (NSCLC) patients were retrospectively reviewed. To assess the impact of respiratory motion, time-averaged (3D AVG), respiratory phase-gated (4D GATED) and motion-encompassing (4D MIP) PET images were used. The boost volumes were defined using manual contour (MANUAL), fixed threshold (FIXED) and gradient search algorithm (GRADIENT). The dose painting prescription of 60 Gy base dose to the planning target volume and an integral dose of 14 Gy (total 74 Gy) was discretized into seven treatment planning substructures and linearly redistributed according to the relative SUV at every voxel in the boost volume. Fifty-four dose painting plan combinations were generated and conformity was evaluated using quality index VQ0.95-1.05, which represents the sum of planned dose voxels within 5% deviation from the prescribed dose. Trends in plan quality and magnitude of achievable dose escalation were recorded. Different segmentation techniques produced statistically significant variations in maximum planned dose (P < 0.02), as well as plan quality between segmentation methods for 4D GATED and 4D MIP PET images (P < 0.05). No statistically significant differences in plan quality and maximum dose were observed between motion-compensated PET-based plans (P > 0.75). Low variability in plan quality was observed for FIXED threshold plans, while MANUAL and GRADIENT plans achieved higher dose with lower plan quality indices. The dose painting plans were more sensitive to segmentation of boost volumes than PET motion compensation in this study sample. Careful consideration of boost target delineation and motion compensation strategies should guide the design of NSCLC dose painting trials. © 2017 The Royal Australian and New Zealand College of Radiologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCowan, P. M., E-mail: pmccowan@cancercare.mb.ca; McCurdy, B. M. C.; Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9
Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, lessmore » EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose (<20% prescription dose) and high dose regions (>80% prescription dose) was calculated for each frame averaged scenario for each plan. The authors defined their unacceptable loss of accuracy as no more than a ±1% mean dose difference in the high dose region. Optimal frame average numbers were then determined as a function of the Linac’s average gantry speed and the dose per fraction. Results: The authors found that 9 and 11 frame averages were suitable for all VMAT and SBRT-VMAT treatments, respectively. This resulted in no more than a 1% loss to any of the dose region’s mean percentage difference when compared to the single frame reconstruction. The optimized number was dependent on the treatment’s dose per fraction and was determined to be as high as 14 for 12 Gy/fraction (fx), 15 for 8 Gy/fx, 11 for 6 Gy/fx, and 9 for 2 Gy/fx. Conclusions: The authors have determined an optimal EPID frame averaging number for multiple VMAT-type treatments. These are given as a function of the dose per fraction and average gantry speed. These optimized values are now used in the authors’ clinical, 3D, in vivo patient dosimetry program. This provides a reduction in calculation time while maintaining the authors’ required level of accuracy in the dose reconstruction.« less
Onishi, Eiko; Murakami, Mamoru; Hashimoto, Keiji; Kaneko, Miho
2017-05-01
Single-shot spinal anesthesia is commonly used for cesarean delivery. Achieving adequate anesthesia throughout surgery needs to be balanced with associated complications. We investigated the optimal dose of intrathecal hyperbaric bupivacaine, co-administered with opioids, for anesthesia for cesarean delivery. This prospective, randomized, double-blinded, dose-ranging trial included parturients scheduled to undergo cesarean delivery under spinal anesthesia. An epidural catheter was first inserted at the T11-12 vertebral interspace, followed by spinal anesthesia at the L2-3 or L3-4 vertebral interspace. Subjects were randomly assigned to one of seven doses of intrathecal hyperbaric bupivacaine 0.5% (6, 7, 8, 9, 10, 11 or 12mg), with added 15μg fentanyl and 75μg morphine. Successful induction of anesthesia (success ind ) was defined as achievement of bilateral sensory loss to cold at the T6 dermatome or higher, within 10 minutes. Successful maintenance of anesthesia (success main ) was defined by no epidural supplementation within 60 minutes of intrathecal injection. The effective doses for 50% (ED 50 ) and 95% (ED 95 ) of patients were estimated using logistic regression analysis. The ED 50 and ED 95 for success main were 6.0mg (95% CI: 4.5 to 7.5mg) and 12.6mg (95% CI: 7.9 to 17.2mg), respectively. The incidence of respiratory discomfort and maternal satisfaction scores did not differ significantly between dose groups. Phenylephrine dose and nausea/vomiting incidence increased with increasing doses of bupivacaine. Under study conditions, our results suggest that 12.6mg of intrathecal bupivacaine, administered with fentanyl and morphine, is required to achieve adequate intraoperative analgesia without the need for epidural supplemention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of Volumetric-Modulated Arc Therapy for Constant and Variable Dose Rates
De Ornelas-Couto, Mariluz; Mihaylov, Ivaylo; Dogan, Nesrin
2017-01-01
Purpose: The aim of this study is to compare the effects of dose rate on volumetric-modulated arc therapy plans to determine optimal dose rates for prostate and head and neck (HN) cases. Materials and Methods: Ten prostate and ten HN cases were retrospectively studied. For each case, seven plans were generated: one variable dose rate (VDR) and six constant dose rate (CDR) (100–600 monitor units [MUs]/min) plans. Prescription doses were: 80 Gy to planning target volume (PTV) for the prostate cases, and 70, 60, and 54 Gy to PTV1, PTV2, and PTV3, respectively, for HN cases. Plans were normalized to 95% of the PTV and PTV1, respectively, with the prescription dose. Plans were assessed using Dose-Volume-Histogram metrics, homogeneity index, conformity index, MUs, and delivery time. Results: For the prostate cases, significant differences were found for rectum D35 between VDR and all CDR plans, except CDR500. Furthermore, VDR was significantly different than CDR100 and 200 for bladder D50. Delivery time for all CDR plans and MUs for CDR400–600 were significantly higher when compared to VDR. HN cases showed significant differences between VDR and CDR100, 500 and 600 for D2 to the cord and brainstem. Significant differences were found for delivery time and MUs for all CDR plans, except CDR100 for number of MUs. Conclusion: The most significant differences were observed in delivery time and number of MUs. All-in-all, the best CDR for prostate cases was found to be 300 MUs/min and 200 or 300 MUs/min for HN cases. However, VDR plans are still the choice in terms of MU efficiency and plan quality. PMID:29296033
Gauer, Tobias; Sothmann, Thilo; Blanck, Oliver; Petersen, Cordula; Werner, René
2018-06-01
Radiotherapy of extracranial metastases changed from normofractioned 3D CRT to extreme hypofractionated stereotactic treatment using VMAT beam techniques. Random interaction between tumour motion and dynamically changing beam parameters might result in underdosage of the CTV even for an appropriately dimensioned ITV (interplay effect). This study presents a clinical scenario of extreme hypofractionated stereotactic treatment and analyses the impact of interplay effects on CTV dose coverage. For a thoracic/abdominal phantom with an integrated high-resolution detector array placed on a 4D motion platform, dual-arc treatment plans with homogenous target coverage were created using a common VMAT technique and delivered in a single fraction. CTV underdosage through interplay effects was investigated by comparing dose measurements with and without tumour motion during plan delivery. Our study agrees with previous works that pointed out insignificant interplay effects on target coverage for very regular tumour motion patterns like simple sinusoidal motion. However, we identified and illustrated scenarios that are likely to result in a clinically relevant CTV underdosage. For tumour motion with abnormal variability, target coverage quantified by the CTV area receiving more than 98% of the prescribed dose decreased to 78% compared to 100% at static dose measurement. This study is further proof of considerable influence of interplay effects on VMAT dose delivery in stereotactic radiotherapy. For selected conditions of an exemplary scenario, interplay effects and related motion-induced target underdosage primarily occurred in tumour motion pattern with increased motion variability and VMAT plan delivery using complex MLC dose modulation.
A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.
Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K
2014-05-01
Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.
NASA Astrophysics Data System (ADS)
Yarmand, Hamed; Winey, Brian; Craft, David
2013-09-01
Stereotactic body radiation therapy (SBRT) is characterized by delivering a high amount of dose in a short period of time. In SBRT the dose is delivered using open fields (e.g., beam’s-eye-view) known as ‘apertures’. Mathematical methods can be used for optimizing treatment planning for delivery of sufficient dose to the cancerous cells while keeping the dose to surrounding organs at risk (OARs) minimal. Two important elements of a treatment plan are quality and delivery time. Quality of a plan is measured based on the target coverage and dose to OARs. Delivery time heavily depends on the number of beams used in the plan as the setup times for different beam directions constitute a large portion of the delivery time. Therefore the ideal plan, in which all potential beams can be used, will be associated with a long impractical delivery time. We use the dose to OARs in the ideal plan to find the plan with the minimum number of beams which is guaranteed to be epsilon-optimal (i.e., a predetermined maximum deviation from the ideal plan is guaranteed). Since the treatment plan optimization is inherently a multi-criteria-optimization problem, the planner can navigate the ideal dose distribution Pareto surface and select a plan of desired target coverage versus OARs sparing, and then use the proposed technique to reduce the number of beams while guaranteeing epsilon-optimality. We use mixed integer programming (MIP) for optimization. To reduce the computation time for the resultant MIP, we use two heuristics: a beam elimination scheme and a family of heuristic cuts, known as ‘neighbor cuts’, based on the concept of ‘adjacent beams’. We show the effectiveness of the proposed technique on two clinical cases, a liver and a lung case. Based on our technique we propose an algorithm for fast generation of epsilon-optimal plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, Y; Kadoya, N; Shimizu, E
2015-06-15
Purpose: A successful VMAT plan delivery includes precise modulations of dose rate, gantry rotational and multi-leaf collimator shapes. The purpose of this research is to construct routine QA protocol which focuses on VMAT delivery technique and to obtain a baseline including dose error, fluence distribution and mechanical accuracy during VMAT. Methods: The mock prostate, head and neck (HN) cases supplied from AAPM were used in this study. A VMAT plans were generated in Monaco TPS according to TG-119 protocol. Plans were created using 6 MV and 10 MV photon beams for each case. The phantom based measurement, fluence measurement andmore » log files analysis were performed. The dose measurement was performed using 0.6 cc ion chamber, which located at isocenter. The fluence distribution were acquired using the MapCHECK2 mounted in the MapPHAN. The trajectory log files recorded inner 20 leaf pairs and gantry angle positions at every 0.25 sec interval were exported to in-house software developed by MATLAB and determined those RMS values. Results: The dose difference is expressed as a ratio of the difference between measured and planned doses. The dose difference for 6 MV was 0.91%, for 10 MV was 0.67%. In turn, the fluence distribution using gamma criteria of 2%/2 mm with a 50% minimum dose threshold for 6 MV was 98.8%, for 10 MV was 97.5%, respectively. The RMS values of MLC for 6 MV and 10 MV were 0.32 mm and 0.37 mm, of gantry were 0.33 degree and 0.31 degree. Conclusion: In this study, QA protocol to assess VMAT delivery accuracy is constructed and results acquired in this study are used as a baseline of VMAT delivery performance verification.« less
Khulapko, S V; Liagushin, V I; Arkhangel'skiĭ, V V; Shurshakov, V A; Smith, M; Ing, H; Machrafi, R; Nikolaev, I V
2014-01-01
The paper presents the results of calculating the equivalent dose from and energy spectrum of neutrons in the right-hand crewquarters in module Zvezda of the ISS Russian segment. Dose measurements were made in the period between July, 2010 and November, 2012 (ISS Missions 24-34) by research equipment including the bubble dosimeter as part of experiment "Matryoshka-R". Neutron energy spectra in the crewquarters are in good agreement with what has been calculated for the ISS USOS and, earlier, for the MIR orbital station. The neutron dose rate has been found to amount to 196 +/- 23 microSv/d on Zvezda panel-443 (crewquarters) and 179 +/- 16 microSv/d on the "Shielding shutter" surface in the crewquarters.
Intensity modulated neutron radiotherapy optimization by photon proxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd
2012-08-15
Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodologymore » and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning optimization algorithm, potentially allowing IMNRT to achieve similar conformality in treatment as photon IMRT. The only remaining requirements for the delivery of very highly modulated neutron treatments are incremental improvements upon already implemented hardware systems that should be readily achievable.« less
Kundra, Sandeep; Singh, Rupinder M; Singh, Gaganpreet; Singh, Tania; Jarewal, Vikrant; Katyal, Sunil
2016-04-01
Intravenous and peri-articular magnesium has been shown to reduce perioperative analgesic consumption. With this background, subcutaneous infiltration was hypothesized to potentiate the subcutaneous infiltration of local anaesthetic agent. To comparatively evaluate the efficacy of magnesium sulphate as an adjunct to ropivacaine in local infiltration for postoperative pain following lower segment cesarean section. Sixty parturients undergoing cesarean delivery were randomized to either group A or B in a double blinded manner. After uterine and muscle closure but before skin closure, Group A was administered local subcutaneous wound infiltration of Injection (Inj) ropivacaine 0.75% 150 milligram (mg) or 20 millilitres(ml) whereas, group B patients were given a local subcutaneous wound infiltration of Inj magnesium sulphate 750 mg (1.5 ml of Inj 50% Magnesium sulphate) added to Inj ropivacaine 0.75% (18.5 ml) making a total volume of 20 ml. In postoperative period, Heart rate (HR), Mean Arterial Pressure (MAP), Visual Analogue Score (VAS), supplemental analgesic consumption and timing of each subsequent analgesic was noted for the initial 24 hours. There was no difference in the timings for the requirement of first Intravenous (IV) rescue analgesic among both the groups (p=0.279). However, the need for 2(nd) and 3(rd) doses of rescue analgesics was significantly later in group B and the difference was statistically significant with p-value of 0.034 and 0.031 respectively. The number of patients who were administered 2(nd), 3(rd) and 4(th) doses of rescue analgesics was significantly greater in group A as compared to group B. None of the patients in group B needed more than 4 doses of rescue analgesia while in group A, 5 patients were administered a rescue analgesic for 5(th) time. The cumulative analgesic requirement in the initial 24 hours was also greater in group A as compared to group B and the difference was statistically significant (p =0.01). The incidence of adverse effects was similar in both the groups. Subcutaneous infiltration of magnesium along with local anaesthetic prolongs the analgesic efficacy of local anaesthetic and is not associated with any significant adverse effects.
Turk, Marvee; Gupta, Vishal; Fischell, Tim A
2010-03-01
There have been reports of serious complications related to difficulty removing the deflated Taxus stent delivery balloon after stent deployment. The purpose of this study was to determine whether the Taxus SIBS polymer was "sticky" and associated with an increase in the force required to remove the stent delivery balloon after stent deployment, using a quantitative, ex-vivo model. Balloon-polymer-stent interactions during balloon withdrawal were measured with the Taxus Liberté, Liberté bare-metal stent (BMS; no polymer = control), the Cordis Cypher drug-eluting stent (DES; PEVA/PBMA polymer) and the BX Velocity (no polymer). We quantitatively measured the force required to remove the deflated stent delivery balloon from each of these stents in simulated vessels at 37 degrees C in a water bath. Balloon withdrawal forces were measured in straight (0 degree curve), mildly curved (20 degree curve) and moderately curved (40 degree curve) simulated vessel segments. The average peak force required to remove the deflated balloon catheter from the Taxus Liberté DES, the Liberté BMS, the Cypher DES, and the Bx Velocity BMS were similar in straight segments, but were much greater for the Taxus Liberté in the moderately curved segments (1.4 lbs vs. 0.11 lbs, 0.11 lbs and 0.12 lbs, respectively; p < 0.0001). The SIBS polymer of the Taxus Liberté DES appears to be "sticky" and is associated with high forces required to withdraw the deflated balloon from the deployed stent in curved segments. This withdrawal issue may help to explain the clinical complications that have been reported with this device.
Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ruijie; Wang, Junjie, E-mail: junjiewang47@yahoo.com; Xu, Feng
2013-10-01
To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDRmore » plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.« less
Kawakubo, Kazumichi; Kawakami, Hiroshi; Kuwatani, Masaki; Kudo, Taiki; Abe, Yoko; Kawahata, Shuhei; Kubo, Kimitoshi; Kubota, Yoshimasa; Sakamoto, Naoya
2015-02-01
Bilateral self-expandable metallic stent (SEMS) placement for the management of unresectable malignant hilar biliary obstruction (UMHBO) is technically challenging to perform using the existing metallic stents with thick delivery systems. The recently developed 6-Fr delivery systems could facilitate a single-step simultaneous side-by-side placement through the accessory channel of the duodenoscope. The aim of this study was to evaluate the feasibility of this procedure. Between May and September 2013, 13 consecutive patients with UMHBO underwent a single-step simultaneous side-by-side placement of SEMS with the 6-Fr delivery system. The technical success rate, stent patency, and rate of complications were evaluated from the prospectively collected database. Technical success was achieved in 11 (84.6%, 95% confidence interval [CI]: 57.8-95.8) patients. The median procedure time was 25 min. Early and late complications were observed in 23% (one segmental cholangitis and two liver abscesses) and 15% (one segmental cholangitis and one cholecystitis) patients, respectively. Median dysfunction free patency was 263 days (95% CI: 37-263). Five patients (38%) experienced stent occlusion that was successfully managed by endoscopic stent placement. A single-step simultaneous side-by-side placement of SEMS with a 6-Fr delivery system was feasible for the management of UMHBO. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schott, D; Chen, X; Klawikowski, S
2016-06-15
Purpose: Develop a method to segment regions of interest (ROIs) in tumor with statistically similar Hounsfield unit (HU) values and/or HU changes during chemoradiation therapy (CRT) delivery, to assess spatial tumor treatment response based on daily CTs during CRT delivery. Methods: Generate a three region map of ROIs with differential HUs, by sampling neighboring voxels around a selected voxel and comparing to the mean of the entire ROI using a t-test. The cumulative distribution function, P, is calculated from the t-test. The P value is assigned to be the value at the selected voxel, and this is repeated over allmore » voxels in the initial ROI. Three regions are defined as: (1-P) < 0.00001 (mid region), and 0.00001 < (1-P) (mean greater than baseline and mean lower than baseline). The test is then expanded to compare daily CT sets acquired during routine CT-guided RT delivery using a CT-on-rails. The first fraction CT is used as the baseline for comparison. We tested 15 pancreatic head tumor cases undergoing CRT, to identify the ROIs and changes corresponding to normal, fibrotic, and tumor tissue. The obtained ROIs were compared with MRI-ADC maps acquired pre- and post-CRT. Results: The ROIs in 13 out of 15 patients’ first fraction CTs and pre-CRT MRIs matched the general region and slices covered, as well as in 6 out of the 9 patients with post-CRT MRIs. The high HU region designated by the t-test was seen to correlate with the tumor region in MR, and these ROIs are positioned within the same region over the course of treatment. In patients with poorly delineated tumors in MR, the t-test was inconclusive. Conclusion: The proposed statistical segmentation technique shows the potential to identify regions in tumor with differential HUs and HU changes during CRT delivery for patients with pancreas head cancer.« less
NASA Astrophysics Data System (ADS)
Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.
2017-05-01
This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple method to perform loading effect correction for measurements of black carbon using multiple portable aethalometers.
New developments in EPID-based 3D dosimetry in The Netherlands Cancer Institute
NASA Astrophysics Data System (ADS)
Mijnheer, B.; Rozendaal, R.; Olaciregui-Ruiz, I.; González, P.; van Oers, R.; Mans, A.
2017-05-01
EPID-based offline 3D in vivo dosimetry is performed routinely in The Netherlands Cancer Institute for almost all RT treatments. The 3D dose distribution is reconstructed using the EPID primary dose in combination with a back-projection algorithm and compared with the planned dose distribution. Recently the method was adapted for real-time dose verification, performing 3D dose verification in less than 300 ms, which is faster than the current portal frame acquisition rate. In this way a possibility is created for halting the linac in case of large delivery errors. Furthermore, a new method for pre-treatment QA was developed in which the EPID primary dose behind a phantom or patient is predicted using the CT data of that phantom or patient in combination with in-air EPID measurements. This virtual EPID primary transit dose is then used to reconstruct the 3D dose distribution within the phantom or patient geometry using the same dose engine as applied offline. In order to assess the relevance of our clinically applied alert criteria, we investigated the sensitivity of our EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. This was done through simulation by modifying patient treatment plans, as well as experimentally by performing EPID measurements during the irradiation of an Alderson phantom, both after deliberately introducing errors during VMAT delivery. In this presentation these new developments will be elucidated.
Jarboe, G R; Gates, R H; McDaniel, C D
1990-01-01
Healthcare providers of multiple option plans may be confronted with special market segmentation problems. This study demonstrates how cluster analysis may be used for discovering distinct patterns of preference for multiple option plans. The availability of metric, as opposed to categorical or ordinal, data provides the ability to use sophisticated analysis techniques which may be superior to frequency distributions and cross-tabulations in revealing preference patterns.
Multifunctional Magnetic Nanowires for Biomagnetic Interfacing Concepts
2006-07-14
demonstration of both in vitro and in vivo gene delivery with nanowire carriers, magnetic detection of nanowires for biosensing applications, and extensions of...nanowire concentration. The end-to-end self-assembly of nanowires reported here is similar to the problem of step polymerization . The polymerization of...end-segment (A) with a biotin- terminated end-segment (B), L0 is the initial chain length, and p is the extent of reaction (or polymerization
Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection
NASA Astrophysics Data System (ADS)
Park, Eun-Joo; Dodds, Jeff; Barrie Smith, Nadine
2010-03-01
Prior studies have demonstrated the effectiveness of noninvasive transdermal insulin delivery using a cymbal transducer array. In this study the physiologic response to ultrasound mediated transdermal insulin delivery is compared to that of subcutaneously administered insulin. Anesthetized rats (350-550 g) were divided into four groups of four animals; one group representing ultrasound mediated insulin delivery and three representing subcutaneously administered insulin (0.15, 0.20, and 0.25 U/kg). The cymbal array was operated for 60 minutes at 20 kHz with 100 mW/cm2 spatial-peak temporal-peak intensity and a 20% duty cycle. The blood glucose level was determined at the beginning of the experiment and, following insulin administration, every 15 minutes for 90 minutes for both the ultrasound and injection groups. The change in blood glucose from baseline was compared between groups. When administered by subcutaneous injection at insulin doses of 0.15 and 0.20 U/kg, there was little change in the blood glucose levels over the 90 minute experiment. Following subcutaneous administration of insulin at a dose of 0.25 U/kg, blood glucose decreased by 190±96 mg/dl (mean±SD) at 90 minutes. The change in blood glucose following ultrasound mediated insulin delivery was -262±40 mg/dl at 90 minutes. As expected, the magnitude of change in blood glucose between the three injection groups was dependant on the dose of insulin administered. The change in blood glucose in the ultrasound group was greater than that observed in the injection groups suggesting that a higher effective dose of insulin was delivered.
TH-A-9A-10: Prostate SBRT Delivery with Flattening-Filter-Free Mode: Benefit and Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T; Yuan, L; Sheng, Y
Purpose: Flattening-filter-free (FFF) beam mode offered on TrueBeam™ linac enables delivering IMRT at 2400 MU/min dose rate. This study investigates the benefit and delivery accuracy of using high dose rate in the context of prostate SBRT. Methods: 8 prostate SBRT patients were retrospectively studied. In 5 cases treated with 600-MU/min dose rate, continuous prostate motion data acquired during radiation-beam-on was used to analyze motion range. In addition, the initial 1/3 of prostate motion trajectories during each radiation-beam-on was separated to simulate motion range if 2400-MU/min were used. To analyze delivery accuracy in FFF mode, MLC trajectory log files from anmore » additional 3 cases treated at 2400-MU/min were acquired. These log files record MLC expected and actual positions every 20ms, and therefore can be used to reveal delivery accuracy. Results: (1) Benefit. On average treatment at 600-MU/min takes 30s per beam; whereas 2400-MU/min requires only 11s. When shortening delivery time to ~1/3, the prostate motion range was significantly smaller (p<0.001). Largest motion reduction occurred in Sup-Inf direction, from [−3.3mm, 2.1mm] to [−1.7mm, 1.7mm], followed by reduction from [−2.1mm, 2.4mm] to [−1.0mm, 2.4mm] in Ant-Pos direction. No change observed in LR direction [−0.8mm, 0.6mm]. The combined motion amplitude (vector norm) confirms that average motion and ranges are significantly smaller when beam-on was limited to the 1st 1/3 of actual delivery time. (2) Accuracy. Trajectory log file analysis showed excellent delivery accuracy with at 2400 MU/min. Most leaf deviations during beam-on were within 0.07mm (99-percentile). Maximum leaf-opening deviations during each beam-on were all under 0.1mm for all leaves. Dose-rate was maintained at 2400-MU/min during beam-on without dipping. Conclusion: Delivery prostate SBRT with 2400 MU/min is both beneficial and accurate. High dose rates significantly reduced both treatment time and intra-beam prostate motion range. Excellent delivery accuracy was confirmed with very small leaf motion deviation.« less
Jia, Pengfei; Xu, Jun; Zhou, Xiaoxi; Chen, Jian; Tang, Lemin
2017-12-01
The aim of this study is to compare the planning quality and delivery efficiency between dynamic intensity modulated radiation therapy (d-IMRT) and dual arc volumetric modulated arc therapy (VMAT) systematically for nasopharyngeal carcinoma (NPC) patients with multi-prescribed dose levels, and to analyze the correlations between target volumes and plan qualities. A total of 20 patients of NPC with 4-5 prescribed dose levels to achieve simultaneous integrated boost (SIB) treated by sliding window d-IMRT in our department from 2014 to 2015 were re-planned with dual arc VMAT. All optimization objectives for each VMAT plan were as the same as the corresponding d-IMRT plan. The dose parameters for targets and organ at risk (OAR), the delivery time and monitor units (MU) in two sets of plans were compared respectively. The treatment accuracy was tested by three dimensional dose validation system. Finally, the correlations between the difference of planning quality and the volume of targets were discussed. The conform indexes (CIs) of planning target volumes (PTVs) in VMAT plans were obviously high than those in d-IMRT plans ( P < 0.05), but no significant correlations between the difference of CIs and the volume of targets were discovered ( P > 0.05). The target coverage and heterogeneity indexes (HIs) of PTV 1 and PGTV nd and PTV 3 in two sets of plans were consistent. The doses of PTV 2 decreased and HIs were worse in VMAT plans. VMAT could provide better spinal cord and brainstem sparing, but increase mean dose of parotids. The average number of MUs and delivery time for d-IMRT were 3.32 and 2.19 times of that for VMAT. The γ-index (3 mm, 3%) analysis for each plans was more than 97% in COMPASS ® measurement for quality assurance (QA). The results show that target dose coverages in d-IMRT and VMAT plans are similar for NPC with multi-prescribed dose levels. VMAT could improve the the CIs of targets, but reduce the dose to the target volume in neck except for PGTV nd . The biggest advantages of VMAT over d-IMRT are delivery efficiency and QA.
Moseley, Douglas; Kassam, Zahra; Kim, Sun Mo; Cho, Charles
2013-01-01
Recently, volumetric‐modulated arc therapy (VMAT) has demonstrated the ability to deliver radiation dose precisely and accurately with a shorter delivery time compared to conventional intensity‐modulated fixed‐field treatment (IMRT). We applied the hypothesis of VMAT technique for the treatment of thoracic esophageal carcinoma to determine superior or equivalent conformal dose coverage for a large thoracic esophageal planning target volume (PTV) with superior or equivalent sparing of organs‐at‐risk (OARs) doses, and reduce delivery time and monitor units (MUs), in comparison with conventional fixed‐field IMRT plans. We also analyzed and compared some other important metrics of treatment planning and treatment delivery for both IMRT and VMAT techniques. These metrics include: 1) the integral dose and the volume receiving intermediate dose levels between IMRT and VMATI plans; 2) the use of 4D CT to determine the internal motion margin; and 3) evaluating the dosimetry of every plan through patient‐specific QA. These factors may impact the overall treatment plan quality and outcomes from the individual planning technique used. In this study, we also examined the significance of using two arcs vs. a single‐arc VMAT technique for PTV coverage, OARs doses, monitor units and delivery time. Thirteen patients, stage T2‐T3 N0‐N1 (TNM AJCC 7th edn.), PTV volume median 395 cc (range 281–601 cc), median age 69 years (range 53 to 85), were treated from July 2010 to June 2011 with a four‐field (n=4) or five‐field (n=9) step‐and‐shoot IMRT technique using a 6 MV beam to a prescribed dose of 50 Gy in 20 to 25 F. These patients were retrospectively replanned using single arc (VMATI, 91 control points) and two arcs (VMATII, 182 control points). All treatment plans of the 13 study cases were evaluated using various dose‐volume metrics. These included PTV D99, PTV D95, PTV V9547.5Gy(95%), PTV mean dose, Dmax, PTV dose conformity (Van't Riet conformation number (CN)), mean lung dose, lung V20 and V5, liver V30, and Dmax to the spinal canal prv3mm. Also examined were the total plan monitor units (MUs) and the beam delivery time. Equivalent target coverage was observed with both VMAT single and two‐arc plans. The comparison of VMATI with fixed‐field IMRT demonstrated equivalent target coverage; statistically no significant difference were found in PTV D99 (p=0.47), PTV mean (p=0.12), PTV D95 and PTV V9547.5Gy (95%) (p=0.38). However, Dmax in VMATI plans was significantly lower compared to IMRT (p=0.02). The Van't Riet dose conformation number (CN) was also statistically in favor of VMATI plans (p=0.04). VMATI achieved lower lung V20 (p=0.05), whereas lung V5 (p=0.35) and mean lung dose (p=0.62) were not significantly different. The other OARs, including spinal canal, liver, heart, and kidneys showed no statistically significant differences between the two techniques. Treatment time delivery for VMATI plans was reduced by up to 55% (p=5.8E−10) and MUs reduced by up to 16% (p=0.001). Integral dose was not statistically different between the two planning techniques (p=0.99). There were no statistically significant differences found in dose distribution of the two VMAT techniques (VMATI vs. VMATII) Dose statistics for both VMAT techniques were: PTV D99 (p=0.76), PTV D95 (p=0.95), mean PTV dose (p=0.78), conformation number (CN) (p=0.26), and MUs (p=0.1). However, the treatment delivery time for VMATII increased significantly by two‐fold (p=3.0E−11) compared to VMATI. VMAT‐based treatment planning is safe and deliverable for patients with thoracic esophageal cancer with similar planning goals, when compared to standard IMRT. The key benefit for VMATI was the reduction in treatment delivery time and MUs, and improvement in dose conformality. In our study, we found no significant difference in VMATII over single‐arc VMATI for PTV coverage or OARs doses. However, we observed significant increase in delivery time for VMATII compared to VMATI. PACS number: 87.53.Kn, 87.55.‐x PMID:23652258
In vitro fungicidal effects of methylene blue at 625-nm.
Guffey, J Stephen; Payne, William; Roegge, Wilson
2017-11-01
The aim of the study is to confirm the effectiveness of photodynamic therapy (PDT) as a significant inhibitor of Trichophyton rubrum (T. rubrum) and to determine the most appropriate dose and rate of delivery. Trichophyton rubrum is the most common dermatophyte worldwide, responsible for the majority of superficial fungal infections. The traditional treatment of T. rubrum has known adverse effects. An alternative treatment is warranted. Photosensitised T. rubrum specimens were treated with 625-nm light at doses of 3, 12, 24, 40 and 60 J/cm 2 . Colony counts were performed and compared to untreated controls. Doses of 24, 40 and 60 J/cm 2 all produced kill rates of over 94%. A lower rate of delivery (7.80 mW/cm 2 ) was shown to be a greater inhibitor of T. rubrum than a higher rate of delivery (120 mW/cm 2 ). Photodynamic therapy with methylene blue (MB) at 625 nm using a low rate of delivery at doses of 24, 40 and 60 J/cm 2 is an effective inhibitor of T. rubrum. A rate of delivery of 7.80 mW/cm 2 is a significantly greater inhibitor of T. rubrum than a rate of 120 mW/cm 2 when applying 625-nm light in PDT using MB. © 2017 Blackwell Verlag GmbH.
Distribution of AAV-TK following intracranial convection-enhanced delivery into rats.
Cunningham, J; Oiwa, Y; Nagy, D; Podsakoff, G; Colosi, P; Bankiewicz, K S
2000-01-01
Adeno-associated virus (AAV)-based vectors are being tested in animal models as viable treatments for glioma and neurodegenerative disease and could potentially be employed to target a variety of central nervous system disorders. The relationship between dose of injected vector and its resulting distribution in brain tissue has not been previously reported nor has the most efficient method of delivery been determined. Here we report that convection-enhanced delivery (CED) of 2.5 x 10(8), 2.5 x 10(9), or 2.5 x 10(10) particles of AAV-thymidine kinase (AAV-TK) into rat brain revealed a clear dose response. In the high-dose group, a volume of 300 mm3 of brain tissue was partially transduced. Results showed that infusion pump and subcutaneous osmotic pumps were both capable of delivering vector via CED and that total particle number was the most important determining factor in obtaining efficient expression. Results further showed differences in histopathology between the delivery groups. While administration of vector using infusion pump had relatively benign effects, the use of osmotic pumps resulted in notable toxicity to the surrounding brain tissue. To determine tissue distribution of vector following intracranial delivery, PCR analysis was performed on tissues from rats that received high doses of AAV-TK. Three weeks following CED, vector could be detected in both hemispheres of the brain, spinal cord, spleen, and kidney.
SRT and SBRT: Current practices for QA dosimetry and 3D
NASA Astrophysics Data System (ADS)
Benedict, S. H.; Cai, J.; Libby, B.; Lovelock, M.; Schlesinger, D.; Sheng, K.; Yang, W.
2010-11-01
The major feature that separates stereotactic radiation therapy (cranial SRT) and stereotactic body radiation therapy (SBRT) from conventional radiation treatment is the delivery of large doses in a few fractions which results in a high biological effective dose (BED). In order to minimize the normal tissue toxicity, quality assurance of the conformation of high doses to the target and rapid fall off doses away from the target is critical. The practice of SRT and SBRT therefore requires a high-level of confidence in the accuracy of the entire treatment delivery process. In SRT and SBRT confidence in this accuracy is accomplished by the integration of modern imaging, simulation, treatment planning and delivery technologies into all phases of the treatment process; from treatment simulation and planning and continuing throughout beam delivery. In this report some of the findings of Task group 101 of the AAPM will be presented which outlines the best-practice guidelines for SBRT. The task group report includes a review of the literature to identify reported clinical findings and expected outcomes for this treatment modality. Information in this task group is provided for establishing an SBRT program, including protocols, equipment, resources, and QA procedures.
Pulmonary administration of aerosolised fentanyl: pharmacokinetic analysis of systemic delivery
Mather, Laurence E; Woodhouse, Annie; Ward, M Elizabeth; Farr, Stephen J; Rubsamen, Reid A; Eltherington, Lorne G
1998-01-01
Aims Pulmonary drug delivery is a promising noninvasive method of systemic administration. Our aim was to determine whether a novel breath-actuated, microprocessor-controlled metered dose oral inhaler (SmartMist™, Aradigm Corporation) could deliver fentanyl in a way suitable for control of severe pain. Methods Aersolised pulmonary fentanyl base 100–300 μg was administered to healthy volunteers using SmartMist™ and the resultant plasma concentration-time data were compared with those from the same doses administered by intravenous (i.v.) injection in the same subjects. Results Plasma concentrations from SmartMist™ were similar to those from i.v. injection. Time-averaged bioavailability based upon nominal doses averaged 100%, and was >50% within 5 min of delivery. Fentanyl systemic pharmacokinetics were similar to those previously reported with no trends to dose-dependence from either route. Side-effects (e.g. sedation, lightheadedness) were the same from both routes. Conclusions Fentanyl delivery using SmartMist™ can provide analgetically relevant plasma drug concentrations. This, combined with its ease of noninvasive use and transportability, suggests a strong potential for field and domicilliary use, and for patient controlled analgesia without the need for i.v. cannulae. PMID:9690947
[Effect of the ISS Russian segment configuration on the service module radiation environment].
Mitrikas, V G
2011-01-01
Mathematical modeling of variations in the Service module radiation environment as a function of ISS Russian segment configuration was carried out using models of the RS modules and a spherical humanoid phantom. ISS reconfiguration impacted significantly only the phantom brought into the transfer compartment (ExT). The Radiation Safety Service prohibition for cosmonauts to stay in this compartment during solar flare events remains valid. In all other instances, error of dose estimation is higher as compared to dose value estimation with consideration for ISS RS reconfiguration.
Alp, Murat; Cucinotta, Francis A.
2017-01-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (>100 μm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3He and 12C particles at energies corresponding to a distance of 1 cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch. PMID:28554507
NASA Astrophysics Data System (ADS)
Alp, Murat; Cucinotta, Francis A.
2017-05-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100 μm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3He and 12C particles at energies corresponding to a distance of 1 cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Xin; Kim, Yusung, E-mail: yusung-kim@uiowa.edu; Bayouth, John E.
2013-04-01
To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, andmore » dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.« less
Alp, Murat; Cucinotta, Francis A
2017-05-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100µm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3 He and 12 C particles at energies corresponding to a distance of 1cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch. Copyright © 2017. Published by Elsevier Ltd.
Tung, Matthew K; Cameron, James D; Casan, Joshua M; Crossett, Marcus; Troupis, John M; Meredith, Ian T; Seneviratne, Sujith K
2013-01-01
Minimization of radiation exposure remains an important subject that occurs in parallel with advances in scanner technology. We report our experience of evolving radiation dose and its determinants after the introduction of 320-multidetector row cardiac CT within a single tertiary cardiology referral service. Four cohorts of consecutive patients (total 525 scans), who underwent cardiac CT at defined time points as early as 2008, are described. These include a cohort just after scanner installation, after 2 upgrades of the operating system, and after introduction of an adaptive iterative image reconstruction algorithm. The proportions of nondiagnostic coronary artery segments and studies with nondiagnostic segments were compared between cohorts. Significant reductions were observed in median radiation doses in all cohorts compared with the initial cohort (P < .001). Median dose-length product fell from 944 mGy · cm (interquartile range [IQR], 567.3-1426.5 mGy · cm) to 156 mGy · cm (IQR, 99.2-265.0 mGy · cm). Although the proportion of prospectively triggered scans has increased, reductions in radiation dose have occurred independently of distribution of scan formats. In multiple regression that combined all groups, determinants of dose-length product were tube output, the number of cardiac cycles scanned, tube voltage, scan length, scan format, body mass index, phase width, and heart rate (adjusted R(2) = 0.85, P < .001). The proportion of nondiagnostic coronary artery segments was slightly increased in group 4 (2.9%; P < .01). While maintaining diagnostic quality in 320-multidetector row cardiac CT, the radiation dose has decreased substantially because of a combination of dose-reduction protocols and technical improvements. Continued minimization of radiation dose will increase the potential for cardiac CT to expand as a cardiac imaging modality. Copyright © 2013 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Segmentation of the whole breast from low-dose chest CT images
NASA Astrophysics Data System (ADS)
Liu, Shuang; Salvatore, Mary; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.
2015-03-01
The segmentation of whole breast serves as the first step towards automated breast lesion detection. It is also necessary for automatically assessing the breast density, which is considered to be an important risk factor for breast cancer. In this paper we present a fully automated algorithm to segment the whole breast in low-dose chest CT images (LDCT), which has been recommended as an annual lung cancer screening test. The automated whole breast segmentation and potential breast density readings as well as lesion detection in LDCT will provide useful information for women who have received LDCT screening, especially the ones who have not undergone mammographic screening, by providing them additional risk indicators for breast cancer with no additional radiation exposure. The two main challenges to be addressed are significant range of variations in terms of the shape and location of the breast in LDCT and the separation of pectoral muscles from the glandular tissues. The presented algorithm achieves robust whole breast segmentation using an anatomy directed rule-based method. The evaluation is performed on 20 LDCT scans by comparing the segmentation with ground truth manually annotated by a radiologist on one axial slice and two sagittal slices for each scan. The resulting average Dice coefficient is 0.880 with a standard deviation of 0.058, demonstrating that the automated segmentation algorithm achieves results consistent with manual annotations of a radiologist.
SU-E-T-541: Bolus Effect of Thermoplastic Masks in IMRT and VMAT Head and Neck Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, H; Nedzi, L; Chen, S
2014-06-01
Purpose: To quantitatively evaluate the bolus effect of thermoplalstic mask on patient skin dose during multi-field IMRT and VMAT treatment. Methods: The clinically approved target contours for five head and neck patients were deformably registered to an anthropomorphic Rando phantom. Two plans: Multifield IMRT plan with 7-9 beams and VMAT plan with 2-4 arcs were created for each patient following same dose constraints. 3mm skin was excluded from PTVs but not constrained during optimization. The prescription dose was 200-220 cGy/fraction. A thermoplastic head and shoulder mask was customized for the Rando phantom. Each plan was delivered to the phantom twicemore » with and without mask. During each delivery, two rectangular strips of EBT3 films (1cm x 6.8cm) were placed across the anterior upper and lower neck near PTVs to measure the surface dose. For consistency films were positioned at same locations for same patient. A total of 8 film strips were obtained for each patient. Film dose was calibrated in the range of 0-400cGy on the day of plan delivery. For dose comparison 3 regions of interests (ROIs) of 1×1 cm{sup 2} were selected at left, right and middle part of each film, resulting in 6 point doses at each plan delivery. Results: The films without mask show relatively uniform dose distribution while those with mask clearly show mesh pattern of mask, usually indicating an increase in skin dose. On average the increase in skin dose over all ROIs with mask was 31.9%(±14.8%) with a range of 11.4%- 58.4%. There is no statistically significant difference (p=0.44) between skin dose increase in VMAT (30.8%±15.3%) and IMRT delivery (33.0%±14.9%). Conclusion: Thermoplastic immobilization masks increase surface dose for HN patient by around 30%. The magnitude is comparable between multi-field IMRT and VMAT. Radiochromic EBT3 film serves as an effective tool to quantify bolus effect.« less
Systemic Delivery of Atropine Sulfate by the MicroDose Dry-Powder Inhaler
Venkataramanan, R.; Hoffman, R.M.; George, M.P.; Petrov, A.; Richards, T.; Zhang, S.; Choi, J.; Gao, Y.Y.; Oakum, C.D.; Cook, R.O.; Donahoe, M.
2013-01-01
Abstract Background Inhaled atropine is being developed as a systemic and pulmonary treatment for the extended recovery period after chemical weapons exposure. We performed a pharmacokinetics study comparing inhaled atropine delivery using the MicroDose Therapeutx Dry Powder Inhaler (DPIA) with intramuscular (IM) atropine delivery via auto-injector (AUTO). Methods The MicroDose DPIA utilizes a novel piezoelectric system to aerosolize drug and excipient from a foil dosing blister. Subjects inhaled a 1.95-mg atropine sulfate dose from the dry powder inhaler on one study day [5 doses×0.4 mg per dose (nominal) delivered over 12 min] and received a 2-mg IM injection via the AtroPen® auto-injector on another. Pharmacokinetics, pharmacodynamic response, and safety were studied for 12 hr. Results A total of 17 subjects were enrolled. All subjects completed IM dosing. One subject did not perform inhaled delivery due to a skin reaction from the IM dose. Pharmacokinetic results were as follows: area under the curve concentration, DPIA=20.1±5.8, AUTO=23.7±4.9 ng hr/mL (means±SD); maximum concentration reached, DPIA=7.7±3.5, AUTO=11.0±3.8 ng/mL; time to reach maximum concentration, DPIA=0.25±0.47, AUTO=0.19±0.23 hr. Pharmacodynamic results were as follows: maximum increase in heart rate, DPIA=18±12, AUTO=23±13 beats/min; average change in 1-sec forced expiratory volume at 30 min, DPIA=0.16±0.22 L, AUTO=0.11±0.29 L. The relative bioavailability for DPIA was 87% (based on output dose). Two subjects demonstrated allergic responses: one to the first dose (AUTO), which was mild and transient, and one to the second dose (DPIA), which was moderate in severity, required treatment with oral and intravenous (IV) diphenhydramine and IV steroids, and lasted more than 7 days. Conclusions Dry powder inhalation is a highly bioavailable route for attaining rapid and consistent systemic concentrations of atropine. PMID:22691110
Systemic delivery of atropine sulfate by the MicroDose Dry-Powder Inhaler.
Corcoran, T E; Venkataramanan, R; Hoffman, R M; George, M P; Petrov, A; Richards, T; Zhang, S; Choi, J; Gao, Y Y; Oakum, C D; Cook, R O; Donahoe, M
2013-02-01
Inhaled atropine is being developed as a systemic and pulmonary treatment for the extended recovery period after chemical weapons exposure. We performed a pharmacokinetics study comparing inhaled atropine delivery using the MicroDose Therapeutx Dry Powder Inhaler (DPIA) with intramuscular (IM) atropine delivery via auto-injector (AUTO). The MicroDose DPIA utilizes a novel piezoelectric system to aerosolize drug and excipient from a foil dosing blister. Subjects inhaled a 1.95-mg atropine sulfate dose from the dry powder inhaler on one study day [5 doses × 0.4 mg per dose (nominal) delivered over 12 min] and received a 2-mg IM injection via the AtroPen® auto-injector on another. Pharmacokinetics, pharmacodynamic response, and safety were studied for 12 hr. A total of 17 subjects were enrolled. All subjects completed IM dosing. One subject did not perform inhaled delivery due to a skin reaction from the IM dose. Pharmacokinetic results were as follows: area under the curve concentration, DPIA=20.1±5.8, AUTO=23.7±4.9 ng hr/mL (means±SD); maximum concentration reached, DPIA=7.7±3.5, AUTO=11.0±3.8 ng/mL; time to reach maximum concentration, DPIA=0.25±0.47, AUTO=0.19±0.23 hr. Pharmacodynamic results were as follows: maximum increase in heart rate, DPIA=18±12, AUTO=23±13 beats/min; average change in 1-sec forced expiratory volume at 30 min, DPIA=0.16±0.22 L, AUTO=0.11±0.29 L. The relative bioavailability for DPIA was 87% (based on output dose). Two subjects demonstrated allergic responses: one to the first dose (AUTO), which was mild and transient, and one to the second dose (DPIA), which was moderate in severity, required treatment with oral and intravenous (IV) diphenhydramine and IV steroids, and lasted more than 7 days. Dry powder inhalation is a highly bioavailable route for attaining rapid and consistent systemic concentrations of atropine.
NASA Astrophysics Data System (ADS)
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B.
2009-08-01
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B
2009-08-21
Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, H; Jing, J; Xie, C
Purpose: To find effective setting methods to mitigate the irradiation injure in synchrotron radiation microangiography(SRA) by Monte Carlo simulation. Methods: A mouse 1-D head model and a segmented voxel mouse head phantom were simulated by EGSnrc/Dosxyznrc code to investigate the dose enhancement effect of the iodine contrast agent irradiated by a monochromatic synchrotron radiation(SR) source. The influence of, like iodine concentration (IC), vessel width and depth, with and without skull layer protection and the various incident X ray energies, were simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. Results:more » The dose enhancement ratio depends little on the irradiation depth, but strongly on the IC, which is linearly increases with IC. The skull layer protection cannot be ignored in SRA, the 700µm thick skull could decrease 10% of the dose. The incident X-ray energy can significantly affact the dose. E.g. compared to the dose of 33.2keV for 50mgI/ml, the 32.7keV dose decreases 38%, whereas the dose of 33.7 keV increases 69.2%, and the variation will strengthen more with enhanced IC. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depends little on the iodine voxel volume ratio, but strongly on IC. Conclusion: To decrease dose damage in SRA, the high-Z contrast agent should be used as little as possible, and try to avoid radiating locally the injected position immediately after the contrast agent injection. The fragile vessel containing iodine should avoid closely irradiating. Avoiding irradiating through the no or thin skull region, or appending thin equivalent material from outside to protect is also a better method. As long as SRA image quality is ensured, using incident X-ray energy as low as possible.« less
Le Souëf, Peter N
2002-09-16
What we know: In preschool children, small-volume spacers perform better than large-volume spacers. Detergent is the best antistatic agent for spacers, increasing lung delivery two- to threefold, but it must not be rinsed off. A mouthpiece should be used in children aged 2-3 years or older, as lung delivery is two- to threefold higher for oral inhalation than nasal inhalation (ie, by mask). Inhaled drug doses do not generally need to be reduced in infants and young children owing to inefficiencies of delivery in younger patients. Nebulisers are "dinosaurs" and not needed for most children with asthma. What we need to know: What is the best inhalation technique for spacers? How long should children breathe, how many breaths should they take, and at what age should they breath-hold? How should children, parents and doctors be instructed to achieve optimal levels of electrostatic charge reduction for spacers? How much should inhaled steroid dose be reduced when a spacer is used optimally? What dosing instructions should be given for beta(2)-agonists delivered by spacer?
Stevens, Allen D.; Hernandez, Caleb; Jones, Seth; Moreira, Maria E.; Blumen, Jason R.; Hopkins, Emily; Sande, Margaret; Bakes, Katherine; Haukoos, Jason S.
2016-01-01
Background Medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients where dosing often requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national healthcare priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared to conventional medication administration, in simulated prehospital pediatric resuscitation scenarios. Methods We performed a prospective, block-randomized, cross-over study, where 10 full-time paramedics each managed two simulated pediatric arrests in situ using either prefilled, color-coded-syringes (intervention) or their own medication kits stocked with conventional ampoules (control). Each paramedic was paired with two emergency medical technicians to provide ventilations and compressions as directed. The ambulance patient compartment and the intravenous medication port were video recorded. Data were extracted from video review by blinded, independent reviewers. Results Median time to delivery of all doses for the intervention and control groups was 34 (95% CI: 28–39) seconds and 42 (95% CI: 36–51) seconds, respectively (difference = 9 [95% CI: 4–14] seconds). Using the conventional method, 62 doses were administered with 24 (39%) critical dosing errors; using the prefilled, color-coded syringe method, 59 doses were administered with 0 (0%) critical dosing errors (difference = 39%, 95% CI: 13–61%). Conclusions A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by paramedics during simulated prehospital pediatric resuscitations. PMID:26247145
Poster - Thurs Eve-43: Verification of dose calculation with tissue inhomogeneity using MapCHECK.
Korol, R; Chen, J; Mosalaei, H; Karnas, S
2008-07-01
MapCHECK (Sun Nuclear, Melbourne, FL) with 445 diode detectors has been used widely for routine IMRT quality assurance (QA) 1 . However, routine IMRT QA has not included the verification of inhomogeneity effects. The objective of this study is to use MapCHECK and a phantom to verify dose calculation and IMRT delivery with tissue inhomogeneity. A phantom with tissue inhomogeneities was placed on top of MapCHECK to measure the planar dose for an anterior beam with photon energy 6 MV or 18 MV. The phantom was composed of a 3.5 cm thick block of lung equivalent material and solid water arranged side by side with a 0.5 cm slab of solid water on the top of the phantom. The phantom setup including MapCHECK was CT scanned and imported into Pinnacle 8.0d for dose calculation. Absolute dose distributions were compared with gamma criteria 3% for dose difference and 3 mm for distance-to-agreement. The results are in good agreement between the measured and calculated planar dose with 88% pass rate based on the gamma analysis. The major dose difference was at the lung-water interface. Further investigation will be performed on a custom designed inhomogeneity phantom with inserts of varying densities and effective depth to create various dose gradients at the interface for dose calculation and delivery verification. In conclusion, a phantom with tissue inhomogeneities can be used with MapCHECK for verification of dose calculation and delivery with tissue inhomogeneity. © 2008 American Association of Physicists in Medicine.
Stevens, Allen D; Hernandez, Caleb; Jones, Seth; Moreira, Maria E; Blumen, Jason R; Hopkins, Emily; Sande, Margaret; Bakes, Katherine; Haukoos, Jason S
2015-11-01
Medication dosing errors remain commonplace and may result in potentially life-threatening outcomes, particularly for pediatric patients where dosing often requires weight-based calculations. Novel medication delivery systems that may reduce dosing errors resonate with national healthcare priorities. Our goal was to evaluate novel, prefilled medication syringes labeled with color-coded volumes corresponding to the weight-based dosing of the Broselow Tape, compared to conventional medication administration, in simulated prehospital pediatric resuscitation scenarios. We performed a prospective, block-randomized, cross-over study, where 10 full-time paramedics each managed two simulated pediatric arrests in situ using either prefilled, color-coded syringes (intervention) or their own medication kits stocked with conventional ampoules (control). Each paramedic was paired with two emergency medical technicians to provide ventilations and compressions as directed. The ambulance patient compartment and the intravenous medication port were video recorded. Data were extracted from video review by blinded, independent reviewers. Median time to delivery of all doses for the intervention and control groups was 34 (95% CI: 28-39) seconds and 42 (95% CI: 36-51) seconds, respectively (difference=9 [95% CI: 4-14] seconds). Using the conventional method, 62 doses were administered with 24 (39%) critical dosing errors; using the prefilled, color-coded syringe method, 59 doses were administered with 0 (0%) critical dosing errors (difference=39%, 95% CI: 13-61%). A novel color-coded, prefilled syringe decreased time to medication administration and significantly reduced critical dosing errors by paramedics during simulated prehospital pediatric resuscitations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A microfluidic needle for sampling and delivery of chemical signals by segmented flows
NASA Astrophysics Data System (ADS)
Feng, Shilun; Liu, Guozhen; Jiang, Lianmei; Zhu, Yonggang; Goldys, Ewa M.; Inglis, David W.
2017-10-01
We have developed a microfluidic needle-like device that can extract and deliver nanoliter samples. The device consists of a T-junction to form segmented flows, parallel channels to and from the needle tip, and seven hydrophilic capillaries at the tip that form a phase-extraction region. The main microchannel is hydrophobic and carries segmented flows of water-in-oil. The hydrophilic capillaries transport the aqueous phase with a nearly zero pressure gradient but require a pressure gradient of 19 kPa for mineral oil to invade and flow through. Using this device, we demonstrate the delivery of nanoliter droplets and demonstrate sampling through the formation of droplets at the tip of our device. During sampling, we recorded the fluorescence intensities of the droplets formed at the tip while varying the concentration of dye outside the tip. We measured a chemical signal response time of approximately 3 s. The linear relationship between the recorded fluorescence intensity of samples and the external dye concentration (10-40 μg/ml) indicates that this device is capable of performing quantitative, real-time measurements of rapidly varying chemical signals.
Segmental analysis of renal glucose transport in young female rats.
McSherry, N R; Wen, S F
1984-01-01
Free-flow micropuncture studies were performed on twenty-seven young female Sprague-Dawley rats before and after 10% extracellular volume expansion to evaluate glucose reabsorption at the accessible sites of both surface and papillary nephrons. In the distal nephron segments no significant glucose reabsorption was observed for the distal tubule and papillary collecting duct but significant difference in fractional glucose delivery was demonstrated between the bend of the Henle's loop and early distal tubule and between the late distal tubule and the base of the collecting duct. Comparison of the fractional glucose delivery within the same nephron group for both superficial and juxtamedullary nephrons indicated that glucose reabsorption occurred at some sites beyond the bend of the Henle's loop. Volume expansion inhibited glucose reabsorption in the proximal convoluted tubule, enhanced it in the segment between the late proximal and early distal tubules, but had no effect on glucose transport at further distal sites. It is concluded that, in addition to the proximal tubule, the ascending loop of Henle or cortical collecting tubule may play a role in maintaining glucose-free urine under physiological conditions. PMID:6394745
First-in-human testing of a wirelessly controlled drug delivery microchip.
Farra, Robert; Sheppard, Norman F; McCabe, Laura; Neer, Robert M; Anderson, James M; Santini, John T; Cima, Michael J; Langer, Robert
2012-02-22
The first clinical trial of an implantable microchip-based drug delivery device is discussed. Human parathyroid hormone fragment (1-34) [hPTH(1-34)] was delivered from the device in vivo. hPTH(1-34) is the only approved anabolic osteoporosis treatment, but requires daily injections, making patient compliance an obstacle to effective treatment. Furthermore, a net increase in bone mineral density requires intermittent or pulsatile hPTH(1-34) delivery, a challenge for implantable drug delivery products. The microchip-based devices, containing discrete doses of lyophilized hPTH(1-34), were implanted in eight osteoporotic postmenopausal women for 4 months and wirelessly programmed to release doses from the device once daily for up to 20 days. A computer-based programmer, operating in the Medical Implant Communications Service band, established a bidirectional wireless communication link with the implant to program the dosing schedule and receive implant status confirming proper operation. Each woman subsequently received hPTH(1-34) injections in escalating doses. The pharmacokinetics, safety, tolerability, and bioequivalence of hPTH(1-34) were assessed. Device dosing produced similar pharmacokinetics to multiple injections and had lower coefficients of variation. Bone marker evaluation indicated that daily release from the device increased bone formation. There were no toxic or adverse events due to the device or drug, and patients stated that the implant did not affect quality of life.
3D treatment planning systems.
Saw, Cheng B; Li, Sicong
2018-01-01
Three-dimensional (3D) treatment planning systems have evolved and become crucial components of modern radiation therapy. The systems are computer-aided designing or planning softwares that speed up the treatment planning processes to arrive at the best dose plans for the patients undergoing radiation therapy. Furthermore, the systems provide new technology to solve problems that would not have been considered without the use of computers such as conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). The 3D treatment planning systems vary amongst the vendors and also the dose delivery systems they are designed to support. As such these systems have different planning tools to generate the treatment plans and convert the treatment plans into executable instructions that can be implemented by the dose delivery systems. The rapid advancements in computer technology and accelerators have facilitated constant upgrades and the introduction of different and unique dose delivery systems than the traditional C-arm type medical linear accelerators. The focus of this special issue is to gather relevant 3D treatment planning systems for the radiation oncology community to keep abreast of technology advancement by assess the planning tools available as well as those unique "tricks or tips" used to support the different dose delivery systems. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Automatic Organ Localization for Adaptive Radiation Therapy for Prostate Cancer
2005-05-01
and provides a framework for task 3. Key Research Accomplishments "* Comparison of manual segmentation with our automatic method, using several...well as manual segmentations by a different rater. "* Computation of the actual cumulative dose delivered to both the cancerous and critical healthy...adaptive treatment of prostate or other cancer. As a result, all such work must be done manually . However, manual segmentation of the tumor and neighboring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrinivich, Thomas; Hoover, Douglas; Surry, Kathlee
Ultrasound-guided high-dose-rate prostate brachytherapy (HDR-BT) needle segmentation is performed clinically using live-2D sagittal images. Organ segmentation is then performed using axial images, introducing a source of geometric uncertainty. Sagittally-reconstructed 3D (SR3D) ultrasound enables both needle and organ segmentation, but suffers from shadow artifacts. We present a needle segmentation technique augmenting SR3D with live-2D sagittal images using mechanical probe tracking to mitigate image artifacts and compare it to the clinical standard. Seven prostate cancer patients underwent TRUS-guided HDR-BT during which the clinical and proposed segmentation techniques were completed in parallel using dual ultrasound video outputs. Calibrated needle end-length measurements were usedmore » to calculate insertion depth errors (IDEs), and the dosimetric impact of IDEs was evaluated by perturbing clinical treatment plan source positions. The proposed technique provided smaller IDEs than the clinical approach, with mean±SD of −0.3±2.2 mm and −0.5±3.7mm respectively. The proposed and clinical techniques resulted in 84% and 43% of needles with IDEs within ±3mm, and IDE ranges across all needles of [−7.7mm, 5.9mm] and [−9.3mm, 7.7mm] respectively. The proposed and clinical IDEs lead to mean±SD changes in the volume of the prostate receiving the prescription dose of −0.6±0.9% and −2.0±5.3% respectively. The proposed technique provides improved HDR-BT needle segmentation accuracy over the clinical technique leading to decreased dosimetric uncertainty by eliminating the axial-to-sagittal registration, and mitigates the effect of shadow artifacts by incorporating mechanically registered live-2D sagittal images.« less
NASA Astrophysics Data System (ADS)
Abate, A.; Pressello, M. C.; Benassi, M.; Strigari, L.
2009-12-01
The aim of this study was to evaluate the effectiveness and efficiency in inverse IMRT planning of one-step optimization with the step-and-shoot (SS) technique as compared to traditional two-step optimization using the sliding windows (SW) technique. The Pinnacle IMRT TPS allows both one-step and two-step approaches. The same beam setup for five head-and-neck tumor patients and dose-volume constraints were applied for all optimization methods. Two-step plans were produced converting the ideal fluence with or without a smoothing filter into the SW sequence. One-step plans, based on direct machine parameter optimization (DMPO), had the maximum number of segments per beam set at 8, 10, 12, producing a directly deliverable sequence. Moreover, the plans were generated whether a split-beam was used or not. Total monitor units (MUs), overall treatment time, cost function and dose-volume histograms (DVHs) were estimated for each plan. PTV conformality and homogeneity indexes and normal tissue complication probability (NTCP) that are the basis for improving therapeutic gain, as well as non-tumor integral dose (NTID), were evaluated. A two-sided t-test was used to compare quantitative variables. All plans showed similar target coverage. Compared to two-step SW optimization, the DMPO-SS plans resulted in lower MUs (20%), NTID (4%) as well as NTCP values. Differences of about 15-20% in the treatment delivery time were registered. DMPO generates less complex plans with identical PTV coverage, providing lower NTCP and NTID, which is expected to reduce the risk of secondary cancer. It is an effective and efficient method and, if available, it should be favored over the two-step IMRT planning.
Cheng, Chee-Wai; Das, Indra J; Ndlovu, Alois M
2002-09-01
The effect of the initial pulse forming network (IPFN) on the suppression of dark current is investigated for a Siemens Primus accelerator. The dark current produces a spurious radiation, which is referred to as dark current radiation (DCR) in this study. In the step-and-shoot delivery of an intensity modulated radiation therapy (IMRT), the DCR could be of some concern for whole body dose along with leakage radiation through collimator jaws or multileaf collimator. By adjusting the IPFN-to-PFN ratio to >0.8, the DCR can be measured with an ion chamber during the "PAUSE" state of the accelerator in the IMRT mode. For 15 MV x rays, the magnitude of the DCR is approximately equal to 0.7% of the dose at dmax for a 10 x 10 cm2 field. The DCR has a similar central axis depth dose as a 15 MV beam as determined from a water phantom scan. When the IPFN-to-PFN ratio is lowered to <0.8, no DCR is detected. For low energy x rays (6 MV), no DCR is detected regardless of the IPFN-to-PFN ratio. Although the DCR is studied only for the Siemens Primus model accelerator, the same precaution applies to other models of modern accelerators from other vendors. Due to the large number of field segments used in a step-and-shoot IMRT, it is imperative therefore, that dark current evaluation be part of machine commissioning and annual calibration for high-energy photon beams. Should DCR be detected, the medical physicist should work with a service engineer to rectify the problem. In view of DCR and whole body dose, low-energy photon beams are advisable for IMRT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinders, Suzanne M.; Delft University of Technology, Delft; Breedveld, Sebastiaan
Purpose: To investigate how dose distributions for liver stereotactic body radiation therapy (SBRT) can be improved by using automated, daily plan reoptimization to account for anatomy deformations, compared with setup corrections only. Methods and Materials: For 12 tumors, 3 strategies for dose delivery were simulated. In the first strategy, computed tomography scans made before each treatment fraction were used only for patient repositioning before dose delivery for correction of detected tumor setup errors. In adaptive second and third strategies, in addition to the isocenter shift, intensity modulated radiation therapy beam profiles were reoptimized or both intensity profiles and beam orientationsmore » were reoptimized, respectively. All optimizations were performed with a recently published algorithm for automated, multicriteria optimization of both beam profiles and beam angles. Results: In 6 of 12 cases, violations of organs at risk (ie, heart, stomach, kidney) constraints of 1 to 6 Gy in single fractions occurred in cases of tumor repositioning only. By using the adaptive strategies, these could be avoided (<1 Gy). For 1 case, this needed adaptation by slightly underdosing the planning target volume. For 2 cases with restricted tumor dose in the planning phase to avoid organ-at-risk constraint violations, fraction doses could be increased by 1 and 2 Gy because of more favorable anatomy. Daily reoptimization of both beam profiles and beam angles (third strategy) performed slightly better than reoptimization of profiles only, but the latter required only a few minutes of computation time, whereas full reoptimization took several hours. Conclusions: This simulation study demonstrated that replanning based on daily acquired computed tomography scans can improve liver stereotactic body radiation therapy dose delivery.« less
Seeras, R C; Olatunbosun, O A; Pierson, R A; Turnell, R W
1995-01-01
To compare two dosage regimens for the administration of vaginal prostaglandin gel in triacetin base for induction of labor. Seventy subjects planned for elective induction of labor at term were randomized to treatment with PGE2 vaginal gel every 6 or 12 hours. The 6-hourly group received an initial dose of 1 mg, followed by 2 mg at 6 hour intervals for a maximum of two additional doses if not in active labor. The 12-hourly group had an initial dose of 2 mg followed by two additional doses at 12 hour intervals if not in active labor. Successful induction rate was higher in the 12-hourly as compared to 6-hourly gel regimen (100% vs. 91%, P > 0.05). Twelve hours after the initial dose, delivery occurred in 34% delivery had occurred in 57% and 37% respectively (P < 0.01). We found no difference in the induction-active labor interval (P > 0.05), and the induction-delivery interval (P > 0.05) between the two groups. Active labor followed a single dose of gel in 66% of the 12-hourly group compared to 40% of the 6-hourly group (P < 0.01). Syntocinon augmentation was needed in 6% of subjects in the 12-hourly group as compared to 26% in the 6-hourly group (P < 0.01). The cesarean section rate was similar in both groups. Uterine hyperstimulation occurred less frequently in the 12-hourly group (P < 0.05). The perinatal outcome was similar in both groups. The 12-hourly regimen was more effective than the 6-hourly regimen in initiating labor. The majority of the subjects in the 12 hourly group achieved labor following a single dose of gel. Induction delivery interval, however, was similar in both groups.
4D planning over the full course of fractionation: assessment of the benefit of tumor trailing
NASA Astrophysics Data System (ADS)
McQuaid, D.; Bortfeld, T.
2011-11-01
Tumor trailing techniques have been proposed as a method of reducing the problem of intrafraction motion in radiotherapy. However the dosimetric assessment of trailing strategies is complicated by the requirement to study dose deposition over a full fraction delivery. Common 4D planning strategies allowing assessment of dosimetric motion effects study a single cycle acquired with 4DCT. In this paper, a methodology to assess dose deposited over an entire treatment course is advanced and used to assess the potential benefit of tumor trailing strategies for lung cancer patients. Two digital phantoms mimicking patient anatomy were each programmed to follow the tumor respiratory trajectory observed from 33 lung cancer patients. The two phantoms were designed to represent the cases of a small (volume = 13.6 cm3) and large (volume = 181.7 cm3) lung lesion. Motion margins required to obtain CTV coverage by 95% of the prescription dose to 90% of the available cases were computed for a standard treatment strategy and a trailing treatment strategy. The trailing strategy facilitated a margin reduction of over 30% relative to the conventional delivery. When the dose was computed across the entire delivery for the 33 cases, the trailing strategy was found to significantly reduce the underdosage to the outlier cases and the reduced trailing margin facilitated a 15% (small lesion) and 4% (large lesion) reduction for the mean lung dose and 7% (small lesion) and 10% (large lesion) for the mean esophagus dose. Finally, for comparison an ideal continuous tracking strategy was assessed and found to further reduce the mean lung and esophagus dose. However, this improvement comes at the price of increased delivery complexity and increased reliance on tumor localization accuracy.
Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H.M.; Rogan, Peter K.
2017-01-01
Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs arising primarily from sister chromatid separation, chromosome fragmentation, and cellular debris. This reduced FPs by an average of 55% and was highly specific to these abnormal structures (≥97.7%) in three samples. Additional filters selectively removed images with incomplete, highly overlapped, or missing metaphase cells, or with poor overall chromosome morphologies that increased FP rates. Image selection is optimized and FP DCs are minimized by combining multiple feature based segmentation filters and a novel image sorting procedure based on the known distribution of chromosome lengths. Applying the same image segmentation filtering procedures to both calibration and test samples reduced the average dose estimation error from 0.4 Gy to <0.2 Gy, obviating the need to first manually review these images. This reliable and scalable solution enables batch processing for multiple samples of unknown dose, and meets current requirements for triage radiation biodosimetry of high quality metaphase cell preparations. PMID:29026522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, D; Kaprealian, T; Low, D
Purpose: To report cranio-spinal irradiation (CSI) planning experience, compare dosimetric quality and delivery efficiency with Tomotherapy from different institutions, and to investigate effect of planning parameters on plan quality and treatment time. Methods: Clinical helical tomotherapy IMRT plans for thirty-nine CSI cases from three academic institutions were retrospectively evaluated. The planning parameters: field width (FW), pitch, modulation factor (MF), and achieved dosimetric endpoints were cross-compared. A fraction-dose-delivery-timing index (FDTI), defined as treatment time per fraction dose per PTV length, was utilized to evaluate plan delivery efficiency. A lower FDTI indicates higher delivery efficiency. We studied the correlation between planning quality,more » treatment time and planning parameters by grouping the plans under specific planning parameters. Additionally, we created new plans using 5cm jaw for a subset of plans that used 2.5cm jaw to exam if treatment efficiency can be improved without sacrificing plan quality. Results: There were significant dosimetric differences for organ at risks (OARs) among different institutions (A,B,C). Using the lowest average MF (1.9±0.4) and 5cm field width, C had the highest lung, heart, kidney, liver mean doses and maximum doses for lens. Using the same field width of 5cm, but higher MF (2.6±0.6), B had lower doses to the OARs in the thorax and abdomen area. Most of A’s plans were planned with 2.5cm jaw, the plans yielded better PTV coverage, higher OAR doses and slightly shorter FDTI compared to institution B. The replanned 5cm jaw plans achieved comparable PTV coverage and OARs sparing, while saving up to 44.7% treatment time. Conclusion: Plan quality and delivery efficiency could vary significantly in CSI planning on Tomotheapy due to choice of different planning parameters. CSI plans using a 5cm jaw, with proper selection of pitch and MF, can achieve comparable/ better plan quality with shorter delivery time compared to 2.5cm jaw plans.« less
Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose
NASA Astrophysics Data System (ADS)
Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu
2012-12-01
A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the proposed method.
2015-10-01
tomography images. The CT image densities in Hounsfield units (HU) of the brain were translated into corresponding optical properties (absorption...derived the Hounsfield units and optical properties of brain tissues such as white/gray matter. 13-15 The segmentation software generated an optical map...treatment protocol. Head CT image densities (in Hounsfield Units /HU) are segmented and translated into optical properties of the brain tissue
Steg, Philippe Gabriel; Jolly, Sanjit S; Mehta, Shamir R; Afzal, Rizwan; Xavier, Denis; Rupprecht, Hans-Jurgen; López-Sendón, Jose L; Budaj, Andrzej; Diaz, Rafael; Avezum, Alvaro; Widimsky, Petr; Rao, Sunil V; Chrolavicius, Susan; Meeks, Brandi; Joyner, Campbell; Pogue, Janice; Yusuf, Salim
2010-09-22
The optimal unfractionated heparin regimen for percutaneous coronary intervention (PCI) in patients with non-ST-segment elevation acute coronary syndromes treated with fondaparinux is uncertain. To compare the safety of 2 unfractionated heparin regimens during PCI in high-risk patients with non-ST-segment elevation acute coronary syndromes initially treated with fondaparinux. Double-blind randomized parallel-group trial in 179 hospitals in 18 countries involving 2026 patients undergoing PCI within 72 hours, nested within a cohort of 3235 high-risk patients with non-ST-segment elevation acute coronary syndromes initially treated with fondaparinux enrolled from February 2009 to March 2010. Patients received intravenously either low-dose unfractionated heparin, 50 U/kg, regardless of use of glycoprotein IIb/IIIa (GpIIb-IIIa) inhibitors or standard-dose unfractionated heparin, 85 U/kg (60 U/kg with GpIIb-IIIa inhibitors), adjusted by blinded activated clotting time (ACT). Composite of major bleeding, minor bleeding, or major vascular access-site complications up to 48 hours after PCI. Key secondary outcomes include composite of major bleeding at 48 hours with death, myocardial infarction, or target vessel revascularization within day 30. The primary outcome occurred in 4.7% of those in the low-dose group vs 5.8% in the standard-dose group (odds ratio [OR], 0.80; 95% confidence interval [CI], 0.54-1.19; P = .27). The rates of major bleeding were not different but the rates of minor bleeding were lower with 0.7% in the low-dose group vs 1.7% in the standard-dose group (OR, 0.40; 95% CI, 0.16-0.97; P = .04). For the key secondary outcome, the rates for low-dose group were 5.8% vs 3.9% in the standard-dose group (OR, 1.51; 95% CI, 1.00-2.28; P = .05) and for death, myocardial infarction, or target vessel revascularization it was 4.5% for the low-dose group vs 2.9% for the standard-dose group (OR, 1.58; 95% CI, 0.98-2.53; P = .06). Catheter thrombus rates were very low (0.5% in the low-dose group and 0.1% in the standard-dose group, P = .15). Low-dose compared with standard-dose unfractionated heparin did not reduce major peri-PCI bleeding and vascular access-site complications. clinicaltrials.gov Identifier: NCT00790907.
Andersen, Claus E; Nielsen, Søren Kynde; Lindegaard, Jacob Christian; Tanderup, Kari
2009-11-01
The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time-resolved dose verification. The likelihood of detecting a +/-15 mm displacement error increased by a factor of 1.5 or more. In vivo fiber-coupled RL/OSL dosimetry based on detectors placed in standard brachytherapy needles was demonstrated. The time-resolved dose-rate measurements were found to provide a good way to visualize the progression and stability of PDR brachytherapy dose delivery, and time-resolved dose-rate measurements provided an increased sensitivity for detection of dose-delivery errors compared with time-integrated dosimetry.
Ross, Astin M.; Rahmani, Sahar; Prieskorn, Diane M.; Dishman, Acacia F; Miller, Josef M.; Lahann, Joerg; Altschuler, Richard A.
2016-01-01
Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma. This study assessed the feasibility of utilizing microparticles for drug delivery into cochlear fluids, testing persistence, distribution, biocompatibility, and drug release characteristics. To allow for delivery of multiple therapeutics, particles were composed of two distinct compartments; one containing polylactide-co-glycolide (PLGA), and one composed of acetal-modified dextran and PLGA. Following in vivo infusion, image analysis revealed microparticle persistence in the cochlea for at least 7 days post-infusion, primarily in the first and second turns. The majority of subjects maintained or had only slight elevation in auditory brainstem response thresholds at 7 days post-infusion compared to pre-infusion baselines. There was only minor to limited loss of cochlear hair cells and negligible immune response based on CD45+ immunolabling. When Piribedil-loaded microparticles were infused, Piribedil was detectable within the cochlear fluids at 7 days post-infusion. These results indicate that segmented microparticles are relatively inert, can persist, release their contents, and be functionally and biologically compatible with cochlear function and therefore are promising vehicles for cochlear drug delivery. PMID:26841263
Li, Qing; Qiao, Fengxiang; Yu, Lei; Shi, Junqing
2018-06-01
Vehicle interior noise functions at the dominant frequencies of 500 Hz below and around 800 Hz, which fall into the bands that may impair hearing. Recent studies demonstrated that freeway commuters are chronically exposed to vehicle interior noise, bearing the risk of hearing impairment. The interior noise evaluation process is mostly conducted in a laboratory environment. The test results and the developed noise models may underestimate or ignore the noise effects from dynamic traffic and road conditions and configuration. However, the interior noise is highly associated with vehicle maneuvering. The vehicle maneuvering on a freeway weaving segment is more complex because of its nature of conflicting areas. This research is intended to explore the risk of the interior noise exposure on freeway weaving segments for freeway commuters and to improve the interior noise estimation by constructing a decision tree learning-based noise exposure dose (NED) model, considering weaving segment designs and engine operation. On-road driving tests were conducted on 12 subjects on State Highway 288 in Houston, Texas. On-board Diagnosis (OBD) II, a smartphone-based roughness app, and a digital sound meter were used to collect vehicle maneuvering and engine information, International Roughness Index, and interior noise levels, respectively. Eleven variables were obtainable from the driving tests, including the length and type of a weaving segment, serving as predictors. The importance of the predictors was estimated by their out-of-bag-permuted predictor delta errors. The hazardous exposure level of the interior noise on weaving segments was quantified to hazard quotient, NED, and daily noise exposure level, respectively. Results showed that the risk of hearing impairment on freeway is acceptable; the interior noise level is the most sensitive to the pavement roughness and is subject to freeway configuration and traffic conditions. The constructed NED model shows high predictive power (R = 0.93, normalized root-mean-square error [NRMSE] < 6.7%). Vehicle interior noise is usually ignored in the public, and its modeling and evaluation are generally conducted in a laboratory environment, regardless of the interior noise effects from dynamic traffic, road conditions, and road configuration. This study quantified the interior exposure dose on freeway weaving segments, which provides freeway commuters with a sense of interior noise exposure risk. In addition, a bagged decision tree-based interior noise exposure dose model was constructed, considering vehicle maneuvering, vehicle engine operational information, pavement roughness, and weaving segment configuration. The constructed model could significantly improve the interior noise estimation for road engineers and vehicle manufactures.
Blanck, Oliver; Masi, Laura; Chan, Mark K H; Adamczyk, Sebastian; Albrecht, Christian; Damme, Marie-Christin; Loutfi-Krauss, Britta; Alraun, Manfred; Fehr, Roman; Ramm, Ulla; Siebert, Frank-Andre; Stelljes, Tenzin Sonam; Poppinga, Daniela; Poppe, Björn
2016-06-01
High precision radiosurgery demands comprehensive delivery-quality-assurance techniques. The use of a liquid-filled ion-chamber-array for robotic-radiosurgery delivery-quality-assurance was investigated and validated using several test scenarios and routine patient plans. Preliminary evaluation consisted of beam profile validation and analysis of source-detector-distance and beam-incidence-angle response dependence. The delivery-quality-assurance analysis is performed in four steps: (1) Array-to-plan registration, (2) Evaluation with standard Gamma-Index criteria (local-dose-difference⩽2%, distance-to-agreement⩽2mm, pass-rate⩾90%), (3) Dose profile alignment and dose distribution shift until maximum pass-rate is found, and (4) Final evaluation with 1mm distance-to-agreement criterion. Test scenarios consisted of intended phantom misalignments, dose miscalibrations, and undelivered Monitor Units. Preliminary method validation was performed on 55 clinical plans in five institutions. The 1000SRS profile measurements showed sufficient agreement compared with a microDiamond detector for all collimator sizes. The relative response changes can be up to 2.2% per 10cm source-detector-distance change, but remains within 1% for the clinically relevant source-detector-distance range. Planned and measured dose under different beam-incidence-angles showed deviations below 1% for angles between 0° and 80°. Small-intended errors were detected by 1mm distance-to-agreement criterion while 2mm criteria failed to reveal some of these deviations. All analyzed delivery-quality-assurance clinical patient plans were within our tight tolerance criteria. We demonstrated that a high-resolution liquid-filled ion-chamber-array can be suitable for robotic radiosurgery delivery-quality-assurance and that small errors can be detected with tight distance-to-agreement criterion. Further improvement may come from beam specific correction for incidence angle and source-detector-distance response. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Xuanfeng, E-mail: Xuanfeng.ding@beaumont.org; Li, Xiaoqiang; Zhang, J. Michele
Purpose: To present a novel robust and delivery-efficient spot-scanning proton arc (SPArc) therapy technique. Methods and Materials: A SPArc optimization algorithm was developed that integrates control point resampling, energy layer redistribution, energy layer filtration, and energy layer resampling. The feasibility of such a technique was evaluated using sample patients: 1 patient with locally advanced head and neck oropharyngeal cancer with bilateral lymph node coverage, and 1 with a nonmobile lung cancer. Plan quality, robustness, and total estimated delivery time were compared with the robust optimized multifield step-and-shoot arc plan without SPArc optimization (Arc{sub multi-field}) and the standard robust optimized intensity modulatedmore » proton therapy (IMPT) plan. Dose-volume histograms of target and organs at risk were analyzed, taking into account the setup and range uncertainties. Total delivery time was calculated on the basis of a 360° gantry room with 1 revolutions per minute gantry rotation speed, 2-millisecond spot switching time, 1-nA beam current, 0.01 minimum spot monitor unit, and energy layer switching time of 0.5 to 4 seconds. Results: The SPArc plan showed potential dosimetric advantages for both clinical sample cases. Compared with IMPT, SPArc delivered 8% and 14% less integral dose for oropharyngeal and lung cancer cases, respectively. Furthermore, evaluating the lung cancer plan compared with IMPT, it was evident that the maximum skin dose, the mean lung dose, and the maximum dose to ribs were reduced by 60%, 15%, and 35%, respectively, whereas the conformity index was improved from 7.6 (IMPT) to 4.0 (SPArc). The total treatment delivery time for lung and oropharyngeal cancer patients was reduced by 55% to 60% and 56% to 67%, respectively, when compared with Arc{sub multi-field} plans. Conclusion: The SPArc plan is the first robust and delivery-efficient proton spot-scanning arc therapy technique, which could potentially be implemented into routine clinical practice.« less
Automated VMAT planning for postoperative adjuvant treatment of advanced gastric cancer.
Sharfo, Abdul Wahab M; Stieler, Florian; Kupfer, Oskar; Heijmen, Ben J M; Dirkx, Maarten L P; Breedveld, Sebastiaan; Wenz, Frederik; Lohr, Frank; Boda-Heggemann, Judit; Buergy, Daniel
2018-04-23
Postoperative/adjuvant radiotherapy of advanced gastric cancer involves a large planning target volume (PTV) with multi-concave shapes which presents a challenge for volumetric modulated arc therapy (VMAT) planning. This study investigates the advantages of automated VMAT planning for this site compared to manual VMAT planning by expert planners. For 20 gastric cancer patients in the postoperative/adjuvant setting, dual-arc VMAT plans were generated using fully automated multi-criterial treatment planning (autoVMAT), and compared to manually generated VMAT plans (manVMAT). Both automated and manual plans were created to deliver a median dose of 45 Gy to the PTV using identical planning and segmentation parameters. Plans were evaluated by two expert radiation oncologists for clinical acceptability. AutoVMAT and manVMAT plans were also compared based on dose-volume histogram (DVH) and predicted normal tissue complication probability (NTCP) analysis. Both manVMAT and autoVMAT plans were considered clinically acceptable. Target coverage was similar (manVMAT: 96.6 ± 1.6%, autoVMAT: 97.4 ± 1.0%, p = 0.085). With autoVMAT, median kidney dose was reduced on average by > 25%; (for left kidney from 11.3 ± 2.1 Gy to 8.9 ± 3.5 Gy (p = 0.002); for right kidney from 9.2 ± 2.2 Gy to 6.1 ± 1.3 Gy (p < 0.001)). Median dose to the liver was lower as well (18.8 ± 2.3 Gy vs. 17.1 ± 3.6 Gy, p = 0.048). In addition, Dmax of the spinal cord was significantly reduced (38.3 ± 3.7 Gy vs. 31.6 ± 2.6 Gy, p < 0.001). Substantial improvements in dose conformity and integral dose were achieved with autoVMAT plans (4.2% and 9.1%, respectively; p < 0.001). Due to the better OAR sparing in the autoVMAT plans compared to manVMAT plans, the predicted NTCPs for the left and right kidney and the liver-PTV were significantly reduced by 11.3%, 12.8%, 7%, respectively (p ≤ 0.001). Delivery time and total number of monitor units were increased in autoVMAT plans (from 168 ± 19 s to 207 ± 26 s, p = 0.006) and (from 781 ± 168 MU to 1001 ± 134 MU, p = 0.003), respectively. For postoperative/adjuvant radiotherapy of advanced gastric cancer, involving a complex target shape, automated VMAT planning is feasible and can substantially reduce the dose to the kidneys and the liver, without compromising the target dose delivery.
Qi, Zhihua; Gates, Erica L; O'Brien, Maureen M; Trout, Andrew T
2018-02-01
Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations.
NASA Astrophysics Data System (ADS)
Inaniwa, T.; Kanematsu, N.; Suzuki, M.; Hawkins, R. B.
2015-05-01
Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if the interruption time extends to 30 min or longer. These effects should be considered in carbon-ion radiotherapy treatment planning if a longer dose-delivery procedure time is anticipated.
NASA Astrophysics Data System (ADS)
Gao, Mingyong; Lu, Paul; Lynam, Dan; Bednark, Bridget; Campana, W. Marie; Sakamoto, Jeff; Tuszynski, Mark
2016-12-01
Objective. We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. Approach. 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. Main results. Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. Significance. Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.
Fraass, Benedick A.; Steers, Jennifer M.; Matuszak, Martha M.; McShan, Daniel L.
2012-01-01
Purpose: Inverse planned intensity modulated radiation therapy (IMRT) has helped many centers implement highly conformal treatment planning with beamlet-based techniques. The many comparisons between IMRT and 3D conformal (3DCRT) plans, however, have been limited because most 3DCRT plans are forward-planned while IMRT plans utilize inverse planning, meaning both optimization and delivery techniques are different. This work avoids that problem by comparing 3D plans generated with a unique inverse planning method for 3DCRT called inverse-optimized 3D (IO-3D) conformal planning. Since IO-3D and the beamlet IMRT to which it is compared use the same optimization techniques, cost functions, and plan evaluation tools, direct comparisons between IMRT and simple, optimized IO-3D plans are possible. Though IO-3D has some similarity to direct aperture optimization (DAO), since it directly optimizes the apertures used, IO-3D is specifically designed for 3DCRT fields (i.e., 1–2 apertures per beam) rather than starting with IMRT-like modulation and then optimizing aperture shapes. The two algorithms are very different in design, implementation, and use. The goals of this work include using IO-3D to evaluate how close simple but optimized IO-3D plans come to nonconstrained beamlet IMRT, showing that optimization, rather than modulation, may be the most important aspect of IMRT (for some sites). Methods: The IO-3D dose calculation and optimization functionality is integrated in the in-house 3D planning/optimization system. New features include random point dose calculation distributions, costlet and cost function capabilities, fast dose volume histogram (DVH) and plan evaluation tools, optimization search strategies designed for IO-3D, and an improved, reimplemented edge/octree calculation algorithm. The IO-3D optimization, in distinction to DAO, is designed to optimize 3D conformal plans (one to two segments per beam) and optimizes MLC segment shapes and weights with various user-controllable search strategies which optimize plans without beamlet or pencil beam approximations. IO-3D allows comparisons of beamlet, multisegment, and conformal plans optimized using the same cost functions, dose points, and plan evaluation metrics, so quantitative comparisons are straightforward. Here, comparisons of IO-3D and beamlet IMRT techniques are presented for breast, brain, liver, and lung plans. Results: IO-3D achieves high quality results comparable to beamlet IMRT, for many situations. Though the IO-3D plans have many fewer degrees of freedom for the optimization, this work finds that IO-3D plans with only one to two segments per beam are dosimetrically equivalent (or nearly so) to the beamlet IMRT plans, for several sites. IO-3D also reduces plan complexity significantly. Here, monitor units per fraction (MU/Fx) for IO-3D plans were 22%–68% less than that for the 1 cm × 1 cm beamlet IMRT plans and 72%–84% than the 0.5 cm × 0.5 cm beamlet IMRT plans. Conclusions: The unique IO-3D algorithm illustrates that inverse planning can achieve high quality 3D conformal plans equivalent (or nearly so) to unconstrained beamlet IMRT plans, for many sites. IO-3D thus provides the potential to optimize flat or few-segment 3DCRT plans, creating less complex optimized plans which are efficient and simple to deliver. The less complex IO-3D plans have operational advantages for scenarios including adaptive replanning, cases with interfraction and intrafraction motion, and pediatric patients. PMID:22755717
NASA Technical Reports Server (NTRS)
Semkova, J.; Koleva, R.; Todorova, G.; Kanchev, N.; Petrov, V.; Shurshakov, V.; Tchhernykh, I.; Kireeva, S.
2004-01-01
Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, R; Wang, J
2014-06-01
Purpose: To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. Methods: The nine-Field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry Run was performed to assess the dosimetric accuracy with MatriXX from IBA. Results: Compared withmore » IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs Decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. Conclusion: VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. This work is supported by the grant project, National Natural; Science Foundation of China (No. 81071237)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, Charles M., E-mail: cable@wfubmc.edu; Bright, Megan; Frizzell, Bart
Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles withmore » 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.« less
Clinical applications of advanced rotational radiation therapy
NASA Astrophysics Data System (ADS)
Nalichowski, Adrian
Purpose: With a fast adoption of emerging technologies, it is critical to fully test and understand its limits and capabilities. In this work we investigate new graphic processing unit (GPU) based treatment planning algorithm and its applications in helical tomotherapy dose delivery. We explore the limits of the system by applying it to challenging clinical cases of total marrow irradiation (TMI) and stereotactic radiosurgery (SRS). We also analyze the feasibility of alternative fractionation schemes for total body irradiation (TBI) and TMI based on reported historical data on lung dose and interstitial pneumonitis (IP) incidence rates. Methods and Materials: An anthropomorphic phantom was used to create TMI plans using the new GPU based treatment planning system and the existing CPU cluster based system. Optimization parameters were selected based on clinically used values for field width, modulation factor and pitch. Treatment plans were also created on Eclipse treatment planning system (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) for dose delivery on IX treatment unit. A retrospective review was performed of 42 publications that reported IP rates along with lung dose, fractionation regimen, dose rate and chemotherapy. The analysis consisted of nearly thirty two hundred patients and 34 unique radiation regimens. Multivariate logistic regression was performed to determine parameters associated with IP and establish does response function. Results: The results showed very good dosimetric agreement between the GPU and CPU calculated plans. The results from SBRT study show that GPU planning system can maintain 90% target coverage while meeting all the constraints of RTOG 0631 protocol. Beam on time for Tomotherapy and flattening filter free RapidArc was much faster than for Vero or Cyberknife. Retrospective data analysis showed that lung dose and Cyclophosphomide (Cy) are both predictors of IP in TBI/TMI treatments. The dose rate was not found to be an independent risk factor for IP. The model failed to establish accurate dose response function, but the discrete data indicated a radiation dose threshold of 7.6Gy (EQD2_repair) and 120 mg/kg of Cy below which no IP cases were reported. Conclusion: The TomoTherapy GPU based dose engine is capable of calculating TMI treatment plans with plan quality nearly identical to plans calculated using the traditional CPU/cluster based system, while significantly reducing the time required for optimization and dose calculation. The new system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing when compared to Eclipse treatment planning system for VMAT delivery. The machine optimization parameters tested for TMI cases provide a comprehensive overview of the capabilities of the treatment planning station and associated helical delivery system. The new system also proved to be dosimetrically compatible with other leading modalities for treatments of small and complicated target volumes and was even superior when treatment delivery times were compared. These finding demonstrate that the advanced treatment planning and delivery system from TomoTherapy is well suitable for treatments of complicated cases such as TMI and SRS and it's often dosimetrically and/or logistically superior to other modalities. The new planning system can easily meet the constraint of threshold lung dose established in this study. The results presented here on the capabilities of Tomotherapy and on the identified lung dose threshold provide an opportunity to explore alternative fractionation schemes without sacrificing target coverage or lung toxicity. (Abstract shortened by ProQuest.).
Multiple anatomy optimization of accumulated dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V.; Moore, Joseph A.
Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dosemore » variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.« less
Optimization of Craniospinal Irradiation for Pediatric Medulloblastoma Using VMAT and IMRT.
Al-Wassia, Rolina K; Ghassal, Noor M; Naga, Adly; Awad, Nesreen A; Bahadur, Yasir A; Constantinescu, Camelia
2015-10-01
Intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) provide highly conformal target radiation doses, but also expose large volumes of healthy tissue to low-dose radiation. With improving survival, more children with medulloblastoma (MB) are at risk of late adverse effects of radiotherapy, including secondary cancers. We evaluated the characteristics of IMRT and VMAT craniospinal irradiation treatment plans in children with standard-risk MB to compare radiation dose delivery to target organs and organs at risk (OAR). Each of 10 children with standard-risk MB underwent both IMRT and VMAT treatment planning. Dose calculations used inverse planning optimization with a craniospinal dose of 23.4 Gy followed by a posterior fossa boost to 55.8 Gy. Clinical and planning target volumes were demarcated on axial computed tomography images. Dose distributions to target organs and OAR for each planning technique were measured and compared with published dose-volume toxicity data for pediatric patients. All patients completed treatment planning for both techniques. Analyses and comparisons of dose distributions and dose-volume histograms for the planned target volumes, and dose delivery to the OAR for each technique demonstrated the following: (1) VMAT had a modest, but significantly better, planning target volume-dose coverage and homogeneity compared with IMRT; (2) there were different OAR dose-sparing profiles for IMRT versus VMAT; and (3) neither IMRT nor VMAT demonstrated dose reductions to the published pediatric dose limits for the eyes, the lens, the cochlea, the pituitary, and the brain. The use of both IMRT and VMAT provides good target tissue coverage and sparing of the adjacent tissue for MB. Both techniques resulted in OAR dose delivery within published pediatric dose guidelines, except those mentioned above. Pediatric patients with standard-risk MB remain at risk for late endocrinologic, sensory (auditory and visual), and brain functional impairments.
NASA Astrophysics Data System (ADS)
Gutierrez, Alonso Navar
2007-12-01
Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the feasibility of delivering a simultaneously integrated subvolume boost to canine nasal tumors and was found to dramatically increase estimated 1-year tumor control probability (TCP) without increasing the dose to the eyes, so as to preserve vision, and to the brain, so as to prevent neuropathy.
El Khouly, Nabih I
2017-04-01
The purpose of this study was to evaluate the effectiveness and safety of transcervical Foley catheter with and without oxytocin versus oxytocin alone for labour induction with unfavourable cervix. This trial enrolled 108 women with singleton pregnancies presented for labour induction with unfavourable cervix. Patients were randomly assigned to receive Foley catheter alone (I), Foley catheter plus oxytocin (II) or oxytocin alone (III). Outcomes were analysed in terms of success of induction, induction delivery interval, route of delivery, dose and duration of oxytocin, and complications. Successful normal vaginal delivery was more common in group I (p = .02) compared to group III. Induction delivery time was statistically shorter in group II and group III (p < .001). Patients in group I required significantly less oxytocin dose and duration (p < .001). This led to our conclusion that induction of labour with Foley catheter without oxytocin increases success rate of normal vaginal delivery; however, it has a longer induction delivery interval with similar complications.
Nanomedicine in pulmonary delivery
Mansour, Heidi M; Rhee, Yun-Seok; Wu, Xiao
2009-01-01
The lung is an attractive target for drug delivery due to noninvasive administration via inhalation aerosols, avoidance of first-pass metabolism, direct delivery to the site of action for the treatment of respiratory diseases, and the availability of a huge surface area for local drug action and systemic absorption of drug. Colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery offer many advantages such as the potential to achieve relatively uniform distribution of drug dose among the alveoli, achievement of improved solubility of the drug from its own aqueous solubility, a sustained drug release which consequently reduces dosing frequency, improves patient compliance, decreases incidence of side effects, and the potential of drug internalization by cells. This review focuses on the current status and explores the potential of colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery with special attention to their pharmaceutical aspects. Manufacturing processes, in vitro/in vivo evaluation methods, and regulatory/toxicity issues of nanomedicines in pulmonary delivery are also discussed. PMID:20054434
2004-07-15
KENNEDY SPACE CENTER, FLA. - Unpacking of the Pump Flow Control Subsystem (PFCS) begins in the Space Station Processing Facility. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
2004-07-15
KENNEDY SPACE CENTER, FLA. - Technicians attach a crane to the Pump Flow Control Subsystem (PFCS) in the Space Station Processing Facility. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
Online 3D EPID-based dose verification: Proof of concept.
Spreeuw, Hanno; Rozendaal, Roel; Olaciregui-Ruiz, Igor; González, Patrick; Mans, Anton; Mijnheer, Ben; van Herk, Marcel
2016-07-01
Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of this study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5-10 s irradiation time. A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S; Sarkar, B; Kaur, H
Purpose: This study was designed to evaluate the performance of optically stimulated Luminescence (OSL) nanoDots as in-vivo dosimeter. For the measurements of surface doses as well as scattered plus leakage doses, nanoDots were used during the setup verification as well as during the treatment delivery. Methods: For a total seven patients undergoing radiotherapy by volumetric modulated arc therapy, surface doses from image guidance and scattered plus leakage doses from treatment delivery were measured. Two sets of calibration curves were generated – one for therapy and another for imaging. Two different nanoDots were used for imaging and therapy doses. Imaging nanoDotsmore » were placed at the isocenter only at the time of CBCT and therapy nanoDots were placed at 25 cm away from the isocenter (either in cranial or in caudal direction) only at the time of treatment delivery. During the entire course, nanoDots were placed at the same measurement points. NanoDots were read after 15 minutes of their exposure. For the next fraction, nanoDots were corrected for the residual doses from the previous fractions. Results: Measured surface doses during imaging were 0.14±0.32 cGy, 0.11±0.04 cGy, 0.12±0.53 cGy, 0.04±0.02 cGy, 0.13±0.23 cGy, 0.11±0.43 cGy, 0.10±0.04 cGy with overall mean dose of 0.08±0.1 cGy. Measured doses during treatment delivery, indicative of scattered and leakage dose, were 0.84±0.43 cGy, 1.3±0.4 cGy, 1.4±0.4 cGy, 0.18±0.48 cGy, 0.78±0.29 cGy, 0.27±0.08 cGy, 0.78±0.07 cGy with overall mean dose of 0.61±1.3 cGy. Conclusion: This dosimeter can be used as supplementary unit to verify the doses. No change in the prescription is recommended based on nanoDots measurement. This study is on-going therefore we are presenting only mere number of patients. A large volume data will be presented after completion of the study with proper statistical analysis.« less
Intradermal delivery of vaccines: potential benefits and current challenges
Hickling, JK; Jones, KR; Friede, M; Chen, D; Kristensen, D
2011-01-01
Abstract Delivery of vaccine antigens to the dermis and/or epidermis of human skin (i.e. intradermal delivery) might be more efficient than injection into the muscle or subcutaneous tissue, thereby reducing the volumes of antigen. This is known as dose-sparing and has been demonstrated in clinical trials with some, but not all, vaccines. Dose-sparing could be beneficial to immunization programmes by potentially reducing the costs of purchase, distribution and storage of vaccines; increasing vaccine availability and effectiveness. The data obtained with intradermal delivery of some vaccines are encouraging and warrant further study and development; however significant gaps in knowledge and operational challenges such as reformulation, optimizing vaccine presentation and development of novel devices to aid intradermal vaccine delivery need to be addressed. Modelling of the costs and potential savings resulting from intradermal delivery should be done to provide realistic expectations of the potential benefits and to support cases for investment. Implementation and uptake of intradermal vaccine delivery requires further research and development, which depends upon collaboration between multiple stakeholders in the field of vaccination. PMID:21379418
Içten, Elçin; Purohit, Hitesh S; Wallace, Chelsey; Giridhar, Arun; Taylor, Lynne S; Nagy, Zoltan K; Reklaitis, Gintaras V
2017-05-30
The improvements in healthcare systems and the advent of the precision medicine initiative have created the need to develop more innovative manufacturing methods for the delivery and production of individualized dosing and personalized treatments. In accordance with the changes observed in healthcare systems towards more innovative therapies, this paper presents dropwise additive manufacturing of pharmaceutical products (DAMPP) for small scale, distributed manufacturing of individualized dosing as an alternative to conventional manufacturing methods A dropwise additive manufacturing process for amorphous and self-emulsifying drug delivery systems is reported, which utilizes drop-on-demand printing technology for automated and controlled deposition of melt-based formulations onto inert tablets. The advantages of drop on demand technology include reproducible production of droplets with adjustable sizing and high placement accuracy, which enable production of individualized dosing even for low dose and high potency drugs. Flexible use of different formulations, such as lipid-based formulations, allows enhancement of the solubility of poorly water soluble and highly lipophilic drugs with DAMPP. Here, DAMPP is used to produce solid oral dosage forms from melts of an active pharmaceutical ingredient and a surfactant. The dosage forms are analyzed to show the amorphous nature, self-emulsifying drug delivery system characteristics and dissolution behavior of these formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Lovett, Michael L; Wang, Xiaoqin; Yucel, Tuna; York, Lyndsey; Keirstead, Marc; Haggerty, Linda; Kaplan, David L
2015-09-01
Silk hydrogels were formulated with anti-vascular endothelial growth factor (anti-VEGF) therapeutics for sustained ocular drug delivery. Using silk fibroin as a vehicle for delivery, bevacizumab-loaded hydrogel formulations demonstrated sustained release of 3 months or greater in experiments in vitro as well as in vivo using an intravitreal injection model in Dutch-belted rabbits. Using both standard dose (1.25mg bevacizumab/50 μL injection) and high dose (5.0mg bevacizumab/50 μL injection) hydrogel formulations, release concentrations were achieved at day 90 that were equivalent or greater than those achieved at day 30 with the positive standard dose control (single injection (50 μL) of 1.25mg bevacizumab solution), which is estimated to be the therapeutic threshold based on the current dosage administration schedule of 1 injection/month. These gels also demonstrated signs of biodegradation after 3 months, suggesting that repeated injections may be possible (e.g., one injection every 3-6 months or longer). Due to its pharmacokinetic and biodegradation profiles, this delivery system may be used to reduce the frequency of dosing for patients currently enduring treatment using bevacizumab or other anti-VEGF therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.
Design of a transdermal delivery system for aspirin as an antithrombotic drug.
Ammar, H O; Ghorab, M; El-Nahhas, S A; Kamel, R
2006-12-11
Aspirin has become the gold standard to which newer antiplatelet drugs are compared for reducing risks of cardiovascular diseases, while keeping low cost. Oral aspirin has a repertoire of gastrointestinal side effects even at low doses and requires high frequent dosing because it undergoes extensive presystemic metabolism. Transdermal delivery offers an alternative route that bypasses the gut and may be more convenient and safer for aspirin delivery especially during long-term use. This study comprised formulation of aspirin in different topical bases. Release studies revealed that hydrocarbon gel allowed highest drug release. In vitro permeation studies revealed high drug permeation from hydrocarbon gel. Several chemical penetration enhancers were monitored for augmenting the permeation from this base. Combination of propylene glycol and alcohol showed maximum enhancing effect and, hence, was selected for biological investigation. The biological performance of the selected formulation was assessed by measuring the inhibition of platelet aggregation relevant to different dosage regimens aiming to minimize both drug dose and frequency of application. The results demonstrated the feasibility of successfully influencing platelet function and revealed that the drug therapeutic efficacy in transdermal delivery system is dose independent. Biological performance was re-assessed after storage and the results revealed stability and persistent therapeutic efficacy.
NASA Astrophysics Data System (ADS)
Gu, Jin; Shi, He-Shui; Han, Ping; Yu, Jie; Ma, Gui-Na; Wu, Sheng
2016-10-01
This study sought to compare the image quality and radiation dose of coronary computed tomography angiography (CCTA) from prospectively triggered 128-slice CT (128-MSCT) versus dual-source 64-slice CT (DSCT). The study was approved by the Medical Ethics Committee at Tongji Medical College of Huazhong University of Science and Technology. Eighty consecutive patients with stable heart rates lower than 70 bpm were enrolled. Forty patients were scanned with 128-MSCT, and the other 40 patients were scanned with DSCT. Two radiologists independently assessed the image quality in segments (diameter >1 mm) according to a three-point scale (1: excellent; 2: moderate; 3: insufficient). The CCTA radiation dose was calculated. Eighty patients with 526 segments in the 128-MSCT group and 544 segments in the DSCT group were evaluated. The image quality 1, 2 and 3 scores were 91.6%, 6.9% and 1.5%, respectively, for the 128-MSCT group and 97.6%, 1.7% and 0.7%, respectively, for the DSCT group, and there was a statistically significant inter-group difference (P ≤ 0.001). The effective doses were 3.0 mSv in the 128-MSCT group and 4.5 mSv in the DSCT group (P ≤ 0.001). Compared with DSCT, CCTA with prospectively triggered 128-MSCT had adequate image quality and a 33.3% lower radiation dose.
Ameri, Mahmoud; Kadkhodayan, Miryam; Nguyen, Joe; Bravo, Joseph A.; Su, Rebeca; Chan, Kenneth; Samiee, Ahmad; Daddona, Peter E.
2014-01-01
This study evaluated the feasibility of coating formulated recombinant human growth hormone (rhGH) on a titanium microneedle transdermal delivery system, Zosano Pharma (ZP)-hGH, and assessed preclinical patch delivery performance. Formulation rheology and surface activity were assessed by viscometry and contact angle measurement. rhGH liquid formulation was coated onto titanium microneedles by dip-coating and drying. The stability of coated rhGH was determined by size exclusion chromatography-high performance liquid chromatography (SEC-HPLC). Preclinical delivery and pharmacokinetic studies were conducted in female hairless guinea pigs (HGP) using rhGH coated microneedle patches at 0.5 and 1 mg doses and compared to Norditropin® a commercially approved rhGH subcutaneous injection. Studies demonstrated successful rhGH formulation development and coating on microneedle arrays. The ZP-hGH patches remained stable at 40 °C for six months with no significant change in % aggregates. Pharmacokinetic studies showed that the rhGH-coated microneedle patches, delivered with high efficiency and the doses delivered indicated linearity with average Tmax of 30 min. The absolute bioavailability of the microneedle rhGH patches was similar to subcutaneous Norditropin® injections. These results suggest that ZP-transdermal microneedle patch delivery of rhGH is feasible and may offer an effective and patient-friendly alternative to currently marketed rhGH injectables. PMID:24838219
Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy.
Islam, Nazrul; Abbas, Muzaffar; Rahman, Shafiqur
2017-01-01
Neuropathic pain is a chronic neurological disorder affecting millions of people around the world. The currently available pharmacologic agents for the treatment of neuropathic pain have limited efficacy and are associated with dose related unwanted adverse effects. Due to the limited access of drug molecules across blood-brain barrier, a small percentage of drug that is administered systematically, reaches the central nervous system in active form. These therapeutic agents also require daily treatment regimen that is inconvenient and potentially impact patient compliance. Application of nanoparticulate drugs for enhanced delivery system has been explored extensively in the last decades. Pulmonary delivery of nanomedicines for the management of various diseases has become an emerging treatment strategy that ensures the targeted delivery of drugs both for systemic and local effects with low dose and limited adverse effects. To the best of our knowledge, there are no inhaled drug products available on market for the treatment of neuropathic pain. The advantages of delivering therapeutics into deep lungs include non-invasive drug delivery, higher bioavailability with low dose, lower systemic toxicity, and potentially greater blood-brain barrier penetration. This review discusses and highlights the important issues on the application of emerging nanoparticulate lung delivery of drugs for the effective treatment of neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Byrne, M J; Power, J M; Preovolos, A; Mariani, J A; Hajjar, R J; Kaye, D M
2008-12-01
Abnormal excitation-contraction coupling is a key pathophysiologic component of heart failure (HF), and at a molecular level reduced expression of the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2a) is a major contributor. Previous studies in small animals have suggested that restoration of SERCA function is beneficial in HF. Despite this promise, the means by which this information might be translated into potential clinical application remains uncertain. Using a recently established cardiac-directed recirculating method of gene delivery, we administered adeno-associated virus 2 (AAV2)/1SERCA2a to sheep with pacing-induced HF. We explored the effects of differing doses of AAV2/1SERCA2a (low 1 x 10(10) d.r.p.; medium 1 x 10(12) d.r.p. and high 1 x 10(13) d.r.p.) in conjunction with an intra-coronary delivery group (2.5 x 10(13) d.r.p.). At the end of the study, haemodynamic, echocardiographic, histopathologic and molecular biologic assessments were performed. Cardiac recirculation delivery of AAV2/1SERCA2a elicited a dose-dependent improvement in cardiac performance determined by left ventricular pressure analysis, (+d P/d t(max); low dose -220+/-70, P>0.05; medium dose 125+/-53, P<0.05; high dose 287+/-104, P<0.05) and echocardiographically (fractional shortening: low dose -3+/-2, P>0.05; medium dose 1+/-2, P>0.05; high dose 6.5+/-3.9, P<0.05). In addition to favourable haemodynamic effects, brain natriuretic peptide expression was reduced consistent with reversal of the HF molecular phenotype. In contrast, direct intra-coronary infusion did not elicit any effect on ventricular function. As such, AAV2/1SERCA2a elicits favourable functional and molecular actions when delivered in a mechanically targeted manner in an experimental model of HF. These observations lay a platform for potential clinical translation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, R; Chisela, W
2015-06-15
Purpose: To investigate the use of EPID transit dosimetry for monitoring daily dose variations in radiation treatment delivery. Methods: A patient with head and neck cancer treated using nine field IMRT beams was used in this study. The prescription was 45 Gy in 25 fractions. A KV CBCT was acquired before each treatment on a Varian NTX linear accelerator. Integrated images using MV EPID were acquired for each treatment beam. Planning CT images, treatment plan, and daily integrated images were imported into a commercial QA software Dosimetry Check (v4r4 Math Resolutions, LLC, Columbia, MD) to calculate 3D dose of themore » day assuming 25 fractions treatment. Planning CT images were deformed and registered to each daily CBCT using Varian SmartAdapt (v11.MR2). ROIs were then propagated from planning CT to daily CBCT. The correlation between maximum, average dose of ROIs and ROI volume, center of mass shift, Dice Similarity Coefficient (DSC) were investigated. Results: Not all parameters investigated showed strong correlations. For PTV and CTV, the average dose has inverse correlation with their volume change (correlation coefficient −0.52, −0.50, respectively) and DSC (−0.59, −0.59, respectively). The average dose of right parotid has correlation with its volume change (0.56). The maximum dose of spinal cord has correlation with the center of mass superior-inferior shift (0.52) and inverse correlation with the center of mass anterior-posterior shift (−0.73). Conclusion: Transit dosimetry using EPID images collected during treatment delivery offers great potential to monitor daily dose variations due to patient anatomy change, motion, and setup errors in radiation treatment delivery. It can provide a patient-specific QA tool valuable for adaptive radiation therapy. Further work is needed to validate the technique.« less
Conversion coefficients for determining organ doses in paediatric spine radiography.
Seidenbusch, Michael; Schneider, Karl
2014-04-01
Knowledge of organ and effective doses achieved during paediatric x-ray examinations is an important prerequisite for assessment of radiation burden to the patient. Conversion coefficients for reconstruction of organ and effective doses from entrance doses for segmental spine radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients are provided regarding the Guidelines of Good Radiographic Technique of the European Commission. Using the personal computer program PCXMC developed by the Finnish Centre for Radiation and Nuclear Safety (Säteilyturvakeskus STUK), conversion coefficients for conventional segmental spine radiographs were calculated performing Monte Carlo simulations in mathematical hermaphrodite phantom models describing patients of different ages. The clinical variation of beam collimation was taken into consideration by defining optimal and suboptimal radiation field settings. Conversion coefficients for the reconstruction of organ doses in about 40 organs and tissues from measured entrance doses during cervical, thoracic and lumbar spine radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients were calculated for the standard sagittal and lateral beam projections and the standard focus detector distance of 115 cm. The conversion coefficients presented may be used for organ dose assessments from entrance doses measured during spine radiographs of patients of all age groups and all field settings within the optimal and suboptimal standard field settings.
Penalization of aperture complexity in inversely planned volumetric modulated arc therapy
Younge, Kelly C.; Matuszak, Martha M.; Moran, Jean M.; McShan, Daniel L.; Fraass, Benedick A.; Roberts, Donald A.
2012-01-01
Purpose: Apertures obtained during volumetric modulated arc therapy (VMAT) planning can be small and irregular, resulting in dosimetric inaccuracies during delivery. Our purpose is to develop and integrate an aperture-regularization objective function into the optimization process for VMAT, and to quantify the impact of using this objective function on dose delivery accuracy and optimized dose distributions. Methods: An aperture-based metric (“edge penalty”) was developed that penalizes complex aperture shapes based on the ratio of MLC side edge length and aperture area. To assess the utility of the metric, VMAT plans were created for example paraspinal, brain, and liver SBRT cases with and without incorporating the edge penalty in the cost function. To investigate the dose calculation accuracy, Gafchromic EBT2 film was used to measure the 15 highest weighted apertures individually and as a composite from each of two paraspinal plans: one with and one without the edge penalty applied. Films were analyzed using a triple-channel nonuniformity correction and measurements were compared directly to calculations. Results: Apertures generated with the edge penalty were larger, more regularly shaped and required up to 30% fewer monitor units than those created without the edge penalty. Dose volume histogram analysis showed that the changes in doses to targets, organs at risk, and normal tissues were negligible. Edge penalty apertures that were measured with film for the paraspinal plan showed a notable decrease in the number of pixels disagreeing with calculation by more than 10%. For a 5% dose passing criterion, the number of pixels passing in the composite dose distributions for the non-edge penalty and edge penalty plans were 52% and 96%, respectively. Employing gamma with 3% dose/1 mm distance criteria resulted in a 79.5% (without penalty)/95.4% (with penalty) pass rate for the two plans. Gradient compensation of 3%/1 mm resulted in 83.3%/96.2% pass rates. Conclusions: The use of the edge penalty during optimization has the potential to markedly improve dose delivery accuracy for VMAT plans while still maintaining high quality optimized dose distributions. The penalty regularizes aperture shape and improves delivery efficiency. PMID:23127107
SU-E-J-127: Implementation of An Online Replanning Tool for VMAT Using Flattening Filter-Free Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ates, O; Ahunbay, E; Li, X
2015-06-15
Purpose: This is to report the implementation of an online replanning tool based on segment aperture morphing (SAM) for VMAT with flattening filter free (FFF) beams. Methods: Previously reported SAM algorithm modified to accommodate VMAT with FFF beams was implemented in a tool that was interfaced with a treatment planning system (Monaco, Elekta). The tool allows (1) to output the beam parameters of the original VMAT plan from Monaco, and (2) to input the apertures generated from the SAM algorithm into Monaco for the dose calculation on daily CT/CBCT/MRI in the following steps:(1) Quickly generating target contour based on themore » image of the day, using an auto-segmentation tool (ADMIRE, Elekta) with manual editing if necessary; (2) Morphing apertures based on the SAM in the original VMAT plan to account for the interfractional change of the target from the planning to the daily images; (3) Calculating dose distribution for new apertures with the same numbers of MU as in the original plan; (4) Transferring the new plan into a record & verify system (MOSAIQ, Elekta); (5) Performing a pre-delivery QA based on software; (6) Delivering the adaptive plan for the fraction.This workflow was implemented on a 16-CPU (2.6 GHz dual-core) hardware with GPU and was tested for sample cases of prostate, pancreas and lung tumors. Results: The online replanning process can be completed within 10 minutes. The adaptive plans generally have improved the plan quality when compared to the IGRT repositioning plans. The adaptive plans with FFF beams have better normal tissue sparing as compared with those of FF beams. Conclusion: The online replanning tool based on SAM can quickly generate adaptive VMAT plans using FFF beams with improved plan quality than those from the IGRT repositioning plans based on daily CT/CBCT/MRI and can be used clinically. This research was supported by Elekta Inc. (Crawley, UK)« less
NASA Astrophysics Data System (ADS)
Kang, Sang-Won; Suh, Tae-Suk; Chung, Jin-Beom; Eom, Keun-Yong; Song, Changhoon; Kim, In-Ah; Kim, Jae-Sung; Lee, Jeong-Woo; Cho, Woong
2017-02-01
The purpose of this study was to evaluate the impact of dosimetric and radiobiological parameters on treatment plans by using different dose-calculation algorithms and delivery-beam modes for prostate stereotactic body radiation therapy using an endorectal balloon. For 20 patients with prostate cancer, stereotactic body radiation therapy (SBRT) plans were generated by using a 10-MV photon beam with flattening filter (FF) and flattening-filter-free (FFF) modes. The total treatment dose prescribed was 42.7 Gy in 7 fractions to cover at least 95% of the planning target volume (PTV) with 95% of the prescribed dose. The dose computation was initially performed using an anisotropic analytical algorithm (AAA) in the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) and was then re-calculated using Acuros XB (AXB V. 11.0.34) with the same monitor units and multileaf collimator files. The dosimetric and the radiobiological parameters for the PTV and organs at risk (OARs) were analyzed from the dose-volume histogram. An obvious difference in dosimetric parameters between the AAA and the AXB plans was observed in the PTV and rectum. Doses to the PTV, excluding the maximum dose, were always higher in the AAA plans than in the AXB plans. However, doses to the other OARs were similar in both algorithm plans. In addition, no difference was observed in the dosimetric parameters for different delivery-beam modes when using the same algorithm to generate plans. As a result of the dosimetric parameters, the radiobiological parameters for the two algorithm plans presented an apparent difference in the PTV and the rectum. The average tumor control probability of the AAA plans was higher than that of the AXB plans. The average normal tissue complication probability (NTCP) to rectum was lower in the AXB plans than in the AAA plans. The AAA and the AXB plans yielded very similar NTCPs for the other OARs. In plans using the same algorithms, the NTCPs for delivery-beam modes showed no differences. This study demonstrated that the dosimetric and the radiobiological parameters for the PTV and the rectum affected the dose-calculation algorithms for prostate SBRT using an endorectal balloon. However, the dosimetric and the radiobiological parameters in the AAA and the AXB plans for other OARs were similar. Furthermore, difference between the dosimetric and the radiobiological parameters for different delivery-beam modes were not found when the same algorithm was used to generate the treatment plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deisher, A; Anderson, S; Cusma, J
Purpose: To plan, target, and calculate delivered dose in atrioventricular node (AVN) ablation with volume-modulated arc therapy (VMAT) in an intact porcine model. Methods: Seven pigs underwent AVN irradiation, with prescription doses ranging between 25 and 55Gy in a single fraction. Cardiac CT scans were acquired at expiration. Two physicians contoured AVN targets on 10 phases, providing estimates of target motion and inter-physician variability. Treatment planning was conducted on a static phase-averaged CT. The volume designated to receive prescription dose covered the full extent of AVN cardiac motion, expanded by 4mm for setup uncertainty. Optimization limited doses to risk structuresmore » according to single-fraction tumor treatment protocols. Orthogonal kV images were used to align bony anatomy at time of treatment. Localization was further refined with respiratory-gated cone-beam CT, and range of cardiac motion was verified under fluoroscopy. Beam delivery was respiratory-gated for expiration with a mean efficiency of 60%. Deformable registration of the 10 cardiac CT phases was used to calculate actual delivered dose for comparison to electro-anatomical and visually evident lesions. Results: The mean [minimum,maximum] amplitude of AVN cardiac motion was LR 2.9 [1.7,3.9]mm, AP 6.6 [4.4,10.4]mm, and SI 5.6 [2.0,9.9]mm. Incorporating cardiac motion into the dose calculation showed the volume receiving full dose was 40–80% of the volume indicated on the static planning image, although the contoured AVN target received full dose in all animals. Initial results suggest the dimensions of the electro-anatomical lesion are correlated with the 40Gy isodose volume. Conclusion: Image-guidance techniques allow for accurate and precise delivery of VMAT for catheter-free arrhythmia ablation. An arsenal of advanced radiation planning, dose optimization, and image-guided delivery techniques was employed to assess and mitigate effects of cardiac and respiratory motion. Feasibility of delivery to the pulmonary veins and left ventricular myocardium will be investigated in future studies. D. Packer Disclosures: Abiomed, Biosense Webster, Inc., Boston Scientific Corp., CardioFocus, Inc., Johnson and Johnson, Excerpta Medica, Ortho-McNeil-Jannsen, Sanofi Aventis, CardioInsight Technologies, InfoBionic, SIEMENS, Medtronic, Inc., CardioDx, Inc., CardioInsight Technologies, FoxP2 Medica, Mediasphere Medical, Wiley-Blackwell, St. Jude Medical, Endosense, Thermedical, EP Advocate LLC, Hansen Medical, American Heart Association, EpiEP, NIH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.
2008-09-15
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less
Modeling the target dose fall-off in IMRT and VMAT planning techniques for cervical SBRT.
Brito Delgado, A; Cohen, D; Eng, T Y; Stanley, D N; Shi, Z; Charlton, M; Gutiérrez, A N
2018-01-01
There has been growing interest in the use of stereotactic body radiotherapy (SBRT) technique for the treatment of cervical cancer. The purpose of this study was to characterize dose distributions as well as model the target dose fall-off for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques using 6 and 10 MV photon beam energies. Fifteen (n = 15) patients with non-bulky cervical tumors were planned in Pinnacle 3 with a Varian Novalis Tx (HD120 MLC) using 6 and 10 MV photons with the following techniques: (1) IMRT with 10 non-coplanar beams (2) dual, coplanar 358° VMAT arcs (4° spacing), and (3) triple, non-coplanar VMAT arcs. Treatment volumes and dose prescriptions were segmented according to University of Texas Southwestern (UTSW) Phase II study. All plans were normalized such that 98% of the planning target volume (PTV) received 28 Gy (4 fractions). For the PTV, the following metrics were evaluated: homogeneity index, conformity index, D 2cc , D mean , D max , and dose fall-off parameters. For the organs at risk (OARs), D 2cc , D 15cc , D 0.01cc , V 20 , V 40 , V 50 , V 60 , and V 80 were evaluated for the bladder, bowel, femoral heads, rectum, and sigmoid. Statistical differences were evaluated using a Friedman test with a significance level of 0.05. To model dose fall-off, expanding 2-mm-thick concentric rings were created around the PTV, and doses were recorded. Statistically significant differences (p < 0.05) were noted in the dose fall-off when using 10 MV and VMAT 3-arc , as compared with IMRT. VMAT 3-arc improved the bladder V 40 , V 50 , and V 60 , and the bowel V 20 and V 50 . All fitted regressions had an R 2 ≥ 0.98. For cervical SBRT plans, a VMAT 3-arc approach offers a steeper dose fall-off outside of the target volume. Faster dose fall-off was observed in smaller targets as opposed to medium and large targets, denoting that OAR sparing is dependent on target size. These improvements are further pronounced with the use of 10-MV photons. Published by Elsevier Inc.
Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice.
Tadokoro, Takahiro; Miyanohara, Atsushi; Navarro, Michael; Kamizato, Kota; Juhas, Stefan; Juhasova, Jana; Marsala, Silvia; Platoshyn, Oleksandr; Curtis, Erik; Gabel, Brandon; Ciacci, Joseph; Lukacova, Nada; Bimbova, Katarina; Marsala, Martin
2017-07-13
The successful development of a subpial adeno-associated virus 9 (AAV9) vector delivery technique in adult rats and pigs has been reported on previously. Using subpially-placed polyethylene catheters (PE-10 or PE-5) for AAV9 delivery, potent transgene expression through the spinal parenchyma (white and gray matter) in subpially-injected spinal segments has been demonstrated. Because of the wide range of transgenic mouse models of neurodegenerative diseases, there is a strong desire for the development of a potent central nervous system (CNS)-targeted vector delivery technique in adult mice. Accordingly, the present study describes the development of a spinal subpial vector delivery device and technique to permit safe and effective spinal AAV9 delivery in adult C57BL/6J mice. In spinally immobilized and anesthetized mice, the pia mater (cervical 1 and lumbar 1-2 spinal segmental level) was incised with a sharp 34 G needle using an XYZ manipulator. A second XYZ manipulator was then used to advance a blunt 36G needle into the lumbar and/or cervical subpial space. The AAV9 vector (3-5 µL; 1.2 x 10 13 genome copies (gc)) encoding green fluorescent protein (GFP) was then injected subpially. After injections, neurological function (motor and sensory) was assessed periodically, and animals were perfusion-fixed 14 days after AAV9 delivery with 4% paraformaldehyde. Analysis of horizontal or transverse spinal cord sections showed transgene expression throughout the entire spinal cord, in both gray and white matter. In addition, intense retrogradely-mediated GFP expression was seen in the descending motor axons and neurons in the motor cortex, nucleus ruber, and formatio reticularis. No neurological dysfunction was noted in any animals. These data show that the subpial vector delivery technique can successfully be used in adult mice, without causing procedure-related spinal cord injury, and is associated with highly potent transgene expression throughout the spinal neuraxis.
Volumetric Modulated Arc Radiotherapy for Vestibular Schwannomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerwaard, Frank J.; Meijer, Otto W.M.; Hoorn, Elles A.P. van der
2009-06-01
Purpose: To evaluate volumetric modulated arc radiotherapy (RapidArc [RA]), a novel approach allowing for rapid treatment delivery, for the treatment of vestibular schwannoma (VS). Methods and Materials: The RA plans were generated for a small (0.5 cm{sup 3}), intermediate (2.8 cm{sup 3}), and large (14.8 cm{sup 3}) VS. The prescription dose was 12.5 Gy to the encompassing 80% isodose. The RA plans were compared with conventional radiosurgery plans using both a single dynamic conformal arc (1DCA) and five noncoplanar dynamic conformal arcs (5DCA). Conformity indices (CI) and dose-volume histograms of critical organs were compared. The RA plan for the medium-sizedmore » VS was measured in a phantom using Gafchromic EBT films and compared with calculated dose distributions. Results: The RA planning was completed within 30 min in all cases, and calculated treatment delivery time (after patient setup) was 5 min vs. 20 min for 5DCA. A superior CI was achieved with RA, with a substantial decrease in low-dose irradiation of the normal brain achieved relative to 5DCA plans. Maximum doses to critical organs were similar for RA and 5DCA but were higher for 1DCA. Film measurements showed the differences between calculated and measured doses to be smaller than 1.5% in the high-dose area and smaller than 3% in the low-dose area. Conclusion: The RA plans consistently achieved a higher CI and decrease in areas of low-dose irradiation. This, together with shorter treatment delivery times, has led to RA replacing our conventional five-arc radiosurgery technique for VS.« less
Mvundura, Mercy; Lorenson, Kristina; Chweya, Amos; Kigadye, Rosemary; Bartholomew, Kathryn; Makame, Mohammed; Lennon, T Patrick; Mwangi, Steven; Kirika, Lydia; Kamau, Peter; Otieno, Abner; Murunga, Peninah; Omurwa, Tom; Dafrossa, Lyimo; Kristensen, Debra
2015-05-28
Having data on the costs of the immunization system can provide decision-makers with information to benchmark the costs when evaluating the impact of new technologies or programmatic innovations. This paper estimated the supply chain and immunization service delivery costs and cost per dose in selected districts in Kenya and Tanzania. We also present operational data describing the supply chain and service delivery points (SDPs). To estimate the supply chain costs, we collected resource-use data for the cold chain, distribution system, and health worker time and per diems paid. We also estimated the service delivery costs, which included the time cost of health workers to provide immunization services, and per diems and transport costs for outreach sessions. Data on the annual quantities of vaccines distributed to each facility, and the occurrence and duration of stockouts were collected from stock registers. These data were collected from the national store, 2 regional and 4 district stores, and 12 SDPs in each country for 2012. Cost per dose for the supply chain and immunization service delivery were estimated. The average annual costs per dose at the SDPs were $0.34 (standard deviation (s.d.) $0.18) for Kenya when including only the vaccine supply chain costs, and $1.33 (s.d. $0.82) when including immunization service delivery costs. In Tanzania, these costs were $0.67 (s.d. $0.35) and $2.82 (s.d. $1.64), respectively. Both countries experienced vaccine stockouts in 2012, bacillus Calmette-Guérin vaccine being more likely to be stocked out in Kenya, and oral poliovirus vaccine in Tanzania. When stockouts happened, they usually lasted for at least one month. Tanzania made investments in 2011 in preparation for planned vaccine introductions, and their supply chain cost per dose is expected to decline with the new vaccine introductions. Immunization service delivery costs are a significant portion of the total costs at the SDPs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Griffiths, Ulla K; Santos, Andreia C; Nundy, Neeti; Jacoby, Erica; Matthias, Dipika
2011-01-29
Disposable-syringe jet injectors (DSJIs) have the potential to deliver vaccines safely and affordably to millions of children around the world. We estimated the incremental costs of transitioning from needles and syringes to delivering childhood vaccines with DSJIs in Brazil, India, and South Africa. Two scenarios were assessed: (1) DSJI delivery of all vaccines at current dose and depth; (2) a change to intradermal (ID) delivery with DSJIs for hepatitis B and yellow fever vaccines, while the other vaccines are delivered by DSJIs at current dose and depth. The main advantage of ID delivery is that only a small fraction of the standard dose may be needed to obtain an immune response similar to that of subcutaneous or intramuscular injection. Cost categories included were vaccines, injection equipment, waste management, and vaccine transport. Some delivery cost items, such as training and personnel were excluded as were treatment cost savings caused by a reduction in diseases transmitted due to unsafe injections. In the standard dose and depth scenario, the incremental costs of introducing DSJIs per fully vaccinated child amount to US$ 0.57 in Brazil, US$ 0.65 in India and US$ 1.24 in South Africa. In the ID scenario, there are cost savings of US$ 0.11 per child in Brazil, and added costs of US$ 0.45 and US$ 0.76 per child in India and South Africa, respectively. The most important incremental cost item is jet injector disposable syringes. The incremental costs should be evaluated against other vaccine delivery technologies that can deliver the same benefits to patients, health care workers, and the community. DSJIs deserve consideration by global and national decision-makers as a means to expand access to ID delivery and to enhance safety at marginal additional cost. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G; Currey, A; Li, X
2015-06-15
Purpose: MRI-guided radiation therapy (RT) delivery would be beneficial for breast irradiation. The electron return effect due to the presence of a transverse magnetic field (TMF) may cause dosimetric issues on dose on skin and at the lung-tissue interface. The purpose of this study is to investigate these issues. Methods: IMRT plans with tangential beams and VMAT plans with 200 degree arcs to cover ipsilateral breast were generated for 10 randomly selected breast cancer cases using a research planning system (Monaco, Elekta) utilizing Monte Carlo dose calculation with or without a TMF of 1.5 T. Plans were optimized to delivermore » uniform dose to the whole breast with an exclusion of 5 mm tissue under the skin (PTV-EVAL). All four plans for each patient were re-scaled to have the same PTV-EVAL volume to receive the same prescription dose. The skin is defined as the first 5 mm of ipsilateral-breast tissue, plus extensions in the surrounding region. Results: The presence of 1.5 T TMF resulted in (1)increased skin dose, with the mean and maximum skin dose increase of 5% and 9%, respectively; (2) similar dose homogeneity within the PTV-EVAL; (3) the slightly improved (3%) dose homogeneity in the whole breast; (4) Averages of 9 and 16% increases in V5 and V20, respectively, for ipsilateral lung; and (5) increased the mean heart dose by 34%. VMAT plans don’t improve whole breast dose uniformity as compared that to the tangential plans. Conclusion: The presence of transverse magnetic field in MRI-guided RT delivery for whole breast irradiation can Result in slightly improved dose homogeneity in the whole breast, increased dose to the ipsilateral lung, heart, and skin. Plan optimization with additional specific dose volume constraints may eliminate/reduce these dose increases. This work is partially supported by Elekta Inc.« less
Antimicrobial Silk Ocular Drug Delivery Implant for Chronic Posterior Segment Diseases
2016-06-01
antibody bevacizumab. The device was covalently coated with the antibacterial polymer HMPE1 to protect against biofilm formation and the transmission of harmful bacterial to the interior of the ocular chamber.
Chung, Jou-Ku; Spencer, Elizabeth; Hunt, Matthew; McCauley, Thomas; Welty, Devin
Lifitegrast is approved in the United States for the treatment of dry eye disease (DED). We assessed lifitegrast's ocular distribution/pharmacokinetic profile in rabbits, and 14 C-lifitegrast mass balance/excretion in dogs. Female pigmented rabbits received a single topical ocular dose of lifitegrast (Formulation No. 1, n = 25; No. 2, n = 25) per eye twice daily (target, 1.75 mg/eye/dose). Blood/ocular tissues were collected on day 5. Beagle dogs received single intravenous (n = 10; target, 3 mg, 262 μCi/animal) and ocular (n = 8, target, 3 mg, 30 μCi/eye) doses of 14 C-lifitegrast (∼8 weeks between doses). Blood, excreta, and cage rinse/wipes were collected. Concentrations were measured by mass spectrometry/liquid scintillation counting. Pharmacokinetic analyses (noncompartmental) included maximum concentration (C max ), time to C max (t max ), and area under the concentration-time curve from 0 to 8 h (AUC 0-8 ). In rabbits, lifitegrast C max and AUC 0-8 were similar between formulations. C max was highest in ocular anterior segment tissues: 5,190-14,200 ng/g [conjunctiva (palpebral/bulbar), cornea, anterior sclera]. Posterior segment tissues had lower concentrations (0-826 ng/g). AUC 0-8 followed a similar trend. Plasma concentrations were low (C max <18 ng/mL). Tissue/plasma t max was ∼0.25-1 h. In dogs, after intravenous/ocular doses, 14 C-lifitegrast was eliminated primarily through feces. Excreted radioactivity was mainly unchanged lifitegrast. High exposure of lifitegrast in rabbit ocular anterior segment tissues and low exposure in posterior segment tissues/plasma suggests that lifitegrast reaches target tissues for DED treatment, with low potential for off-target systemic/ocular effects. Excretion of unchanged 14 C-lifitegrast suggests minimal drug metabolism in vivo. This is consistent with lifitegrast clinical trial efficacy/safety data.
Hecksel, D; Anferov, V; Fitzek, M; Shahnazi, K
2010-06-01
Conventional proton therapy facilities use double scattering nozzles, which are optimized for delivery of a few fixed field sizes. Similarly, uniform scanning nozzles are commissioned for a limited number of field sizes. However, cases invariably occur where the treatment field is significantly different from these fixed field sizes. The purpose of this work was to determine the impact of the radiation field conformity to the patient-specific collimator on the secondary neutron dose equivalent. Using a WENDI-II neutron detector, the authors experimentally investigated how the neutron dose equivalent at a particular point of interest varied with different collimator sizes, while the beam spreading was kept constant. The measurements were performed for different modes of dose delivery in proton therapy, all of which are available at the Midwest Proton Radiotherapy Institute (MPRI): Double scattering, uniform scanning delivering rectangular fields, and uniform scanning delivering circular fields. The authors also studied how the neutron dose equivalent changes when one changes the amplitudes of the scanned field for a fixed collimator size. The secondary neutron dose equivalent was found to decrease linearly with the collimator area for all methods of dose delivery. The relative values of the neutron dose equivalent for a collimator with a 5 cm diameter opening using 88 MeV protons were 1.0 for the double scattering field, 0.76 for rectangular uniform field, and 0.6 for the circular uniform field. Furthermore, when a single circle wobbling was optimized for delivery of a uniform field 5 cm in diameter, the secondary neutron dose equivalent was reduced by a factor of 6 compared to the double scattering nozzle. Additionally, when the collimator size was kept constant, the neutron dose equivalent at the given point of interest increased linearly with the area of the scanned proton beam. The results of these experiments suggest that the patient-specific collimator is a significant contributor to the secondary neutron dose equivalent to a distant organ at risk. Improving conformity of the radiation field to the patient-specific collimator can significantly reduce secondary neutron dose equivalent to the patient. Therefore, it is important to increase the number of available generic field sizes in double scattering systems as well as in uniform scanning nozzles.
Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George
2010-01-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body. PMID:19430219
Caracappa, Peter F; Chao, T C Ephraim; Xu, X George
2009-06-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body.
SU-E-T-790: Validation of 4D Measurement-Guided Dose Reconstruction (MGDR) with OCTAVIUS 4D System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, V; Leung, R; Wong, M
2015-06-15
Purpose: To validate the MGDR of OCTAVIUS 4D system (PTW, Freiburg, Germany) for quality assurance (QA) of volumetric-modulated arc radiotherapy (VMAT). Methods: 4D-MGDR measurements were divided into two parts: 1) square fields from 2×2 to 25×25 cm{sup 2} at 0°, 10° and 45° gantry, and 2) 8 VMAT plans (5 nasopharyngeal and 3 prostate) collapsed to gantry 40° in QA mode in Monaco v5.0 (Elekta, CMS, Maryland Heights, MO) were delivered on the OCTAVIUS 4D phantom with the OCTAVIUS 1500 detector plane perpendicular to either the incident beam to obtain the reconstructed dose (OCTA4D) or the 0° gantry axis tomore » obtain the raw doses (OCTA3D) in Verisoft 6.1 (PTW, Freiburg, Germany). Raw measurements of OCTA3D were limited to < 45° gantry to avoid >0.5% variation of detector angular response with respect to 0° gantry as determined previously. Reconstructed OCTA4D and raw OCTA3D doses for all plans were compared at the same detector plane using γ criteria of 2% (local dose)/2mm and 3%/3mm criteria. Results: At gantry 0° and 10°, the γ results for all OCTA4D on detector plane coinciding with OCTA3D were over 90% at 2%/2mm except for the largest field (25×25 cm{sup 2} ) showing >88%. For square field at 45° gantry, γ passing rate is > 90% for fields smaller than 15x 15cm2 but < 80% for field size of 20 x20 cm{sup 2} upward. For VMAT, γ results showed 94% and 99% passing rate at 2%/2mm and 3%/3mm, respectively. Conclusion: OCTAVIUS 4D system has compromised accuracy in reconstructing dose away from the central beam axis, possibly due to the off-axis softening correction and errors of the percent depth dose data necessary as input for MGDR. Good results in VMAT delivery suggested that the system is relatively reliable for VMAT with small segments.« less
Monte Carlo based, patient-specific RapidArc QA using Linac log files.
Teke, Tony; Bergman, Alanah M; Kwa, William; Gill, Bradford; Duzenli, Cheryl; Popescu, I Antoniu
2010-01-01
A Monte Carlo (MC) based QA process to validate the dynamic beam delivery accuracy for Varian RapidArc (Varian Medical Systems, Palo Alto, CA) using Linac delivery log files (DynaLog) is presented. Using DynaLog file analysis and MC simulations, the goal of this article is to (a) confirm that adequate sampling is used in the RapidArc optimization algorithm (177 static gantry angles) and (b) to assess the physical machine performance [gantry angle and monitor unit (MU) delivery accuracy]. Ten clinically acceptable RapidArc treatment plans were generated for various tumor sites and delivered to a water-equivalent cylindrical phantom on the treatment unit. Three Monte Carlo simulations were performed to calculate dose to the CT phantom image set: (a) One using a series of static gantry angles defined by 177 control points with treatment planning system (TPS) MLC control files (planning files), (b) one using continuous gantry rotation with TPS generated MLC control files, and (c) one using continuous gantry rotation with actual Linac delivery log files. Monte Carlo simulated dose distributions are compared to both ionization chamber point measurements and with RapidArc TPS calculated doses. The 3D dose distributions were compared using a 3D gamma-factor analysis, employing a 3%/3 mm distance-to-agreement criterion. The dose difference between MC simulations, TPS, and ionization chamber point measurements was less than 2.1%. For all plans, the MC calculated 3D dose distributions agreed well with the TPS calculated doses (gamma-factor values were less than 1 for more than 95% of the points considered). Machine performance QA was supplemented with an extensive DynaLog file analysis. A DynaLog file analysis showed that leaf position errors were less than 1 mm for 94% of the time and there were no leaf errors greater than 2.5 mm. The mean standard deviation in MU and gantry angle were 0.052 MU and 0.355 degrees, respectively, for the ten cases analyzed. The accuracy and flexibility of the Monte Carlo based RapidArc QA system were demonstrated. Good machine performance and accurate dose distribution delivery of RapidArc plans were observed. The sampling used in the TPS optimization algorithm was found to be adequate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vikraman, S; Karrthick, K; Rajesh, T
2014-06-15
Purpose: The purpose of this study was to evaluate quantitatively 2D versus 3D dosimetry for stereotactic volumetric modulated arc delivery using COMPASS with 2D array. Methods: Twenty-five patients CT images and RT structures of different sites like brain, head and neck, thorax, abdomen and spine were taken from Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in Cyberknife. For each patient, linac based VMAT stereotactic plans were generated in Monaco TPS v 3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5-20Gy/fraction.TPS calculated VMAT plan delivery accuracy was quantitatively evaluated withmore » COMPASS measured dose and calculated dose based on DVH metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using Multicube. Results: For each site, D{sub 9} {sub 5} was achieved with 100% of prescription dose with maximum 0.05SD. Conformity index (CI) was observed closer to 1.15 in all cases. Maximum deviation of 2.62 % was observed for D{sub 9} {sub 5} when compared TPS versus COMPASS measured. Considerable deviations were observed in head and neck cases compare to other sites. The maximum mean and standard deviation for D{sub 9} {sub 5}, average target dose and average gamma were -0.78±1.72, -1.10±1.373 and 0.39±0.086 respectively. Numbers of pixels passing 2D fluence verification were observed as a mean of 99.36% ±0.455 SD with 3% dose difference and 3mm DTA. For critical organs in head and neck cases, significant dose differences were observed in 3D dosimetry while the target doses were matched well within limit in both 2D and 3D dosimetry. Conclusion: The quantitative evaluations of 2D versus 3D dosimetry for stereotactic volumetric modulated plans showed the potential of highlighting the delivery errors. This study reveals that COMPASS 3D dosimetry is an effective tool for patient specific quality assurance compared to 2D fluence verification.« less
SU-F-T-266: Dynalogs Based Evaluation of Different Dose Rate IMRT Using DVH and Gamma Index
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, S; Ahmed, S; Ahmed, F
2016-06-15
Purpose: This work investigates the impact of low and high dose rate on IMRT through Dynalogs by evaluating Gamma Index and Dose Volume Histogram. Methods: The Eclipse™ treatment planning software was used to generate plans on prostate and head and neck sites. A range of dose rates 300 MU/min and 600 MU/min were applied to each plan in order to investigate their effect on the beam ON time, efficiency and accuracy. Each plan had distinct monitor units per fraction, delivery time, mean dose rate and leaf speed. The DVH data was used in the assessment of the conformity and planmore » quality.The treatments were delivered on Varian™ Clinac 2100C accelerator equipped with 120 leaf millennium MLC. Dynalogs of each plan were analyzed by MATLAB™ program. Fluence measurements were performed using the Sun Nuclear™ 2D diode array and results were assessed, based on Gamma analysis of dose fluence maps, beam delivery statistics and Dynalogs data. Results: Minor differences found by adjusted R-squared analysis of DVH’s for all the plans with different dose rates. It has been also found that more and larger fields have greater time reduction at high dose rate and there was a sharp decrease in number of control points observed in dynalog files by switching dose rate from 300 MU/min to 600 MU/min. Gamma Analysis of all plans passes the confidence limit of ≥95% with greater number of passing points in 300 MU/min dose rate plans. Conclusion: The dynalog files are compatible tool for software based IMRT QA. It can work perfectly parallel to measurement based QA setup and stand-by procedure for pre and post delivery of treatment plan.« less
Concept of proton radiography using energy resolved dose measurement.
Bentefour, El H; Schnuerer, Roland; Lu, Hsiao-Ming
2016-08-21
Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams 'proton imaging field' are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.
Santos Armentia, E; Tardáguila de la Fuente, G; Castellón Plaza, D; Delgado Sánchez-Gracián, C; Prada González, R; Fernández Fernández, L; Tardáguila Montero, F
2014-01-01
To study the differences in vascular image quality, bone subtraction, and dose of radiation of dual energy CT angiography of the supraaortic trunks using different tube voltages. We reviewed the CT angiograms of the supraaortic trunks in 46 patients acquired with a 128-slice dual source CT scanner using two voltage protocols (80/140 kV and 100/140 kV). The "head bone removal" tool was used for postprocessing. We divided the arteries into 15 segments. In each segment, we evaluated the image quality of the vessels and the effectiveness of bone removal in multiplanar reconstructions (MPR) and in maximum intensity projections (MIP) with each protocol, analyzing the trabecular and cortical bones separately. We also evaluated the dose of radiation received. Of the 46 patients, 13 were studied using 80/140 kV and 33 with 100/140 kV. There were no significant differences between the two groups in age or sex. Image quality in four segments was better in the group examined with 100/140 kV. Cortical bone removal in MPR and MIP and trabecular bone removal in MIP were also better in the group examined with 100/140 kV. The dose of radiation received was significantly higher in the group examined with 100/140 kV (1.16 mSv with 80/140 kV vs. 1.59 mSv with 100/140 kV). Using 100/140 kV increases the dose of radiation but improves the quality of the study of arterial segments and bone subtraction. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun
2010-05-01
The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p < 0.01). The highest Ae(infinity) (1267.7+/-65.2 ng) was found in the formulation containing 6% caprylic acid in propylene glycol (PG), which was 5.4- and 2.0-times higher than the PG only formulation and oral administration, respectively. Compared to oral administration, significantly delayed half-life values were obtained from all the formulated transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.
Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun
2014-12-04
The aim of this study is to evaluate the ability of transit dosimetry using commercial treatment planning system (TPS) and an electronic portal imaging device (EPID) with simple calibration method to verify the beam delivery based on detection of large errors in treatment room. Twenty four fields of intensity modulated radiotherapy (IMRT) plans were selected from four lung cancer patients and used in the irradiation of an anthropomorphic phantom. The proposed method was evaluated by comparing the calculated dose map from TPS and EPID measurement on the same plane using a gamma index method with a 3% dose and 3 mm distance-to-dose agreement tolerance limit. In a simulation using a homogeneous plastic water phantom, performed to verify the effectiveness of the proposed method, the average passing rate of the transit dose based on gamma index was high enough, averaging 94.2% when there was no error during beam delivery. The passing rate of the transit dose for 24 IMRT fields was lower with the anthropomorphic phantom, averaging 86.8% ± 3.8%, a reduction partially due to the inaccuracy of TPS calculations for inhomogeneity. Compared with the TPS, the absolute value of the transit dose at the beam center differed by -0.38% ± 2.1%. The simulation study indicated that the passing rate of the gamma index was significantly reduced, to less than 40%, when a wrong field was erroneously irradiated to patient in the treatment room. This feasibility study suggested that transit dosimetry based on the calculation with commercial TPS and EPID measurement with simple calibration can provide information about large errors for treatment beam delivery.
Binny, Diana; Mezzenga, Emilio; Lancaster, Craig M; Trapp, Jamie V; Kairn, Tanya; Crowe, Scott B
2017-06-01
The aims of this study were to investigate machine beam parameters using the TomoTherapy quality assurance (TQA) tool, establish a correlation to patient delivery quality assurance results and to evaluate the relationship between energy variations detected using different TQA modules. TQA daily measurement results from two treatment machines for periods of up to 4years were acquired. Analyses of beam quality, helical and static output variations were made. Variations from planned dose were also analysed using Statistical Process Control (SPC) technique and their relationship to output trends were studied. Energy variations appeared to be one of the contributing factors to delivery output dose seen in the analysis. Ion chamber measurements were reliable indicators of energy and output variations and were linear with patient dose verifications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Holbrook, M.; Coker, S. J.
1989-01-01
1. The aim of this study was to compare the effects of the non-selective phosphodiesterase (PDE) inhibitor, isobutylmethylxanthine (IBMX) and the selective PDE III inhibitor, milrinone, in a rabbit model of acute myocardial ischaemia. 2. Coronary artery occlusion caused changes in the ST-segment of the ECG and ectopic activity in all control rabbits. Ventricular fibrillation occurred in 10 out of 14 (71%) of these animals. Pretreatment with IBMX 100 micrograms kg-1 plus 10 micrograms kg-1 min-1, starting 10 min before coronary artery occlusion, reduced ischaemia-induced ST-segment changes and ventricular fibrillation occurred in only 10% of this group (n = 10). A similar dose of milrinone had no antiarrhythmic activity, whereas with a lower dose of milrinone, 30 micrograms kg-1 plus 3 micrograms kg-1 min-1 (n = 10), only 30% of rabbits fibrillated and ST-segment changes were attenuated. 3. Acute administration of both IBMX and milrinone reduced arterial blood pressure. With the higher dose of milrinone a significant effect was still present after 10 min of drug infusion. A greater hypotensive response to the higher dose of milrinone was observed in the rabbits which subsequently fibrillated during ischaemia. A marked tachycardia was also observed after administration of the higher dose of milrinone. 4. At the end of the experiment platelet aggregation was studied ex vivo. ADP-induced aggregation was reduced by pretreatment of the rabbits with milrinone but not IBMX. Both PDE inhibitors enhanced the ability of isoprenaline to inhibit ADP-induced platelet aggregation but milrinone was more effective, particularly at the higher dose.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2478245
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Molecular Imaging Program at Stanford, Stanford, CA; Bio-X Program, Stanford, CA
2015-06-15
Purpose: To evaluate radiation responses of the medulloblastoma cell line Daoy in intensity-modulated radiation therapy (IMRT), quantitative variations to variable radiation dosimetic parameters were tracked by bioluminescent images (BLIs). Methods: The luciferase and green fluorescent protein positive Daoy cells were cultured on dishes. The medulloblastoma cells irradiated to different dose rate, interval of fractionated doses, field margin and misalignment, and dose uniformity in IMRT were monitored using bioluminescent images. The cultured cells were placed into a dedicated acrylic phantom to deliver intensity-modulated fluences and calculate accurate predicted dose distribution. The radiation with dose rate from 0.5 Gy/min to 15 Gy/minmore » was irradiated by adjusting monitor unit per minute and source-to-surface distances. The intervals of fractionated dose delivery were changed considering the repair time of double strand breaks (DSB) revealed by straining of gamma-H2AX.The effect of non-uniform doses on the cells were visualized by registering dose distributions and BLIs. The viability according to dosimetric parameters was correlated with bioluminescent intensities for cross-check of radiation responses. Results: The DSB and cell responses due to the first fractionated dose delivery significantly affected final tumor control rather than other parameters. The missing tumor volumes due to the smaller field margin than the tumor periphery or field misalignment caused relapse of cell responses on BLIs. The dose rate and gradient had effect on initial responses but could not bring out the distinguishable killing effect on cancer cells. Conclusion: Visualized and quantified bioluminescent images were useful to correlate the dose distributions with spatial radiation effects on cells. This would derive the effective combination of dose delivery parameters and fractionation. Radiation responses in particular IMRT configuration could be reflected to image based-dose re-optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuvel, K; Yadav, G; Bhushan, M
2016-06-15
Purpose: To quantify the dosimetric accuracy of junction dose in double isocenter flattened and flatten filter free(FFF) intensity modulated radiation therapy(IMRT) and volumetric modulated arc therapy(VMAT) plan delivery using pelvis phantom. Methods: Five large field pelvis patients were selected for this study. Double isocenter IMRT and VMAT treatment plans were generated in Eclipse Treatment planning System (V.11.0) using 6MV FB and FFF beams. For all the plans same distance 17.0cm was kept between one isocenter to another isocenter. IMRT Plans were made with 7 coplanar fields and VMAT plans were made with full double arcs. Dose calculation was performed usingmore » AAA algorithms with dose grid size of 0.25 cm. Verification plans were calculated on Scanditronix Wellhofer pelvis slab phantom. Measurement point was selected and calculated, where two isocenter plan fields are overlapping, this measurement point was kept at distance 8.5cm from both isocenter. The plans were delivered using Varian TrueBeamTM machine on pelvis slab phantom. Point dose measurements was carried out using CC13 ion chamber volume of 0.13cm3. Results: The measured junction point dose are compared with TPS calculated dose. The mean difference observed was 4.5%, 6.0%, 4.0% and 7.0% for IMRT-FB,IMRT-FFF, VMAT-FB and VMAT-FFF respectively. The measured dose results shows closer agreement with calculated dose in Flatten beam planning in both IMRT and VMAT, whereas in FFF beam plan dose difference are more compared with flatten beam plan. Conclusion: Dosimetry accuracy of Large Field junction dose difference was found less in Flatten beam compared with FFF beam plan delivery. Even though more dosimetric studies are required to analyse junction dose for FFF beam planning using multiple point dose measurements and fluence map verification in field junction area.« less
Interactive Dose Shaping - efficient strategies for CPU-based real-time treatment planning
NASA Astrophysics Data System (ADS)
Ziegenhein, P.; Kamerling, C. P.; Oelfke, U.
2014-03-01
Conventional intensity modulated radiation therapy (IMRT) treatment planning is based on the traditional concept of iterative optimization using an objective function specified by dose volume histogram constraints for pre-segmented VOIs. This indirect approach suffers from unavoidable shortcomings: i) The control of local dose features is limited to segmented VOIs. ii) Any objective function is a mathematical measure of the plan quality, i.e., is not able to define the clinically optimal treatment plan. iii) Adapting an existing plan to changed patient anatomy as detected by IGRT procedures is difficult. To overcome these shortcomings, we introduce the method of Interactive Dose Shaping (IDS) as a new paradigm for IMRT treatment planning. IDS allows for a direct and interactive manipulation of local dose features in real-time. The key element driving the IDS process is a two-step Dose Modification and Recovery (DMR) strategy: A local dose modification is initiated by the user which translates into modified fluence patterns. This also affects existing desired dose features elsewhere which is compensated by a heuristic recovery process. The IDS paradigm was implemented together with a CPU-based ultra-fast dose calculation and a 3D GUI for dose manipulation and visualization. A local dose feature can be implemented via the DMR strategy within 1-2 seconds. By imposing a series of local dose features, equal plan qualities could be achieved compared to conventional planning for prostate and head and neck cases within 1-2 minutes. The idea of Interactive Dose Shaping for treatment planning has been introduced and first applications of this concept have been realized.
An in vivo dose verification method for SBRT-VMAT delivery using the EPID.
McCowan, P M; Van Uytven, E; Van Beek, T; Asuni, G; McCurdy, B M C
2015-12-01
Radiation treatments have become increasingly more complex with the development of volumetric modulated arc therapy (VMAT) and the use of stereotactic body radiation therapy (SBRT). SBRT involves the delivery of substantially larger doses over fewer fractions than conventional therapy. SBRT-VMAT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. Electronic portal imaging devices (EPIDs) are available on most commercial linear accelerators (Linacs) and their documented use for dosimetry makes them valuable tools for patient dose verification. In this work, the authors customize and validate a physics-based model which utilizes on-treatment EPID images to reconstruct the 3D dose delivered to the patient during SBRT-VMAT delivery. The SBRT Linac head, including jaws, multileaf collimators, and flattening filter, were modeled using Monte Carlo methods and verified with measured data. The simulation provides energy spectrum data that are used by their "forward" model to then accurately predict fluence generated by a SBRT beam at a plane above the patient. This fluence is then transported through the patient and then the dose to the phosphor layer in the EPID is calculated. Their "inverse" model back-projects the EPID measured focal fluence to a plane upstream of the patient and recombines it with the extra-focal fluence predicted by the forward model. This estimate of total delivered fluence is then forward projected onto the patient's density matrix and a collapsed cone convolution algorithm calculates the dose delivered to the patient. The model was tested by reconstructing the dose for two prostate, three lung, and two spine SBRT-VMAT treatment fractions delivered to an anthropomorphic phantom. It was further validated against actual patient data for a lung and spine SBRT-VMAT plan. The results were verified with the treatment planning system (TPS) (ECLIPSE AAA) dose calculation. The SBRT-VMAT reconstruction model performed very well when compared to the TPS. A stringent 2%/2 mm χ-comparison calculation gave pass rates better than 91% for the prostate plans, 88% for the lung plans, and 86% for the spine plans for voxels containing 80% or more of the prescribed dose. Patient data were 86% for the lung and 95% for the spine. A 3%/3 mm χ-comparison was also performed and gave pass rates better than 93% for all plan types. The authors have customized and validated a robust, physics-based model that calculates the delivered dose to a patient for SBRT-VMAT delivery using on-treatment EPID images. The accuracy of the results indicates that this approach is suitable for clinical implementation. Future work will incorporate this model into both offline and real-time clinical adaptive radiotherapy.
Pesko, Kendra; Westbrook, Catherine J; Mores, Christopher N; Lounibos, L Philip; Reiskind, Michael H
2009-03-01
Chikungunya virus (CHIKV) is an arbovirus (genus Alphavirus, family Togaviridae) that has recently caused disease outbreaks in the Indian Ocean basin and southern Europe. These outbreaks could be associated with a possible shift in primary vector from Aedes aegypti to Ae. albopictus. To evaluate vector competence differences in possible CHIKV vectors, we evaluated the dose-dependant susceptibility of Florida strains of Ae. albopictus and Ae. aegypti for infection with a La Réunion island strain of CHIKV. Pledget and water-jacketed membrane feeding systems were also evaluated. We show that both Aedes spp. were susceptible to the highest CHIKV doses, whereas only Ae. albopictus developed disseminated infections after exposure to the two lowest doses. Infection rates for both mosquito species were significantly affected by the bloodmeal delivery method used. This information is important in assessing risk of an outbreak of imported CHIKV in the United States, in determining differences in vectorial capacity of these two vector species, and in evaluating arbovirus delivery methods in the laboratory.
Pesko, Kendra; Westbrook, Catherine J.; Mores, Christopher N.; Lounibos, L. Philip; Reiskind, Michael H.
2009-01-01
Chikungunya virus (CHIKV) is an arbovirus (genus Alphavirus, family Togaviridae) that has recently caused disease outbreaks in the Indian Ocean basin and southern Europe. These outbreaks could be associated with a possible shift in primary vector from Aedes aegypti to Ae. albopictus. To evaluate vector competence differences in possible CHIKV vectors, we evaluated the dose-dependant susceptibility of Florida strains of Ae. albopictus and Ae. aegypti for infection with a La Réunion island strain of CHIKV. Pledget and water-jacketed membrane feeding systems were also evaluated. We show that both Aedes spp. were susceptible to the highest CHIKV doses, whereas only Ae. albopictus developed disseminated infections after exposure to the two lowest doses. Infection rates for both mosquito species were significantly affected by the bloodmeal delivery method used. This information is important in assessing risk of an outbreak of imported CHIKV in the United States, in determining differences in vectorial capacity of these two vector species, and in evaluating arbovirus delivery methods in the laboratory. PMID:19351094
A new metric for assessing IMRT modulation complexity and plan deliverability.
McNiven, Andrea L; Sharpe, Michael B; Purdie, Thomas G
2010-02-01
To evaluate the utility of a new complexity metric, the modulation complexity score (MCS), in the treatment planning and quality assurance processes and to evaluate the relationship of the metric with deliverability. A multisite (breast, rectum, prostate, prostate bed, lung, and head and neck) and site-specific (lung) dosimetric evaluation has been completed. The MCS was calculated for each beam and the overall treatment plan. A 2D diode array (MapCHECK, Sun Nuclear, Melbourne, FL) was used to acquire measurements for each beam. The measured and planned dose (PINNACLE3, Phillips, Madison, WI) was evaluated using different percent differences and distance to agreement (DTA) criteria (3%/ 3 mm and 2%/ 1 mm) and the relationship between the dosimetric results and complexity (as measured by the MCS or simple beam parameters) assessed. For the multisite analysis (243 plans total), the mean MCS scores for each treatment site were breast (0.92), rectum (0.858), prostate (0.837), prostate bed (0.652), lung (0.631), and head and neck (0.356). The MCS allowed for compilation of treatment site-specific statistics, which is useful for comparing different techniques, as well as for comparison of individual treatment plans with the typical complexity levels. For the six plans selected for dosimetry, the average diode percent pass rate was 98.7% (minimum of 96%) for 3%/3 mm evaluation criteria. The average difference in absolute dose measurement between the planned and measured dose was 1.7 cGy. The detailed lung analysis also showed excellent agreement between the measured and planned dose, as all beams had a diode percentage pass rate for 3%/3 mm criteria of greater than 95.9%, with an average pass rate of 99.0%. The average absolute maximum dose difference for the lung plans was 0.7 cGy. There was no direct correlation between the MCS and simple beam parameters which could be used as a surrogate for complexity level (i.e., number of segments or MU). An evaluation criterion of 2%/ 1 mm reliably allowed for the identification of beams that are dosimetrically robust. In this study we defined a robust beam or plan as one that maintained a diode percentage pass rate greater than 90% at 2%/ 1 mm, indicating delivery that was deemed accurate when compared to the planned dose, even under stricter evaluation criterion. MCS and MU threshold criteria were determined by defining a required specificity of 1.0. A MCS threshold of 0.8 allowed for identification of robust deliverability with a sensitivity of 0.36. In contrast, MU had a lower sensitivity of 0.23 for a threshold of 50 MU. The MCS allows for a quantitative assessment of plan complexity, on a fixed scale, that can be applied to all treatment sites and can provide more information related to dose delivery than simple beam parameters. This could prove useful throughout the entire treatment planning and QA process.
Gargett, Maegan; Oborn, Brad; Metcalfe, Peter; Rosenfeld, Anatoly
2015-02-01
MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named "magic plate," for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. geant4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm(3)) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm(2) area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm(2) photon field size. The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI-linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargett, Maegan, E-mail: mg406@uowmail.edu.au; Rosenfeld, Anatoly; Oborn, Brad
2015-02-15
Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-linemore » and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI–linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keehan, S; Taylor, M; Franich, R
2015-06-15
Purpose: To assess the risk posed by neutron induced activation of components in medical linear accelerators (linacs) following the delivery of high monitor unit 18 MV photon beams such as used in TBI. Methods: Gamma spectroscopy was used to identify radioisotopes produced in components of a Varian 21EX and an Elekta Synergy following delivery of photon beams. Dose and risk estimates for TBI were assessed using dose deliveries from an actual patient treatment. A 1 litre spherical ion chamber (PTW, Germany) has been used to measure the dose at the beam exit window and at the total body irradiation (TBI)more » treatment couch following large and small field beams with long beam-on times. Measurements were also made outside of the closed jaws to quantify the benefit of the attenuation provided by the jaws. Results: The radioisotopes produced in the linac head have been identified as {sup 187}W, {sup 56}Mn, {sup 24}Na and {sup 28}Al, which have half-lives from between 2.3 min to 24 hours. The dose at the beam exit window following an 18 MV 2197 MU TBI beam delivery was 12.6 µSv in ten minutes. The dose rate at the TBI treatment couch 4.8 m away is a factor of ten lower. For a typical TBI delivered in six fractions each consisting of four beams and an annual patient load of 24, the annual dose estimate for a staff member at the treatment couch for ten minutes is 750 µSv. This can be further reduced by a factor of about twelve if the jaws are closed before entering the room, resulting in a dose estimate of 65 µSv. Conclusion: The dose resulting from the activation products for a representative TBI workload at our clinic of 24 patients per year is 750 µSv, which can be further reduced to 65 µSv by closing the jaws.« less
Factors Influencing the Effectiveness of Glucagon for Preventing Hypoglycemia
Castle, Jessica R; Engle, Julia M; El Youssef, Joseph; Massoud, Ryan G; Ward, W Kenneth
2010-01-01
Background Administration of small, intermittent doses of glucagon during closed-loop insulin delivery markedly reduces the frequency of hypoglycemia. However, in some cases, hypoglycemia occurs despite administration of glucagon in this setting. Methods Fourteen adult subjects with type 1 diabetes participated in 22 closed-loop studies, duration 21.5 ± 2.0 h. The majority of subjects completed two studies, one with insulin + glucagon, given subcutaneously by algorithm during impending hypoglycemia, and one with insulin + placebo. The more accurate of two subcutaneous glucose sensors was used as the controller input. To better understand reasons for success or failure of glucagon to prevent hypoglycemia, each response to a glucagon dose over 0.5 µg/kg was analyzed (n = 19 episodes). Results Hypoglycemia occurred in the hour after glucagon delivery in 37% of these episodes. In the failures, estimated insulin on board was significantly higher versus successes (5.8 ± 0.5 versus 2.9 ± 0.5 U, p < .001). Glucose at the time of glucagon delivery was significantly lower in failures versus successes (86 ± 3 versus 95 ± 3 mg/dl, p = .04). Sensor bias (glucose overestimation) was highly correlated with starting glucose (r = 0.65, p = .002). Prior cumulative glucagon dose was not associated with success or failure. Conclusion Glucagon may fail to prevent hypoglycemia when insulin on board is high or when glucagon delivery is delayed due to overestimation of glucose by the sensor. Improvements in sensor accuracy and delivery of larger or earlier glucagon doses when insulin on board is high may further reduce the frequency of hypoglycemia. PMID:21129324
Factors influencing the effectiveness of glucagon for preventing hypoglycemia.
Castle, Jessica R; Engle, Julia M; El Youssef, Joseph; Massoud, Ryan G; Ward, W Kenneth
2010-11-01
Administration of small, intermittent doses of glucagon during closed-loop insulin delivery markedly reduces the frequency of hypoglycemia. However, in some cases, hypoglycemia occurs despite administration of glucagon in this setting. Fourteen adult subjects with type 1 diabetes participated in 22 closed-loop studies, duration 21.5±2.0 h. The majority of subjects completed two studies, one with insulin + glucagon, given subcutaneously by algorithm during impending hypoglycemia, and one with insulin+placebo. The more accurate of two subcutaneous glucose sensors was used as the controller input. To better understand reasons for success or failure of glucagon to prevent hypoglycemia, each response to a glucagon dose over 0.5 µg/kg was analyzed (n=19 episodes). Hypoglycemia occurred in the hour after glucagon delivery in 37% of these episodes. In the failures, estimated insulin on board was significantly higher versus successes (5.8±0.5 versus 2.9±0.5 U, p<.001). Glucose at the time of glucagon delivery was significantly lower in failures versus successes (86±3 versus 95±3 mg/dl, p=.04). Sensor bias (glucose overestimation) was highly correlated with starting glucose (r=0.65, p=.002). Prior cumulative glucagon dose was not associated with success or failure. Glucagon may fail to prevent hypoglycemia when insulin on board is high or when glucagon delivery is delayed due to overestimation of glucose by the sensor. Improvements in sensor accuracy and delivery of larger or earlier glucagon doses when insulin on board is high may further reduce the frequency of hypoglycemia. © 2010 Diabetes Technology Society.
California's digital divide: clinical information systems for the haves and have-nots.
Miller, Robert H; D'Amato, Katherine; Oliva, Nancy; West, Christopher E; Adelson, Joel W
2009-01-01
Strong barriers prevent the financing of clinical information systems (CIS) in health care delivery system organizations in market segments serving disadvantaged patients. These segments include community health centers, public hospitals, unaffiliated rural hospitals, and some Medicaid-oriented solo and small-group medical practices. Policy interventions such as loans, grants, pay-for-performance and other reimbursement changes, and support services assistance will help lower these barriers. Without intervention, progress will be slow and worsen health care disparities between the advantaged and disadvantaged populations.
2004-07-15
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (left) assists a technician check out the Pump Flow Control Subsystem (PFCS) before it is installed on the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
2004-07-15
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (second from left) assists technicians position the Pump Flow Control Subsystem (PFCS) over the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
2004-07-15
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician steadies the Pump Flow Control Subsystem (PFCS) as it is lifted and moved toward the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
2004-07-15
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (second from left) assists technicians lower the Pump Flow Control Subsystem (PFCS) into position onto the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
2004-07-15
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (left) assists technicians install the Pump Flow Control Subsystem (PFCS) onto the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, J; Welsh, L; Gulliford, S
Purpose: The significant morbidity caused by radiation-induced acute oral mucositis means that studies aiming to elucidate dose-response relationships in this tissue are a high priority. However, there is currently no standardized method for delineating the mucosal structures within the oral cavity. This report describes the development of a methodology to delineate the oral mucosa accurately on CT scans in a semi-automated manner. Methods: An oral mucosa atlas for automated segmentation was constructed using the RayStation Atlas-Based Segmentation (ABS) module. A radiation oncologist manually delineated the full surface of the oral mucosa on a planning CT scan of a patient receivingmore » radiotherapy (RT) to the head and neck region. A 3mm fixed annulus was added to incorporate the mucosal wall thickness. This structure was saved as an atlas template. ABS followed by model-based segmentation was performed on four further patients sequentially, adding each patient to the atlas. Manual editing of the automatically segmented structure was performed. A dose comparison between these contours and previously used oral cavity volume contours was performed. Results: The new approach was successful in delineating the mucosa, as assessed by an experienced radiation oncologist, when applied to a new series of patients receiving head and neck RT. Reductions in the mean doses obtained when using the new delineation approach, compared with the previously used technique, were demonstrated for all patients (median: 36.0%, range: 25.6% – 39.6%) and were of a magnitude that might be expected to be clinically significant. Differences in the maximum dose that might reasonably be expected to be clinically significant were observed for two patients. Conclusion: The method developed provides a means of obtaining the dose distribution delivered to the oral mucosa more accurately than has previously been achieved. This will enable the acquisition of high quality dosimetric data for use in dose-response studies. We would like to thank the Engineering and Physical Sciences Research Council for funding. We acknowledge support from the NIHR RM/ICR Biomedical Research Centre. RayStatation was used under an evaluation agreement with RaySearch Laboratories AB.« less
Ultrasound-guided drug delivery in cancer
2017-01-01
Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy. PMID:28607323
Candell-Riera, Jaume; Romero-Farina, Guillermo; Milá, Marta; Aguadé-Bruix, Santiago
2008-10-01
The objective of this study was to use low-dose dobutamine (LDD) gated single-photon emission computed tomography (SPECT) to evaluate segmental thickening of the left ventricle (LV) and its relationship with changes in ejection fraction (EF) and ventricular volumes in patients with ischemic cardiomyopathy. This prospective multicenter study involved 89 patients with ischemic cardiomyopathy (i.e., EF < or =40%) who underwent LDD gated-SPECT at rest. The LV was divided into 17 segments and systolic thickening was assessed in a total of 1513 segments during LDD infusion. RESULTS; A significant increase in LVEF (33.2% vs. 30.8%; P< .001) was observed during LDD infusion and occurred at the expense of a reduction in end-systolic volume (130.5 mL vs. 136.4 mL; P=.005). The increase in EF was > or =5% in 33.7% of patients, while the EF decreased by > or =5% in 5.6% of patients. With LDD infusion, both an improvement in > or =3 segments with severely decreased baseline thickening (odds ratio [OR] = 18.3; 95% confidence interval [CI], 5.3-63) and an improvement in > or =10 segments with mild-to-moderate alterations in baseline thickening (OR = 4.53; 95% CI, 1.26-16.16) were associated with a > or =5% increase in LVEF. During the assessment of global left ventricular contractile reserve by LDD gated-SPECT, attention should be paid not only to the behavior of segments with severely decreased baseline thickening, which are generally regarded as indicating viability, but also to segments with mild-to-moderate alterations and to those in which thickening decreases.
NASA Astrophysics Data System (ADS)
Budiyono, T.; Budi, W. S.; Hidayanto, E.
2016-03-01
Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).
Estimates of internal-dose equivalent from inhalation and ingestion of selected radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, D.E.
1982-01-01
This report presents internal radiation dose conversion factors for radionuclides of interest in environmental assessments of nuclear fuel cycles. This volume provides an updated summary of estimates of committed dose equivalent for radionuclides considered in three previous Oak Ridge National Laboratory (ORNL) reports. Intakes by inhalation and ingestion are considered. The International Commission on Radiological Protection (ICRP) Task Group Lung Model has been used to simulate the deposition and retention of particulate matter in the respiratory tract. Results corresponding to activity median aerodynamic diameters (AMAD) of 0.3, 1.0, and 5.0 ..mu..m are given. The gastorintestinal (GI) tract has been representedmore » by a four-segment catenary model with exponential transfer of radioactivity from one segment to the next. Retention of radionuclides in systemic organs is characterized by linear combinations of decaying exponential functions, recommended in ICRP Publication 30. The first-year annual dose rate, maximum annual dose rate, and fifty-year dose commitment per microcurie intake of each radionuclide is given for selected target organs and the effective dose equivalent. These estimates include contributions from specified source organs plus the systemic activity residing in the rest of the body; cross irradiation due to penetrating radiations has been incorporated into these estimates. 15 references.« less
SU-F-T-279: Impact of Beam Energy Drifts On IMRT Delivery Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddu, S; Kamal, G; Herman, A
Purpose: According to TG-40 percent-depth-dose (PDD) tolerance is ±2% but TG-142 is ±1%. Now the question is, which one is relevant in IMRT era? The primary objective of this study is to evaluate dosimetric impact of beam-energy-drifts on IMRT-delivery. Methods: Beam-energy drifts were simulated by adjusting Linac’s bending-magnet-current (BMC) followed by tuning the pulse-forming network and adjusting gun-current. PDD change of −0.6% and +1.2% were tested. Planar-dosimetry measurements were performed using an ionization-chamber-array in solid-water phantoms. Study includes 10-head-and-neck and 3-breast cancer patients. en-face beam-deliveries were also tested at 1.3cm and 5.3cm depths. Composite and single-field dose-distributions were compared againstmore » the plans to determine %Gamma pass-rates (%GPRs). For plan dose comparisons, changes in %Gamma pass-rates (cPGPRs) were computed/reported to exclude the differences between dose-computation and delivery. Dose distributions of the drifted-energies were compared against their baseline measurements to determine the% GPRs. A Gamma criteria of 3%/3mm was considered for plan-dose comparisons while 3%/1mm used for measured dose intercomparisons. Results: For composite-dose delivery, average cPGPRs were 0.41%±2.48% and −2.54%±3.65% for low-energy (LE) and high-energy (HE) drifts, respectively. For measured dose inter-comparisons, the average%GPRs were 98.4%±2.2% (LE-drift) and 95.8%±4.0 (HE-drift). The average %GPR of 92.6%±4.3% was noted for the worst-case scenario comparing LE-drift to HE-drift. All en-face beams at 5.3 cm depth have cPGPRs within ±4% of the baseline-energy measurements. However, greater variations were noted for 1.3cm depth. Average %GPRs for drifted energies were >99% at 5.3cm and >97% at 1.3cm depths. However, for the worst-case scenario (LE-drift to HE-drift) these numbers dropped to 95.2% at 5.3cm and 93.1% at 1.3cm depths. Conclusion: The dosimetric impact of beam-energy drifts was found to be within clinically acceptable tolerance. However, this study includes a single energy with limited range of PDD change. Further studies are on going and the results will be presented. Received funding from Varian Medical Systems, Palo Alto, CA.« less
Stereotactic Arrhythmia Radioablation (STAR) of Ventricular Tachycardia: A Treatment Planning Study
Fahimian, Benjamin; Soltys, Scott G; Zei, Paul; Lo, Anthony; Gardner, Edward A; Maguire, Patrick J; Loo Jr., Billy W
2016-01-01
Purpose The first stereotactic arrhythmia radioablation (STAR) of ventricular tachycardia (VT) was delivered at Stanford on a robotic radiosurgery system (CyberKnife® G4) in 2012. The results warranted further investigation of this treatment. Here we compare dosimetrically three possible treatment delivery platforms for STAR. Methods The anatomy and target volume of the first treated patient were used for this study. A dose of 25 Gy in one fraction was prescribed to the planning target volume (PTV). Treatment plans were created on three treatment platforms: CyberKnife® G4 system with Iris collimator (Multiplan, V. 4.6)(Plan #1), CyberKnife® M6 system with InCise 2TM multileaf collimator (Multiplan V. 5.3)(Plan #2) and Varian TrueBeamTM STx with HD 120TM MLC and 10MV flattening filter free (FFF) beam (Eclipse planning system, V.11) (Plan #3 coplanar and #4 noncoplanar VMAT plans). The four plans were compared by prescription isodose line, plan conformity index, dose gradient, as well as dose to the nearby critical structures. To assess the delivery efficiency, planned monitor units (MU) and estimated treatment time were evaluated. Results Plans #1-4 delivered 25 Gy to the PTV to the 75.0%, 83.0%, 84.3%, and 84.9% isodose lines and with conformity indices of 1.19, 1.16, 1.05, and 1.05, respectively. The dose gradients for plans #1-4 were 3.62, 3.42, 3.93, and 3.73 with the CyberKnife® MLC plan (Plan #2) the best, and the TrueBeamTM STx co-planar plan (Plan #3) the worst. The dose to nearby critical structures (lung, stomach, bowel, and esophagus) were all well within tolerance. The MUs for plans #1-4 were 27671, 16522, 6275, and 6004 for an estimated total-treatment-time/beam-delivery-time of 99/69, 65/35, 37/7, and 56/6 minutes, respectively, under the assumption of 30 minutes pretreatment setup time. For VMAT gated delivery, a 40% duty cycle, 2400MU/minute dose rate, and an extra 10 minutes per extra arc were assumed. Conclusion Clinically acceptable plans were created with all three platforms. Plans with MLC were considerably more efficient in MU. CyberKnife® M6 with InCise 2TM collimator provided the most conformal plan (steepest dose drop-off) with significantly reduced MU and treatment time. VMAT plans were most efficient in MU and delivery time. Fluoroscopic image guidance removes the need for additional fiducial marker placement; however, benefits may be moderated by worse dose gradient and more operator-dependent motion management by gated delivery. PMID:27570715
Kaufman, Isaac; Powell, Rachel; Pandya, Shalini; Somnay, Archana; Bossenberger, Todd; Ramirez, Ezequiel; Reynolds, Robert; Solberg, Timothy; Burmeister, Jay
2015-01-01
Spine SBRT involves the delivery of very high doses of radiation to targets adjacent to the spinal cord and is most commonly delivered in a single fraction. Highly conformal planning and accurate delivery of such plans is imperative for successful treatment without catastrophic adverse effects. End–to‐end testing is an important practice for evaluating the entire treatment process from simulation through treatment delivery. We performed end‐to‐end testing for a set of representative spine targets planned and delivered using four different treatment planning systems (TPSs) and delivery systems to evaluate the various capabilities of each. An anthropomorphic E2E SBRT phantom was simulated and treated on each system to evaluate agreement between measured and calculated doses. The phantom accepts ion chambers in the thoracic region and radiochromic film in the lumbar region. Four representative targets were developed within each region (thoracic and lumbar) to represent different presentations of spinal metastases and planned according to RTOG 0631 constraints. Plans were created using the TomoTherapy TPS for delivery using the Hi·Art system, the iPlan TPS for delivery using the Vero system, the Eclipse TPS for delivery using the TrueBeam system in both flattened and flattening filter free (FFF), and the MultiPlan TPS for delivery using the CyberKnife system. Delivered doses were measured using a 0.007 cm3 ion chamber in the thoracic region and EBT3 GAFCHROMIC film in the lumbar region. Films were scanned and analyzed using an Epson Expression 10000XL flatbed scanner in conjunction with FilmQAPro2013. All treatment platforms met all dose constraints required by RTOG 0631. Ion chamber measurements in the thoracic targets delivered an overall average difference of 1.5%. Specifically, measurements agreed with the TPS to within 2.2%, 3.2%, 1.4%, 3.1%, and 3.0% for all three measureable cases on TomoTherapy, Vero, TrueBeam (FFF), TrueBeam (flattened), and CyberKnife, respectively. Film measurements for the lumbar targets resulted in average global gamma index passing rates of 100% at 3%/3 mm, 96.9% at 2%/2 mm, and 61.8% at 1%/1 mm, with a 10% minimum threshold for all plans on all platforms. Local gamma analysis was also performed with similar results. While gamma passing rates were consistently accurate across all platforms through 2%/2 mm, treatment beam‐on delivery times varied greatly between each platform with TrueBeam FFF being shortest, averaging 4.4 min, TrueBeam using flattened beam at 9.5 min, TomoTherapy at 30.5 min, Vero at 19 min, and CyberKnife at 46.0 min. In spite of the complexity of the representative targets and their proximity to the spinal cord, all treatment platforms were able to create plans meeting all RTOG 0631 dose constraints and produced exceptional agreement between calculated and measured doses. However, there were differences in the plan characteristics and significant differences in the beam‐on delivery time between platforms. Thus, clinical judgment is required for each particular case to determine most appropriate treatment planning/delivery platform. PACS number: 87.53.Ly PMID:25679169
Shalgunov, Vladimir; Zaytseva-Zotova, Daria; Zintchenko, Arkadi; Levada, Tatiana; Shilov, Yuri; Andreyev, Dmitry; Dzhumashev, Dzhangar; Metelkin, Evgeny; Urusova, Alexandra; Demin, Oleg; McDonnell, Kevin; Troiano, Greg; Zale, Stephen; Safarovа, Elmira
2017-09-10
Nanoparticles made of polylactide-poly(ethylene glycol) block-copolymer (PLA-PEG) are promising vehicles for drug delivery due to their biodegradability and controllable payload release. However, published data on the drug delivery properties of PLA-PEG nanoparticles are heterogeneous in terms of nanoparticle characteristics and mostly refer to low injected doses (a few mg nanoparticles per kg body weight). We have performed a comprehensive study of the biodistribution of nanoparticle formulations based on PLA-PEG nanoparticles of ~100nm size at injected doses of 30 to 140mg/kg body weight in healthy rats and nude tumor-bearing mice. Nanoparticle formulations differed by surface PEG coverage and by release kinetics of the encapsulated model active pharmaceutical ingredient (API). Increase in PEG coverage prolonged nanoparticle circulation half-life up to ~20h in rats and ~10h in mice and decreased retention in liver, spleen and lungs. Circulation half-life of the encapsulated API grew monotonously as the release rate slowed down. Plasma and tissue pharmacokinetics was dose-linear for inactive nanoparticles, but markedly dose-dependent for the model therapeutic formulation, presumably because of the toxic effects of released API. A mathematical model of API distribution calibrated on the data for inactive nanoparticles and conventional API form correctly predicted the distribution of the model therapeutic formulation at the lowest investigated dose, but for higher doses the toxic action of the released API had to be explicitly modelled. Our results provide a coherent illustration of the ability of controllable-release PLA-PEG nanoparticles to serve as an effective drug delivery platform to alter API biodistribution. They also underscore the importance of physiological effects of released drug in determining the biodistribution of therapeutic drug formulations at doses approaching tolerability limits. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Analgesia/anesthesia for external cephalic version.
Weiniger, Carolyn F
2013-06-01
Professional society guidelines recommend that women with breech presentation be delivered surgically due to a higher incidence of fetal risks compared with vaginal delivery. An alternative is attempted external cephalic version, which if successful, enables attempted vaginal delivery. Attitudes towards external cephalic version (ECV) will be considered in this review, along with pain relief methods and their impact on ECV success rates. Articles suggest that ECV is infrequently offered, due to both physician and patient factors. Success of ECV is higher in multiparous women, complete breech, posterior placenta, or smaller fetus. Preterm ECV performance does not increase vaginal delivery rates. Neuraxial techniques (spinal or epidural) significantly increase ECV success rates, as do moxibustion and hypnosis. Four reviews summarized studies considering ECV and neuraxial techniques. These reviews suggest that neuraxial techniques using high (surgical) doses of local anesthetic are efficacious compared with control groups not using anesthesia, whereas techniques using low-doses are not. Low-dose versus high-dose neuraxial analgesia/anesthesia has not been directly compared in a single study. Based on currently available data, the rate of cephalic presentation is not increased using neuraxial techniques, but vaginal delivery rates are higher. ECV appears to be a low-risk procedure. The logistics of routine ECV and provision of optimal neuraxial techniques for successful ECV require additional research. Safety aspects of neuraxial anesthesia for ECV require further investigation.
The potential of polymeric film-forming systems as sustained delivery platforms for topical drugs.
Frederiksen, Kit; Guy, Richard H; Petersson, Karsten
2016-01-01
Dosing regimens requiring multiple daily applications frequently result in poor patient compliance, especially in the treatment of chronic skin diseases. Consequently, development of sustained delivery systems for topical drugs permitting less frequent dosing is of continuing interest for dermatological therapy. This potential of polymeric film-forming systems (FFS), created in situ on the skin, as sustained delivery platforms for topical drug delivery is reviewed. Key formulation parameters that determine delivery efficiency are considered focussing on those that permit a drug reservoir to be established in the upper layers of the skin and/or on the skin surface from which release can be sustained over a prolonged period. The advantageous and superior cosmetic attributes of FFS (compared to conventional semi-solid formulations) that offer significantly improved patient compliance are also addressed. The promise of polymeric FFS as convenient and aesthetic platforms for sustained topical drug delivery is clear. Manipulation of the formulation allows the delivery profile to be customized and optimized to take advantage of both a rapid, initial input of drug into the skin (likely due to a transient period of supersaturation) and a slower, controlled release over an extended time from the residual film created thereafter.
Bliss, Donna Z.; Savik, Kay; Jung, Hans-Joachim G.; Whitebird, Robin; Lowry, Ann
2011-01-01
Background Knowledge about adverse symptoms over time from fiber supplementation is lacking. Purpose To compare the severity of adverse gastrointestinal (GI) symptoms during supplementation with dietary fiber or placebo over time in adults with fecal incontinence. Secondary aims were to determine the relationship between symptom severity and emotional upset and their association with study attrition and reducing fiber dose. Methods Subjects (N=189, 77% female, 92% white, (age = 58 years, SD = 14) with fecal incontinence were randomly assigned to placebo or a supplement of 16g total dietary fiber/day from one of three sources: gum arabic, psyllium, or carboxymethylcellulose. They reported GI symptoms daily during baseline (14 days), incremental fiber dosing (6 days), and two segments of steady full fiber dose (32 days total). Results Severity of symptoms in all groups was minimal. Adjusting for study segment and day, a greater feeling of fullness in the psyllium group was the only symptom that differed from symptoms in the placebo group. Odds of having greater severity of flatus, belching, fullness, and bloating were 1.2–2.0 times greater in the steady dose segment compared to baseline. There was a positive association between symptom severity and emotional upset. Subjects with a greater feeling of fullness or bloating or higher scores for total symptom severity or emotional upset were more likely to withdraw from the study sooner or reduce fiber dose. Conclusions Persons with fecal incontinence experience a variety of GI symptoms over time. Symptom severity and emotional upset appear to influence fiber tolerance and study attrition. Supplements seemed well tolerated. PMID:21543963
Humoral Immune Response After Intravitreal But Not After Subretinal AAV8 in Primates and Patients.
Reichel, Felix F; Peters, Tobias; Wilhelm, Barbara; Biel, Martin; Ueffing, Marius; Wissinger, Bernd; Bartz-Schmidt, Karl U; Klein, Reinhild; Michalakis, Stylianos; Fischer, M Dominik
2018-04-01
To study longitudinal changes of anti-drug antibody (ADA) titers to recombinant adeno-associated virus serotype 8 (rAAV8) capsid epitopes in nonhuman primates (NHP) and patients. Three groups of six NHP each received subretinal injections (high dose: 1 × 1012 vector genomes [vg], low dose: 1 × 1011 vg, or vehicle only). Four additional animals received intravitreal injections of the high dose (1 × 1012 vg). Three patients received 1 × 1010 vg as subretinal injections. ELISA quantified ADA levels at baseline and 1, 2, 3, 7, 28, and 90 days after surgery in NHP and at baseline and 1, 3, and 6 months after surgery in patients. Two out of 22 animals lacked ADA titers at baseline and developed low ADA titers toward the end of the study. Titers in the low-dose group stayed constant, while two of six animals from the high-dose group developed titers that rose beyond the range of the assay. All animals from the intravitreal control group showed a rise in ADA titer by day 7 that peaked at day 28. Preliminary data from the clinical trial (NCT02610582) show no humoral immune response in patients following subretinal delivery of 1 × 1010 vg. No significant induction of ADA occurred in NHP when mimicking the clinical scenario of subretinal delivery with a clinical-grade rAAV8 and concomitant immunosuppression. Likewise, clinical data showed no humoral immune response in patients. In contrast, intravitreal delivery was associated with a substantial humoral immune response. Subretinal delivery might be superior to an intravitreal application regarding immunologic aspects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrotriya, D., E-mail: shrotriya2007@gmail.com; Srivastava, R. N. L.; Kumar, S.
The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for directmore » measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.« less
Online 3D EPID-based dose verification: Proof of concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreeuw, Hanno; Rozendaal, Roel, E-mail: r.rozenda
Purpose: Delivery errors during radiotherapy may lead to medical harm and reduced life expectancy for patients. Such serious incidents can be avoided by performing dose verification online, i.e., while the patient is being irradiated, creating the possibility of halting the linac in case of a large overdosage or underdosage. The offline EPID-based 3D in vivo dosimetry system clinically employed at our institute is in principle suited for online treatment verification, provided the system is able to complete 3D dose reconstruction and verification within 420 ms, the present acquisition time of a single EPID frame. It is the aim of thismore » study to show that our EPID-based dosimetry system can be made fast enough to achieve online 3D in vivo dose verification. Methods: The current dose verification system was sped up in two ways. First, a new software package was developed to perform all computations that are not dependent on portal image acquisition separately, thus removing the need for doing these calculations in real time. Second, the 3D dose reconstruction algorithm was sped up via a new, multithreaded implementation. Dose verification was implemented by comparing planned with reconstructed 3D dose distributions delivered to two regions in a patient: the target volume and the nontarget volume receiving at least 10 cGy. In both volumes, the mean dose is compared, while in the nontarget volume, the near-maximum dose (D2) is compared as well. The real-time dosimetry system was tested by irradiating an anthropomorphic phantom with three VMAT plans: a 6 MV head-and-neck treatment plan, a 10 MV rectum treatment plan, and a 10 MV prostate treatment plan. In all plans, two types of serious delivery errors were introduced. The functionality of automatically halting the linac was also implemented and tested. Results: The precomputation time per treatment was ∼180 s/treatment arc, depending on gantry angle resolution. The complete processing of a single portal frame, including dose verification, took 266 ± 11 ms on a dual octocore Intel Xeon E5-2630 CPU running at 2.40 GHz. The introduced delivery errors were detected after 5–10 s irradiation time. Conclusions: A prototype online 3D dose verification tool using portal imaging has been developed and successfully tested for two different kinds of gross delivery errors. Thus, online 3D dose verification has been technologically achieved.« less
A novel pen-based Bluetooth-enabled insulin delivery system with insulin dose tracking and advice.
Bailey, Timothy S; Stone, Jenine Y
2017-05-01
Diabetes is growing in prevalence internationally. As more individuals require insulin as part of their treatment, technology evolves to optimize delivery, improve adherence, and reduce dosing errors. Insulin pens outperform vial and syringe in simplicity, dosing accuracy, and user preference. Bolus advisors improve dosing confidence and treatment adherence. The InPen System offers a novel approach to treatment via a wireless pen that syncs to a mobile application featuring a bolus advisor, enabling convenient insulin dose tracking and more accurate bolus advice among other features. Areas covered: Existing technology for insulin delivery and bolus advice are reviewed. The mechanics and functionality of the InPen device are delineated. Findings from formative testing and usability studies of the InPen system are reported. Future directions for the InPen system in the treatment of diabetes are discussed. Expert opinion: Diabetes management is complex and largely data-driven. The InPen System offers a promising new opportunity to avail insulin pen-users of features known to improve treatment efficacy, which have otherwise primarily been available to those using pumps. Given that the majority of insulin users do not use insulin pumps, the InPen System is poised to improve glucose control in a significant portion of the diabetes population.
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Mufidah; Artanti, A. N.; Harini, M.
2018-03-01
The present study was aimed to study the acute and subchronic toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with Palm Kernel Oil as carrier. In acute toxicity test, five groups of rat (n=5/groups) were orally treated with Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with doses at 48, 240, 1200 and 6000 mg/kg/day respectively, then the median lethal dose LD50, advers effect and mortality were recorded up to 14 days. Meanwhile, in subchronic toxicity study, 4 groups of rats (n=6/group) received by orally treatment of SNEDDS from chloroform bay leaf extract with doses at 91.75; 183.5; 367 mg/kg/day respectively for 28 days, and biochemical, hematological and histopatological change in tissue such as liver, kidney, and pancreatic were determined. The result show that LD50 is 1045.44 mg/kg. Although histopathological examination of most of the organs exhibited no structural changes, some moderate damage was observed in high‑ dose group animals (367 mg/kg/day). The high dose of SNEDDS extract has shown mild signs of toxicity on organ function test.
MEMS: Enabled Drug Delivery Systems.
Cobo, Angelica; Sheybani, Roya; Meng, Ellis
2015-05-01
Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sheybani, Roya; Cobo, Angelica; Meng, Ellis
2015-08-01
We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.
Wang, Gang; Cao, Wei-Gang; Li, Sheng-Li; Liu, Li-Na; Jiang, Zhao-Hua
2015-01-01
Tumescent anesthesia makes it feasible to perform liposuction in an office setting. There are often patients who desire extensive liposuction on approximately 30% of total body surface area, which means the lidocaine total dose might be over the dosing recommendation. So the segmental infiltration is applied, although the concentration of lidocaine in tumescent fluid is gradually reduced to 0.0252%. Moreover, supplemental intravenous (IV) sedation using monitored anesthesia care is usually applied concurrently to help alleviate discomfort and pain of the patients during tumescent anesthetic infusion and fat extraction which in turn increases the risks of potential lidocaine toxicity due to possible drug interactions. This study was to demonstrate the safety of segmental infiltration of tumescent fluid with lower lidocaine concentration combined with IV sedation in extensive liposuction and determine whether the risk of lidocaine toxicity is increased in this protocol. Ten female patients who requested the extensive liposuction participated in the study. The targeted areas were divided into 2 segments and treated in turn in 1 session. Lidocaine (1600 mg) was infiltrated into the first segment, and approximately 928 mg lidocaine was subsequently infiltrated after accomplishment of the first segment operation. Serum levels of lidocaine were taken every 4 hours during the first 24 hours after the second infiltration. The average time of the procedure is 222 (33) minutes. The dose and total amount of lidocaine injected are 40.7 (5.8) mg/kg and 2528.2 (155.2) mg, respectively. The total volume of the infusates and aspirates are 9918.1 (494) and 6325 (1461.6) mL, respectively, the ratio of total infusates to total aspirates is 1.66 (0.45). The total aspirated fat and fluids are 3280 (1051.8) and 3045 (824.1) mL, respectively. The peak lidocaine levels [2.18 (0.63) μg/mL] occurred after 12 to 20 hours [16.4 (2.27) hours]. No significant correlation between dose per kilogram body weight or total dose of lidocaine infiltrated and its peak levels or time existed. The extensive liposuction covering the 30% total body surface areas was well tolerated by the patients under tumescent anesthesia in combination with the supplemental IV sedation. Our previous study on the fluid management has demonstrated the risk of hypovolemia or fluid overload is very low with this technique, although the patients who received only maintenance fluid (500 mL) in the operating room and could discharge and resume oral intake after 6 hours of recovery room stay. The adequate anesthesia support is available in our office-based setting with adequate recovery facilities in place. It has a high margin of safety, without increasing of lidocaine toxicity or adverse cardiopulmonary sequelae while using a segmental tumescent infiltration with lower concentration of lidocaine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayama, M; Kobe University Graduate School of Medicine, Kobe, Hyogo; Munetomo, Y
2016-06-15
Purpose: To evaluate the practicality use of ionization chambers with different volumes for delivery quality assurance of CyberKnife plans, Methods: Dosimetric measurements with a spherical solid water phantom and three ionization chambers with volumes of 0.13, 0.04, and 0.01 cm3 (IBA CC13, CC04, and CC01, respectively) were performed for various CyberKnife clinical treatment plans including both isocentric and nonisocentric delivery. For each chamber, the ion recombination correction factors Ks were calculated using the Jaffe plot method and twovoltage method at a 10-cm depth for a 60-mm collimator field in a water phantom. The polarity correction factors Kpol were determined formore » 5–60-mm collimator fields in same experimental setup. The measured doses were compared to the doses for the detectors calculated using a treatment planning system. Results: The differences in the Ks between the Jaffe plot method and two-voltage method were −0.12, −0.02, and 0.89% for CC13, CC04, and CC01, respectively. The changes in Kpol for the different field sizes were 0.2, 0.3, and 0.8% for CC13, CC04, and CC01, respectively. The measured doses for CC04 and CC01 were within 3% of the calculated doses for the clinical treatment plans with isocentric delivery with collimator fields greater than 12.5 mm. Those for CC13 had differences of over 3% for the plans with isocentric delivery with collimator fields less than 15 mm. The differences for the isocentric plans were similar to those for the single beam plans. The measured doses for each chamber were within 3% of the calculated doses for the non-isocentric plans except for that with a PTV volume less than 1.0 cm{sup 3}. Conclusion: Although there are some limitations, the ionization chamber with a smaller volume is a better detector for verification of the CyberKnife plans owing to the high spatial resolution.« less
Multi-scales region segmentation for ROI separation in digital mammograms
NASA Astrophysics Data System (ADS)
Zhang, Dapeng; Zhang, Di; Li, Yue; Wang, Wei
2017-02-01
Mammography is currently the most effective imaging modality used by radiologists for the screening of breast cancer. Segmentation is one of the key steps in the process of developing anatomical models for calculation of safe medical dose of radiation. This paper explores the potential of the statistical region merging segmentation technique for Breast segmentation in digital mammograms. First, the mammograms are pre-processing for regions enhancement, then the enhanced images are segmented using SRM with multi scales, finally these segmentations are combined for region of interest (ROI) separation and edge detection. The proposed algorithm uses multi-scales region segmentation in order to: separate breast region from background region, region edge detection and ROIs separation. The experiments are performed using a data set of mammograms from different patients, demonstrating the validity of the proposed criterion. Results show that, the statistical region merging segmentation algorithm actually can work on the segmentation of medical image and more accurate than another methods. And the outcome shows that the technique has a great potential to become a method of choice for segmentation of mammograms.
SU-E-T-192: FMEA Severity Scores - Do We Really Know?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonigan, J; Johnson, J; Kry, S
2014-06-01
Purpose: Failure modes and effects analysis (FMEA) is a subjective risk mitigation technique that has not been applied to physics-specific quality management practices. There is a need for quantitative FMEA data as called for in the literature. This work focuses specifically on quantifying FMEA severity scores for physics components of IMRT delivery and comparing to subjective scores. Methods: Eleven physical failure modes (FMs) for head and neck IMRT dose calculation and delivery are examined near commonly accepted tolerance criteria levels. Phantom treatment planning studies and dosimetry measurements (requiring decommissioning in several cases) are performed to determine the magnitude of dosemore » delivery errors for the FMs (i.e., severity of the FM). Resultant quantitative severity scores are compared to FMEA scores obtained through an international survey and focus group studies. Results: Physical measurements for six FMs have resulted in significant PTV dose errors up to 4.3% as well as close to 1 mm significant distance-to-agreement error between PTV and OAR. Of the 129 survey responses, the vast majority of the responders used Varian machines with Pinnacle and Eclipse planning systems. The average years of experience was 17, yet familiarity with FMEA less than expected. Survey reports perception of dose delivery error magnitude varies widely, in some cases 50% difference in dose delivery error expected amongst respondents. Substantial variance is also seen for all FMs in occurrence, detectability, and severity scores assigned with average variance values of 5.5, 4.6, and 2.2, respectively. Survey shows for MLC positional FM(2mm) average of 7.6% dose error expected (range 0–50%) compared to 2% error seen in measurement. Analysis of ranking in survey, treatment planning studies, and quantitative value comparison will be presented. Conclusion: Resultant quantitative severity scores will expand the utility of FMEA for radiotherapy and verify accuracy of FMEA results compared to highly variable subjective scores.« less
Radiation Parameters of High Dose Rate Iridium -192 Sources
NASA Astrophysics Data System (ADS)
Podgorsak, Matthew B.
A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.
NASA Astrophysics Data System (ADS)
Chen, Bin; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku
2012-03-01
This paper presents a solitary pulmonary nodule (SPN) segmentation method based on local intensity structure analysis and neighborhood feature analysis in chest CT images. Automated segmentation of SPNs is desirable for a chest computer-aided detection/diagnosis (CAS) system since a SPN may indicate early stage of lung cancer. Due to the similar intensities of SPNs and other chest structures such as blood vessels, many false positives (FPs) are generated by nodule detection methods. To reduce such FPs, we introduce two features that analyze the relation between each segmented nodule candidate and it neighborhood region. The proposed method utilizes a blob-like structure enhancement (BSE) filter based on Hessian analysis to augment the blob-like structures as initial nodule candidates. Then a fine segmentation is performed to segment much more accurate region of each nodule candidate. FP reduction is mainly addressed by investigating two neighborhood features based on volume ratio and eigenvector of Hessian that are calculates from the neighborhood region of each nodule candidate. We evaluated the proposed method by using 40 chest CT images, include 20 standard-dose CT images that we randomly chosen from a local database and 20 low-dose CT images that were randomly chosen from a public database: LIDC. The experimental results revealed that the average TP rate of proposed method was 93.6% with 12.3 FPs/case.
Dose calculation of dynamic trajectory radiotherapy using Monte Carlo.
Manser, P; Frauchiger, D; Frei, D; Volken, W; Terribilini, D; Fix, M K
2018-04-06
Using volumetric modulated arc therapy (VMAT) delivery technique gantry position, multi-leaf collimator (MLC) as well as dose rate change dynamically during the application. However, additional components can be dynamically altered throughout the dose delivery such as the collimator or the couch. Thus, the degrees of freedom increase allowing almost arbitrary dynamic trajectories for the beam. While the dose delivery of such dynamic trajectories for linear accelerators is technically possible, there is currently no dose calculation and validation tool available. Thus, the aim of this work is to develop a dose calculation and verification tool for dynamic trajectories using Monte Carlo (MC) methods. The dose calculation for dynamic trajectories is implemented in the previously developed Swiss Monte Carlo Plan (SMCP). SMCP interfaces the treatment planning system Eclipse with a MC dose calculation algorithm and is already able to handle dynamic MLC and gantry rotations. Hence, the additional dynamic components, namely the collimator and the couch, are described similarly to the dynamic MLC by defining data pairs of positions of the dynamic component and the corresponding MU-fractions. For validation purposes, measurements are performed with the Delta4 phantom and film measurements using the developer mode on a TrueBeam linear accelerator. These measured dose distributions are then compared with the corresponding calculations using SMCP. First, simple academic cases applying one-dimensional movements are investigated and second, more complex dynamic trajectories with several simultaneously moving components are compared considering academic cases as well as a clinically motivated prostate case. The dose calculation for dynamic trajectories is successfully implemented into SMCP. The comparisons between the measured and calculated dose distributions for the simple as well as for the more complex situations show an agreement which is generally within 3% of the maximum dose or 3mm. The required computation time for the dose calculation remains the same when the additional dynamic moving components are included. The results obtained for the dose comparisons for simple and complex situations suggest that the extended SMCP is an accurate dose calculation and efficient verification tool for dynamic trajectory radiotherapy. This work was supported by Varian Medical Systems. Copyright © 2018. Published by Elsevier GmbH.
Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel; Konofagou, Elisa E
2017-04-01
Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood-brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood-brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo.
Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel
2016-01-01
Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood–brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood–brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo. PMID:27278929
Novel, full 3D scintillation dosimetry using a static plenoptic camera.
Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis
2014-08-01
Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm(3) EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle(3) was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions.
Novel, full 3D scintillation dosimetry using a static plenoptic camera
Goulet, Mathieu; Rilling, Madison; Gingras, Luc; Beddar, Sam; Beaulieu, Luc; Archambault, Louis
2014-01-01
Purpose: Patient-specific quality assurance (QA) of dynamic radiotherapy delivery would gain from being performed using a 3D dosimeter. However, 3D dosimeters, such as gels, have many disadvantages limiting to quality assurance, such as tedious read-out procedures and poor reproducibility. The purpose of this work is to develop and validate a novel type of high resolution 3D dosimeter based on the real-time light acquisition of a plastic scintillator volume using a plenoptic camera. This dosimeter would allow for the QA of dynamic radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). Methods: A Raytrix R5 plenoptic camera was used to image a 10 × 10 × 10 cm3 EJ-260 plastic scintillator embedded inside an acrylic phantom at a rate of one acquisition per second. The scintillator volume was irradiated with both an IMRT and VMAT treatment plan on a Clinac iX linear accelerator. The 3D light distribution emitted by the scintillator volume was reconstructed at a 2 mm resolution in all dimensions by back-projecting the light collected by each pixel of the light-field camera using an iterative reconstruction algorithm. The latter was constrained by a beam's eye view projection of the incident dose acquired using the portal imager integrated with the linac and by physical consideration of the dose behavior as a function of depth in the phantom. Results: The absolute dose difference between the reconstructed 3D dose and the expected dose calculated using the treatment planning software Pinnacle3 was on average below 1.5% of the maximum dose for both integrated IMRT and VMAT deliveries, and below 3% for each individual IMRT incidences. Dose agreement between the reconstructed 3D dose and a radiochromic film acquisition in the same experimental phantom was on average within 2.1% and 1.2% of the maximum recorded dose for the IMRT and VMAT delivery, respectively. Conclusions: Using plenoptic camera technology, the authors were able to perform millimeter resolution, water-equivalent dosimetry of an IMRT and VMAT plan over a whole 3D volume. Since no moving parts are required in the dosimeter, the incident dose distribution can be acquired as a function of time, thus enabling the validation of static and dynamic radiation delivery with photons, electrons, and heavier ions. PMID:25086549
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouabhi, O; Gross, B; Xia, J
2015-06-15
Purpose: To evaluate the dosimetric and temporal effects of high dose rate treatment mode for respiratory-gated radiation therapy in lung cancer patients. Methods: Treatment plans from five lung cancer patients (3 nongated (Group 1), 2 gated at 80EX-80IN (Group 2)) were retrospectively evaluated. The maximum tumor motions range from 6–12 mm. Using the same planning criteria, four new treatment plans, corresponding to four gating windows (20EX–20IN, 40EX–40IN, 60EX–60IN, and 80EX–80IN), were generated for each patient. Mean tumor dose (MTD), mean lung dose (MLD), and lung V20 were used to assess the dosimetric effects. A MATLAB algorithm was developed to computemore » treatment time by considering gantry rotation time, time to position collimator leaves, dose delivery time (scaled relative to the gating window), and communication overhead. Treatment delivery time for each plan was estimated using a 500 MU/min dose rate for the original plans and a 1500 MU/min dose rate for the gated plans. Results: Differences in MTD were less than 1Gy across plans for all five patients. MLD and lung V20 were on average reduced between −16.1% to −6.0% and −20.0% to −7.2%, respectively for non-gated plans when compared with the corresponding gated plans, and between − 5.8% to −4.2% and −7.0% to −5.4%, respectively for plans originally gated at 80EX–80IN when compared with the corresponding 20EX-20IN to 60EX– 60IN gated plans. Treatment delivery times of gated plans using high dose rate were reduced on average between −19.7% (−1.9min) to −27.2% (−2.7min) for originally non-gated plans and −15.6% (−0.9min) to −20.3% (−1.2min) for originally 80EX-80IN gated plans. Conclusion: Respiratory-gated radiation therapy in lung cancer patients can reduce lung toxicity, while maintaining tumor dose. Using a gated high-dose-rate treatment, delivery time comparable to non-gated normal-dose-rate treatment can be achieved. This research is supported by Siemens Medical Solutions USA, Inc.« less
Performance Characteristics of an Independent Dose Verification Program for Helical Tomotherapy
Chang, Isaac C. F.; Chen, Jeff; Yartsev, Slav
2017-01-01
Helical tomotherapy with its advanced method of intensity-modulated radiation therapy delivery has been used clinically for over 20 years. The standard delivery quality assurance procedure to measure the accuracy of delivered radiation dose from each treatment plan to a phantom is time-consuming. RadCalc®, a radiotherapy dose verification software, has released specifically for beta testing a module for tomotherapy plan dose calculations. RadCalc®'s accuracy for tomotherapy dose calculations was evaluated through examination of point doses in ten lung and ten prostate clinical plans. Doses calculated by the TomoHDA™ tomotherapy treatment planning system were used as the baseline. For lung cases, RadCalc® overestimated point doses in the lung by an average of 13%. Doses within the spinal cord and esophagus were overestimated by 10%. Prostate plans showed better agreement, with overestimations of 6% in the prostate, bladder, and rectum. The systematic overestimation likely resulted from limitations of the pencil beam dose calculation algorithm implemented by RadCalc®. Limitations were more severe in areas of greater inhomogeneity and less prominent in regions of homogeneity with densities closer to 1 g/cm3. Recommendations for RadCalc® dose calculation algorithms and anatomical representation were provided based on the results of the study. PMID:28974862
NOTE: Reducing the number of segments in unidirectional MLC segmentations
NASA Astrophysics Data System (ADS)
Mellado, X.; Cruz, S.; Artacho, J. M.; Canellas, M.
2010-02-01
In intensity-modulated radiation therapy (IMRT), fluence matrices obtained from a treatment planning system are usually delivered by a linear accelerator equipped with a multileaf collimator (MLC). A segmentation method is needed for decomposing these fluence matrices into segments suitable for the MLC, and the number of segments used is an important factor for treatment time. In this work, an algorithm for reduction of the number of segments (NS) is presented for unidirectional segmentations, where there is no backtracking of the MLC leaves. It uses a geometrical representation of the segmentation output for searching the key values in a fluence matrix that complicate its decomposition. The NS reduction is achieved by performing minor modifications in these values, under the conditions of avoiding substantial modifications of the dose-volume histogram, and does not increase in average the total number of monitor units delivered. The proposed method was tested using two clinical cases planned with the PCRT 3D® treatment planning system.
File-Based Operations and CFDP On-Board Implementation
NASA Astrophysics Data System (ADS)
Herrera Alzu, Ignacio; Peran Mazon, Francisco; Gonzalo Palomo, Alfonso
2014-08-01
Since several years ago, there is an increasing interest among the space agencies, ESA in particular, in deploying File-based Operations (FbO) for Space missions. This aims at simplifying, from the Ground Segment's perspective, the access to the Space Segment and ultimately the overall operations. This is particularly important for deep Space missions, where the Ground-Space interaction can become too complex to handle just with traditional packet-based services. The use of a robust protocol for transferring files between Ground and Space is a key for the FbO approach, and the CCSDS File Delivery Protocol (CFDP) is nowadays the main candidate for doing this job. Both Ground and Space Segments need to be adapted for FbO, being the Ground Segment naturally closer to this concept. This paper focusses on the Space Segment. The main implications related to FbO/CFDP, the possible on-board implementations and the foreseen operations are described. The case of Euclid, the first ESA mission to be file-based operated with CFDP, is also analysed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underbrink, A.G.; Woch, B.
1980-11-01
Experimental evidence was found that the oxygen enhancement ratio (OER) for pink somatic mutations in the stamen hairs of Tradescantia clone 02 appears to reach unity at X-ray doses of 2 to 3 rad. There is also a small segment on the dose-response curves from about 3 to 10 rad where the OER appears to be dose-dependent. At higher doses the aerated and hypoxic curves are parallel, and the OER is 3.2 up to doses where the mutation frequency reaches a plateau.
Trofimov, Alexei; Unkelbach, Jan; DeLaney, Thomas F; Bortfeld, Thomas
2012-01-01
Dose-volume histograms (DVH) are the most common tool used in the appraisal of the quality of a clinical treatment plan. However, when delivery uncertainties are present, the DVH may not always accurately describe the dose distribution actually delivered to the patient. We present a method, based on DVH formalism, to visualize the variability in the expected dosimetric outcome of a treatment plan. For a case of chordoma of the cervical spine, we compared 2 intensity modulated proton therapy plans. Treatment plan A was optimized based on dosimetric objectives alone (ie, desired target coverage, normal tissue tolerance). Plan B was created employing a published probabilistic optimization method that considered the uncertainties in patient setup and proton range in tissue. Dose distributions and DVH for both plans were calculated for the nominal delivery scenario, as well as for scenarios representing deviations from the nominal setup, and a systematic error in the estimate of range in tissue. The histograms from various scenarios were combined to create DVH bands to illustrate possible deviations from the nominal plan for the expected magnitude of setup and range errors. In the nominal scenario, the DVH from plan A showed superior dose coverage, higher dose homogeneity within the target, and improved sparing of the adjacent critical structure. However, when the dose distributions and DVH from plans A and B were recalculated for different error scenarios (eg, proton range underestimation by 3 mm), the plan quality, reflected by DVH, deteriorated significantly for plan A, while plan B was only minimally affected. In the DVH-band representation, plan A produced wider bands, reflecting its higher vulnerability to delivery errors, and uncertainty in the dosimetric outcome. The results illustrate that comparison of DVH for the nominal scenario alone does not provide any information about the relative sensitivity of dosimetric outcome to delivery uncertainties. Thus, such comparison may be misleading and may result in the selection of an inferior plan for delivery to a patient. A better-informed decision can be made if additional information about possible dosimetric variability is presented; for example, in the form of DVH bands. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wiemker, Rafael; Rogalla, Patrik; Opfer, Roland; Ekin, Ahmet; Romano, Valentina; Bülow, Thomas
2006-03-01
The performance of computer aided lung nodule detection (CAD) and computer aided nodule volumetry is compared between standard-dose (70-100 mAs) and ultra-low-dose CT images (5-10 mAs). A direct quantitative performance comparison was possible, since for each patient both an ultra-low-dose and a standard-dose CT scan were acquired within the same examination session. The data sets were recorded with a multi-slice CT scanner at the Charite university hospital Berlin with 1 mm slice thickness. Our computer aided nodule detection and segmentation algorithms were deployed on both ultra-low-dose and standard-dose CT data without any dose-specific fine-tuning or preprocessing. As a reference standard 292 nodules from 20 patients were visually identified, each nodule both in ultra-low-dose and standard-dose data sets. The CAD performance was analyzed by virtue of multiple FROC curves for different lower thresholds of the nodule diameter. For nodules with a volume-equivalent diameter equal or larger than 4 mm (149 nodules pairs), we observed a detection rate of 88% at a median false positive rate of 2 per patient in standard-dose images, and 86% detection rate in ultra-low-dose images, also at 2 FPs per patient. Including even smaller nodules equal or larger than 2 mm (272 nodules pairs), we observed a detection rate of 86% in standard-dose images, and 84% detection rate in ultra-low-dose images, both at a rate of 5 FPs per patient. Moreover, we observed a correlation of 94% between the volume-equivalent nodule diameter as automatically measured on ultra-low-dose versus on standard-dose images, indicating that ultra-low-dose CT is also feasible for growth-rate assessment in follow-up examinations. The comparable performance of lung nodule CAD in ultra-low-dose and standard-dose images is of particular interest with respect to lung cancer screening of asymptomatic patients.
Pasupathy, Sivabaskari; Tavella, Rosanna; Grover, Suchi; Raman, Betty; Procter, Nathan E K; Du, Yang Timothy; Mahadavan, Gnanadevan; Stafford, Irene; Heresztyn, Tamila; Holmes, Andrew; Zeitz, Christopher; Arstall, Margaret; Selvanayagam, Joseph; Horowitz, John D; Beltrame, John F
2017-09-05
Contemporary ST-segment-elevation myocardial infarction management involves primary percutaneous coronary intervention, with ongoing studies focusing on infarct size reduction using ancillary therapies. N-acetylcysteine (NAC) is an antioxidant with reactive oxygen species scavenging properties that also potentiates the effects of nitroglycerin and thus represents a potentially beneficial ancillary therapy in primary percutaneous coronary intervention. The NACIAM trial (N-acetylcysteine in Acute Myocardial Infarction) examined the effects of NAC on infarct size in patients with ST-segment-elevation myocardial infarction undergoing percutaneous coronary intervention. This randomized, double-blind, placebo-controlled, multicenter study evaluated the effects of intravenous high-dose NAC (29 g over 2 days) with background low-dose nitroglycerin (7.2 mg over 2 days) on early cardiac magnetic resonance imaging-assessed infarct size. Secondary end points included cardiac magnetic resonance-determined myocardial salvage and creatine kinase kinetics. Of 112 randomized patients with ST-segment-elevation myocardial infarction, 75 (37 in NAC group, 38 in placebo group) underwent early cardiac magnetic resonance imaging. Median duration of ischemia pretreatment was 2.4 hours. With background nitroglycerin infusion administered to all patients, those randomized to NAC exhibited an absolute 5.5% reduction in cardiac magnetic resonance-assessed infarct size relative to placebo (median, 11.0%; [interquartile range 4.1, 16.3] versus 16.5%; [interquartile range 10.7, 24.2]; P =0.02). Myocardial salvage was approximately doubled in the NAC group (60%; interquartile range, 37-79) compared with placebo (27%; interquartile range, 14-42; P <0.01) and median creatine kinase areas under the curve were 22 000 and 38 000 IU·h in the NAC and placebo groups, respectively ( P =0.08). High-dose intravenous NAC administered with low-dose intravenous nitroglycerin is associated with reduced infarct size in patients with ST-segment-elevation myocardial infarction undergoing percutaneous coronary intervention. A larger study is required to assess the impact of this therapy on clinical cardiac outcomes. Australian New Zealand Clinical Trials Registry. URL: http://www.anzctr.org.au/. Unique identifier: 12610000280000. © 2017 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y; Souri, S; Gill, G
Purpose: To statistically determine the optimal tolerance level in the verification of delivery dose compared to the planned dose in an in vivo dosimetry system in radiotherapy. Methods: The LANDAUER MicroSTARii dosimetry system with screened nanoDots (optically stimulated luminescence dosimeters) was used for in vivo dose measurements. Ideally, the measured dose should match with the planned dose and falls within a normal distribution. Any deviation from the normal distribution may be redeemed as a mismatch, therefore a potential sign of the dose misadministration. Randomly mis-positioned nanoDots can yield a continuum background distribution. A percentage difference of the measured dose tomore » its corresponding planned dose (ΔD) can be used to analyze combined data sets for different patients. A model of a Gaussian plus a flat function was used to fit the ΔD distribution. Results: Total 434 nanoDot measurements for breast cancer patients were collected across a period of three months. The fit yields a Gaussian mean of 2.9% and a standard deviation (SD) of 5.3%. The observed shift of the mean from zero is attributed to the machine output bias and calibration of the dosimetry system. A pass interval of −2SD to +2SD was applied and a mismatch background was estimated to be 4.8%. With such a tolerance level, one can expect that 99.99% of patients should pass the verification and at most 0.011% might have a potential dose misadministration that may not be detected after 3 times of repeated measurements. After implementation, a number of new start breast cancer patients were monitored and the measured pass rate is consistent with the model prediction. Conclusion: It is feasible to implement an optimal tolerance level in order to maintain a low limit of potential dose misadministration while still to keep a relatively high pass rate in radiotherapy delivery verification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branco, D; Taylor, P; Frank, S
2016-06-15
Purpose: To design a Head and Neck (H&N) anthropomorphic QA phantom that the Imaging and Radiation Oncology Core Houston (IROC-H) can use to verify the quality of intensity modulated proton therapy (IMPT) H&N treatments for institutions participating in NCI clinical trials. Methods: The phantom was created to serve as a remote auditing tool for IROC-H to evaluate an institution’s IMPT planning and delivery abilities. The design was based on the composition, size, and geometry of a generalized oropharyngeal tumor and contains critical structures (parotids and spinal cord). Radiochromic film in the axial and sagittal planes and thermoluminescent dosimeters (TLD)-100 capsulesmore » were embedded in the phantom and used to perform the dose delivery evaluation. A CT simulation was used to create a passive scatter and a spot scanning treatment plan with typical clinical constraints for H&N cancer. The IMPT plan was approved by a radiation oncologist and the phantom was irradiated multiple times. The measured dose distribution using a 7%/4mm gamma analysis (85% of pixels passing) and point doses were compared with the treatment planning system calculations. Results: The designed phantom could not achieve the target dose prescription and organ at risk dose constraints with the passive scatter treatment plan. The target prescription dose could be met but not the parotid dose constraint. The average TLD point dose ratio in the target was 0.975, well within the 5% acceptance criterion. The dose distribution analysis using various acceptance criteria, 5%/4mm, 5%/3mm, 7%/4mm and 7%/5mm, had average pixel passing rates of 85.9%, 81.8%, 89.6% and 91.6%, and respectively. Conclusion: An anthropomorphic IMPT H&N phantom was designed that can assess the dose delivery of proton sites wishing to participate in clinical trials using a 5% TLD dose and 7%/4mm gamma analysis acceptance criteria.« less
Pharmacokinetics of paracetamol and its metabolites in women at delivery and post‐partum
Kulo, Aida; Peeters, Mariska Y.; Allegaert, Karel; Smits, Anne; de Hoon, Jan; Verbesselt, Rene; Lewi, Liesbeth; van de Velde, Marc; Knibbe, Catherijne A. J.
2013-01-01
Aim A recent report on intravenous (i.v.) paracetamol pharmacokinetics (PK) showed a higher total clearance in women at delivery compared with non‐pregnant women. To describe the paracetamol metabolic and elimination routes involved in this increase in clearance, we performed a population PK analysis in women at delivery and post‐partum in which the different pathways were considered. Methods Population PK parameters using non‐linear mixed effect modelling were estimated in a two‐period PK study in women to whom i.v. paracetamol (2 g loading dose followed by 1 g every 6 h up to 24 h) was administered immediately following Caesarean delivery and in a subgroup of the same women to whom single 2 g i.v.loading dose was administered 10–15 weeks post‐partum. Results Population PK analysis was performed based on 255 plasma and 71 urine samples collected in 39 women at delivery and in eight of these 39 women 12 weeks post‐partum. Total clearance was higher in women at delivery compared with 12th post‐partum week (21.1 vs. 11.7 l h−1) due to higher clearances to paracetamol glucuronide (11.6 vs. 4.76 l h−1), to oxidative metabolites (4.95 vs. 2.77 l h−1) and of unchanged paracetamol (1.15 vs. 0.75 l h−1). In contrast, there was no difference in clearance to paracetamol sulphate. Conclusion The increased total paracetamol clearance at delivery is caused by a disproportional increase in glucuronidation clearance and a proportional increase in clearance of unchanged paracetamol and in oxidation clearance, of which the latter may potentially limit further dose increase in this patient group. PMID:22845052
SU-E-T-649: Quality Assurances for Proton Therapy Delivery Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arjomandy, B; Kase, Y; Flanz, J
2015-06-15
Purpose: The number of proton therapy centers has increased dramatically over the past decade. Currently, there is no comprehensive set of guidelines that addresses quality assurance (QA) procedures for the different technologies used for proton therapy. The AAPM has charged task group 224 (TG-224) to provide recommendations for QA required for accurate and safe dose delivery, using existing and next generation proton therapy delivery equipment. Methods: A database comprised of QA procedures and tolerance limits was generated from many existing proton therapy centers in and outside of the US. These consist of proton therapy centers that possessed double scattering, uniformmore » scanning, and pencil beams delivery systems. The diversity in beam delivery systems as well as the existing devices to perform QA checks for different beam parameters is the main subject of TG-224. Based on current practice at the clinically active proton centers participating in this task group, consensus QA recommendations were developed. The methodologies and requirements of the parameters that must be verified for consistency of the performance of the proton beam delivery systems are discussed. Results: TG-224 provides procedures and QA checks for mechanical, imaging, safety and dosimetry requirements for different proton equipment. These procedures are categorized based on their importance and their required frequencies in order to deliver a safe and consistent dose. The task group provides daily, weekly, monthly, and annual QA check procedures with their tolerance limits. Conclusions: The procedures outlined in this protocol provide sufficient information to qualified medical physicists to perform QA checks for any proton delivery system. Execution of these procedures should provide confidence that proton therapy equipment is functioning as commissioned for patient treatment and delivers dose safely and accurately within the established tolerance limits. The report will be published in late 2015.« less
[Combined spinal and epidural anaesthesia in abdominal delivery].
Matlubov, M M; Rakhimov, A U; Semenikhin, A A
2010-01-01
The purpose of this work is to estimate the efficacy and safety of balanced two-segmental spinal-epidural anaesthesia (SEA) as well as application of this technique in conditions of extended operative delivery. The method has been used in 69 pregnant patients aged 23-42 years, with gestation period ranging from 36 to 40 weeks. It was found out that SEA is highly effective and safe technique, therefore it can be recommended as suitable method of anaesthesia in surgery with an extension possibility.
Varlamova, A I; Arkhipov, I A; Odoevskaia, I M; Danilevskaia, N V; Khalikov, S S; Chistiachenko, Iu S; Dushkin, A V
2014-01-01
The efficacy of a new fenbendazile formulation produced by nanotechnology-based drug delivery system was investigated in45 sheep naturally infected with gastrointestinal nematodes. The formulation showed 95.6% efficacy against Nematodes spp. at a dose of 1.0 mg/kg dw of its active ingredient and 100% efficacy against other species of gastrointestinal nematodes. Given at a dose of 10 mg/kg dw, the basic drug--fenbendazole (substance) displayed 96.39 and 100% efficacy, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, R; Liu, T; Qi, S
Purposes: There has been growing interest in treating breast cancer using VMAT technique. Our goal is to compare the dosimetry and treatment delivery parameters for the left-sided breast cancer treatment using various VMAT platforms from commercially available planning systems. Methods: Five consecutive left-sided breast cancer patients initially treated with conventional 3D-conformal radiotherapy (3DCRT) were selected. Four VMAT plans using most popular treatment planning systems, including Eclipse (Version 11, Varian), Pinnacle (Version 9.8, Philips), Monaco (Version 2.03, Elekta) and helical Tomotherapy (V4.0, Accuray). The same structure set and same planning goals were used for all VMAT plans. The dosimetric parameters includingmore » target coverage and minimum/maximum/mean, dose-volume endpoints for the selected normal structures: the heart, ipsilateral-/contralateral lung and breast, were evaluated. Other dosimetric indices including heterogeneity index (HI) were evaluated. The treatment delivery parameters, such as monitor unit (MUs) and delivery time were also compared. Results: VMAT increases dose homogeneity to the treated volume and reduces the irradiated heart and left-lung volumes. Compared to the 3DCRT technique, all VMAT plans offer better heart and left-lung dose sparing; the mean heart doses were 4.5±1.6(Monaco), 1.2±0.4(Pinnacle), 1.3± (Eclipse) and 5.6±4.4(Tomo), the mean left-lung doses were 5.9±1.5(Monaco), 3.7±0.7(Pinnacle), 1.4± (Eclipse) and 5.2±1.6 (Tomo), while for the 3DCRT plan, the mean heart and left-Lung doses were 2.9±2.0, and 6.8±4.4 (Gy) respectively. The averaged contralateral-breast and lung mean doses were higher in VMAT plans than the 3DCRT plans but were not statistically significant. Among all the VMAT plans, the Pinnacle plans often yield the lowest right-lung/breast mean doses, and slightly better heterogeneity indices that are similar to Tomotherapy plans. Treatment delivery time of the VMAT plans (except helical Tomotherapy IMRT) is estimated to be comparable with the conventional 3DCRT. Conclusion: VMAT achieves equal or better PTV coverage and comparable OARs sparing compared to the conventional 3DCRT techniques.« less
Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy.
Krieger, Miriam; Klimpki, Grischa; Fattori, Giovanni; Hrbacek, Jan; Oxley, David; Safai, Sairos; Weber, Damien C; Lomax, Antony J; Zhang, Ye
2018-03-01
The aim of this study was to verify the temporal accuracy of the estimated dose distribution by a 4D dose calculation (4DDC) in comparison to measurements. A single-field plan (0.6 Gy), optimised for a liver patient case (CTV volume: 403cc), was delivered to a homogeneous PMMA phantom and measured by a high resolution scintillating-CCD system at two water equivalent depths. Various motion scenarios (no motion and motions with amplitude of 10 mm and two periods: 3.7 s and 4.4 s) were simulated using a 4D Quasar phantom and logged by an optical tracking system in real-time. Three motion mitigation approaches (single delivery, 6[Formula: see text] layered and volumetric rescanning) were applied, resulting in 10 individual measurements. 4D dose distributions were retrospectively calculated in water by taking into account the delivery log files (retrospective) containing information on the actually delivered spot positions, fluences, and time stamps. Moreover, in order to evaluate the sensitivity of the 4DDC inputs, the corresponding prospective 4DDCs were performed as a comparison, using the estimated time stamps of the spot delivery and repeated periodical motion patterns. 2D gamma analyses and dose-difference-histograms were used to quantify the agreement between measurements and calculations for all pixels with [Formula: see text]5% of the maximum calculated dose. The results show that a mean gamma score of 99.2% with standard deviation 1.0% can be achieved for 3%/3 mm criteria and all scenarios can reach a score of more than 95%. The average area with more than 5% dose difference was 6.2%. Deviations due to input uncertainties were obvious for single scan deliveries but could be smeared out once rescanning was applied. Thus, the deforming grid 4DDC has been demonstrated to be able to predict the complex patterns of 4D dose distributions for PBS proton therapy with high dosimetric and geometric accuracy, and it can be used as a valid clinical tool for 4D treatment planning, motion mitigation selection, and eventually 4D optimisation applications if the correct temporal information is available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, K; Fujimoto, S; Akagi, Y
Purpose: To evaluate the dosimetric impact of the interplay effect between multileaf collimator (MLC) movement and tumor respiratory motion during delivery of volumetric modulate arc therapy (VMAT) by using customized polymer gel dosimeter. Methods: Polyacrylamide-based gel dosimeter contained magnesium chloride as a sensitizer (iPAGAT) was used in this study. An excellent gas barrier PAN (BAREX) techno bottle (φ8 cm, 650 mL) filled with iPAGAT was set to the QUASAR™ respiratory motion phantom, and was moved with motion amplitudes of 1 and 2 cm with a 4 second period during VMAT delivery by the Novalis Tx linear accelerator (Varian/BrainLAB). Two sphericalmore » tumors with a 2 cm diameter (GTV1 and GTV2) were defined, and ITV1 (GTV1+1 cm) and ITV2 (GTV2+2 cm) with expansion in the superior-inferior (S-I) direction were also defined with simulated respiratory motion. PTV margin was 2 mm around the ITV considering the setup uncertainty. Two single arc VMAT plans with 30 Gy at 3 Gy per fraction (GTV: D98>100%, PTV: D95=100%) were generated by the Varian Eclipse treatment planning system. Three-dimensional dose distribution in iPAGAT was read out by the Signa 1.5T MRI system (GE), and was evaluated by dose-volume histogram (DVH) using in-house developed software. Results: According to DVH analysis by iPAGAT, D98 of GTV1 and GTV2 were more than 100% of the prescribed dose. In contrast, D95 of PTV1 and PTV2 were about 85% and 65%, respectively. Furthermore, low-to-intermediate dose was widespread with motion amplitude of 2 cm. Conclusion: DVH analysis using iPAGAT polymer gel dosimeter was performed in this study. As a result, interplay effect was negligible, since dose coverage of GTV was sufficient during VMAT delivery with simulated respiratory motion. However, the dose reduction of PTV and the spread of low-to-intermediate dose compared to the planned dose require scrupulous attention for large tumor respiratory motion.« less
Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy
NASA Astrophysics Data System (ADS)
Krieger, Miriam; Klimpki, Grischa; Fattori, Giovanni; Hrbacek, Jan; Oxley, David; Safai, Sairos; Weber, Damien C.; Lomax, Antony J.; Zhang, Ye
2018-03-01
The aim of this study was to verify the temporal accuracy of the estimated dose distribution by a 4D dose calculation (4DDC) in comparison to measurements. A single-field plan (0.6 Gy), optimised for a liver patient case (CTV volume: 403cc), was delivered to a homogeneous PMMA phantom and measured by a high resolution scintillating-CCD system at two water equivalent depths. Various motion scenarios (no motion and motions with amplitude of 10 mm and two periods: 3.7 s and 4.4 s) were simulated using a 4D Quasar phantom and logged by an optical tracking system in real-time. Three motion mitigation approaches (single delivery, 6× layered and volumetric rescanning) were applied, resulting in 10 individual measurements. 4D dose distributions were retrospectively calculated in water by taking into account the delivery log files (retrospective) containing information on the actually delivered spot positions, fluences, and time stamps. Moreover, in order to evaluate the sensitivity of the 4DDC inputs, the corresponding prospective 4DDCs were performed as a comparison, using the estimated time stamps of the spot delivery and repeated periodical motion patterns. 2D gamma analyses and dose-difference-histograms were used to quantify the agreement between measurements and calculations for all pixels with > 5% of the maximum calculated dose. The results show that a mean gamma score of 99.2% with standard deviation 1.0% can be achieved for 3%/3 mm criteria and all scenarios can reach a score of more than 95%. The average area with more than 5% dose difference was 6.2%. Deviations due to input uncertainties were obvious for single scan deliveries but could be smeared out once rescanning was applied. Thus, the deforming grid 4DDC has been demonstrated to be able to predict the complex patterns of 4D dose distributions for PBS proton therapy with high dosimetric and geometric accuracy, and it can be used as a valid clinical tool for 4D treatment planning, motion mitigation selection, and eventually 4D optimisation applications if the correct temporal information is available.
The implication of non-cyclic intrafractional longitudinal motion in SBRT by TomoTherapy
NASA Astrophysics Data System (ADS)
Yang, Wensha; Van Ausdal, Ray; Read, Paul; Larner, James; Benedict, Stan; Sheng, Ke
2009-05-01
To determine the dosimetric impact of non-cyclic longitudinal intrafractional motion, TomoTherapy plans with different field sizes were interrupted during a phantom delivery, and a displacement between -5 mm and 5 mm was induced prior to the delivery of the completion procedure. The planar dose was measured by film and a cylindrical phantom, and under-dosed or over-dosed volume was observed for either positive or negative displacement. For a 2.5 cm field, there was a 4% deviation for every mm of motion and for a 1 cm field, the deviation was 8% per mm. The dimension of the under/over-dosed area was independent of the motion but dependent on the field size. The results have significant implication in small-field high-dose treatments (i.e. stereotactic body radiation therapy (SBRT)) that deliver doses in only a few fractions. Our studies demonstrate that a small longitudinal motion may cause a dose error that is difficult to compensate; however, dividing a SBRT fraction into smaller passes is helpful to reduce such adverse effects.
SU-F-J-156: The Feasibility of MR-Only IMRT Planning for Prostate Anatomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaitheeswaran, R; Sivaramakrishnan, KR; Kumar, Prashant
Purpose: For prostate anatomy, previous investigations have shown that simulated CT (sCT) generated from MR images can be used for accurate dose computation. In this study, we demonstrate the feasibility of MR-only IMRT planning for prostate case. Methods: Regular CT (rCT) and MR images of the same patient were acquired for prostate anatomy. Regions-of-interest (ROIs) i.e. target and risk structures are delineated on the rCT. A simulated CT (sCT) is generated from the MR image using the method described by Schadewaldt N et al. Their work establishes the clinical acceptability of dose calculation results on the sCT when compared tomore » rCT. rCT and sCT are rigidly registered to ensure proper alignment between the two images. rCT and sCT are overlaid on each other and slice-wise visual inspection confirms excellent agreement between the two images. ROIs on the rCT are copied over to sCT. Philips AutoPlanning solution is used for generating treatment plans. The same treatment technique protocol (plan parameters and clinical goals) is used to generate AutoPlan-rCT and AutoPlan-sCT respectively for rCT and and sCT. DVH comparison on ROIs and slice-wise evaluation of dose is performed between AutoPlan-rCT and AutoPlan-sCT. Delivery parameters i.e. beam and corresponding segments from the AutoPlan-sCT are copied over to rCT and dose is computed to get AutoPlan-sCT-on-rCT. Results: Plan evaluation is done based on Dose Volume Histogram (DVH) of ROIs and manual slice-wise inspection of dose distribution. Both AutoPlan-rCT and AutoPlan-sCT provide a clinically acceptable plan. Also, AutoPlan-sCT-on-rCT shows excellent agreement with AutoPlan-sCT. Conclusion: The study demonstrates that it is feasible to do IMRT planning on the simulated CT image obtained from MR image for prostate anatomy. The research is supported by Philips India Ltd.« less
Assessing dose rate distributions in VMAT plans
NASA Astrophysics Data System (ADS)
Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.
2016-04-01
Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional fractionation. A tool to analyze dose rate distributions in VMAT plans with sub-second accuracy was successfully developed and validated. Dose rates encountered in clinical VMAT test cases show a continuous spectrum with a mean less than or near 100 cGy min-1 for conventional fractionation.
Kim, Ernest S.; Gustenhoven, Erich; Mescher, Mark J.; Pararas, Erin E. Leary; Smith, Kim A.; Spencer, Abigail J.; Tandon, Vishal; Borenstein, Jeffrey T.; Fiering, Jason
2014-01-01
Reciprocating microfluidic drug delivery, as compared to steady or pulsed infusion, has unique features which may be advantageous in many therapeutic applications. We have previously described a device, designed for wearable use in small animal models, which periodically infuses then withdraws a sub-microliter volume of drug solution to and from the endogenous fluid of the inner ear. This delivery approach results in zero net volume of liquid transfer while enabling mass transport of compounds to the cochlea by means of diffusion and mixing. We report here on an advanced wearable delivery system aimed at further miniaturization and complex dose protocols. Enhancements to the system include the incorporation of a planar micropump to generate reciprocating flow and a novel drug reservoir which maintains zero net volume delivery and permits programmable modulation of the drug concentration in the infused bolus. The reciprocating pump is fabricated from laminated polymer films and employs a miniature electromagnetic actuator to meet the size and weight requirements of a head-mounted in vivo guinea pig testing system. The reservoir comprises a long microchannel in series with a micropump, connected in parallel with the reciprocating flow network. We characterized in vitro the response and repeatability of the planar pump and compared the results with a lumped element simulation. We also characterized the performance of the reservoir, including repeatability of dosing and range of dose modulation. Acute in vivo experiments were performed in which the reciprocating pump was used to deliver a test compound to the cochlea of anesthetized guinea pigs to evaluate short-term safety and efficacy of the system. These advances are key steps toward realization of an implantable device for long-term therapeutic applications in humans. PMID:24302432
Design and dosimetry of a few leaf electron collimator for energy modulated electron therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Yahya, Khalid; Verhaegen, Frank; Seuntjens, Jan
2007-12-15
Despite the capability of energy modulated electron therapy (EMET) to achieve highly conformal dose distributions in superficial targets it has not been widely implemented due to problems inherent in electron beam radiotherapy such as planning dosimetry accuracy, and verification as well as a lack of systems for automated delivery. In previous work we proposed a novel technique to deliver EMET using an automated 'few leaf electron collimator' (FLEC) that consists of four motor-driven leaves fit in a standard clinical electron beam applicator. Integrated with a Monte Carlo based optimization algorithm that utilizes patient-specific dose kernels, a treatment delivery was incorporatedmore » within the linear accelerator operation. The FLEC was envisioned to work as an accessory tool added to the clinical accelerator. In this article the design and construction of the FLEC prototype that match our compact design goals are presented. It is controlled using an in-house developed EMET controller. The structure of the software and the hardware characteristics of the EMET controller are demonstrated. Using a parallel plate ionization chamber, output measurements were obtained to validate the Monte Carlo calculations for a range of fields with different energies and sizes. Further verifications were also performed for comparing 1-D and 2-D dose distributions using energy independent radiochromic films. Comparisons between Monte Carlo calculations and measurements of complex intensity map deliveries show an overall agreement to within {+-}3%. This work confirms our design objectives of the FLEC that allow for automated delivery of EMET. Furthermore, the Monte Carlo dose calculation engine required for EMET planning was validated. The result supports the potential of the prototype FLEC for the planning and delivery of EMET.« less
Jang, Si Young; Lalonde, Ron; Ozhasoglu, Cihat; Burton, Steven; Heron, Dwight; Huq, M Saiful
2016-09-08
We performed an evaluation of the CyberKnife InCise MLC by comparing plan qualities for single and multiple brain lesions generated using the first version of InCise MLC, fixed cone, and Iris collimators. We also investigated differences in delivery efficiency among the three collimators. Twenty-four patients with single or multiple brain mets treated previously in our clinic on a CyberKnife M6 using cone/Iris collimators were selected for this study. Treatment plans were generated for all lesions using the InCise MLC. Number of monitor units, delivery time, target coverage, conformity index, and dose falloff were compared between MLC- and clinical cone/Iris-based plans. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney signed-rank test. The planning accuracy of the MLC-based plans was validated using chamber and film measurements. The InCise MLC-based plans achieved mean dose and target coverage comparable to the cone/Iris-based plans. Although the conformity indices of the MLC-based plans were slightly higher than those of the cone/Iris-based plans, beam delivery time for the MLC-based plans was shorter by 30% ~ 40%. For smaller targets or cases with OARs located close to or abutting target volumes, MLC-based plans provided inferior dose conformity compared to cone/Iris-based plans. The QA results of MLC-based plans were within 5% absolute dose difference with over 90% gamma passing rate using 2%/2 mm gamma criteria. The first version of InCise MLC could be a useful delivery modality, especially for clinical situations for which delivery time is a limiting factor or for multitarget cases. © 2016 The Authors.
Palmer, Brian C; DeLouise, Lisa A
2016-12-15
Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.
Considerations in insulin delivery device selection.
Valentine, Virginia; Kruger, Davida F
2010-06-01
Recent guidelines from the American Diabetes Association and the European Association for the Study of Diabetes promote the use of insulin sooner rather than later in patients with type 2 diabetes to achieve goal range glucose control (< 7%) but remain silent on a recommendation for delivery system. Even though there is widespread consensus among experts and payers that people with type 2 diabetes should use insulin earlier to achieve tight control, it still remains an elusive goal. Benefits of pen-type delivery devices include accurate dosing, faster and easier setting of dose and injection times, and increased patient acceptance and adherence. Before healthcare professionals can recommend a delivery device, it is critical they understand not only the medication in the device but also the various features and benefits to the different devices available and how those impact the patient. We will present considerations to assist in making appropriate device selection, to optimize patient success.
Palmer, Brian C.; DeLouise, Lisa A.
2017-01-01
Transdermal drug delivery systems have been around for decades, and current technologies (e.g. patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases. PMID:27983701
Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future.
Levin, Yotam; Kochba, Efrat; Hung, Ivan; Kenney, Richard
2015-01-01
Intradermal immunization has become a forefront of vaccine improvement, both scientifically and commercially. Newer technologies are being developed to address the need to reduce the dose required for vaccination and to improve the reliability and ease of injection, which have been major hurdles in expanding the number of approved vaccines using this route of administration. In this review, 7 y of clinical experience with a novel intradermal delivery device, the MicronJet600, which is a registered hollow microneedle that simplifies the delivery of liquid vaccines, are summarized. This device has demonstrated both significant dose-sparing and superior immunogenicity in various vaccine categories, as well as in diverse subject populations and age groups. These studies have shown that intradermal delivery using this device is safe, effective, and preferred by the subjects. Comparison with other intradermal devices and potential new applications for intradermal delivery that could be pursued in the future are also discussed.
AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.
Dinculescu, Astra; Stupay, Rachel M; Deng, Wen-Tao; Dyka, Frank M; Min, Seok-Hong; Boye, Sanford L; Chiodo, Vince A; Abrahan, Carolina E; Zhu, Ping; Li, Qiuhong; Strettoi, Enrica; Novelli, Elena; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Smith, W Clay; Hauswirth, William W
2016-01-01
Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Learnings Objectives: Although brachytherapy is the oldest form of radiation therapy, the rapid advancement of the methods of dose calculation, treatment planning and treatment delivery pushes us to keep updating our knowledge and experience to new procedures all the time. Our purpose is to present the newest applicators used in Accelerated Partial Breast Irradiation (APBI) and the techniques of using them for a maximum effective treatment. Our objective will be to get the user familiar with the Savi, Contura and ML Mammosite from the detailed description and measurements to cavity eval and choice or size, to acceptance tests and usemore » of each. At the end of the session the attendants will be able to assist at the scanning of the patient for the first treatment, decide on the proper localization and immobilization devices, import the scans in the treatment planning system, perform the structure segmentation, reconstruct the catheters and develop a treatment plan using inverse planning (IPSA) or volume optimization. The attendant should be able to evaluate the quality of a treatment plan according to the ABS protocols and B39 after this session. Our goal is that all the attendants to gain knowledge of all the quality assurance procedures required to be performed prior to a treatment, at the beginning of a treatment day, weekly, monthly and annualy on the remote afterloader, the treatment planning system and the secondary check system. We will provide tips for a consistent treatment delivery of the 10 fractions in a BID (twice daily) regimen.« less
Quirin, Kayla A; Kwon, Jason J; Alioufi, Arafat; Factora, Tricia; Temm, Constance J; Jacobsen, Max; Sandusky, George E; Shontz, Kim; Chicoine, Louis G; Clark, K Reed; Mendell, Joshua T; Korc, Murray; Kota, Janaiah
2018-03-16
Recombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 10 12 viral genomes (vg). Intraductal delivery of 1 × 10 11 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 10 11 vg. In a Kras G12D -driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.
Carlson, Nicole S.; Corwin, Elizabeth J.; Lowe, Nancy K.
2017-01-01
Background Synthetic oxytocin, the primary tool for labor augmentation, is less effective among obese women, leading to more unplanned cesarean deliveries for slow labor progress. It is not known if obese women require higher doses of oxytocin due to maternal, fetal, or labor factors related to maternal obesity. Objectives This study had two main objectives: 1) Examine the influence of maternal body mass index (BMI) on hourly doses of oxytocin from augmentation initiation until vaginal delivery in obese women; and 2) Examine the influence of other maternal, fetal, and labor factors on hourly doses of oxytocin in obese women. Study design Longitudinal study of a cohort (N = 136) of healthy, nulliparous, spontaneously laboring obese women (BMI ≥ 30 kg/m2) who received oxytocin augmentation and achieved vaginal delivery. We performed iterative multilevel analyses to examine the influence of maternal BMI and other factors on hourly oxytocin doses. Results Maternal BMI explained 16.56% (95% CI [13.7-20.04], p < 0.001) of the variance in hourly oxytocin doses received in a multilevel model controlling for influence of maternal, fetal, and labor characteristics. Maternal age, gestational age, status of amniotic membranes at hospital admission, and admission cervical dilation examination were not significant; however, neonatal birthweight and cervical dilation at oxytocin initiation were significant predictors of hourly oxytocin dose in these women (p < 0.001). Conclusions Even when parturition preparation has progressed adequately for spontaneous labor initiation, there still may be some obesity-related blunting of myometrial contractility and response to oxytocin used for augmentation. PMID:28347147
Carlson, Nicole S; Corwin, Elizabeth J; Lowe, Nancy K
2017-07-01
Synthetic oxytocin, the primary tool for labor augmentation, is less effective among obese women, leading to more unplanned cesarean deliveries for slow labor progress. It is not known if obese women require higher doses of oxytocin due to maternal, fetal, or labor factors related to maternal obesity. This study had two main objectives: (1) examine the influence of maternal body mass index (BMI) on hourly doses of oxytocin from augmentation initiation until vaginal delivery in obese women; and (2) examine the influence of other maternal, fetal, and labor factors on hourly doses of oxytocin in obese women. Longitudinal study of a cohort ( N = 136) of healthy, nulliparous, spontaneously laboring obese women (BMI ≥ 30 kg/m 2 ) who received oxytocin augmentation and achieved vaginal delivery. We performed iterative multilevel analyses to examine the influence of maternal BMI and other factors on hourly oxytocin doses. Maternal BMI explained 16.56% (95% confidence interval [CI] = [13.7, 20.04], p < .001) of the variance in hourly oxytocin doses received in a multilevel model controlling for influence of maternal, fetal, and labor characteristics. Maternal age, gestational age, status of amniotic membranes at hospital admission, and admission cervical dilation examination were not significant; however, neonatal birthweight and cervical dilation at oxytocin initiation were significant predictors of hourly oxytocin dose in these women ( p < .001). Even when parturition preparation has progressed adequately for spontaneous labor initiation, there still may be some obesity-related blunting of myometrial contractility and response to oxytocin used for augmentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Xiaodong, E-mail: lxdctopone@sina.com; Ni, Lingqin; Hu, Wei
The objective of this study was to evaluate the dose conformity and feasibility of whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in patients with 1 to 3 brain metastases. Forward intensity-modulated radiation therapy plans were generated for 10 patients with 1 to 3 brain metastases on Pinnacle 6.2 Treatment Planning System. The prescribed dose was 30 Gy to the whole brain (planning target volume [PTV]{sub wbrt}) and 40 Gy to individual brain metastases (PTV{sub boost}) simultaneously, and both doses were given in 10 fractions. The maximum diameters of individual brain metastases ranged from 1.6 tomore » 6 cm, and the summated PTVs per patient ranged from 1.62 to 69.81 cm{sup 3}. Conformity and feasibility were evaluated regarding conformation number and treatment delivery time. One hundred percent volume of the PTV{sub boost} received at least 95% of the prescribed dose in all cases. The maximum doses were less than 110% of the prescribed dose to the PTV{sub boost}, and all of the hot spots were within the PTV{sub boost}. The volume of the PTV{sub wbrt} that received at least 95% of the prescribed dose ranged from 99.2% to 100%. The mean values of conformation number were 0.682. The mean treatment delivery time was 2.79 minutes. Ten beams were used on an average in these plans. Whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in 1 to 3 brain metastases is feasible, and treatment delivery time is short.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, Habib; Meigooni, A S.; University of Nevada Las Vegas
Purpose: Recently, different applicators are designed for treatment of the skin cancer such as scalp and legs, using Ir-192 HDR Brachytherapy Sources (IR-HDRS), Miniature Electronic Brachytherapy Sources (MEBXS), and External Electron Beam Radiation Therapy (EEBRT). Although, all of these methodologies may deliver the desired radiation dose to the skin, the dose to the underlying bone may become the limiting factor for selection of the optimum treatment technique. In this project the radiation dose delivered to the underlying bone has been evaluated as a function of the radiation source and thickness of the underlying bone. Methods: MC simulations were performed usingmore » MCNP5 code. In these simulations, the mono-energetic and non-divergent photon beams of 30 keV, 50 keV, and 70 keV for MEBXS, 380 keV photons for IR-HDRS, and 6 MeV mono-energetic electron beam for EEBRT were modeled. A 0.5 cm thick soft tissue (0.3 cm skin and 0.2 cm adipose) with underlying 0.5 cm cortical bone followed by 14 cm soft tissue are utilized for simulations. Results: Dose values to bone tissue as a function of beam energy and beam type, for a delivery of 5000 cGy dose to skin, were compared. These results indicate that for delivery of 5000 cGy dose to the skin surface with 30 keV, 50 keV, 70 keV of MEBXS, IR-HDRS, and EEBRT techniques, bone will receive 31750 cGy, 27450 cGy, 18550 cGy, 4875 cGy, and 10450 cGy, respectively. Conclusion: The results of these investigations indicate that, for delivery of the same skin dose, average doses received by the underlying bone are 5.2 and 2.2 times larger with a 50 keV MEBXS and EEBRT techniques than IR-HDRS, respectively.« less
Dose-response study of spinal hyperbaric ropivacaine for cesarean section
Chen, Xin-zhong; Chen, Hong; Lou, Ai-fei; Lü, Chang-cheng
2006-01-01
Background: Spinal hyperbaric ropivacaine may produce more predictable and reliable anesthesia than plain ropivacaine for cesarean section. The dose-response relation for spinal hyperbaric ropivacaine is undetermined. This double-blind, randomized, dose-response study determined the ED50 (50% effective dose) and ED95 (95% effective dose) of spinal hyperbaric ropivacaine for cesarean section anesthesia. Methods: Sixty parturients undergoing elective cesarean section delivery with use of combined spinal-epidural anesthesia were enrolled in this study. An epidural catheter was placed at the L1~L2 vertebral interspace, then lumbar puncture was performed at the L3~L4 vertebral interspace, and parturients were randomized to receive spinal hyperbaric ropivacaine in doses of 10.5 mg, 12 mg, 13.5 mg, or 15 mg in equal volumes of 3 ml. Sensory levels (pinprick) were assessed every 2.5 min until a T7 level was achieved and motor changes were assessed by modified Bromage Score. A dose was considered effective if an upper sensory level to pin prick of T7 or above was achieved and no intraoperative epidural supplement was required. ED50 and ED95 were determined with use of a logistic regression model. Results: ED50 (95% confidence interval) of spinal hyperbaric ropivacaine was determined to be 10.37 (5.23~11.59) mg and ED95 (95% confidence interval) to be 15.39 (13.81~23.59) mg. The maximum sensory block levels and the duration of motor block and the rate of hypotension, but not onset of anesthesia, were significantly related to the ropivacaine dose. Conclusion: The ED50 and ED95 of spinal hyperbaric ropivacaine for cesarean delivery under the conditions of this study were 10.37 mg and 15.39 mg, respectively. Ropivacaine is suitable for spinal anesthesia in cesarean delivery. PMID:17111469
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldosary, Ghada; Nobah, Ahmad; Al-Zorkani, Faisal
2014-08-15
Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dosemore » differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT.« less